JP2014184452A - Power supply device for arc welding and control method of power supply device for arc welding - Google Patents

Power supply device for arc welding and control method of power supply device for arc welding Download PDF

Info

Publication number
JP2014184452A
JP2014184452A JP2013059906A JP2013059906A JP2014184452A JP 2014184452 A JP2014184452 A JP 2014184452A JP 2013059906 A JP2013059906 A JP 2013059906A JP 2013059906 A JP2013059906 A JP 2013059906A JP 2014184452 A JP2014184452 A JP 2014184452A
Authority
JP
Japan
Prior art keywords
feeding
welding wire
arc
period
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013059906A
Other languages
Japanese (ja)
Inventor
Toshiyuki Tanaka
利幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2013059906A priority Critical patent/JP2014184452A/en
Priority to KR1020140014709A priority patent/KR102106651B1/en
Priority to CN201410087855.2A priority patent/CN104057179B/en
Publication of JP2014184452A publication Critical patent/JP2014184452A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • B23K9/1006Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device for arc welding (control method) capable of satisfactorily performing arc welding by properly controlling feeding speed of a welding wire.SOLUTION: As feeding control of a welding wire 12, feeding speed Vft of the welding wire 12 is periodically changed so as to switch to an arc period in the neighbourhood of switching from forward feeding to reverse feeding of the welding wire 12, and regulation of the feeding speed Vft of the welding wire 12 is performed in the reverse feeding period. Then, when feeding speed synchronism deviation to the effect that the feeding speed Vft of the welding wire 12 is slow is determined, acceleration control is executed including acceleration in a reverse feeding direction, and when the feeding speed synchronism deviation to the effect that the feeding speed Vft of the welding wire 12 is fast is determined, deceleration control is executed including deceleration in the reverse feeding direction.

Description

本発明は、消耗電極式のアーク溶接用電源装置、及び消耗電極式のアーク溶接用電源装置の制御方法に関する。   The present invention relates to a consumable electrode type arc welding power supply apparatus and a control method for the consumable electrode type arc welding power supply apparatus.

消耗電極式のアーク溶接では、溶接ワイヤを放電電極としたその電極先端からアークを生じさせて被溶接物(母材)の溶接が行われるが、その際、溶接ワイヤはアークにより消耗するため、その消耗に応じて溶接ワイヤの送給を行いながら溶接が行われている。また、この消耗電極式のアーク溶接では、溶接ワイヤが被溶接物に接触する短絡期間と、溶接ワイヤが被溶接物から離間してアークを生じさせるアーク期間とが交互に生じるようにしているが、アーク溶接を適切に行うために各期間に応じて、溶接ワイヤの前進(正送)と後退(逆送)とが繰り返されている(例えば特許文献1参照)。   In the consumable electrode type arc welding, an arc is generated from the tip of the electrode using the welding wire as the discharge electrode, and welding of the work piece (base material) is performed. However, since the welding wire is consumed by the arc, Welding is performed while feeding the welding wire according to the wear. Further, in this consumable electrode type arc welding, a short-circuit period in which the welding wire comes into contact with the workpiece and an arc period in which the welding wire is separated from the workpiece and causes an arc are alternately generated. In order to perform arc welding appropriately, the welding wire is repeatedly advanced (forward) and retracted (reverse) in accordance with each period (see, for example, Patent Document 1).

特許第4807474号公報Japanese Patent No. 4807474

ところで、溶接時においては、例えば溶接トーチの変位や被溶接物の表面状態等、溶接トーチと被溶接物との距離は相対的に変化する。つまり、溶接ワイヤへの給電を行う溶接トーチの給電チップと被溶接物との間の距離、所謂チップ母材間距離が変化することがあるため、これに合わせて溶接ワイヤの正送・逆送の送給速度を変化させる必要がある。   By the way, at the time of welding, the distance between the welding torch and the workpiece is relatively changed, for example, the displacement of the welding torch and the surface state of the workpiece. In other words, the distance between the power supply tip of the welding torch for supplying power to the welding wire and the work piece, that is, the distance between the so-called tip base materials may change. It is necessary to change the feeding speed.

例えば、チップ母材間距離が縮んだ状況において溶接ワイヤの正送速度が速いと、溶接ワイヤが被溶接物と接触した後に更なる正送動作が行われて溶接ワイヤが座屈する虞がある。チップ母材間距離が伸びる状況において溶接ワイヤの正送速度が遅いと、溶接ワイヤの先端と被溶接物とが離間してアーク切れが生じる虞がある。このようにチップ母材間距離変化に対応して溶接ワイヤの送給速度を適切に調整しないと、溶接性能が低下したり、場合によっては溶接の継続に支障を来したりする虞があった。   For example, when the forward feed speed of the welding wire is high in a situation where the distance between the tip base materials is shortened, there is a risk that the forward welding operation is performed after the welding wire comes into contact with the workpiece and the welding wire is buckled. If the forward feed speed of the welding wire is slow in a situation where the distance between the tip base materials is extended, the tip of the welding wire and the work piece may be separated from each other and arc breakage may occur. In this way, if the feeding speed of the welding wire is not properly adjusted in response to the change in the distance between the tip base materials, there is a possibility that the welding performance may be deteriorated or the continuation of welding may be hindered depending on the case. .

本発明は、上記課題を解決するためになされたものであって、その目的は、溶接ワイヤの送給速度を適切に制御し、アーク溶接を良好に行うことができるアーク溶接用電源装置及びアーク溶接用電源装置の制御方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to appropriately control the feeding speed of the welding wire and perform arc welding satisfactorily and an arc welding power supply apparatus and arc. It is an object of the present invention to provide a method for controlling a welding power supply device.

上記課題を解決するアーク溶接用電源装置は、溶接ワイヤを放電電極としたその電極先端にてアークを生じさせて被溶接物のアーク溶接を行うべく、アーク溶接にかかる短絡期間とアーク期間との各期間に適した出力電力に調整する出力制御部と、前記溶接ワイヤのアークによる消耗に加えアーク溶接にかかる短絡期間とアーク期間との周期的変化を発生させるべく前記溶接ワイヤの正逆送を含むその送給速度を周期的に変化させる送給制御部とを備えたアーク溶接用電源装置であって、前記各期間に対する前記溶接ワイヤの送給速度同期ずれを判定する同期ずれ判定部を更に備え、前記送給制御部は、前記溶接ワイヤの正送から逆送への切り替わり付近で前記アーク期間に切り替わるべく前記溶接ワイヤの送給速度を周期的に変化させており、その逆送期間で前記溶接ワイヤの送給速度の調整を行うものであり、前記同期ずれ判定部にて前記溶接ワイヤの送給速度が遅い旨の送給速度同期ずれの判定がなされると逆送方向における加速を含む加速制御を実施し、前記同期ずれ判定部にて前記溶接ワイヤの送給速度が速い旨の送給速度同期ずれの判定がなされると逆送方向における減速を含む減速制御を実施する。   A power supply apparatus for arc welding that solves the above-described problems is a short circuit period and an arc period for arc welding in order to perform arc welding of an object to be welded by generating an arc at the tip of the electrode using a welding wire as a discharge electrode. An output control unit that adjusts output power suitable for each period, and forward / reverse feeding of the welding wire to generate a periodic change between a short circuit period and an arc period for arc welding in addition to the consumption of the welding wire by the arc. An arc welding power supply apparatus including a feeding control unit that periodically changes the feeding speed including a synchronization deviation determination unit that determines a feeding speed synchronization deviation of the welding wire with respect to each period. And the feeding control unit periodically changes the feeding speed of the welding wire so as to switch to the arc period in the vicinity of switching from normal feeding to reverse feeding of the welding wire. When the feeding speed of the welding wire is adjusted during the reverse feeding period, and the feeding speed synchronization deviation is determined by the synchronization deviation judgment unit to indicate that the feeding speed of the welding wire is slow. Acceleration control including acceleration in the reverse feed direction is performed, and when the determination of the feed speed synchronization deviation indicating that the feed speed of the welding wire is fast is made in the synchronization deviation determination unit, deceleration including deceleration in the reverse feed direction Implement control.

この構成によれば、溶接ワイヤの送給制御として、溶接ワイヤの正送から逆送への切り替わり付近でアーク期間に切り替わるように溶接ワイヤの送給速度を周期的に変化させており、その逆送期間で溶接ワイヤの送給速度の調整が行われる。そして、溶接ワイヤの送給速度が遅い旨の送給速度同期ずれの判定がなされると逆送方向における加速を含む加速制御が実施され、溶接ワイヤの送給速度が速い旨の送給速度同期ずれの判定がなされると逆送方向における減速を含む減速制御が実施される。つまり、溶接トーチの給電チップと被溶接物との間の距離、所謂チップ母材間距離が変化する等の溶接環境変化が生じて、溶接ワイヤの送給速度が遅い状況となった時には逆送期間にて加速制御として溶接ワイヤの送給速度の加速が行われ、溶接ワイヤの送給速度が速い状況となった時には逆送期間にて減速制御として溶接ワイヤの送給速度の減速が行われることから、それぞれの状況においていち早く所望速度に近似させることが可能となる。   According to this configuration, as the welding wire feeding control, the welding wire feeding speed is periodically changed so as to switch to the arc period in the vicinity of the switching from the normal feeding to the reverse feeding of the welding wire, and vice versa. The feeding speed of the welding wire is adjusted during the feeding period. Then, when it is determined that the feeding wire synchronization speed is slow, acceleration control including acceleration in the reverse feeding direction is performed, and the feeding wire synchronization speed is high. When the deviation is determined, deceleration control including deceleration in the reverse feed direction is performed. In other words, when the welding environment changes, such as the distance between the power supply tip of the welding torch and the workpiece to be welded, the so-called tip base metal distance changes, and the situation where the welding wire feeding speed is slow, reverse feeding is performed. Acceleration of the welding wire feeding speed is performed as acceleration control during the period, and when the welding wire feeding speed is high, the welding wire feeding speed is decelerated as deceleration control during the reverse feeding period. Therefore, it is possible to quickly approximate the desired speed in each situation.

また上記のアーク溶接用電源装置において、前記同期ずれ判定部は、前記短絡期間中の出力電圧の検出に基づいて前記溶接ワイヤの送給速度同期ずれが生じていると判定するのが好ましい。   Further, in the above-described arc welding power supply device, it is preferable that the synchronization deviation determination unit determines that a feeding speed synchronization deviation of the welding wire has occurred based on detection of an output voltage during the short circuit period.

この構成によれば、溶接ワイヤの送給速度同期ずれが生じているかの判定が、短絡期間中の出力電圧(平均電圧等)の検出に基づいて行われる。つまり、溶接ワイヤの送給速度同期ずれの判定が出力電圧の検出値にて容易に行われる。   According to this configuration, the determination as to whether or not the welding speed synchronization of the welding wire has occurred is made based on the detection of the output voltage (such as an average voltage) during the short circuit period. That is, the determination of the welding wire feeding speed synchronization deviation is easily performed based on the detected value of the output voltage.

また上記のアーク溶接用電源装置において、前記送給制御部は、前記溶接ワイヤの送給速度を周期的な変化曲線に沿って変化させるものであり、前記加速制御時にはその送給速度の調整時点の所定速度となるまで前記変化曲線の位相を逆送期間で進ませる制御を実施し、前記減速制御時にはその送給速度の調整時点の所定速度となるまで前記変化曲線の位相を逆送期間で遅らせる制御を実施するのが好ましい。   Further, in the above-described arc welding power supply device, the feeding control unit changes the feeding speed of the welding wire along a periodic change curve, and at the time of adjusting the feeding speed during the acceleration control. Control is performed to advance the phase of the change curve in the reverse feed period until the predetermined speed is reached, and during the deceleration control, the phase of the change curve is set in the reverse feed period until the predetermined speed at the time of adjustment of the feed speed is reached. It is preferable to implement a delay control.

この構成によれば、溶接ワイヤの送給速度を周期的な変化曲線に沿って変化させる送給制御が行われ、溶接ワイヤの送給速度が遅い状況での加速制御時には、その送給速度の調整時点の所定速度となるまで変化曲線の位相が逆送期間で進められる。また溶接ワイヤの送給速度が速い状況での減速制御時には、その送給速度の調整時点の所定速度となるまで変化曲線の位相が逆送期間で遅らせられる。つまり、溶接ワイヤの送給速度を都度設定するための周期的な変化曲線の位相調整による制御であることから、溶接ワイヤの送給制御の簡略化に貢献する。   According to this configuration, the feed control for changing the feed speed of the welding wire along the periodic change curve is performed, and at the time of acceleration control in a situation where the feed speed of the welding wire is slow, the feed speed The phase of the change curve is advanced in the reverse feed period until the predetermined speed at the time of adjustment is reached. Further, at the time of deceleration control in a situation where the feeding speed of the welding wire is high, the phase of the change curve is delayed in the reverse feeding period until the predetermined speed at the time of adjusting the feeding speed is reached. That is, since the control is based on the phase adjustment of the periodic change curve for setting the feed speed of the welding wire each time, it contributes to simplification of the feed control of the welding wire.

また上記のアーク溶接用電源装置において、前記送給制御部は、前記溶接ワイヤの送給速度を周期的な変化曲線に沿って変化させるものであり、前記加速制御時には前記変化曲線の振幅を振幅小の変化曲線を用いて逆送期間で小さくする制御を実施し、前記減速制御時には前記変化曲線の振幅を振幅大の変化曲線を用いて逆送期間で大きくする制御を実施するのが好ましい。   In the above arc welding power source device, the feed control unit changes the feed speed of the welding wire along a periodic change curve, and the amplitude of the change curve is amplitude during the acceleration control. It is preferable to perform control to reduce the reverse curve using a small change curve and to increase the amplitude of the change curve using the large amplitude change curve during the deceleration control.

この構成によれば、溶接ワイヤの送給速度を周期的な変化曲線に沿って変化させる送給制御が行われ、溶接ワイヤの送給速度が遅い状況での加速制御時には、その変化曲線の振幅が振幅小の変化曲線を用いて逆送期間で小さくされる。また溶接ワイヤの送給速度が速い状況での減速制御時には、その変化曲線の振幅が振幅大の変化曲線を用いて逆送期間で大きくされる。つまり、溶接ワイヤの送給速度を都度設定するための周期的な変化曲線の振幅調整による制御であることから、溶接ワイヤの送給制御の簡略化に貢献する。   According to this configuration, the feed control for changing the feed speed of the welding wire along the periodic change curve is performed, and at the time of acceleration control in the situation where the feed speed of the welding wire is slow, the amplitude of the change curve Is reduced in the reverse feed period using a change curve with a small amplitude. Further, at the time of deceleration control in a situation where the feeding speed of the welding wire is high, the amplitude of the change curve is increased in the reverse feed period using the change curve having a large amplitude. That is, since the control is based on the amplitude adjustment of the periodic change curve for setting the feed speed of the welding wire each time, it contributes to simplification of the feed control of the welding wire.

また上記課題を解決するアーク溶接用電源装置の制御方法は、溶接ワイヤを放電電極としたその電極先端にてアークを生じさせて被溶接物のアーク溶接を行うべく、アーク溶接にかかる短絡期間とアーク期間との各期間に適した出力電力に調整する出力制御と、前記溶接ワイヤのアークによる消耗に加えアーク溶接にかかる短絡期間とアーク期間との周期的変化を発生させるべく前記溶接ワイヤの正逆送を含むその送給速度を周期的に変化させる送給制御とを実施するアーク溶接用電源装置の制御方法であって、前記溶接ワイヤの正送から逆送への切り替わり付近で前記アーク期間に切り替わるべく前記溶接ワイヤの送給速度を周期的に変化させており、その逆送期間で前記溶接ワイヤの送給速度の調整を行うものであり、前記各期間に対する前記溶接ワイヤの送給速度同期ずれを判定する同期ずれ判定を行い、前記溶接ワイヤの送給速度が遅い旨の送給速度同期ずれの判定がなされると逆送方向における加速を含む加速制御を実施し、前記溶接ワイヤの送給速度が速い旨の送給速度同期ずれの判定がなされると逆送方向における減速を含む減速制御を実施する。   In addition, the control method of the power supply apparatus for arc welding that solves the above problems includes a short-circuit period for arc welding in order to perform arc welding of an object to be welded by generating an arc at the tip of the electrode using a welding wire as a discharge electrode. Output control for adjusting the output power to be suitable for each period of the arc period, and the welding wire in order to generate a periodic change between the short-circuit period and the arc period for arc welding in addition to the consumption of the welding wire by the arc. A control method for a power supply apparatus for arc welding that performs feed control that periodically changes the feed speed including reverse feed, wherein the arc period is near the switching from forward feed to reverse feed of the welding wire. The welding wire feeding speed is periodically changed so as to switch to the above, and the welding wire feeding speed is adjusted during the reverse feeding period. A synchronization shift determination is performed to determine a feed speed synchronization shift of the welding wire, and an acceleration control including an acceleration in a reverse feed direction is performed when a determination of a feed speed synchronization shift indicating that the feed speed of the welding wire is slow is made. When it is determined that the feeding speed synchronization deviation is determined to indicate that the feeding speed of the welding wire is high, deceleration control including deceleration in the reverse feeding direction is performed.

この構成においても上記と同様に、溶接トーチの給電チップと被溶接物との間の距離、所謂チップ母材間距離が変化する等の溶接環境変化が生じて、溶接ワイヤの送給速度が遅い状況となった時には逆送方向における加速を含む加速制御が、溶接ワイヤの送給速度が速い状況となった時には逆送方向における減速を含む減速制御がそれぞれ実施され、それぞれの状況においていち早く所望速度に近似させることが可能となる。   In this configuration as well, the welding wire changes such as the distance between the power supply tip of the welding torch and the workpiece, that is, the distance between the so-called tip base materials changes, and the feeding speed of the welding wire is slow. When the situation is reached, acceleration control including acceleration in the reverse feed direction is performed, and when the welding wire feed speed is high, deceleration control including deceleration in the reverse feed direction is performed. It is possible to approximate to

本発明のアーク溶接用電源装置及びアーク溶接用電源装置の制御方法によれば、溶接ワイヤの送給速度を適切に制御し、アーク溶接を良好に行うことができる。   According to the power supply apparatus for arc welding and the control method for the power supply apparatus for arc welding according to the present invention, it is possible to appropriately control the feeding speed of the welding wire and perform arc welding satisfactorily.

実施形態におけるアーク溶接機(アーク溶接用電源装置)の構成図である。It is a lineblock diagram of an arc welding machine (power supply device for arc welding) in an embodiment. 第1実施形態の制御態様を説明するための波形図である。It is a wave form diagram for demonstrating the control aspect of 1st Embodiment. 第1実施形態の制御態様を説明するための波形図である。It is a wave form diagram for demonstrating the control aspect of 1st Embodiment. 第2実施形態の制御態様を説明するための波形図である。It is a wave form diagram for demonstrating the control aspect of 2nd Embodiment. 第2実施形態の制御態様を説明するための波形図である。It is a wave form diagram for demonstrating the control aspect of 2nd Embodiment.

(第1実施形態)
以下、アーク溶接用電源装置及びアーク溶接用電源装置の制御方法の第1実施形態を説明する。
(First embodiment)
A first embodiment of the arc welding power supply apparatus and the arc welding power supply control method will be described below.

図1に示すように、アーク溶接機10としては、アーク溶接に適した出力電力を生成するアーク溶接用電源装置11と共に、アークを生じさせる放電電極としての溶接ワイヤ12への給電及びその保持を行う溶接トーチ13と、溶接ワイヤ12の送給を行う送給装置14と、溶接ワイヤ12が巻装されるワイヤスタンド15とを備えている。   As shown in FIG. 1, the arc welding machine 10 supplies and holds an electric power to a welding wire 12 as a discharge electrode that generates an arc, together with an arc welding power supply device 11 that generates output power suitable for arc welding. A welding torch 13 is provided, a feeding device 14 that feeds the welding wire 12, and a wire stand 15 around which the welding wire 12 is wound.

溶接トーチ13は、電源装置11とパワーケーブル16を介して接続され、電源装置11から電力供給を受ける。溶接トーチ13は、溶接ワイヤ12への給電を行う給電チップ13aを備えている。給電チップ13aは、溶接ワイヤ12の送給動作を許容しつつ、電源装置11にて生成された出力電力を溶接ワイヤ12に供給すべく電気的に接触している。このような溶接トーチ13は、溶接ワイヤ12(給電チップ13a)側が被溶接物(母材)Mに対向するように配置されて使用される。   The welding torch 13 is connected to the power supply device 11 via the power cable 16 and receives power supply from the power supply device 11. The welding torch 13 includes a power supply tip 13 a that supplies power to the welding wire 12. The power feed tip 13 a is in electrical contact with the welding wire 12 to supply the output power generated by the power supply device 11 while allowing the feeding operation of the welding wire 12. Such a welding torch 13 is arranged and used so that the welding wire 12 (power supply tip 13a) side faces the workpiece (base material) M to be welded.

送給装置14は、駆動源としてモータ14aを備え、溶接ワイヤ12のワイヤスタンド15からの引き出し及び溶接トーチ13への送出をそのモータ14aの駆動により行っている。放電電極である溶接ワイヤ12はアークの発生に伴って消耗するため、送給装置14は溶接ワイヤ12の消耗を補うべく溶接ワイヤ12の送給を行っている。また、この溶接ワイヤ12の送給においては、単なる一方向・一定速度の送給態様ではなく、前進(正送)や後退(逆送)、更にはその時々の送給速度Vftをも変更して行われている。このような送給装置14(モータ14a)は、電源装置11内の制御回路20にて制御され、溶接ワイヤ12の送給動作における正送と逆送の切り替え(モータ14aの正逆転)や、溶接ワイヤ12の送給速度Vft(モータ14aの回転速度)等が制御される。   The feeding device 14 includes a motor 14a as a drive source, and pulls the welding wire 12 from the wire stand 15 and sends it to the welding torch 13 by driving the motor 14a. Since the welding wire 12 serving as the discharge electrode is consumed as the arc is generated, the feeding device 14 feeds the welding wire 12 to compensate for the consumption of the welding wire 12. Further, the feeding of the welding wire 12 is not just a one-way / constant-speed feeding mode, but forward (forward feeding) or backward (reverse feeding), and the feeding speed Vft at that time is also changed. Has been done. Such a feeding device 14 (motor 14a) is controlled by the control circuit 20 in the power supply device 11, and switching between forward feeding and reverse feeding (forward / reverse rotation of the motor 14a) in the feeding operation of the welding wire 12, The feeding speed Vft of the welding wire 12 (rotational speed of the motor 14a) and the like are controlled.

アーク溶接用電源装置11は、CPUを含んで構成される制御回路20を備えている。制御回路20は、アーク溶接のための出力電力を生成する出力制御部20a、短絡・アーク期間Ts,Taを検出する期間検出部20b、溶接ワイヤ12の送給動作を制御する送給制御部20c、及び溶接ワイヤ12の送給速度同期ずれが生じたかを判定する同期ずれ判定部20d等を備え、これらにてアーク溶接を適切に行うための制御を行っている。   The arc welding power supply device 11 includes a control circuit 20 including a CPU. The control circuit 20 includes an output control unit 20a that generates output power for arc welding, a period detection unit 20b that detects short-circuit / arc periods Ts and Ta, and a feeding control unit 20c that controls the feeding operation of the welding wire 12. And a synchronization deviation determination unit 20d that determines whether or not a feeding speed synchronization deviation of the welding wire 12 has occurred, and controls to appropriately perform arc welding.

ここで、図2及び図3を参照すると、本実施形態のような消耗電極式のアーク溶接機10では、溶接ワイヤ12が被溶接物Mに接触する短絡期間Tsと、溶接ワイヤ12が被溶接物Mから離間してアークを生じさせるアーク期間Taとを交互に生じさせている。制御回路20は、短絡期間Tsとアーク期間Taとが適切に生じるように、出力制御部20aによる出力電力(出力電圧Vw、出力電流Iw)の調整や、送給制御部20cによる溶接ワイヤ12の送給方向及び送給速度Vftの調整を行っている。その際、制御回路20は、期間検出部20bによる電源装置11の出力電圧Vwの検出に基づいて短絡期間Tsとアーク期間Taとを検出している。   2 and 3, in the consumable electrode type arc welding machine 10 as in the present embodiment, the short-circuit period Ts in which the welding wire 12 contacts the workpiece M and the welding wire 12 is to be welded. Arc periods Ta for generating arcs apart from the object M are alternately generated. The control circuit 20 adjusts the output power (output voltage Vw, output current Iw) by the output control unit 20a and adjusts the welding wire 12 by the feed control unit 20c so that the short-circuit period Ts and the arc period Ta are appropriately generated. The feeding direction and the feeding speed Vft are adjusted. At that time, the control circuit 20 detects the short circuit period Ts and the arc period Ta based on the detection of the output voltage Vw of the power supply device 11 by the period detection unit 20b.

ところで、溶接トーチ13の給電チップ13aと被溶接物Mとの間の相対的距離、所謂チップ母材間距離L等、溶接環境は変化する。この場合、溶接ワイヤ12の送給速度Vftをその距離Lに応じて変更しないと、アーク溶接における短絡期間Tsとアーク期間Taとの周期的な発生に悪影響を与え、アーク溶接が適切に行えない虞がある。そこで、制御回路20は、出力電力の調整と共に、溶接ワイヤ12の送給方向及び送給速度Vftの調整を都度行っている。   By the way, the welding environment, such as the relative distance between the power feed tip 13a of the welding torch 13 and the workpiece M, the so-called tip base material distance L, changes. In this case, unless the feed speed Vft of the welding wire 12 is changed in accordance with the distance L, the periodic generation of the short-circuit period Ts and the arc period Ta in arc welding is adversely affected, and arc welding cannot be performed appropriately. There is a fear. Therefore, the control circuit 20 adjusts the feeding direction of the welding wire 12 and the feeding speed Vft as well as the adjustment of the output power.

図2及び図3に示すように、チップ母材間距離Lに変化が生じる前(時刻A1,A2以前)の状況では、出力電圧(アーク電圧)Vwや出力電流(溶接電流)Iwから分かる短絡期間Tsとアーク期間Taとの変化に対して、溶接ワイヤ12の送給速度Vftは正負(正逆送)も含めた正弦波状の変化曲線Xa上で変化させている。換言すると、溶接ワイヤ12の送給速度Vftを正弦波状の変化曲線Xa上で変化させて、短絡期間Tsとアーク期間Taとを周期的に発生させている。   As shown in FIGS. 2 and 3, in the situation before the change in the distance L between the base metals (before time A1, A2), a short circuit that can be understood from the output voltage (arc voltage) Vw and the output current (welding current) Iw. With respect to the change between the period Ts and the arc period Ta, the feed speed Vft of the welding wire 12 is changed on a sinusoidal change curve Xa including positive and negative (forward / reverse feed). In other words, the feeding speed Vft of the welding wire 12 is changed on the sinusoidal change curve Xa to periodically generate the short-circuit period Ts and the arc period Ta.

溶接ワイヤ12の送給速度Vftは、一定の正の送給速度Vf1に送給速度の周波数成分Vaが重畳されて設定されている。送給速度Vftがゼロより大となる正の領域では、溶接ワイヤ12を前進させる正送であり、送給速度Vftがゼロより小となる負の領域では、溶接ワイヤ12を後退させる逆送である。アーク期間Taの中期から短絡期間Tsの後期にかけては溶接ワイヤ12の正送の送給がなされ、短絡期間Tsの後期からアーク期間Taの中期にかけては溶接ワイヤ12の逆送の送給がなされる。   The feeding speed Vft of the welding wire 12 is set by superimposing a frequency component Va of the feeding speed on a constant positive feeding speed Vf1. In the positive region where the feed speed Vft is greater than zero, the feed wire 12 is forward fed. In the negative region where the feed speed Vft is less than zero, the feed wire 12 is moved backward. is there. From the middle period of the arc period Ta to the latter stage of the short circuit period Ts, the feed of the welding wire 12 is fed, and from the latter stage of the short circuit period Ts to the middle stage of the arc period Ta, the feeding of the welding wire 12 is fed back. .

チップ母材間距離Lの変化等が生じていない正常時では、他の溶接環境が変化しなければアーク期間Taに切り替わる時刻は略同じ時間間隔である。またこの正常時では、溶接ワイヤ12の送給速度Vftが逆送中の加速域(負の加速域)上の所定速度Vfa(周波数成分はVa1)となる時刻でアーク期間Taに切り替わるのが好ましい。   In a normal state where no change in the distance L between the tip base materials has occurred, the time for switching to the arc period Ta is approximately the same time interval when the other welding environment does not change. In this normal state, it is preferable to switch to the arc period Ta at a time when the feeding speed Vft of the welding wire 12 becomes a predetermined speed Vfa (frequency component is Va1) on the acceleration area (negative acceleration area) being reversely fed. .

これに対して、例えばチップ母材間距離Lに変化が生じた場合、図2の時刻A1直後の短絡期間Tsが短く次のアーク期間Taへの切り替わりが早くなったり、図3の時刻A2直後の短絡期間Tsが長く次のアーク期間Taへの切り替わりが遅くなったりする等の事象が生じる。   On the other hand, for example, when there is a change in the distance L between the base materials of the chip, the short-circuit period Ts immediately after time A1 in FIG. 2 is short, and the switching to the next arc period Ta is quick, or immediately after time A2 in FIG. The short-circuit period Ts is longer and the switching to the next arc period Ta is delayed.

例えば図2のように、チップ母材間距離Lが距離L0から距離Lhまで伸びた場合、その時刻A1直後の短絡期間Tsが短く、次のアーク期間Taへの切り替わりが早くなる。このような状況で、溶接ワイヤ12の送給速度Vftが正常時の設定のままであると、溶接ワイヤ12の逆送時の送給速度Vftが遅くなりがちである。   For example, as shown in FIG. 2, when the chip base metal distance L extends from the distance L0 to the distance Lh, the short-circuit period Ts immediately after the time A1 is short, and the switching to the next arc period Ta is quick. In such a situation, if the feeding speed Vft of the welding wire 12 is kept at the normal setting, the feeding speed Vft at the time of reverse feeding of the welding wire 12 tends to be slow.

また例えば図3のように、チップ母材間距離Lが距離L0から距離Llまで縮んだ場合、その時刻A2直後の短絡期間Tsが長く、次のアーク期間Taへの切り替わりが遅くなる。このような状況で、溶接ワイヤ12の送給速度Vftが正常時の設定のままであると、溶接ワイヤ12の逆送時の送給速度Vftが速くなりがちである。   Further, as shown in FIG. 3, for example, when the distance between the chip base materials L decreases from the distance L0 to the distance L1, the short-circuit period Ts immediately after the time A2 is long, and the switching to the next arc period Ta is delayed. In such a situation, if the feeding speed Vft of the welding wire 12 is kept at the normal setting, the feeding speed Vft at the time of reverse feeding of the welding wire 12 tends to increase.

これを踏まえ、本実施形態の制御回路20は、先ず、短絡期間Tsの出力電圧Vwの平均電圧Vave1,Vave2,Vave3を検出する。つまり、チップ母材間距離Lが伸びる図2の状況では、短絡期間Tsの平均電圧が例えばVave1からVave2に上昇し、チップ母材間距離Lが縮む図3の状況では、短絡期間Tsの平均電圧が例えばVave1からVave3に低下する。これに着目し、平均電圧Vave1〜Vave3の検出に基づいてチップ母材間距離Lの変化の検出が行われる。因みに、平均電圧Vave1〜Vave3の高低は、直前のものとの比較や予め定めたものとの比較等から検出可能である。そして、制御回路20は、平均電圧Vave1〜Vave3の電圧値の検出からチップ母材間距離Lの変化等の溶接環境変化を判定し、その時の状況に適した溶接ワイヤ12の送給速度Vftに調整する。   Based on this, the control circuit 20 of the present embodiment first detects the average voltages Vave1, Vave2, and Vave3 of the output voltage Vw during the short circuit period Ts. That is, in the situation of FIG. 2 where the distance L between the chip base materials is increased, the average voltage of the short circuit period Ts increases from Vave1 to Vave2, for example, and in the situation of FIG. For example, the voltage drops from Vave1 to Vave3. Focusing on this, a change in the distance L between the chip base materials is detected based on detection of the average voltages Vave1 to Vave3. Incidentally, the level of the average voltages Vave1 to Vave3 can be detected by comparison with the immediately preceding one or comparison with a predetermined one. Then, the control circuit 20 determines a welding environment change such as a change in the distance L between the tip base materials from the detection of the voltage values of the average voltages Vave1 to Vave3, and sets the feeding speed Vft of the welding wire 12 suitable for the situation at that time. adjust.

次に、本実施形態の動作(作用)について説明する。
「チップ母材間距離Lに変化無し」
短絡期間Tsの出力電圧Vwの平均電圧が許容範囲内のVave1である場合、制御回路20の同期ずれ判定部20dはチップ母材間距離Lの変化が略生じておらず現状の溶接ワイヤ12の送給速度Vftが適切(同期している)と判定し、送給制御部20cは溶接ワイヤ12の送給速度Vftの変化態様(変化曲線Xa)を維持する。
Next, the operation (action) of this embodiment will be described.
“No change in the distance L between chip base materials”
When the average voltage of the output voltage Vw in the short-circuit period Ts is Vave1 within an allowable range, the synchronization deviation determination unit 20d of the control circuit 20 does not substantially change the tip base material distance L, and the current welding wire 12 It is determined that the feeding speed Vft is appropriate (synchronized), and the feeding control unit 20c maintains the change mode (change curve Xa) of the feeding speed Vft of the welding wire 12.

「チップ母材間距離Lが伸びた場合」
図2に示すように、短絡期間Tsの出力電圧Vwの平均電圧が許容範囲を超え、例えばVave1からVave2まで上昇した場合、同期ずれ判定部20dはチップ母材間距離Lが伸び溶接ワイヤ12の逆送時の送給速度Vftが遅いと判定し、送給制御部20cは溶接ワイヤ12の送給速度Vftの変化曲線Xaの位相を逆送時においてα1だけ早くする。つまり、この短絡期間Tsを経てアーク期間Taに切り替わる時の正規の速度、例えば図2の場合では溶接ワイヤ12の送給速度Vftが逆送中の減速域上の所定速度Vfaとなる変化曲線Xa上まで位相がα1だけ進められる。従って、チップ母材間距離Lが伸びると溶接ワイヤ12の送給速度Vftが遅くなりがちとなるが、逆送時において位相を進めたアーク期間Taの切り替わり時以降は、溶接ワイヤ12の送給速度Vftの加速が行われて逆送から正送側への切り替えが早まって、溶接ワイヤ12の送給速度Vfaがいち早く所望速度に近似するようになっている(加速制御)。
“When the distance L between the base materials is extended”
As shown in FIG. 2, when the average voltage of the output voltage Vw in the short-circuit period Ts exceeds the allowable range, for example, rises from Vave1 to Vave2, the synchronization deviation determination unit 20d increases the distance L between the tip base materials and increases the welding wire 12 It is determined that the feed speed Vft at the time of reverse feed is slow, and the feed control unit 20c advances the phase of the change curve Xa of the feed speed Vft of the welding wire 12 by α1 at the time of reverse feed. That is, the change speed Xa at which the normal speed when switching to the arc period Ta through the short-circuit period Ts, for example, the feed speed Vft of the welding wire 12 in the case of FIG. The phase is advanced by α1 to the top. Accordingly, when the distance L between the tip base materials is increased, the feeding speed Vft of the welding wire 12 tends to be slow. However, after the arc period Ta in which the phase is advanced during the reverse feeding, the feeding speed of the welding wire 12 is increased. The speed Vft is accelerated and the switching from the reverse feed to the forward feed is accelerated, so that the feed speed Vfa of the welding wire 12 quickly approximates the desired speed (acceleration control).

また、送給制御部20cは、チップ母材間距離Lの変化直後の1箇所において上記の位相調整を行うのみで、以降において距離Lの変化が無ければ位相調整を行わない。尚、位相調整後に距離Lが再度変化した場合では、その変化直後に上記の位相調整が行われる。つまり、1度の距離Lの変化に対して直後の1箇所で位相調整が行われる。   Further, the feeding control unit 20c only performs the above-described phase adjustment at one place immediately after the change in the chip base material distance L, and does not perform the phase adjustment if there is no change in the distance L thereafter. When the distance L changes again after the phase adjustment, the above phase adjustment is performed immediately after the change. That is, the phase adjustment is performed at one place immediately after the change of the distance L once.

このようにチップ母材間距離Lが伸びる状況では、溶接ワイヤ12の逆送時の送給速度Vftの上記位相調整により、結果的に溶接ワイヤ12の給電チップ13aからの突き出し長さが距離Lの伸びた分相当長くされ、ワイヤ12の先端と被溶接物(母材)Mとの間隔が略維持されるように調整している。   Thus, in the situation where the distance L between the tip base materials is extended, the above-described phase adjustment of the feeding speed Vft when the welding wire 12 is reversely fed results in that the protruding length of the welding wire 12 from the feeding tip 13a is the distance L. The length of the wire 12 is increased and the distance between the tip of the wire 12 and the workpiece (base material) M is adjusted to be substantially maintained.

「チップ母材間距離Lが縮んだ場合」
図3に示すように、短絡期間Tsの出力電圧Vwの平均電圧が許容範囲を超え、例えばVave1からVave3まで低下した場合、同期ずれ判定部20dはチップ母材間距離Lが縮み溶接ワイヤ12の送給速度Vftが速いと判定し、送給制御部20cは溶接ワイヤ12の送給速度Vftの変化曲線Xaの位相を逆送時においてα2だけ遅くする。つまり、この短絡期間Tsを経てアーク期間Taに切り替わる時の正規の速度、例えば図3の場合では溶接ワイヤ12の送給速度Vftが再び逆送中の加速域上の所定速度Vfaとなる変化曲線Xa上まで位相がα2だけ遅くされる。従って、チップ母材間距離Lが縮むと溶接ワイヤ12の送給速度Vftが速くなりがちとなるが、逆送時において位相を遅らせたアーク期間Taの切り替わり時以降は、溶接ワイヤ12の送給速度Vftの減速が行われて逆送から正送側への切り替えが遅くなって、溶接ワイヤ12の送給速度Vfaがいち早く所望速度に近似するようになっている(減速制御)。
“When the distance L between chip base materials is shortened”
As shown in FIG. 3, when the average voltage of the output voltage Vw in the short-circuit period Ts exceeds the allowable range, for example, decreases from Vave1 to Vave3, the synchronization deviation determination unit 20d reduces the distance L between the tip base materials and reduces the welding wire 12 It is determined that the feeding speed Vft is fast, and the feeding control unit 20c delays the phase of the change curve Xa of the feeding speed Vft of the welding wire 12 by α2 during reverse feeding. That is, a change curve in which the normal speed when switching to the arc period Ta through the short-circuit period Ts, for example, the feed speed Vft of the welding wire 12 in the case of FIG. The phase is delayed by α2 up to Xa. Accordingly, when the distance between the tip base metals L is shortened, the feeding speed Vft of the welding wire 12 tends to increase. However, after the arc period Ta whose phase is delayed during reverse feeding, the feeding speed of the welding wire 12 is changed. The speed Vft is decelerated and the switching from the reverse feed to the forward feed is delayed, so that the feed speed Vfa of the welding wire 12 quickly approximates the desired speed (deceleration control).

また、送給制御部20cは、チップ母材間距離Lが伸びた時と同様に、距離Lの変化直後の1箇所において上記の位相調整を行うのみで、以降において距離Lの変化が無ければ位相調整を行わない。つまり、このチップ母材間距離Lが縮んだ場合においても、1度の距離Lの変化に対して直後の1箇所で位相調整が行われる。   Similarly to the case where the distance between the tip base materials L is increased, the feeding control unit 20c only performs the above-described phase adjustment at one place immediately after the change in the distance L, and if there is no change in the distance L thereafter. Do not adjust the phase. That is, even when the distance between the chip base materials L is shortened, the phase adjustment is performed at one place immediately after the change of the distance L once.

このようにチップ母材間距離Lが縮む状況においても、溶接ワイヤ12の送給速度Vftの上記位相調整により、結果的に溶接ワイヤ12の給電チップ13aからの突き出し長さが距離Lの縮んだ分相当短くされ、ワイヤ12の先端と被溶接物(母材)Mとの間隔が略維持されるように調整している。   Thus, even in a situation where the distance L between the tip base materials is shortened, as a result of the above phase adjustment of the feeding speed Vft of the welding wire 12, the protruding length of the welding wire 12 from the power feeding tip 13a is shortened by the distance L. The distance between the tip end of the wire 12 and the workpiece (base material) M is adjusted to be substantially maintained.

次に、本実施形態の特徴的な効果を記載する。
(1)溶接ワイヤ12の送給制御として、溶接ワイヤ12の正送から逆送への切り替わり付近でアーク期間Taに切り替わるように溶接ワイヤ12の送給速度Vftを周期的に変化させており、その逆送期間で溶接ワイヤ12の送給速度Vftの調整が行われる。そして、溶接ワイヤ12の送給速度Vftが遅い旨の送給速度同期ずれの判定がなされると逆送方向における加速を含む加速制御が実施され(図2)、溶接ワイヤ12の送給速度Vftが速い旨の送給速度同期ずれの判定がなされると逆送方向における減速を含む減速制御が実施される(図3)。つまり、溶接トーチ13の給電チップ13aと被溶接物Mとの間の距離(チップ母材間距離L)が変化する等の溶接環境変化は短絡期間Ts中の出力電圧Vwの平均電圧(Vave1〜Vave3)から検出でき、その平均電圧との関係で溶接ワイヤ12の送給速度Vftが遅い状況となった時には逆送期間にて加速制御として溶接ワイヤ12の送給速度Vftの加速が行われ、溶接ワイヤ12の送給速度Vftが速い状況となった時には逆送期間にて減速制御として溶接ワイヤ12の送給速度Vftの減速が行われることから、それぞれの状況においていち早く所望速度に近似させることができ、アーク溶接を良好に行うことができる。
Next, characteristic effects of the present embodiment will be described.
(1) As feeding control of the welding wire 12, the feeding speed Vft of the welding wire 12 is periodically changed so as to switch to the arc period Ta in the vicinity of switching from normal feeding to reverse feeding of the welding wire 12, The feed speed Vft of the welding wire 12 is adjusted during the reverse feed period. Then, when the feed speed synchronization deviation is determined to indicate that the feed speed Vft of the welding wire 12 is slow, acceleration control including acceleration in the reverse feed direction is performed (FIG. 2), and the feed speed Vft of the welding wire 12 is performed. When it is determined that the feeding speed synchronization deviation is high, deceleration control including deceleration in the reverse feeding direction is performed (FIG. 3). That is, a change in the welding environment such as a change in the distance between the power supply tip 13a of the welding torch 13 and the workpiece M (distance L between the tip base materials) changes the average voltage (Vave1˜) of the output voltage Vw during the short-circuit period Ts. Vave3), and when the feed speed Vft of the welding wire 12 becomes slow in relation to the average voltage, the feed speed Vft of the welding wire 12 is accelerated as acceleration control in the reverse feed period. When the feed speed Vft of the welding wire 12 becomes fast, the feed speed Vft of the welding wire 12 is decelerated as deceleration control during the reverse feed period, so that the desired speed can be quickly approximated in each situation. Therefore, arc welding can be performed satisfactorily.

尚、チップ母材間距離Lの変化に対する溶接ワイヤ12の送給速度Vftの調整を中心に説明したが、チップ母材間距離L以外の溶接環境変化に対する溶接ワイヤ12の送給速度Vftの調整も行われる。   The adjustment of the feeding speed Vft of the welding wire 12 with respect to the change in the distance L between the tip base materials has been mainly described. However, the adjustment of the feeding speed Vft of the welding wire 12 with respect to changes in the welding environment other than the distance L between the tip base materials. Is also done.

(2)溶接ワイヤ12の送給速度Vftの同期ずれが生じているかの判定が、短絡期間Ts中の出力電圧Vwの平均電圧(Vave1〜Vave3)に基づいて行われる。つまり、溶接ワイヤ12の送給速度Vftの同期ずれの判定を出力電圧Vwの平均電圧(Vave1〜Vave3)にて容易に行うことができる。   (2) Determination of whether or not the synchronization of the feeding speed Vft of the welding wire 12 has occurred is performed based on the average voltage (Vave1 to Vave3) of the output voltage Vw during the short circuit period Ts. That is, it is possible to easily determine the synchronization deviation of the feeding speed Vft of the welding wire 12 with the average voltage (Vave1 to Vave3) of the output voltage Vw.

また本実施形態では、直前の短絡期間Tsの平均電圧による判定で、その直後のアーク期間Taへの切り替わり時に溶接ワイヤ12の送給速度Vftの調整が行われることから、その送給速度Vftへの反映が速やかである。   Further, in the present embodiment, since the feed voltage Vft of the welding wire 12 is adjusted when switching to the arc period Ta immediately after the determination based on the average voltage of the short-circuit period Ts immediately before, the feed speed Vft is reached. Reflection is prompt.

(3)溶接ワイヤ12の送給速度Vftを周期的な変化曲線Xaに沿って変化させる送給制御が行われ、溶接ワイヤ12の送給速度Vftが遅い状況での加速制御時には、その送給速度の調整時点(アーク期間Taへの切り替わり時)の所定速度Vfaとなるまで変化曲線Xaの位相が逆送期間でα1進められる。また溶接ワイヤ12の送給速度Vftが速い状況での減速制御時には、その送給速度の調整時点(アーク期間Taへの切り替わり時)の所定速度Vfaとなるまで変化曲線Xaの位相が逆送期間でα2遅らせられる。つまり、溶接ワイヤ12の送給速度Vftを都度設定するための周期的な変化曲線Xaの位相調整による制御であることから、溶接ワイヤ12の送給制御の簡略化に貢献する。   (3) Feed control for changing the feed speed Vft of the welding wire 12 along the periodic change curve Xa is performed, and at the time of acceleration control when the feed speed Vft of the welding wire 12 is slow, the feed is performed. The phase of the change curve Xa is advanced by α1 in the reverse feed period until the speed reaches the predetermined speed Vfa at the time of speed adjustment (when switching to the arc period Ta). Further, at the time of deceleration control when the feed speed Vft of the welding wire 12 is high, the phase of the change curve Xa is reversed until the feed speed is adjusted to the predetermined speed Vfa at the time of adjustment of the feed speed (when switching to the arc period Ta). Is delayed by α2. That is, since the control is based on the phase adjustment of the periodic change curve Xa for setting the feeding speed Vft of the welding wire 12 each time, it contributes to simplification of the feeding control of the welding wire 12.

(第2実施形態)
以下、アーク溶接用電源装置及びアーク溶接用電源装置の制御方法の第2実施形態を説明する。
(Second Embodiment)
A second embodiment of the arc welding power supply device and the arc welding power supply control method will be described below.

本実施形態では、制御回路20の送給制御部20cでの制御態様が先の第1実施形態と異なる。第1実施形態では、溶接ワイヤ12の送給速度Vftの変化曲線Xaの位相調整(振幅固定)を行ったのに対し、本実施形態では、溶接ワイヤ12の送給速度Vftの変化曲線Xaの振幅調整(位相固定)を行う制御態様となっている。   In the present embodiment, the control mode of the feed control unit 20c of the control circuit 20 is different from that of the first embodiment. In the first embodiment, the phase adjustment (amplitude is fixed) of the change curve Xa of the feeding speed Vft of the welding wire 12 is performed. In the present embodiment, the change curve Xa of the feeding speed Vft of the welding wire 12 is adjusted. This is a control mode for performing amplitude adjustment (phase fixing).

「チップ母材間距離Lが伸びた場合」
図4に示すように、短絡期間Tsの出力電圧Vwの平均電圧が許容範囲を超え、例えばVave1からVave2まで上昇した場合、同期ずれ判定部20dはチップ母材間距離Lが伸び溶接ワイヤ12の送給速度Vftが遅いと判定し、送給制御部20cはこの短絡期間Ts後のアーク期間Taへの切り替わり時に溶接ワイヤ12の送給速度Vftの変化曲線Xaの振幅を逆送時において小さくする。従って、チップ母材間距離Lが伸びると溶接ワイヤ12の送給速度Vftが遅くなりがちとなるが、逆送時において振幅の小さい変化曲線Xbを用いることで、溶接ワイヤ12の送給速度Vfaがいち早く所望速度に近似するようになっている(加速制御)。
“When the distance L between the base materials is extended”
As shown in FIG. 4, when the average voltage of the output voltage Vw in the short-circuit period Ts exceeds the allowable range, for example, rises from Vave1 to Vave2, the synchronization deviation determination unit 20d increases the distance L between the tip base materials and increases the welding wire 12 It is determined that the feeding speed Vft is slow, and the feeding control unit 20c reduces the amplitude of the change curve Xa of the feeding speed Vft of the welding wire 12 during reverse feeding when switching to the arc period Ta after this short-circuit period Ts. . Accordingly, when the distance L between the tip base materials is extended, the feeding speed Vft of the welding wire 12 tends to be slow, but the feeding speed Vfa of the welding wire 12 is used by using the change curve Xb having a small amplitude at the time of reverse feeding. Is quickly approximated to the desired speed (acceleration control).

また、送給制御部20cは、例えば図4の場合では、溶接ワイヤ12の送給速度Vftを逆送中の減速域上の所定速度Vfaから送給速度Vf1まで振幅の小さい変化曲線Xb上で変化させ、それ以降は通常の変化曲線Xa上で変化させる。つまり、この振幅調整においても、1度の距離Lの変化に対して直後の1箇所で振幅調整が行われる。   For example, in the case of FIG. 4, the feeding control unit 20 c changes the feeding speed Vft of the welding wire 12 on a change curve Xb having a small amplitude from a predetermined speed Vfa on the deceleration area during reverse feeding to the feeding speed Vf1. After that, it is changed on the normal change curve Xa. That is, also in this amplitude adjustment, the amplitude adjustment is performed at one place immediately after the change of the distance L once.

このようにチップ母材間距離Lが伸びる状況では、逆送時の溶接ワイヤ12の送給速度Vftの上記振幅調整により、結果的に溶接ワイヤ12の給電チップ13aからの突き出し長さが距離Lの伸びた分相当長くされ、ワイヤ12の先端と被溶接物(母材)Mとの間隔が略維持される調整となっている。   Thus, in a situation where the distance L between the tip base materials is extended, by adjusting the amplitude of the feeding speed Vft of the welding wire 12 at the time of reverse feeding, as a result, the protruding length of the welding wire 12 from the power feeding tip 13a becomes the distance L. Therefore, the distance between the tip of the wire 12 and the workpiece (base material) M is substantially maintained.

「チップ母材間距離Lが縮んだ場合」
図5に示すように、短絡期間Tsの出力電圧Vwの平均電圧が許容範囲を超え、例えばVave1からVave3まで低下した場合、同期ずれ判定部20dはチップ母材間距離Lが縮み溶接ワイヤ12の送給速度Vftが速いと判定し、送給制御部20cはこの短絡期間Ts後のアーク期間Taへの切り替わり時に溶接ワイヤ12の送給速度Vftの変化曲線Xaの振幅を逆送時において大きくする。従って、チップ母材間距離Lが縮むと溶接ワイヤ12の送給速度Vftが速くなりがちとなるが、逆送時において振幅の大きい変化曲線Xcを用いることで、溶接ワイヤ12の送給速度Vfaがいち早く所望速度に近似するようになっている(減速制御)。
“When the distance L between chip base materials is shortened”
As shown in FIG. 5, when the average voltage of the output voltage Vw in the short-circuit period Ts exceeds the allowable range, for example, decreases from Vave1 to Vave3, the synchronization deviation determination unit 20d reduces the distance L between the tip base materials and reduces the welding wire 12 It is determined that the feeding speed Vft is fast, and the feeding control unit 20c increases the amplitude of the change curve Xa of the feeding speed Vft of the welding wire 12 at the time of reverse feeding when switching to the arc period Ta after this short-circuit period Ts. . Accordingly, when the distance L between the tip base materials is shortened, the feeding speed Vft of the welding wire 12 tends to increase, but the feeding speed Vfa of the welding wire 12 can be obtained by using the change curve Xc having a large amplitude during reverse feeding. Is quickly approximated to the desired speed (deceleration control).

また、送給制御部20cは、例えば図5の場合では、溶接ワイヤ12の送給速度Vftを逆送中の加速域上の所定速度Vfaから送給速度Vf1まで振幅の大きい変化曲線Xc上で変化させ、それ以降は通常の変化曲線Xa上で変化させる。つまり、この振幅調整においても、1度の距離Lの変化に対して直後の1箇所で振幅調整が行われる。   Further, for example, in the case of FIG. 5, the feeding control unit 20c changes the feeding speed Vft of the welding wire 12 on a change curve Xc having a large amplitude from a predetermined speed Vfa on the acceleration region being reversely fed to the feeding speed Vf1. After that, it is changed on the normal change curve Xa. That is, also in this amplitude adjustment, the amplitude adjustment is performed at one place immediately after the change of the distance L once.

このようにチップ母材間距離Lが縮む状況においても、逆送時の溶接ワイヤ12の送給速度Vftの上記振幅調整により、結果的に溶接ワイヤ12の給電チップ13aからの突き出し長さが距離Lの縮んだ分相当短くされ、ワイヤ12の先端と被溶接物(母材)Mとの間隔が略維持される調整となっている。   Even in the situation where the distance L between the tip base materials is reduced as described above, the above-mentioned amplitude adjustment of the feeding speed Vft of the welding wire 12 at the time of reverse feeding results in that the protruding length of the welding wire 12 from the feeding tip 13a is a distance. The length of the wire 12 is shortened and the distance between the tip of the wire 12 and the workpiece (base material) M is substantially maintained.

次に、本実施形態の特徴的な効果を記載する。
(1)(2)この第2実施形態においても、第1実施形態の効果(1)(2)と同様な効果が得られる。
Next, characteristic effects of the present embodiment will be described.
(1) (2) In the second embodiment, the same effects as the effects (1) and (2) of the first embodiment can be obtained.

(3)溶接ワイヤ12の送給速度Vftが遅い状況での加速制御時には、その変化曲線Xaの振幅が振幅小の変化曲線Xbを用いて逆送期間で小さくされる。また溶接ワイヤ12の送給速度Vftが速い状況での減速制御時には、その変化曲線Xaの振幅が振幅大の変化曲線Xcを用いて逆送期間で大きくされる。つまり、溶接ワイヤ12の送給速度Vftを都度設定するための周期的な変化曲線Xaの振幅調整による制御であることから、溶接ワイヤの送給制御の簡略化に貢献する。   (3) At the time of acceleration control in a situation where the feed speed Vft of the welding wire 12 is slow, the amplitude of the change curve Xa is reduced in the reverse feed period using the change curve Xb having a small amplitude. Further, at the time of deceleration control when the feeding speed Vft of the welding wire 12 is fast, the amplitude of the change curve Xa is increased in the reverse feed period using the change curve Xc having a large amplitude. That is, since the control is based on the amplitude adjustment of the periodic change curve Xa for setting the feeding speed Vft of the welding wire 12 each time, it contributes to simplification of the feeding control of the welding wire.

尚、上記実施形態は、以下のように変更してもよい。
・短絡期間Tsの出力電圧Vwの平均電圧を用いて、チップ母材間距離Lの変化等の溶接環境変化に起因する溶接ワイヤ12の送給速度Vftの同期ずれ判定を行ったが、出力電圧Vwの平均電圧以外の電圧値を用いてもよい。また1つの短絡期間Tsでの電圧値だけでなく、複数の短絡期間Tsの電圧値を用いてもよい。また出力電流Iwを用いてもよい。また予定時刻と実時刻との時間ずれを用いて判定してもよい。更には測距装置による直接的なチップ母材間距離Lの計測を用いる等、他のパラメータを1つ又は複数用いて、送給速度同期ずれの判定を行ってもよい。
In addition, you may change the said embodiment as follows.
The average deviation of the output voltage Vw during the short circuit period Ts was used to determine the synchronization deviation of the feeding speed Vft of the welding wire 12 due to the welding environment change such as the change in the distance L between the tip base materials. A voltage value other than the average voltage of Vw may be used. Moreover, not only the voltage value in one short circuit period Ts but the voltage value in several short circuit periods Ts may be used. The output current Iw may be used. Alternatively, the determination may be made using a time lag between the scheduled time and the actual time. Further, the feeding speed synchronization deviation may be determined using one or more other parameters such as direct measurement of the distance L between the chip base materials by a distance measuring device.

・アーク期間Taへの切り替わり時に溶接ワイヤ12の送給速度Vftの調整を行ったが、逆送期間のこれ以外のタイミングで行ってもよい。
・その他、アーク溶接機10、アーク溶接用電源装置11及び制御回路20の構成を適宜変更してもよい。
-Although the feed speed Vft of the welding wire 12 was adjusted at the time of switching to the arc period Ta, it may be performed at other timings in the reverse feed period.
-In addition, you may change suitably the structure of the arc welding machine 10, the power supply apparatus 11 for arc welding, and the control circuit 20. FIG.

・その他、溶接ワイヤ12の送給速度Vftの制御等、アーク溶接にかかる各種制御を適宜変更してもよい。
次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
In addition, various controls related to arc welding such as control of the feeding speed Vft of the welding wire 12 may be changed as appropriate.
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.

(イ) 溶接ワイヤへの給電及びその保持を行う溶接トーチと、前記溶接ワイヤの送給を行いその送給動作が制御される送給装置と、請求項1〜4のいずれか1項に記載のアーク溶接用電源装置とを備えたことを特徴とするアーク溶接機。   (B) A welding torch for feeding and holding the welding wire, a feeding device for feeding the welding wire and controlling the feeding operation, and any one of claims 1 to 4. An arc welding machine comprising a power supply device for arc welding.

この構成によれば、溶接ワイヤの送給速度を適切に制御し、アーク溶接を良好に行うアーク溶接機として提供することができる。   According to this structure, it can provide as an arc welding machine which controls the feeding speed of a welding wire appropriately, and performs arc welding favorably.

11 アーク溶接用電源装置
12 溶接ワイヤ
20a 出力制御部
20c 送給制御部
20d 同期ずれ判定部
M 被溶接物
Ts 短絡期間
Ta アーク期間
Iw 出力電流(出力電力)
Vw 出力電圧(出力電力)
Vave1,Vave2,Vave3 平均電圧
Vft 送給速度
Vfa 所定速度
Xa,Xb,Xc 変化曲線
α1,α2 位相
DESCRIPTION OF SYMBOLS 11 Power supply apparatus for arc welding 12 Welding wire 20a Output control part 20c Feed control part 20d Synchronous deviation determination part M Workpiece Ts Short-circuit period Ta Arc period Iw Output current (output power)
Vw output voltage (output power)
Vave1, Vave2, Vave3 Average voltage Vft Feeding speed Vfa Predetermined speed Xa, Xb, Xc Change curve α1, α2 Phase

Claims (5)

溶接ワイヤを放電電極としたその電極先端にてアークを生じさせて被溶接物のアーク溶接を行うべく、アーク溶接にかかる短絡期間とアーク期間との各期間に適した出力電力に調整する出力制御部と、前記溶接ワイヤのアークによる消耗に加えアーク溶接にかかる短絡期間とアーク期間との周期的変化を発生させるべく前記溶接ワイヤの正逆送を含むその送給速度を周期的に変化させる送給制御部とを備えたアーク溶接用電源装置であって、
前記各期間に対する前記溶接ワイヤの送給速度同期ずれを判定する同期ずれ判定部を更に備え、
前記送給制御部は、前記溶接ワイヤの正送から逆送への切り替わり付近で前記アーク期間に切り替わるべく前記溶接ワイヤの送給速度を周期的に変化させており、その逆送期間で前記溶接ワイヤの送給速度の調整を行うものであり、前記同期ずれ判定部にて前記溶接ワイヤの送給速度が遅い旨の送給速度同期ずれの判定がなされると逆送方向における加速を含む加速制御を実施し、前記同期ずれ判定部にて前記溶接ワイヤの送給速度が速い旨の送給速度同期ずれの判定がなされると逆送方向における減速を含む減速制御を実施することを特徴とするアーク溶接用電源装置。
Output control that adjusts to the output power suitable for each period of the short circuit period and arc period for arc welding in order to generate arc at the tip of the electrode with welding wire as discharge electrode and to perform arc welding of the work to be welded In addition to the wear of the welding wire due to the arc, the feeding speed including the forward and reverse feeding of the welding wire is periodically changed so as to generate a periodic change between a short circuit period and an arc period for arc welding. A power supply device for arc welding comprising a feed control unit,
A synchronization deviation determination unit that determines a feeding speed synchronization deviation of the welding wire for each period;
The feeding control unit periodically changes the feeding speed of the welding wire so as to switch to the arc period in the vicinity of the switching from the normal feeding to the reverse feeding of the welding wire, and the welding wire is switched during the reverse feeding period. The wire feeding speed is adjusted, and when the synchronization deviation judging unit judges that the feeding wire synchronization speed is slow, the acceleration including the acceleration in the reverse feeding direction is performed. Control is performed, and when the determination of the feeding speed synchronization deviation that the feeding speed of the welding wire is fast is made in the synchronization deviation determination unit, deceleration control including deceleration in the reverse feeding direction is performed. Power supply device for arc welding.
請求項1に記載のアーク溶接用電源装置において、
前記同期ずれ判定部は、前記短絡期間中の出力電圧の検出に基づいて前記溶接ワイヤの送給速度同期ずれが生じていると判定することを特徴とするアーク溶接用電源装置。
In the power supply apparatus for arc welding according to claim 1,
The power supply apparatus for arc welding, wherein the synchronization deviation determination unit determines that a feed speed synchronization deviation of the welding wire has occurred based on detection of an output voltage during the short circuit period.
請求項1又は2に記載のアーク溶接用電源装置において、
前記送給制御部は、前記溶接ワイヤの送給速度を周期的な変化曲線に沿って変化させるものであり、前記加速制御時にはその送給速度の調整時点の所定速度となるまで前記変化曲線の位相を逆送期間で進ませる制御を実施し、前記減速制御時にはその送給速度の調整時点の所定速度となるまで前記変化曲線の位相を逆送期間で遅らせる制御を実施することを特徴とするアーク溶接用電源装置。
In the power supply apparatus for arc welding according to claim 1 or 2,
The feed control unit is configured to change the feed speed of the welding wire along a periodic change curve, and at the time of the acceleration control, the feed rate of the change curve is changed to a predetermined speed at the time of adjusting the feed speed. Control is performed to advance the phase in the reverse feed period, and during the deceleration control, control is performed to delay the phase of the change curve in the reverse feed period until it reaches a predetermined speed at the time of adjustment of the feed speed. Power supply for arc welding.
請求項1又は2に記載のアーク溶接用電源装置において、
前記送給制御部は、前記溶接ワイヤの送給速度を周期的な変化曲線に沿って変化させるものであり、前記加速制御時には前記変化曲線の振幅を振幅小の変化曲線を用いて逆送期間で小さくする制御を実施し、前記減速制御時には前記変化曲線の振幅を振幅大の変化曲線を用いて逆送期間で大きくする制御を実施することを特徴とするアーク溶接用電源装置。
In the power supply apparatus for arc welding according to claim 1 or 2,
The feeding control unit is configured to change the feeding speed of the welding wire along a periodic change curve. During the acceleration control, the amplitude of the change curve is changed using a change curve having a small amplitude. The arc welding power source apparatus is characterized in that control is performed to reduce the amplitude of the change curve, and during the deceleration control, control is performed to increase the amplitude of the change curve in a reverse feed period using a change curve having a large amplitude.
溶接ワイヤを放電電極としたその電極先端にてアークを生じさせて被溶接物のアーク溶接を行うべく、アーク溶接にかかる短絡期間とアーク期間との各期間に適した出力電力に調整する出力制御と、前記溶接ワイヤのアークによる消耗に加えアーク溶接にかかる短絡期間とアーク期間との周期的変化を発生させるべく前記溶接ワイヤの正逆送を含むその送給速度を周期的に変化させる送給制御とを実施するアーク溶接用電源装置の制御方法であって、
前記溶接ワイヤの正送から逆送への切り替わり付近で前記アーク期間に切り替わるべく前記溶接ワイヤの送給速度を周期的に変化させており、その逆送期間で前記溶接ワイヤの送給速度の調整を行うものであり、
前記各期間に対する前記溶接ワイヤの送給速度同期ずれを判定する同期ずれ判定を行い、前記溶接ワイヤの送給速度が遅い旨の送給速度同期ずれの判定がなされると逆送方向における加速を含む加速制御を実施し、前記溶接ワイヤの送給速度が速い旨の送給速度同期ずれの判定がなされると逆送方向における減速を含む減速制御を実施することを特徴とするアーク溶接用電源装置の制御方法。
Output control that adjusts to the output power suitable for each period of the short circuit period and arc period for arc welding in order to generate arc at the tip of the electrode with welding wire as discharge electrode and to perform arc welding of the work to be welded And feeding that periodically changes the feeding speed including forward and reverse feeding of the welding wire in order to generate a periodic change between a short-circuit period and an arc period of arc welding in addition to the consumption of the welding wire by the arc. A control method of a power supply device for arc welding that performs control,
The feeding speed of the welding wire is periodically changed so as to switch to the arc period in the vicinity of switching from normal feeding to reverse feeding of the welding wire, and adjustment of the feeding speed of the welding wire is performed in the reverse feeding period. Is what
A synchronization deviation determination is performed to determine the welding wire feeding speed synchronization deviation with respect to each period, and when a feeding speed synchronization deviation is determined to indicate that the welding wire feeding speed is slow, acceleration in the reverse feeding direction is performed. An arc welding power source characterized in that the acceleration control including the deceleration is performed and the deceleration control including the deceleration in the reverse feeding direction is performed when the determination of the feeding speed synchronization deviation indicating that the feeding speed of the welding wire is high is made. Control method of the device.
JP2013059906A 2013-03-22 2013-03-22 Power supply device for arc welding and control method of power supply device for arc welding Pending JP2014184452A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013059906A JP2014184452A (en) 2013-03-22 2013-03-22 Power supply device for arc welding and control method of power supply device for arc welding
KR1020140014709A KR102106651B1 (en) 2013-03-22 2014-02-10 Power supply device for arc-welding and control method of power supply device for arc-welding
CN201410087855.2A CN104057179B (en) 2013-03-22 2014-03-11 The control method of electric arc power source device for welding and electric arc power source device for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013059906A JP2014184452A (en) 2013-03-22 2013-03-22 Power supply device for arc welding and control method of power supply device for arc welding

Publications (1)

Publication Number Publication Date
JP2014184452A true JP2014184452A (en) 2014-10-02

Family

ID=51545268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013059906A Pending JP2014184452A (en) 2013-03-22 2013-03-22 Power supply device for arc welding and control method of power supply device for arc welding

Country Status (3)

Country Link
JP (1) JP2014184452A (en)
KR (1) KR102106651B1 (en)
CN (1) CN104057179B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117228A1 (en) * 2015-01-19 2016-07-28 株式会社ダイヘン Control method for arc welding
US11090754B2 (en) * 2018-01-26 2021-08-17 Daihen Corporation Arc welding control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6756072B2 (en) * 2016-03-23 2020-09-16 株式会社神戸製鋼所 Welding robot mechanism

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS487474Y1 (en) 1969-07-17 1973-02-26
JP4516698B2 (en) * 2001-01-25 2010-08-04 株式会社ダイヘン Welding wire feed motor drive control device and inverter type arc welding machine
JP4319586B2 (en) * 2004-06-23 2009-08-26 株式会社ダイヘン AC pulse arc welding method
JP4916650B2 (en) * 2004-07-12 2012-04-18 パナソニック株式会社 Arc welding robot
JP5205290B2 (en) * 2009-01-14 2013-06-05 株式会社神戸製鋼所 Gas shield arc welding equipment
WO2010146844A1 (en) * 2009-06-19 2010-12-23 パナソニック株式会社 Consumable electrode arc welding method and consumable electrode arc welding device
JP5502414B2 (en) * 2009-09-30 2014-05-28 株式会社ダイヘン Arc welding method and arc welding system
CN103260807B (en) * 2011-07-12 2015-01-21 松下电器产业株式会社 Arc welding control method and arc welding device
CN102601493B (en) * 2012-03-29 2014-10-08 华南理工大学 Embedded multi-device real-time control welding robot system and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117228A1 (en) * 2015-01-19 2016-07-28 株式会社ダイヘン Control method for arc welding
US11090754B2 (en) * 2018-01-26 2021-08-17 Daihen Corporation Arc welding control method

Also Published As

Publication number Publication date
KR102106651B1 (en) 2020-05-04
CN104057179A (en) 2014-09-24
CN104057179B (en) 2018-03-09
KR20140115945A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
KR102118220B1 (en) Power supply apparatus for arc welding and control method of power supply apparatus for arc welding
JP3203250U (en) Method and system for welding with a power supply having a single welding mode
EP1985400B1 (en) Method of controlling arc welding and welding device
EP2716395B1 (en) Arc welding control method and arc welding device
EP3020498B1 (en) Arc welding method
US8723081B2 (en) Welding output control method and arc welding equipment
CN109641298B (en) Short-circuit welding method and device for carrying out said short-circuit welding method
KR20180055827A (en) Arc welding apparatus and arc welding method
JP6125932B2 (en) Power supply apparatus for arc welding and control method for power supply apparatus for arc welding
JP6524412B2 (en) Arc welding control method
JP2014184452A (en) Power supply device for arc welding and control method of power supply device for arc welding
JP5879503B2 (en) Arc welding control method and arc welding apparatus
JP4946785B2 (en) Arc welding control method and arc welding apparatus
JP5160961B2 (en) Feed control method for consumable electrode arc welding
JP2014184451A (en) Power supply device for arc welding and control method of power supply device for arc welding
JP6396162B2 (en) Arc welding control method
JP6994623B2 (en) Arc start method
US11305370B2 (en) Arc welding control method
WO2018070364A1 (en) Arc welding method and arc welding device
JP2007216303A (en) Arc start control method
JP2020131200A (en) Arc-welding method
JP2023066023A (en) Welding completion control method for consumable electrode arc welding
JP2023122461A (en) Arc-welding control method
JP2023010100A (en) Arc-welding control method
KR101194173B1 (en) Welding machine and welding method