WO2024117647A1 - 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법 - Google Patents

용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2024117647A1
WO2024117647A1 PCT/KR2023/018821 KR2023018821W WO2024117647A1 WO 2024117647 A1 WO2024117647 A1 WO 2024117647A1 KR 2023018821 W KR2023018821 W KR 2023018821W WO 2024117647 A1 WO2024117647 A1 WO 2024117647A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
molecular weight
polypropylene resin
polypropylene
weight
Prior art date
Application number
PCT/KR2023/018821
Other languages
English (en)
French (fr)
Inventor
정재훈
임지수
손창규
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Publication of WO2024117647A1 publication Critical patent/WO2024117647A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators

Definitions

  • the present invention relates to a polypropylene resin composition and a manufacturing method thereof, and more specifically, to a polypropylene resin composition having excellent melt strength and a manufacturing method thereof.
  • Polypropylene is widely used in general-purpose products due to its excellent mechanical properties, low specific gravity, and easy moldability, and has recently been used in various fields for products requiring high performance due to improvements in mechanical properties.
  • polypropylene is a linear polymer and has a limitation of low melt strength. Because of these limitations, polypropylene has been used limitedly as a material for sheet foaming, as well as deep-draw compression molded products and large-scale blown products that require high elongation viscosity.
  • Korean Patent No. 0311290 is a method of producing propylene polymer material with high melt strength by irradiating polypropylene with electron beams. After polymerizing linear polypropylene, electron beams are irradiated in a radiation chamber in a nitrogen atmosphere and pelletized to produce non-linear propylene polymer. Manufactured. As a result of foaming evaluation of the manufactured polymer, it showed a good foaming ratio of up to 8 times, but the problem was that Chlorofluorocarbon (CFC) gas, an ozone layer depleting substance currently banned internationally, was used as a foaming agent at a high content of 8%. there is.
  • CFC Chlorofluorocarbon
  • Korean Patent No. 1938511 discloses a method of producing high melt strength polypropylene through reaction extrusion by adding organic peroxide to polypropylene, but there is also a problem that residual peroxide and yellowing problems may occur.
  • Korean Patent No. 2129922 discloses highly fluid, partially cross-linked, impact-resistant polypropylene with improved fluidity and impact properties using a specific cross-linking agent, but there is a problem in that it is difficult to achieve the melt tension required for pressure hole molding or foam molding.
  • the present invention seeks to provide a polypropylene resin composition having high extensional viscosity and melt strength and a method for producing the same.
  • the present invention has a weight average molecular weight of 250,000 to 500,000 g/mol, a molecular weight distribution (MWD, Mw/Mn) of 5.5 to 12, and a high molecular weight content of 4 to 15 with a molecular weight of 1,000,000 g/mol or more. It provides a polypropylene resin composition with a weight percent.
  • the polypropylene resin composition has a branching degree of 0.5 to 0.8, an extensional viscosity of 5 ⁇ 10 6 to 10 9 Pa ⁇ s, and a melt strength of 30 cN or more, as measured according to the following method. provides.
  • a specimen measuring 20 mm in width, 10 mm in height, and 1 mm in thickness was fixed on a sample holder using ARES (advanced rheometric expansion system), and then examined at a temperature of 180°C and a speed of 0.1 /s using EVF (Extensional viscosity fixture) mode. It is measured as the resistance value applied when the specimen rotates around the axis, and the maximum value of the tension that changes according to the rotation distance (elongation rate) of the specimen is taken as the elongation viscosity;
  • the molten sample was extruded through a 1 mm diameter circular die at a temperature of 200°C using a Rheotens device (Rheotens 97, GOTTFERT), the resulting extruded strand was positioned 100 mm (spinline length) below the die exit, and wound.
  • a rheothense wheel whose speed is gradually increased with an acceleration of 120 mm/s 2
  • the force applied to the wheel (cN) is recorded as a function of the winding speed (mm/s) and
  • melt strength The force applied at peak or rupture is referred to as melt strength.
  • the polypropylene resin composition provides a polypropylene resin composition characterized in that it is used for pressure molding, blowing, or foaming.
  • the present invention provides a method of producing the polypropylene resin composition of claim 1 by irradiating electron beams to a resin composition in which 0.01 to 2 parts by weight of a crosslinking agent is added to 100 parts by weight of polypropylene.
  • the cross-linking agent is triallyl isocyanurate, triallyl cyanurate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, triallyl Preparation of a polypropylene resin composition characterized in that it is at least one member selected from the group consisting of triallyl trimesate, triallyl phosphate, pentaerythritol triacrylate, and divinylbenzene. Provides a method.
  • a method for producing a polypropylene resin composition wherein the electron beam irradiation dose is 5 to 30 kGy.
  • a resin composition in which a crosslinking agent is added to polypropylene is irradiated with an electron beam, and the weight average molecular weight is 250,000 to 500,000 g/mol, the molecular weight distribution (MWD, Mw/Mn) is 5.5 to 12, and the molecular weight is 1,000,000 g/mol or more.
  • a polypropylene resin composition having a high molecular weight content of 4 to 15% by weight a polypropylene resin composition having excellent extensional viscosity and melt strength and a method for producing the same can be provided.
  • the polypropylene resin composition according to the present invention can be used for various purposes such as extrusion, sheet, and injection, and can be more suitably used for pressure molding, blowing, or foaming that requires high melt strength characteristics.
  • the present invention is a polypropylene resin composition having a weight average molecular weight of 250,000 to 500,000 g/mol, a molecular weight distribution (MWD, Mw/Mn) of 5.5 to 12, and a high molecular weight content of 4 to 15% by weight with a molecular weight of 1,000,000 g/mol or more. commences.
  • the polypropylene resin composition according to the present invention can be manufactured by irradiating an electron beam to a resin composition in which 0.01 to 2 parts by weight of a crosslinking agent is added to 100 parts by weight of polypropylene.
  • the polypropylene is not particularly limited as long as it is a resin for improving melt strength through electron beam irradiation, but may be selected from propylene homopolymer, propylene random copolymer, or impact polypropylene (block copolymer of propylene homopolymer and ethylene-propylene copolymer). ) can be used.
  • the comonomer used to produce the propylene copolymer is preferably ethylene or an ⁇ -olefin having 4 to 10 carbon atoms, and the comonomer content may be 30% by weight or less, preferably 1 to 10% by weight.
  • These polypropylenes can be used as manufactured by commonly known processes, and the manufacturing method is not particularly limited in the present invention.
  • the polypropylene to which a crosslinking agent is added and irradiated with an electron beam has a weight average molecular weight of 250,000 to 500,000 g/mol and a molecular weight distribution (MWD, Mw/Mn) of 5.5 to 12, preferably a weight average molecular weight of 270,000 to 450,000.
  • g/mol and molecular weight distribution (MWD, Mw/Mn) may be 5.5 to 10. If the weight average molecular weight is less than 250,000 g/mol, due to the relatively low molecular weight, for example, when applied for foaming, the foaming ratio is insufficient or molding is difficult due to high flowability when forming a sheet. If it exceeds 500,000 g/mol, the flowability is difficult. This decreases and has a detrimental effect on molding. Additionally, if the molecular weight distribution is less than 5.5, it is difficult to improve the number of branches beyond a certain level, and there are process limitations in setting it to exceed 12.
  • polypropylene having a weight average molecular weight and molecular weight distribution in the above range in order to implement polypropylene having a weight average molecular weight and molecular weight distribution in the above range, a mixture of two types of polypropylene with controlled molecular weight characteristics may be used, or a single polypropylene having a specific molecular weight range may be used.
  • 60 to 90% by weight of high molecular weight polypropylene with a weight average molecular weight of 500,000 to 700,000 g/mol and 60 to 90% by weight of high molecular weight polypropylene with a weight average molecular weight of 50,000 to 200,000 g/mol may be a mixture of 10 to 40% by weight of low molecular weight polypropylene, preferably 70 to 85% by weight of high molecular weight polypropylene with a weight average molecular weight of 550,000 to 650,000 g/mol, and 80,000 to 150,000 g/mol. It may be a mixture of 15 to 30% by weight of low molecular weight polypropylene.
  • polypropylene with a weight average molecular weight of 350,000 to 600,000 g/mol can be used, and preferably, polypropylene with a weight average molecular weight of 400,000 to 500,000 g/mol can be used.
  • a triolefin-based crosslinking agent or divinylbenzene may be used as the crosslinking agent, and examples of the triolefin-based crosslinking agent include triallyl isocyanurate and triallyl cyanurate.
  • Trimethylolpropane trimethacrylate, Trimethylolpropane triacrylate, Triallyl trimesate, Triallyl phosphate, Pentaerythritol triacrylate ), etc. may be used.
  • triallyl isocyanurate is selected in consideration of maximizing the crosslinking effect by introducing long chain branches during electron beam irradiation and realizing maximized elongation viscosity and melt strength by controlling the crosslinker content and electron beam absorption amount. desirable.
  • the crosslinking agent may be mixed in an amount of 0.01 to 2 parts by weight, preferably 0.1 to 1.5 parts by weight, and more preferably 0.5 to 1.2 parts by weight, based on 100 parts by weight of the polypropylene. If the cross-linking agent content is less than 0.01 parts by weight, it is difficult to expect a satisfactory cross-linking effect, and if it exceeds 2 parts by weight, the cross-linking effect of polypropylene increases and many long-chain branches can be introduced, but excessive cross-linking effect can cause, for example, cell growth during foaming. This can actually reduce foaming performance and significantly increase gel generation.
  • the mixing of the polypropylene and the crosslinking agent may be performed according to a common method known in the art.
  • the ingredients may be added and mixed in a mixer in the required amount and then melt-extruded using an extruder with an extrusion temperature of 180 to 240°C and a screw rotation speed of 95 to 100 rpm to form a pellet.
  • electron beam irradiation is performed on the mixture of the polypropylene and the cross-linking agent in order to generate free radicals in polypropylene and improve melt strength by introducing free radicals into branches and causing inter-chain entanglement.
  • electron beam irradiation can be performed using, for example, an electron beam accelerator with a 10 MeV irradiation dose.
  • chain entanglement sufficient to improve the desired melt strength is possible even with a low dose of electron beam irradiation such that the absorption amount is 5 to 30 kGy, preferably 10 to 25 kGy, and more preferably 15 to 20 kGy. If the irradiation dose is less than 5 kGy, it may be difficult to provide high extensional viscosity due to the small number of radicals generated, and if it exceeds 30 kGy, the degree of decomposition of the molecular chain may increase and the extensional viscosity may decrease.
  • the polypropylene resin composition according to the present invention may further include one or more common additives known in the art, such as antioxidants, neutralizers, heat stabilizers, etc., as other additives.
  • one or more common additives known in the art such as antioxidants, neutralizers, heat stabilizers, etc.
  • the content of these additives may be used in the range of 0.01 to 1 part by weight based on 100 parts by weight of the polypropylene resin composition for foaming of the present invention, but is not particularly limited thereto.
  • the antioxidant can prevent the phenomenon of resin molecules being broken by heat, oxygen, etc. when manufacturing products using a polypropylene resin composition, and the neutralizer can be used by the residues (metal components) of the catalyst used in polymerization. It can neutralize acids (specifically, hydrogen chloride) that may be generated, and the heat-resistant stabilizer can play a role in preventing molecular weight reduction while polypropylene molded products are used in a high temperature environment.
  • antioxidants for example, phosphorus-based antioxidants or phenol-based antioxidants can be used.
  • the phosphorus-based antioxidants include tris (2,3-di-t-butylphenyl) phosphite, and the phenol-based oxidation
  • inhibitors include tetrakis[ethylene-3-(3,5-di-thi-butyl-4-hydroxy phenyl)propionate] methane.
  • the neutralizing agent may be, for example, calcium stearate
  • the heat-resistant stabilizer may be, for example, distearyl thiodipropionate.
  • a molded body can be manufactured by various molding methods using the polypropylene resin composition according to the present invention, and the shape and size of the molded body can be determined appropriately. Methods for producing such molded bodies include, for example, injection molding, press molding, vacuum molding, foam molding, and extrusion molding methods that are commonly used industrially. Depending on the purpose, the polypropylene resin composition of the present invention can be used in a similar manner. Alternatively, a molding method of joining different types of polypropylene resins or other resins, or a method of co-extrusion molding, etc. may be used. However, the polypropylene resin composition according to the present invention has excellent elongation viscosity and can be more suitably used for deep draw vacuum molding or foam sheet molding. Products manufactured through the deep draw vacuum molding include, for example, cup-shaped containers, and products manufactured through the foam molding include, for example, lunch box containers, cup ramen containers, meat processing trays, etc. .
  • the polypropylene resin composition according to the present invention exhibits melt strength characteristics suitable for vacuum molding, blow molding, or foam sheet molding.
  • the degree of branching measured according to the following method is 0.5 to 0.8, and the elongation viscosity is 5 ⁇ 10. 6 to 10 9 Pa ⁇ s
  • the melt strength may be 30 cN or more, preferably the degree of branching is 0.6 to 0.8, the elongation viscosity is 10 7 to 5 ⁇ 10 8 Pa ⁇ s, and the melt strength is 35 cN or more. You can.
  • a specimen measuring 20 mm in width, 10 mm in height, and 1 mm in thickness was fixed on a sample holder using ARES (advanced rheometric expansion system), and then examined at a temperature of 180°C and a speed of 0.1 /s using EVF (Extensional viscosity fixture) mode. It is measured as the resistance value applied when the specimen rotates around the axis, and the maximum value of the tension that changes according to the rotation distance (elongation rate) of the specimen is taken as the elongation viscosity;
  • the molten sample was extruded through a 1 mm diameter circular die at a temperature of 200°C using a Rheotens device (Rheotens 97, GOTTFERT), the resulting extruded strand was positioned 100 mm (spinline length) below the die exit, and wound.
  • a rheothense wheel whose speed is gradually increased with an acceleration of 120 mm/s 2
  • the force applied to the wheel (cN) is recorded as a function of the winding speed (mm/s) and
  • melt strength The force applied at peak or rupture is referred to as melt strength.
  • the raw materials with the composition shown in Table 1 below are mixed for 1 minute in a Hanschel mixer and then extruded using a single-screw extruder at 180 to 240°C to produce a polypropylene resin composition in the form of pellets.
  • the polypropylene composition is then manufactured by maintaining the electron beam irradiation amount shown in Table 1 below. did.
  • the electron beam was irradiated under the conditions of beam energy of 10 MeV, line speed of 0.5 to 3 m/min, and irradiation distance of 4 to 5 m.
  • Weight average molecular weight (Mw) and molecular weight distribution (MWD, Mw/Mn) were measured using gel permeation chromatography (GPC) (Agilent). Polystyrene was used as a standard material under chloroform solvent.
  • a specimen measuring 20 mm in width, 10 mm in height, and 1 mm in thickness was fixed to a sample holder using ARES (advanced rheometric expansion system) and then subjected to a temperature of 180°C and 0.1 /s using EVF (Extensional viscosity fixture) mode. It was measured as the resistance value applied when the specimen rotated around its axis at speed, and the maximum value of the tension that changed depending on the rotation distance (elongation rate) of the specimen was taken as the elongation viscosity.
  • ARES advanced rheometric expansion system
  • EVF Extensional viscosity fixture
  • the molten sample was extruded through a 1 mm diameter circular die at a temperature of 200°C using a Rheotens device (Rheotens 97, GOTTFERT), the resulting extruded strand was positioned 100 mm (spinline length) below the die exit, and wound.
  • a Rheotens wheel whose speed is gradually increased with an acceleration of 120 mm/s2
  • the force applied to the wheel (cN) is recorded as a function of the winding speed (mm/s), with the peak before strand breakage.
  • the force applied at breakage was taken as melt strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

높은 신장점도 및 용융강도를 갖는 폴리프로필렌 수지 조성물 및 그 제조방법이 개시된다. 본 발명은 중량평균 분자량이 250,000 내지 500,000 g/mol이고, 분자량 분포(MWD, Mw/Mn)가 5.5 내지 12이고, 분자량 1,000,000 g/mol 이상인 고분자량 함량이 4 내지 15 중량%인 폴리프로필렌 수지 조성물 및 그 제조방법을 제공한다.

Description

용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법
본 발명은 폴리프로필렌 수지 조성물 및 그 제조방법에 관한 것으로, 보다 상세하게는 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법에 관한 것이다.
본 출원은 2022년 11월 30일자로 출원된 대한민국 특허출원 제10-2022-0165270호에 대한 우선권 및 이익을 주장하며, 이 출원은 그 전문이 본원에 참조로 포함된다.
폴리프로필렌은 우수한 기계적 특성, 낮은 비중, 용이한 성형성 등으로 범용 제품 용도로 많이 사용되고 있으며, 최근에는 기계적 물성의 개선으로 고성능을 요구하는 제품에도 여러 분야에서 사용되고 있다.
하지만 일반적인 형태의 폴리프로필렌은 선형 고분자 형태로서, 용융강도가 낮은 한계가 있다. 이러한 한계 때문에 폴리프로필렌은 고 신장점도를 가져야 하는 딥드로우 진압공 성형품이나, 대형 블로우 제품뿐만 아니라, 시트 발포용 소재로는 제한적으로 사용되어 왔다.
종래 폴리프로필렌의 용융장력을 높이기 위한 다양한 방법이 개시되고 있으나, 대부분 과산화물 첨가 후 반응압출을 통해 장쇄 분지를 도입하여 선형 폴리프로필렌을 개질하는 방법으로서, 반응 압출 공정을 거치는 중 과산화물로 인해 프로필렌이 분해되는 문제가 발생할 수 있고, 과산화물의 잔류, 황변 등의 문제가 있다.
한국 등록특허 제0311290호는 폴리프로필렌에 전자선을 조사하여 용융강도가 큰 프로필렌 중합체 재료를 제조하는 방법으로, 선형 폴리프로필렌 중합 후 질소 분위기의 방사 챔버 내에서 전자선을 조사하고 펠렛화하여 비선형 프로필렌 중합체를 제조하였다. 제조된 중합체의 발포 평가를 진행한 결과 최대 8배의 양호한 발포배율을 나타내었으나, 현재 국제적으로 사용 금지된 오존층 파괴 물질인 Chlorofluorocarbon(CFC) 가스를 발포제로써 8%의 고함량으로 사용하였다는 문제점이 있다.
한국 등록특허 제1938511호는 폴리프로필렌에 유기 과산화물을 첨가하여 반응압출을 통해 고용융강도 폴리프로필렌을 제조하는 방법을 개시하고 있으나, 역시 과산화물의 잔류 및 황변 문제가 발생할 수 있는 문제점이 있다.
한국 등록특허 제2129922호는 특정 가교제를 사용하여 유동성 및 충격성을 개선시킨 고유동성 부분 가교형 내충격 폴리프로필렌에 관해 개시하고 있으나, 진압공 성형이나 발포 성형에 필요한 용융장력을 구현하기 어려운 문제가 있다.
본 발명은 높은 신장점도 및 용융강도를 갖는 폴리프로필렌 수지 조성물 및 그 제조방법을 제공하고자 한다.
상기 과제를 해결하기 위하여 본 발명은, 중량평균 분자량이 250,000 내지 500,000 g/mol이고, 분자량 분포(MWD, Mw/Mn)가 5.5 내지 12이고, 분자량 1,000,000 g/mol 이상인 고분자량 함량이 4 내지 15 중량%인 폴리프로필렌 수지 조성물을 제공한다.
또한 상기 폴리프로필렌 수지 조성물은 하기 방법에 따라 측정된 분지화도가 0.5 내지 0.8이고, 신장점도가 5×106 내지 109 Pa·s이고, 용융강도가 30 cN 이상인 것을 특징으로 하는 폴리프로필렌 수지 조성물을 제공한다.
[분지화도 측정방법]
상기 폴리프로필렌 수지 조성물의 고유점도([η]br)와 동일한 분자량을 갖는 선상 중합체의 고유점도 ([η]lin)의 비([η]br/[η]lin)로 계산함;
[신장점도 측정방법]
가로 20 mm, 세로 10 mm 및 두께 1 mm의 시편을 ARES(advanced rheometric expansion system)를 사용하여 샘플 거치대에 고정시킨 후, EVF(Extensional viscosity fixture) 모드를 사용하여 180℃ 온도 및 0.1 /s의 속도로 시편이 축을 중심으로 회전할 때 걸리는 저항값으로 측정하되, 시편의 회전거리(신장률)에 따라 변화되는 장력 중 최대값을 신장점도로 함;
[용융강도 측정방법]
레오텐스 장치(Rheotens 97, GOTTFERT)를 이용하여 200℃ 온도에서 용융 샘플을 1 mm 직경의 원형 다이를 통해 압출시키고, 압출되어 생성된 가닥이 다이 출구로부터 100 mm(spinline length) 아래에 위치하고, 권취 속도가 120 mm/s2의 가속도로 점진적으로 증가하는 레오텐스 휠에 의해 권취될 때, 휠에 가해진 힘(cN)이 권취 속도(mm/s)의 함수로 기록되고, 가닥이 파단되기 이전의 피크 또는 파단 시 가해진 힘을 용융강도로 함.
또한 상기 폴리프로필렌 수지 조성물은 진압공 성형용, 블로우용 또는 발포용인 것을 특징으로 하는 폴리프로필렌 수지 조성물을 제공한다.
상기 또 다른 과제를 해결하기 위하여 본 발명은, 폴리프로필렌 100 중량부에 가교제가 0.01 내지 2 중량부 첨가된 수지 조성물에 전자선을 조사하여 제1항의 폴리프로필렌 수지 조성물을 제조하는 방법을 제공한다.
또한 상기 가교제는 트리알릴 이소시아누레이트(Triallyl isocyanurate), 트리알릴 시아누레이트(Triallyl cyanurate), 트리메틸올프로판 트리메타크릴레이트(Trimethylolpropane trimethacrylate), 트리메틸올프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 트리알릴 트리메세이트(Triallyl trimesate), 트리알릴 포스페이트(Triallyl phosphate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate) 및 디비닐벤젠(Divinylbenzene)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 폴리프로필렌 수지 조성물 제조방법을 제공한다.
또한 상기 전자선 조사 선량은 5 내지 30 kGy인 것을 특징으로 하는 폴리프로필렌 수지 조성물 제조방법을 제공한다.
본 발명은 폴리프로필렌에 가교제가 첨가된 수지 조성물에 전자선이 조사되어 중량평균 분자량이 250,000 내지 500,000 g/mol이고, 분자량 분포(MWD, Mw/Mn)가 5.5 내지 12이고, 분자량 1,000,000 g/mol 이상인 고분자량 함량이 4 내지 15 중량%인 폴리프로필렌 수지 조성물을 제시함으로써, 신장점도 및 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법을 제공할 수 있다.
본 발명에 따른 폴리프로필렌 수지 조성물은 압출, 시트, 사출 등 다양한 용도에 사용될 수 있고, 높은 용융강도 특성이 요구되는 진압공 성형용, 블로우용 또는 발포용으로 보다 적합하게 사용될 수 있다.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 발명은 중량평균 분자량이 250,000 내지 500,000 g/mol이고, 분자량 분포(MWD, Mw/Mn)가 5.5 내지 12이고, 분자량 1,000,000 g/mol 이상인 고분자량 함량이 4 내지 15 중량%인 폴리프로필렌 수지 조성물을 개시한다. 본 발명에 따른 폴리프로필렌 수지 조성물은 폴리프로필렌 100 중량부에 가교제가 0.01 내지 2 중량부 첨가된 수지 조성물에 전자선을 조사하여 제조될 수 있다.
본 발명에서 상기 폴리프로필렌은 전자선 조사를 통한 용융강도 향상을 위한 수지라면 특별히 한정되는 것은 아니나, 프로필렌 단독 중합체, 프로필렌 랜덤 공중합체 또는 임팩트 폴리프로필렌(프로필렌 단독 중합체와 에틸렌-프로필렌 공중합체의 블록 공중합체)이 사용될 수 있다. 이때, 프로필렌 공중합체 제조에 사용되는 공단량체는 에틸렌이나 탄소수 4 내지 10의 α-올레핀인 것이 바람직하고, 공단량체의 함량은 30 중량% 이하, 바람직하게는 1 내지 10 중량%일 수 있다. 이들 폴리프로필렌은 통상적으로 알려진 공정에 의해 제조된 것으로 사용될 수 있으며, 본 발명에서 그 제조방법에 관하여 특별히 한정되는 것은 아니다.
본 발명에서 가교제가 첨가되어 전자선이 조사된 폴리프로필렌은 중량평균 분자량이 250,000 내지 500,000 g/mol 및 분자량 분포(MWD, Mw/Mn)가 5.5 내지 12이며, 바람직하게는 중량평균 분자량이 270,000 내지 450,000 g/mol 및 분자량 분포(MWD, Mw/Mn)가 5.5 내지 10일 수 있다. 상기 중량평균 분자량이 250,000g/mol 미만이면 상대적으로 낮은 분자량으로 인해 예컨대, 발포용으로 적용 시 발포 배율이 부족하거나, 시트 성형 시 흐름성이 높아 성형이 어렵고, 500,000 g/mol을 초과하면 흐름성이 저하되어 성형에 불리하게 작용한다. 또한 상기 분자량 분포가 5.5 미만이면 분지의 수를 일정 수준 이상 향상시키기 어렵고, 12를 초과하도록 설정하기에는 공정상 한계가 있다.
본 발명에서는 상기 범위의 중량평균 분자량 및 분자량 분포를 갖는 폴리프로필렌을 구현하기 위해 분자량 특성이 조절된 두 가지 폴리프로필렌을 혼합하여 사용할 수도 있고, 특정 분자량 범위를 갖는 단일의 폴리프로필렌을 사용할 수도 있다.
구체적으로, 분자량 특성이 조절된 두 가지 폴리프로필렌을 혼합 사용할 경우에는 중량평균 분자량이 500,000 내지 700,000 g/mol인 고분자량 폴리프로필렌 60 내지 90 중량%와, 중량평균 분자량이 50,000 내지 200,000 g/mol인 저분자량 폴리프로필렌 10 내지 40 중량%가 혼합된 것일 수 있고, 바람직하게는 중량평균 분자량이 550,000 내지 650,000 g/mol인 고분자량 폴리프로필렌 70 내지 85 중량%와, 중량평균 분자량이 80,000 내지 150,000 g/mol인 저분자량 폴리프로필렌 15 내지 30 중량%가 혼합된 것일 수 있다.
또한 단일의 폴리프로필렌을 사용할 경우에는 중량평균 분자량이 350,000 내지 600,000 g/mol인 폴리프로필렌이 사용될 수 있고, 바람직하게는 중량평균 분자량이 400,000 내지 500,000 g/mol인 폴리프로필렌이 사용될 수 있다.
본 발명에서 상기 가교제로는 트리올레핀계 가교제 또는 디비닐벤젠(Divinylbenzene)이 사용될 수 있으며, 상기 트리올레핀계 가교제로는 트리알릴 이소시아누레이트(Triallyl isocyanurate), 트리알릴 시아누레이트(Triallyl cyanurate), 트리메틸올프로판 트리메타크릴레이트(Trimethylolpropane trimethacrylate), 트리메틸올프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 트리알릴 트리메세이트(Triallyl trimesate), 트리알릴 포스페이트(Triallyl phosphate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate) 등이 사용될 수 있다. 여기서, 전자선 조사 시 장쇄 분지 도입에 의한 가교 효과 극대화 및 가교제 함량과 전자선 흡수량을 조절을 통한 극대화된 신장점도 및 용융강도 구현을 고려하여 트리알릴 이소시아누레이트(Triallyl isocyanurate, TAIC)를 선택하는 것이 바람직하다.
본 발명에서 상기 가교제는 상기 폴리프로필렌 100 중량부에 대하여 0.01 내지 2 중량부의 함량으로 혼합되며, 바람직하게는 0.1 내지 1.5 중량부, 더욱 바람직하게는 0.5 내지 1.2 중량부 함량으로 혼합될 수 있다. 가교제 함량이 0.01 중량부 미만일 경우 만족스러운 가교 효과를 기대하기 어렵고, 2 중량부를 초과할 경우 폴리프로필렌의 가교 효과가 상승하여 많은 장쇄 분지를 도입할 수 있으나, 과도한 가교 효과는 예컨대, 발포 시 셀 성장을 방해하여 발포 성능을 오히려 감소시킬 수 있고, 겔 발생을 상당히 증가시킬 수 있다.
본 발명에서 상기 폴리프로필렌과 가교제의 혼합은 당 업계에 알려진 통상의 방법에 따를 수 있다. 예컨대, 상기 성분들을 필요한 양으로 믹서에 투입 및 혼합 후 압출 온도 180 내지 240℃, 스크류 회전속도 95 내지 100 rpm 조건의 압출기를 이용하여 용융 압출하여 펠렛 상으로 제조될 수 있다.
본 발명에서는 폴리프로필렌에 자유 라디칼을 발생시키고 라디칼로 인해 끊어진 사슬이 가지로 도입되어 사슬 간 엉킴 발생으로 용융강도를 향상시키기 위해 상기 폴리프로필렌과 가교제의 혼합물에 전자선 조사를 수행하게 된다.
본 발명에서 전자선 조사는 예컨대, 10 MeV 조사량의 전자선 가속기를 이용하여 수행될 수 있다. 본 발명에서는 5 내지 30 kGy, 바람직하게는 10 내지 25 kGy, 더욱 바람직하게는 15 내지 20 kGy의 흡수량을 가지도록 하는 저선량의 전자선 조사로도 목적하는 용융강도 향상에 충분한 사슬 엉킴이 가능하다. 조사 선량이 5 kGy 미만이면 생성되는 라디칼이 적어 높은 신장점도를 부여하기 어려울 수 있고, 30 kGy를 초과하면 분자 사슬의 분해도가 증가하여 신장점도가 저하될 수 있다.
본 발명에 따른 폴리프로필렌 수지 조성물은 기타 첨가제로서 당 업계에 알려진 통상의 첨가제, 예컨대, 산화방지제, 중화제, 내열안정제 등을 1종 이상 더 포함할 수 있다. 이때, 이들 첨가제들의 함량은 각각 본 발명의 발포용 폴리프로필렌 수지 조성물 100 중량부에 대하여 0.01 내지 1 중량부 범위로 사용될 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 산화방지제는 폴리프로필렌 수지 조성물을 사용하여 제품을 제조할 때 열, 산소 등에 의해 수지 분자가 끊어지는 현상을 방지시킬 수 있는 것이고, 상기 중화제는 중합에 사용되는 촉매의 잔사(금속 성분)에 의해 발생될 수 있는 산(구체적으로는 염화수소)을 중화시킬 수 있는 것이며, 상기 내열안정제는 폴리프로필렌 성형품이 고온의 환경에서 사용되는 동안 분자량 감소를 방지하는 역할을 할 수 있는 것이다.
이러한 산화방지제로서 예컨대, 인계 산화방지제 또는 페놀계 산화방지제를 사용할 수 있고, 상기 인계 산화방지제의 예로는 트리스(2,3-디-t-부틸페닐)포스파이트를 들 수 있고, 상기 페놀계 산화방지제의 예로는 테트라키스 [에틸렌-3-(3,5-디-티-부틸-4-하이드록시 페닐)프로피오네이트] 메탄을 들 수 있다.
또한 상기 중화제로서 예컨대, 칼슘 스테아레이트 등을 사용할 수 있고, 상기 내열안정제로서 예컨대, 디스테아릴 티오디프로피오네이트 등을 사용할 수 있다.
본 발명에 따른 폴리프로필렌 수지 조성물을 이용하여 각종 성형 방법에 의해 성형체를 제조할 수 있고, 성형체의 형상이나 사이즈 등은 적절히 결정할 수 있다. 이러한 성형체 제조방법으로서 예컨대, 통상 공업적으로 이용되고 있는 사출 성형법, 프레스 성형법, 진공 성형법, 발포 성형법, 압출 성형법 등을 들 수 있고, 또한 목적에 따라, 본 발명의 폴리프로필렌 수지 조성물을 그와 동종 혹은 이종의 폴리프로필렌계 수지나 다른 수지와 접합하는 성형 방법 또는 공압출 성형하는 방법 등도 들 수 있다. 다만, 본 발명에 따른 폴리프로필렌 수지 조성물은 우수한 신장점도를 가지고, 딥드로우 진압공 성형 또는 발포 시트 성형에 보다 적합하게 이용될 수 있다. 상기 딥드로우 진압공 성형을 통해 제조되는 제품으로는 예컨대, 컵 형태의 용기를 들 수 있고, 상기 발포 성형을 통해 제조되는 제품으로는 예컨대, 도시락 용기, 컵라면 용기, 육가공 트레이 등을 들 수 있다.
이상의 본 발명에 따른 폴리프로필렌 수지 조성물은 진압공 성형, 블로우용 또는 발포 시트 성형에 적합한 용융강도 특성을 나타내며, 구체적으로 하기 방법에 따라 측정된 분지화도가 0.5 내지 0.8이고, 신장점도가 5×106 내지 109 Pa·s이고, 용융강도가 30 cN 이상일 수 있고, 바람직하게는 분지화도가 0.6 내지 0.8이고, 신장점도가 107 내지 5×108 Pa·s이고, 용융강도가 35 cN 이상일 수 있다.
[분지화도 측정방법]
상기 폴리프로필렌 수지 조성물의 고유점도([η]br)와 동일한 분자량을 갖는 선상 중합체의 고유점도 ([η]lin)의 비([η]br/[η]lin)로 계산함;
[신장점도 측정방법]
가로 20 mm, 세로 10 mm 및 두께 1 mm의 시편을 ARES(advanced rheometric expansion system)를 사용하여 샘플 거치대에 고정시킨 후, EVF(Extensional viscosity fixture) 모드를 사용하여 180℃ 온도 및 0.1 /s의 속도로 시편이 축을 중심으로 회전할 때 걸리는 저항값으로 측정하되, 시편의 회전거리(신장률)에 따라 변화되는 장력 중 최대값을 신장점도로 함;
[용융강도 측정방법]
레오텐스 장치(Rheotens 97, GOTTFERT)를 이용하여 200℃ 온도에서 용융 샘플을 1 mm 직경의 원형 다이를 통해 압출시키고, 압출되어 생성된 가닥이 다이 출구로부터 100 mm(spinline length) 아래에 위치하고, 권취 속도가 120 mm/s2의 가속도로 점진적으로 증가하는 레오텐스 휠에 의해 권취될 때, 휠에 가해진 힘(cN)이 권취 속도(mm/s)의 함수로 기록되고, 가닥이 파단되기 이전의 피크 또는 파단 시 가해진 힘을 용융강도로 함.
이하, 본 발명에 따른 구체적인 실시예를 들어 설명한다.
실시예 및 비교예
하기 표 1의 조성으로 원료를 핸셀 믹서에서 1분간 혼합한 후 180 내지 240℃의 단축 압출기로 압출하여 펠렛 상의 폴리프로필렌 수지 조성물을 제조 후 하기 표 1에 기재된 전자선 조사량을 유지하여 폴리프로필렌 조성물을 제조하였다. 전자선은 빔 에너지(beam energy) 10 MeV, 선속도(line speed) 0.5 내지 3 m/min, 조사 거리 4 내지 5 m 조건으로 조사되었다.
항목 단위 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4 비교예5
A1 중량부 75 - - - 75 - -  85
A2 중량부 25 - - - 25 -  -  15
A3 중량부 -  100 100 100 - -  -  - 
A4 중량부 -  - - - - 100 -  - 
A5 중량부 -  - - - - -  100 - 
B 중량부 1 1 1 - 1 1.5 1.5 1
C kGy 15 15 20 - 0 5 10 5
D1 중량부 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
D2 중량부 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
D3 중량부 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
* 주
A1 : 폴리프로필렌 단독 중합체 (중량평균 분자량 600,000 g/mol)
A2 : 폴리프로필렌 단독 중합체 (중량평균 분자량 110,000 g/mol)
A3 : 폴리프로필렌 단독 중합체 (중량평균 분자량 450,000 g/mol)
A4 : 폴리프로필렌 단독 중합체 (중량평균 분자량 250,000 g/mol)
A5 : 폴리프로필렌 단독 중합체 (중량평균 분자량 280,000 g/mol)
B: 가교제(트리알릴 이소시아누레이트(Triallyl Isocyanurate, TAIC))
C: 전자선 조사량
D1: 페놀계 산화방지제(테트라키스 [에틸렌-3-(3,5-디-티-부틸-4-하이드록시 페닐)프로피오네이트] 메탄, Songnox 1010, 송원산업)
D2: 인계 산화방지제(트리스(2,3-디-t-부틸페닐)포스파이트, Songnox 1680, 송원산업)
D3: 중화제(칼슘 스테아레이트, SAK-CS-POF, 썬에이스)
시험예
상기 실시예 및 비교예에 따라 제조된 폴리프로필렌 펠렛에 대하여 하기 방법으로 분지 특성, 분자량 특성, 신장점도 및 용융강도를 측정하고 그 결과를 하기 표 2에 나타내었다.
[측정방법]
(1) 분지화도
장쇄 분지 구조를 갖는 폴리프로필렌 수지 조성물의 고유점도([η]br)와 동일한 분자량을 갖는 선상 중합체의 고유점도 ([η]lin)의 비([η]br/[η]lin)로 계산하였다.
(2) 분자량 특성
겔 투과 크로마토그래피(Gel Permeation Chromatography(GPC), Agilent)를 이용하여 중량평균 분자량(Mw) 및 분자량 분포(MWD, Mw/Mn)를 측정하였다. 클로로포름 용매 하에서 표준물질로 폴리스티렌을 사용하였다.
(3) 신장점도
가로 20 mm, 세로 10 mm 및 두께 1 mm의 시편을 ARES(advanced rheometric expansion system)를 사용하여, 샘플 거치대에 고정시킨 후, EVF(Extensional viscosity fixture) 모드를 사용하여 180℃ 온도 및 0.1 /s의 속도로 시편이 축을 중심으로 회전할 때 걸리는 저항값으로 측정하되, 시편의 회전거리(신장률)에 따라 변화되는 장력 중 최대값을 신장점도로 하였다.
(4) 용융강도(melt strength)
레오텐스 장치(Rheotens 97, GOTTFERT)를 이용하여 200℃ 온도에서 용융 샘플을 1 mm 직경의 원형 다이를 통해 압출시키고, 압출되어 생성된 가닥이 다이 출구로부터 100 mm(spinline length) 아래에 위치하고, 권취 속도가 120 mm/s2의 가속도로 점진적으로 증가하는 레오텐스 휠에 의해 권취될 때, 휠에 가해진 힘(cN)이 권취 속도(mm/s)의 함수로 기록되고, 가닥이 파단되기 이전의 피크 또는 파단 시 가해진 힘을 용융강도로 하였다.
항목 단위 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4 비교예5
중량평균 분자량 g/mol 412,000 287,000 327,000 445,089 417,000 235,000 280,000 367,000
분자량 분포 - 6.0 8.2 11.2 5.4 5.98 7.7 5.2 5.2
분자량 100만
이상 함량
중량% 9.9 5.7 7.6 10.7 10.11 6.0 3.4 7.8
분지화도 - 0.66 0.75 0.63 1 1 0.78 0.75 0.87
신장점도 Pa·s 3.1×107 1.0×107 1.0×108 1.0×105 1.3×105 1.5×106 3.7×105 1.2×106
용융강도 cN 40 43 41 12 10 22 27 26
표 2를 참조하면, 본 발명에 따라 폴리프로필렌에 가교제가 첨가된 수지 조성물에 전자선이 조사되어 일정 수준의 중량평균 분자량, 분자량 분포 및 고분자량 함량을 갖도록 할 경우(실시예 1 내지 3) 낮은 선량의 전자선 조사에도 불구하고 라디칼 생성과 동시에 가교제로 인해 분지가 생성되어, 우수한 분지 특성을 가지고, 신장점도 및 용융강도가 매우 우수한 것을 확인할 수 있다.
이에 대하여, 전자선 조사를 하지 않은 경우(비교예 1 및 2), 전자선 조사를 하였으나 조사 후 폴리프로필렌 수지 조성물이 일정 분자량 범위를 벗어나거나(비교예 3), 고분자량 함량이 부족한 경우(비교예 4), 일정 범위의 분자량 분포를 벗어난 경우(비교예 5)는 신장점도 및 용융강도가 현저히 저하되는 것을 확인할 수 있다.
이상으로 본 발명의 바람직한 실시예를 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.
따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. 중량평균 분자량이 250,000 내지 500,000 g/mol이고, 분자량 분포(MWD, Mw/Mn)가 5.5 내지 12이고, 분자량 1,000,000 g/mol 이상인 고분자량 함량이 4 내지 15 중량%인 폴리프로필렌 수지 조성물.
  2. 제1항에 있어서,
    상기 폴리프로필렌 수지 조성물은 하기 방법에 따라 측정된 분지화도가 0.5 내지 0.8이고, 신장점도가 5×106 내지 109 Pa·s이고, 용융강도가 30 cN 이상인 것을 특징으로 하는 폴리프로필렌 수지 조성물:
    [분지화도 측정방법]
    상기 폴리프로필렌 수지 조성물의 고유점도([η]br)와 동일한 분자량을 갖는 선상 중합체의 고유점도 ([η]lin)의 비([η]br/[η]lin)로 계산함;
    [신장점도 측정방법]
    가로 20 mm, 세로 10 mm 및 두께 1 mm의 시편을 ARES(advanced rheometric expansion system)를 사용하여 샘플 거치대에 고정시킨 후, EVF(Extensional viscosity fixture) 모드를 사용하여 180℃ 온도 및 0.1 /s의 속도로 시편이 축을 중심으로 회전할 때 걸리는 저항값으로 측정하되, 시편의 회전거리(신장률)에 따라 변화되는 장력 중 최대값을 신장점도로 함;
    [용융강도 측정방법]
    레오텐스 장치(Rheotens 97, GOTTFERT)를 이용하여 200℃ 온도에서 용융 샘플을 1 mm 직경의 원형 다이를 통해 압출시키고, 압출되어 생성된 가닥이 다이 출구로부터 100 mm(spinline length) 아래에 위치하고, 권취 속도가 120 mm/s2의 가속도로 점진적으로 증가하는 레오텐스 휠에 의해 권취될 때, 휠에 가해진 힘(cN)이 권취 속도(mm/s)의 함수로 기록되고, 가닥이 파단되기 이전의 피크 또는 파단 시 가해진 힘을 용융강도로 함.
  3. 제1항에 있어서,
    상기 폴리프로필렌 수지 조성물은 진압공 성형용, 블로우용 또는 발포용인 것을 특징으로 하는 폴리프로필렌 수지 조성물.
  4. 폴리프로필렌 100 중량부에 가교제가 0.01 내지 2 중량부 첨가된 수지 조성물에 전자선을 조사하여 제1항의 폴리프로필렌 수지 조성물을 제조하는 방법.
  5. 제4항에 있어서,
    상기 가교제는 트리알릴 이소시아누레이트(Triallyl isocyanurate), 트리알릴 시아누레이트(Triallyl cyanurate), 트리메틸올프로판 트리메타크릴레이트(Trimethylolpropane trimethacrylate), 트리메틸올프로판 트리아크릴레이트(Trimethylolpropane triacrylate), 트리알릴 트리메세이트(Triallyl trimesate), 트리알릴 포스페이트(Triallyl phosphate), 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate) 및 디비닐벤젠(Divinylbenzene)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 폴리프로필렌 수지 조성물 제조방법.
  6. 제1항에 있어서,
    상기 전자선 조사 선량은 5 내지 30 kGy인 것을 특징으로 하는 폴리프로필렌 수지 조성물 제조방법.
PCT/KR2023/018821 2022-11-30 2023-11-21 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법 WO2024117647A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0165270 2022-11-30
KR1020220165270A KR20240081226A (ko) 2022-11-30 2022-11-30 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2024117647A1 true WO2024117647A1 (ko) 2024-06-06

Family

ID=91324392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018821 WO2024117647A1 (ko) 2022-11-30 2023-11-21 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20240081226A (ko)
WO (1) WO2024117647A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560886A (en) * 1994-04-20 1996-10-01 Chisso Corporation Process for producing a modified polypropylene and a molded product
JP4553966B2 (ja) * 2008-04-15 2010-09-29 日本ポリプロ株式会社 プロピレン系重合体
JP2011068819A (ja) * 2009-09-28 2011-04-07 Japan Polypropylene Corp ポリプロピレン系射出発泡成形体及びその製造方法
JP5417023B2 (ja) * 2008-05-16 2014-02-12 日本ポリプロ株式会社 ポリプロピレン系発泡シート、多層発泡シートおよびそれを用いた熱成形体
CN107337801A (zh) * 2017-08-07 2017-11-10 菏泽学院 电子辐照交联制备高熔体强度聚丙烯的方法
KR20220068032A (ko) * 2020-11-18 2022-05-25 롯데케미칼 주식회사 우수한 신장점도를 가지는 폴리프로필렌 수지 조성물 제조방법
KR20220070972A (ko) * 2020-11-23 2022-05-31 롯데케미칼 주식회사 발포 성능이 우수한 발포용 폴리프로필렌 수지 조성물 및 폴리프로필렌 발포체 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560886A (en) * 1994-04-20 1996-10-01 Chisso Corporation Process for producing a modified polypropylene and a molded product
JP4553966B2 (ja) * 2008-04-15 2010-09-29 日本ポリプロ株式会社 プロピレン系重合体
JP5417023B2 (ja) * 2008-05-16 2014-02-12 日本ポリプロ株式会社 ポリプロピレン系発泡シート、多層発泡シートおよびそれを用いた熱成形体
JP2011068819A (ja) * 2009-09-28 2011-04-07 Japan Polypropylene Corp ポリプロピレン系射出発泡成形体及びその製造方法
CN107337801A (zh) * 2017-08-07 2017-11-10 菏泽学院 电子辐照交联制备高熔体强度聚丙烯的方法
KR20220068032A (ko) * 2020-11-18 2022-05-25 롯데케미칼 주식회사 우수한 신장점도를 가지는 폴리프로필렌 수지 조성물 제조방법
KR20220070972A (ko) * 2020-11-23 2022-05-31 롯데케미칼 주식회사 발포 성능이 우수한 발포용 폴리프로필렌 수지 조성물 및 폴리프로필렌 발포체 제조방법

Also Published As

Publication number Publication date
KR20240081226A (ko) 2024-06-07

Similar Documents

Publication Publication Date Title
JP5130452B2 (ja) 耐熱特性が強化された組成物
CN107857932B (zh) 化学交联低烟无卤阻燃聚烯烃电缆料及其制备方法
WO2010074394A4 (ko) 용융장력이 우수한 폴리프로필렌 수지 조성물 및 그 제조방법
WO2014101151A1 (en) Cross-linkable polymeric compositions, methods for making the same, and articles made therefrom
JP2001354811A (ja) ポリエチレン架橋性組成物
WO2021085819A1 (ko) 탈가교 폴리올레핀 수지 및 이를 포함하는 수지 조성물
EP3286770A1 (en) Process for crosslinking polypropylene
CA2990486C (en) Compositions and methods for making crosslinked polyolefins with peroxide initiator
WO2024117647A1 (ko) 용융강도가 우수한 폴리프로필렌 수지 조성물 및 그 제조방법
JPH10501297A (ja) プロピレンポリマー組成物、その加工方法、およびそれから製造した物品
US20040171712A1 (en) Process for preparing high melt strength polypropylene and crosslinked prepared therewith
KR20220068032A (ko) 우수한 신장점도를 가지는 폴리프로필렌 수지 조성물 제조방법
WO2023090767A1 (ko) 장쇄 분지를 가지는 폴리프로필렌 수지 조성물
CN111635569A (zh) 高压电缆绝缘材料及其制备方法和应用
AU2017350556A1 (en) Flame retardant polyolefin-type resin and preparation method as well as optic fiber cable using the same
KR101635519B1 (ko) 가교화 회전 성형용 폴리에틸렌 수지 조성물 및 이로부터 형성된 수지 성형품
CN113956602A (zh) 一种耐油耐热的绝缘料及其制备方法和应用
US11117995B2 (en) Process for preparing high melt strength polypropylene
KR101934652B1 (ko) 폴리프로필렌 수지 조성물 및 이로부터 제조된 성형품
Barlow et al. Radiation processing of polyolefins and compounds
KR102420796B1 (ko) 과산화물을 이용한 변성폴리올레핀 제조방법
KR102005679B1 (ko) 발포 성형 외관이 우수한 폴리올레핀 수지의 제조방법
JPS6143377B2 (ko)
KR102201977B1 (ko) 분지형 폴리프로필렌 수지, 이의 제조방법 및 이를 포함하는 발포체
US20060269772A1 (en) Moisture-crosslinkable polymeric composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23898178

Country of ref document: EP

Kind code of ref document: A1