WO2024116698A1 - Evacuation guidance presentation system, evacuation guidance presentation method, program, and disaster prevention system - Google Patents

Evacuation guidance presentation system, evacuation guidance presentation method, program, and disaster prevention system Download PDF

Info

Publication number
WO2024116698A1
WO2024116698A1 PCT/JP2023/039191 JP2023039191W WO2024116698A1 WO 2024116698 A1 WO2024116698 A1 WO 2024116698A1 JP 2023039191 W JP2023039191 W JP 2023039191W WO 2024116698 A1 WO2024116698 A1 WO 2024116698A1
Authority
WO
WIPO (PCT)
Prior art keywords
evacuation
spatial
unit
evacuation guidance
route
Prior art date
Application number
PCT/JP2023/039191
Other languages
French (fr)
Japanese (ja)
Inventor
吉祥 永谷
将大 鶴居
浩史 久保田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024116698A1 publication Critical patent/WO2024116698A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B27/00Alarm systems in which the alarm condition is signalled from a central station to a plurality of substations

Definitions

  • the present invention relates to an evacuation guidance presentation system, an evacuation guidance presentation method, a disaster prevention system including the evacuation guidance presentation system, and a program.
  • the present invention provides an evacuation guidance presentation system that generates and presents more appropriate evacuation routes, thereby supporting safer evacuations.
  • the evacuation guidance presentation system is an evacuation guidance presentation system that provides evacuation guidance by presenting evacuation routes in a facility, and includes a calculation unit that acquires detection results from each of a plurality of sensors provided in a plurality of unit spaces that virtually divide the facility, and calculates a spatial hazard value for each of the plurality of unit spaces from the acquired detection results, a determination unit that determines an optimal evacuation route, which is an evacuation route among a plurality of evacuation routes in the facility that has the smallest sum of the spatial hazard values of one or more of the unit spaces that the evacuation route passes through, and a presentation unit that causes the evacuation route determined as the optimal evacuation route by the determination unit to be presented.
  • the evacuation guidance presentation method is a computer-executed method for providing evacuation guidance by presenting evacuation routes in a facility, which obtains detection results from a plurality of sensors provided in a plurality of unit spaces virtually dividing the facility, calculates a spatial hazard value for each of the unit spaces from the obtained detection results, determines an optimal evacuation route among the plurality of evacuation routes in the facility, which is the evacuation route that has the smallest sum of the spatial hazard values for one or more unit spaces passed through on the evacuation route, and presents the evacuation route determined to be the optimal evacuation route.
  • a program according to one aspect of the present invention is a program for causing a computer to execute the evacuation guidance presentation method described above.
  • a disaster prevention system includes the evacuation guidance presentation system described above and the plurality of sensors installed in the facility.
  • the present invention provides an evacuation guidance presentation system that supports safer evacuation.
  • FIG. 1 is a block diagram showing a functional configuration of an evacuation guidance presentation system according to an embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of a calculation unit in another embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an example of the operation of the evacuation guidance presentation system according to the embodiment.
  • FIG. 4 is a diagram for explaining the height of the smoke layer in the embodiment.
  • FIG. 5 is a diagram for explaining the spatial risk value in the embodiment.
  • FIG. 6 is a diagram for explaining the relationship between the spatial danger value and the height of the smoke layer in the embodiment.
  • FIG. 7 is a diagram for explaining determination of an optimal evacuation route in the embodiment.
  • FIG. 8 is a diagram showing an example of presentation of an evacuation route according to the embodiment.
  • each figure is a schematic diagram and is not necessarily a precise illustration.
  • the same reference numerals are used for substantially the same configurations, and duplicate explanations may be omitted or simplified.
  • the disaster prevention system of the present invention is a system that detects the occurrence of a disaster such as a fire from a sensor attached to a facility and a detection result by the sensor, and uses the detection result to present an evacuation route from a current floor to outside the floor and guides evacuation.
  • the disaster prevention system is a system that generates and outputs an appropriate evacuation route based on the detection result of the sensor.
  • the disaster prevention system and the evacuation guidance presentation system of the present invention do not consider movement between floors. Movement between floors means movement from one floor to another floor, such as movement from the second floor to the first floor.
  • an evacuation route is generated from the floor where the disaster victim is currently located to outside the floor, that is, from the current location within the floor to an emergency staircase or an emergency exit (including an indoor connection to the same floor and another floor, or an exit to the outdoors) provided on the floor.
  • an emergency staircase or an emergency exit including an indoor connection to the same floor and another floor, or an exit to the outdoors
  • the emergency staircase or the emergency exit will be collectively referred to as an exit from the floor, or simply an exit.
  • the evacuation guidance presentation system When generating an evacuation route, the evacuation guidance presentation system comprehensively considers the risk of all routes from the current location to the exit and determines which is the least dangerous, i.e., the optimal evacuation route. For this reason, the evacuation guidance presentation system is able to present the route with the least risk by calculating the risk of all routes for each of multiple evacuation routes from the current location to the exit. This is a different concept from when an evacuation route from the current location branches off and an evacuation route is generated and output by simply selecting the branch with the lowest partial risk. This point will be explained in more detail later.
  • FIG. 1 is a block diagram showing the functional configuration of an evacuation guidance presentation system in an embodiment.
  • evacuation guidance presentation system 10 is incorporated into disaster prevention system 50 as a part of disaster prevention system 50.
  • the function of evacuation guidance presentation system 10 is to obtain the detection results of sensor 21, generate evacuation routes from the detection results, and present them on guidance UI 22.
  • evacuation guidance presentation system 10 is responsible for the information processing portion for presenting evacuation routes in disaster prevention system 50.
  • the disaster prevention system 50 includes the evacuation guidance presentation system 10, as well as a sensor 21 and a guidance UI 22.
  • the disaster prevention system 50 may be realized as a system consisting of only the evacuation guidance presentation system 10 and the sensor 21 connected to an external guidance UI device, or as a system consisting of only the evacuation guidance presentation system 10 and the guidance UI 22 connected to an external sensor device.
  • the sensors 21 included in the disaster prevention system 50 include, for example, smoke detectors and heat detectors that detect smoke density values during a fire, detectors for detecting concentrations of specific components such as carbon monoxide or carbon dioxide, image sensors such as cameras that detect the presence or absence of fires or collapses, seismic intensity detectors that detect the seismic intensity during an earthquake, and illuminance detectors that quantify the visibility of evacuation routes.
  • smoke detectors and heat detectors that detect smoke density values during a fire
  • detectors for detecting concentrations of specific components such as carbon monoxide or carbon dioxide
  • image sensors such as cameras that detect the presence or absence of fires or collapses
  • seismic intensity detectors that detect the seismic intensity during an earthquake
  • illuminance detectors that quantify the visibility of evacuation routes.
  • the guidance UI 22 included in the disaster prevention system 50 may be configured with any device that can present an evacuation route (i.e., inform disaster victims) by presenting at least one of auditory and visual information.
  • the guidance UI 22 includes, for example, an audio output speaker, a light flashing traveling guidance device (a device in which multiple light points emit light at different times, making it appear as if the light is traveling in the guidance direction), and an image display device such as a digital signage or tablet terminal.
  • the evacuation guidance presentation system 10 includes a calculation unit 11, a determination unit 12, and a presentation unit 13.
  • the evacuation guidance presentation system 10 is realized by a computer that performs the functions of the information processing portion as described above.
  • the evacuation guidance presentation system 10 may be realized, for example, by a virtual cloud computer constructed on a network, or by an edge computer installed in a facility or in another facility connected to the facility via a communication line.
  • the calculation unit 11 obtains the detection results from the sensor 21 and calculates a spatial danger value indicating the danger level of the space passing through on the evacuation route. More specifically, when the entire floor of the facility is virtually divided into a plurality of spaces, the evacuation route is configured to pass through some of the spaces of the division units (hereinafter, unit spaces). In other words, the evacuation route includes a plurality of unit spaces passing through on the route.
  • the sensor 21 is provided for each unit space so that it can detect each unit space, and multiple sensors are provided for the entire floor.
  • the sensor 21 is also configured so that it can sense within the unit space. In other words, the unit space corresponds to the area that the sensor 21 can detect.
  • the unit space may correspond to the detection area specified by the Fire Service Act, or the unit space may correspond to a 30 m x 30 m range that corresponds to the sensor installation standard for corridors and passageways specified by the Fire Service Act.
  • the spatial danger value is calculated from the detection results detected by the sensor 21 in one unit space at that time, and is a numerical value indicating the degree of danger of a victim passing through that unit space. Note that the spatial danger value changes from moment to moment, so it may be calculated as an estimate of the time (i.e., future) when a victim may pass, for example, using the spatial danger value at that time and past spatial danger values.
  • a sensor 21 is individually installed in each unit space, and the calculation unit 11 calculates a spatial danger value for each of the multiple sensors 21.
  • a communication line is formed between the calculation unit 11 and the sensor 21 to exchange the detection results of the sensor 21.
  • other devices such as a transceiver and a gateway may be involved in this communication line.
  • the calculation unit 11 calculates the spatial danger value from the detection results obtained by algorithm calculation, but may also calculate the spatial danger value from the detection results obtained by inference applying machine learning.
  • FIG. 2 is a block diagram showing the functional configuration of the calculation unit in another example of the embodiment.
  • the calculation unit 11a shown in FIG. 2 has a model 11b configured, for example, by a neural network model or the like.
  • the model 11b is generated in advance by machine learning using detection result data D1 representing the detection results detected by a large number of sensors 21 and correct answer data D2 representing the correct value of the spatial danger value for each of the detection results of the large number of sensors.
  • detection result here, the smoke concentration value
  • the calculation unit 11a may calculate the spatial danger value by estimation using such a model 11b.
  • the determination unit 12 uses the spatial risk values calculated by the calculation unit 11 to determine an optimal evacuation route that is the most suitable evacuation route from among multiple evacuation routes. Determining an optimal evacuation route means selecting, from among multiple evacuation routes, an evacuation route that has the smallest sum of spatial risk values, calculated by adding up the spatial risk values of the unit spaces passed through on each evacuation route over the entire evacuation route.
  • the presentation unit 13 causes the guidance UI 22 to present the evacuation route determined to be the optimal evacuation route by the determination unit 12.
  • the evacuation route is described as being presented using an image, but as described above, the presentation unit 13 may be appropriately configured according to the manner in which the evacuation route is presented.
  • the presentation unit 13 obtains information on the evacuation route determined to be the optimal evacuation route, and generates an image by overlaying it on a floor map held in advance (stored in a memory unit, etc.). The generated image is then output and displayed on the guidance UI 22.
  • a communication line is formed between the presentation unit 13 and the guidance UI 22 to exchange the generated image.
  • other devices such as a transceiver and a gateway may be interposed in this communication line.
  • FIG. 3 is a flowchart showing an example of the operation of the evacuation guidance presentation system in the embodiment.
  • the sensor 21 constantly senses the smoke density value and transmits the smoke density value to the calculation unit 11.
  • the calculation unit 11 acquires the smoke density value as the detection result (S101), and calculates the spatial danger value of the unit space in which the sensor 21 is installed at that time (S102).
  • the calculation of the spatial danger value will be explained with reference to Figs. 4 to 6.
  • Fig. 4 is a diagram for explaining the height of the smoke layer in the embodiment.
  • Fig. 5 is a diagram for explaining the spatial danger value in the embodiment.
  • Fig. 6 is a diagram for explaining the relationship between the spatial danger value and the height of the smoke layer in the embodiment.
  • the height of the smoke layer which takes into account the time elapsed since the occurrence of the fire, is used to calculate the spatial danger value together with the smoke density value.
  • FIG. 4 shows the scene of the fire and the state where the victims are trying to escape from there.
  • This space has a space height H.
  • the space height is the distance from the floor to the ceiling.
  • smoke is generated by the fire, and the smoke fills the space from the upper part (ceiling side) in order.
  • a smoke layer shown by dot hatching
  • the height Za of the smoke layer is the distance from the floor to the bottom end of the smoke layer.
  • the sensor 21 for detecting the smoke density value is provided on the ceiling, and detects the smoke density value Cs (H) at the space height H.
  • the smoke density value at the bottom end of the smoke layer (smoke layer height Za ) is Cs (Za) , and the relationship Cs (H) >Cs (Za) always holds.
  • FIG. 5 illustrates specific values of the smoke layer height and the smoke density value, and illustrates the spatial danger level calculated in the relationship between the smoke layer height Z a and the smoke density value C s .
  • FIG. 6 also illustrates the relationship between the smoke layer height Z a and the smoke density value C s as a graph.
  • the spatial danger value is set to increase with respect to the height Z a of the smoke layer as a linear function while the height Z a of the smoke layer is higher than 1.8 m, and when the height Z a of the smoke layer is lower than 1.8 m, the spatial danger value is set to increase with respect to the height Z a of the smoke layer as an exponential function. In this way, in this example, the spatial danger value is expressed by a function related to the height Z a of the smoke layer.
  • the spatial danger value may increase with a linear function over the entire range of the height Z a of the smoke layer as Z a decreases, or may increase with an exponential function over the entire range of the height Z a of the smoke layer as Z a decreases.
  • the calculation of the spatial danger value can be more adapted to the actual danger level.
  • the height Z a of the smoke layer may be obtained, for example, as a detection result from a plurality of smoke density sensors installed in the vertical direction of the space, depending on the height to which smoke of a predetermined density or higher has reached, or may be calculated by estimation from the smoke density value detected by a smoke density sensor installed on the ceiling and the elapsed time since the start of the fire.
  • the standard height of 1.8 m is just an example and may be changed as appropriate to suit the average height of facility users or the height of children who are at higher risk.
  • the determination unit 12 determines the optimal evacuation route (S103). First, the determination unit 12 obtains the calculated spatial danger value. Then, the spatial danger value is used to calculate the sum of the spatial danger value for each of the multiple evacuation routes across all routes. An example will be described with reference to FIG. 7.
  • FIG. 7 is a diagram for explaining the determination of the optimal evacuation route in the embodiment. In FIG. 7, a certain floor in the facility is indicated by the outermost rectangle, and hatched areas indicate impassable spaces (rooms, storage spaces, etc.). The symbols S1 to S16 each indicate a sensor.
  • the floor has exits at the end of the lower part of the paper and on both the left and right sides of the paper, and an evacuation route is presented in which evacuation begins at the position of sensor S1 and heads toward one of the exits.
  • a fire has occurred near sensor S4.
  • the spatial danger values based on the detection results of each sensor are as follows:
  • Near sensor S1 0.020 Near sensor S2: 0.025 Near sensor S3: 0.200 Near sensor S4: 2.000 Near sensor S5: 0.020 Near sensor S6: 0.020 Near sensor S7: 0.030 Near sensor S8: 0.500 Near sensor S9: 0.015 Near sensor S10: 0.020 Near sensor S11: 0.025 Near sensor S12: 0.020 Near sensor S13: 0.005 Near sensor S14: 0.015 Near sensor S15: 0.020 Near sensor S16: 0.010
  • the evacuation route indicated by the solid arrow in FIG. 7 passes near sensors S1, S2, S6, S7, S11, S15, and S16. Therefore, the sum of the spatial danger values is 0.150.
  • the evacuation route indicated by the dashed arrow in FIG. 7 passes near sensors S1, S2, S6, S5, S9, S10, S11, S15, S14, and S13. Therefore, the sum of the spatial danger values is 0.185.
  • the evacuation route indicated by the dashed arrow which selects the branch farthest from the sensor S4, the source of the fire, seems to be the safest evacuation route, but in reality, there are many spaces that must be passed through before reaching the exit, and the sum of the spatial danger values is accordingly large. In reality, it is clear that evacuating via the evacuation route indicated by the solid arrow has a lower overall danger level, even if it means getting closer to the sensor S4.
  • the presentation unit 13 presents the evacuation route (S104).
  • the presentation unit 13 obtains information about the evacuation route determined to be the optimal evacuation route, and generates an image for presenting the evacuation route by overlaying it on the floor map. The image is then output to the guidance UI 22 and displayed to present the evacuation route.
  • FIG. 8 is a diagram showing an example of the presentation of an evacuation route in the embodiment.
  • FIG. 8 shows the appearance of the guidance UI 22 and an image displayed on the screen. As shown in FIG.
  • the evacuation guidance presentation system 10 of the first aspect is an evacuation guidance presentation system 10 that provides evacuation guidance by presenting evacuation routes in a facility, and includes a calculation unit 11 that acquires detection results from each of a plurality of sensors 21 provided in a plurality of unit spaces that virtually divide the facility and calculates a spatial risk value for each of the plurality of unit spaces from the acquired detection results, a determination unit 12 that determines an optimal evacuation route, which is the evacuation route among the plurality of evacuation routes in the facility that has the smallest sum of the spatial risk values of one or more unit spaces passed through on the evacuation route, and a presentation unit 13 that causes the evacuation route determined as the optimal evacuation route by the determination unit 12 to be presented.
  • the evacuation guidance presentation system 10 according to the second aspect is the evacuation guidance presentation system 10 according to the first aspect, in which the spatial danger value is a function related to the height of the smoke layer.
  • the evacuation guidance presentation system 10 according to the third aspect is the evacuation guidance presentation system 10 according to the first or second aspect, in which the sensor 21 is a detector.
  • the evacuation guidance presentation system 10 according to the fourth aspect is the evacuation guidance presentation system 10 according to the third aspect, in which the detector is a smoke detector that detects a smoke density value, and the calculation unit 11 calculates a spatial danger value from the smoke density value detected by the smoke detector.
  • a smoke detector that detects smoke concentration values can be used as the sensor 21.
  • the evacuation guidance presentation system 10 according to the fifth aspect is the evacuation guidance presentation system 10 according to the second aspect, in which the calculation unit 11 calculates a higher spatial danger value as the height of the smoke layer decreases over time when calculating the spatial danger value.
  • the evacuation guidance presentation system 10 according to the sixth aspect is the evacuation guidance presentation system 10 according to any one of the first to fifth aspects, in which each of the multiple evacuation routes is an emergency staircase or a route leading to outdoors.
  • the evacuation guidance presentation system 10 according to the seventh aspect is the evacuation guidance presentation system 10 according to any one of the first to sixth aspects, in which the presentation unit 13 presents the optimal evacuation route by at least one of sound, flashing light, and signage.
  • the evacuation guidance presentation system 10 according to the eighth aspect is the evacuation guidance presentation system 10 according to the first aspect, in which the calculation unit 11a has one or more processors, and the one or more processors input the acquired detection results into a model generated using detection result data D1 representing the detection results of the multiple sensors 21 and correct answer data D2 representing correct answers for the spatial danger value for each of the detection results of the multiple sensors 21, and calculates the spatial danger value of each unit space by estimation.
  • the calculation unit 11a can be configured with one or more processors.
  • the one or more processors can input the acquired detection results to a trained model 11b that has been generated in advance, and calculate the spatial risk value of each unit space by estimation.
  • the evacuation guidance presentation system 10 according to the ninth aspect is the evacuation guidance presentation system 10 according to the eighth aspect, in which the model 11b is a neural network model.
  • model 11b can be realized using a neural network model.
  • the evacuation guidance presentation method is a computer-executed method for providing evacuation guidance by presenting evacuation routes in a facility, which obtains detection results from each of a plurality of sensors 21 provided in a plurality of unit spaces that virtually divide the facility, calculates a spatial danger value for each of the unit spaces from the obtained detection results, determines an optimal evacuation route among the plurality of evacuation routes in the facility, which is the evacuation route that has the smallest sum of the spatial danger values of one or more unit spaces passed through on the evacuation route, and presents the evacuation route determined to be the optimal evacuation route.
  • the evacuation guidance presentation method is the evacuation guidance presentation method according to the 10th aspect, in which the spatial danger value is calculated by inputting the acquired detection results into a model 11b generated using detection result data D1 representing the detection results of a large number of sensors 21 and correct answer data D2 representing the correct value of the spatial danger value for each of the detection results of the large number of sensors 21, and calculating the spatial danger value of each unit space by estimation.
  • the disaster prevention system includes the evacuation guidance presentation system 10 according to any one of the first to ninth aspects, and a plurality of sensors 21 installed in the facility.
  • the evacuation guidance presentation system is realized by a plurality of devices, modules, etc.
  • the components of the evacuation guidance presentation system described in the above embodiment may be distributed in any manner among the plurality of devices, modules, etc.
  • the evacuation guidance presentation system may be realized as a single device.
  • processing performed by a specific processing unit may be executed by another processing unit.
  • the order of multiple processes may be changed, and multiple processes may be executed in parallel.
  • each component may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory.
  • each component may be realized by hardware.
  • Each component may be a circuit (or an integrated circuit). These circuits may form a single circuit as a whole, or each may be a separate circuit. Furthermore, each of these circuits may be a general-purpose circuit, or a dedicated circuit.
  • the general or specific aspects of the present invention may be realized as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable recording medium such as a CD-ROM.
  • the present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention also includes forms obtained by applying various modifications to each embodiment that a person skilled in the art may conceive, or forms realized by arbitrarily combining the components and functions of each embodiment within the scope of the spirit of the present invention.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

An evacuation guidance presentation system (10) provides evacuation guidance by presenting an evacuation route in a facility, and is provided with: a calculation unit (11) that acquires a detection result from each of a plurality of sensors (21) provided respectively in a plurality of unit spaces that virtually divide a facility, and calculates a spatial risk value for each of the plurality of unit spaces from the acquired detection results; a determination unit (12) that determines an optimal evacuation route, which is the evacuation route for which the sum of the spatial risk values for one or more unit spaces passed through by the evacuation route is the smallest among a plurality of evacuation routes in the facility; and a presentation unit (13) that causes the evaluation route determined as the optimal evacuation route by the determination unit (12) to be presented.

Description

避難誘導提示システム、避難誘導提示方法、プログラム、及び、防災システムEvacuation guidance presentation system, evacuation guidance presentation method, program, and disaster prevention system
 本発明は、避難誘導提示システム、避難誘導提示方法、避難誘導提示システムを含む防災システム、及び、プログラムに関する。 The present invention relates to an evacuation guidance presentation system, an evacuation guidance presentation method, a disaster prevention system including the evacuation guidance presentation system, and a program.
 従来、火災などの災害時に、避難ルート(避難経路ともいう)を自動的に生成することにより、被災者の安全な避難を支援する技術の開発が進められている(例えば、特許文献1参照)。  Technology has been developed to support the safe evacuation of disaster victims such as fires by automatically generating evacuation routes (also called evacuation paths) (see, for example, Patent Document 1).
特開2010-5292号公報JP 2010-5292 A
 しかしながら、従来の避難を支援する技術においては、生成される避難ルートが適切でない場合があった。本発明は、より適切な避難ルートを生成して、これを提示することによって、より安全に避難を支援する避難誘導提示システム等を提供する。 However, in conventional evacuation support technologies, the evacuation routes generated were sometimes inappropriate. The present invention provides an evacuation guidance presentation system that generates and presents more appropriate evacuation routes, thereby supporting safer evacuations.
 本発明の一態様に係る避難誘導提示システムは、施設において避難ルートを提示することにより避難誘導を行う避難誘導提示システムであって、前記施設を仮想的に区画する複数の単位空間にそれぞれ設けられた複数のセンサの各々の検知結果を取得し、取得した前記検知結果から複数の前記単位空間のそれぞれの空間危険度値を算出する演算部と、前記施設における複数の避難ルートのうち、当該避難ルートにおいて通過する1以上の前記単位空間の前記空間危険度値の総和が最も小さくなる避難ルートである最適避難ルートを判定する判定部と、前記判定部によって前記最適避難ルートとして判定された避難ルートを提示させる提示部と、を備える。 The evacuation guidance presentation system according to one embodiment of the present invention is an evacuation guidance presentation system that provides evacuation guidance by presenting evacuation routes in a facility, and includes a calculation unit that acquires detection results from each of a plurality of sensors provided in a plurality of unit spaces that virtually divide the facility, and calculates a spatial hazard value for each of the plurality of unit spaces from the acquired detection results, a determination unit that determines an optimal evacuation route, which is an evacuation route among a plurality of evacuation routes in the facility that has the smallest sum of the spatial hazard values of one or more of the unit spaces that the evacuation route passes through, and a presentation unit that causes the evacuation route determined as the optimal evacuation route by the determination unit to be presented.
 本発明の一態様に係る避難誘導提示方法は、施設において避難ルートを提示することにより避難誘導を行うための、コンピュータによって実行される避難誘導提示方法であって、前記施設を仮想的に区画する複数の単位空間にそれぞれ設けられた複数のセンサの各々の検知結果を取得し、取得した前記検知結果から複数の前記単位空間のそれぞれの空間危険度値を算出し、前記施設における複数の避難ルートのうち、当該避難ルートにおいて通過する1以上の前記単位空間の前記空間危険度値の総和が最も小さくなる避難ルートである最適避難ルートを判定し、前記最適避難ルートと判定された避難ルートを提示する。 The evacuation guidance presentation method according to one embodiment of the present invention is a computer-executed method for providing evacuation guidance by presenting evacuation routes in a facility, which obtains detection results from a plurality of sensors provided in a plurality of unit spaces virtually dividing the facility, calculates a spatial hazard value for each of the unit spaces from the obtained detection results, determines an optimal evacuation route among the plurality of evacuation routes in the facility, which is the evacuation route that has the smallest sum of the spatial hazard values for one or more unit spaces passed through on the evacuation route, and presents the evacuation route determined to be the optimal evacuation route.
 本発明の一態様に係るプログラムは、上記に記載の避難誘導提示方法をコンピュータに実行させるためのプログラムである。 A program according to one aspect of the present invention is a program for causing a computer to execute the evacuation guidance presentation method described above.
 本発明の一態様に係る防災システムは、上記に記載の避難誘導提示システムと、前記施設に設けられた前記複数のセンサと、を備える。 A disaster prevention system according to one embodiment of the present invention includes the evacuation guidance presentation system described above and the plurality of sensors installed in the facility.
 本発明によれば、より安全に避難を支援する避難誘導提示システム等が提供される。 The present invention provides an evacuation guidance presentation system that supports safer evacuation.
図1は、実施の形態における避難誘導提示システムの機能構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of an evacuation guidance presentation system according to an embodiment. 図2は、実施の形態の別例における演算部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a calculation unit in another embodiment of the present invention. 図3は、実施の形態における避難誘導提示システムの動作の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of the operation of the evacuation guidance presentation system according to the embodiment. 図4は、実施の形態における煙層の高さについて説明するための図である。FIG. 4 is a diagram for explaining the height of the smoke layer in the embodiment. 図5は、実施の形態における空間危険度値について説明するための図である。FIG. 5 is a diagram for explaining the spatial risk value in the embodiment. 図6は、実施の形態における空間危険度値と煙層の高さとの関係について説明するための図である。FIG. 6 is a diagram for explaining the relationship between the spatial danger value and the height of the smoke layer in the embodiment. 図7は、実施の形態における最適避難ルートの判定について説明するための図である。FIG. 7 is a diagram for explaining determination of an optimal evacuation route in the embodiment. 図8は、実施の形態における避難ルートの提示の一例を示す図である。FIG. 8 is a diagram showing an example of presentation of an evacuation route according to the embodiment.
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Below, the embodiments are described in detail with reference to the drawings. Note that the embodiments described below are all comprehensive or specific examples. The numerical values, shapes, materials, components, component placement and connection forms, steps, and order of steps shown in the following embodiments are merely examples and are not intended to limit the present invention. Furthermore, among the components in the following embodiments, components that are not described in an independent claim are described as optional components.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。 Note that each figure is a schematic diagram and is not necessarily a precise illustration. In addition, in each figure, the same reference numerals are used for substantially the same configurations, and duplicate explanations may be omitted or simplified.
 (実施の形態)
 まず、実施の形態に係る避難誘導提示システム、及び、防災システムの概要について説明する。本発明における防災システムは、施設に取り付けられたセンサと、そのセンサによる検知結果から、火災などの災害の発生を検知するとともに、検知結果を用いて、現在のフロアから、フロア外への避難ルートを提示して避難誘導を行うシステムである。つまり、防災システムは、センサの検知結果によって適切な避難ルートを生成して出力するシステムである。ここで、本発明における防災システム及び避難誘導提示システムでは、階層間の移動を考慮しない。階層間の移動とは、2階から1階への移動などのある階層から別の階層への移動のことを意味する。本発明では、被災者が現在いるフロアからフロア外、すなわち、フロア内の現在地から当該フロアに設けられた非常階段、又は、非常口(屋内の同じ階層かつ別のフロアとの連絡口、又は、屋外への出口を含む)までの避難ルートを生成する。以下、非常階段、又は、非常口を包括してフロアからの出口、又は、単に出口と称する。
(Embodiment)
First, an outline of an evacuation guidance presentation system and a disaster prevention system according to an embodiment will be described. The disaster prevention system of the present invention is a system that detects the occurrence of a disaster such as a fire from a sensor attached to a facility and a detection result by the sensor, and uses the detection result to present an evacuation route from a current floor to outside the floor and guides evacuation. In other words, the disaster prevention system is a system that generates and outputs an appropriate evacuation route based on the detection result of the sensor. Here, the disaster prevention system and the evacuation guidance presentation system of the present invention do not consider movement between floors. Movement between floors means movement from one floor to another floor, such as movement from the second floor to the first floor. In the present invention, an evacuation route is generated from the floor where the disaster victim is currently located to outside the floor, that is, from the current location within the floor to an emergency staircase or an emergency exit (including an indoor connection to the same floor and another floor, or an exit to the outdoors) provided on the floor. Hereinafter, the emergency staircase or the emergency exit will be collectively referred to as an exit from the floor, or simply an exit.
 避難誘導提示システムは、避難ルートの生成において、現在地から出口までの全ルートにおける危険度を総合的に見て、危険度が最も低い、すなわち、最適な避難ルートを判定する。このため、避難誘導提示システムは、現在地から出口までの複数通りの避難ルートのそれぞれについて、全ルートでの危険度を算出することで最も危険度の低いルートを提示することができる。これは、現在地からの避難ルートにおける分岐で、単に分岐先の部分的な危険度が低い方を選択して避難ルートを生成、出力する場合とは異なる概念である。この点については後ほど詳しく説明する。 When generating an evacuation route, the evacuation guidance presentation system comprehensively considers the risk of all routes from the current location to the exit and determines which is the least dangerous, i.e., the optimal evacuation route. For this reason, the evacuation guidance presentation system is able to present the route with the least risk by calculating the risk of all routes for each of multiple evacuation routes from the current location to the exit. This is a different concept from when an evacuation route from the current location branches off and an evacuation route is generated and output by simply selecting the branch with the lowest partial risk. This point will be explained in more detail later.
 図1は、実施の形態における避難誘導提示システムの機能構成を示すブロック図である。図1に示すように、避難誘導提示システム10は、防災システム50の一部として防災システム50に組み込まれている。避難誘導提示システム10の機能は、センサ21の検知結果を取得し、検知結果から避難ルートを生成して、誘導UI22へと提示させることである。つまり、避難誘導提示システム10は、防災システム50における避難ルートの提示のための情報処理部分を担っている。 FIG. 1 is a block diagram showing the functional configuration of an evacuation guidance presentation system in an embodiment. As shown in FIG. 1, evacuation guidance presentation system 10 is incorporated into disaster prevention system 50 as a part of disaster prevention system 50. The function of evacuation guidance presentation system 10 is to obtain the detection results of sensor 21, generate evacuation routes from the detection results, and present them on guidance UI 22. In other words, evacuation guidance presentation system 10 is responsible for the information processing portion for presenting evacuation routes in disaster prevention system 50.
 防災システム50は、避難誘導提示システム10に加えて、センサ21及び誘導UI22を含む。なお、防災システム50は、外部の誘導UI装置に接続される、避難誘導提示システム10及びセンサ21のみから構成されるシステムとして実現されてもよいし、外部のセンサ装置に接続される、避難誘導提示システム10及び誘導UI22のみから構成されるシステムとして実現されてもよい。 The disaster prevention system 50 includes the evacuation guidance presentation system 10, as well as a sensor 21 and a guidance UI 22. The disaster prevention system 50 may be realized as a system consisting of only the evacuation guidance presentation system 10 and the sensor 21 connected to an external guidance UI device, or as a system consisting of only the evacuation guidance presentation system 10 and the guidance UI 22 connected to an external sensor device.
 防災システム50に含まれるセンサ21には、例えば、火災時の煙濃度値を感知する煙感知器及び熱感知器、一酸化炭素又は二酸化炭素等の所定の成分濃度の感知器、火災や崩落の有無を検知するカメラなどのイメージセンサ、震災時の震度を感知する震度感知器、及び、避難ルートの視認性を数値化するための照度感知器等が含まれる。以下、センサ21は、煙濃度値を感知する感知器であるとして説明する。 The sensors 21 included in the disaster prevention system 50 include, for example, smoke detectors and heat detectors that detect smoke density values during a fire, detectors for detecting concentrations of specific components such as carbon monoxide or carbon dioxide, image sensors such as cameras that detect the presence or absence of fires or collapses, seismic intensity detectors that detect the seismic intensity during an earthquake, and illuminance detectors that quantify the visibility of evacuation routes. Below, the sensors 21 will be described as detectors that detect smoke density values.
 また、防災システム50に含まれる誘導UI22は、聴覚的な情報の提示及び視覚的な情報の提示の少なくとも一方によって避難ルートを提示する(つまり、被災者に知らせる)ことができればどのようなデバイスで構成されてもよい。誘導UI22には、例えば、音声出力スピーカ、光点滅走行式誘導デバイス(複数の光点が時間差で発光して誘導方向に光が進むように見えるデバイス)、及び、デジタルサイネージ又はタブレット端末等の画像表示デバイス等が含まれる。 The guidance UI 22 included in the disaster prevention system 50 may be configured with any device that can present an evacuation route (i.e., inform disaster victims) by presenting at least one of auditory and visual information. The guidance UI 22 includes, for example, an audio output speaker, a light flashing traveling guidance device (a device in which multiple light points emit light at different times, making it appear as if the light is traveling in the guidance direction), and an image display device such as a digital signage or tablet terminal.
 避難誘導提示システム10は、演算部11、判定部12、及び、提示部13を含む。避難誘導提示システム10は、上記したように情報処理部分の機能を担うコンピュータによって実現される。避難誘導提示システム10は、例えば、ネットワーク上に構築された仮想的なクラウドコンピュータで実現されてもよいし、施設や、施設と通信回線で接続された別の施設に設置されたエッジコンピュータによって実現されてもよい。 The evacuation guidance presentation system 10 includes a calculation unit 11, a determination unit 12, and a presentation unit 13. The evacuation guidance presentation system 10 is realized by a computer that performs the functions of the information processing portion as described above. The evacuation guidance presentation system 10 may be realized, for example, by a virtual cloud computer constructed on a network, or by an edge computer installed in a facility or in another facility connected to the facility via a communication line.
 演算部11は、センサ21から検知結果を取得して、避難ルートにおいて通過する空間の危険度を示す空間危険度値を算出する。より具体的には、施設内のフロア全体を仮想的に複数の空間に区画した場合に、その区画単位の空間(以下、単位空間)のうちいくつかを通過するようにして、避難ルートが構成される。逆に言えば、避難ルートは、そのルートにおいて通過する複数の単位空間を含む。センサ21は、単位空間ごとに検知が可能なように単位空間ごとに1つ、フロア全体として複数設けられている。また、センサ21は、単位空間内のセンシングが可能なように構成されている。つまり、単位空間は、センサ21の検知可能なエリアに対応している。単位空間の広さやセンサ21との位置関係には特に限定はないが、例えば、消防法で定める感知区域に単位空間が対応していてもよく、消防法で定める廊下・通路の感知器設置基準に対応する30m×30mの範囲に単位空間が対応していてもよい。 The calculation unit 11 obtains the detection results from the sensor 21 and calculates a spatial danger value indicating the danger level of the space passing through on the evacuation route. More specifically, when the entire floor of the facility is virtually divided into a plurality of spaces, the evacuation route is configured to pass through some of the spaces of the division units (hereinafter, unit spaces). In other words, the evacuation route includes a plurality of unit spaces passing through on the route. The sensor 21 is provided for each unit space so that it can detect each unit space, and multiple sensors are provided for the entire floor. The sensor 21 is also configured so that it can sense within the unit space. In other words, the unit space corresponds to the area that the sensor 21 can detect. There are no particular limitations on the size of the unit space or the positional relationship with the sensor 21, but for example, the unit space may correspond to the detection area specified by the Fire Service Act, or the unit space may correspond to a 30 m x 30 m range that corresponds to the sensor installation standard for corridors and passageways specified by the Fire Service Act.
 空間危険度値は、その時点で、1つの単位空間においてセンサ21に検知された検知結果から算出され、当該単位空間を被災者が通過することの危険度の大小を示す数値である。なお、空間危険度値は時々刻々変化するため、例えば、その時点の空間危険度値と、過去の空間危険度値等を用いて、被災者が通過する可能性のある時刻(つまり将来)の推定値として算出されてもよい。上記のように、単位空間のそれぞれには、個別にセンサ21が設置されており、演算部11は、複数のセンサ21それぞれごとに空間危険度値を算出する。なお、演算部11とセンサ21との間で、センサ21の検知結果をやり取りするために通信回線が形成されている。この通信回線には、演算部11とセンサ21との他に、送受信機やゲートウェイ等の他の装置が介在してもよい。 The spatial danger value is calculated from the detection results detected by the sensor 21 in one unit space at that time, and is a numerical value indicating the degree of danger of a victim passing through that unit space. Note that the spatial danger value changes from moment to moment, so it may be calculated as an estimate of the time (i.e., future) when a victim may pass, for example, using the spatial danger value at that time and past spatial danger values. As described above, a sensor 21 is individually installed in each unit space, and the calculation unit 11 calculates a spatial danger value for each of the multiple sensors 21. Note that a communication line is formed between the calculation unit 11 and the sensor 21 to exchange the detection results of the sensor 21. In addition to the calculation unit 11 and the sensor 21, other devices such as a transceiver and a gateway may be involved in this communication line.
 演算部11は、アルゴリズム演算によって取得された検知結果から空間危険度値を算出するが、機械学習を応用した推論によって取得された検知結果から空間危険度値を算出してもよい。例えば、図2は、実施の形態の別例における演算部の機能構成を示すブロック図である。図2に示す演算部11aは、たとえば、ニューラルネットワークモデル等で構成されたモデル11bを有する。モデル11bは、多数のセンサ21によって検知された検知結果を表す検知結果データD1と、多数のセンサの検知結果の各々に対する空間危険度値の正解値を表す正解データD2とを用いた機械学習によってあらかじめ生成されている。これにより、モデル11bに取得した検知結果(ここでは煙濃度値)が入力されると、出力として、空間危険度値の推定値が得られる。演算部11aは、このようなモデル11bを用いることで、空間危険度値を推定によって算出してもよい。 The calculation unit 11 calculates the spatial danger value from the detection results obtained by algorithm calculation, but may also calculate the spatial danger value from the detection results obtained by inference applying machine learning. For example, FIG. 2 is a block diagram showing the functional configuration of the calculation unit in another example of the embodiment. The calculation unit 11a shown in FIG. 2 has a model 11b configured, for example, by a neural network model or the like. The model 11b is generated in advance by machine learning using detection result data D1 representing the detection results detected by a large number of sensors 21 and correct answer data D2 representing the correct value of the spatial danger value for each of the detection results of the large number of sensors. As a result, when the obtained detection result (here, the smoke concentration value) is input to the model 11b, an estimated value of the spatial danger value is obtained as an output. The calculation unit 11a may calculate the spatial danger value by estimation using such a model 11b.
 図1に戻り、判定部12は、演算部11によって算出された空間危険度値を用いて、複数通りの避難ルートから最適な避難ルートである最適避難ルートを判定する。最適避難ルートを判定するとは、複数通りの避難ルートの中から、それぞれの避難ルートにおいて通過する単位空間の空間危険度値を当該避難ルートの全ルートにわたって総計した空間危険度値の総和が最も小さくなる避難ルートを選択することである。 Returning to FIG. 1, the determination unit 12 uses the spatial risk values calculated by the calculation unit 11 to determine an optimal evacuation route that is the most suitable evacuation route from among multiple evacuation routes. Determining an optimal evacuation route means selecting, from among multiple evacuation routes, an evacuation route that has the smallest sum of spatial risk values, calculated by adding up the spatial risk values of the unit spaces passed through on each evacuation route over the entire evacuation route.
 提示部13は、判定部12によって最適避難ルートと判定された避難ルートを誘導UI22に提示させる。本例では、避難ルートの提示は画像によって行われるものとして説明するが、上記のように、避難ルートの提示の態様に合わせて、提示部13は、適切に構成されればよい。提示部13は、最適避難ルートと判定された避難ルートの情報を得て、予め保有(記憶部などに記憶)しているフロアのマップに重ね合わせ、その画像を生成する。そして、生成した画像を出力し、誘導UI22に表示させる。なお、提示部13と誘導UI22との間で、生成した画像をやり取りするために通信回線が形成されている。この通信回線には、提示部13と誘導UI22との他に、送受信機やゲートウェイ等の他の装置が介在してもよい。 The presentation unit 13 causes the guidance UI 22 to present the evacuation route determined to be the optimal evacuation route by the determination unit 12. In this example, the evacuation route is described as being presented using an image, but as described above, the presentation unit 13 may be appropriately configured according to the manner in which the evacuation route is presented. The presentation unit 13 obtains information on the evacuation route determined to be the optimal evacuation route, and generates an image by overlaying it on a floor map held in advance (stored in a memory unit, etc.). The generated image is then output and displayed on the guidance UI 22. Note that a communication line is formed between the presentation unit 13 and the guidance UI 22 to exchange the generated image. In addition to the presentation unit 13 and the guidance UI 22, other devices such as a transceiver and a gateway may be interposed in this communication line.
 次に、図3を併せて参照しながら、防災システム50、特に、避難誘導提示システム10の動作について説明する。図3は、実施の形態における避難誘導提示システムの動作の一例を示すフローチャートである。 Next, the operation of the disaster prevention system 50, in particular the evacuation guidance presentation system 10, will be described with reference to FIG. 3. FIG. 3 is a flowchart showing an example of the operation of the evacuation guidance presentation system in the embodiment.
 初めに、センサ21は、常時、煙濃度値を感知してその煙濃度値を演算部11に送信している。演算部11は、検知結果としての煙濃度値を取得し(S101)、その時点での、当該センサ21が設置された単位空間の空間危険度値を算出する(S102)。ここで、空間危険度値の算出を図4~図6を参照して説明する。図4は、実施の形態における煙層の高さについて説明するための図である。図5は、実施の形態における空間危険度値について説明するための図である。図6は、実施の形態における空間危険度値と煙層の高さとの関係について説明するための図である。 First, the sensor 21 constantly senses the smoke density value and transmits the smoke density value to the calculation unit 11. The calculation unit 11 acquires the smoke density value as the detection result (S101), and calculates the spatial danger value of the unit space in which the sensor 21 is installed at that time (S102). Here, the calculation of the spatial danger value will be explained with reference to Figs. 4 to 6. Fig. 4 is a diagram for explaining the height of the smoke layer in the embodiment. Fig. 5 is a diagram for explaining the spatial danger value in the embodiment. Fig. 6 is a diagram for explaining the relationship between the spatial danger value and the height of the smoke layer in the embodiment.
 本例では、煙濃度値とともに、火災発生からの経過時間を考慮した煙層の高さを空間危険度値の算出に用いる。ここで煙層の高さを図4により説明する。図4では、火災の現場と、そこから被災者が避難しようとしている様子が示されている。この空間は、空間高さがHである。空間高さとは、床から天井までの離間距離である。それに対して、火災によって煙が発生し、空間の上方(天井側)から順に煙が充満していく。言い換えると、天井側から煙層(ドットハッチングで示す)が形成されていく。煙層の高さZとは、床から煙層の下端までの離間距離である。煙濃度値を感知するセンサ21は、天井に備えられ、ここで、空間高さHにおける煙濃度値Cs(H)を感知している。なお、煙層の下端(煙層の高さZ)での煙濃度値は、Cs(Za)であり、常にCs(H)>Cs(Za)の関係が成立する。 In this example, the height of the smoke layer, which takes into account the time elapsed since the occurrence of the fire, is used to calculate the spatial danger value together with the smoke density value. Here, the height of the smoke layer is explained with reference to FIG. 4. FIG. 4 shows the scene of the fire and the state where the victims are trying to escape from there. This space has a space height H. The space height is the distance from the floor to the ceiling. In contrast, smoke is generated by the fire, and the smoke fills the space from the upper part (ceiling side) in order. In other words, a smoke layer (shown by dot hatching) is formed from the ceiling side. The height Za of the smoke layer is the distance from the floor to the bottom end of the smoke layer. The sensor 21 for detecting the smoke density value is provided on the ceiling, and detects the smoke density value Cs (H) at the space height H. The smoke density value at the bottom end of the smoke layer (smoke layer height Za ) is Cs (Za) , and the relationship Cs (H) >Cs (Za) always holds.
 煙層の高さZが避難者の顔の高さに到達すると、視界が遮られたり煙を吸引してしまう可能性が高まり、姿勢を(例えば、屈んだ姿勢に)変更する必要が生じ、避難の困難さ、すなわち、危険度が急激に増加する。そのため、煙層の高さZは、数値が小さいほど、危険度が高くなる。図5では、煙層の高さと煙濃度値との具体的な数値を例示し、その煙層の高さZと煙濃度値Cとの関係における算出される空間危険度値を例示している。また、図6では、煙層の高さZと煙濃度値Cとの関係をグラフとして示している。一般的に、ヒトの身長に相当する1.8m(基準高さ)よりも煙層の高さZが高い間は、空間危険度値をさほど高くないように算出する(図5では、0.1)。そして、煙層の高さZが1.8mに到達すると、急激に空間危険度値が上昇するように算出する(図5では、Z=1.8mで0.6、Z=1.5mで1.0)。このことを反映させるため、図6に示すように、煙層の高さZが1.8mよりも高い間は、煙層の高さZに対してリニア関数で空間危険度値が増加するようにし、煙層の高さZが1.8mよりも低くなると、煙層の高さZに対して指数関数で空間危険度値が増加するように設定される。このように、本例では、空間危険度値は、煙層の高さZに関する関数によって表現される。なお、上記の空間危険度値と煙層の高さZとの関係を示す関数は一例であり、煙層の高さZ全域にわたってリニア関数でZが低くなるほど空間危険度値が増加してもよく、煙層の高さZ全域にわたって指数関数でZが低くなるほど空間危険度値が増加してもよい。煙層の高さZを考慮することにより、空間危険度値の算出をより現実の危険度に適合させることができる。なお、煙層の高さZは、例えば、空間内の高さ方向に複数個設けられた煙濃度感知器から、どの高さまで所定以上の濃度の煙が到達しているかに応じた検知結果として取得されてもよいし、天井に設けられた煙濃度感知器が感知した煙濃度値と、火災発生からの経過時間とから推定によって算出されてもよい。 When the height Z a of the smoke layer reaches the height of the evacuee's face, the possibility of blocking the view or inhaling smoke increases, and the evacuee must change his/her posture (e.g., to a crouched posture), which makes evacuation difficult, i.e., the danger level increases rapidly. Therefore, the smaller the value of the smoke layer height Z a , the higher the danger level. FIG. 5 illustrates specific values of the smoke layer height and the smoke density value, and illustrates the spatial danger level calculated in the relationship between the smoke layer height Z a and the smoke density value C s . FIG. 6 also illustrates the relationship between the smoke layer height Z a and the smoke density value C s as a graph. In general, while the smoke layer height Z a is higher than 1.8 m (reference height) corresponding to the height of a human, the spatial danger level is calculated not to be very high (0.1 in FIG. 5). Then, when the smoke layer height Z a reaches 1.8 m, the spatial danger level is calculated to rise rapidly (0.6 at Z a = 1.8 m, and 1.0 at Z a = 1.5 m in FIG. 5). In order to reflect this, as shown in FIG. 6, the spatial danger value is set to increase with respect to the height Z a of the smoke layer as a linear function while the height Z a of the smoke layer is higher than 1.8 m, and when the height Z a of the smoke layer is lower than 1.8 m, the spatial danger value is set to increase with respect to the height Z a of the smoke layer as an exponential function. In this way, in this example, the spatial danger value is expressed by a function related to the height Z a of the smoke layer. Note that the above function showing the relationship between the spatial danger value and the height Z a of the smoke layer is only an example, and the spatial danger value may increase with a linear function over the entire range of the height Z a of the smoke layer as Z a decreases, or may increase with an exponential function over the entire range of the height Z a of the smoke layer as Z a decreases. By considering the height Z a of the smoke layer, the calculation of the spatial danger value can be more adapted to the actual danger level. The height Z a of the smoke layer may be obtained, for example, as a detection result from a plurality of smoke density sensors installed in the vertical direction of the space, depending on the height to which smoke of a predetermined density or higher has reached, or may be calculated by estimation from the smoke density value detected by a smoke density sensor installed on the ceiling and the elapsed time since the start of the fire.
 なお、図6の例では、リニア関数の領域において、以下の関数を用いた。 In the example in Figure 6, the following functions were used in the linear function domain.
 空間危険度値r=0.6-0.5×(1.8-Z)×(-0.043×(1/C)+1.11)/(1.8-H) Space risk value r 1 =0.6-0.5×(1.8-Z a )×(-0.043×(1/C s )+1.11)/(1.8-H)
 また、図6の例では、指数関数の領域において、以下の関数を用いた。 In the example in Figure 6, the following functions were used in the exponential domain:
 空間危険度値r=(3.1×(Z^(-2.8)))×(-0.043×(1/C)+1.11) Space danger value r 1 =(3.1×(Z a ^(−2.8)))×(−0.043×(1/C s )+1.11)
 なお、基準高さとして示した1.8mは一例であり、施設の利用者の平均身長や、より危険度の高い子供の身長等に合わせて適宜変更されてもよい。 Note that the standard height of 1.8 m is just an example and may be changed as appropriate to suit the average height of facility users or the height of children who are at higher risk.
 図3に戻り、空間危険度値が算出された後に、判定部12は、最適避難ルートを判定する(S103)。まず、判定部12は、算出された空間危険度値を取得する。そして、空間危険度値を用いて複数通りの避難ルートのそれぞれについて空間危険度値の全ルートにわたる総和を算出する。図7を用いて一例を説明する。図7は、実施の形態における最適避難ルートの判定について説明するための図である。図7では、最外周の矩形によって施設内のあるフロアを示しており、ハッチングが付された箇所は通行不可能な空間(居室、収納スペースなど)を示している。そして、符号S1~S16はそれぞれセンサを示している。フロアには、紙面下方の端部かつ紙面左右両側に出口があり、センサS1の位置から避難を開始して、いずれかの出口に向かう避難ルートが提示される。火災はセンサS4の付近で発生している。各センサでの検知結果に基づく空間危険度値は以下のとおりである。 Returning to FIG. 3, after the spatial danger value is calculated, the determination unit 12 determines the optimal evacuation route (S103). First, the determination unit 12 obtains the calculated spatial danger value. Then, the spatial danger value is used to calculate the sum of the spatial danger value for each of the multiple evacuation routes across all routes. An example will be described with reference to FIG. 7. FIG. 7 is a diagram for explaining the determination of the optimal evacuation route in the embodiment. In FIG. 7, a certain floor in the facility is indicated by the outermost rectangle, and hatched areas indicate impassable spaces (rooms, storage spaces, etc.). The symbols S1 to S16 each indicate a sensor. The floor has exits at the end of the lower part of the paper and on both the left and right sides of the paper, and an evacuation route is presented in which evacuation begins at the position of sensor S1 and heads toward one of the exits. A fire has occurred near sensor S4. The spatial danger values based on the detection results of each sensor are as follows:
 センサS1付近:   0.020
 センサS2付近:   0.025
 センサS3付近:   0.200
 センサS4付近:   2.000
 センサS5付近:   0.020
 センサS6付近:   0.020
 センサS7付近:   0.030
 センサS8付近:   0.500
 センサS9付近:   0.015
 センサS10付近:   0.020
 センサS11付近:   0.025
 センサS12付近:   0.020
 センサS13付近:   0.005
 センサS14付近:   0.015
 センサS15付近:   0.020
 センサS16付近:   0.010
Near sensor S1: 0.020
Near sensor S2: 0.025
Near sensor S3: 0.200
Near sensor S4: 2.000
Near sensor S5: 0.020
Near sensor S6: 0.020
Near sensor S7: 0.030
Near sensor S8: 0.500
Near sensor S9: 0.015
Near sensor S10: 0.020
Near sensor S11: 0.025
Near sensor S12: 0.020
Near sensor S13: 0.005
Near sensor S14: 0.015
Near sensor S15: 0.020
Near sensor S16: 0.010
 例えば、図7の実線矢印が示す避難ルートでは、センサS1、S2、S6、S7、S11、S15、S16の付近を通過する。そのため、空間危険度値の総和は、0.150である。一方、図7の破線矢印が示す避難ルートでは、センサS1、S2、S6、S5、S9、S10、S11、S15、S14、S13の付近を通過する。そのため、空間危険度値の総和は、0.185である。一見、火元のセンサS4付近から最も遠い分岐を選択する破線矢印の避難ルートが最も安全な避難ルートと思われるが、実際には、出口までに通過しなければならない空間が多く、その分、空間危険度値の総和が大きくなっている。実際には、センサS4の付近に近づくことになっても、実線矢印の避難ルートで避難する方が総合的な危険度が低いことが一目瞭然となる。 For example, the evacuation route indicated by the solid arrow in FIG. 7 passes near sensors S1, S2, S6, S7, S11, S15, and S16. Therefore, the sum of the spatial danger values is 0.150. On the other hand, the evacuation route indicated by the dashed arrow in FIG. 7 passes near sensors S1, S2, S6, S5, S9, S10, S11, S15, S14, and S13. Therefore, the sum of the spatial danger values is 0.185. At first glance, the evacuation route indicated by the dashed arrow, which selects the branch farthest from the sensor S4, the source of the fire, seems to be the safest evacuation route, but in reality, there are many spaces that must be passed through before reaching the exit, and the sum of the spatial danger values is accordingly large. In reality, it is clear that evacuating via the evacuation route indicated by the solid arrow has a lower overall danger level, even if it means getting closer to the sensor S4.
 このようにして、本例では、避難ルートの全ルートにわたる空間危険度値の総和を比較することで、より適切な避難ルートを選択して、より安全に避難を支援することが可能となる。 In this way, in this example, by comparing the sum of spatial risk values across all evacuation routes, it is possible to select a more appropriate evacuation route and support a safer evacuation.
 図3に戻り、最適避難ルートを判定した後、提示部13は、避難ルートを提示する(S104)。提示部13は、最適避難ルートと判定された避難ルートに関する情報を取得して、フロアのマップに重ね合わせることで、避難ルートを提示するための画像を生成する。そして、誘導UI22へと画像を出力して表示させることで、避難ルートを提示させる。一例を図8に示す。図8は、実施の形態における避難ルートの提示の一例を示す図である。図8では、誘導UI22の外観と、画面に表示されている画像とを示している。図8に示すように、本例では、フロアマップに重ねられた避難ルートとともに、火災の発生時刻と、発生場所を特定する情報と、現在の発生場所の画像と、フロアに取り残されている被災者の人数と、フロアの管理者への問い合わせを行うための問い合わせボタンとが示されている。このため、火災の発生そのものを検知したり、画像を撮像したり、被災者の人数を計数したり、フロアの管理者を登録し、通信可能な回線を形成したりするための構成が備えられてもよい。 Returning to FIG. 3, after determining the optimal evacuation route, the presentation unit 13 presents the evacuation route (S104). The presentation unit 13 obtains information about the evacuation route determined to be the optimal evacuation route, and generates an image for presenting the evacuation route by overlaying it on the floor map. The image is then output to the guidance UI 22 and displayed to present the evacuation route. An example is shown in FIG. 8. FIG. 8 is a diagram showing an example of the presentation of an evacuation route in the embodiment. FIG. 8 shows the appearance of the guidance UI 22 and an image displayed on the screen. As shown in FIG. 8, in this example, along with the evacuation route overlaid on the floor map, the time of the fire outbreak, information identifying the location of the fire outbreak, an image of the current location of the fire outbreak, the number of victims left behind on the floor, and an inquiry button for inquiring of the floor manager are shown. For this reason, a configuration for detecting the outbreak of a fire itself, taking an image, counting the number of victims, registering the floor manager, and forming a line for communication may be provided.
 [効果等]
 以上説明したように、第1態様に係る避難誘導提示システム10は、施設において避難ルートを提示することにより避難誘導を行う避難誘導提示システム10であって、施設を仮想的に区画する複数の単位空間にそれぞれ設けられた複数のセンサ21の各々の検知結果を取得し、取得した検知結果から複数の単位空間のそれぞれの空間危険度値を算出する演算部11と、施設における複数の避難ルートのうち、当該避難ルートにおいて通過する1以上の単位空間の空間危険度値の総和が最も小さくなる避難ルートである最適避難ルートを判定する判定部12と、判定部12によって最適避難ルートとして判定された避難ルートを提示させる提示部13と、を備える。
[Effects, etc.]
As described above, the evacuation guidance presentation system 10 of the first aspect is an evacuation guidance presentation system 10 that provides evacuation guidance by presenting evacuation routes in a facility, and includes a calculation unit 11 that acquires detection results from each of a plurality of sensors 21 provided in a plurality of unit spaces that virtually divide the facility and calculates a spatial risk value for each of the plurality of unit spaces from the acquired detection results, a determination unit 12 that determines an optimal evacuation route, which is the evacuation route among the plurality of evacuation routes in the facility that has the smallest sum of the spatial risk values of one or more unit spaces passed through on the evacuation route, and a presentation unit 13 that causes the evacuation route determined as the optimal evacuation route by the determination unit 12 to be presented.
 これによれば、いくつかの候補となる避難ルートの中から、取得した検知結果に基づいて、空間危険度値の観点で、すなわち、単位空間ごとの危険度の観点で、出口に至るまでに通過する1以上の単位空間の空間危険度値の総和が最も小さい避難ルートを提示することができる。このようにして、避難ルート全体としての危険度を低減させるという観点で、より安全に避難を支援する避難誘導提示システム10が実現できる。 In this way, from among several candidate evacuation routes, it is possible to present an evacuation route that has the smallest sum of spatial danger values of one or more unit spaces passed through on the way to the exit, in terms of spatial danger values, i.e., in terms of the danger level for each unit space, based on the acquired detection results. In this way, it is possible to realize an evacuation guidance presentation system 10 that supports safer evacuation from the perspective of reducing the danger level of the entire evacuation route.
 また、第2態様に係る避難誘導提示システム10は、空間危険度値が、煙層の高さに関する関数である、第1態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the second aspect is the evacuation guidance presentation system 10 according to the first aspect, in which the spatial danger value is a function related to the height of the smoke layer.
 これによれば、検知結果から、煙層の高さに基づいて、空間危険度値を算出できる。 This makes it possible to calculate the spatial danger value based on the height of the smoke layer from the detection results.
 また、第3態様に係る避難誘導提示システム10は、センサ21が、感知器である、第1又は2態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the third aspect is the evacuation guidance presentation system 10 according to the first or second aspect, in which the sensor 21 is a detector.
 これによれば、センサ21として、感知器を用いることができる。 This allows a detector to be used as the sensor 21.
 また、第4態様に係る避難誘導提示システム10は、感知器が、煙濃度値を感知する煙感知器であり、演算部11が、煙感知器によって感知された煙濃度値から空間危険度値を算出する、第3態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the fourth aspect is the evacuation guidance presentation system 10 according to the third aspect, in which the detector is a smoke detector that detects a smoke density value, and the calculation unit 11 calculates a spatial danger value from the smoke density value detected by the smoke detector.
 これによれば、センサ21として、煙濃度値を感知する煙感知器を用いることができる。 Accordingly, a smoke detector that detects smoke concentration values can be used as the sensor 21.
 また、第5態様に係る避難誘導提示システム10は、演算部11が、空間危険度値の算出の際、煙層の高さが時間経過とともに低下するほど、空間危険度値を高く算出する、第2態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the fifth aspect is the evacuation guidance presentation system 10 according to the second aspect, in which the calculation unit 11 calculates a higher spatial danger value as the height of the smoke layer decreases over time when calculating the spatial danger value.
 これによれば、現実に即した、時間経過とともに低下する煙層の高さに応じて、空間危険度値を高く算出できる。 This allows the spatial danger value to be calculated higher according to the height of the smoke layer, which decreases over time, in line with reality.
 また、第6態様に係る避難誘導提示システム10は、複数の避難ルートのそれぞれが、非常階段又は屋外へ至るまでのルートである、第1~第5態様のいずれか1態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the sixth aspect is the evacuation guidance presentation system 10 according to any one of the first to fifth aspects, in which each of the multiple evacuation routes is an emergency staircase or a route leading to outdoors.
 これによれば、提示される避難ルートによって、被災者を非常階段又は屋外へ避難させることができる。 This allows disaster victims to evacuate to the emergency stairs or outside using the evacuation route provided.
 また、第7態様に係る避難誘導提示システム10は、提示部13が、音声、光の点滅、サイネージの少なくとも1つで最適避難ルートを提示する、第1~第6態様のいずれか1態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the seventh aspect is the evacuation guidance presentation system 10 according to any one of the first to sixth aspects, in which the presentation unit 13 presents the optimal evacuation route by at least one of sound, flashing light, and signage.
 これによれば、音声、光の点滅、サイネージの少なくとも1つによって避難ルートを提示することができる。 This allows evacuation routes to be presented using at least one of the following: audio, flashing lights, and signage.
 また、第8態様に係る避難誘導提示システム10は、演算部11aが、1又は複数のプロセッサを有し、1又は複数のプロセッサが、取得した検知結果を、多数のセンサ21の検知結果を表す検知結果データD1と、多数のセンサ21の検知結果の各々に対する空間危険度値の正解値を表す正解データD2とを用いて生成されたモデルに入力し、単位空間のそれぞれの空間危険度値を推定によって算出する、第1態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the eighth aspect is the evacuation guidance presentation system 10 according to the first aspect, in which the calculation unit 11a has one or more processors, and the one or more processors input the acquired detection results into a model generated using detection result data D1 representing the detection results of the multiple sensors 21 and correct answer data D2 representing correct answers for the spatial danger value for each of the detection results of the multiple sensors 21, and calculates the spatial danger value of each unit space by estimation.
 これによれば、1又は複数のプロセッサによって、演算部11aを構成することができる。1又は複数のプロセッサは、取得した検知結果を、予め生成された学習済みモデル11bに入力して、単位空間のそれぞれの空間危険度値を推定によって算出できる。 As a result, the calculation unit 11a can be configured with one or more processors. The one or more processors can input the acquired detection results to a trained model 11b that has been generated in advance, and calculate the spatial risk value of each unit space by estimation.
 また、第9態様に係る避難誘導提示システム10は、モデル11bが、ニューラルネットワークモデルである、第8態様に記載の避難誘導提示システム10である。 The evacuation guidance presentation system 10 according to the ninth aspect is the evacuation guidance presentation system 10 according to the eighth aspect, in which the model 11b is a neural network model.
 これによれば、ニューラルネットワークモデルによってモデル11bを実現できる。 Accordingly, model 11b can be realized using a neural network model.
 また、第10態様に係る避難誘導提示方法は、施設において避難ルートを提示することにより避難誘導を行うための、コンピュータによって実行される避難誘導提示方法であって、施設を仮想的に区画する複数の単位空間にそれぞれ設けられた複数のセンサ21の各々の検知結果を取得し、取得した検知結果から複数の単位空間のそれぞれの空間危険度値を算出し、施設における複数の避難ルートのうち、当該避難ルートにおいて通過する1以上の単位空間の空間危険度値の総和が最も小さくなる避難ルートである最適避難ルートを判定し、最適避難ルートと判定された避難ルートを提示する。 The evacuation guidance presentation method according to the tenth aspect is a computer-executed method for providing evacuation guidance by presenting evacuation routes in a facility, which obtains detection results from each of a plurality of sensors 21 provided in a plurality of unit spaces that virtually divide the facility, calculates a spatial danger value for each of the unit spaces from the obtained detection results, determines an optimal evacuation route among the plurality of evacuation routes in the facility, which is the evacuation route that has the smallest sum of the spatial danger values of one or more unit spaces passed through on the evacuation route, and presents the evacuation route determined to be the optimal evacuation route.
 これによれば、避難誘導提示システム10と同様の効果を奏する。 This provides the same effect as the evacuation guidance presentation system 10.
 また、第11態様に係る避難誘導提示方法は、空間危険度値の算出では、取得した検知結果を、多数のセンサ21の検知結果を表す検知結果データD1と、多数のセンサ21の検知結果の各々に対する空間危険度値の正解値を表す正解データD2とを用いて生成されたモデル11bに入力し、単位空間のそれぞれの空間危険度値を推定によって算出する、第10態様に記載の避難誘導提示方法である。 The evacuation guidance presentation method according to the 11th aspect is the evacuation guidance presentation method according to the 10th aspect, in which the spatial danger value is calculated by inputting the acquired detection results into a model 11b generated using detection result data D1 representing the detection results of a large number of sensors 21 and correct answer data D2 representing the correct value of the spatial danger value for each of the detection results of the large number of sensors 21, and calculating the spatial danger value of each unit space by estimation.
 これによれば、第8態様に記載の避難誘導提示システム10と同様の効果を奏する。 This provides the same effect as the evacuation guidance presentation system 10 described in the eighth aspect.
 また、第12態様に係るプログラムは、第10又は第11態様に記載の避難誘導提示方法をコンピュータに実行させるためのプログラムである。 The program according to the twelfth aspect is a program for causing a computer to execute the evacuation guidance presentation method according to the tenth or eleventh aspect.
 これによれば、コンピュータを用いて避難誘導提示システム10と同様の効果を奏することができる。 This makes it possible to achieve the same effect as the evacuation guidance presentation system 10 using a computer.
 また、第13態様に係る防災システムは、第1~第9態様のいずれか1態様に記載の避難誘導提示システム10と、施設に設けられた複数のセンサ21と、を備える。 The disaster prevention system according to the thirteenth aspect includes the evacuation guidance presentation system 10 according to any one of the first to ninth aspects, and a plurality of sensors 21 installed in the facility.
 これによれば、避難誘導提示システム10と同様の効果を奏する防災システムを実現できる。 This makes it possible to realize a disaster prevention system that has the same effect as the evacuation guidance presentation system 10.
 (その他の実施の形態)
 以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
Although the embodiment has been described above, the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、避難誘導提示システムは、複数の器具、モジュール等によって実現された。この場合、上記実施の形態で説明された避難誘導提示システムが備える構成要素は、複数の器具、モジュール等にどのように振り分けられてもよい。また、避難誘導提示システムは、単一の装置として実現されてもよい。 For example, in the above embodiment, the evacuation guidance presentation system is realized by a plurality of devices, modules, etc. In this case, the components of the evacuation guidance presentation system described in the above embodiment may be distributed in any manner among the plurality of devices, modules, etc. Also, the evacuation guidance presentation system may be realized as a single device.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。 Furthermore, in the above embodiment, the processing performed by a specific processing unit may be executed by another processing unit. Furthermore, the order of multiple processes may be changed, and multiple processes may be executed in parallel.
 また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Furthermore, in the above embodiment, each component may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or processor reading and executing a software program recorded on a recording medium such as a hard disk or semiconductor memory.
 また、各構成要素は、ハードウェアによって実現されてもよい。各構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Furthermore, each component may be realized by hardware. Each component may be a circuit (or an integrated circuit). These circuits may form a single circuit as a whole, or each may be a separate circuit. Furthermore, each of these circuits may be a general-purpose circuit, or a dedicated circuit.
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, the general or specific aspects of the present invention may be realized as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable recording medium such as a CD-ROM. Also, the present invention may be realized as any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 例えば、本発明は、上記実施の形態の防災システムとして実現されてもよい。また、本発明は、上記実施の形態の避難誘導提示システムの少なくとも一部のプロセッサ等で実行される方法として実現されてもよい。本発明は、このような方法をコンピュータに実行させるためのプログラム(コンピュータプログラムプロダクト)として実現されてもよいし、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 For example, the present invention may be realized as the disaster prevention system of the above embodiment. The present invention may also be realized as a method executed by at least a part of a processor of the evacuation guidance presentation system of the above embodiment. The present invention may also be realized as a program (computer program product) for causing a computer to execute such a method, or as a non-transitory computer-readable recording medium on which such a program is recorded.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention also includes forms obtained by applying various modifications to each embodiment that a person skilled in the art may conceive, or forms realized by arbitrarily combining the components and functions of each embodiment within the scope of the spirit of the present invention.
 10 避難誘導提示システム
 11、11a 演算部
 11b モデル
 12 判定部
 13 提示部
 21、S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11、S12、S13、S14、S15、S16 センサ
 22 誘導UI
 50 防災システム
 D1 検知結果データ
 D2 正解データ
10 Evacuation guidance presentation system 11, 11a Calculation unit 11b Model 12 Determination unit 13 Presentation unit 21, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16 Sensor 22 Guidance UI
50 Disaster prevention system D1 Detection result data D2 Correct answer data

Claims (13)

  1.  施設において避難ルートを提示することにより避難誘導を行う避難誘導提示システムであって、
     前記施設を仮想的に区画する複数の単位空間にそれぞれ設けられた複数のセンサの各々の検知結果を取得し、取得した前記検知結果から複数の前記単位空間のそれぞれの空間危険度値を算出する演算部と、
     前記施設における複数の避難ルートのうち、当該避難ルートにおいて通過する1以上の前記単位空間の前記空間危険度値の総和が最も小さくなる避難ルートである最適避難ルートを判定する判定部と、
     前記判定部によって前記最適避難ルートとして判定された避難ルートを提示させる提示部と、を備える
     避難誘導提示システム。
    An evacuation guidance presentation system that provides evacuation guidance by presenting evacuation routes in a facility,
    a calculation unit that acquires detection results of a plurality of sensors provided in a plurality of unit spaces that virtually divide the facility, and calculates a spatial hazard value of each of the plurality of unit spaces from the acquired detection results;
    a determination unit that determines an optimal evacuation route among a plurality of evacuation routes in the facility, the optimal evacuation route being an evacuation route that has the smallest sum of the spatial risk values of one or more unit spaces that the evacuation route passes through;
    a presentation unit that presents the evacuation route determined as the optimal evacuation route by the determination unit.
  2.  前記空間危険度値は、煙層の高さに関する関数である
     請求項1に記載の避難誘導提示システム。
    The evacuation guidance presentation system according to claim 1 , wherein the spatial danger value is a function of the height of the smoke layer.
  3.  前記センサは、感知器である
     請求項1又は2に記載の避難誘導提示システム。
    The evacuation guidance presentation system according to claim 1 , wherein the sensor is a detector.
  4.  前記感知器は、煙濃度値を感知する煙感知器であり、
     前記演算部は、前記煙感知器によって感知された煙濃度値から前記空間危険度値を算出する
     請求項3に記載の避難誘導提示システム。
    The detector is a smoke detector that detects a smoke density value,
    The evacuation guidance presentation system according to claim 3 , wherein the calculation unit calculates the spatial danger value from a smoke density value detected by the smoke detector.
  5.  前記演算部は、前記空間危険度値の算出の際、前記煙層の高さが時間経過とともに低下するほど、前記空間危険度値を高く算出する
     請求項2に記載の避難誘導提示システム。
    The evacuation guidance presentation system according to claim 2 , wherein the calculation unit is configured to calculate the spatial danger value to be higher as the height of the smoke layer decreases over time when the spatial danger value is calculated.
  6.  前記複数の避難ルートのそれぞれは、非常階段又は屋外へ至るまでのルートである
     請求項1又は2に記載の避難誘導提示システム。
    The evacuation guidance presentation system according to claim 1 or 2, wherein each of the plurality of evacuation routes is a route leading to an emergency staircase or to outdoors.
  7.  前記提示部は、音声、光の点滅、サイネージの少なくとも1つで前記最適避難ルートを提示する
     請求項1又は2に記載の避難誘導提示システム。
    The evacuation guidance presentation system according to claim 1 or 2, wherein the presentation unit presents the optimum evacuation route by at least one of a sound, a flashing light, and a signage.
  8.  前記演算部は、1又は複数のプロセッサを有し、
     前記1又は複数のプロセッサは、取得した前記検知結果を、多数のセンサの検知結果を表す検知結果データと、多数のセンサの検知結果の各々に対する前記空間危険度値の正解値を表す正解データとを用いて生成されたモデルに入力し、前記単位空間のそれぞれの前記空間危険度値を推定によって算出する
     請求項1に記載の避難誘導提示システム。
    The computing unit has one or more processors,
    The evacuation guidance presentation system of claim 1, wherein the one or more processors input the acquired detection results into a model generated using detection result data representing the detection results of a large number of sensors and correct answer data representing correct values of the spatial danger value for each of the detection results of the large number of sensors, and calculate the spatial danger value for each of the unit spaces by estimation.
  9.  前記モデルは、ニューラルネットワークモデルである
     請求項8に記載の避難誘導提示システム。
    The evacuation guidance presentation system according to claim 8 , wherein the model is a neural network model.
  10.  施設において避難ルートを提示することにより避難誘導を行うための、コンピュータによって実行される避難誘導提示方法であって、
     前記施設を仮想的に区画する複数の単位空間にそれぞれ設けられた複数のセンサの各々の検知結果を取得し、
     取得した前記検知結果から複数の前記単位空間のそれぞれの空間危険度値を算出し、
     前記施設における複数の避難ルートのうち、当該避難ルートにおいて通過する1以上の前記単位空間の前記空間危険度値の総和が最も小さくなる避難ルートである最適避難ルートを判定し、
     前記最適避難ルートと判定された避難ルートを提示する
     避難誘導提示方法。
    1. An evacuation guidance presentation method executed by a computer for providing evacuation guidance by presenting an evacuation route in a facility, comprising:
    acquiring detection results of a plurality of sensors provided in a plurality of unit spaces that virtually divide the facility,
    Calculating a spatial risk value for each of the plurality of unit spaces from the acquired detection results;
    determining an optimal evacuation route among a plurality of evacuation routes in the facility, the optimal evacuation route being the evacuation route that minimizes the sum of the spatial risk values of one or more unit spaces that are passed through on the evacuation route;
    The evacuation route determined to be the optimum evacuation route is presented.
  11.  前記空間危険度値の算出では、取得した前記検知結果を、多数のセンサの検知結果を表す検知結果データと、多数のセンサの検知結果の各々に対する前記空間危険度値の正解値を表す正解データとを用いて生成されたモデルに入力し、前記単位空間のそれぞれの前記空間危険度値を推定によって算出する
     請求項10に記載の避難誘導提示方法。
    The evacuation guidance presentation method according to claim 10, wherein in calculating the spatial danger value, the acquired detection results are input into a model generated using detection result data representing the detection results of a large number of sensors and correct answer data representing correct values of the spatial danger value for each of the detection results of the large number of sensors, and the spatial danger value for each of the unit spaces is calculated by estimation.
  12.  請求項10又は11に記載の避難誘導提示方法をコンピュータに実行させるための
     プログラム。
    A program for causing a computer to execute the evacuation guidance presentation method according to claim 10 or 11.
  13.  請求項1又は2に記載の避難誘導提示システムと、前記施設に設けられた前記複数のセンサと、を備える
     防災システム。
    A disaster prevention system comprising: the evacuation guidance presentation system according to claim 1 or 2; and the plurality of sensors provided in the facility.
PCT/JP2023/039191 2022-11-28 2023-10-31 Evacuation guidance presentation system, evacuation guidance presentation method, program, and disaster prevention system WO2024116698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-189601 2022-11-28
JP2022189601 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024116698A1 true WO2024116698A1 (en) 2024-06-06

Family

ID=91323757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039191 WO2024116698A1 (en) 2022-11-28 2023-10-31 Evacuation guidance presentation system, evacuation guidance presentation method, program, and disaster prevention system

Country Status (1)

Country Link
WO (1) WO2024116698A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465700A (en) * 1987-09-07 1989-03-10 Nittan Co Ltd Escape guiding device
JP2019120975A (en) * 2017-12-28 2019-07-22 ホーチキ株式会社 Fire alarm facility
KR102325565B1 (en) * 2021-01-27 2021-11-15 이에스텍이엔지 주식회사 method for drawing optimal escape route from fire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465700A (en) * 1987-09-07 1989-03-10 Nittan Co Ltd Escape guiding device
JP2019120975A (en) * 2017-12-28 2019-07-22 ホーチキ株式会社 Fire alarm facility
KR102325565B1 (en) * 2021-01-27 2021-11-15 이에스텍이엔지 주식회사 method for drawing optimal escape route from fire

Similar Documents

Publication Publication Date Title
KR101475134B1 (en) Intelligent escape guide method and apparatus
US11127282B2 (en) Contextualized augmented reality display system
KR101840560B1 (en) System and method for providing 3-dimension path upon fire occurrence
JP4259299B2 (en) Guidance system and guidance method
TWI661178B (en) A navigation system, method and electronic device for indoor escaping
US20170109981A1 (en) System and method of using a fire spread forecast and bim to guide occupants using smart signs
JP6569964B2 (en) Smart disaster prevention evacuation method and disaster prevention evacuation system
CN103874527A (en) Model-based generation of information and evacuation messages
JP6929758B2 (en) Evacuation guidance system
JP6524518B2 (en) Evacuation guidance device, evacuation guidance method, and evacuation guidance program
JP2010257244A (en) Evacuation guiding system, and, evacuation guiding method
CN111982113B (en) Path generation method, device, equipment and storage medium
KR20160116987A (en) Fire simulation apparatus and method thereof
CN111915823A (en) Fire extinguishing system, server and mobile terminal equipment
WO2024116698A1 (en) Evacuation guidance presentation system, evacuation guidance presentation method, program, and disaster prevention system
TWI567697B (en) Intelligent evacuation system and intelligent evacuation control method thereof
US20200413237A1 (en) Heads up mass notification
US20230154307A1 (en) Accident sign detection system and accident sign detection method
JP2015060338A (en) Guidance system, server device and program
KR101981744B1 (en) Evacuation Time Prediction System using GIS Information and Method thereof
JP2019104594A (en) Disaster information support system, and method thereof
KR20180096308A (en) Safe evacuation system for optimal evacuation in case of emergency and the method therof
TWI494901B (en) Intelligent disaster prevention and guiding device and rescue system
KR102326992B1 (en) Method and system for generating and guiding indoor evacuation route for types of disorders
KR101778445B1 (en) Apparatus and method for emergency escape