WO2024116477A1 - Welding device and welding method - Google Patents

Welding device and welding method Download PDF

Info

Publication number
WO2024116477A1
WO2024116477A1 PCT/JP2023/028997 JP2023028997W WO2024116477A1 WO 2024116477 A1 WO2024116477 A1 WO 2024116477A1 JP 2023028997 W JP2023028997 W JP 2023028997W WO 2024116477 A1 WO2024116477 A1 WO 2024116477A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
welding
motor
wire
time
Prior art date
Application number
PCT/JP2023/028997
Other languages
French (fr)
Japanese (ja)
Inventor
紀典 本宮
昌良 植田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024116477A1 publication Critical patent/WO2024116477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Definitions

  • This disclosure relates to a welding device and a welding method.
  • Patent Document 1 discloses a semi-automatic welding method in which welding is performed while a welding wire is continuously fed to a welding torch by a feeding device.
  • the welding wire is run in reverse and the welding wire protruding from the welding tip of the welding torch is pulled toward the welding tip until its tip reaches a reference position, and then feeding of the welding wire begins.
  • the semi-automatic welding method is characterized in that the feeding of the welding wire is temporarily stopped when the amount of welding wire protruding from the welding tip reaches a dimension suitable for starting welding.
  • the purpose of this disclosure is to stably feed welding wire and improve the workability and quality of welding.
  • the present disclosure provides a welding device that is a non-consumable electrode arc welding device and a consumable electrode arc welding device, and includes a wire feeder that feeds a welding wire to a welding torch or rewinds the welding wire from the welding torch by rotating a DC motor, and a control unit that supplies power to the DC motor to drive the DC motor, and the control unit supplies a first power of either positive or negative polarity to the DC motor to feed or rewind the welding wire, and then supplies a second power of opposite polarity to the first power to the DC motor when the DC motor is stopped or the feeding speed of the welding wire is slowed down.
  • the present disclosure also provides a welding method performed by a welding system in a non-consumable electrode arc welding device and a consumable electrode arc welding device, the welding system including a wire feeder that feeds or rewinds a welding wire to a welding torch by rotating a DC motor, and a control unit that supplies power to the DC motor to drive the DC motor, the welding method including supplying a first power of either positive or negative polarity to the DC motor to feed or rewind the welding wire, and then supplying a second power of a different polarity to the first power to the DC motor when the DC motor is stopped or the feeding speed of the welding wire is reduced.
  • the welding wire can be fed stably, improving the workability and quality of welding.
  • FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention
  • FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention
  • FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention
  • FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention
  • FIG. 1 is a diagram showing an example of control of a current flowing through a DC motor according to a conventional technique.
  • FIG. 1 is a diagram showing an example of control of a current flowing through a DC motor according to an embodiment of the present invention
  • Semi-automatic TIG (Tungsten Inert Gas) welding is one type of arc welding in which a feeder feeds a welding wire through a feed path to a welding point to perform welding.
  • a feeder feeds a welding wire through a feed path to a welding point to perform welding.
  • it is important for improving the workability and quality of welding that the welding wire protrusion amount before welding is appropriate and that the welding wire is stably fed during welding.
  • Patent Document 1 discloses a semi-automatic welding method in which, when a switch related to starting the welding torch is turned on to start welding, the feeding device controls the welding wire to feed in the reverse direction, and the end of the wire comes into contact with the end of the welding tip. After this is detected, the wire is fed in the forward direction, and the length of the welding wire protruding from the welding tip (i.e., the amount of protrusion) is adjusted to an appropriate length before welding begins.
  • FIG. 1 is a configuration diagram of a welding system according to this embodiment.
  • the welding system 100 includes a welding power source 10, a wire feeder 20, a welding torch 50, and a switch 60.
  • the welding power supply 10 which is an example of a power supply, is connected to the wire feeder 20 and the welding torch 50 via power lines, and supplies the necessary power to the wire feeder 20 and the welding torch 50.
  • the welding power supply 10 is, for example, a dual-purpose AC/DC power supply that can supply both AC and DC current. Note that the welding power supply 10 is not limited to being a dual-purpose AC/DC source, and may be capable of supplying only DC or only AC.
  • the welding power supply 10 outputs, for example, approximately 200 A of DC or AC current as an example of the necessary power supply. Note that the current value output by the welding power supply 10 is only an example and is not limited to 200 A.
  • the wire feeder 20 is connected to the welding power source 10 and is driven by power (voltage) supplied from the welding power source 10. Based on the power from the welding power source 10, the wire feeder 20 feeds the welding wire 40 towards the tip of the welding torch 50 via the wire feed path 30.
  • the welding power source 10 is not limited to being an external device of the wire feeder 20, and may be built into the wire feeder 20.
  • a switch 60 related to the feeding of the welding wire 40 is connected to the wire feeder 20.
  • the wire feeder 20 is provided with a control unit 21 and a welding wire feed unit 22.
  • the control unit 21 functions as a controller that manages the overall operation of the wire feeder 20.
  • the control unit 21 may be a semiconductor chip in which at least one of electronic devices such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a GPU (Graphical Processing Unit), and an FPGA (Field Programmable Gate Array) is mounted on a control board (see above).
  • the wire feeder 20 has a memory, which is not shown in FIG. 1, and the control unit 21 uses the RAM (Random Access Memory) of the memory (not shown) during operation, and temporarily stores data generated or acquired by the control unit 21 in the RAM of the memory.
  • the control unit 21 uses the power output from the welding power source 10 to control the power supplied to drive the DC motor of the welding wire feeder 22.
  • the control unit 21 also controls the power supplied to drive the DC motor of the welding wire feeder 22 based on the pulse synchronization signal output from the welding power source 10 in the pulse synchronization mode (see FIG. 4).
  • the welding wire feeder 22 has a direct current motor (hereinafter referred to as a DC (Direct Current) motor) that feeds the welding wire 40.
  • the DC motor is, for example, a permanent magnet field type DC motor or an electromagnetic field type DC motor.
  • the welding wire feeder 22 is not limited to a DC motor and may also have an AC (Alternating Current) motor that is driven by an AC power source.
  • the welding wire feeder 22 supplies power to the DC motor based on instructions from the control unit 21 to drive the DC motor.
  • the welding wire feeder 22 uses a DC motor to feed (supply) the welding wire 40 forward toward the tip of the welding torch 50, or to feed (retract) the welding wire 40 backward from the tip of the welding torch 50.
  • the wire feed path 30 has one end connected to the wire feeder 20 and the other end connected to the welding torch 50.
  • the wire feed path 30 is, for example, a tube or cable through which the welding wire 40 can be smoothly inserted.
  • the wire feed path 30 is made of a material that can deform in accordance with the movement of the welding torch 50.
  • the wire feed path 30 is, for example, a flexible conduit. Note that the wire feed path 30 is not limited to a flexible conduit.
  • the welding wire 40 is, for example, a filler wire such as stainless steel. Note that the welding wire 40 is not limited to a filler wire such as stainless steel.
  • the welding wire 40 is fed from the wire feeder 20 through the wire feed path 30 to the tip of the welding torch 50.
  • the welding torch 50 arc welds the welding location PL by supplying power output from the welding power source 10 to an electrode disposed at the tip of the welding torch 50.
  • the electrode used in the welding torch 50 is, for example, a tungsten electrode. Note that the electrode used in the welding torch 50 is not limited to a tungsten electrode, and may be either a non-consumable electrode or a consumable electrode.
  • the switch 60 may output a signal to the control unit to change the feed speed of the welding wire 40 by switching on and off, or may output a signal to the control unit to switch between starting and stopping the feed of the welding wire 40.
  • the signal to change the feed speed and the signal to switch between starting and stopping the feed are output to the control unit by switching the switch 60 on and off.
  • the signal to change the feed speed and the signal to switch between starting and stopping the feed may be automatically switched by the control unit 21.
  • the base material cable 70 is a welding cable that connects the terminal of the welding power source 10 to the welding point PL.
  • FIG. 2 is a diagram showing an example of a welding wire feed mode according to this embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the feed speed of the welding wire 40 at each time.
  • the feed speed of the welding wire 40 will be referred to as the wire feed speed.
  • the wire feed speed is v0.
  • Speed v0 is 0 (zero), which means that no power is being supplied to the DC motor of the welding wire feeder 22.
  • the wire feeder 20 is not feeding the welding wire 40.
  • control unit 21 supplies a third power of positive polarity to the DC motor to change the wire feed speed from speed v0 to speed v1. This enables wire feeder 20 to feed welding wire 40 from welding wire feeder 22 at speed v1. From time t1 to time t2, wire feeder 20 feeds welding wire 40 to the tip of welding torch 50 at speed v1.
  • the control unit 21 supplies a fourth power, which is the opposite polarity of the third power, and sets the wire feed speed to a finite negative speed v2.
  • the fourth power may be the opposite polarity of the third power, or may simply be a negative polarity different from the third power.
  • the negative speed represents the speed at which the wire feeder 20 reversely feeds (i.e., rewinds) the welding wire 40 from the welding torch 50 to the wire feeder 20.
  • the wire feeder 20 rewinds the welding wire 40 and sets the protrusion amount from the tip of the welding torch 50 to an appropriate length. In other words, the wire feeder 20 sets the protrusion amount of the welding wire 40 to an appropriate length before starting the next welding.
  • the control unit 21 stops the supply of the fourth power to the DC motor, and the wire feed speed becomes v0 again.
  • the control unit 21 stops the supply of the fourth power to the DC motor, it supplies a second power having the opposite polarity to the fourth power for an extremely short time (hereinafter referred to as the second power supply time).
  • the second power supply time is, for example, several tens of milliseconds. Note that the extremely short time is not limited to several tens of milliseconds.
  • the second power supply time is not limited to a fixed value, and may change, for example, depending on the state of the DC motor's rotation speed and current immediately before the second power is supplied to the DC motor. Since the time in FIG.
  • the inertia time is, for example, several hundred milliseconds, which is sufficiently longer than the second power supply time.
  • the control unit 21 supplies the second power to the DC motor for the second power supply time at time t3.
  • the wire feeder 20 feeds (supplies) the welding wire 40 forward to the tip of the welding torch 50 for the second power supply time. This allows the wire feeder 20 to suppress the occurrence of excess rewinding of the welding wire 40 due to the inertia of the DC motor.
  • the triangular marks in Figures 2, 3, 4, and 5 indicate the timing when the second power is applied.
  • FIG. 3 is a diagram showing an example of a welding wire feed mode according to this embodiment.
  • the horizontal axis represents time and the vertical axis represents the wire feed speed at each time.
  • the wire feeder 20 changes the wire feed speed at least once to feed the welding wire 40.
  • the wire feed speed is v0.
  • Speed v0 is 0 (zero), which means that no power is being supplied to the DC motor of the welding wire feeder 22.
  • the wire feeder 20 is not feeding the welding wire 40.
  • control unit 21 supplies a third power of positive polarity to the DC motor to change the wire feed speed from speed v0 to speed v1. This enables wire feeder 20 to feed welding wire 40 from welding wire feeder 22 at speed v1. From time t1 to time t4, wire feeder 20 feeds welding wire 40 to the tip of welding torch 50 at speed v1.
  • the control unit 21 changes the wire feed speed from speed v1 to speed v3.
  • Speed v3 is a positive speed greater than or equal to speed v0 (i.e., zero speed) and less than speed v1.
  • the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power, and sets the wire feed speed to speed v3.
  • the fifth power is a positive value less than the third power.
  • the control unit 21 When the wire feeder 20 feeds the welding wire 40 toward the tip of the welding torch 50, if the wire feed speed is changed, there is a possibility that variations in the feed amount will occur due to distortion or bending of the welding wire 40 in the wire feed path 30.
  • the control unit 21 slows down the wire feed speed while feeding the welding wire 40, it supplies power having the opposite polarity to the power currently being supplied to the DC motor for an extremely short time. This allows the wire feeder 20 to suppress variations that occur while feeding the welding wire 40. In other words, at time t4, the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power and simultaneously supplies the second power for the second power supply time.
  • the wire feeder 20 feeds the welding wire 40 to the tip of the welding torch 50 at a speed v3.
  • control unit 21 changes the power supplied to the DC motor from the fifth power to the third power, and changes the wire feed speed from speed v3 to speed v1. From time t5 to time t6, the wire feeder 20 again feeds the welding wire 40 at speed v1.
  • the wire feeder 20 executes a speed change of the welding wire 40 similar to speed change 1.
  • the number of times that the wire feeder 20 repeats speed change 1 is not limited to five times, and may be at least once (including multiple times).
  • control unit 21 changes the power supplied to the DC motor from the third power to the fifth power, and sets the wire feed speed to speed v3. Also at time t14, the control unit simultaneously supplies the second power when changing the power supplied to the DC motor from the third power to the fifth power.
  • the wire feeder 20 feeds the welding wire 40 at a speed v3.
  • the control unit 21 supplies the DC motor with a fourth power, which has the opposite polarity to the fifth power, and sets the wire feed speed to speed v2. From time t15 to time t16, the wire feeder 20 rewinds the welding wire 40 at speed v2.
  • the fourth power may have the opposite polarity to the fifth power, or may simply be a negative value with a different polarity from the fifth power.
  • the control unit 21 stops supplying power to the DC motor and sets the wire feed speed to speed v0 (i.e., speed 0 (zero)).
  • speed v0 i.e., speed 0 (zero)
  • the control unit 21 stops the supply of power to the DC motor at time t16, it supplies the second power for the second power supply time.
  • the wire feeder 20 feeds (supplies) the welding wire 40 in the forward direction to the tip of the welding torch 50 for the second power supply time. This allows the wire feeder 20 to suppress the occurrence of excess rewinding of the welding wire 40 due to the inertia of the DC motor.
  • FIG. 4 is a diagram showing an example of a welding wire feed mode according to this embodiment.
  • the pulse synchronization mode shown in FIG. 4 is a mode in which the output of the welding power supply 10 and changes in the wire feed speed are synchronized.
  • the vertical axis of graph F1 represents the strength of the power output from the welding power supply 10 (hereinafter referred to as the welding power supply output), and the horizontal axis represents time.
  • the vertical axis of graph F2 represents the wire feed speed, and the horizontal axis represents time.
  • the times on the horizontal axes of graphs F1 and F2 represent the same times at the same positions.
  • the welding power supply output is output w0 and the power is 0 (zero).
  • the wire feed speed is v0.
  • Speed v0 is 0 (zero), and no power is being supplied to the DC motor of the welding wire feeder 22.
  • the wire feeder 20 is not feeding the welding wire 40.
  • the control unit 21 supplies a third power to the DC motor and the wire feed speed becomes speed v1. From time t1 to time t20, the welding power supply output is output w2 and the wire feed speed becomes speed v1.
  • the welding power supply 10 changes the welding power supply output from output w2 to output w1.
  • output w1 is equal to or less than output w2.
  • the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power.
  • the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power, it supplies the second power to the DC motor for the second power supply time.
  • the welding power source 10 sets the welding power source output to output w1, and the control unit 21 keeps the wire feed speed at speed v3 in accordance with the welding power source output.
  • the welding power supply 10 changes the welding power output back from output w1 to output w2.
  • the control unit 21 changes the power supplied to the DC motor from the fifth power to the third power, and sets the wire feed speed to speed v1.
  • speed change 2 the series of changes in the welding power output and wire feed speed from time t1 to time t21 is referred to as speed change 2.
  • the wire feeder 20 executes a speed change of the welding wire 40 similar to speed change 2 in synchronization with the output signal of the welding power source 10. Note that the number of times that the wire feeder 20 repeats speed change 1 is not limited to five times, and may be at least once multiple times.
  • the welding power output of the welding power source 10 changes from output w2 to output w0.
  • the control unit 21 changes the power supplied to the DC motor from the third power to the fourth power, which is the opposite polarity of the third power.
  • the wire feed speed becomes speed v2.
  • the control unit 21 supplies the fourth power to the DC motor and rewinds the welding wire 40 at speed v2.
  • the fourth power may be the opposite polarity of the third power, or may simply be a negative value with a different polarity from the third power.
  • the control unit 21 sets the power supplied to the DC motor to 0 (zero). This causes the control unit 21 to stop feeding the welding wire 40 to the tip of the welding torch 50.
  • the control unit 21 stops feeding the welding wire 40 to the tip of the welding torch 50 at time t31, it supplies the second power for the second power supply time.
  • control unit 21 of the wire feeder 20 can be synchronized with the output of the welding power source 10 to change the feed speed of the welding wire 40.
  • FIG. 5 is a diagram showing an example of a welding wire feeding mode according to this embodiment.
  • Intermittent feed mode 2 shown in FIG. 5 is a mode in which the wire feed speed is changed in synchronization with the switch 60 being manually turned on/off by the worker performing the welding, or the switch 60 being automatically turned on/off at a time preset by the manager of the wire feeder 20.
  • the vertical axis represents the magnitude of the switch voltage.
  • the switch voltage is the voltage sent to control unit 21 when switch 60 is operated.
  • voltage k0 represents the state when switch 60 is off, and voltage k1 represents the state when switch 60 is on.
  • the horizontal axis of graph F3 represents time.
  • the vertical axis represents the wire feed speed, and the horizontal axis represents time. Graphs F3 and F4 represent the same time at the same position.
  • the switch voltage is k0 and the switch 60 is in the off state.
  • the wire feed speed v0 is 0 (zero) and no voltage is applied to the DC motor of the welding wire feeder 22.
  • the wire feeder 20 is not feeding the welding wire 40.
  • the control unit 21 applies a third power to the DC motor and the wire feed speed becomes v1. From time t1 to time t40, the switch 60 remains on and the wire feed speed becomes v1.
  • the switch voltage becomes voltage k0 (i.e., the switch 60 is in an OFF state).
  • the control unit changes the power supplied to the DC motor from the third power to the fifth power.
  • the control unit 21 supplies the second power to the DC motor for the second power supply time.
  • the switch voltage is voltage k0, and the control unit 21 keeps the wire feed speed at speed v3.
  • the switch voltage changes from voltage k0 to voltage k1.
  • the control unit 21 changes the power supplied to the DC motor from the fifth power to the third power, and sets the wire feed speed to speed v1. From time t41 to time t42, the switch voltage remains at voltage k1, and the wire feed speed also remains at speed v1.
  • the switch voltage changes from voltage k1 to voltage k0.
  • the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power in synchronization with the change in the switch voltage.
  • the control unit 21 supplies the second power to the DC motor for the second power supply time. From time t42 to time t43, the wire feed speed is speed v3.
  • control unit 21 changes the power supplied to the DC motor from the fifth power to the third power and sets the wire feed speed to speed v1. From time t43 to time t44, the switch voltage remains at voltage k1, and the wire feed speed also remains at speed v1.
  • the switch voltage changes from voltage k1 to voltage k0.
  • the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power in synchronization with the change in the switch voltage.
  • the control unit 21 supplies the second power to the DC motor for the second power supply time. From time t44 to time t46, the wire feed speed is speed v3.
  • the control unit 21 obtains a signal from the switch 60 to stop feeding the welding wire 40.
  • the signal to stop feeding the welding wire 40 is, for example, a signal that switches the switch 60 on and off at time intervals shorter than a predetermined time.
  • the switch 60 transmits a signal to the control unit 21 to stop feeding the welding wire 40. Note that the above-mentioned example of the signal to stop feeding the welding wire 40 is one example and is not limited to this.
  • the control unit 21 receives a signal to stop feeding the welding wire 40, and changes the power supplied to the DC motor from the fifth power to the fourth power.
  • the wire feeding speed becomes speed v2.
  • the control unit 21 supplies the fourth power to the DC motor and rewinds the welding wire 40 at speed v2.
  • the control unit 21 sets the power supplied to the DC motor to 0 (zero). This causes the control unit 21 to stop feeding the welding wire 40 to the tip of the welding torch 50.
  • the control unit 21 stops feeding the welding wire 40 to the tip of the welding torch 50 at time t47, it supplies the second power for the second power supply time.
  • the wire feeder 20 can manually or automatically control the feeding of the welding wire 40 in synchronization with the switching operation of the switch 60.
  • the wire feeder 20 can support flexible and efficient feeding of the welding wire 40 in accordance with the content of the welding work performed by the worker.
  • the positive or negative polarity (e.g., the third or fourth power in this embodiment) that was previously supplied to the DC motor is defined as the first power.
  • FIG. 6 is a diagram showing an example of controlling the current flowing through a DC motor according to the conventional technology.
  • the vertical axis of the graph shown in Figure 6 represents the value of the current flowing through the DC motor (hereinafter referred to as the motor current).
  • the horizontal axis of the graph shown in Figure 6 represents time.
  • Current A0 represents a state in which the motor current is 0.
  • currents equal to or greater than A0 indicate positive values, and currents less than A0 indicate negative values.
  • the motor current value increases in the positive direction.
  • the vertical and horizontal axes of the graphs shown in Figure 7 are the same as those in the graph of Figure 6, and similar values are given the same symbols.
  • the motor current is A1.
  • the motor current value fluctuates due to the control ripple that occurs when the DC motor's speed is controlled by PWM control.
  • the motor current becomes current A0 (i.e., current 0 (zero)), and then becomes a constant value at current A0.
  • FIG. 7 is a diagram showing an example of controlling the current flowing through the DC motor according to this embodiment.
  • the motor current changes from current A1 to current A2 over a delay time PE.
  • the power supplied to the DC motor when the current is A2 is the second power
  • the delay time PE is the second power supply time.
  • the delay time PE is, for example, several tens of milliseconds. Note that the length of the delay time PE is not limited to several tens of milliseconds.
  • the delay time PE which is the second power supply time, is not limited to a fixed value and may be a variable value.
  • the delay time PE changes depending on the rotation speed of the DC motor immediately before the second power is supplied to the DC motor.
  • the delay time PE is longer when the rotation speed of the DC motor is fast and shorter when the rotation speed is slow.
  • the delay time PE varies depending on the rotation speed of the DC motor and the state of the current of the DC motor immediately before the second power is supplied to the DC motor.
  • the delay time PE may be set by the control unit 21 by combining the following: when the rotation speed of the DC motor is fast, the delay time PE is long, and when the rotation speed of the DC motor is slow, the delay time PE is short; and when the current of the DC motor is low, the delay time PE is long, and when the current of the DC motor is high, the delay time PE is short.
  • the welding device e.g., welding system 100
  • the welding device is a non-consumable electrode arc welding device and a consumable electrode arc welding device, and includes a wire feeder (e.g., wire feeder 20) that feeds a welding wire (e.g., welding wire 40) to a welding torch (e.g., welding torch 50) or rewinds the welding wire from the welding torch by rotating a DC motor, and a control unit (e.g., control unit 21) that supplies power to the DC motor to drive the DC motor.
  • a wire feeder e.g., wire feeder 20
  • a welding wire 40 e.g., welding wire 40
  • a welding torch e.g., welding torch 50
  • a control unit e.g., control unit 21
  • the control unit supplies a first power, which is either positive or negative polarity, to the DC motor to feed or rewind the welding wire, and then supplies a second power having the opposite polarity to the first power to the DC motor when the DC motor is stopped or the welding wire feed speed is slowed down.
  • a first power which is either positive or negative polarity
  • the welding device can suppress variations in the amount of welding wire protrusion that occurs when the DC motor is stopped (i.e., the feeding of the welding wire is stopped), or variations in the amount of wire fed to the welding torch that occur when the feeding speed of the welding wire is slowed down. This allows the welding device to feed the welding wire stably, improving the workability and quality of welding.
  • the control unit of the welding device also supplies a second power to the DC motor for a second power supply time that is shorter than the time for which the first power is supplied to the DC motor.
  • the welding device can use the second power to reduce variations in the amount of welding wire protrusion that occur when the DC motor is stopped (i.e., the feeding of the welding wire is stopped) or variations in the amount of wire fed to the welding torch that occur when the feeding speed of the welding wire is slowed down. This allows the welding device to stably feed the welding wire, improving the workability and quality of welding.
  • the second power of the welding device has the opposite polarity to the power that was previously supplied constantly by the control unit. This allows the welding device to suppress the effects of inertia generated in the DC motor, and to stably feed the welding wire, improving the workability and quality of welding.
  • the control unit of the welding device also supplies a third power of positive polarity to the DC motor to feed the welding wire, and after feeding the welding wire, supplies a fourth power of negative polarity to the DC motor to rewind the welding wire. After rewinding the welding wire, the control unit supplies a second power to the DC motor for a second power supply time when stopping the DC motor. This allows the welding device to continuously feed the welding wire and to rewind the welding wire to an appropriate length when finally stopping the DC motor and ending the feeding of the welding wire. This allows the welding device to assist the operator in starting welding with an appropriate welding wire protrusion amount.
  • control unit of the welding device changes the power supplied to the DC motor from the third power, which is positive, to the fifth power, which is less positive than the third power, the control unit supplies the second power to the DC motor for the first time. This allows the welding device to suppress variations in the feed amount that occur when changing the feed speed of the welding wire.
  • the control unit of the welding device also executes the first control at least once, which changes the power supplied to the DC motor from the third power to the fifth power and then back to the third power. This allows the welding device to change the welding wire feed speed when feeding the welding wire to the welding torch, thereby feeding the welding wire in a manner appropriate to the welding conditions.
  • the control unit of the welding device supplies the third power or the fifth power to the DC motor to feed the welding wire, then supplies the fourth power, which is negative polarity, to the DC motor to rewind the welding wire, and after rewinding the welding wire, supplies the second power to the DC motor for the second power supply time when stopping the DC motor.
  • the control unit of the welding device supplies a third power to the DC motor when the worker turns on a switch (e.g., switch 60) related to the feeding of the welding wire of the wire feeder, and changes the power supplied to the DC motor to a fifth power when the worker turns off the switch.
  • a switch e.g., switch 60
  • the control unit supplies a first power to the DC motor to rewind the welding wire, and after rewinding the welding wire, supplies a second power to the DC motor for the second power supply time when stopping the DC motor. This allows the welding device to change the amount of welding wire fed in response to the on/off switching of the switch.
  • the welding device can support flexible feeding of the welding wire according to the welding work content or situation.
  • the welding device can also suppress the effect of inertia generated in the DC motor when the feeding of the welding wire is stopped, and can stably feed the welding wire and improve the workability and quality of welding.
  • the control unit of the welding device also changes the power supplied to the DC motor in synchronization with the pulse signal output from the welding power source during pulse welding, which alternates between a first welding current and a second welding current smaller than the first welding current. This allows the welding device to feed the welding wire based on the pulse signal output from the welding power source during pulse welding, supporting flexible and efficient welding wire feeding.
  • the technology disclosed herein is useful as a welding device and welding method that stably feeds welding wire and improves the workability and quality of welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

This welding device comprises: a wire feed device that, by rotation of a DC motor, feeds a welding wire to a welding torch or rewinds the welding wire from the welding torch in a non-consumable electrode type arc welding device and a consumable electrode type arc welding device; and a control unit that supplies power to the DC motor to drive the DC motor. The control unit, when stopping the DC motor or decreasing the feed speed of the welding wire after having supplied first power which has either a positive polarity or a negative polarity to the DC motor to feed or rewind the welding wire, supplies second power which has a polarity opposite to that of the first power to the DC motor.

Description

溶接装置および溶接方法Welding equipment and welding method
 本開示は、溶接装置および溶接方法に関する。 This disclosure relates to a welding device and a welding method.
 特許文献1には、溶接ワイヤを送給装置によって溶接トーチへ連続的に送給しながら溶接を行う半自動溶接法が開示されている。半自動溶接法は、溶接開始に先立って溶接ワイヤを逆走させて溶接トーチの溶接チップから出ている溶接ワイヤを、その先端が基準位置に達するまで溶接チップ側に引き込んだ後、溶接ワイヤの送給を開始する。半自動溶接法は、溶接チップからの溶接ワイヤの突き出し量が溶接開始に適した寸法に達した時点で溶接ワイヤの送給を一旦停止することを特徴とする。 Patent Document 1 discloses a semi-automatic welding method in which welding is performed while a welding wire is continuously fed to a welding torch by a feeding device. In the semi-automatic welding method, prior to the start of welding, the welding wire is run in reverse and the welding wire protruding from the welding tip of the welding torch is pulled toward the welding tip until its tip reaches a reference position, and then feeding of the welding wire begins. The semi-automatic welding method is characterized in that the feeding of the welding wire is temporarily stopped when the amount of welding wire protruding from the welding tip reaches a dimension suitable for starting welding.
特開2000-202629号公報JP 2000-202629 A
 本開示は、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することを目的とする。 The purpose of this disclosure is to stably feed welding wire and improve the workability and quality of welding.
 本開示は、非消耗電極式アーク溶接装置および消耗電極式アーク溶接装置において、DCモータの回転により、溶接トーチに溶接ワイヤを送給するまたは前記溶接トーチから前記溶接ワイヤを巻き戻すワイヤ送給装置と、前記DCモータに電力を供給して前記DCモータを駆動する制御部と、を備え、前記制御部は、前記DCモータに正極性または負極性のうちいずれか一方である第1電力を供給して前記溶接ワイヤを送給または巻き戻した後、前記DCモータを停止するもしくは前記溶接ワイヤの送給速度を減速する場合に、前記DCモータに前記第1電力と反対の極性を有する第2電力を供給する、溶接装置を提供する。 The present disclosure provides a welding device that is a non-consumable electrode arc welding device and a consumable electrode arc welding device, and includes a wire feeder that feeds a welding wire to a welding torch or rewinds the welding wire from the welding torch by rotating a DC motor, and a control unit that supplies power to the DC motor to drive the DC motor, and the control unit supplies a first power of either positive or negative polarity to the DC motor to feed or rewind the welding wire, and then supplies a second power of opposite polarity to the first power to the DC motor when the DC motor is stopped or the feeding speed of the welding wire is slowed down.
 また、本開示は、非消耗電極式アーク溶接装置および消耗電極式アーク溶接装置において、DCモータの回転により溶接トーチに溶接ワイヤを送給または巻き戻すワイヤ送給装置と、前記DCモータに電力を供給して前記DCモータを駆動する制御部と、を備える溶接システムによって実行される溶接方法であって、前記DCモータに正極性または負極性のうちいずれか一方である第1電力を供給して前記溶接ワイヤを送給または巻き戻した後、前記DCモータを停止するもしくは前記溶接ワイヤの送給速度を減速する場合に、前記DCモータに前記第1電力と極性が異なる第2電力を供給する、溶接方法を提供する。 The present disclosure also provides a welding method performed by a welding system in a non-consumable electrode arc welding device and a consumable electrode arc welding device, the welding system including a wire feeder that feeds or rewinds a welding wire to a welding torch by rotating a DC motor, and a control unit that supplies power to the DC motor to drive the DC motor, the welding method including supplying a first power of either positive or negative polarity to the DC motor to feed or rewind the welding wire, and then supplying a second power of a different polarity to the first power to the DC motor when the DC motor is stopped or the feeding speed of the welding wire is reduced.
 なお、これらの包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 These comprehensive or specific aspects may be realized as a system, device, method, integrated circuit, computer program, or recording medium, or as any combination of a system, device, method, integrated circuit, computer program, and recording medium.
 本開示によれば、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することができる。 According to the present disclosure, the welding wire can be fed stably, improving the workability and quality of welding.
本実施の形態に係る溶接システムの構成図A configuration diagram of a welding system according to the present embodiment. 本実施の形態に係る溶接ワイヤの送給モードの一例を示す図FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention; 本実施の形態に係る溶接ワイヤの送給モードの一例を示す図FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention; 本実施の形態に係る溶接ワイヤの送給モードの一例を示す図FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention; 本実施の形態に係る溶接ワイヤの送給モードの一例を示す図FIG. 1 is a diagram showing an example of a feeding mode of a welding wire according to an embodiment of the present invention; 従来技術に係るDCモータに流れる電流の制御例を示す図FIG. 1 is a diagram showing an example of control of a current flowing through a DC motor according to a conventional technique. 本実施の形態に係るDCモータに流れる電流の制御例を示す図FIG. 1 is a diagram showing an example of control of a current flowing through a DC motor according to an embodiment of the present invention;
 (本実施の形態に至る経緯)
 アーク溶接の一種として、送給装置が送給経路を経て溶接ワイヤを溶接箇所へ送給して溶接を行う半自動TIG(Tungsten Inert Gas)溶接がある。半自動TIG溶接では、溶接前の溶接ワイヤの突き出し量が適切であること、および溶接時に溶接ワイヤが安定的に送給されることが、溶接の作業性および品質の向上に重要である。
(Background to the present embodiment)
Semi-automatic TIG (Tungsten Inert Gas) welding is one type of arc welding in which a feeder feeds a welding wire through a feed path to a welding point to perform welding. In semi-automatic TIG welding, it is important for improving the workability and quality of welding that the welding wire protrusion amount before welding is appropriate and that the welding wire is stably fed during welding.
 特許文献1では、溶接開始に際して溶接トーチのスタートに係るスイッチがオンとなると、送給装置が溶接ワイヤを逆送させるよう制御し、溶接チップ端にワイヤ端が接触、それを検知後正送し、溶接チップから出ている溶接ワイヤの長さ(つまり、突き出し量)が溶接開始前に適した長さにする半自動溶接法が開示されている。しかしながら、溶接の作業性および品質の向上には、送給装置が溶接ワイヤを正送させる際に発生する送給装置の慣性(例えば送給制御用のモータの回転に伴う惰性)の影響および送給経路内での溶接ワイヤの遊びによって発生する送給量のバラツキを考慮する必要がある。 Patent Document 1 discloses a semi-automatic welding method in which, when a switch related to starting the welding torch is turned on to start welding, the feeding device controls the welding wire to feed in the reverse direction, and the end of the wire comes into contact with the end of the welding tip. After this is detected, the wire is fed in the forward direction, and the length of the welding wire protruding from the welding tip (i.e., the amount of protrusion) is adjusted to an appropriate length before welding begins. However, to improve the workability and quality of welding, it is necessary to take into account the effects of the inertia of the feeding device (e.g., inertia associated with the rotation of the motor used for feeding control) that occurs when the feeding device feeds the welding wire in the forward direction, and the variation in the amount of feeding that occurs due to play in the welding wire within the feeding path.
 以下、図面を適宜参照して、本開示に係る溶接装置および溶接方法を具体的に開示した実施の形態について、詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、すでによく知られた事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の記載の主題を限定することは意図されていない。 Below, with appropriate reference to the drawings, a detailed description will be given of an embodiment specifically disclosing the welding apparatus and welding method according to the present disclosure. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and duplicate descriptions of substantially identical configurations may be omitted. This is to avoid the following description becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. Note that the attached drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 まず、図1を参照して、本実施の形態に係る溶接システムの構成図を説明する。図1は、本実施の形態に係る溶接システムの構成図である。 First, a configuration diagram of a welding system according to this embodiment will be described with reference to FIG. 1. FIG. 1 is a configuration diagram of a welding system according to this embodiment.
 本実施の形態に係る溶接システム100は、溶接電源10と、ワイヤ送給装置20と、溶接トーチ50と、スイッチ60とを有する。 The welding system 100 according to this embodiment includes a welding power source 10, a wire feeder 20, a welding torch 50, and a switch 60.
 電源の一例である溶接電源10は、ワイヤ送給装置20と溶接トーチ50とに電源線を介してそれぞれに接続され、ワイヤ送給装置20と溶接トーチ50とに必要な電源の供給を行う。溶接電源10は、例えば、交流電流および直流電流の両方を供給することができる交流/直流両用電源である。なお、溶接電源10は、交流/直流両用源に限られず、直流のみを供給可能でもよいし、または交流のみを供給可能であってもよい。溶接電源10は、例えば、必要な電源の一例として、およそ200[A]の直流電流もしくは交流電流を出力する。なお、溶接電源10の出力する電流値は一例であり200[A]に限られない。 The welding power supply 10, which is an example of a power supply, is connected to the wire feeder 20 and the welding torch 50 via power lines, and supplies the necessary power to the wire feeder 20 and the welding torch 50. The welding power supply 10 is, for example, a dual-purpose AC/DC power supply that can supply both AC and DC current. Note that the welding power supply 10 is not limited to being a dual-purpose AC/DC source, and may be capable of supplying only DC or only AC. The welding power supply 10 outputs, for example, approximately 200 A of DC or AC current as an example of the necessary power supply. Note that the current value output by the welding power supply 10 is only an example and is not limited to 200 A.
 ワイヤ送給装置20は、溶接電源10に接続され、溶接電源10から供給された電力(電圧)によって駆動する。ワイヤ送給装置20は、溶接電源10からの電力に基づいて、ワイヤ送給経路30を経由して溶接トーチ50の先端に向かって溶接ワイヤ40を送給する。なお、溶接電源10は、ワイヤ送給装置20の外部装置に限定されず、ワイヤ送給装置20に内蔵されてもよい。ワイヤ送給装置20には、溶接ワイヤ40の送給に係るスイッチ60が接続される。ワイヤ送給装置20は、制御部21と、溶接ワイヤ送給部22と、が配置されている。 The wire feeder 20 is connected to the welding power source 10 and is driven by power (voltage) supplied from the welding power source 10. Based on the power from the welding power source 10, the wire feeder 20 feeds the welding wire 40 towards the tip of the welding torch 50 via the wire feed path 30. Note that the welding power source 10 is not limited to being an external device of the wire feeder 20, and may be built into the wire feeder 20. A switch 60 related to the feeding of the welding wire 40 is connected to the wire feeder 20. The wire feeder 20 is provided with a control unit 21 and a welding wire feed unit 22.
 制御部21は、ワイヤ送給装置20の全体的な動作を司るコントローラとして機能する。制御部21は、例えばCPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphical Processing Unit)、FPGA(Field Programmable Gate Array)等の電子デバイスのうち少なくとも1つが制御基板(上述参照)上に実装された半導体チップであってもよい。ワイヤ送給装置20は、図1から図示を省略しているがメモリを有しており、制御部21は、動作中にメモリ(不図示)のRAM(Random Access Memory)を使用し、制御部21が生成あるいは取得したデータをメモリのRAMに一時的に保存する。制御部21は、溶接電源10から出力された電力を用いて、溶接ワイヤ送給部22の有する直流モータを駆動するために供給する電力を制御する。また、制御部21は、パルス同期モード(図4参照)において溶接電源10から出力されるパルス同期信号に基づき、溶接ワイヤ送給部22の有する直流モータを駆動するために供給する電力を制御する。 The control unit 21 functions as a controller that manages the overall operation of the wire feeder 20. The control unit 21 may be a semiconductor chip in which at least one of electronic devices such as a CPU (Central Processing Unit), a DSP (Digital Signal Processor), a GPU (Graphical Processing Unit), and an FPGA (Field Programmable Gate Array) is mounted on a control board (see above). The wire feeder 20 has a memory, which is not shown in FIG. 1, and the control unit 21 uses the RAM (Random Access Memory) of the memory (not shown) during operation, and temporarily stores data generated or acquired by the control unit 21 in the RAM of the memory. The control unit 21 uses the power output from the welding power source 10 to control the power supplied to drive the DC motor of the welding wire feeder 22. The control unit 21 also controls the power supplied to drive the DC motor of the welding wire feeder 22 based on the pulse synchronization signal output from the welding power source 10 in the pulse synchronization mode (see FIG. 4).
 溶接ワイヤ送給部22は、溶接ワイヤ40を送給する直流モータ(以下、DC(Direct Current)モータと称する)を有する。DCモータは、例えば、永久磁石界磁型DCモータまたは電磁石界磁型DCモータ等である。なお、溶接ワイヤ送給部22は、DCモータに限られず交流電源で駆動する交流モータ(AC(Alternating Current)モータ)も有してもよい。溶接ワイヤ送給部22は、制御部21からの指示に基づきDCモータに電力を供給しDCモータを駆動する。 The welding wire feeder 22 has a direct current motor (hereinafter referred to as a DC (Direct Current) motor) that feeds the welding wire 40. The DC motor is, for example, a permanent magnet field type DC motor or an electromagnetic field type DC motor. Note that the welding wire feeder 22 is not limited to a DC motor and may also have an AC (Alternating Current) motor that is driven by an AC power source. The welding wire feeder 22 supplies power to the DC motor based on instructions from the control unit 21 to drive the DC motor.
 溶接ワイヤ送給部22は、溶接を実行している間、DCモータを用いて、溶接トーチ50の先端に向かって溶接ワイヤ40を正送(供給)させる動作または、溶接トーチ50の先端から溶接ワイヤ40を逆送(回収)させる動作を実行する。 While welding is being performed, the welding wire feeder 22 uses a DC motor to feed (supply) the welding wire 40 forward toward the tip of the welding torch 50, or to feed (retract) the welding wire 40 backward from the tip of the welding torch 50.
 ワイヤ送給経路30は、一端がワイヤ送給装置20に接続され、他端が溶接トーチ50に接続される。ワイヤ送給経路30は、例えば、溶接ワイヤ40を滑らかに挿通可能なチューブまたはケーブル等である。ワイヤ送給経路30は、溶接トーチ50の動きに合わせて変形可能な材質で形成される。ワイヤ送給経路30は、例えば、フレキシブルコンジットである。なお、ワイヤ送給経路30は、フレキシブルコンジットに限定されない。 The wire feed path 30 has one end connected to the wire feeder 20 and the other end connected to the welding torch 50. The wire feed path 30 is, for example, a tube or cable through which the welding wire 40 can be smoothly inserted. The wire feed path 30 is made of a material that can deform in accordance with the movement of the welding torch 50. The wire feed path 30 is, for example, a flexible conduit. Note that the wire feed path 30 is not limited to a flexible conduit.
 溶接ワイヤ40は、例えば、ステンレス等のフィラーワイヤである。なお、溶接ワイヤ40はステンレス等のフィラーワイヤに限定されない。溶接ワイヤ40は、ワイヤ送給装置20からワイヤ送給経路30を通って溶接トーチ50の先端に送給される。 The welding wire 40 is, for example, a filler wire such as stainless steel. Note that the welding wire 40 is not limited to a filler wire such as stainless steel. The welding wire 40 is fed from the wire feeder 20 through the wire feed path 30 to the tip of the welding torch 50.
 溶接トーチ50は、溶接電源10から出力された電力を溶接トーチ50の先端に配置された電極に供給されることにより溶接箇所PLをアーク溶接する。溶接トーチ50に用いられる電極は、例えば、タングステン電極である。なお、溶接トーチ50に用いられる電極はタングステン電極に限られず、非消耗式の電極もしくは消耗式の電極どちらであってもよい。 The welding torch 50 arc welds the welding location PL by supplying power output from the welding power source 10 to an electrode disposed at the tip of the welding torch 50. The electrode used in the welding torch 50 is, for example, a tungsten electrode. Note that the electrode used in the welding torch 50 is not limited to a tungsten electrode, and may be either a non-consumable electrode or a consumable electrode.
 スイッチ60は、オンとオフとを切り替えることで溶接ワイヤ40の送給速度を変化させる信号を制御部に出力してもよいし、溶接ワイヤ40の送給の開始と停止とを切り替える信号を制御部に出力してもよい。送給速度を変化させる信号および、送給の開始と停止とを切り替える信号は、スイッチ60のオンとオフによって制御部に出力される。送給速度を変化させる信号および、送給の開始と停止とを切り替える信号は、制御部21によって自動で切り替えられてもよい。 The switch 60 may output a signal to the control unit to change the feed speed of the welding wire 40 by switching on and off, or may output a signal to the control unit to switch between starting and stopping the feed of the welding wire 40. The signal to change the feed speed and the signal to switch between starting and stopping the feed are output to the control unit by switching the switch 60 on and off. The signal to change the feed speed and the signal to switch between starting and stopping the feed may be automatically switched by the control unit 21.
 母材ケーブル70は、溶接電源10の端子と溶接箇所PLとを接続する溶接用のケーブルである。 The base material cable 70 is a welding cable that connects the terminal of the welding power source 10 to the welding point PL.
 次に、図2を参照して、本実施の形態に係る溶接ワイヤの送給モードの一例である「連続送給モード」を説明する。図2は、本実施の形態に係る溶接ワイヤの送給モードの一例を示す図である。 Next, a "continuous feed mode" which is an example of a welding wire feed mode according to this embodiment will be described with reference to FIG. 2. FIG. 2 is a diagram showing an example of a welding wire feed mode according to this embodiment.
 図2に示すグラフは、横軸が時刻を表し、縦軸が各時刻での溶接ワイヤ40の送給速度を表す。以下、溶接ワイヤ40の送給速度のことをワイヤ送給速度と称する。 In the graph shown in FIG. 2, the horizontal axis represents time, and the vertical axis represents the feed speed of the welding wire 40 at each time. Hereinafter, the feed speed of the welding wire 40 will be referred to as the wire feed speed.
 時刻t0から時刻t1まで、ワイヤ送給速度は速度v0である。速度v0は、0(ゼロ)であり溶接ワイヤ送給部22のDCモータに電力が供給されていない状態である。つまり、時刻t0から時刻t1まで、ワイヤ送給装置20は、溶接ワイヤ40の送給を行っていない状態である。 From time t0 to time t1, the wire feed speed is v0. Speed v0 is 0 (zero), which means that no power is being supplied to the DC motor of the welding wire feeder 22. In other words, from time t0 to time t1, the wire feeder 20 is not feeding the welding wire 40.
 時刻t1になると、ワイヤ送給速度は速度v0より正方向に大きい速度v1となる。速度v1は、有限な正の速度である。正の速度とは、ワイヤ送給装置20が溶接トーチ50の先端に向かい溶接ワイヤを送給する速度を表す。時刻t1で、制御部21は、DCモータに正極性である第3電力を供給してワイヤ送給速度を速度v0から速度v1にする。これにより、ワイヤ送給装置20は、溶接ワイヤ送給部22から溶接ワイヤ40を速度v1で送給することができる。時刻t1から時刻t2まで、ワイヤ送給装置20は、速度v1で溶接ワイヤ40を溶接トーチ50の先端に送給する。 At time t1, the wire feed speed becomes speed v1, which is greater than speed v0 in the positive direction. Speed v1 is a finite positive speed. Positive speed represents the speed at which wire feeder 20 feeds the welding wire toward the tip of welding torch 50. At time t1, control unit 21 supplies a third power of positive polarity to the DC motor to change the wire feed speed from speed v0 to speed v1. This enables wire feeder 20 to feed welding wire 40 from welding wire feeder 22 at speed v1. From time t1 to time t2, wire feeder 20 feeds welding wire 40 to the tip of welding torch 50 at speed v1.
 時刻t2となると、制御部21は、第3電力の逆極性である第4電力を供給し、ワイヤ送給速度を有限な負の速度v2とする。なお、第4電力は、第3電力の逆極性でもよいし、単に第3電力とは極性が異なる負極性であってもよい。負の速度とは、ワイヤ送給装置20が溶接トーチ50からワイヤ送給装置20に溶接ワイヤ40を逆送給(つまり、巻き戻す)する速度を表す。時刻t2から時刻t3の間、ワイヤ送給装置20は、溶接ワイヤ40を巻き戻し、溶接トーチ50の先端に対する突き出し量を適切な長さとする。つまり、ワイヤ送給装置20は、次の溶接を開始する前の溶接ワイヤ40の突き出し量を適切な長さとする。 At time t2, the control unit 21 supplies a fourth power, which is the opposite polarity of the third power, and sets the wire feed speed to a finite negative speed v2. The fourth power may be the opposite polarity of the third power, or may simply be a negative polarity different from the third power. The negative speed represents the speed at which the wire feeder 20 reversely feeds (i.e., rewinds) the welding wire 40 from the welding torch 50 to the wire feeder 20. Between time t2 and time t3, the wire feeder 20 rewinds the welding wire 40 and sets the protrusion amount from the tip of the welding torch 50 to an appropriate length. In other words, the wire feeder 20 sets the protrusion amount of the welding wire 40 to an appropriate length before starting the next welding.
 時刻t3で、制御部21はDCモータに対し第4電力の供給を止め、ワイヤ送給速度は再び速度v0となる。制御部21は、DCモータに対し第4電力の供給をやめる際、第4電力と反対の極性を有する第2電力を極短時間(以下、第2電力供給時間と称する)供給する。第2電力供給時間とは例えば、数十ミリ秒である。なお、極短時間の時間例は、数十ミリ秒に限られない。また、第2電力供給時間は、固定値に限られず、例えば、第2電力がDCモータに対し供給される直前のDCモータの回転数と電流との状態によって変化してもよい。図2に係る時刻は数秒のオーダであるため、第2電力を供給する時間は小さすぎるため図2のグラフに図示されない。なお、第2電力と第2電力供給時間とに関しては図7で詳述する。また、第2電力が供給される時間は、図3,図4,図5に関しても同様の理由で図示されない。 At time t3, the control unit 21 stops the supply of the fourth power to the DC motor, and the wire feed speed becomes v0 again. When the control unit 21 stops the supply of the fourth power to the DC motor, it supplies a second power having the opposite polarity to the fourth power for an extremely short time (hereinafter referred to as the second power supply time). The second power supply time is, for example, several tens of milliseconds. Note that the extremely short time is not limited to several tens of milliseconds. The second power supply time is not limited to a fixed value, and may change, for example, depending on the state of the DC motor's rotation speed and current immediately before the second power is supplied to the DC motor. Since the time in FIG. 2 is on the order of several seconds, the time for supplying the second power is too short and is not shown in the graph in FIG. 2. Note that the second power and the second power supply time will be described in detail in FIG. 7. The time for which the second power is supplied is also not shown in FIG. 3, FIG. 4, and FIG. 5 for the same reason.
 ワイヤ送給を停止する際、制御部21によってDCモータに供給される電力を0(ゼロ)とすると、DCモータの慣性(例えば、DCモータの回転時に生じている惰性)の影響でDCモータは短時間(以下、慣性時間と称する)動き続けてしまう。ここで慣性時間とは、例えば、数百ミリ秒等であり第2電力供給時間より十分長い時間である。つまり、溶接ワイヤ40の巻き戻しをしている際DCモータに供給される電力を0(ゼロ)としても、DCモータの慣性の影響で溶接ワイヤ40の巻き戻しが瞬時に停止せず慣性時間続いてしまう。そのため、溶接ワイヤ40の巻き戻し量が多くなり安定しない。このDCモータの慣性による余分な溶接ワイヤ40の巻き戻し量の発生を抑制するために、制御部21は、時刻t3でDCモータに第2電力を第2電力供給時間供給する。ワイヤ送給装置20は、DCモータに第2電力が供給されたことにより、溶接トーチ50先端に対し第2電力供給時間、溶接ワイヤ40を正送(供給)する。これにより、ワイヤ送給装置20は、DCモータの慣性による余分な溶接ワイヤ40の巻き戻し量の発生を抑制することができる。なお、図2,図3,図4,図5において三角のマークは第2電力を印加したタイミングを示すマークである。 When the wire feed is stopped, if the power supplied to the DC motor by the control unit 21 is set to 0 (zero), the DC motor continues to move for a short time (hereinafter referred to as the inertia time) due to the inertia of the DC motor (for example, the inertia generated when the DC motor rotates). Here, the inertia time is, for example, several hundred milliseconds, which is sufficiently longer than the second power supply time. In other words, even if the power supplied to the DC motor is set to 0 (zero) when the welding wire 40 is being rewound, the rewinding of the welding wire 40 does not stop instantly and continues for the inertia time due to the inertia of the DC motor. Therefore, the amount of rewinding of the welding wire 40 becomes large and unstable. In order to suppress the occurrence of excess rewinding of the welding wire 40 due to the inertia of the DC motor, the control unit 21 supplies the second power to the DC motor for the second power supply time at time t3. With the second power supplied to the DC motor, the wire feeder 20 feeds (supplies) the welding wire 40 forward to the tip of the welding torch 50 for the second power supply time. This allows the wire feeder 20 to suppress the occurrence of excess rewinding of the welding wire 40 due to the inertia of the DC motor. Note that the triangular marks in Figures 2, 3, 4, and 5 indicate the timing when the second power is applied.
 次に、図3を参照して、本実施の形態に係る溶接ワイヤの送給モードの一例である「断続送給モード1」を説明する。図3は、本実施の形態に係る溶接ワイヤの送給モードの一例を示す図である。 Next, with reference to Figure 3, we will explain "intermittent feed mode 1," which is an example of a welding wire feed mode according to this embodiment. Figure 3 is a diagram showing an example of a welding wire feed mode according to this embodiment.
 図3に示すグラフは、横軸が時刻を表し、縦軸が各時刻でのワイヤ送給速度を表す。 In the graph shown in Figure 3, the horizontal axis represents time and the vertical axis represents the wire feed speed at each time.
 図3のグラフに示す断続送給モード1では溶接ワイヤ40を溶接トーチ50の先端に送給する際、ワイヤ送給装置20は、少なくとも1回ワイヤ送給速度を変化させて溶接ワイヤ40を送給するモードである。 In the intermittent feed mode 1 shown in the graph of FIG. 3, when the welding wire 40 is fed to the tip of the welding torch 50, the wire feeder 20 changes the wire feed speed at least once to feed the welding wire 40.
 時刻t0から時刻t1まで、ワイヤ送給速度は速度v0である。速度v0は、0(ゼロ)であり溶接ワイヤ送給部22のDCモータに電力が供給されていない状態である。つまり、時刻t0から時刻t1まで、ワイヤ送給装置20は、溶接ワイヤ40の送給を実行していない状態である。 From time t0 to time t1, the wire feed speed is v0. Speed v0 is 0 (zero), which means that no power is being supplied to the DC motor of the welding wire feeder 22. In other words, from time t0 to time t1, the wire feeder 20 is not feeding the welding wire 40.
 時刻t1となると、ワイヤ送給速度は速度v0より正方向に大きい速度v1となる。速度v1は、有限な正の速度である。時刻t1で、制御部21は、DCモータに正極性である第3電力を供給してワイヤ送給速度を速度v0から速度v1にとする。これにより、ワイヤ送給装置20は、溶接ワイヤ送給部22から溶接ワイヤ40を速度v1で送給することができる。時刻t1から時刻t4まで、ワイヤ送給装置20は、速度v1で溶接ワイヤ40を溶接トーチ50の先端に送給する。 At time t1, the wire feed speed becomes speed v1, which is greater than speed v0 in the positive direction. Speed v1 is a finite positive speed. At time t1, control unit 21 supplies a third power of positive polarity to the DC motor to change the wire feed speed from speed v0 to speed v1. This enables wire feeder 20 to feed welding wire 40 from welding wire feeder 22 at speed v1. From time t1 to time t4, wire feeder 20 feeds welding wire 40 to the tip of welding torch 50 at speed v1.
 時刻t4となると、制御部21は、ワイヤ送給速度を速度v1から速度v3に変化させる。速度v3は、速度v0(つまり、速度ゼロ)以上、速度v1以下の正の速度である。制御部21は、DCモータに供給する電力を第3電力から第5電力へ変更し、ワイヤ送給速度を速度v3とする。第5電力は、第3電力より小さい正の値である。 At time t4, the control unit 21 changes the wire feed speed from speed v1 to speed v3. Speed v3 is a positive speed greater than or equal to speed v0 (i.e., zero speed) and less than speed v1. The control unit 21 changes the power supplied to the DC motor from the third power to the fifth power, and sets the wire feed speed to speed v3. The fifth power is a positive value less than the third power.
 ここで、ワイヤ送給装置20は、溶接トーチ50の先端に向かって溶接ワイヤ40を送給する際、ワイヤ送給速度を変えると、ワイヤ送給経路30内で溶接ワイヤ40の歪み,曲げ等によって送給量のバラツキが発生する可能性がある。このバラツキを抑制するために、制御部21は、溶接ワイヤ40を送給中にワイヤ送給速度を減速する際、DCモータに極短時間、現在供給している電力とは逆の極性を有する電力を供給する。これにより、ワイヤ送給装置20は、溶接ワイヤ40の送給中に発生するバラツキを抑制することができる。つまり、時刻t4となると、制御部21は、DCモータに供給する電力を第3電力から第5電力へ変更すると同時に、第2電力を第2電力供給時間供給する。 When the wire feeder 20 feeds the welding wire 40 toward the tip of the welding torch 50, if the wire feed speed is changed, there is a possibility that variations in the feed amount will occur due to distortion or bending of the welding wire 40 in the wire feed path 30. In order to suppress this variation, when the control unit 21 slows down the wire feed speed while feeding the welding wire 40, it supplies power having the opposite polarity to the power currently being supplied to the DC motor for an extremely short time. This allows the wire feeder 20 to suppress variations that occur while feeding the welding wire 40. In other words, at time t4, the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power and simultaneously supplies the second power for the second power supply time.
 時刻t4から時刻t5まで、ワイヤ送給装置20は、速度v3で溶接ワイヤ40を溶接トーチ50の先端に送給する。 From time t4 to time t5, the wire feeder 20 feeds the welding wire 40 to the tip of the welding torch 50 at a speed v3.
 時刻t5となると、制御部21は、DCモータに供給する電力を第5電力から第3電力へ変更し、ワイヤ送給速度を速度v3から速度v1に変更する。時刻t5から時刻t6まで、ワイヤ送給装置20は、再び速度v1で溶接ワイヤ40を送給する。 At time t5, the control unit 21 changes the power supplied to the DC motor from the fifth power to the third power, and changes the wire feed speed from speed v3 to speed v1. From time t5 to time t6, the wire feeder 20 again feeds the welding wire 40 at speed v1.
 ここで、時刻t1から時刻t5までのワイヤ送給速度の変化の一連を速度変化1と称する。時刻t5から時刻t7までの期間と、時刻t7から時刻t9の期間と、時刻t9から時刻t11の期間と、時刻t11から時刻t13の期間とは、ワイヤ送給装置20は速度変化1と同様の溶接ワイヤ40の速度変化を実行する。なお、ワイヤ送給装置20が速度変化1を繰り返す回数は、5回に限られず、少なくとも1回(複数回を含む)であってよい。 Here, the series of changes in the wire feed speed from time t1 to time t5 is referred to as speed change 1. In the period from time t5 to time t7, the period from time t7 to time t9, the period from time t9 to time t11, and the period from time t11 to time t13, the wire feeder 20 executes a speed change of the welding wire 40 similar to speed change 1. Note that the number of times that the wire feeder 20 repeats speed change 1 is not limited to five times, and may be at least once (including multiple times).
 時刻t14で、制御部21は、DCモータに供給する電力を第3電力から第5電力に変えワイヤ送給速度を速度v3とする。また時刻t14で、制御部は、DCモータに供給する電力を第3電力から第5電力に変える際同時に第2電力も供給する。 At time t14, the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power, and sets the wire feed speed to speed v3. Also at time t14, the control unit simultaneously supplies the second power when changing the power supplied to the DC motor from the third power to the fifth power.
 時刻t14から時刻t15まで、ワイヤ送給装置20は速度v3で溶接ワイヤ40が送給する。 From time t14 to time t15, the wire feeder 20 feeds the welding wire 40 at a speed v3.
 時刻t15になると、制御部21は、DCモータに第5電力の逆極性である第4電力を供給し、ワイヤ送給速度を速度v2とする。時刻t15から時刻t16まで、ワイヤ送給装置20は、速度v2で溶接ワイヤ40を巻き戻す。なお、第4電力は、第5電力の逆極性でもよいし、単に第5電力とは極性が異なる負の値であってもよい。 At time t15, the control unit 21 supplies the DC motor with a fourth power, which has the opposite polarity to the fifth power, and sets the wire feed speed to speed v2. From time t15 to time t16, the wire feeder 20 rewinds the welding wire 40 at speed v2. The fourth power may have the opposite polarity to the fifth power, or may simply be a negative value with a different polarity from the fifth power.
 時刻t16になると、制御部21は、DCモータに電力の供給をやめワイヤ送給速度を速度v0(つまり、速度0(ゼロ))とする。制御部21は、時刻t16でDCモータへの電力の供給を停止する際、第2電力を第2電力供給時間供給する。ワイヤ送給装置20は、DCモータに第2電力が供給されたことにより、溶接トーチ50先端に対し第2電力供給時間、溶接ワイヤ40を正送(供給)する。これにより、ワイヤ送給装置20は、DCモータの慣性による余分な溶接ワイヤ40の巻き戻し量の発生を抑制することができる。 At time t16, the control unit 21 stops supplying power to the DC motor and sets the wire feed speed to speed v0 (i.e., speed 0 (zero)). When the control unit 21 stops the supply of power to the DC motor at time t16, it supplies the second power for the second power supply time. As a result of the second power being supplied to the DC motor, the wire feeder 20 feeds (supplies) the welding wire 40 in the forward direction to the tip of the welding torch 50 for the second power supply time. This allows the wire feeder 20 to suppress the occurrence of excess rewinding of the welding wire 40 due to the inertia of the DC motor.
 次に、図4を参照して、本実施の形態に係る溶接ワイヤの送給モードの一例である「パルス同期モード」を説明する。図4は、本実施の形態に係る溶接ワイヤの送給モードの一例を示す図である。 Next, the "pulse synchronous mode", which is an example of a welding wire feed mode according to this embodiment, will be described with reference to FIG. 4. FIG. 4 is a diagram showing an example of a welding wire feed mode according to this embodiment.
 図4に示すパルス同期モードは、溶接電源10の出力とワイヤ送給速度の変化を同期させるモードである。グラフF1の縦軸は溶接電源10の出力された電力の強さ(以下、溶接電源出力と称する)を表し、横軸は時刻を表す。グラフF2の縦軸はワイヤ送給速度を表し、横軸は時刻を表す。グラフF1とグラフF2との横軸の時刻は同じ位置で同じ時刻を表す。 The pulse synchronization mode shown in FIG. 4 is a mode in which the output of the welding power supply 10 and changes in the wire feed speed are synchronized. The vertical axis of graph F1 represents the strength of the power output from the welding power supply 10 (hereinafter referred to as the welding power supply output), and the horizontal axis represents time. The vertical axis of graph F2 represents the wire feed speed, and the horizontal axis represents time. The times on the horizontal axes of graphs F1 and F2 represent the same times at the same positions.
 時刻t0から時刻t1まで、溶接電源出力は出力w0で電力は0(ゼロ)である。この時、ワイヤ送給速度は速度v0となる。速度v0は、0(ゼロ)であり溶接ワイヤ送給部22のDCモータに電力が供給されていない状態である。つまり、時刻t0から時刻t1まで、ワイヤ送給装置20は、溶接ワイヤ40の送給を行っていない状態である。 From time t0 to time t1, the welding power supply output is output w0 and the power is 0 (zero). At this time, the wire feed speed is v0. Speed v0 is 0 (zero), and no power is being supplied to the DC motor of the welding wire feeder 22. In other words, from time t0 to time t1, the wire feeder 20 is not feeding the welding wire 40.
 時刻t1で、溶接電源出力が出力w2となると、制御部21は、DCモータに第3電力を供給しワイヤ送給速度は速度v1となる。時刻t1から時刻t20まで、溶接電源出力は出力w2であり、ワイヤ送給速度は速度v1となる。 At time t1, when the welding power supply output becomes output w2, the control unit 21 supplies a third power to the DC motor and the wire feed speed becomes speed v1. From time t1 to time t20, the welding power supply output is output w2 and the wire feed speed becomes speed v1.
 時刻t20となると、溶接電源10は、溶接電源出力を出力w2から出力w1に変更する。ここで出力w1は、出力w2以下である。溶接電源10が溶接電源出力を出力w1に変更するのと同時に、制御部21は、DCモータに供給する電力を第3電力から第5電力に変更する。制御部21は、DCモータに供給する電力を第3電力から第5電力に変更する際、DCモータに第2電力を第2電力供給時間供給する。 At time t20, the welding power supply 10 changes the welding power supply output from output w2 to output w1. Here, output w1 is equal to or less than output w2. At the same time that the welding power supply 10 changes the welding power supply output to output w1, the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power. When the control unit 21 changes the power supplied to the DC motor from the third power to the fifth power, it supplies the second power to the DC motor for the second power supply time.
 時刻t20から時刻t21まで、溶接電源10は、溶接電源出力を出力w1とし、制御部21は、溶接電源出力と合わせてワイヤ送給速度を速度v3のままとする。 From time t20 to time t21, the welding power source 10 sets the welding power source output to output w1, and the control unit 21 keeps the wire feed speed at speed v3 in accordance with the welding power source output.
 時刻t21となると、溶接電源10は、溶接電源出力を出力w1から出力w2に戻す。溶接電源10が溶接電源出力を出力w2に戻したタイミングで、制御部21は、DCモータに供給する電力を第5電力から第3電力に変更し、ワイヤ送給速度を速度v1とする。ここで、時刻t1から時刻t21までの溶接電源出力とワイヤ送給速度との変化の一連を速度変化2と称する。 At time t21, the welding power supply 10 changes the welding power output back from output w1 to output w2. At the timing when the welding power supply 10 changes the welding power output back to output w2, the control unit 21 changes the power supplied to the DC motor from the fifth power to the third power, and sets the wire feed speed to speed v1. Here, the series of changes in the welding power output and wire feed speed from time t1 to time t21 is referred to as speed change 2.
 時刻t21から時刻t23までの期間と、時刻t23から時刻t25までの期間と、時刻t25から時刻t27までの期間と、時刻t27から時刻t29までの期間とは、ワイヤ送給装置20は溶接電源10の出力信号と同期させて速度変化2と同様の溶接ワイヤ40の速度変化を実行する。なお、ワイヤ送給装置20が速度変化1を繰り返す回数は、5回に限られず、少なくとも1回の複数回であってよい。 In the periods from time t21 to time t23, from time t23 to time t25, from time t25 to time t27, and from time t27 to time t29, the wire feeder 20 executes a speed change of the welding wire 40 similar to speed change 2 in synchronization with the output signal of the welding power source 10. Note that the number of times that the wire feeder 20 repeats speed change 1 is not limited to five times, and may be at least once multiple times.
 時刻t30となると、溶接電源10の溶接電源出力が出力w2から出力w0となる。制御部21は、溶接電源出力が出力w0となると、DCモータに供給する電力を第3電力から第3電力の逆極性である第4電力に変更する。ワイヤ送給速度は、速度v2となる。時刻t30から時刻t31まで、制御部21は、DCモータに第4電力を供給し速度v2で溶接ワイヤ40を巻き戻す。なお、第4電力は、第3電力の逆極性でもよいし、単に第3電力とは極性が異なる負の値であってもよい。 At time t30, the welding power output of the welding power source 10 changes from output w2 to output w0. When the welding power output becomes output w0, the control unit 21 changes the power supplied to the DC motor from the third power to the fourth power, which is the opposite polarity of the third power. The wire feed speed becomes speed v2. From time t30 to time t31, the control unit 21 supplies the fourth power to the DC motor and rewinds the welding wire 40 at speed v2. The fourth power may be the opposite polarity of the third power, or may simply be a negative value with a different polarity from the third power.
 時刻t31で、制御部21は、DCモータに供給する電力を0(ゼロ)とする。これにより、制御部21は、溶接ワイヤ40の溶接トーチ50先端への送給を停止する。制御部21は、時刻t31で溶接ワイヤ40の溶接トーチ50先端への送給を停止する際、第2電力を第2電力供給時間供給する。 At time t31, the control unit 21 sets the power supplied to the DC motor to 0 (zero). This causes the control unit 21 to stop feeding the welding wire 40 to the tip of the welding torch 50. When the control unit 21 stops feeding the welding wire 40 to the tip of the welding torch 50 at time t31, it supplies the second power for the second power supply time.
 このように、パルス同期モードでは、溶接電源10の出力にワイヤ送給装置20の制御部21を同期させ溶接ワイヤ40の送給速度を変化させることができる。 In this way, in the pulse synchronization mode, the control unit 21 of the wire feeder 20 can be synchronized with the output of the welding power source 10 to change the feed speed of the welding wire 40.
 次に、図5を参照して、本実施の形態に係る溶接ワイヤの送給モードの一例である「断続送給モード2」を説明する。図5は、本実施の形態に係る溶接ワイヤの送給モードの一例を示す図である。 Next, with reference to FIG. 5, an example of a welding wire feeding mode according to this embodiment, "intermittent feeding mode 2", will be described. FIG. 5 is a diagram showing an example of a welding wire feeding mode according to this embodiment.
 図5に示す断続送給モード2は、溶接を行っている作業者によってスイッチ60のオン/オフが手動で切り替えられること、もしくは予めワイヤ送給装置20の管理者によって定められた時間でスイッチ60のオン/オフが自動で切り替えられること、と同期してワイヤ送給速度を変化させるモードのことである。 Intermittent feed mode 2 shown in FIG. 5 is a mode in which the wire feed speed is changed in synchronization with the switch 60 being manually turned on/off by the worker performing the welding, or the switch 60 being automatically turned on/off at a time preset by the manager of the wire feeder 20.
 グラフF3は、縦軸がスイッチ電圧の大きさを表している。スイッチ電圧とは、スイッチ60が操作されることにより制御部21に送られる電圧のことである。グラフF3は、電圧k0がスイッチ60がオフである場合の状態を、電圧k1がスイッチ60がオンである場合の状態を表している。グラフF3の横軸は時刻である。グラフF4は、縦軸がワイヤ送給速度を表し、横軸が時刻を表す。グラフF3とグラフF4との時刻は同じ位置で同じ時刻を表す。 In graph F3, the vertical axis represents the magnitude of the switch voltage. The switch voltage is the voltage sent to control unit 21 when switch 60 is operated. In graph F3, voltage k0 represents the state when switch 60 is off, and voltage k1 represents the state when switch 60 is on. The horizontal axis of graph F3 represents time. In graph F4, the vertical axis represents the wire feed speed, and the horizontal axis represents time. Graphs F3 and F4 represent the same time at the same position.
 時刻t0から時刻t1まで、スイッチ電圧は電圧k0でありスイッチ60がオフの状態である。この時、ワイヤ送給速度は、速度v0は、0(ゼロ)であり溶接ワイヤ送給部22のDCモータに電圧が印加されていない状態である。つまり、時刻t0から時刻t1まで、ワイヤ送給装置20は、溶接ワイヤ40の送給を行っていない状態である。 From time t0 to time t1, the switch voltage is k0 and the switch 60 is in the off state. At this time, the wire feed speed v0 is 0 (zero) and no voltage is applied to the DC motor of the welding wire feeder 22. In other words, from time t0 to time t1, the wire feeder 20 is not feeding the welding wire 40.
 時刻t1で、スイッチ電圧が電圧k1となると(つまり、スイッチ60がオンになると)、制御部21は、DCモータに第3電力印加しワイヤ送給速度は速度v1となる。時刻t1から時刻t40まで、スイッチ60はオンのままであり、ワイヤ送給速度は速度v1となる。 When the switch voltage becomes k1 at time t1 (i.e., when the switch 60 is turned on), the control unit 21 applies a third power to the DC motor and the wire feed speed becomes v1. From time t1 to time t40, the switch 60 remains on and the wire feed speed becomes v1.
 時刻t40となると、スイッチ電圧は電圧k0(つまり、スイッチ60がオフの状態)となる。制御部は、スイッチ電圧が電圧k1から電圧k0になると、DCモータに供給する電力を第3電力から第5電力へと変更する。制御部21は、DCモータに供給する電力を第3電力から第5電力に変更する際、DCモータに第2電力を第2電力供給時間供給する。 At time t40, the switch voltage becomes voltage k0 (i.e., the switch 60 is in an OFF state). When the switch voltage changes from voltage k1 to voltage k0, the control unit changes the power supplied to the DC motor from the third power to the fifth power. When changing the power supplied to the DC motor from the third power to the fifth power, the control unit 21 supplies the second power to the DC motor for the second power supply time.
 時刻t40から時刻t41まで、スイッチ電圧は電圧k0であり、制御部21は、ワイヤ送給速度を速度v3のままとする。 From time t40 to time t41, the switch voltage is voltage k0, and the control unit 21 keeps the wire feed speed at speed v3.
 時刻t41となると、スイッチ60が再びオンの状態となると、スイッチ電圧は電圧k0から電圧k1となる。制御部21は、スイッチ電圧が電圧k1となるタイミングで、DCモータに供給する電力を第5電力から第3電力に変更しワイヤ送給速度を速度v1とする。時刻t41から時刻t42までは、スイッチ電圧が電圧k1のままであり、ワイヤ送給速度も速度v1のままとなる。 At time t41, when the switch 60 is turned on again, the switch voltage changes from voltage k0 to voltage k1. When the switch voltage becomes voltage k1, the control unit 21 changes the power supplied to the DC motor from the fifth power to the third power, and sets the wire feed speed to speed v1. From time t41 to time t42, the switch voltage remains at voltage k1, and the wire feed speed also remains at speed v1.
 時刻t42でスイッチ60が再びオフの状態となると、スイッチ電圧が電圧k1から電圧k0となる。制御部21は、スイッチ電圧の変化に同期させて、DCモータに供給する電力を第3電力から第5電力へ変更する。制御部21は、DCモータに供給する電力印加する電力を第3電力から第5電力に変更する際、DCモータに第2電力を第2電力供給時間供給する。時刻t42から時刻t43までワイヤ送給速度は速度v3となる。 When the switch 60 is turned off again at time t42, the switch voltage changes from voltage k1 to voltage k0. The control unit 21 changes the power supplied to the DC motor from the third power to the fifth power in synchronization with the change in the switch voltage. When the power applied to the DC motor is changed from the third power to the fifth power, the control unit 21 supplies the second power to the DC motor for the second power supply time. From time t42 to time t43, the wire feed speed is speed v3.
 時刻t43で、スイッチ60が再びオンの状態となると、スイッチ電圧は電圧k0から電圧k1となる。制御部21は、スイッチ電圧が電圧k1となるタイミングで、DCモータに供給する電力を第5電力から第3電力に変更しワイヤ送給速度を速度v1とする。時刻t43から時刻t44までは、スイッチ電圧が電圧k1のままであり、ワイヤ送給速度も速度v1のままである。 At time t43, when switch 60 is turned on again, the switch voltage changes from voltage k0 to voltage k1. At the timing when the switch voltage becomes voltage k1, control unit 21 changes the power supplied to the DC motor from the fifth power to the third power and sets the wire feed speed to speed v1. From time t43 to time t44, the switch voltage remains at voltage k1, and the wire feed speed also remains at speed v1.
 時刻t44でスイッチ60が再びオフの状態となると、スイッチ電圧が電圧k1から電圧k0となる。制御部21は、スイッチ電圧の変化に同期させて、DCモータに供給する電力を第3電力から第5電力へ変更する。制御部21は、DCモータに供給する電力を第3電力から第5電力に変更する際、DCモータに第2電力を第2電力供給時間供給する。時刻t44から時刻t46までワイヤ送給速度は速度v3となる。 When the switch 60 turns off again at time t44, the switch voltage changes from voltage k1 to voltage k0. The control unit 21 changes the power supplied to the DC motor from the third power to the fifth power in synchronization with the change in the switch voltage. When changing the power supplied to the DC motor from the third power to the fifth power, the control unit 21 supplies the second power to the DC motor for the second power supply time. From time t44 to time t46, the wire feed speed is speed v3.
 時刻t46で制御部21は、スイッチ60から溶接ワイヤ40の送給を停止する旨の信号を取得する。溶接ワイヤ40の送給を停止する旨の信号とは、例えば、スイッチ60のオン/オフを予め決められた時間より短い時間間隔で切り替えられる等の信号である。図5に係る例では、時刻t45でスイッチ60がオンの状態となってから時刻t46でスイッチ60がオフの状態になるまでの時間がユーザによって予め決められた時間よりも短かったら溶接ワイヤ40の送給を停止する信号を、スイッチ60は制御部21に送信する。なお、溶接ワイヤ40の送給を停止する旨の信号は、上述した例は一例でありこれに限られない。 At time t46, the control unit 21 obtains a signal from the switch 60 to stop feeding the welding wire 40. The signal to stop feeding the welding wire 40 is, for example, a signal that switches the switch 60 on and off at time intervals shorter than a predetermined time. In the example of FIG. 5, if the time from when the switch 60 is turned on at time t45 to when the switch 60 is turned off at time t46 is shorter than a time predetermined by the user, the switch 60 transmits a signal to the control unit 21 to stop feeding the welding wire 40. Note that the above-mentioned example of the signal to stop feeding the welding wire 40 is one example and is not limited to this.
 時刻t46で、制御部21は、溶接ワイヤ40の送給を停止する旨の信号を取得し、DCモータに供給する電力を第5電力から第4電力へ変更する。ワイヤ送給速度は速度v2となる。時刻t46から時刻t47まで、制御部21は、DCモータに第4電力を供給し速度v2で溶接ワイヤ40を巻き戻す。 At time t46, the control unit 21 receives a signal to stop feeding the welding wire 40, and changes the power supplied to the DC motor from the fifth power to the fourth power. The wire feeding speed becomes speed v2. From time t46 to time t47, the control unit 21 supplies the fourth power to the DC motor and rewinds the welding wire 40 at speed v2.
 時刻t47で、制御部21は、DCモータに供給する電力を0(ゼロ)とする。これにより、制御部21は、溶接ワイヤ40の溶接トーチ50先端への送給を停止する。制御部21は、時刻t47で溶接ワイヤ40の溶接トーチ50先端への送給を停止する際、第2電力を第2電力供給時間供給する。 At time t47, the control unit 21 sets the power supplied to the DC motor to 0 (zero). This causes the control unit 21 to stop feeding the welding wire 40 to the tip of the welding torch 50. When the control unit 21 stops feeding the welding wire 40 to the tip of the welding torch 50 at time t47, it supplies the second power for the second power supply time.
 これにより、断続送給モード2では、ワイヤ送給装置20は、スイッチ60のスイッチ動作と同期させて溶接ワイヤ40の送給を手動もしくは自動で制御することができる。つまり、ワイヤ送給装置20は作業者の溶接作業の内容に併せて柔軟かつ効率的な溶接ワイヤ40の送給を支援することができる。 As a result, in intermittent feed mode 2, the wire feeder 20 can manually or automatically control the feeding of the welding wire 40 in synchronization with the switching operation of the switch 60. In other words, the wire feeder 20 can support flexible and efficient feeding of the welding wire 40 in accordance with the content of the welding work performed by the worker.
 なお、制御部21がDCモータに第2電力を供給する際、直前にDCモータに供給されていた正極性または負極性(例えば、本実施の形態における第3電力または第4電力)を第1電力と定義する。 When the control unit 21 supplies the second power to the DC motor, the positive or negative polarity (e.g., the third or fourth power in this embodiment) that was previously supplied to the DC motor is defined as the first power.
 次に、図6を参照して、従来技術に係るDCモータに流れる電流の制御例を説明する。図6は、従来技術に係るDCモータに流れる電流の制御例を示す図である。 Next, an example of controlling the current flowing through a DC motor according to the conventional technology will be described with reference to FIG. 6. FIG. 6 is a diagram showing an example of controlling the current flowing through a DC motor according to the conventional technology.
 図6に示したグラフの縦軸は、DCモータに流れる電流値(以下、モータ電流と称する)を表す。図6に示したグラフの横軸は時刻を表す。 The vertical axis of the graph shown in Figure 6 represents the value of the current flowing through the DC motor (hereinafter referred to as the motor current). The horizontal axis of the graph shown in Figure 6 represents time.
 電流A0は、モータ電流が0の状態を表す。図6に示したグラフは、電流A0以上は正の値、電流A0より小さいと負の値を示す。値が縦軸の矢印の方向にいくと、モータ電流値は正方向に増加する。以下、図7に示したグラフ縦軸,横軸等は図6のグラフと同様であり同様の値には同じ符合を付記する。 Current A0 represents a state in which the motor current is 0. In the graph shown in Figure 6, currents equal to or greater than A0 indicate positive values, and currents less than A0 indicate negative values. As the value moves in the direction of the arrow on the vertical axis, the motor current value increases in the positive direction. Below, the vertical and horizontal axes of the graphs shown in Figure 7 are the same as those in the graph of Figure 6, and similar values are given the same symbols.
 時刻TI0から時刻TI1までモータ電流は電流A1となる。モータ電流値が振動しているのは、DCモータの速度制御をPWM制御で行っているために発生する制御リップルである。 From time TI0 to time TI1, the motor current is A1. The motor current value fluctuates due to the control ripple that occurs when the DC motor's speed is controlled by PWM control.
 時刻TI1でモータ電流が電流A0(つまり、電流0(ゼロ))となり、その後、電流A0で一定値となる。 At time TI1, the motor current becomes current A0 (i.e., current 0 (zero)), and then becomes a constant value at current A0.
 次に、図7を参照して、本実施の形態に係るDCモータに流れる電流の制御例を説明する。図7は、本実施の形態に係るDCモータに流れる電流の制御例を示す図である。 Next, an example of controlling the current flowing through the DC motor according to this embodiment will be described with reference to FIG. 7. FIG. 7 is a diagram showing an example of controlling the current flowing through the DC motor according to this embodiment.
 時刻TI1で、制御部21の制御により、モータ電流は電流A1から電流A2まで遅延時間PEで変化する。ここで、電流A2の時にDCモータに供給される電力が第2電力であり、遅延時間PEが第2電力供給時間である。遅延時間PEは、例えば、数十ミリ秒である。なお、遅延時間PEの長さは数十ミリ秒に限定されない。モータ電流は、制御部21の制御によって電流A2となったのち時刻TI2で速やかに電流A0(つまり0(ゼロ))となる。 At time TI1, under the control of the control unit 21, the motor current changes from current A1 to current A2 over a delay time PE. Here, the power supplied to the DC motor when the current is A2 is the second power, and the delay time PE is the second power supply time. The delay time PE is, for example, several tens of milliseconds. Note that the length of the delay time PE is not limited to several tens of milliseconds. After the motor current becomes current A2 under the control of the control unit 21, it quickly becomes current A0 (i.e., 0 (zero)) at time TI2.
 第2電力供給時間である遅延時間PEは、固定の値に限定されず変動する値でもよい。例えば、遅延時間PEは、DCモータに第2電力が供給される直前のDCモータの回転数によって変化する。例えば、遅延時間PEは、DCモータの回転数が早い場合は長く、遅い場合は短くなる。 The delay time PE, which is the second power supply time, is not limited to a fixed value and may be a variable value. For example, the delay time PE changes depending on the rotation speed of the DC motor immediately before the second power is supplied to the DC motor. For example, the delay time PE is longer when the rotation speed of the DC motor is fast and shorter when the rotation speed is slow.
 また、例えば、遅延時間PEは、DCモータに第2電力が供給される直前のDCモータの回転数およびDCモータの電流の状態によって変化する。例えば、DCモータの回転数が速い場合に遅延時間PEは長く、遅い場合に遅延時間PEは短くなることと、DCモータの電流が低い場合に遅延時間PEは長くなり、高い場合に遅延時間PEは短くなることと、を組み合わせて遅延時間PEは制御部21によって設定されてもよい。 Furthermore, for example, the delay time PE varies depending on the rotation speed of the DC motor and the state of the current of the DC motor immediately before the second power is supplied to the DC motor. For example, the delay time PE may be set by the control unit 21 by combining the following: when the rotation speed of the DC motor is fast, the delay time PE is long, and when the rotation speed of the DC motor is slow, the delay time PE is short; and when the current of the DC motor is low, the delay time PE is long, and when the current of the DC motor is high, the delay time PE is short.
 以上により、本実施の形態に係る溶接装置(例えば、溶接システム100)は、非消耗電極式アーク溶接装置および消耗電極式アーク溶接装置において、DCモータの回転により、溶接トーチ(例えば、溶接トーチ50)に溶接ワイヤ(例えば、溶接ワイヤ40)を送給するまたは溶接トーチから溶接ワイヤを巻き戻すワイヤ送給装置(例えば、ワイヤ送給装置20)と、DCモータに電力を供給してDCモータを駆動する制御部(例えば、制御部21)と、を備える。制御部は、DCモータに正極性または負極性のうちいずれか一方である第1電力を供給して溶接ワイヤを送給または巻き戻した後、DCモータを停止するもしくは溶接ワイヤの送給速度を減速する場合に、DCモータに第1電力と反対の極性を有する第2電力を供給する。 As described above, the welding device (e.g., welding system 100) according to this embodiment is a non-consumable electrode arc welding device and a consumable electrode arc welding device, and includes a wire feeder (e.g., wire feeder 20) that feeds a welding wire (e.g., welding wire 40) to a welding torch (e.g., welding torch 50) or rewinds the welding wire from the welding torch by rotating a DC motor, and a control unit (e.g., control unit 21) that supplies power to the DC motor to drive the DC motor. The control unit supplies a first power, which is either positive or negative polarity, to the DC motor to feed or rewind the welding wire, and then supplies a second power having the opposite polarity to the first power to the DC motor when the DC motor is stopped or the welding wire feed speed is slowed down.
 これにより、本実施の形態に係る溶接装置は、DCモータを停止する(つまり、溶接ワイヤの送給を停止する)際に発生する溶接ワイヤの突き出し量のバラツキ、もしくは溶接ワイヤの送給速度を減速する際に発生する溶接トーチへの送給量のバラツキを抑制することができる。これにより、溶接装置は、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することができる。 As a result, the welding device according to this embodiment can suppress variations in the amount of welding wire protrusion that occurs when the DC motor is stopped (i.e., the feeding of the welding wire is stopped), or variations in the amount of wire fed to the welding torch that occur when the feeding speed of the welding wire is slowed down. This allows the welding device to feed the welding wire stably, improving the workability and quality of welding.
 また、本実施の形態に係る溶接装置の制御部は、DCモータに第1電力を供給した時間よりも短い第2電力供給時間、DCモータに第2電力を供給する。これにより、溶接装置は、微小時間第1電力の逆極性である第2電力を供給することができる。溶接装置はDCモータを停止する(つまり、溶接ワイヤの送給を停止する)際に発生する溶接ワイヤの突き出し量のバラツキ、もしくは溶接ワイヤの送給速度を減速する際に発生する溶接トーチへの送給量のバラツキを第2電力によって低減することができる。これにより、溶接装置は、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することができる。 The control unit of the welding device according to this embodiment also supplies a second power to the DC motor for a second power supply time that is shorter than the time for which the first power is supplied to the DC motor. This allows the welding device to supply a second power that is the opposite polarity to the first power for a very short time. The welding device can use the second power to reduce variations in the amount of welding wire protrusion that occur when the DC motor is stopped (i.e., the feeding of the welding wire is stopped) or variations in the amount of wire fed to the welding torch that occur when the feeding speed of the welding wire is slowed down. This allows the welding device to stably feed the welding wire, improving the workability and quality of welding.
 また、本実施の形態に係る溶接装置の第2電力は、制御部によって直前に一定に供給されていた電力と反対の極性を有する。これにより、溶接装置は、DCモータに発生する慣性の影響を抑制することができ、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することができる。 In addition, the second power of the welding device according to this embodiment has the opposite polarity to the power that was previously supplied constantly by the control unit. This allows the welding device to suppress the effects of inertia generated in the DC motor, and to stably feed the welding wire, improving the workability and quality of welding.
 また、本実施の形態に係る溶接装置の制御部は、DCモータに正極性である第3電力を供給して溶接ワイヤを送給し、溶接ワイヤを送給した後、DCモータに負極性である第4電力を供給して溶接ワイヤを巻き戻す。制御部は、溶接ワイヤを巻き戻した後、DCモータを停止する際にDCモータに第2電力を第2電力供給時間供給する。これにより、溶接装置は、連続的に溶接ワイヤを送給し最後にDCモータを停止し溶接ワイヤの送給を終了する際に実行する溶接ワイヤの巻き戻し量を適切な長さにすることができる。これにより、溶接装置は、作業者が適切な溶接ワイヤの突き出し量で溶接を開始することを支援することができる。 The control unit of the welding device according to this embodiment also supplies a third power of positive polarity to the DC motor to feed the welding wire, and after feeding the welding wire, supplies a fourth power of negative polarity to the DC motor to rewind the welding wire. After rewinding the welding wire, the control unit supplies a second power to the DC motor for a second power supply time when stopping the DC motor. This allows the welding device to continuously feed the welding wire and to rewind the welding wire to an appropriate length when finally stopping the DC motor and ending the feeding of the welding wire. This allows the welding device to assist the operator in starting welding with an appropriate welding wire protrusion amount.
 また、本実施の形態に係る溶接装置の制御部は、DCモータに供給する電力を正極性である第3電力から第3電力より小さい正極性である第5電力へ変更する際、DCモータに第2電力を前記第1の時間供給する。これにより、溶接装置は、溶接ワイヤの送給速度を変更する際に発生する送給量のバラツキを抑制することができる。 In addition, when the control unit of the welding device according to this embodiment changes the power supplied to the DC motor from the third power, which is positive, to the fifth power, which is less positive than the third power, the control unit supplies the second power to the DC motor for the first time. This allows the welding device to suppress variations in the feed amount that occur when changing the feed speed of the welding wire.
 また、本実施の形態に係る溶接装置の制御部は、DCモータに供給する電力を第3電力から第5電力へ変更した後再び第3電力に戻す第1制御を少なくとも1回実行する。これにより、溶接装置は、溶接ワイヤを溶接トーチに送給する際、溶接ワイヤの送給速度を変化させ溶接状況に適した溶接ワイヤの送給を実行することができる。 The control unit of the welding device according to this embodiment also executes the first control at least once, which changes the power supplied to the DC motor from the third power to the fifth power and then back to the third power. This allows the welding device to change the welding wire feed speed when feeding the welding wire to the welding torch, thereby feeding the welding wire in a manner appropriate to the welding conditions.
 また、本実施の形態に係る溶接装置の制御部は、DCモータに第3電力もしくは第5電力を供給し溶接ワイヤを送給した後、DCモータに負極性である第4電力を供給し、溶接ワイヤを巻き戻し、溶接ワイヤを巻き戻した後、DCモータを停止する際にDCモータに第2電力を第2電力供給時間供給する。これにより、溶接装置は、溶接ワイヤの送給を停止する際DCモータに発生する慣性の影響を抑制することができ、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することができる。 The control unit of the welding device according to this embodiment supplies the third power or the fifth power to the DC motor to feed the welding wire, then supplies the fourth power, which is negative polarity, to the DC motor to rewind the welding wire, and after rewinding the welding wire, supplies the second power to the DC motor for the second power supply time when stopping the DC motor. This allows the welding device to suppress the effects of inertia that occur in the DC motor when the feeding of the welding wire is stopped, and allows the welding wire to be fed stably, improving the workability and quality of welding.
 また、本実施の形態に係る溶接装置の制御部は、作業者がワイヤ送給装置の溶接ワイヤの送給に係るスイッチ(例えば、スイッチ60)をオンにするとDCモータに第3電力を供給し、作業者がスイッチをオフにするとDCモータに供給する電力を第5電力に変更する。制御部は、作業者が前記スイッチをオフにしてから第2電力供給時間よりも長い慣性時間経過後にスイッチをオンした後に再びスイッチをオフすると、DCモータに第1電力を供給し溶接ワイヤを巻き戻し、溶接ワイヤを巻き戻した後、DCモータを停止する際にDCモータに第2電力を第2電力供給時間供給する。これにより、溶接装置は、スイッチのオン/オフの切り替えに応じて溶接ワイヤの送給量を変化させることができる。溶接装置は、溶接の作業内容または状況に応じて柔軟な溶接ワイヤの送給を支援することができる。また、溶接装置は、溶接ワイヤの送給を停止する際DCモータに発生する慣性の影響を抑制することができ、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上することができる。 The control unit of the welding device according to this embodiment supplies a third power to the DC motor when the worker turns on a switch (e.g., switch 60) related to the feeding of the welding wire of the wire feeder, and changes the power supplied to the DC motor to a fifth power when the worker turns off the switch. When the worker turns on the switch after an inertia time longer than the second power supply time has elapsed since turning off the switch and then turns off the switch again, the control unit supplies a first power to the DC motor to rewind the welding wire, and after rewinding the welding wire, supplies a second power to the DC motor for the second power supply time when stopping the DC motor. This allows the welding device to change the amount of welding wire fed in response to the on/off switching of the switch. The welding device can support flexible feeding of the welding wire according to the welding work content or situation. The welding device can also suppress the effect of inertia generated in the DC motor when the feeding of the welding wire is stopped, and can stably feed the welding wire and improve the workability and quality of welding.
 また、本実施の形態に係る溶接装置の制御部は、第1溶接電流と第1溶接電流より小さい第2溶接電流とを繰り返すパルス溶接において、溶接電源から出力されるパルス信号に同期させ、DCモータに供給する電力を変更する。これにより、溶接装置は、パルス溶接において、溶接電源から出力されるパルス信号に基づいた溶接ワイヤの送給を行い、柔軟かつ効率的な溶接ワイヤ送給を支援することができる。 The control unit of the welding device according to this embodiment also changes the power supplied to the DC motor in synchronization with the pulse signal output from the welding power source during pulse welding, which alternates between a first welding current and a second welding current smaller than the first welding current. This allows the welding device to feed the welding wire based on the pulse signal output from the welding power source during pulse welding, supporting flexible and efficient welding wire feeding.
 以上、添付図面を参照しながら実施の形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても本開示の技術的範囲に属すると了解される。また、発明の趣旨を逸脱しない範囲において、上述した実施の形態における各構成要素を任意に組み合わせてもよい。  Although the embodiments have been described above with reference to the attached drawings, the present disclosure is not limited to such examples. It is clear that a person skilled in the art can conceive of various modifications, amendments, substitutions, additions, deletions, and equivalents within the scope of the claims, and it is understood that these also fall within the technical scope of the present disclosure. Furthermore, the components in the above-described embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 本開示の技術は、溶接ワイヤを安定的に送給し、溶接の作業性および品質を向上する溶接装置および溶接方法として有用である。 The technology disclosed herein is useful as a welding device and welding method that stably feeds welding wire and improves the workability and quality of welding.
 10 溶接電源
 20 ワイヤ送給装置
 21 制御部
 22 溶接ワイヤ送給部
 30 ワイヤ送給経路
 40 溶接ワイヤ
 50 溶接トーチ
 60 スイッチ
 70 母材ケーブル
 100 溶接システム
 PL 溶接箇所
 t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12,t13,t14,t15,t16,t20,t21,t22,t23,t24,t25,t26,t27,t28,t29,t30,t31,t40,t41,t42,t43,t44,t45,t46,t47,TI0,TI1,TI2 時刻
 v0,v1,v2,v3 速度
 w0,w1,w2 出力
 k0,k1 電圧
 F1,F2,F3,F4 グラフ
 A0,A1,A2 電流
REFERENCE SIGNS LIST 10 Welding power source 20 Wire feeder 21 Control unit 22 Welding wire feeder 30 Wire feed path 40 Welding wire 50 Welding torch 60 Switch 70 Base metal cable 100 Welding system PL Welding point t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t20, t21, t22, t23, t24, t25, t26, t27, t28, t29, t30, t31, t40, t41, t42, t43, t44, t45, t46, t47, TI0, TI1, TI2 Time v0, v1, v2, v3 Speed w0, w1, w2 Output k0, k1 Voltage F1, F2, F3, F4 Graph A0, A1, A2 Current

Claims (10)

  1.  非消耗電極式アーク溶接装置および消耗電極式アーク溶接装置において、DCモータの回転により、溶接トーチに溶接ワイヤを送給するまたは前記溶接トーチから前記溶接ワイヤを巻き戻すワイヤ送給装置と、
     前記DCモータに電力を供給して前記DCモータを駆動する制御部と、を備え、
     前記制御部は、前記DCモータに正極性または負極性のうちいずれか一方である第1電力を供給して前記溶接ワイヤを送給または巻き戻した後、前記DCモータを停止するもしくは前記溶接ワイヤの送給速度を減速する場合に、前記DCモータに前記第1電力と反対の極性を有する第2電力を供給する、
     溶接装置。
    In the non-consumable electrode type arc welding apparatus and the consumable electrode type arc welding apparatus, a wire feeder feeds a welding wire to a welding torch or unwinds the welding wire from the welding torch by rotation of a DC motor;
    A control unit that supplies power to the DC motor to drive the DC motor,
    the control unit supplies a first power having either a positive polarity or a negative polarity to the DC motor to feed or rewind the welding wire, and then, when stopping the DC motor or slowing down the feed speed of the welding wire, supplies a second power having a polarity opposite to that of the first power to the DC motor.
    Welding equipment.
  2.  前記制御部は、前記DCモータに前記第1電力を供給した時間よりも短い第2電力供給時間、前記DCモータに前記第2電力を供給する、
     請求項1に記載の溶接装置。
    the control unit supplies the second power to the DC motor for a second power supply time that is shorter than a time for which the first power is supplied to the DC motor.
    2. The welding apparatus of claim 1.
  3.  前記第2電力は、前記第1電力、あるいは前記制御部によって直前に一定に供給されていた電力、と反対の極性を有する、
     請求項1に記載の溶接装置。
    The second power has a polarity opposite to that of the first power or the power previously supplied constantly by the control unit.
    2. The welding apparatus of claim 1.
  4.  前記制御部は、
      前記DCモータに正極性である第3電力を供給して前記溶接ワイヤを送給し、
      前記溶接ワイヤを送給した後、前記DCモータに負極性である第4電力を供給して前記溶接ワイヤを巻き戻し、
      前記溶接ワイヤを巻き戻した後、前記DCモータを停止する際に前記DCモータに前記第2電力を前記第2電力供給時間供給する、
     請求項2に記載の溶接装置。
    The control unit is
    supplying a third power having a positive polarity to the DC motor to feed the welding wire;
    after feeding the welding wire, supplying a fourth power having a negative polarity to the DC motor to rewind the welding wire;
    supplying the second power to the DC motor for the second power supply period when the DC motor is stopped after the welding wire is rewound;
    3. The welding apparatus of claim 2.
  5.  前記制御部は、前記DCモータに供給する電力を正極性である第3電力から前記第3電力より小さい正極性である第5電力へ変更する際、前記DCモータに前記第2電力を前記第2電力供給時間供給する、
     請求項2に記載の溶接装置。
    the control unit, when changing the power supplied to the DC motor from a third power having a positive polarity to a fifth power having a positive polarity smaller than the third power, supplies the second power to the DC motor for the second power supply time.
    3. The welding apparatus of claim 2.
  6.  前記制御部は、前記DCモータに供給する電力を前記第3電力から前記第5電力へ変更した後再び前記第3電力に戻す第1制御を少なくとも1回実行する、
     請求項5に記載の溶接装置。
    The control unit executes a first control at least once in which the power supplied to the DC motor is changed from the third power to the fifth power and then returned to the third power.
    6. The welding apparatus of claim 5.
  7.  前記制御部は、前記DCモータに前記第3電力もしくは前記第5電力を供給し前記溶接ワイヤを送給した後、前記DCモータに負極性である第4電力を供給し、前記溶接ワイヤを巻き戻し、前記溶接ワイヤを巻き戻した後、前記DCモータを停止する際に前記DCモータに前記第2電力を前記第2電力供給時間供給する、
     請求項6に記載の溶接装置。
    the control unit supplies the third power or the fifth power to the DC motor to feed the welding wire, and then supplies a fourth power having a negative polarity to the DC motor to rewind the welding wire, and after rewinding the welding wire, supplies the second power to the DC motor for the second power supply time when stopping the DC motor.
    7. The welding apparatus of claim 6.
  8.  前記制御部は、作業者が前記ワイヤ送給装置の前記溶接ワイヤの送給に係るスイッチをオンにすると前記DCモータに前記第3電力を供給し、前記作業者が前記スイッチをオフにすると前記DCモータに供給する電力を前記第5電力に変更し、
     前記作業者が前記スイッチをオフにしてから前記第2電力供給時間よりも長い慣性時間経過後に前記スイッチをオンした後に再び前記スイッチをオフすると、前記DCモータに前記第1電力を供給し前記溶接ワイヤを巻き戻し、前記溶接ワイヤを巻き戻した後、前記DCモータを停止する際に前記DCモータに前記第2電力を前記第2電力供給時間供給する、
     請求項5に記載の溶接装置。
    the control unit supplies the third power to the DC motor when an operator turns on a switch related to feeding of the welding wire of the wire feeder, and changes the power supplied to the DC motor to the fifth power when the operator turns off the switch,
    when the operator turns on the switch after an inertia time longer than the second power supply time has elapsed since turning off the switch and then turns off the switch again, the first power is supplied to the DC motor to rewind the welding wire, and after the welding wire is rewinded, the second power is supplied to the DC motor for the second power supply time when the DC motor is stopped.
    6. The welding apparatus of claim 5.
  9.  前記制御部は、第1溶接電流と前記第1溶接電流より小さい第2溶接電流とを繰り返すパルス溶接において、溶接電源から出力されるパルス信号に同期させ、前記DCモータに供給する電力を変更する、
     請求項1から請求項8のいずれか1項に記載の溶接装置。
    the control unit changes the power supplied to the DC motor in synchronization with a pulse signal output from a welding power source in pulse welding in which a first welding current and a second welding current smaller than the first welding current are repeated.
    A welding device according to any one of claims 1 to 8.
  10.  非消耗電極式アーク溶接装置および消耗電極式アーク溶接装置において、DCモータの回転により溶接トーチに溶接ワイヤを送給または巻き戻すワイヤ送給装置と、前記DCモータに電力を供給して前記DCモータを駆動する制御部と、を備える溶接システムによって実行される溶接方法であって、
     前記DCモータに正極性または負極性のうちいずれか一方である第1電力を供給して前記溶接ワイヤを送給または巻き戻した後、前記DCモータを停止するもしくは前記溶接ワイヤの送給速度を減速する場合に、前記DCモータに前記第1電力と極性が異なる第2電力を供給する、
     溶接方法。
    A welding method performed by a welding system in a non-consumable electrode arc welding apparatus and a consumable electrode arc welding apparatus, the welding system including a wire feeder that feeds or rewinds a welding wire to a welding torch by rotation of a DC motor, and a control unit that supplies power to the DC motor to drive the DC motor,
    a first power having either a positive polarity or a negative polarity is supplied to the DC motor to feed or rewind the welding wire, and then, when the DC motor is stopped or the feed speed of the welding wire is reduced, a second power having a polarity different from that of the first power is supplied to the DC motor.
    Welding method.
PCT/JP2023/028997 2022-11-30 2023-08-08 Welding device and welding method WO2024116477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-191770 2022-11-30
JP2022191770 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024116477A1 true WO2024116477A1 (en) 2024-06-06

Family

ID=91323239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028997 WO2024116477A1 (en) 2022-11-30 2023-08-08 Welding device and welding method

Country Status (1)

Country Link
WO (1) WO2024116477A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050294A (en) * 2002-07-23 2004-02-19 Illinois Tool Works Inc <Itw> Method and device for feeding wire to welding arc
JP2017039138A (en) * 2015-08-18 2017-02-23 株式会社安川電機 Ac pulse arc welding device, ac pulse arc welding system and ac pulse arc welding method
WO2020235294A1 (en) * 2019-05-22 2020-11-26 パナソニックIpマネジメント株式会社 Arc welding method and arc welding device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050294A (en) * 2002-07-23 2004-02-19 Illinois Tool Works Inc <Itw> Method and device for feeding wire to welding arc
JP2017039138A (en) * 2015-08-18 2017-02-23 株式会社安川電機 Ac pulse arc welding device, ac pulse arc welding system and ac pulse arc welding method
WO2020235294A1 (en) * 2019-05-22 2020-11-26 パナソニックIpマネジメント株式会社 Arc welding method and arc welding device

Similar Documents

Publication Publication Date Title
JP4860898B2 (en) Method and apparatus for retracting and advancing a welding wire
EP1985400B1 (en) Method of controlling arc welding and welding device
JP5199802B2 (en) 2-wire welding method
CN108890084B (en) Welding equipment, welding control device and welding control method
KR102459753B1 (en) Arc welding device and arc welding method
JP2016032839A (en) Welding system using controlled wire feed speed during arc initiation and corresponding welding method
KR20180113459A (en) System and method for arc welding and wire manipulation control
WO2024116477A1 (en) Welding device and welding method
JP2006326679A (en) Robot welding controller
JP2017094380A (en) Arc-welding device
JP5974984B2 (en) Arc welding apparatus, arc welding system, and arc welding method
JP5626866B2 (en) Arc welding method and arc welding system
JP6007879B2 (en) Arc welding apparatus, arc welding method, and arc welding system
JP5545996B2 (en) Constriction detection control method for consumable electrode arc welding
JP2014184452A (en) Power supply device for arc welding and control method of power supply device for arc welding
JP4490011B2 (en) Arc start control method
JP5479609B2 (en) Wire feeder
JP2011025307A (en) Arc start control method
JP7162178B2 (en) ARC WELDING METHOD, ARC WELDING SYSTEM AND WELDING POWER SUPPLY CONTROL DEVICE
JP2014184451A (en) Power supply device for arc welding and control method of power supply device for arc welding
JP2011200867A (en) Arc welding equipment
JP2007216303A (en) Arc start control method
JP2002178146A (en) Arc start control method
JP4698977B2 (en) Welding robot control system
JP3185941B2 (en) Feeding speed control device for welding wire in welding robot