WO2024114773A1 - 继电器 - Google Patents

继电器 Download PDF

Info

Publication number
WO2024114773A1
WO2024114773A1 PCT/CN2023/135695 CN2023135695W WO2024114773A1 WO 2024114773 A1 WO2024114773 A1 WO 2024114773A1 CN 2023135695 W CN2023135695 W CN 2023135695W WO 2024114773 A1 WO2024114773 A1 WO 2024114773A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
push rod
movable spring
movable
contact
Prior art date
Application number
PCT/CN2023/135695
Other languages
English (en)
French (fr)
Inventor
何仲波
代文广
钟叔明
何峰
Original Assignee
厦门宏发电力电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202223234176.2U external-priority patent/CN218867003U/zh
Priority claimed from CN202223233526.3U external-priority patent/CN218996614U/zh
Priority claimed from CN202223234023.8U external-priority patent/CN218867005U/zh
Priority claimed from CN202211544804.9A external-priority patent/CN118136457A/zh
Application filed by 厦门宏发电力电器有限公司 filed Critical 厦门宏发电力电器有限公司
Publication of WO2024114773A1 publication Critical patent/WO2024114773A1/zh

Links

Definitions

  • the embodiments of the present disclosure relate to the technical field of electronic control devices, and in particular, to a relay.
  • a relay is an electronic control device that has a control system (also known as an input circuit) and a controlled system (also known as an output circuit). It is usually used in automatic control circuits.
  • a relay is actually an "automatic switch” that uses a smaller current to control a larger current. Therefore, it plays the role of automatic regulation, safety protection, and circuit conversion in the circuit.
  • the push rod drives the moving reed to move in the direction of the static reed until the moving reed contacts the static reed.
  • the push rod drives the moving reed to move in the direction away from the static reed until the push rod moves to the initial position.
  • the connection structure between the push rod and the moving reed in the prior art is not stable enough, resulting in the movement of the moving reed not being smooth during the contact separation process.
  • relays are usually equipped with anti-short circuit structures to prevent the contacts from bouncing open due to a large short circuit load.
  • a magnetic conductor is set inside the relay. When the short circuit current generates an electromotive force, the magnetic conductor is magnetized to generate an electromagnetic attraction, thereby preventing the moving spring from bouncing open instantly and avoiding the relay from burning or exploding.
  • an inverted U-shaped bracket or a stopper is usually arranged just above the moving spring to ensure the smooth movement of the moving spring.
  • the magnetic conductor of the anti-short circuit structure is also arranged just above the moving spring, and part of the U-shaped bracket or the stopper exists between the moving spring and the magnetic conductor, which affects the magnetic field strength of the anti-short circuit structure.
  • the embodiment of the present disclosure provides a relay to solve the problem in the prior art that the magnetic field strength of the anti-short circuit structure is easily affected.
  • the relay of the disclosed embodiment includes a housing, a first magnetic conductor, a contact assembly and a push rod, the first magnetic conductor is fixedly connected to the housing and is located on the side of the moving spring sheet facing the static spring sheet;
  • the contact assembly includes a moving spring sheet and a static spring sheet, the static spring sheet is fixedly connected to the housing, and the moving spring sheet is arranged in the housing;
  • the push rod is movable relative to the housing;
  • the push rod includes a rod portion, a bottom portion, a first side portion and a second side portion, the bottom portion is connected to one end of the axial direction of the rod portion, the first side portion and the second side portion are both connected to the bottom portion, and are relatively arranged along the length direction of the moving spring sheet;
  • the first side portion is provided with a first through hole, the second side portion is provided with a second through hole, and the moving spring sheet is penetrated by the first through hole and the second through hole; along the axial direction of the rod portion, the moving spring sheet is
  • a first elastic member is further included, connected between the movable reed and the push rod, and is used to apply an elastic force to the movable reed to move toward the first position.
  • the magnetic conductive region is located between the first side portion and the second side portion.
  • moving contacts are provided at both ends of the moving spring in the length direction, one of the moving contacts is located on the side of the first side portion facing away from the second side portion, and the other moving contact is located on the side of the second side portion facing away from the first side portion; the magnetic conductive area is located between the two moving contacts.
  • a first positioning portion and a second positioning portion are protrudingly provided on one side of the movable spring piece, the first positioning portion corresponds to the position of the first side portion, and the second positioning portion corresponds to the position of the second side portion; in the length direction of the movable spring piece, the movable spring piece is arranged at a predetermined position of the push rod through the first positioning portion and the second positioning portion.
  • the first side portion has a first stop surface on the side facing the second side portion, and the second side portion has a second stop surface on the side facing the first side portion; the first positioning portion abuts against the first stop surface, and the second positioning portion abuts against the second stop surface.
  • the first positioning portion and the second positioning portion are protruded from a surface of the movable spring piece facing the static spring piece.
  • the relay also includes a second magnetic conductor, which is connected to the magnetic conductor area of the moving reed, and the second magnetic conductor is fixedly connected to the side of the moving reed facing away from the first magnetic conductor, so that a magnetic circuit is formed between the first magnetic conductor and the second magnetic conductor in the width direction of the moving reed; wherein, along the axial direction of the rod portion, no part of the push rod is accommodated between the second magnetic conductor and the first magnetic conductor.
  • the second magnetic conductor is U-shaped and covers the magnetic conductive area along the width direction of the movable spring.
  • the second magnetic conductor includes at least two sub-magnetic conductors, each of which is U-shaped; the movable spring sheet is provided with at least one through hole, at least two of the sub-magnetic conductors are connected to the side of the movable spring sheet facing away from the first magnetic conductor, and the side portions of at least two of the sub-magnetic conductors pass through at least one through hole so as to be close to or contact with the first magnetic conductor through the through hole, and form at least two independent magnetic conductive circuits in the width direction of the movable spring sheet.
  • the shell has a mounting portion, which is located on one side of the push rod in a radial direction, and the radial direction is perpendicular to the movement direction of the push rod; the first magnetic conductor is fixedly connected to the mounting portion.
  • the housing includes a side wall, the side wall is located on one side of the push rod in a radial direction, and the mounting portion is formed on the side wall.
  • the side wall surrounds the push rod along the circumferential direction of the push rod.
  • the housing comprises:
  • the outer cover is connected to the base, and the outer cover and the base form a chamber for accommodating the contact assembly, the push rod and the first magnetic conductor; the base and/or the outer cover form the side wall.
  • the first magnetic conductor includes a connecting portion and a suspended portion, and the connecting portion is fixedly connected to the mounting portion; wherein a virtual plane perpendicular to the movement direction of the push rod is defined, the connecting portion has a first orthographic projection on the virtual plane, the suspended portion has a second orthographic projection on the virtual plane, and the movable reed has a third orthographic projection on the virtual plane, the first orthographic projection does not overlap with the third orthographic projection, and the second orthographic projection at least partially overlaps with the third orthographic projection.
  • the first magnetic conductor is a flat plate structure.
  • the first magnetic conductor is inserted into the mounting portion of the shell along an insertion direction, and the insertion direction is perpendicular to the movement direction of the push rod.
  • the mounting portion includes a first mounting hole, which passes through the inner surface and the outer surface of the shell, and the hole wall of the first mounting hole has a first positioning wall structure and a first gap wall structure; the first magnetic conductor is inserted into the first mounting hole, and a portion of the outer wall surface of the first magnetic conductor is abutted against the first positioning wall structure, and there is a gap between the portion of the outer wall surface of the first magnetic conductor and the first gap wall structure, and the gap is filled with sealant.
  • a portion of the outer wall surface of the first magnetic conductor is interference fit with the first positioning wall structure.
  • the insertion direction of the first magnetic conductor is perpendicular to the length direction of the movable spring.
  • the static spring sheet is inserted into the housing along the insertion direction.
  • the shell also has a second mounting hole that passes through its inner surface and outer surface, and the hole wall of the second mounting hole has a second positioning wall structure and a second gap wall structure; the static spring sheet is inserted into the second mounting hole, and a portion of the outer wall surface of the static spring sheet abuts against the second positioning wall structure, and there is a gap between the portion of the outer wall surface of the static spring sheet and the second gap wall structure, and the gap is filled with sealant.
  • a portion of the outer wall surface of the static spring sheet is interference fit with the second positioning wall structure.
  • the push rod when the push rod drives the moving spring to move, the push rod forms two tension force points with the moving spring through the first side portion and the second side portion, and the two tension force points are arranged along the length direction of the moving spring, so that the moving spring moves more smoothly; on the other hand, in the movement direction of the push rod mechanism, the magnetic conductive area of the moving spring is in contact with the magnetic conductive area of the moving spring. No part of the push rod is accommodated between the first magnetic conductors, so as to prevent the push rod from affecting the magnetic field strength between the moving spring sheet and the first magnetic conductor, thereby ensuring the short-circuit resistance.
  • FIG. 1 is a top view of an embodiment of a relay of the present disclosure, wherein the outer cover is omitted.
  • FIG2 shows a cross-sectional view along the line A-A in FIG1.
  • FIG3 shows a cross-sectional view along the line B-B in FIG2 .
  • FIG. 4 shows a schematic diagram of a push rod.
  • FIG. 5 is a schematic front view of the push rod, the contact assembly and the yoke iron plate after being assembled.
  • FIG. 6 is a perspective schematic diagram showing the push rod, the contact assembly and the yoke iron plate after being assembled.
  • FIG. 7 is a schematic side view of FIG. 5 .
  • FIG8 shows a cross-sectional view along the line C-C in FIG7.
  • FIG9 is a schematic diagram showing the relative positions of the first orthographic projection, the second orthographic projection and the third orthographic projection on the virtual plane.
  • FIG10 shows a cross-sectional view along the line D-D in FIG2.
  • FIG. 11 is a partial enlarged view of the X1 portion in FIG. 10 .
  • FIG. 12 shows a partial enlarged view of the X2 portion in FIG. 10 .
  • FIG. 13 is a schematic diagram showing the first magnetic conductor, the second magnetic conductor and the contact assembly after being assembled according to the first embodiment of the present disclosure.
  • 14 and 15 are schematic diagrams showing two different viewing angles of the assembled movable spring and the second magnetic conductor according to the second embodiment of the present disclosure.
  • FIG. 16 and FIG. 17 are schematic diagrams showing the elastic member according to the embodiment of the present disclosure at two different viewing angles.
  • FIG. 18 shows a top view of another embodiment of the relay of the present disclosure, in which the upper cover is omitted.
  • FIG19 shows a cross-sectional view along the line E-E in FIG18.
  • FIG20 is a cross-sectional view taken along line F-F in FIG19.
  • FIG. 21 shows a schematic diagram of a push rod.
  • FIG. 22 shows a front view schematic diagram of the push rod, the contact assembly and the yoke iron plate after assembly.
  • FIG. 23 is a perspective schematic diagram showing the push rod, the contact assembly and the yoke plate after assembly.
  • FIG. 24 is a schematic side view of FIG. 22 .
  • FIG. 25 shows a cross-sectional view along line G-G in FIG. 24 .
  • FIG. 26 and FIG. 27 are schematic diagrams showing the first elastic member at two different viewing angles.
  • FIG. 28 shows a top view of another embodiment of the relay of the present disclosure, in which the upper cover is omitted.
  • FIG. 29 shows a cross-sectional view along the line H-H in FIG. 28 .
  • FIG. 30 shows a cross-sectional view along line II in FIG. 29 .
  • FIG31 is a schematic diagram showing an auxiliary contact assembly in a relay according to an embodiment of the present disclosure, which is disposed at one end of a push rod mechanism.
  • FIG. 32 is a schematic diagram showing an auxiliary dynamic spring according to an embodiment of the present disclosure.
  • FIG. 33 is a schematic diagram showing an auxiliary static spring according to an embodiment of the present disclosure.
  • FIG. 34 is a schematic diagram showing the assembly of the push rod and the auxiliary contact assembly.
  • FIG. 35 shows a top view of another embodiment of the relay of the present disclosure, in which the upper cover is omitted.
  • FIG. 36 shows a cross-sectional view taken along line J-J in FIG. 35 .
  • FIG37 shows a cross-sectional view along K-K in FIG36.
  • FIG38 shows a cross-sectional view along the line M-M in FIG36.
  • FIG. 39 shows a local enlarged view of position X3 in FIG. 38 .
  • FIG40 shows a cross-sectional view along the line N-N in FIG35.
  • FIG. 41 shows a local enlarged view of position X4 in FIG. 40 .
  • FIG42 shows a cross-sectional view along P-P in FIG35.
  • FIG. 43 shows a local enlarged view of position X5 in FIG. 42 .
  • FIG. 44 is a perspective schematic diagram of a relay according to an embodiment of the present disclosure, wherein the bottom surface of the base faces upward.
  • the terms “a”, “an”, “the” and “said” are used to indicate the presence of one or more elements/components/etc.; the terms “including” and “having” are used to express an open-ended inclusion and mean that additional elements/components/etc. may exist in addition to the listed elements/components/etc.; the terms “first”, “second”, etc. are used only as labels and are not intended to limit the quantity of their objects.
  • the terms “first”, “second”, and “third” are used for descriptive purposes only and are not to be understood as indicating or implying relative importance; the term “plurality” refers to two or more, unless otherwise clearly defined.
  • the terms “installed”, “connected”, “connected”, “fixed”, etc. should be understood in a broad sense. For example, “connected” can be a fixed connection, a detachable connection, or an integral connection; “connected” can be a direct connection or an indirect connection through an intermediate medium.
  • the specific meanings of the above terms in the embodiments of the invention can be understood according to the specific circumstances.
  • Figure 1 shows a top view of the relay of the embodiment of the present disclosure, wherein the outer cover is omitted
  • Figure 2 shows a cross-sectional view along A-A in Figure 1
  • Figure 3 shows a cross-sectional view along B-B in Figure 2.
  • the relay of the embodiment of the present disclosure includes a housing 1, a push rod mechanism 20, a magnetic circuit mechanism 30 and a contact assembly 40.
  • the housing 1 is the housing of the relay.
  • the push rod mechanism 20, the magnetic circuit mechanism 30 and the contact assembly 40 are arranged on the base 10, and the magnetic circuit mechanism 30 controls the contact contact or separation of the contact assembly 40 through the push rod mechanism 20.
  • the housing 1 may include a base 10 and an outer cover (not shown in the figure), wherein the outer cover is connected to the base 10 to form a chamber for accommodating the push rod mechanism 20 , the magnetic circuit mechanism 30 and the contact assembly 40 .
  • the magnetic circuit mechanism 30 includes a yoke structure 310, a bobbin 320 and a coil 330.
  • the yoke structure 310 forms a chamber, and the bobbin 320 and the coil 330 are both arranged in the chamber of the yoke structure 310.
  • the coil 330 is wound around the outer periphery of the bobbin 320 to form a magnetic control circuit.
  • the bobbin 320 is provided with a center hole 321 in the contact contact and separation direction of the contact assembly 40, and the center hole 321 is used for one end of the push rod mechanism 20 to pass through.
  • the yoke structure 310 includes a yoke plate 311 and a U-shaped yoke 312, and the yoke plate 311 and the U-shaped yoke 312 are connected to form a ring.
  • the yoke plate 311 is provided with a through hole 3111, and the through hole 3111 is used for the push rod mechanism 20 to pass through.
  • the yoke structure 310 may also include a cylindrical yoke and a yoke plate 311 , and the cylindrical yoke and the yoke plate 311 are connected to form a ring.
  • the magnetic circuit mechanism 30 further includes two permanent magnets 340, which are arranged on the wire frame 320 and located on both sides of the movement direction of the push rod mechanism 20.
  • the two permanent magnets 340 form a magnetic circuit structure of magnetic retention, which is conducive to reducing electricity costs, extending service life, and improving stability.
  • the push rod mechanism 20 is movable between the fifth position and the sixth position relative to the base 10.
  • the contact assembly 40 is in a fully closed state.
  • the contact assembly 40 is in a fully disconnected state.
  • the push rod mechanism 20 includes a push rod 210 and an iron core 220, and the iron core 220 is connected to the push rod 210.
  • the iron core 220 can move in the direction of contact contact or separation under the action of the magnetic control circuit formed by the coil 330, thereby driving the push rod 210 to move, so as to control the contact contact or separation of the contact assembly 40.
  • the contact assembly 40 is in a fully closed state, which means: the state of the contact assembly 40 after the moving reed and the stationary reed of the contact assembly 40 are in contact and the overtravel is completed; the contact assembly 40 is in a fully disconnected state, which means: the state of the contact assembly 40 when the contact gap is the largest after the moving reed and the stationary reed of the contact assembly 40 are disconnected.
  • the contact assembly 40 includes a moving spring 410, 430 and a stationary spring 420, 440.
  • the stationary spring 420, 440 is fixedly installed on the base 10, and the moving spring 410, 430 is arranged in the housing 1.
  • the contact assembly 40 is divided into two groups, namely, a first contact assembly 40a and a second contact assembly 40b, and the first contact assembly 40a and the second contact assembly 40b are arranged along the movement direction of the push rod mechanism 20.
  • the first contact assembly 40a is close to the magnetic circuit mechanism 30, and the second contact assembly 40b is far away from the magnetic circuit mechanism 30.
  • the first contact assembly 40a includes a first movable reed 410 and two first stationary reeds 420.
  • the second contact assembly 40b includes a second movable reed 430 and two second stationary reeds 440. Both ends of the first movable reed 410 can contact or separate from the two first stationary reeds 420, and both ends of the second movable reed 430 can contact or separate from the two second stationary reeds 440.
  • the contact assembly 40 may also be a group or other quantity.
  • the two ends of the moving spring pieces 410, 430 in the length direction serve as moving contacts, which may protrude from other parts of the moving spring pieces 410, 430 or may be flush with other parts.
  • the parts of the stationary spring pieces 420, 440 that contact the moving contacts serve as stationary contacts, which may protrude from other parts of the stationary spring pieces 420, 440 or may be flush with other parts.
  • the first moving spring piece 410 includes a first moving spring body 416 and a first moving contact 411.
  • the first moving contact 411 and the first moving spring body 416 are separate structures.
  • the first moving contact 411 and the first moving spring body 416 can be connected by riveting, but not limited to this.
  • the first static spring piece 420 includes a first static spring body 421 and a first static contact 422.
  • the first static contact 422 and the first static spring body 421 are separate structures.
  • the first static contact 422 and the first static spring body 421 can be connected by riveting, but not limited to this.
  • the second movable spring piece 430 includes a second movable spring body 434 and a second movable contact 431.
  • the second movable contact 431 and the second movable spring body 434 are separate structures.
  • the second movable contact 431 and the second movable spring body 434 can be connected by riveting, but the present invention is not limited thereto.
  • the second static spring piece 440 includes a second static spring body 441 and a second static contact 442.
  • the second static contact 442 and the second static spring body 441 are separate structures.
  • the second static contact 442 and the second static spring body 441 can be connected by riveting, but the present invention is not limited thereto.
  • first moving contact 411 and the first moving spring body 416 can be an integral structure; the first static contact 422 and the first static spring body 421 can be an integral structure; the second moving contact 431 and the second moving spring body 434 can be an integral structure; the second static contact 442 and the second static spring body 441 can be an integral structure.
  • the housing 1 can also be a ceramic cover.
  • the housing 1 has a mounting portion 11, which is located on one side of the push rod mechanism 20 in the radial direction, and the radial direction is perpendicular to the movement direction D3 of the push rod mechanism 20.
  • the relay of the disclosed embodiment further includes a first magnetic conductor 610, which corresponds to the contact assembly 40, that is, located on the side of the moving reed leaf facing the static reed leaf.
  • the first magnetic conductor 610 is fixedly connected to the base 10.
  • the first magnetic conductor 610 corresponds to the contact assembly 40, which means that the number of the first magnetic conductor 610 corresponds to the number of the contact assembly 40, and the position of the first magnetic conductor 610 corresponds to the contact assembly 40.
  • the number of the contact assembly 40 is two, and the number of the first magnetic conductor 610 is also two, and one of the first magnetic conductors 610 corresponds to the first movable spring piece 410 of the first contact assembly 40a, and the other first magnetic conductor 610 corresponds to the second movable spring piece 430 of the second contact assembly 40b.
  • the relay of the disclosed embodiment since the mounting portion 11 of the shell 1 is located on one side of the push rod mechanism 20 in the radial direction, wherein the radial direction is perpendicular to the movement direction of the push rod mechanism 20, the position where the first magnetic conductor 610 is fixedly connected to the mounting portion 11 is also located on one side of the push rod mechanism 20, that is, the position where the first magnetic conductor 610 is connected to the mounting portion 11 of the shell 1 is not located above the moving reed sheet.
  • the relay of this embodiment can be provided with first magnetic conductors 610 corresponding to multiple contact assemblies 40, so that each contact assembly 40 is provided with an anti-short circuit structure.
  • the housing 1 includes a top wall, a bottom wall and a side wall, the top wall and the bottom wall are arranged opposite to each other along the movement direction of the push rod mechanism 20, and the side wall is connected to the top wall and the bottom wall.
  • the side wall is located on one side of the push rod mechanism 20 in the radial direction, and the mounting portion 11 is formed on the side wall.
  • the side wall surrounds the push rod mechanism 20 along the circumferential direction of the push rod mechanism 20 .
  • the shape of the shell 1 can be various embodiments, for example, the shell 1 can be a cube, a cylinder, etc., but it is not limited thereto.
  • the base 10 and/or the outer cover of the housing 1 are formed with side walls, and the side walls are provided with mounting portions 11.
  • the mounting portion 11 can be formed only on the base 10, or only on the outer cover, and of course, the mounting portions 11 can also be formed on both the base 10 and the outer cover.
  • the first magnetic conductor 610 is arranged above the moving reed pieces 410, 430.
  • the moving reed pieces 410, 430 are in contact with the static reed pieces 420, 440, current passes through the moving reed pieces 410, 430, thereby forming a magnetic conductive circuit surrounding the moving reed pieces 410, 430 on the outer periphery of the moving reed pieces 410, 430 in the width direction D2.
  • the suction force is superimposed on the contact pressure to generate a greater contact pressure, which can resist the electromotive repulsion caused by the short-circuit current between the movable contact of the movable spring pieces 410, 430 and the static contact of the static spring pieces 420, 440, ensuring that the movable contact of the movable spring pieces 410, 430 and the static contact of the static spring pieces 420, 440 do not bounce apart.
  • the first magnet 610 is fixedly connected to the base 10 and does not move with the push rod mechanism 20, so that the suction force of the movable spring pieces 410, 430 on the first magnet 610 acts on the base 10. Since the position of the base 10 is relatively fixed, the suction force of the first magnet 610 has nothing to do with the push rod mechanism 20. This can avoid the push rod mechanism 20 from having insufficient holding force and causing the movable spring pieces 410, 430 and the static spring pieces 420, 440 to bounce apart, causing the relay to burn out or explode.
  • Figure 4 shows a schematic diagram of the push rod 210.
  • Figure 5 shows a schematic diagram of the front view of the push rod 210, the contact assembly 40 and the yoke plate 311 after assembly.
  • Figure 6 shows a three-dimensional schematic diagram of the push rod 210, the contact assembly 40 and the yoke plate 311 after assembly.
  • the push rod 210 is used to drive the first movable spring 410 to move so as to contact or separate from the first static spring 420.
  • the push rod 210 includes a rod portion 211, a bottom portion 212, a first side portion 213 and a second side portion 214.
  • the rod portion 211 is movably inserted into the through hole 3111 of the yoke plate 311, and the iron core 220 is connected to the rod portion 211.
  • the bottom portion 212 is connected to one axial end of the rod portion 211, and the first side portion 213 and the second side portion 214 are both connected to the bottom portion 212, and are relatively arranged along the length direction D1 of the first movable spring 410.
  • the first side portion 213 is provided with a first through hole 2131
  • the second side portion 214 is provided with a second through hole 2141
  • the first movable spring piece 410 is penetrated by the first through hole 2131 and the second through hole 2141, and along the axial direction of the rod portion 211, the first movable spring piece 410 is movable between a first position and a second position relative to the first through hole 2131 and the second through hole 2141; in the first position, the first movable spring piece 410 is respectively in contact with the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141.
  • the relay further includes a first elastic member 500 a , which is disposed between the first movable reed 410 and the bottom 212 of the push rod 210 , and is used to apply an elastic force to the first movable reed 410 to move toward the first position.
  • the push rod 210 drives the first movable spring 410 to move toward the first static spring 420.
  • the first movable spring 410 contacts the first static spring 420, under the action of the first elastic member 500a, the first movable spring 410 abuts against the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141 respectively and is in the first position.
  • the first movable spring 410 contacts the first static spring 420, since the first static spring 420 is fixedly mounted on the base 10, the first movable spring 410 is stopped by the first static spring 420 and cannot continue to move.
  • the push rod 210 will continue to move, and the first elastic member 500a will be gradually compressed until the overtravel is completed.
  • the first movable spring 410 is in the second position relative to the first through hole 2131 and the second through hole 2141.
  • the process of the push rod 210 moving in the direction away from the first static spring piece 420 can be divided into two stages: in the first stage, the push rod 210 moves while the first movable spring piece 410 does not move with the push rod 210. In the first stage, the first movable spring piece 410 moves from the second position to the first position relative to the first through hole 2131 and the second through hole 2141.
  • the first movable spring piece 410 has moved to the first position relative to the first through hole 2131 and the second through hole 2141, and at this time, the first movable spring piece 410 abuts against the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141 respectively. Afterwards, the movement of the push rod 210 will drive the first movable spring piece 410 to move accordingly, so that the first movable spring piece 410 is separated from the first static spring piece 420.
  • the position where the hole wall of the first through hole 2131 abuts against the first movable spring piece 410 is equivalent to a point of application of one force
  • the position where the hole wall of the second through hole 2141 abuts against the first movable spring piece 410 is equivalent to another point of application of force.
  • the first movable reed 410 has a magnetic conductive area 415 corresponding to the first magnetic conductive body 610 , and no part of the push rod 210 is accommodated between the magnetic conductive area 415 and the first magnetic conductive body 610 .
  • the push rod 210 drives the first movable spring 410 to move, the push rod 210 forms two tension force points with the first movable spring 410 through the first side portion 213 and the second side portion 214, and the two tension force points are arranged along the length direction D1 of the first movable spring 410, so that the first movable spring 410 moves more smoothly; on the other hand, in the movement direction D3 of the push rod mechanism 20, the magnetic conductive area 415 of the first movable spring 410 and the first magnetic conductive area 416 are connected to each other.
  • the body 610 does not contain any part of the push rod 210, so as to prevent the push rod 210 from affecting the magnetic field strength between the first movable reed 410 and the first magnetic conductor 610, thereby ensuring the anti-short circuit capability.
  • the magnetic conductive region 415 of the first movable reed 410 is located between the first side portion 213 and the second side portion 214 .
  • first moving contacts 411 are provided at both ends of the first moving spring piece 410 in the length direction D1, wherein one of the first moving contacts 411 is located on the side of the first side portion 213 facing away from the second side portion 214, and the other first moving contact 411 is located on the side of the second side portion 214 facing away from the first side portion 213.
  • the point of action of the two forces acting on the first moving spring piece 410 by the first side portion 213 and the second side portion 214 is located between the two first moving contacts 411 of the first moving spring piece 410.
  • the magnetic conductive region 415 is located between the two first moving contacts 411.
  • Fig. 7 shows a side view of Fig. 5.
  • Fig. 8 shows a cross-sectional view along C-C in Fig. 7.
  • a first positioning portion 412 and a second positioning portion 413 are convexly provided on one side of the first movable spring piece 410, the first positioning portion 412 corresponds to the position of the first side portion 213, and the second positioning portion 413 corresponds to the position of the second side portion 214.
  • the first movable spring piece 410 is set at a predetermined position of the push rod 210 through the first positioning portion 412 and the second positioning portion 413.
  • the first movable spring piece 410 can be installed at a predetermined position of the push rod 210 in its length direction D1, thereby avoiding relative shaking between the first movable spring piece 410 and the first side portion 213 and the second side portion 214, and further improving the stability of the first movable spring piece 410 during movement.
  • the first elastic member 500a is arranged between the bottom 212 of the push rod 210 and the first movable spring 410.
  • the first movable spring 410 is always subjected to the elastic force of the first elastic member 500a, so that the first movable spring 410 is respectively in contact with the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141. Therefore, in the axial direction of the rod portion 211 (i.e., the movement direction D3 of the push rod mechanism 20), no relative shaking will occur between the first movable spring 410 and the push rod 210.
  • the sizes of the first through hole 2131 and the second through hole 2141 can be limited so that in the width direction D2 of the first movable spring piece 410, the sizes of the first through hole 2131 and the second through hole 2141 are adapted to the width of the first movable spring piece 410, thereby avoiding a large gap between the first movable spring piece 410 and the hole walls of the first and second through holes.
  • the first side portion 213 has a first stop surface 2132 on one side facing the second side portion 214
  • the second side portion 214 has a second stop surface 2142 on one side facing the first side portion 213.
  • the first positioning portion 412 abuts against the first stop surface 2132
  • the second positioning portion 413 abuts against the second stop surface 2142.
  • the size of the above two gaps cannot be too large.
  • the size of the gap needs to be able to allow the first positioning portion 412 and the second positioning portion 413 of the first movable spring 410 to be easily installed between the first side portion 213 and the second side portion 214, and to avoid the first movable spring A relative shaking along the length direction D1 of the first movable spring piece 410 is generated between the first movable spring piece 410 and the push rod 210 .
  • the first positioning portion 412 and the second positioning portion 413 are protruded from a surface of the first movable spring piece 410 facing the first static spring piece 420 .
  • the push rod 210 further includes a spacer 215, a third side portion 216 and a fourth side portion 217.
  • the third side portion 216 is connected to one end of the first side portion 213 facing away from the bottom 212
  • the fourth side portion 217 is connected to one end of the second side portion 214 facing away from the bottom 212.
  • the spacer 215 is arranged between the third side portion 216 and the fourth side portion 217.
  • the third side portion 216 has a third through hole 2161
  • the fourth side portion 217 has a fourth through hole 2171.
  • the second movable spring 430 is penetrated through the third through hole 2161 and the fourth through hole 2171.
  • the third through hole 2161 is located on one side of the spacer 215 along the axial direction of the rod 211
  • the first through hole 2131 is located on the other side of the spacer 215 along the axial direction of the rod 211
  • the fourth through hole 2171 is located on one side of the spacer 215 along the axial direction of the rod 211
  • the second through hole 2141 is located on the other side of the spacer 215 along the axial direction of the rod 211.
  • the second movable reed 430 is movable between a third position and a fourth position relative to the third through hole 2161 and the fourth through hole 2171. In the third position, the second movable reed 430 abuts against the hole wall of the third through hole 2161 and the hole wall of the fourth through hole 2171, respectively.
  • the relay further includes a second elastic member 500 b disposed between the second movable reed piece 430 and the spacing portion 215 , and configured to apply an elastic force to the second movable reed piece 430 to move toward the third position.
  • the action process of the push rod 210 driving the second movable spring piece 430 to contact or separate from the first static spring piece 420 is the same as that of the first contact assembly 40a, which will not be repeated here.
  • the position where the hole wall of the third through hole 2161 abuts against the second movable spring piece 430 is equivalent to a point of application of one force
  • the position where the hole wall of the fourth through hole 2171 abuts against the second movable spring piece 430 is equivalent to another point of application of force.
  • the bottom 212, the spacer 215, the first side 213 and the second side 214 enclose a cavity 218, the first through hole 2131 and the second through hole 2141 are both connected to the cavity 218, and the third through hole 2161 and the fourth through hole 2171 are not connected to the cavity 218.
  • the cavity 218 can be used to accommodate an anti-short circuit structure.
  • the second movable contact points 431 are disposed at both ends of the second movable spring piece 430 in the length direction D1, wherein one of the second movable contact points 431 is located on the side of the third side portion 216 facing away from the fourth side portion 217, and the other second movable contact point 431 is located on the side of the fourth side portion 217 facing away from the third side portion 216.
  • the point of action of the two forces acting on the second movable spring piece 430 by the third side portion 216 and the fourth side portion 217 is located between the two second movable contact points 431 of the second movable spring piece 430.
  • a third positioning portion 432 and a fourth positioning portion 433 are convexly provided on one side of the second movable spring piece 430, the third positioning portion 432 corresponds to the position of the third side portion 216, and the fourth positioning portion 433 corresponds to the position of the fourth side portion 217.
  • the second movable spring piece 430 is provided with the third positioning portion 432.
  • the fourth positioning portion 433 is disposed at a predetermined position of the push rod 210 .
  • the second movable spring piece 430 can be installed at a predetermined position of the push rod 210 in its length direction D1, thereby avoiding relative shaking between the second movable spring piece 430 and the third side portion 216 and the fourth side portion 217, and further improving the stability of the second movable spring piece 430 during movement.
  • the second elastic member 500b is arranged between the spacer portion 215 and the second movable spring 430, and the second movable spring 430 is always subjected to the elastic force of the second elastic member 500b, so that the second movable spring 430 is respectively in contact with the hole wall of the third through hole 2161 and the hole wall of the fourth through hole 2171. Therefore, in the axial direction of the rod portion 211 (i.e., the movement direction D3 of the push rod mechanism 20), no relative shaking will occur between the second movable spring 430 and the push rod 210.
  • the sizes of the third through hole 2161 and the fourth through hole 2171 can be limited so that in the width direction D2 of the second movable spring piece 430, the sizes of the third through hole 2161 and the fourth through hole 2171 are adapted to the width of the second movable spring piece 430, thereby avoiding a large gap between the second movable spring piece 430 and the hole walls of the third and fourth through holes.
  • the third side portion 216 has a third stop surface 2162 on one side facing the fourth side portion 217
  • the fourth side portion 217 has a fourth stop surface 2172 on one side facing the third side portion 216 .
  • the third positioning portion 432 abuts against the third stop surface 2162
  • the fourth positioning portion 433 abuts against the fourth stop surface 2172 .
  • the third positioning portion 432 and the fourth positioning portion 433 are protruded from a surface of the second movable spring piece 430 facing the second static spring piece 440 .
  • the rod portion 211 , the bottom portion 212 , the first side portion 213 , the second side portion 214 , the spacing portion 215 , the third side portion 216 and the fourth side portion 217 of the push rod 210 are an integrated structure.
  • the push rod 210 may be made of plastic and formed by injection molding.
  • the first elastic member 500a and the second elastic member 500b may be spring sheets, but are not limited thereto.
  • the first elastic member 500a includes a first elastic portion 510 and a second elastic portion 520, and the first elastic portion 510 and the second elastic portion 520 are an integral structure.
  • the first movable spring 410 is arranged on the push rod 210 of the push rod mechanism 20 through the first elastic portion 510, and the first elastic portion 510 is used to provide an overtravel contact pressure when the push rod mechanism 20 is in the fifth position, and the second elastic portion 520 is used to provide an elastic force to the push rod mechanism 20 to move toward the fifth position when the push rod mechanism 20 is in the sixth position.
  • the push rod mechanism 20 is between the fifth position and the sixth position.
  • first elastic portion 510 and the second elastic portion 520 may also be separate structures.
  • the second elastic part 520 provides elastic force to the push rod mechanism 20 when the contact assembly 40 is in the completely open state, the elastic force makes the push rod mechanism 20 have a tendency to move to the fifth position. Therefore, when the push rod mechanism 20 needs to move again (i.e. the contact assembly 40 switches to the closed state) and the coil is energized, the push rod mechanism 20 has been subjected to the elastic force applied by the second elastic part 520, so the voltage of the coil can be reduced, thereby reducing the operating voltage so that the operating voltage is within the standard range.
  • the standard range of the operating voltage can be between 40% and 60% of the rated voltage, but is not limited thereto.
  • the magnitude of the operating voltage of the relay can be flexibly adjusted by adjusting the magnitude of the elastic force applied by the second elastic part 520. Specifically, when the elastic force provided by the second elastic part 520 is increased, the operating voltage of the relay becomes smaller. When the elastic force provided by the second elastic part 520 is reduced, the operating voltage of the relay becomes larger.
  • the reset voltage of the relay can be flexibly adjusted by adjusting the elastic force of the first elastic part 510. Specifically, when the elastic force provided by the first elastic part 510 is increased, the reset voltage of the relay becomes smaller. When the elastic force provided by the first elastic part 510 is reduced, the reset voltage of the relay becomes larger.
  • the magnitude of the operating voltage can be adjusted alone without affecting the reset voltage.
  • the magnitude of the reset voltage of the relay can also be flexibly adjusted without affecting the operating voltage, thereby making the operating voltage and the reset voltage in a state without a pressure difference.
  • the magnetic holding force can be increased or decreased by only magnetizing or demagnetizing the permanent magnet 340, so that the operating voltage and the reset voltage can be adjusted synchronously without adjusting the dispersion of other parts of the relay, thereby reducing the requirements for the accuracy of other parts.
  • the magnitude of the elastic force of the second elastic portion 520 can be adjusted by changing the elastic modulus of the second elastic portion 520.
  • the elastic modulus of the second elastic portion 520 can be changed by: adjusting the magnitude of the elastic force of the second elastic portion 520 by changing the deformation of the second elastic portion 520 in an unstressed state, or by changing the width of the second elastic portion 520, but is not limited to this.
  • the process of the push rod 210 driving the second movable spring piece 430 to contact or separate from the second static spring piece 440 is the same as that of the first contact assembly 40a, which will not be described in detail here.
  • the second elastic member 500b has a similar structure to the first elastic member 500a and plays a similar role, which will not be described in detail here.
  • FIG. 9 is a schematic diagram showing the relative positions of the first orthographic projection, the second orthographic projection, and the third orthographic projection on the virtual plane.
  • the first magnetic conductor 610 includes a connecting portion 611 and a suspended portion 612, and the connecting portion 611 is fixedly connected to the base 10.
  • a virtual plane P perpendicular to the movement direction D3 of the push rod mechanism 20 is defined, and the connecting portion 611 has a first orthographic projection S1 on the virtual plane P, and the suspended portion 612 has a second orthographic projection S2 on the virtual plane P.
  • the movable spring pieces 410, 430 have a third orthographic projection S3 on the virtual plane P.
  • the first orthographic projection S1 and the third orthographic projection S3 are The projections S3 do not overlap, and the second orthographic projection S2 at least partially overlaps with the third orthographic projection S3.
  • the suspended portion 612 refers to the portion of the first magnetic conductor 610 suspended in the relay, and the portion does not contact any component of the relay.
  • the first orthographic projection S1 of the connecting portion 611 at which the first magnet 610 is fixedly connected to the base 10 on the virtual plane P does not overlap with the second orthographic projection S2 of the movable spring pieces 410, 430 on the virtual plane P, that is, the position at which the first magnet 610 is connected to the base 10 is not located above the movable spring pieces 410, 430, at least one first magnet 610 can be arranged on the base 10, so that at least one contact assembly 40 corresponds to one first magnet 610, so that each contact assembly 40 is provided with an anti-short-circuit structure.
  • the first magnetic conductor 610 may be a flat plate structure.
  • the first magnetic conductor 610 may also be other regular shapes or special shapes.
  • the connecting portion 611 is inserted into the base 10 along an insertion direction D4 , and the insertion direction D4 is perpendicular to the movement direction D3 of the push rod mechanism 20 .
  • the connecting portion 611 is inserted into the base 10 along the insertion direction D4 perpendicular to the movement direction D3 of the push rod mechanism 20.
  • the first magnetic conductor 610 is a plate-shaped structure
  • the first magnetic conductor 610 is perpendicular to the movement direction D3 of the push rod mechanism 20.
  • one end of the first magnetic conductor 610 having the connecting portion 611 is connected to the base 10, and one end of the first magnetic conductor 610 having the suspended portion 612 extends in the opposite direction of the insertion direction D4 until the suspended portion 612 at least partially overlaps with the movable spring piece 410, 430 in the movement direction D3 of the push rod mechanism 20.
  • the first magnetizer 610 is installed on the base 10 by plugging, which can simplify the assembly of the first magnetizer 610.
  • the first magnetizer 610 can also be connected to the base 10 by bonding, welding or other connection methods.
  • the insertion direction D4 of the first magnetic conductor 610 is perpendicular to the length direction D1 of the movable spring pieces 410 and 430. That is, in space, the first magnetic conductor 610 and the movable spring pieces 410 and 430 are orthogonal.
  • the magnetic conductive loop formed on the outer periphery of the moving reeds 410, 430 is along the width of the moving reeds 410, 430. Since the first magnetizer 610 and the moving reeds 410, 430 are orthogonal, the magnetic conductive loop will be along the length direction D1 of the suspended portion 612 of the first magnetizer 610, so that most of the suspended portion 612 is magnetized, further resulting in a stronger attraction between the first magnetizer 610 and the moving reeds 410, 430 through which the current flows.
  • Figure 10 shows a cross-sectional view along D-D in Figure 2.
  • Figure 11 shows a partial enlarged view of X1 in Figure 10.
  • the mounting portion 11 includes a first mounting hole 110, and the first mounting hole 110 passes through the inner surface and the outer surface of the shell 1.
  • the hole wall of the first mounting hole 110 has a first positioning wall structure 111 and a first gap wall structure 112.
  • the first magnetizer 610 is inserted into the first mounting hole 110, and part of the outer wall surface of the first magnetizer 610 is in contact with the first positioning wall structure 111, and there is a gap between part of the outer wall surface of the first magnetizer 610 and the first gap wall structure 112, and the gap is filled with sealant.
  • the first mounting hole 110 is formed on the base 10 and passes through the inner surface and the bottom surface of the base 10 .
  • the assembly process of the first magnetizer 610 and the base 10 is as follows: firstly, the first magnetizer 610 and the first positioning wall structure 111 of the first mounting hole 110 of the base 10 are used to achieve preliminary positioning, and then the first magnetizer 610 and the base 10 are sealed and assembled by filling the gap between the first magnetizer 610 and the gap wall structure of the first mounting hole 110 with sealant. On the one hand, part of the outer wall surface of the first magnetizer 610 abuts against the positioning wall structure 111, thereby achieving preliminary positioning of the first magnetizer 610. On the other hand, there is a gap between part of the outer wall surface of the first magnetizer 610 and the gap wall structure 112.
  • the sealant can climb from the bottom surface of the base 10 along the gap to the inner surface of the base 10 until it climbs to the opening of the first mounting hole 110, so that the sealant fills the gap, further strengthening the sealing and positioning strength between the first magnetizer 610 and the base 10.
  • the heat resistance of welding of relay products is improved by utilizing the property that the sealant has stronger melting resistance than plastic materials.
  • the embodiment of the present disclosure reduces one dispensing step, effectively reduces the cost, and improves the assembly efficiency.
  • the first positioning wall structure 111 includes a first positioning wall 113 and a second positioning wall 114, and the first positioning wall 113 and the second positioning wall 114 are arranged opposite to each other along the movement direction D3 of the push rod mechanism 20.
  • the first positioning wall 113 and the second positioning wall 114 are respectively in contact with the first magnetic conductor 610, thereby limiting the degree of freedom of the first magnetic conductor 610 in the movement direction D3 of the push rod mechanism 20.
  • the shapes of the first positioning wall 113 and the second positioning wall 114 are adapted to the outer contour of the first magnet 610.
  • the first positioning wall 113 and the second positioning wall 114 may be planes.
  • the shapes of the first positioning wall 113 and the second positioning wall 114 may be arcuate surfaces.
  • Part of the outer wall surface of the first magnetizer 610 is interference fit with the first positioning wall structure 111.
  • the first magnetizer 610 is interference fit with the first positioning wall 113 and the second positioning wall 114 respectively.
  • a zero clearance fit may also be adopted between part of the outer wall surface of the first magnetizer 610 and the first positioning wall structure 111.
  • the static spring pieces 420 , 440 are inserted into the base 10 along the insertion direction D4 .
  • the static spring pieces 420 , 440 and the first magnet 610 are both inserted into the base 10 along the insertion direction D4 , and thus the static spring pieces 420 , 440 and the first magnet 610 can be installed into the base 10 in the same process, saving assembly time.
  • Fig. 12 shows a partial enlarged view of X2 in Fig. 10.
  • the base 10 also has a second mounting hole 120 that runs through its inner surface and bottom surface, and the hole wall of the second mounting hole 120 has a second positioning wall structure 121 and a second gap wall structure 122.
  • the static spring pieces 420, 440 are inserted into the second mounting hole 120, and part of the outer wall surface of the static spring pieces 420, 440 abuts against the second positioning wall structure 121, and there is a gap between part of the outer wall surface of the static spring pieces 420, 440 and the second gap wall structure 122, and the gap is filled with sealant.
  • the assembly process of the static spring pieces 420, 440 and the base 10 can refer to the assembly process of the first magnetic conductor 610 and the base 10, that is, the static spring pieces 420, 440 and the second positioning wall structure 121 of the second mounting hole 120 are first preliminarily positioned, and then the gap between the static spring pieces 420, 440 and the second gap wall structure 122 is filled with sealant.
  • the static spring pieces 420, 440 and the first magnetic conductor 610 can be assembled with the base 10 in the same dispensing process.
  • the assembly efficiency is significantly improved.
  • the second positioning wall structure 121 includes a third positioning wall 123 and a fourth positioning wall 124, which are arranged opposite to each other along the movement direction D3 of the push rod mechanism 20.
  • the third positioning wall 123 and the fourth positioning wall 124 are respectively in contact with the static spring pieces 420 and 440, thereby limiting the degree of freedom of the static spring pieces 420 and 440 in the movement direction D3 of the push rod mechanism 20.
  • the shapes of the third positioning wall 123 and the fourth positioning wall 124 are adapted to the outer contour of the lead-out pin of the static spring piece.
  • the third positioning wall 123 and the fourth positioning wall 124 may be planes.
  • the shapes of the third positioning wall 123 and the fourth positioning wall 124 may be arcuate surfaces.
  • Part of the outer wall surface of the static spring pieces 420, 440 is interference fit with the second positioning wall structure 121.
  • part of the outer wall surface of the static spring pieces 420, 440 is interference fit with the third positioning wall 123 and the fourth positioning wall 124.
  • part of the outer wall surface of the static spring pieces 420, 440 and the second positioning wall structure 121 can also adopt zero clearance fit.
  • the first magnetizer 610 and the static spring pieces 420, 440 are initially positioned by using the part of the outer wall surface of the first magnetizer 610 to abut against the first positioning wall structure 111 and the static spring pieces 420, 440 to abut against the second positioning wall structure 121 (no glue is required during the initial positioning process). Afterwards, glue is dispensed from one side of the bottom surface of the base 10 to the gap between the first magnetizer 610 and the first gap wall structure 112 and between the static spring pieces 420, 440 and the second gap wall structure 122. At the same time, glue can also be dispensed to the gap between the outer cover and the base 10.
  • the gap between the first magnetic conductor 610 and the base 10, the gap between the static spring pieces 420, 440 and the base 10, and the gap between the outer cover and the base 10 can be glued along one glue dispensing direction, which significantly improves the glue dispensing efficiency.
  • the gap between the coil lead pin and the base 10, and the gap between the auxiliary contact lead pin and the base 10 can also be glued at the same time.
  • the relay further includes a second magnetic conductor 620 , and the second magnetic conductor 620 corresponds to the first magnetic conductor 610 .
  • the second magnetic conductor 620 is fixedly connected to a side of the movable spring pieces 410 , 430 facing away from the first magnetic conductor 610 , so that a magnetic circuit is formed between the corresponding first magnetic conductor 610 and the second magnetic conductor 620 in the width direction D2 of the movable spring pieces 410 , 430 .
  • the second magnetic conductors 620 correspond to the first magnetic conductors 610, which means that the number of the second magnetic conductors 620 and the first magnetic conductors 610 is the same, and the positions of the second magnetic conductors 620 and the first magnetic conductors 610 correspond.
  • the number of the first magnetic conductors 610 and the second magnetic conductors 620 are both two, but this is not limited to this.
  • both ends of the moving reed 410, 430 are in contact with the stationary reed 420, 440, the second magnetizer 620 moving with the moving reed 410, 430 approaches or contacts the first magnetizer 610, thereby forming a magnetic conductive loop around the moving reed 410, 430 between the first magnetizer 610 and the second magnetizer 620.
  • a short-circuit current passes through the moving reed 410, 430, a suction force is generated between the first magnetizer 610 and the second magnetizer 620 in the direction of the contact pressure.
  • the suction force is superimposed on the contact pressure to generate a greater contact pressure, which can resist the moving contact of the moving reed 410, 430 and the stationary contact of the stationary reed 420, 440.
  • the electromotive repulsive force generated by the short-circuit current ensures that the moving contacts of the moving spring pieces 410 and 430 and the static contacts of the static spring pieces 420 and 440 do not bounce apart.
  • first magnet 610 and the second magnet 620 are respectively located on both sides of the movable spring pieces 410, 430.
  • the attraction between the first magnet 610 and the second magnet 620 is a direct electromagnetic attraction, which is greater than the attraction between the first magnet 610 and the movable spring pieces 410, 430 after only the magnetization of the first magnet 610. Therefore, it can more effectively resist the electromotive repulsion generated by the short-circuit current between the movable spring pieces 410, 430 and the static spring pieces 420, 440, thereby effectively improving the short-circuit resistance.
  • the second magnetic conductor 620 may be fixedly connected to the movable spring pieces 410 and 430 by riveting, but the present invention is not limited thereto.
  • the first magnetic conductor 610 and the second magnetic conductor 620 can be made of materials such as iron, cobalt, nickel and alloys thereof.
  • the first magnetic conductor 610 may be in a straight line shape, and the second magnetic conductor 620 may be in a U shape.
  • the second magnetic conductor 620 covers the movable spring pieces 410 , 430 along the width direction D2 of the movable spring pieces 410 , 430 .
  • Figures 14 and 15 respectively show schematic diagrams of two different viewing angles of the second embodiment of the present disclosure after the movable reed 410, 430 and the second magnetic conductor 620 are assembled.
  • the similarities between the second embodiment and the first embodiment are not repeated here, and the differences are as follows:
  • the second magnetizer 620 includes at least two sub-magnetizers 621, each of which is U-shaped, and includes a base 622 and two side portions 623, and the two side portions 623 are connected to the base 622.
  • the movable spring pieces 410 and 430 are provided with at least one through hole 414, and the at least two sub-magnetizers 621 are connected to the side of the movable spring pieces 410 and 430 facing away from the first magnetizer 610, and the side portions 623 of the at least two sub-magnetizers 621 pass through at least one through hole 414, so as to be close to or contact the first magnetizer 610 through the through hole 414, and form at least two independent magnetic conductive circuits in the width direction D2 of the movable spring pieces 410 and 430.
  • the so-called two independent magnetic conductive circuits mean that the two magnetic conductive circuits will not interfere with each other, that is, there is no situation where the magnetic fluxes cancel each other out.
  • the movable reed 410, 430 is provided with a through hole 414, which is disposed in the middle area between the two movable contacts of the movable reed 410, 430.
  • the second magnetic conductor 620 includes two sub-magnetic conductors 621, and the two sub-magnetic conductors 621 share a first magnetic conductor 610, thereby forming two magnetic circuits.
  • the two U-shaped sub-magnetic conductors 621 are arranged side by side along the width direction D2 of the movable spring pieces 410 , 430 , and a side portion 623 of each sub-magnetic conductor 621 is inserted into the through hole 414 of the movable spring pieces 410 , 430 .
  • the top surface of the side portion 623 of each sub-magnetic conductor 621 is substantially flush with the surface of one side of the movable reed piece 410 , 430 facing the stationary reed piece 420 , 440 .
  • the two U-shaped sub-magnetizers 621 have a total of four side portions 623, and the top surfaces of the four side portions 623 cooperate with the first magnetizer 610.
  • the embodiment of the present disclosure is equivalent to adding two magnetic pole surfaces (equivalent to the magnetic pole surface at the position of the through hole 414 being added), thereby improving the magnetic efficiency, increasing the suction force, and greatly improving the short-circuit resistance.
  • the number of sub-magnetic conductors 621 can also be three or more.
  • the embodiment of the present disclosure provides a relay to solve the problem of unstable movement of the movable spring in the prior art.
  • the relay of the disclosed embodiment includes a first contact assembly, a push rod and a first elastic member, wherein the first contact assembly includes a first static spring and a first movable spring; the push rod is used to drive the first movable spring to move so as to contact or separate from the first static spring; the push rod includes a rod portion, a bottom portion, a first side portion and a second side portion, wherein the bottom portion is connected to one end of the axial direction of the rod portion, the first side portion and the second side portion are both connected to the bottom portion and are arranged relatively to each other along the length direction of the first movable spring; the first side portion is provided with a first through hole, the second side portion is provided with a second through hole, and the first movable spring is penetrated by the first through hole and the second through hole; along the axial direction of the rod portion, the first movable spring is movable between a first position and a second position relative to the first through hole and the second through hole; in the first position, the first movable spring
  • first moving contacts are provided at both ends of the first moving spring in the length direction, one of the first moving contacts is located on the side of the first side portion facing away from the second side portion, and the other first moving contact is located on the side of the second side portion facing away from the first side portion.
  • the first movable spring piece In the length direction of the first movable spring piece, the first movable spring piece is arranged at a predetermined position of the push rod through the first positioning portion and the second positioning portion.
  • the first side portion has a first stop surface on a side facing the second side portion, and the second side portion has a second stop surface on a side facing the first side portion;
  • the first positioning portion abuts against the first stop surface, and the second positioning portion abuts against the second stop surface.
  • the first positioning portion and the second positioning portion are convexly disposed on the first movable
  • the reed piece faces one side surface of the first static reed piece.
  • the relay further comprises a second contact assembly and a second elastic member, wherein the second contact assembly comprises a second moving reed and a second static reed;
  • the push rod further includes a spacer, a third side portion and a fourth side portion, the third side portion is connected to an end of the first side portion facing away from the bottom, the fourth side portion is connected to an end of the second side portion facing away from the bottom, and the spacer is arranged between the third side portion and the fourth side portion; the third side portion has a third through hole, the fourth side portion has a fourth through hole, the second movable spring piece is penetrated by the third through hole and the fourth through hole, and along the axial direction of the rod portion, the second movable spring piece is movable between a third position and a fourth position relative to the third through hole and the fourth through hole; in the third position, the second movable spring piece abuts against the hole wall of the third through hole and the hole wall of the fourth through hole respectively;
  • the second elastic member is disposed between the second movable spring piece and the spacing portion, and is used to apply an elastic force to the second movable spring piece to move toward the third position.
  • the bottom, the spacer, the first side portion and the second side portion enclose a cavity, the first through hole and the second through hole are both connected to the cavity, and the third through hole and the fourth through hole are not connected to the cavity.
  • second moving contacts are provided at both ends of the second moving spring in the length direction, one of the second moving contacts is located on the side of the third side portion facing away from the fourth side portion, and the other second moving contact is located on the side of the fourth side portion facing away from the third side portion.
  • a third positioning portion and a fourth positioning portion are convexly provided on one side of the second movable spring piece, the third positioning portion corresponds to the position of the third side portion, and the fourth positioning portion corresponds to the position of the fourth side portion;
  • the second movable spring piece In the length direction of the second movable spring piece, the second movable spring piece is arranged at a predetermined position of the push rod through the third positioning portion and the fourth positioning portion.
  • the third side portion has a third stop surface on a side facing the fourth side portion, and the fourth side portion has a fourth stop surface on a side facing the third side portion;
  • the third positioning portion abuts against the third stop surface, and the fourth positioning portion abuts against the fourth stop surface.
  • the third positioning portion and the fourth positioning portion are protruded from a surface of the second movable spring piece facing the second static spring piece.
  • the rod portion, the bottom portion, the first side portion and the second side portion are an integral structure.
  • the position where the hole wall of the first through hole abuts the first movable spring piece is equivalent to a point of application of one force
  • the position where the hole wall of the second through hole abuts the first movable spring piece is equivalent to another point of application of force.
  • Figure 18 shows a top view of the relay of the embodiment of the present disclosure, wherein the upper cover is omitted
  • Figure 19 shows a cross-sectional view along E-E in Figure 18
  • Figure 20 shows a cross-sectional view along F-F in Figure 19.
  • the relay of the embodiment of the present disclosure includes a base 10, a push rod mechanism 20, a magnetic circuit mechanism 30 and a contact assembly 40.
  • the push rod mechanism 20, the magnetic circuit mechanism 30 and the contact assembly 40 are arranged on the base 10, and the magnetic circuit mechanism 30 controls the contact or separation of the contact assembly 40 through the push rod mechanism 20.
  • the magnetic circuit mechanism 30 includes a yoke structure 310, a bobbin 320 and a coil 330.
  • the yoke structure 310 forms a chamber, and the bobbin 320 and the coil 330 are both arranged in the chamber of the yoke structure 310.
  • the coil 330 is wound around the outer periphery of the bobbin 320 to form a magnetic control circuit.
  • the bobbin 320 is provided with a center hole 321 in the contact contact and separation direction of the contact assembly 40, and the center hole 321 is used for one end of the push rod mechanism 20 to pass through.
  • the yoke structure 310 includes a yoke plate 311 and a U-shaped yoke 312, and the yoke plate 311 and the U-shaped yoke 312 are connected to form a ring.
  • the yoke plate 311 is provided with a through hole 3111, and the through hole 3111 is used for the push rod mechanism 20 to pass through.
  • the yoke structure 310 may also include a cylindrical yoke and a yoke plate 311 , and the cylindrical yoke and the yoke plate 311 are connected to form a ring.
  • the magnetic circuit mechanism 30 further includes two permanent magnets 340, which are arranged on the wire frame 320 and located on both sides of the movement direction of the push rod mechanism 20.
  • the two permanent magnets 340 form a magnetic circuit structure of magnetic retention, which is conducive to reducing electricity costs, extending service life, and improving stability.
  • the push rod mechanism 20 is movable between the fifth position and the sixth position relative to the base 10.
  • the contact assembly 40 is in a fully closed state.
  • the contact assembly 40 is in a fully disconnected state.
  • the push rod mechanism 20 includes a push rod 210 and an iron core 220, and the iron core 220 is connected to the push rod 210.
  • the iron core 220 can move in the direction of contact contact or separation under the action of the magnetic control circuit formed by the coil 330, thereby driving the push rod 210 to move, so as to control the contact contact or separation of the contact assembly 40.
  • the contact assembly 40 is in a fully closed state, which means that the contact assembly 40 is in a state after the movable reed and the stationary reed of the contact assembly 40 are in contact and complete the overtravel; the contact assembly 40 is in a fully disconnected state, which means that the contact assembly 40 is in a state when the movable reed and the stationary reed of the contact assembly 40 are disconnected and are at the maximum contact gap.
  • the contact assembly 40 includes movable reeds 410 , 430 and stationary reeds 420 , 440 .
  • the stationary reeds 420 , 440 are fixedly mounted on the base 10
  • the movable reeds 410 , 430 are mounted on the push rod mechanism 20 and move with the push rod mechanism 20 .
  • the contact assembly 40 is divided into two groups, namely, a first contact assembly 40a and a second contact assembly 40b, and the first contact assembly 40a and the second contact assembly 40b are arranged along the movement direction of the push rod mechanism 20.
  • the first contact assembly 40a is close to the magnetic circuit mechanism 30, and the second contact assembly 40b is far away from the magnetic circuit mechanism 30.
  • the first contact assembly 40a includes a first movable reed 410 and two first stationary reeds 420.
  • the second contact assembly 40b includes a second movable reed 430 and two second stationary reeds 440. Both ends of the first movable reed 410 can contact or separate from the two first stationary reeds 420, and both ends of the second movable reed 430 can contact or separate from the two second stationary reeds 440.
  • the contact assembly 40 may also be a group or other quantity.
  • the two ends of the moving spring pieces 410, 430 in the length direction serve as moving contacts, which may protrude from other parts of the moving spring pieces 410, 430 or may be flush with other parts.
  • the parts of the stationary spring pieces 420, 440 that contact the moving contacts serve as stationary contacts, which may protrude from other parts of the stationary spring pieces 420, 440 or may be flush with other parts.
  • the first moving spring piece 410 includes a first moving spring body 416 and a first moving contact 411.
  • the first moving contact 411 and the first moving spring body 416 are separate structures.
  • the first moving contact 411 and the first moving spring body 416 can be connected by riveting, but not limited to this.
  • the first static spring piece 420 includes a first static spring body 421 and a first static contact 422.
  • the first static contact 422 and the first static spring body 421 are separate structures.
  • the first static contact 422 and the first static spring body 421 can be connected by riveting, but not limited to this.
  • the second movable spring piece 430 includes a second movable spring body 434 and a second movable contact 431.
  • the second movable contact 431 and the second movable spring body 434 are separate structures.
  • the second movable contact 431 and the second movable spring body 434 can be connected by riveting, but the present invention is not limited thereto.
  • the second static spring piece 440 includes a second static spring body 441 and a second static contact 442.
  • the second static contact 442 and the second static spring body 441 are separate structures.
  • the second static contact 442 and the second static spring body 441 can be connected by riveting, but the present invention is not limited thereto.
  • first moving contact 411 and the first moving spring body 416 can be an integral structure; the first static contact 422 and the first static spring body 421 can be an integral structure; the second moving contact 431 and the second moving spring body 434 can be an integral structure; the second static contact 442 and the second static spring body 441 can be an integral structure.
  • Figure 21 shows a schematic diagram of the push rod 210.
  • Figure 22 shows a schematic diagram of the front view of the push rod 210, the contact assembly 40 and the yoke iron plate 311 after assembly.
  • Figure 23 shows a stereoscopic schematic diagram of the push rod 210, the contact assembly 40 and the yoke iron plate 311 after assembly.
  • the push rod 210 is used to drive the first moving spring 410 to move so as to contact or separate from the first static spring 420.
  • the push rod 210 includes a rod portion 211, a bottom portion 212, a first side portion 213 and a second side portion 214.
  • the rod portion 211 is movably arranged in the through hole 3111 of the yoke iron plate 311, and the iron core 220 is connected to the rod portion 211.
  • the bottom portion 212 is connected to one end of the axial direction of the rod portion 211, and the first side portion 213 and the second side portion 214 are both connected to the bottom portion 212, and are relatively arranged along the length direction D1 of the first moving spring 410.
  • the first side portion 213 is provided with a first through hole 2131
  • the second side portion 214 is provided with a second through hole 2141
  • the first movable spring piece 410 is passed through the first through hole 2131 and the second through hole 2141.
  • the first movable spring piece 410 is movable between a first position and a second position relative to the first through hole 2131 and the second through hole 2141; in the first position, the first movable spring piece 410 abuts against the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141, respectively (as shown in FIGS. 22 and 23).
  • the relay further includes an elastic component, the elastic component including a first elastic member 500a and a second elastic member 500b, the first elastic member 500a is disposed between the first movable spring piece 410 and the bottom 212, and is used to apply a force to the first movable spring piece 410 toward the first movable spring piece 410.
  • the elastic force that moves a position.
  • the push rod 210 drives the first movable spring 410 to move toward the first static spring 420.
  • the first movable spring 410 contacts the first static spring 420, under the action of the first elastic member 500a, the first movable spring 410 abuts against the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141 respectively and is in the first position.
  • the first movable spring 410 contacts the first static spring 420, since the first static spring 420 is fixedly mounted on the base 10, the first movable spring 410 is stopped by the first static spring 420 and cannot continue to move.
  • the push rod 210 will continue to move, and the first elastic member 500a will be gradually compressed until the overtravel is completed.
  • the first movable spring 410 is in the second position relative to the first through hole 2131 and the second through hole 2141.
  • the process of the push rod 210 moving in the direction away from the first static spring piece 420 can be divided into two stages: in the first stage, the push rod 210 moves while the first movable spring piece 410 does not move with the push rod 210. In the first stage, the first movable spring piece 410 moves from the second position to the first position relative to the first through hole 2131 and the second through hole 2141.
  • the first movable spring piece 410 has moved to the first position relative to the first through hole 2131 and the second through hole 2141, and at this time, the first movable spring piece 410 abuts against the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141 respectively. Afterwards, the movement of the push rod 210 will drive the first movable spring piece 410 to move accordingly, so that the first movable spring piece 410 is separated from the first static spring piece 420.
  • the position where the hole wall of the first through hole 2131 abuts against the first movable spring piece 410 is equivalent to a point of application of one force
  • the position where the hole wall of the second through hole 2141 abuts against the first movable spring piece 410 is equivalent to another point of application of force.
  • first movable contacts 411 are provided at both ends of the first movable spring piece 410 in the length direction D1, wherein one of the first movable contacts 411 is located on the side of the first side portion 213 facing away from the second side portion 214, and the other first movable contact 411 is located on the side of the second side portion 214 facing away from the first side portion 213.
  • the point of action of the two forces acting on the first movable spring piece 410 by the first side portion 213 and the second side portion 214 is located between the two first movable contacts 411 of the first movable spring piece 410.
  • Figure 24 shows a side view of Figure 22.
  • Figure 25 shows a cross-sectional view along G-G in Figure 24.
  • a first positioning portion 412 and a second positioning portion 413 are convexly provided on one side of the first movable spring piece 410.
  • the first positioning portion 412 corresponds to the position of the first side portion 213, and the second positioning portion 413 corresponds to the position of the second side portion 214.
  • the first movable spring piece 410 is set at a predetermined position of the push rod 210 through the first positioning portion 412 and the second positioning portion 413.
  • the first movable spring piece 410 can be installed at a predetermined position of the push rod 210 in the length direction D1 thereof, thereby preventing the first movable spring piece 410 from being moved.
  • a relative shaking occurs between the first movable spring piece 410 and the first side portion 213 and the second side portion 214 , further improving the stability of the first movable spring piece 410 during the movement.
  • the first elastic member 500a is arranged between the bottom 212 and the first movable spring 410, and the first movable spring 410 is always subjected to the elastic force of the first elastic member 500a, so that the first movable spring 410 is respectively in contact with the hole wall of the first through hole 2131 and the hole wall of the second through hole 2141. Therefore, in the axial direction D3 of the rod portion 211, no relative shaking will occur between the first movable spring 410 and the push rod 210.
  • the sizes of the first through hole 2131 and the second through hole 2141 can be limited so that in the width direction D2 of the first movable spring piece 410, the sizes of the first through hole 2131 and the second through hole 2141 are adapted to the width of the first movable spring piece 410, thereby avoiding a large gap between the first movable spring piece 410 and the hole walls of the first and second through holes.
  • the first side portion 213 has a first stop surface 2132 on one side facing the second side portion 214
  • the second side portion 214 has a second stop surface 2142 on one side facing the first side portion 213.
  • the first positioning portion 412 abuts against the first stop surface 2132
  • the second positioning portion 413 abuts against the second stop surface 2142.
  • first positioning portion 412 and the first stop surface 2132 there may be a gap between the first positioning portion 412 and the first stop surface 2132, and there may be a gap between the second positioning portion 413 and the second stop surface 2142.
  • sizes of the above two gaps cannot be too large, and the size of the gaps needs to be able to both ensure that the first positioning portion 412 and the second positioning portion 413 of the first movable spring 410 are easily installed between the first side portion 213 and the second side portion 214, and to avoid relative shaking between the first movable spring 410 and the push rod 210 along the length direction D1 of the first movable spring 410.
  • the first positioning portion 412 and the second positioning portion 413 are protruded from a surface of the first movable spring piece 410 facing the first static spring piece 420 .
  • the first elastic member 500a includes a first elastic portion 510 and a second elastic portion 520, and the first elastic portion 510 and the second elastic portion 520 are an integral structure.
  • the first movable spring piece 410 is arranged on the push rod 210 of the push rod mechanism 20 through the first elastic portion 510, and the first elastic portion 510 is used to provide an overtravel contact pressure when the push rod mechanism 20 is in the fifth position, and the second elastic portion 520 is used to provide an elastic force to move toward the fifth position to the push rod mechanism 20 when the push rod mechanism 20 is in the sixth position.
  • first elastic portion 510 and the second elastic portion 520 may also be separate structures.
  • the operating voltage is set so that the operating voltage is within the standard range.
  • the standard range of the operating voltage can be between 40% and 60% of the rated voltage, but is not limited thereto.
  • the magnitude of the operating voltage of the relay can be flexibly adjusted by adjusting the magnitude of the elastic force applied by the second elastic part 520. Specifically, when the elastic force provided by the second elastic part 520 is increased, the operating voltage of the relay becomes smaller. When the elastic force provided by the second elastic part 520 is reduced, the operating voltage of the relay becomes larger.
  • the reset voltage of the relay can be flexibly adjusted by adjusting the elastic force of the first elastic part 510. Specifically, when the elastic force provided by the first elastic part 510 is increased, the reset voltage of the relay becomes smaller. When the elastic force provided by the first elastic part 510 is reduced, the reset voltage of the relay becomes larger.
  • the magnitude of the operating voltage can be adjusted alone without affecting the reset voltage.
  • the magnitude of the reset voltage of the relay can also be flexibly adjusted without affecting the operating voltage, thereby making the operating voltage and the reset voltage in a state without a pressure difference.
  • the magnetic holding force can be increased or decreased by only magnetizing or demagnetizing the permanent magnet 340, so that the operating voltage and the reset voltage can be adjusted synchronously without adjusting the dispersion of other parts of the relay, thereby reducing the requirements for the accuracy of other parts.
  • the magnitude of the elastic force of the second elastic portion 520 can be adjusted by changing the elastic modulus of the second elastic portion 520.
  • the elastic modulus of the second elastic portion 520 can be changed by: adjusting the magnitude of the elastic force of the second elastic portion 520 by changing the deformation of the second elastic portion 520 in an unstressed state, or by changing the width of the second elastic portion 520, but is not limited to this.
  • the push rod 210 further includes a spacer 215, a third side portion 216 and a fourth side portion 217.
  • the third side portion 216 is connected to one end of the first side portion 213 facing away from the bottom portion 212
  • the fourth side portion 217 is connected to one end of the second side portion 214 facing away from the bottom portion 212
  • the spacer 215 is arranged between the third side portion 216 and the fourth side portion 217.
  • the third side portion 216 has a third through hole 2161
  • the fourth side portion 217 has a fourth through hole 2171
  • the second movable spring 430 is penetrated through the third through hole 2161 and the fourth through hole 2171.
  • the third through hole 2161 is located on one side of the spacer 215 along the axial direction D3 of the rod portion 211
  • the first through hole 2131 is located on the other side of the spacer 215 along the axial direction D3 of the rod portion 211.
  • the fourth through hole 2171 is located on one side of the spacer 215 along the axial direction D3 of the rod 211
  • the second through hole 2141 is located on the other side of the spacer 215 along the axial direction D3 of the rod 211.
  • the second movable spring piece 430 is movable between a third position and a fourth position relative to the third through hole 2161 and the fourth through hole 2171. In the third position, the second movable spring piece 430 abuts against the hole wall of the third through hole 2161 and the hole wall of the fourth through hole 2171, respectively.
  • the second elastic member 500 b is disposed between the second movable spring piece 430 and the spacing portion 215 , and is used to apply an elastic force to the second movable spring piece 430 to move toward the third position.
  • the process of the push rod 210 driving the second movable spring piece 430 to contact or separate from the second static spring piece 440 is the same as that of the first contact assembly 40a, which will not be repeated here.
  • the second elastic member 500b has a similar structure to the first elastic member 500a and plays a similar role, which will not be repeated here.
  • the position where the hole wall of the third through hole 2161 abuts against the second movable spring piece 430 is equivalent to a point of application of one force
  • the position where the hole wall of the fourth through hole 2171 abuts against the second movable spring piece 430 is equivalent to another point of application of force.
  • the bottom 212, the spacer 215, the first side 213 and the second side 214 are enclosed to form a cavity 218, the first through hole 2131 and the second through hole 2141 are both connected to the cavity 218, and the third through hole 2161 and the fourth through hole 2171 are not connected to the cavity 218.
  • the cavity 218 can be used to accommodate an anti-short circuit structure.
  • the anti-short circuit structure may include a first magnetizer 610 and a second magnetizer 620, and the first magnetizer 610 and the second magnetizer 620 are both disposed in the cavity 218.
  • the first magnetizer 610 is fixedly connected to the base 10
  • the second magnetizer 620 is fixedly connected to the first movable spring piece 410
  • the second magnetizer 620 is disposed on the side of the first movable spring piece 410 facing away from the first magnetizer 610.
  • a magnetic circuit is formed between the first magnetic conductor 610 and the second magnetic conductor 620.
  • the suction force is superimposed on the contact pressure to generate a greater contact pressure, which can resist the electric repulsion between the movable contact of the first movable spring piece 410 and the static contact of the first static spring piece 420 caused by the short-circuit current, ensuring that the movable contact of the first movable spring piece 410 and the static contact of the first static spring piece 420 do not bounce apart.
  • the second movable contact points 431 are disposed at both ends of the second movable spring piece 430 in the length direction D1, wherein one of the second movable contact points 431 is located on the side of the third side portion 216 facing away from the fourth side portion 217, and the other second movable contact point 431 is located on the side of the fourth side portion 217 facing away from the third side portion 216.
  • the point of action of the two forces acting on the second movable spring piece 430 by the third side portion 216 and the fourth side portion 217 is located between the two second movable contact points 431 of the second movable spring piece 430.
  • a third positioning portion 432 and a fourth positioning portion 433 are convexly disposed on one side of the second movable spring piece 430.
  • the third positioning portion 432 corresponds to the position of the third side portion 216
  • the fourth positioning portion 433 corresponds to the position of the fourth side portion 217.
  • the second movable spring piece 430 is disposed at a predetermined position of the push rod 210 by means of the third positioning portion 432 and the fourth positioning portion 433.
  • the second movable spring piece 430 can be installed at a predetermined position of the push rod 210 in its length direction D1, thereby avoiding relative shaking between the second movable spring piece 430 and the third side portion 216 and the fourth side portion 217, and further improving the stability of the second movable spring piece 430 during movement.
  • the second elastic member 500b is arranged between the spacer portion 215 and the second movable spring 430, and the second movable spring 430 is always subjected to the elastic force of the second elastic member 500b, so that the second movable spring 430 is respectively in contact with the hole wall of the third through hole 2161 and the hole wall of the fourth through hole 2171. Therefore, in the axial direction D3 of the rod portion 211, no relative shaking will occur between the second movable spring 430 and the push rod 210.
  • the sizes of the third through hole 2161 and the fourth through hole 2171 can be limited so that in the width direction D2 of the second movable spring piece 430, the sizes of the third through hole 2161 and the fourth through hole 2171 are adapted to the width of the second movable spring piece 430, thereby avoiding a large gap between the second movable spring piece 430 and the hole walls of the third and fourth through holes.
  • the third side portion 216 has a third stop surface 2162 on one side facing the fourth side portion 217
  • the fourth side portion 217 has a fourth stop surface 2172 on one side facing the third side portion 216.
  • the third positioning portion 432 abuts against the third stop surface 2162
  • the fourth positioning portion 433 abuts against the fourth stop surface 2172.
  • the third positioning portion 432 and the fourth positioning portion 433 are protruded from a surface of the second movable spring piece 430 facing the second static spring piece 440 .
  • the rod portion 211 , the bottom portion 212 , the first side portion 213 , the second side portion 214 , the spacing portion 215 , the third side portion 216 and the fourth side portion 217 of the push rod 210 are an integrated structure.
  • the push rod 210 may be made of plastic and formed by injection molding.
  • the first elastic member 500a and the second elastic member 500b may be spring sheets, but are not limited thereto.
  • auxiliary contact components are provided to monitor the on-state of the main contacts. Since the monitoring current flowing through the auxiliary contact components is very small (milliampere level), the auxiliary contact components are small in size.
  • the auxiliary contact assembly in the prior art includes an auxiliary moving spring and an auxiliary static spring, and usually a small silver contact is riveted on the auxiliary moving spring as a moving contact.
  • a small silver contact is riveted on the auxiliary moving spring as a moving contact.
  • the embodiments of the present disclosure provide a relay and an auxiliary contact assembly thereof to solve the problem of inconvenient auxiliary contact assembly in the prior art.
  • the auxiliary contact assembly of the disclosed embodiment is applied to a relay, and the auxiliary contact assembly includes an auxiliary movable spring and an auxiliary static spring, the auxiliary movable spring includes a movable spring lead-out end and a movable spring contact end; the auxiliary static spring is a needle-shaped structure; along the axial direction of the needle-shaped structure, the auxiliary static spring includes a static spring lead-out end and a static spring contact end, and the side surface of the static spring contact end is used to contact or separate with the movable spring contact end.
  • the dynamic spring contact end includes:
  • a convex bulge is convexly arranged on a side surface of the base body facing the static spring contact end, and is used for contacting or separating from the side surface of the static spring contact end.
  • the base includes a first elastic arm and a second elastic arm, a gap is formed between the first elastic arm and the second elastic arm, and the first elastic arm and the second elastic arm are oriented toward the static spring contact.
  • the convex bulge is convexly provided on one side surface of the contact end, and the first elastic arm and the second elastic arm are arranged opposite to each other in the axial direction of the needle-shaped structure.
  • the convex bract is in the shape of an elongated strip.
  • an extension direction of the convex bract is perpendicular to an axial direction of the needle-shaped structure.
  • the auxiliary dynamic spring further includes:
  • An inclined section one end of which is connected to the other end of the turning section, and the other end of the inclined section is connected to the lead-out end of the movable spring; the inclined section is inclined from the plane where the lead-out end of the movable spring is located in a direction away from the auxiliary static spring, so that the lead-out end of the movable spring is arranged in the same plane as the auxiliary static spring.
  • the auxiliary dynamic spring further includes:
  • the widened section is arranged between the movable spring lead-out end and the static spring lead-out end.
  • a contact assembly comprising a moving spring and a stationary spring, wherein the stationary spring is fixedly connected to the base;
  • a push rod mechanism is movable relative to the base; the movable spring is arranged on the push rod mechanism, so that the push rod mechanism can drive the movable spring to contact or separate with the static spring; and
  • the auxiliary moving spring of the auxiliary contact component is connected to the base and is used to be pushed by the push rod mechanism, and the auxiliary static spring of the auxiliary contact component is fixedly connected to the base.
  • the auxiliary dynamic spring and the auxiliary static spring are both inserted into the base, and the dynamic spring lead-out end of the auxiliary dynamic spring, the static spring lead-out end of the auxiliary static spring and the lead-out end of the static spring sheet all extend out of the bottom surface of the base.
  • the auxiliary contact assembly is disposed at an end of the push rod mechanism away from the moving reed.
  • one end of the push rod mechanism away from the dynamic spring sheet has a notch, and the auxiliary dynamic spring passes through the notch.
  • the auxiliary static spring is a needle-shaped structure, which has the advantages of simplified parts structure, simple forming and easy assembly.
  • the auxiliary static spring can be cut from round wire or square wire.
  • the side of the static spring contact end of the auxiliary static spring is used to contact or separate with the dynamic spring contact end. Since the side of the static spring contact end is relatively wide, it is easier for the dynamic spring contact end to contact the static spring contact end, avoiding the contact state of the dynamic spring sheet and the static spring sheet being affected by the misalignment of the dynamic spring contact end and the static spring contact end.
  • Figure 28 shows a top view of the relay of the embodiment of the present disclosure, wherein the upper cover is omitted
  • Figure 29 shows a cross-sectional view along HH in Figure 28
  • Figure 30 shows a cross-sectional view along II in Figure 29.
  • the relay of the disclosed embodiment includes a base 10, a push rod mechanism 20, a magnetic circuit mechanism 30 and a contact assembly 40.
  • the push rod mechanism 20, the magnetic circuit mechanism 30 and the contact assembly 40 are arranged on the base 10, and the magnetic circuit mechanism 30 controls the contact or separation of the contact assembly 40 through the push rod mechanism 20.
  • the magnetic circuit mechanism 30 includes a yoke structure 310, a bobbin 320 and a coil 330.
  • the yoke structure 310 forms a chamber, and the bobbin 320 and the coil 330 are both arranged in the chamber of the yoke structure 310.
  • the coil 330 is wound around the outer periphery of the bobbin 320 to form a magnetic control circuit.
  • the bobbin 320 is provided with a center hole 321 in the contact contact and separation direction of the contact assembly 40, and the center hole 321 is used for one end of the push rod mechanism 20 to pass through.
  • the yoke structure 310 includes a yoke plate 311 and a U-shaped yoke 312, and the yoke plate 311 and the U-shaped yoke 312 are connected to form a ring.
  • the yoke plate 311 is provided with a through hole 3111, and the through hole 3111 is used for the push rod mechanism 20 to pass through.
  • the yoke structure 310 may also include a cylindrical yoke and a yoke plate 311 , and the cylindrical yoke and the yoke plate 311 are connected to form a ring.
  • the magnetic circuit mechanism 30 further includes two permanent magnets 340, which are arranged on the wire frame 320 and located on both sides of the movement direction of the push rod mechanism 20.
  • the two permanent magnets 340 form a magnetic circuit structure of magnetic retention, which is conducive to reducing electricity costs, extending service life, and improving stability.
  • the push rod mechanism 20 is movable relative to the base 10 in the contact or separation direction of the contact.
  • the push rod mechanism 20 includes a push rod 210 and an iron core 220, and the iron core 220 is connected to the push rod 210.
  • the iron core 220 can move in the contact or separation direction of the contact under the action of the magnetic control circuit formed by the coil 330, thereby driving the push rod 210 to move, so as to control the contact or separation of the contact assembly 40.
  • the contact assembly 40 includes a moving reed 450 and a stationary reed 460.
  • the stationary reed 460 is fixedly mounted on the base 10
  • the moving reed 450 is mounted on the push rod 210 of the push rod mechanism 20 and moves with the push rod mechanism 20.
  • the contact assembly 40 may also be a group or other quantity.
  • the two ends of the moving spring 450 in the length direction serve as moving contacts, which may protrude from other parts of the moving spring 450 or be flush with other parts.
  • the part of the stationary spring 460 that contacts the moving spring 450 serves as a stationary contact, which may protrude from other parts of the stationary spring 460 or be flush with other parts.
  • the movable spring piece 450 includes a movable spring body 451 and a movable contact 452, the movable contact 452 and the movable spring body 451 are separate structures, and the movable contact 452 and the movable spring body 451 can be connected by riveting, but not limited to this.
  • the static spring piece 460 includes a static spring body 461 and a static contact 462, the static contact 462 and the static spring body 461 are separate structures, and the static contact 462 and the static spring body 461 can be connected by riveting, but not limited to this.
  • the moving contact 452 and the moving spring body 451 may also be an integral structure, and the static contact 462 and the static spring body 461 may be an integral structure.
  • FIG. 31 is a schematic diagram showing that the auxiliary contact assembly 70 in the relay of the embodiment of the present disclosure is arranged at one end of the push rod mechanism 20.
  • the relay of the embodiment of the present disclosure further includes an auxiliary contact assembly 70, and the auxiliary contact assembly 70 includes an auxiliary dynamic spring 710 and an auxiliary static spring 720.
  • the auxiliary dynamic spring 710 includes a dynamic spring contact end 712 and a dynamic spring lead-out end 711
  • the auxiliary static spring 720 includes a static spring contact end 722 and a static spring lead-out end 721.
  • the dynamic spring contact end 712 is used to contact or separate with the static spring contact end 722, and the dynamic spring lead-out end 711 and the static spring lead-out end 721 can be electrically connected to the monitoring unit.
  • the circuit formed by the auxiliary dynamic spring 710, the auxiliary static spring 720 and the monitoring unit is turned on or off, so that the monitoring unit can monitor the contact state of the dynamic spring piece 450 and the static spring piece 460 of the contact assembly 40.
  • the auxiliary dynamic spring 710 of the auxiliary contact assembly 70 is connected to the base 10 and is pushed by the push rod mechanism 20 .
  • the auxiliary static spring 720 of the auxiliary contact assembly 70 is fixedly connected to the base 10 .
  • the push rod mechanism 20 can not only drive the dynamic spring sheet 450 to move, but also push the dynamic spring contact end 712 of the auxiliary dynamic spring 710 to move, so that the dynamic spring contact end 712 of the auxiliary dynamic spring 710 contacts or separates from the auxiliary static spring 720.
  • the auxiliary movable spring 710 when the movable spring piece 450 contacts the static spring piece 460 , the auxiliary movable spring 710 is separated from the auxiliary static spring 720 , and when the movable spring piece 450 is separated from the static spring piece 460 , the auxiliary movable spring 710 is in contact with the auxiliary static spring 720 .
  • the auxiliary movable spring 710 contacts the auxiliary static spring 720 , and when the movable spring piece 450 separates from the static spring piece 460 , the auxiliary movable spring 710 separates from the auxiliary static spring 720 .
  • the auxiliary dynamic spring 710 and the auxiliary static spring 720 are both inserted into the base 10, and the dynamic spring lead-out end 711 of the auxiliary dynamic spring 710 and the static spring lead-out end 721 of the auxiliary static spring 720 both extend out of the bottom surface of the base 10.
  • the dynamic spring lead-out end 711 and the static spring lead-out end 721 extend out of the bottom surface of the base 10 to facilitate connection with the circuit board.
  • the bottom surface of the base 10 refers to: when the relay is assembled on the circuit board, the side surface of the base 10 facing the circuit board.
  • the lead end of the static spring piece 460 can also extend out of the bottom surface of the base 10.
  • the auxiliary contact assembly 70 is disposed at one end of the push rod mechanism 20 away from the moving reed 450 .
  • Figure 32 shows a schematic diagram of the auxiliary dynamic spring 710 of the embodiment of the present disclosure.
  • Figure 33 shows a schematic diagram of the auxiliary static spring 720 of the embodiment of the present disclosure.
  • the auxiliary static spring 720 is a needle-shaped structure and is inserted into the base 10. Along the axial direction of the needle-shaped structure, one end of the needle-shaped structure is the static spring lead-out end 721, and the other end of the needle-shaped structure is the static spring contact end 722.
  • the side of the static spring contact end 722 is used to contact or separate with the dynamic spring contact end 712.
  • the auxiliary static spring 720 is a needle-shaped structure, which has the advantages of simplified parts structure, simple forming and easy assembly.
  • the auxiliary static spring 720 can be cut from round wire or square wire.
  • the side of the static spring contact end 722 of the auxiliary static spring 720 is used to contact or separate with the dynamic spring contact end 712. Since the side of the static spring contact end 722 is relatively wide, it is easier for the dynamic spring contact end 712 to contact with the static spring contact end 722, thereby avoiding the contact state of the dynamic spring piece 450 and the static spring piece 460 being affected by the misalignment of the dynamic spring contact end 712 and the static spring contact end 722.
  • needle-shaped structure refers to a thin and long wire, rod, etc., whose axial dimension is much larger than the radial dimension.
  • the auxiliary dynamic spring 710 of the embodiment of the present disclosure is a sheet-like structure, but is not limited thereto.
  • the dynamic spring contact end 712 includes a base 713 and a convex bulge 714.
  • the base 713 is connected to the dynamic spring lead-out end 711.
  • the convex bulge 714 is convexly arranged on a side surface of the base 713 facing the static spring contact end 722, and is used to contact or separate from the side surface of the static spring contact end 722.
  • the convex bulge 714 is convexly arranged on the base 713, and the convex bulge 714 is used to contact the static spring contact end 722, when the dynamic spring contact end 712 contacts the static spring contact end 722, the side surface of the static spring contact end 722 abuts against the convex bulge 714, and does not abut against the side surface of the base 713 facing the static spring contact end 722.
  • the convex bulge 714 is in the shape of an elongated strip.
  • the extending direction of the convex bulge 714 is perpendicular to the axial direction of the needle-shaped structure.
  • the convex bulge 714 and the needle-shaped structure are orthogonal in space, so that when the movable spring contact end 712 contacts the static spring contact end 722, even if the auxiliary movable spring 710 and the auxiliary static spring 720 are slightly misaligned, it will not affect the contact between the convex bulge 714 and the static spring contact end 722.
  • extension direction of the convex burl 714 may not be perpendicular to the axial direction of the needle-shaped structure.
  • the extension direction of the convex burl 714 may intersect with the axial direction of the needle-shaped structure.
  • the shape of the convex bract 714 is not limited to a long strip, for example, the shape of the convex bract 714 can also be circular, elliptical, etc.
  • the base 713 includes a first elastic arm 7131 and a second elastic arm 7132, a gap 715 is provided between the first elastic arm 7131 and the second elastic arm 7132, and a convex bulge 714 is provided on the surface of one side of the first elastic arm 7131 and the second elastic arm 7132 facing the static spring contact end 722.
  • the first elastic arm 7131 and the second elastic arm 7132 are arranged opposite to each other in the axial direction of the needle-shaped structure. When the dynamic spring contact end 712 contacts the static spring contact end 722, the two convex bulges 714 both contact the side of the static spring contact end 722, thereby improving the contact reliability.
  • the auxiliary dynamic spring 710 further includes a turning section 716, an inclined section 717 and a widening section 718.
  • the turning section 716, the inclined section 717 and the widening section 718 are arranged in sequence.
  • One end of the turning section 716 is connected to the dynamic spring contact end 712, and the other end is turned at an angle relative to the dynamic spring contact end 712.
  • One end of the inclined section 717 is connected to the other end of the turning section 716, and the other end of the inclined section 717 is connected to one end of the widening section 718.
  • the other end of the widening section 718 is connected to the dynamic spring lead-out end 711.
  • the turning angle of the turning section 716 can be 90 degrees, and of course can be other angles.
  • the extension direction of the dynamic spring contact end 712 is perpendicular to the extension direction of the dynamic spring lead-out end 711.
  • the inclined section 717 tilts the plane where the dynamic spring lead-out end 711 is located in a direction away from the auxiliary static spring 720, so that the dynamic spring lead-out end 711 and the auxiliary static spring 720 are arranged in the same plane. Due to the arrangement of the inclined section 717, the dynamic spring lead-out end 711 and the dynamic spring contact end 712 are not arranged in the same plane, so that the auxiliary static spring 720 can be arranged in the same plane as the dynamic spring lead-out end 711, and it will not affect the contact between the dynamic spring contact end 712 and the static spring contact end 722.
  • the arrangement of the auxiliary contact assembly 70 does not occupy too much space in the movement direction of the push rod mechanism 20 of the relay, which is conducive to realizing the miniaturization of the relay.
  • the width of the widened section 718 is greater than the width of the spring contact end 712, the turning section 716, the inclined section 717 and the spring lead-out end 711 of the auxiliary spring 710.
  • the widened section 718 is arranged in the insertion hole of the base 10 (as shown in FIG. 31). Since the width of the widened section 718 is large, the surface area of the widened section 718 is large.
  • the auxiliary spring 710 is connected to the base 10 through the widened section 718, so that the connection strength is higher.
  • Figure 34 shows a schematic diagram of the push rod 210 and the auxiliary contact assembly 70 after assembly.
  • the auxiliary dynamic spring 710 is connected to the push rod 210 of the push rod mechanism 20.
  • the auxiliary dynamic spring 710 is connected to one end of the push rod 210 away from the dynamic spring sheet 450.
  • the end of the push rod 210 away from the movable spring sheet 450 has a notch 2100, and the auxiliary movable spring 710 passes through the notch 2100.
  • the push rod 210 moves toward the auxiliary static spring 720, the push rod 210 can push the movable spring contact end 712 of the auxiliary movable spring 710 to move until the movable spring contact end 712 contacts the auxiliary static spring 720.
  • the auxiliary static spring 720 returns to its original position by its own elastic force, and at this time, the movable spring contact end 712 is separated from the auxiliary static spring 720. Since the auxiliary movable spring 710 passes through the notch 2100, the auxiliary movable spring 710 does not occupy the space of the relay in the movement direction of the push rod mechanism 20.
  • the existing technology uses interference fit or zero clearance fit between the moving reed, the static reed and other components and the base.
  • the base is made of plastic material, the positioning strength of plastic will be weakened at high temperature, which affects the assembly of the moving reed, the static reed and other components.
  • thermosetting sealants to fill between components and the base, that is, firstly applying glue to the components inside the relay to increase the positioning strength, and then applying glue to the plastic seal from the bottom of the relay to prevent water or dust from entering the inside of the relay.
  • the embodiments of the present disclosure provide a relay and a base sealing structure thereof that can improve assembly efficiency.
  • the base sealing structure of the embodiment of the present disclosure is applied to a relay, and the base sealing structure includes a base, a metal part and a sealant.
  • the base has a mounting hole that passes through its inner surface and bottom surface, and the hole wall of the mounting hole has a positioning wall structure and a gap wall structure; the metal part is inserted into the mounting hole, and part of the outer wall surface of the metal part abuts against the positioning wall structure, and there is a gap between part of the outer wall surface of the metal part and the gap wall structure; the sealant is filled in the gap.
  • the positioning wall structure includes a first positioning wall and a second positioning wall, and the first positioning wall and the second positioning wall are arranged opposite to each other along a positioning direction.
  • a portion of the outer wall surface of the metal component is interference fit with the first positioning wall and the second positioning wall, respectively.
  • the positioning wall structure and the spacer wall structure are connected via a transition slope.
  • the metal part includes a static spring lead-out pin, a coil lead-out pin, or an auxiliary contact lead-out pin.
  • a sealing groove is further provided on the bottom surface of the base, and the sealing groove is communicated with the mounting hole;
  • the sealant is also filled in the sealant groove.
  • a portion of the outer wall surface of the metal component is interference fit with the positioning wall structure.
  • a connection between a hole wall of the mounting hole and a bottom surface of the base has an inclined surface.
  • one end of the metal piece extends out of the bottom surface of the base.
  • the relay of the embodiment of the present disclosure includes the base sealing structure described in any one of the above items.
  • the base sealing structure of the disclosed embodiment realizes preliminary positioning through the positioning wall structure of the metal part and the mounting hole, and then fills the gap between the metal part and the gap wall structure of the mounting hole with sealant to complete the sealing assembly between the metal part and the base.
  • the disclosed embodiment reduces one dispensing step, effectively reduces costs, and improves assembly efficiency.
  • Figure 35 shows a top view of the relay of the embodiment of the present disclosure, wherein the upper cover is omitted
  • Figure 36 shows a cross-sectional view along J-J in Figure 35
  • Figure 37 shows a cross-sectional view along K-K in Figure 36.
  • the relay of the embodiment of the present disclosure includes a base 10, a push rod mechanism 20, a magnetic circuit mechanism 30 and a contact assembly 40.
  • the push rod mechanism 20, the magnetic circuit mechanism 30 and the contact assembly 40 are arranged on the base 10, and the magnetic circuit mechanism 30 controls the contact or separation of the contact assembly 40 through the push rod mechanism 20.
  • the magnetic circuit mechanism 30 includes a yoke structure 310, a bobbin 320 and a coil 330.
  • the yoke structure 310 forms a chamber, and the bobbin 320 and the coil 330 are both arranged in the chamber of the yoke structure 310.
  • the coil 330 is wound around the outer periphery of the bobbin 320 to form a magnetic control circuit.
  • the bobbin 320 is provided with a center hole 321 in the contact contact and separation direction of the contact assembly 40, and the center hole 321 is used for one end of the push rod mechanism 20 to pass through.
  • the yoke structure 310 includes a yoke plate 311 and a U-shaped yoke 312, and the yoke plate 311 and the U-shaped yoke 312 are connected to form a ring.
  • the yoke plate 311 is provided with a through hole 3111, and the through hole 3111 is used for the push rod mechanism 20 to pass through.
  • the yoke structure 310 may also include a cylindrical yoke and a yoke plate 311 , and the cylindrical yoke and the yoke plate 311 are connected to form a ring.
  • the magnetic circuit mechanism 30 further includes two permanent magnets 340, which are arranged on the wire frame 320 and located on both sides of the movement direction of the push rod mechanism 20.
  • the two permanent magnets 340 form a magnetic circuit structure of magnetic retention, which is conducive to reducing electricity costs, extending service life, and improving stability.
  • the contact assembly 40 includes a moving reed 450 and a stationary reed 460.
  • the stationary reed 460 is fixedly mounted on the base 10
  • the moving reed 450 is mounted on the push rod mechanism 20 and moves with the push rod mechanism 20.
  • the contact assembly 40 may also be a group or other quantity.
  • the two ends of the moving spring 450 in the length direction serve as moving contacts, which may protrude from other parts of the moving spring 450 or be flush with other parts.
  • the part of the stationary spring 460 that contacts the moving spring 450 serves as a stationary contact, which may protrude from other parts of the stationary spring 460 or be flush with other parts.
  • the movable spring piece 450 includes a movable spring body 451 and a movable contact 452, the movable contact 452 and the movable spring body 451 are separate structures, and the movable contact 452 and the movable spring body 451 can be connected by riveting, but not limited to this.
  • the static spring piece 460 includes a static spring body 461 and a static contact 462, the static contact 462 and the static spring body 461 are separate structures, and the static contact 462 and the static spring body 461 can be connected by riveting, but not limited to this.
  • the moving contact 452 and the moving spring body 451 may also be an integral structure, and the static contact 462 and the static spring body 461 may be an integral structure.
  • the push rod mechanism 20 includes a push rod 210 and an iron core 220, wherein the iron core 220 is connected to the push rod 210.
  • the iron core 220 can move in the direction of contact contact or separation under the action of the magnetic control circuit formed by the coil 330, thereby driving the push rod 210 to move, so as to control the contact contact or separation of the contact assembly 40.
  • Figure 38 shows a cross-sectional view along M-M in Figure 36.
  • Figure 39 shows a partial enlarged view of X3 in Figure 38.
  • the relay of the disclosed embodiment also includes a base sealing structure, which includes a base 10, a metal part 120 and a sealant (omitted in the figure).
  • the base 10 has a mounting hole 110 that runs through its inner surface and bottom surface, and the hole wall of the mounting hole 110 has a positioning wall structure 111 and a gap wall structure 112.
  • the metal part 120 is inserted into the mounting hole 110, and part of the outer wall surface of the metal part 120 is in contact with the positioning wall structure 111, and there is a gap between part of the outer wall surface of the metal part 120 and the gap wall structure 112.
  • the sealant is filled in the gap.
  • the hole wall of the mounting hole 110 of the base has a positioning wall structure 111 and a gap wall structure 112.
  • the metal part 120 is assembled with the base 10
  • the metal part 120 is inserted into the mounting hole 110.
  • part of the outer wall surface of the metal part 120 abuts against the positioning wall structure 111, thereby achieving the preliminary positioning of the metal part 120.
  • the sealant can climb from the bottom surface of the base 10 along the gap to the inner surface of the base 10 until it climbs to the opening of the mounting hole 110, so that the sealant fills the gap, further strengthening the sealing and positioning strength between the metal part 120 and the base 10.
  • the heat resistance of welding of the relay product is improved by utilizing the property that the melt resistance of the sealant is stronger than that of the plastic material.
  • the metal part 120 can be any component of the relay that needs to be assembled with the mounting hole 110 of the base 10, including but not limited to: a static spring lead pin, a coil lead pin or an auxiliary contact lead pin.
  • one end of the metal member 120 extends out of the bottom surface of the base 10 through the mounting hole 110.
  • one end of the metal member 120 may not extend out of the bottom surface of the base 10.
  • the positioning wall structure 111 includes a first positioning wall 113 and a second positioning wall 114 , and the first positioning wall 113 and the second positioning wall 114 are arranged opposite to each other along a positioning direction D.
  • the first positioning wall 113 and the second positioning wall 114 are respectively in contact with the metal member 120 , thereby limiting the degree of freedom of the metal member 120 and the base 10 in the positioning direction D.
  • the positioning direction D may be the length direction of the relay.
  • the shapes of the first positioning wall 113 and the second positioning wall 114 are adapted to the outer contour of the metal member 120.
  • the first positioning wall 113 and the second positioning wall 114 may be planes.
  • the shapes of the first positioning wall 113 and the second positioning wall 114 may be arcuate surfaces.
  • Part of the outer wall surface of the metal part 120 is interference fit with the positioning wall structure 111.
  • part of the outer wall surface of the metal part 120 is interference fit with the first positioning wall 113 and the second positioning wall 114.
  • part of the outer wall surface of the metal part 120 and the positioning wall structure 111 can also adopt zero clearance fit.
  • the positioning wall structure 111 and the spacer wall structure 112 are connected via a transition slope 115 .
  • Figure 40 shows a cross-sectional view along N-N in Figure 35.
  • Figure 41 shows a partial enlarged view of X4 in Figure 40.
  • Figure 42 shows a cross-sectional view along P-P in Figure 35.
  • Figure 43 shows a partial enlarged view of X5 in Figure 42.
  • Figure 40 is a cross-sectional view cut along the position corresponding to the positioning wall structure 111 of the metal member 120 and the mounting hole 110
  • Figure 42 is a cross-sectional view cut along the position corresponding to the gap wall structure 112 of the mounting hole 110.
  • connection between the hole wall of the mounting hole 110 and the bottom surface of the base 10 is provided with an inclined surface 116.
  • the inclined surface 116 By providing the inclined surface 116, the depth of the flow of the sealant can be increased.
  • FIG. 44 shows a three-dimensional schematic diagram of a relay according to an embodiment of the present disclosure, wherein the bottom surface of the base faces upward.
  • the bottom surface of the base 10 is also provided with a sealing groove 130, and the sealing groove 130 is connected to the mounting hole 110.
  • the sealing glue is also filled in the sealing groove 130 to increase the range covered by the sealing glue.
  • the bottom of the sealing groove 130 is connected to the hole wall of the mounting hole 110 through the inclined surface 116.
  • sealing groove 130 and the inclined surface 116 may be the same inclined surface.
  • the relay in the prior art needs to first be glued once between the component and the base in the direction indicated by the arrow in Figure 1, and then glued a second time in the direction indicated by the arrow in Figure 2.
  • This requires at least two glue dispensing processes, and the directions of the two glue dispensing are different.
  • the metal part 120 is initially positioned by abutting a portion of its outer wall against the positioning wall structure 111 (glue dispensing is not required during the initial positioning process). Afterwards, glue is dispensed toward the gap between the metal part 120 and the gap wall structure 112 in the direction of the arrow in FIG. 44 (i.e., from the bottom side of the base 10). At the same time, glue can also be dispensed into the gap between the upper cover and the base 10 in the direction of the arrow in FIG. 44. It can be seen that in the embodiment of the present disclosure, glue can be dispensed along one glue dispensing direction (the direction of the arrow in FIG. 44).
  • Glue is dispensed on the gap between the static spring lead pin 463 and the base 10, the gap between the coil lead pin 331 and the base 10, the gap between the auxiliary contact lead pin 710 and the base 10, and the gap between the upper cover and the base 10, which significantly improves the glue dispensing efficiency.

Landscapes

  • Electromagnets (AREA)

Abstract

一种继电器,包括壳体(1)、固定于壳体(1)的第一导磁体(610)、触点组件(40)和相对于壳体(1)可移动的推动杆(210)。推动杆(210)包括杆部(211)、连接于杆部(211)轴向一端的底部(212)以及连接于底部(212)的第一侧部(213)和第二侧部(214);第一侧部(213)设有第一通孔(2131),第二侧部(214)设有第二通孔(2141),一动簧片穿设于第一通孔(2131)和第二通孔(2141),并能在第一位置和第二位置之间移动。在第一位置,动簧片分别与第一通孔(2131)和第二通孔(2141)的孔壁抵接;沿着杆部(211)的轴向,动簧片具有与第一导磁体(610)对应的导磁区域,导磁区域与第一导磁体(610)之间不容纳推动杆(210)的任何部分。

Description

继电器
交叉引用
本公开要求于2022年12月01日提交的申请号为202211544804.9、202223233526.3、202223234176.2和202223234023.8的中国专利申请的优先权,这些中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开实施例涉及电子控制器件技术领域,具体而言,涉及一种继电器。
背景技术
继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中。继电器实际上是用较小的电流去控制较大电流的一种“自动开关”。因此在电路中起着自动调节、安全保护、转换电路等作用。
继电器的触点闭合过程中,推动杆带动动簧片朝着静簧片的方向移动,直至动簧片与静簧片接触。继电器的触点分离过程中,推动杆带动动簧片朝着远离静簧片的方向移动,直至推动杆移动至初始位置。现有技术中的推动杆与动簧片的连接结构不够稳定,导致在触点分离过程中,动簧片的运动并不平稳。
此外,继电器通常设置抗短路结构,以防止短路负载很大而导致触头弹开。具体来说,在继电器的内部设置导磁体,在短路电流产生电动斥力时,导磁体被磁化会产生电磁吸力,从而防止动簧片瞬间弹开,避免发生继电器烧毁、爆炸。
在现有技术中,通常在动簧片的正上方设置倒U形支架或止挡片的方式,来确保动簧片运动的平稳性。然而,抗短路结构的导磁体也会设置在动簧片的正上方,在动簧片与导磁体之间就会存在部分U形支架或止挡片,影响抗短路结构的磁场强度。
发明内容
本公开实施例提供一种继电器,以解决现有技术中存在的抗短路结构的磁场强度易受影响的问题。
本公开实施例的继电器,包括壳体、第一导磁体、触点组件和推动杆,第一导磁体固定连接于所述壳体,并位于所述动簧片的朝向所述静簧片的一侧;触点组件包括动簧片和静簧片,所述静簧片固定连接于所述壳体,所述动簧片设于所述壳体内;推动杆相对于所述壳体可移动;所述推动杆包括杆部、底部、第一侧部和第二侧部,所述底部连接于所述杆部轴向的一端,所述第一侧部和所述第二侧部均连接于所述底部,且沿着所述动簧片的长度方向相对设置;所述第一侧部设有第一通孔,所述第二侧部设有第二通孔,所述动簧片穿设于所述第一通孔和所述第二通孔;沿着所述杆部的轴向,所述动簧片相对于所述第一通孔和所述第二通孔在第一位置和第二位置之间可移动;在所述第一位置,所述动簧片 分别与所述第一通孔的孔壁和所述第二通孔的孔壁抵接;沿着所述杆部的轴向,所述动簧片具有与所述第一导磁体对应的导磁区域,所述导磁区域与所述第一导磁体之间不容纳所述推动杆的任何部分。
根据本公开的一些实施方式,还包括第一弹性件,连接于所述动簧片和所述推动杆之间,用于向所述动簧片施加朝着所述第一位置移动的弹性力。
根据本公开的一些实施方式,所述导磁区域位于所述第一侧部和所述第二侧部之间。
根据本公开的一些实施方式,所述动簧片的长度方向的两端均设有动触点,其中一个所述动触点位于所述第一侧部背向所述第二侧部的一侧,另一个所述动触点位于所述第二侧部背向所述第一侧部的一侧;所述导磁区域位于两个所述动触点之间。
根据本公开的一些实施方式,所述动簧片的一侧凸设有第一定位部和第二定位部,所述第一定位部与所述第一侧部的位置对应,所述第二定位部与所述第二侧部的位置对应;在所述动簧片的长度方向上,所述动簧片通过所述第一定位部和所述第二定位部设置在所述推动杆的预定位置。
根据本公开的一些实施方式,所述第一侧部朝向所述第二侧部的一侧具有第一止挡面,所述第二侧部朝向所述第一侧部的一侧具有第二止挡面;所述第一定位部与所述第一止挡面抵接,所述第二定位部与所述第二止挡面抵接。
根据本公开的一些实施方式,所述第一定位部和所述第二定位部凸设于所述动簧片朝向所述静簧片的一侧表面。
根据本公开的一些实施方式,所述继电器还包括第二导磁体,所述第二导磁体连接于所述动簧片的导磁体区域,且所述第二导磁体固定连接于所述动簧片背向所述第一导磁体的一侧,以使所述第一导磁体与所述第二导磁体之间在所述动簧片的宽度方向上形成导磁回路;其中,沿着所述杆部的轴向,所述第二导磁体与所述第一导磁体之间不容纳所述推动杆的任何部分。
根据本公开的一些实施方式,所述第二导磁体为U形,且沿着所述动簧片的宽度方向包覆所述导磁区域。
根据本公开的一些实施方式,所述第二导磁体包括至少两个子导磁体,每个所述子导磁体为U形;所述动簧片设有至少一个穿孔,至少两个所述子导磁体均连接于所述动簧片背向所述第一导磁体的一侧,且至少两个所述子导磁体的侧部穿过至少一个穿孔,以通过所述穿孔与所述第一导磁体靠近或相互接触,并在所述动簧片的宽度方向上形成至少两个独立的导磁回路。
根据本公开的一些实施方式,位于一个所述穿孔中的两个所述侧部之间具有间隙。
根据本公开的一些实施方式,所述壳体具有安装部,所述安装部位于所述推动杆的径向方向上的一侧,所述径向方向与所述推动杆的运动方向垂直;所述第一导磁体固定连接于所述安装部。
根据本公开的一些实施方式,所述壳体包括侧壁,所述侧壁位于所述推动杆径向方向上的一侧,所述安装部形成于所述侧壁。
根据本公开的一些实施方式,所述侧壁沿着所述推动杆的周向方向环绕于所述推动杆。
根据本公开的一些实施方式,所述壳体包括:
底座;以及
外罩,连接于所述底座,所述外罩和所述底座形成一用以容纳所述触点组件、所述推动杆和所述第一导磁体的腔室;所述底座和/或所述外罩形成所述侧壁。
根据本公开的一些实施方式,所述第一导磁体包括连接部和悬空部,所述连接部固定连接于所述安装部;其中,定义一个垂直于所述推动杆的运动方向的虚拟平面,所述连接部在所述虚拟平面上具有第一正投影,所述悬空部在所述虚拟平面上具有第二正投影,所述动簧片在所述虚拟平面上具有第三正投影,所述第一正投影与所述第三正投影不重合,所述第二正投影与所述第三正投影至少部分重合。
根据本公开的一些实施方式,所述第一导磁体为平板结构。
根据本公开的一些实施方式,所述第一导磁体沿一插装方向插装于所述壳体的所述安装部,所述插装方向垂直于所述推动杆的运动方向。
根据本公开的一些实施方式,所述安装部包括第一安装孔,所述第一安装孔贯穿所述壳体的内表面和外表面,所述第一安装孔的孔壁具有第一定位壁结构和第一间隙壁结构;所述第一导磁体插装于所述第一安装孔,且所述第一导磁体的部分外壁面与所述第一定位壁结构相抵接,所述第一导磁体的部分外壁面与所述第一间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
根据本公开的一些实施方式,所述第一导磁体的部分外壁面与所述第一定位壁结构过盈配合。
根据本公开的一些实施方式,所述第一导磁体的插装方向与所述动簧片的长度方向垂直。
根据本公开的一些实施方式,所述静簧片沿所述插装方向插装于所述壳体。
根据本公开的一些实施方式,所述壳体还具有贯穿其内表面和外表面的第二安装孔,所述第二安装孔的孔壁具有第二定位壁结构和第二间隙壁结构;所述静簧片插装于所述第二安装孔,且所述静簧片的部分外壁面与所述第二定位壁结构抵接,所述静簧片的部分外壁面与所述第二间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
根据本公开的一些实施方式,所述静簧片的部分外壁面与所述第二定位壁结构过盈配合。
上述发明中的一个实施例至少具有如下优点或有益效果:
本公开实施例的继电器,一方面,当推动杆带动动簧片移动时,推动杆通过第一侧部和第二侧部与动簧片形成两个拉力受力点,两个拉力受力点沿着动簧片的长度方向布置,使得动簧片移动的更加平稳;另一方面,在推杆机构的运动方向上,动簧片的导磁区域与 第一导磁体之间不容纳推动杆的任何部分,避免推动杆影响动簧片与第一导磁体之间磁场强度,确保抗短路能力。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1示出的是本公开继电器一实施例的俯视图,其中省略了外罩。
图2示出的是图1中沿A-A的剖视图。
图3示出的是图2中沿B-B的剖视图。
图4示出的是推动杆的示意图。
图5示出的是推动杆、触点组件和轭铁板组装后的主视示意图。
图6示出的是推动杆、触点组件和轭铁板组装后的立体示意图。
图7示出的是图5的侧视示意图。
图8示出的是图7中沿C-C的剖视图。
图9示出的是第一正投影、第二正投影和第三正投影在虚拟平面上的相对位置示意图。
图10示出的是图2中沿D-D的剖视图。
图11示出的是图10中X1处的局部放大图。
图12示出的是图10中X2处的局部放大图。
图13示出的是本公开第一实施例的第一导磁体、第二导磁体和触点组件组装后的示意图。
图14和图15分别示出本公开第二实施例的动簧片与第二导磁体组装后的两个不同视角的示意图。
图16和图17示出的是本公开实施例弹性件在两个不同视角下的示意图。
图18示出的是本公开继电器另一实施例的俯视图,其中省略了上盖。
图19示出的是图18中沿E-E的剖视图。
图20示出的是图19中沿F-F的剖视图。
图21示出的是推动杆的示意图。
图22示出的是推动杆、触点组件和轭铁板组装后的主视示意图。
图23示出的是推动杆、触点组件和轭铁板组装后的立体示意图。
图24示出的是图22的侧视示意图。
图25示出的是图24中沿G-G的剖视图。
图26和图27示出的是第一弹性件的两个不同视角下的示意图。
图28示出的是本公开继电器另一实施例的俯视图,其中省略了上盖。
图29示出的是图28中沿H-H的剖视图。
图30示出的是图29中沿I-I的剖视图。
图31示出的是本公开实施例继电器中辅助触点组件设置于推杆机构一端的示意图。
图32示出的是本公开实施例辅助动簧的示意图。
图33示出的是本公开实施例辅助静簧的示意图。
图34示出的是推动杆与辅助触点组件组装后的示意图。
图35示出的是本公开继电器另一实施例的俯视图,其中省略了上盖。
图36示出的是图35中沿J-J的剖视图。
图37示出的是图36中沿K-K的剖视图。
图38示出的是图36中沿M-M的剖视图。
图39示出的是图38中X3处的局部放大图。
图40示出的是图35中沿N-N的剖视图。
图41示出的是图40中X4处的局部放大图。
图42示出的是图35中沿P-P的剖视图。
图43示出的是图42中X5处的局部放大图。
图44示出的是本公开实施例继电器的立体示意图,其中底座的底面朝上。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。虽然本说明书中使用相对性的用语,例如“上”、“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。其他相对性的用语,例如“顶”、“底”等也作具有类似含义。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
在发明实施例中,用语“一个”、“一”、“该”和“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”等仅作为标记使用,不是对其对象的数量限制。
在发明实施例中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在发明实施例中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述 意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于发明实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
如图1至图3所示,图1示出的是本公开实施例继电器的俯视图,其中省略了外罩,图2示出的是图1中沿A-A的剖视图,图3示出的是图2中沿B-B的剖视图。本公开实施例的继电器包括壳体1、推杆机构20、磁路机构30和触点组件40。于本公开实施例中,壳体1为继电器的壳体。推杆机构20、磁路机构30和触点组件40设置在底座10上,磁路机构30通过推杆机构20控制触点组件40的触点接触或分离。
壳体1可以包括底座10和外罩(图中未示出),外罩连接于底座10,形成一用于容纳推杆机构20、磁路机构30和触点组件40的腔室。
磁路机构30包括轭铁结构310、线架320和线圈330。轭铁结构310形成一腔室,线架320和线圈330均设置于轭铁结构310的腔室内。线圈330绕设于线架320的外周,以形成磁控回路。线架320在触点组件40的触点接触分离方向上设有中心孔321,中心孔321用以供推杆机构20的一端穿设。
作为一示例,轭铁结构310包括轭铁板311和U形轭铁312,轭铁板311与U形轭铁312连接共同形成环形。轭铁板311开设有贯通孔3111,该贯通孔3111用于供推杆机构20穿设。
当然,在其他实施例中,轭铁结构310还可以包括圆筒状轭铁和轭铁板311,圆筒状轭铁和轭铁板311连接共同形成环形。
磁路机构30还包括两个永磁体340,两个永磁体340设置于线架320,且位于推杆机构20的运动方向的两侧。两个永磁体340形成磁保持的磁路结构,有利于降低用电成本较,延长使用寿命较,提升稳定性。
当然,在其他实施例中,不含永磁体340也是可以的。
如图3所示,推杆机构20相对于底座10在第五位置和第六位置之间可移动,当推杆机构20处于第五位置时,触点组件40处于完全闭合状态,当推杆机构20处于第六位置时,触点组件40处于完全断开状态。推杆机构20包括推动杆210和铁芯220,铁芯220连接于推动杆210。铁芯220在线圈330形成的磁控回路的作用下能够沿触点接触或分离的方向上移动,进而带动推动杆210移动,以控制触点组件40的触点接触或分离。
需要说明的是,触点组件40处于完全闭合状态是指:触点组件40的动簧片和静簧片接触后且完成超行程时,触点组件40所处的状态;触点组件40处于完全断开状态是指:触点组件40的动簧片和静簧片断开后触点间隙最大时,触点组件40所处的状态。
请继续参阅图1至图3,触点组件40包括动簧片410,430和静簧片420,440,静簧片420,440固定安装于底座10上,动簧片410,430设于壳体1内,动簧片410,430安装 于推杆机构20上,且与推杆机构20随动。
在本实施例中,触点组件40为两组,分别为第一触点组件40a和第二触点组件40b,第一触点组件40a和第二触点组件40b沿着推杆机构20的运动方向布置。并且,第一触点组件40a靠近磁路机构30,第二触点组件40b远离磁路机构30。
第一触点组件40a包括第一动簧片410和两个第一静簧片420。第二触点组件40b包括第二动簧片430和两个第二静簧片440。第一动簧片410的两端能够分别与两个第一静簧片420接触或分离,第二动簧片430的两端能够分别与两个第二静簧片440接触或分离。
当然,在其他实施例中,触点组件40也可以为一组或其他数量。
动簧片410,430的长度方向的两端作为动触点,动触点可以凸出于动簧片410,430的其他部分,也可以是与其他部分齐平。静簧片420,440与动触点接触的部分作为静触点,静触点可以凸出于静簧片420,440的其他部分,也可以是与其他部分齐平。
作为一示例,第一动簧片410包括第一动簧本体416和第一动触点411,第一动触点411与第一动簧本体416为分体结构,第一动触点411与第一动簧本体416可以采用铆接的方式连接,但不以此为限。第一静簧片420包括第一静簧本体421和第一静触点422,第一静触点422与第一静簧本体421为分体结构,第一静触点422与第一静簧本体421可以采用铆接的方式连接,但不以此为限。
第二动簧片430包括第二动簧本体434和第二动触点431,第二动触点431与第二动簧本体434为分体结构,第二动触点431与第二动簧本体434可以采用铆接的方式连接,但不以此为限。第二静簧片440包括第二静簧本体441和第二静触点442,第二静触点442与第二静簧本体441为分体结构,第二静触点442与第二静簧本体441可以采用铆接方式连接,但不以此为限。
当然,在另一实施例中,第一动触点411与第一动簧本体416可以为一体结构;第一静触点422与第一静簧本体421可以为一体结构;第二动触点431与第二动簧本体434可以为一体结构;第二静触点442与第二静簧本体441可以为一体结构。
可以理解的是,在其他实施例中,壳体1还可以为陶瓷罩。
如图2和图3所示,壳体1具有安装部11,安装部11位于推杆机构20径向方向上的一侧,径向方向与推杆机构20的运动方向D3垂直。本公开实施例的继电器还包括第一导磁体610,第一导磁体610与触点组件40对应,即位于动簧片的朝向静簧片的一侧。第一导磁体610固定连接于底座10。
第一导磁体610与触点组件40对应是指:第一导磁体610与触点组件40的数量对应,且第一导磁体610与触点组件40的位置对应。在本实施例中,触点组件40的数量为两个,那么第一导磁体610的数量也为两个,且其中一个第一导磁体610与第一触点组件40a的第一动簧片410对应,另一个第一导磁体610与第二触点组件40b的第二动簧片430对应。
可以理解的是,本公开实施例的继电器,由于壳体1的安装部11位于推杆机构20径向方向上的一侧,其中径向方向垂直于推杆机构20的运动方向,使得第一导磁体610与安装部11固定连接的位置也是位于推杆机构20的一侧,也就是说,第一导磁体610与壳体1的安装部11连接的位置并不位于动簧片的上方,这样,继电器设置多个第一导磁体610后,各第一导磁体610均不会影响推杆机构20的运动,因此本实施例的继电器可以为多个触点组件40均对应设置第一导磁体610,实现每个触点组件40均设有抗短路结构。
壳体1包括顶壁、底壁和侧壁,顶壁和底壁沿着推杆机构20的运动方向相对设置,侧壁连接于顶壁、底壁。侧壁位于推杆机构20径向方向上的一侧,安装部11形成于侧壁上。
进一步地,侧壁沿着推杆机构20的周向方向环绕于推杆机构20。
可以理解的是,壳体1的形状可以为多种实施例,例如壳体1可以为立方体、圆柱体等,但不以此为限。
壳体1的底座10和/或外罩形成有侧壁,侧壁设有安装部11。具体来说,安装部11可以只形成于底座10上,安装部11也可以只形成于外罩上,当然,底座10和外罩上还可以均形成有安装部11。
可以理解的是,本公开实施例的继电器,第一导磁体610设置于动簧片410,430的上方,当动簧片410,430与静簧片420,440接触时,电流通过动簧片410,430,因而在动簧片410,430的宽度方向D2的外周形成一环绕动簧片410,430的导磁回路。由于第一导磁体610的存在,导磁回路的大多数磁场会向第一导磁体610聚拢并使第一导磁体610磁化,这样第一导磁体610和电流流通的动簧片410,430之间会产生沿触点压力方向上的吸力,该吸力与触点压力叠加产生更大的触点压力,能够抵抗动簧片410,430的动触点与静簧片420,440的静触点之间因短路电流产生的电动斥力,确保动簧片410,430的动触点与静簧片420,440的静触点不发生弹开。
此外,第一导磁体610固定连接于底座10,而并不随动于推杆机构20,使得动簧片410,430对第一导磁体610的吸力作用在底座10上,由于底座10的位置相对固定,第一导磁体610的吸力与推杆机构20无关,这样能够避免推杆机构20的保持力不足而造成动簧片410,430与静簧片420,440弹开,引发继电器烧毁、爆炸。
如图4至图6所示,图4示出的是推动杆210的示意图。图5示出的是推动杆210、触点组件40和轭铁板311组装后的主视示意图。图6示出的是推动杆210、触点组件40和轭铁板311组装后的立体示意图。推动杆210用于带动第一动簧片410移动,以与第一静簧片420接触或分离。推动杆210包括杆部211、底部212、第一侧部213和第二侧部214。杆部211可移动地穿设于轭铁板311的贯通孔3111,铁芯220连接于杆部211。底部212连接于杆部211轴向的一端,第一侧部213和第二侧部214均连接于底部212,且沿着第一动簧片410的长度方向D1相对设置。第一侧部213设有第一通孔 2131,第二侧部214设有第二通孔2141,第一动簧片410穿设于第一通孔2131和第二通孔2141,并且沿着杆部211的轴向,第一动簧片410相对于第一通孔2131和第二通孔2141在第一位置和第二位置之间可移动;在第一位置,第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接。
继电器还包括第一弹性件500a,第一弹性件500a设于第一动簧片410和推动杆210的底部212之间,用于向第一动簧片410施加朝着第一位置移动的弹性力。
在继电器的第一触点组件40a闭合过程中,推动杆210带动第一动簧片410朝着第一静簧片420移动。在第一动簧片410与第一静簧片420接触之前,在第一弹性件500a的作用下,第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接而处于第一位置。当第一动簧片410与第一静簧片420接触后,由于第一静簧片420固定安装于底座10上,故第一动簧片410受到第一静簧片420的止挡而不能继续移动,此时推动杆210会继续移动,第一弹性件500a被逐渐压缩直至完成超行程,此时第一动簧片410相对于第一通孔2131和第二通孔2141处于第二位置。
在继电器的第一触点组件40a分离过程中,推动杆210朝着远离第一静簧片420的方向移动过程可以分成两个阶段:在第一个阶段中,推动杆210移动而第一动簧片410并不随着推动杆210移动。在第一个阶段,第一动簧片410相对于第一通孔2131和第二通孔2141由第二位置向第一位置移动。在第二个阶段的开始,第一动簧片410相对于第一通孔2131和第二通孔2141已经移动至第一位置,此时第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接。之后,推动杆210的移动就会带动第一动簧片410随之移动,以使第一动簧片410与第一静簧片420分离。在第二个阶段,推动杆210带动第一动簧片410移动时,由于第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接,相当于推动杆210通过第一侧部213和第二侧部214作用于第一动簧片410上,而使第一动簧片410与第一静簧片420分离。
由此可见,第一通孔2131的孔壁与第一动簧片410抵接的位置相当于一个力的作用点,第二通孔2141的孔壁与第一动簧片410抵接的位置相当于另一个力的作用点,通过设置两个力的作用点,且两个力的作用点沿着第一动簧片410的长度方向D1布置,第一动簧片410所受推动杆210的拉力受力面积更大,使得推动杆210带动第一动簧片410移动时更加平稳。
如图3所示,沿着杆部211的轴向方向(即推杆机构20的运动方向D3),第一动簧片410具有与第一导磁体610对应的导磁区域415,导磁区域415与第一导磁体610之间不容纳推动杆210的任何部分。
由此可以看出,一方面,当推动杆210带动第一动簧片410移动时,推动杆210通过第一侧部213和第二侧部214与第一动簧片410形成两个拉力受力点,两个拉力受力点沿着第一动簧片410的长度方向D1布置,使得第一动簧片410移动的更加平稳;另一方面,在推杆机构20的运动方向D3上,第一动簧片410的导磁区域415与第一导磁 体610之间不容纳推动杆210的任何部分,避免推动杆210影响第一动簧片410与第一导磁体610之间磁场强度,确保抗短路能力。
第一动簧片410的导磁区域415位于第一侧部213和第二侧部214之间。
如图5所示,第一动簧片410的长度方向D1的两端均设有第一动触点411,其中一个第一动触点411位于第一侧部213背向第二侧部214的一侧,另一个第一动触点411位于第二侧部214背向第一侧部213的一侧。也就是说,第一侧部213和第二侧部214作用于第一动簧片410的两个力的作用点是位于第一动簧片410的两个第一动触点411之间。导磁区域415位于两个第一动触点411之间。
如图7和图8所示,图7示出的是图5的侧视示意图。图8示出的是图7中沿C-C的剖视图。第一动簧片410的一侧凸设有第一定位部412和第二定位部413,第一定位部412与第一侧部213的位置对应,第二定位部413与第二侧部214的位置对应。在第一动簧片410的长度方向D1上,第一动簧片410通过第一定位部412和第二定位部413设置在推动杆210的预定位置。
在本实施例中,通过在第一动簧片410上设置第一定位部412和第二定位部413,使得第一动簧片410能够在其长度方向D1上,安装在推动杆210的预定位置,避免第一动簧片410与第一侧部213和第二侧部214之间发生相对晃动,进一步提升第一动簧片410在移动过程中的平稳性。
具体来说,在杆部211的轴向方向(即推杆机构20的运动方向D3)上,第一弹性件500a设置于推动杆210的底部212和第一动簧片410之间,第一动簧片410始终受到第一弹性件500a的弹性力,使得第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接,因此在杆部211的轴向方向(即推杆机构20的运动方向D3)上,第一动簧片410与推动杆210之间不会产生相对晃动。
在第一动簧片410的长度方向D1,通过第一定位部412和第二定位部413的设置,第一动簧片410与推动杆210之间也不会产生相对晃动。
在第一动簧片410的宽度方向D2上,可以通过限定第一通孔2131和第二通孔2141的尺寸,使得在第一动簧片410的宽度方向D2上,第一通孔2131和第二通孔2141的尺寸与第一动簧片410的宽度相适配,避免第一动簧片410与第一和第二通孔的孔壁之间存在较大的缝隙。
请继续参阅图8,第一侧部213朝向第二侧部214的一侧具有第一止挡面2132,第二侧部214朝向第一侧部213的一侧具有第二止挡面2142。第一定位部412与第一止挡面2132抵接,第二定位部413与第二止挡面2142抵接。
当然,在其他实施方式中,第一定位部412与第一止挡面2132之间可以具有缝隙,第二定位部413与第二止挡面2142之间可以具有缝隙。需要说明的是,上述两处缝隙的尺寸不能太大,缝隙的大小需要既能够满足第一动簧片410的第一定位部412和第二定位部413较容易地安装入第一侧部213和第二侧部214之间,又能够避免第一动簧片 410与推动杆210之间产生沿第一动簧片410的长度方向D1上的相对晃动。
第一定位部412和第二定位部413凸设于第一动簧片410朝向第一静簧片420的一侧表面。
请返回参阅图4至图6,第二触点组件40b与第一触点组件40a沿着杆部211的轴向方向(即推杆机构20的运动方向D3)布置。推动杆210还包括间隔部215、第三侧部216和第四侧部217,第三侧部216连接于第一侧部213背向底部212的一端,第四侧部217连接于第二侧部214背向底部212的一端,间隔部215设置于第三侧部216和第四侧部217之间。第三侧部216具有第三通孔2161,第四侧部217具有第四通孔2171,第二动簧片430穿设于第三通孔2161和第四通孔2171。第三通孔2161位于间隔部215沿杆部211的轴向方向的一侧,第一通孔2131位于间隔部215沿杆部211的轴向方向的另一侧。第四通孔2171位于间隔部215沿杆部211的轴向方向的一侧,第二通孔2141位于间隔部215沿杆部211的轴向方向的另一侧。沿着杆部211的轴向方向(即推杆机构20的运动方向D3),第二动簧片430相对于第三通孔2161和第四通孔2171在第三位置和第四位置之间可移动。在第三位置,第二动簧片430分别与第三通孔2161的孔壁和第四通孔2171的孔壁抵接。
继电器还包括第二弹性件500b,第二弹性件500b设于第二动簧片430和间隔部215之间,用于向第二动簧片430施加朝着第三位置移动的弹性力。
推动杆210带动第二动簧片430与第一静簧片420接触或分离的动作过程与第一触点组件40a的相同,此处不再赘述。
因此,第三通孔2161的孔壁与第二动簧片430抵接的位置相当于一个力的作用点,第四通孔2171的孔壁与第二动簧片430抵接的位置相当于另一个力的作用点,通过设置两个力的作用点,且两个力的作用点沿着第二动簧片430的长度方向D1布置,第二动簧片430所受推动杆210的拉力受力面积更大,使得推动杆210带动第二动簧片430移动时更加平稳。
如图4所示,底部212、间隔部215、第一侧部213和第二侧部214合围成一空腔218,第一通孔2131和第二通孔2141均与空腔218连通,第三通孔2161和第四通孔2171不与空腔218连通。空腔218可以用于容纳抗短路结构。
如图5所示,第二动簧片430的长度方向D1的两端均设有第二动触点431,其中一个第二动触点431位于第三侧部216背向第四侧部217的一侧,另一个第二动触点431位于第四侧部217背向第三侧部216的一侧。也就是说,第三侧部216和第四侧部217作用于第二动簧片430的两个力的作用点是位于第二动簧片430的两个第二动触点431之间。
请参阅图7和图8,第二动簧片430的一侧凸设有第三定位部432和第四定位部433,第三定位部432与第三侧部216的位置对应,第四定位部433与第四侧部217的位置对应。在第二动簧片430的长度方向D1上,第二动簧片430通过第三定位部432 和第四定位部433设置在推动杆210的预定位置。
在本实施例中,通过在第二动簧片430上设置第三定位部432和第四定位部433,使得第二动簧片430能够在其长度方向D1上,安装在推动杆210的预定位置,避免第二动簧片430与第三侧部216和第四侧部217之间发生相对晃动,进一步提升第二动簧片430在移动过程中的平稳性。
具体来说,在杆部211的轴向方向(即推杆机构20的运动方向D3)上,第二弹性件500b设置于间隔部215和第二动簧片430之间,第二动簧片430始终受到第二弹性件500b的弹性力,使得第二动簧片430分别与第三通孔2161的孔壁和第四通孔2171的孔壁抵接,因此在杆部211的轴向方向(即推杆机构20的运动方向D3)上,第二动簧片430与推动杆210之间不会产生相对晃动。
在第二动簧片430的长度方向D1,通过第三定位部432和第四定位部433的设置,第二动簧片430与推动杆210之间也不会产生相对晃动。
在第二动簧片430的宽度方向D2上,可以通过限定第三通孔2161和第四通孔2171的尺寸,使得在第二动簧片430的宽度方向D2上,第三通孔2161和第四通孔2171的尺寸与第二动簧片430的宽度相适配,避免第二动簧片430与第三和第四通孔的孔壁之间存在较大的缝隙。
请继续参阅图8,第三侧部216朝向第四侧部217的一侧具有第三止挡面2162,第四侧部217朝向第三侧部216的一侧具有第四止挡面2172。第三定位部432与第三止挡面2162抵接,第四定位部433与第四止挡面2172抵接。
当然,在其他实施方式中,第三定位部432与第三止挡面2162之间可以具有缝隙,第四定位部433与第四止挡面2172之间可以具有缝隙。
第三定位部432和第四定位部433凸设于第二动簧片430朝向第二静簧片440的一侧表面。
推动杆210的杆部211、底部212、第一侧部213、第二侧部214、间隔部215、第三侧部216和第四侧部217为一体结构。
作为一示例,推动杆210可以由塑料制成,且通过注塑而成。
第一弹性件500a和第二弹性件500b可以为簧片,但不以此为限。
可以理解的是,第二动簧片430的导磁区域435与其相对应的第一导磁体610之间也不容纳推动杆210的任何部分,第二动簧片430与其对应的第一导磁体610之间的磁场强度也不受推动杆210的影响。
如图5、图16和图17所示,第一弹性件500a包括第一弹性部510和第二弹性部520,第一弹性部510和第二弹性部520为一体结构。第一动簧片410通过第一弹性部510设置于推杆机构20的推动杆210上,第一弹性部510用于当推杆机构20处于第五位置时提供超行程的触点压力,第二弹性部520用于在推杆机构20处于第六位置时,向推杆机构20提供朝着第五位置移动的弹性力。推杆机构20在第五位置和第六位置之 间移动的过程中,第一弹性部510的一端抵接于底部212,第一弹性部510的另一端抵接于第一动簧410。推杆机构20在第六位置时,第二弹性部520的一端抵接于第一动簧片410,第二弹性部520的另一端抵接于底座10。
当然,在其他实施方式中,第一弹性部510和第二弹性部520也可以为分体结构。
由于在触点组件40处于完全断开状态时,第二弹性部520向推杆机构20提供弹性力,该弹性力使得推杆机构20具有向第五位置移动的趋势,因而当再次需要推杆机构20运动(即触点组件40向闭合状态切换)而向线圈通电时,由于此时推杆机构20已经受到了第二弹性部520施加的弹性力的作用,故可减小线圈通电的电压,以此来降低动作电压,使得动作电压的大小处于标准范围内。动作电压的标准范围可以介于额定电压的40%~60%,但不以此为限。
另外,通过调整第二弹性部520施加的弹性力的大小,可灵活地调节继电器的动作电压的大小。具体来说,当增大第二弹性部520提供的弹性力时,继电器的动作电压随之变小。当减小第二弹性部520提供的弹性力时,继电器的动作电压随之变大。
再者,当继电器具有永磁体340(即继电器具有磁保持功能)时,通过调整第一弹性部510的弹性力的大小,也可灵活地调节继电器的复归电压的大小。具体来说,当增大第一弹性部510提供的弹性力时,继电器的复归电压随之变小。当减小第一弹性部510提供的弹性力时,继电器的复归电压随之变大。
因此通过调整第二弹性部520的弹性力的大小,可单独调节动作电压的大小,而不影响复归电压,通过调整第一弹性部510的弹性力的大小,也可灵活地调节继电器的复归电压的大小,而不影响动作压,进而使得动作电压和复归电压处于无压差的状态。此时,只需对永磁体340进行充磁或退磁,即可增大或减小磁保持力,因而可同步调整动作电压和复归电压,而无需调整继电器其他零部件的散差,降低了对其他零部件精度的要求。
可以理解的是,调整第二弹性部520的弹性力的大小可以通过改变第二弹性部520的弹性模量,举例来说,改变第二弹性部520的弹性模量的方式:可以通过改变第二弹性部520在未受压状态下的形变量来调整第二弹性部520的弹性力大小,可以通过改变第二弹性部520的宽度大小,但不以此为限。
推动杆210驱动第二动簧片430与第二静簧片440接触或分离的动作过程与第一触点组件40a的相同,此处不再赘述。并且,第二弹性件500b与第一弹性件500a的结构类似,所起到的作用也基本相同,此处不再赘述。
如图2和图9所示,图9示出的是第一正投影、第二正投影和第三正投影在虚拟平面上的相对位置示意图。第一导磁体610包括连接部611和悬空部612,连接部611固定连接于底座10。其中,定义一个垂直于推杆机构20的运动方向D3的虚拟平面P,连接部611在虚拟平面P上具有第一正投影S1,悬空部612在虚拟平面P上具有第二正投影S2,动簧片410,430在虚拟平面P上具有第三正投影S3,第一正投影S1与第三正 投影S3不重合,第二正投影S2与第三正投影S3至少部分重合。
悬空部612是指第一导磁体610的该部分悬置于继电器内,且该部分不予继电器的任何部件相接触。
由于第一导磁体610与底座10固定连接的连接部611在虚拟平面P上的第一正投影S1与动簧片410,430在虚拟平面P上的第二正投影S2不重合,也就是说,第一导磁体610与底座10连接的位置并不位于动簧片410,430的上方,这样,底座10上可以设置至少一个第一导磁体610,从而至少一个触点组件40均对应有一个第一导磁体610,实现每个触点组件40均设有抗短路结构。
作为一示例,第一导磁体610可以为平板结构。当然,在其他实施方式中,第一导磁体610还可以为其他规则形状或异形形状。
如图2所示,连接部611沿一插装方向D4插装于底座10,插装方向D4垂直于推杆机构20的运动方向D3。
在本实施例中,连接部611沿着与推杆机构20的运动方向D3垂直的插装方向D4插装于底座10,当第一导磁体610为板状结构时,第一导磁体610是与推杆机构20的运动方向D3垂直。换句话说,第一导磁体610设有连接部611的一端与底座10连接,而第一导磁体610设有悬空部612的一端沿着插装方向D4的相反方向延伸,直至悬空部612与动簧片410,430在推杆机构20的运动方向D3上至少部分重合。
采用插装的方式将第一导磁体610安装在底座10上,可简化第一导磁体610的装配方式。当然,在其他实施方式中,也可以采用胶粘接、焊接等连接方式将第一导磁体610与底座10连接。
进一步地,第一导磁体610的插装方向D4与动簧片410,430的长度方向D1垂直。也就是说,在空间上,第一导磁体610与动簧片410,430是正交的。
可以理解的是,当动簧片410,430通电时,动簧片410,430外周形成的导磁回路是沿着动簧片410,430的宽度。由于第一导磁体610与动簧片410,430是正交,那么导磁回路会沿着第一导磁体610的悬空部612的长度方向D1,以使绝大部分的悬空部612被磁化,进一步使得第一导磁体610和电流流通的动簧片410,430之间会产生更强的吸力。
如图2、图10和图11所示,图10示出的是图2中沿D-D的剖视图。图11示出的是图10中X1处的局部放大图。安装部11包括第一安装孔110,第一安装孔110贯穿壳体1的内表面和外表面,第一安装孔110的孔壁具有第一定位壁结构111和第一间隙壁结构112。第一导磁体610插装于第一安装孔110,且第一导磁体610的部分外壁面与第一定位壁结构111相抵接,第一导磁体610的部分外壁面与第一间隙壁结构112之间具有间隙,间隙内填充有密封胶。
在本实施例中,第一安装孔110形成于底座10上,且贯穿底座10的内表面和底面。
在本公开实施例中,第一导磁体610与底座10的组装过程为:先通过第一导磁体610与底座10的第一安装孔110的第一定位壁结构111实现初步定位,再通过向第一导磁体610与第一安装孔110的间隙壁结构之间的间隙填充密封胶的方式,即可完成第一导磁体610与底座10的密封组装。一方面,第一导磁体610的部分外壁面与定位壁结构111相抵接,从而实现第一导磁体610的初步定位。另一方面,第一导磁体610的部分外壁面与间隙壁结构112之间具有间隙,利用虹吸效应,密封胶能够由底座10的底面一侧沿着间隙向底座10的内表面一侧爬升,直至爬升至第一安装孔110的开口处,使得密封胶填满该间隙内,进一步加强第一导磁体610与底座10之间的密封性和定位强度。同时,利用密封胶的耐熔性强于塑料材料的特性来提升继电器产品的耐焊接热能力。相比于现有技术,本公开实施例减少了一道点胶步骤,有效地降低了成本,且提升了组装效率。
如图11所示,第一定位壁结构111包括第一定位壁113和第二定位壁114,第一定位壁113和第二定位壁114沿推杆机构20的运动方向D3相对设置。通过第一定位壁113和第二定位壁114分别与第一导磁体610抵接,进而限定了第一导磁体610在推杆机构20的运动方向D3上的自由度。
可以理解的是,第一定位壁113和第二定位壁114的形状是与第一导磁体610的外轮廓形状相适配。举例来说,当第一导磁体610的截面形状为矩形时,第一定位壁113和第二定位壁114可以为平面。当然,在其他实施方式中,当第一导磁体610的连接部611的截面形状为圆形时,第一定位壁113和第二定位壁114的形状可以为弧面。
第一导磁体610的部分外壁面与第一定位壁结构111过盈配合。在本公开实施例中,第一导磁体610分别与第一定位壁113和第二定位壁114过盈配合。然,在其他实施例中,第一导磁体610的部分外壁面与第一定位壁结构111之间也可以采用零间隙配合。
如图2所示,静簧片420,440沿插装方向D4插装于底座10。静簧片420,440与第一导磁体610均是沿着插装方向D4插装于底座10,进而静簧片420,440与第一导磁体610可在同一道工序中安装于底座10,节约了组装时间。
如图2、图10和图12所示,图12示出的是图10中X2处的局部放大图。底座10还具有贯穿其内表面和底面的第二安装孔120,第二安装孔120的孔壁具有第二定位壁结构121和第二间隙壁结构122。静簧片420,440插装于第二安装孔120,且静簧片420,440的部分外壁面与第二定位壁结构121抵接,静簧片420,440的部分外壁面与第二间隙壁结构122之间具有间隙,间隙内填充有密封胶。
静簧片420,440与底座10的组装过程可参照第一导磁体610与底座10的组装过程,即静簧片420,440与第二安装孔120的第二定位壁结构121先实现初步定位,再向静簧片420,440与第二间隙壁结构122之间的间隙填充密封胶。
由此可见,静簧片420,440和第一导磁体610可在同一道点胶工艺中完成与底座10 的组装,显著提高了组装效率。
第二定位壁结构121包括第三定位壁123和第四定位壁124,第三定位壁123和第四定位壁124沿推杆机构20的运动方向D3相对设置。通过第三定位壁123和第四定位壁124分别与静簧片420,440抵接,进而限定了静簧片420,440在推杆机构20的运动方向D3上的自由度。
可以理解的是,第三定位壁123和第四定位壁124的形状是与静簧片的引出脚的外轮廓形状相适配。举例来说,当静簧片的引出脚的截面形状为矩形时,第三定位壁123和第四定位壁124可以为平面。当然,在其他实施方式中,当静簧片的引出脚的截面形状为圆形时,第三定位壁123和第四定位壁124的形状可以为弧面。
静簧片420,440的部分外壁面与第二定位壁结构121过盈配合。在本公开实施例中,静簧片420,440的部分外壁面分别与第三定位壁123和第四定位壁124过盈配合。当然,在其他实施例中,静簧片420,440的部分外壁面与第二定位壁结构121之间也可以采用零间隙配合。
承前所述,利用第一导磁体610的部分外壁面与第一定位壁结构111相抵接以及静簧片420,440与第二定位壁结构121相抵接,实现第一导磁体610、静簧片420,440的初步定位(初步定位过程中并不需要进行点胶)。之后,由底座10的底面一侧方向向第一导磁体610与第一间隙壁结构112之间以及静簧片420,440与第二间隙壁结构122之间的间隙进行点胶。与此同时,还可一并对外罩与底座10之间的缝隙进行点胶。
由此可见,于本公开实施例中,沿着一个点胶方向即可实现第一导磁体610与底座10之间的缝隙、静簧片420,440与底座10之间的缝隙以及外罩与底座10之间的缝隙进行点胶,显著提升了点胶效率。当然,在进行点胶时,还可同时对线圈引出脚与底座10之间的缝隙、辅助触点引出脚与底座10之间的缝隙进行点胶。
如图5、图6和图13所示,继电器还包括第二导磁体620,第二导磁体620与第一导磁体610对应。
第二导磁体620固定连接于动簧片410,430背向第一导磁体610的一侧,以使相对应的第一导磁体610与第二导磁体620之间在动簧片410,430的宽度方向D2上形成导磁回路。
可以理解的是,第二导磁体620与第一导磁体610对应是指:第二导磁体620与第一导磁体610的数量相同,且第二导磁体620与第一导磁体610的位置对应。在本实施例中,第一导磁体610和第二导磁体620的数量均为两个,但不以此为限。
当动簧片410,430的两端与静簧片420,440接触时,与动簧片410,430一起运动的第二导磁体620靠近或接触第一导磁体610,从而在第一导磁体610和第二导磁体620之间形成一环绕动簧片410,430的导磁回路。当短路电流通过动簧片410,430时,第一导磁体610和第二导磁体620之间产生沿触点压力方向上的吸力,该吸力与触点压力叠加产生更大的触点压力,能够抵抗动簧片410,430的动触点与静簧片420,440的静触点 之间因短路电流产生的电动斥力,确保动簧片410,430的动触点与静簧片420,440的静触点不发生弹开。
需要说明的是,第一导磁体610和第二导磁体620分别位于动簧片410,430的两侧,当动簧片410,430通电后,第一导磁体610和第二导磁体620之间的吸力是直接的电磁吸力,比仅第一导磁体610磁化后与动簧片410,430的吸力更大,故能够更有力地抵抗动簧片410,430与静簧片420,440之间因短路电流产生的电动斥力,有效提升抗短路能力。
第二导磁体620可以采用铆接方式固定连接于动簧片410,430,但不以此为限。
第一导磁体610和第二导磁体620可以采用铁、钴、镍及其合金等材料制作而成。
第一导磁体610可以为一字形,第二导磁体620为U形,第二导磁体620沿着动簧片410,430的宽度方向D2包覆动簧片410,430。
请返回参阅图3,沿着杆部211的轴向方向(即推杆机构20的运动方向D3),第二导磁体620与其对应的第一导磁体610之间不容纳推动杆210的任何部分。由于对应的第二导磁体620与第一导磁体610之间不容纳推动杆210的任何部分,避免了推动杆210影响第二导磁体620与第一导磁体610之间的磁场强度,确保继电器的抗短路能力。
如图14和图15所示,图14和图15分别示出本公开第二实施例的动簧片410,430与第二导磁体620组装后的两个不同视角的示意图。第二实施例与第一实施例的相同之处不再赘述,其不同之处在于:
第二导磁体620包括至少两个子导磁体621,每个子导磁体621为U形,子导磁体621包括基部622和两个侧部623,两个侧部623连接于基部622。动簧片410,430设有至少一个穿孔414,至少两个子导磁体621均连接于动簧片410,430背向第一导磁体610的一侧,且至少两个子导磁体621的侧部623穿过至少一个穿孔414,以通过穿孔414与第一导磁体610靠近或相互接触,并在动簧片410,430的宽度方向D2上形成至少两个独立的导磁回路。利用至少两个独立的导磁回路在所对应的穿孔414位置增加的磁极极面,当动簧片410,430出现故障大电流时,产生触点压力方向上的吸力,去抵抗动簧片410,430与静簧片420,440之间因故障电流产生的电动斥力。
所谓两个独立的导磁回路是指两个导磁回路之间不会相互干扰,也就是磁通不存在相互抵消的情况。
在本实施例中,动簧片410,430设有一个穿孔414,该穿孔414设置在动簧片410,430的两个动触点之间的中间区域。第二导磁体620包括两个子导磁体621,两个子导磁体621共用一个第一导磁体610,从而形成两个导磁回路。
两个U形的子导磁体621沿着动簧片410,430的宽度方向D2并排设置,且每个子导磁体621的一个侧部623穿设于动簧片410,430的穿孔414内。
在本实施例中,每个子导磁体621的侧部623的顶面与动簧片410,430朝向静簧片420,440的一侧表面大致平齐。
在本公开实施例中,两个U形的子导磁体621共有四个侧部623,四个侧部623的顶面与第一导磁体610配合,相对于只有一个导磁回路(仅有两个磁极面)来说,在第二导磁体620的结构特征不变的前提下,本公开实施例相当于增加了两个磁极面(相当于穿孔414位置的磁极面是增加的),从而提高了磁效率,增大了吸力,大大提高了抗短路能力。
位于一个穿孔414中的两个侧部623之间具有间隙。这样,两个导磁回路的磁通不会相互抵消。
当然,在其他实施方式中,子导磁体621的数量还可以为三个或三个以上。
可以理解的是,本公开提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合,此处不再一一举例说明。
此外,针对现有技术中的推动杆与动簧片的连接结构不够稳定,导致在触点分离过程中,动簧片的运动并不平稳等问题本公开实施例提供一种继电器,以解决现有技术中存在的动簧片运动不稳定的问题。
本公开实施例的继电器,包括第一触点组件、推动杆和第一弹性件,第一触点组件包括第一静簧片和第一动簧片;推动杆用于驱动所述第一动簧片移动,以与所述第一静簧片接触或分离;所述推动杆包括杆部、底部、第一侧部和第二侧部,所述底部连接于所述杆部轴向的一端,所述第一侧部和所述第二侧部均连接于所述底部,且沿着所述第一动簧片的长度方向相对设置;所述第一侧部设有第一通孔,所述第二侧部设有第二通孔,所述第一动簧片穿设于所述第一通孔和所述第二通孔;沿着所述杆部的轴向,所述第一动簧片相对于所述第一通孔和所述第二通孔在第一位置和第二位置之间可移动;在所述第一位置,所述第一动簧片分别与所述第一通孔的孔壁和所述第二通孔的孔壁抵接;第一弹性件设于所述第一动簧片和所述底部之间,用于向所述第一动簧片施加朝着所述第一位置移动的弹性力。
根据本公开的一些实施方式,所述第一动簧片的长度方向的两端均设有第一动触点,其中一个所述第一动触点位于所述第一侧部背向所述第二侧部的一侧,另一个所述第一动触点位于所述第二侧部背向所述第一侧部的一侧。
根据本公开的一些实施方式,所述第一动簧片的一侧凸设有第一定位部和第二定位部,所述第一定位部与所述第一侧部的位置对应,所述第二定位部与所述第二侧部的位置对应;
在所述第一动簧片的长度方向上,所述第一动簧片通过所述第一定位部和所述第二定位部设置在所述推动杆的预定位置。
根据本公开的一些实施方式,所述第一侧部朝向所述第二侧部的一侧具有第一止挡面,所述第二侧部朝向所述第一侧部的一侧具有第二止挡面;
所述第一定位部与所述第一止挡面抵接,所述第二定位部与所述第二止挡面抵接。
根据本公开的一些实施方式,所述第一定位部和所述第二定位部凸设于所述第一动 簧片朝向所述第一静簧片的一侧表面。
根据本公开的一些实施方式,所述继电器还包括第二触点组件和第二弹性件,所述第二触点组件包括第二动簧片和第二静簧片;
所述推动杆还包括间隔部、第三侧部和第四侧部,所述第三侧部连接于所述第一侧部背向所述底部的一端,所述第四侧部连接于所述第二侧部背向所述底部的一端,所述间隔部设置于所述第三侧部和所述第四侧部之间;所述第三侧部具有第三通孔,所述第四侧部具有第四通孔,所述第二动簧片穿设于所述第三通孔和所述第四通孔,并且沿着所述杆部的轴向,所述第二动簧片相对于所述第三通孔和所述第四通孔在第三位置和第四位置之间可移动;在所述第三位置,所述第二动簧片分别与所述第三通孔的孔壁和所述第四通孔的孔壁抵接;
所述第二弹性件设于所述第二动簧片和所述间隔部之间,用于向所述第二动簧片施加朝着所述第三位置移动的弹性力。
根据本公开的一些实施方式,所述底部、所述间隔部、所述第一侧部和所述第二侧部合围成一空腔,所述第一通孔和所述第二通孔均与所述空腔连通,所述第三通孔和所述第四通孔不与所述空腔连通。
根据本公开的一些实施方式,所述第二动簧片的长度方向的两端均设有第二动触点,其中一个所述第二动触点位于所述第三侧部背向所述第四侧部的一侧,另一个所述第二动触点位于所述第四侧部背向所述第三侧部的一侧。
根据本公开的一些实施方式,所述第二动簧片的一侧凸设有第三定位部和第四定位部,所述第三定位部与所述第三侧部的位置对应,所述第四定位部与所述第四侧部的位置对应;
在所述第二动簧片的长度方向上,所述第二动簧片通过所述第三定位部和所述第四定位部设置在所述推动杆的预定位置。
根据本公开的一些实施方式,所述第三侧部朝向所述第四侧部的一侧具有第三止挡面,所述第四侧部朝向所述第三侧部的一侧具有第四止挡面;
所述第三定位部与所述第三止挡面抵接,所述第四定位部与所述第四止挡面抵接。
根据本公开的一些实施方式,所述第三定位部和所述第四定位部凸设于所述第二动簧片朝向所述第二静簧片的一侧表面。
根据本公开的一些实施方式,所述杆部、所述底部、所述第一侧部和所述第二侧部为一体结构。
上述实用新形中的一个实施例至少具有如下优点或有益效果:
本公开实施例的继电器,第一通孔的孔壁与第一动簧片抵接的位置相当于一个力的作用点,第二通孔的孔壁与第一动簧片抵接的位置相当于另一个力的作用点,通过设置两个力的作用点,且两个力的作用点沿着第一动簧片的长度方向布置,第一动簧片所受推动杆的作用力的受力面积更大,使得推动杆带动第一动簧片移动时更加平稳。
以下参考附图详细描述本公开的实施例。
如图18至图20所示,图18示出的是本公开实施例继电器的俯视图,其中省略了上盖,图19示出的是图18中沿E-E的剖视图,图20示出的是图19中沿F-F的剖视图。本公开实施例的继电器包括底座10、推杆机构20、磁路机构30和触点组件40。推杆机构20、磁路机构30和触点组件40设置在底座10上,磁路机构30通过推杆机构20以控制触点组件40的触点接触或分离。
磁路机构30包括轭铁结构310、线架320和线圈330。轭铁结构310形成一腔室,线架320和线圈330均设置于轭铁结构310的腔室内。线圈330绕设于线架320的外周,以形成磁控回路。线架320在触点组件40的触点接触分离方向上设有中心孔321,中心孔321用以供推杆机构20的一端穿设。
作为一示例,轭铁结构310包括轭铁板311和U形轭铁312,轭铁板311与U形轭铁312连接共同形成环形。轭铁板311开设有贯通孔3111,该贯通孔3111用于供推杆机构20穿设。
当然,在其他实施例中,轭铁结构310还可以包括圆筒状轭铁和轭铁板311,圆筒状轭铁和轭铁板311连接共同形成环形。
磁路机构30还包括两个永磁体340,两个永磁体340设置于线架320,且位于推杆机构20的运动方向的两侧。两个永磁体340形成磁保持的磁路结构,有利于降低用电成本较,延长使用寿命较,提升稳定性。
当然,在其他实施例中,不含永磁体340也是可以的。
如图20所示,推杆机构20相对于底座10在第五位置和第六位置之间可移动,当推杆机构20处于第五位置时,触点组件40处于完全闭合状态,当推杆机构20处于第六位置时,触点组件40处于完全断开状态。推杆机构20包括推动杆210和铁芯220,铁芯220连接于推动杆210。铁芯220在线圈330形成的磁控回路的作用下能够沿触点接触或分离的方向上移动,进而带动推动杆210移动,以控制触点组件40的触点接触或分离。
需要说明的是,触点组件40处于完全闭合状态是指:触点组件40的动簧片和静簧片接触后且完成超行程时,触点组件40所处的状态;触点组件40处于完全断开状态是指:触点组件40的动簧片和静簧片断开后处于最大触点间隙时,触点组件40所处的状态。
请继续参阅图18至图20,触点组件40包括动簧片410,430和静簧片420,440,静簧片420,440固定安装于底座10上,动簧片410,430安装于推杆机构20上,且与推杆机构20随动。
在本实施例中,触点组件40为两组,分别为第一触点组件40a和第二触点组件40b,第一触点组件40a和第二触点组件40b沿着推杆机构20的运动方向布置。并且,第一触点组件40a靠近磁路机构30,第二触点组件40b远离磁路机构30。
第一触点组件40a包括第一动簧片410和两个第一静簧片420。第二触点组件40b包括第二动簧片430和两个第二静簧片440。第一动簧片410的两端能够分别与两个第一静簧片420接触或分离,第二动簧片430的两端能够分别与两个第二静簧片440接触或分离。
当然,在其他实施例中,触点组件40也可以为一组或其他数量。
动簧片410,430的长度方向的两端作为动触点,动触点可以凸出于动簧片410,430的其他部分,也可以是与其他部分齐平。静簧片420,440与动触点接触的部分作为静触点,静触点可以凸出于静簧片420,440的其他部分,也可以是与其他部分齐平。
作为一示例,第一动簧片410包括第一动簧本体416和第一动触点411,第一动触点411与第一动簧本体416为分体结构,第一动触点411与第一动簧本体416可以采用铆接的方式连接,但不以此为限。第一静簧片420包括第一静簧本体421和第一静触点422,第一静触点422与第一静簧本体421为分体结构,第一静触点422与第一静簧本体421可以采用铆接的方式连接,但不以此为限。
第二动簧片430包括第二动簧本体434和第二动触点431,第二动触点431与第二动簧本体434为分体结构,第二动触点431与第二动簧本体434可以采用铆接的方式连接,但不以此为限。第二静簧片440包括第二静簧本体441和第二静触点442,第二静触点442与第二静簧本体441为分体结构,第二静触点442与第二静簧本体441可以采用铆接方式连接,但不以此为限。
当然,在另一实施例中,第一动触点411与第一动簧本体416可以为一体结构;第一静触点422与第一静簧本体421可以为一体结构;第二动触点431与第二动簧本体434可以为一体结构;第二静触点442与第二静簧本体441可以为一体结构。
如图21至图23所示,图21示出的是推动杆210的示意图。图22示出的是推动杆210、触点组件40和轭铁板311组装后的主视示意图。图23示出的是推动杆210、触点组件40和轭铁板311组装后的立体示意图。推动杆210用于驱动第一动簧片410移动,以与第一静簧片420接触或分离。推动杆210包括杆部211、底部212、第一侧部213和第二侧部214。杆部211可移动地穿设于轭铁板311的贯通孔3111,铁芯220连接于杆部211。底部212连接于杆部211轴向的一端,第一侧部213和第二侧部214均连接于底部212,且沿着第一动簧片410的长度方向D1相对设置。第一侧部213设有第一通孔2131,第二侧部214设有第二通孔2141,第一动簧片410穿设于第一通孔2131和第二通孔2141。沿着杆部211的轴向方向(即推动杆210的运动方向)D3,第一动簧片410相对于第一通孔2131和第二通孔2141在第一位置和第二位置之间可移动;在第一位置,第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接(如图22和图23所示)。
继电器还包括弹性组件,弹性组件包括第一弹性件500a和第二弹性件500b,第一弹性件500a设于第一动簧片410和底部212之间,用于向第一动簧片410施加朝着第 一位置移动的弹性力。
在继电器的第一触点组件40a闭合过程中,推动杆210驱动第一动簧片410朝着第一静簧片420移动。在第一动簧片410与第一静簧片420接触之前,在第一弹性件500a的作用下,第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接而处于第一位置。当第一动簧片410与第一静簧片420接触后,由于第一静簧片420固定安装于底座10上,故第一动簧片410受到第一静簧片420的止挡而不能继续移动,此时推动杆210会继续移动,第一弹性件500a被逐渐压缩直至完成超行程,此时第一动簧片410相对于第一通孔2131和第二通孔2141处于第二位置。
在继电器的第一触点组件40a分离过程中,推动杆210朝着远离第一静簧片420的方向移动过程可以分成两个阶段:在第一个阶段中,推动杆210移动而第一动簧片410并不随着推动杆210移动。在第一个阶段,第一动簧片410相对于第一通孔2131和第二通孔2141由第二位置向第一位置移动。在第二个阶段的开始,第一动簧片410相对于第一通孔2131和第二通孔2141已经移动至第一位置,此时第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接。之后,推动杆210的移动就会带动第一动簧片410随之移动,以使第一动簧片410与第一静簧片420分离。在第二个阶段,推动杆210带动第一动簧片410移动时,由于第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接,相当于推动杆210通过第一侧部213和第二侧部214作用于第一动簧片410上,而使第一动簧片410与第一静簧片420分离。
由此可见,第一通孔2131的孔壁与第一动簧片410抵接的位置相当于一个力的作用点,第二通孔2141的孔壁与第一动簧片410抵接的位置相当于另一个力的作用点,通过设置两个力的作用点,且两个力的作用点沿着第一动簧片410的长度方向D1布置,第一动簧片410所受推动杆210的拉力受力面积更大,使得推动杆210带动第一动簧片410移动时更加平稳。
如图22所示,第一动簧片410的长度方向D1的两端均设有第一动触点411,其中一个第一动触点411位于第一侧部213背向第二侧部214的一侧,另一个第一动触点411位于第二侧部214背向第一侧部213的一侧。也就是说,第一侧部213和第二侧部214作用于第一动簧片410的两个力的作用点是位于第一动簧片410的两个第一动触点411之间。
如图24和图25所示,图24示出的是图22的侧视示意图。图25示出的是图24中沿G-G的剖视图。第一动簧片410的一侧凸设有第一定位部412和第二定位部413,第一定位部412与第一侧部213的位置对应,第二定位部413与第二侧部214的位置对应。在第一动簧片410的长度方向D1上,第一动簧片410通过第一定位部412和第二定位部413设置在推动杆210的预定位置。
在本实施例中,通过在第一动簧片410上设置第一定位部412和第二定位部413,使得第一动簧片410能够在其长度方向D1上,安装在推动杆210的预定位置,避免第 一动簧片410与第一侧部213和第二侧部214之间发生相对晃动,进一步提升第一动簧片410在移动过程中的平稳性。
具体来说,在杆部211的轴向方向D3上,第一弹性件500a设置于底部212和第一动簧片410之间,第一动簧片410始终受到第一弹性件500a的弹性力,使得第一动簧片410分别与第一通孔2131的孔壁和第二通孔2141的孔壁抵接,因此在杆部211的轴向方向D3上,第一动簧片410与推动杆210之间不会产生相对晃动。
在第一动簧片410的长度方向D1,通过第一定位部412和第二定位部413的设置,第一动簧片410与推动杆210之间也不会产生相对晃动。
在第一动簧片410的宽度方向D2上,可以通过限定第一通孔2131和第二通孔2141的尺寸,使得在第一动簧片410的宽度方向D2上,第一通孔2131和第二通孔2141的尺寸与第一动簧片410的宽度相适配,避免第一动簧片410与第一和第二通孔的孔壁之间存在较大的缝隙。
请继续参阅图25,第一侧部213朝向第二侧部214的一侧具有第一止挡面2132,第二侧部214朝向第一侧部213的一侧具有第二止挡面2142。第一定位部412与第一止挡面2132抵接,第二定位部413与第二止挡面2142抵接。
当然,在其他实施方式中,第一定位部412与第一止挡面2132之间可以具有缝隙,第二定位部413与第二止挡面2142之间可以具有缝隙。需要说明的是,上述两处缝隙的尺寸不能太大,缝隙的大小需要既能够满足第一动簧片410的第一定位部412和第二定位部413较容易地安装入第一侧部213和第二侧部214之间,又能够避免第一动簧片410与推动杆210之间产生沿第一动簧片410的长度方向D1上的相对晃动。
第一定位部412和第二定位部413凸设于第一动簧片410朝向第一静簧片420的一侧表面。
如图20、图22、图26和图27所示,第一弹性件500a包括第一弹性部510和第二弹性部520,第一弹性部510和第二弹性部520为一体结构。第一动簧片410通过第一弹性部510设置于推杆机构20的推动杆210上,第一弹性部510用于当推杆机构20处于第五位置时提供超行程的触点压力,第二弹性部520用于在推杆机构20处于第六位置时,向推杆机构20提供朝着第五位置移动的弹性力。推杆机构20在第五位置和第六位置之间移动的过程中,第一弹性部510的一端抵接于底部212,第一弹性部510的另一端抵接于第一动簧410。推杆机构20在第六位置时,第二弹性部520的一端抵接于第一动簧片410,第二弹性部520的另一端抵接于底座10。
当然,在其他实施方式中,第一弹性部510和第二弹性部520也可以为分体结构。
由于在触点组件40处于完全断开状态时,第二弹性部520向推杆机构20提供弹性力,该弹性力使得推杆机构20具有向第五位置移动的趋势,因而当再次需要推杆机构20运动(即触点组件40向闭合状态切换)而向线圈通电时,由于此时推杆机构20已经受到了第二弹性部520施加的弹性力的作用,故可减小线圈通电的电压,以此来降低动 作电压,使得动作电压的大小处于标准范围内。动作电压的标准范围可以介于40%额定电压~60%额定电压,但不以此为限。
另外,通过调整第二弹性部520施加的弹性力的大小,可灵活地调节继电器的动作电压的大小。具体来说,当增大第二弹性部520提供的弹性力时,继电器的动作电压随之变小。当减小第二弹性部520提供的弹性力时,继电器的动作电压随之变大。
再者,当继电器具有永磁体340(即继电器具有磁保持功能)时,通过调整第一弹性部510的弹性力的大小,也可灵活地调节继电器的复归电压的大小。具体来说,当增大第一弹性部510提供的弹性力时,继电器的复归电压随之变小。当减小第一弹性部510提供的弹性力时,继电器的复归电压随之变大。
因此通过调整第二弹性部520的弹性力的大小,可单独调节动作电压的大小,而不影响复归电压,通过调整第一弹性部510的弹性力的大小,也可灵活地调节继电器的复归电压的大小,而不影响动作压,进而使得动作电压和复归电压处于无压差的状态。此时,只需对永磁体340进行充磁或退磁,即可增大或减小磁保持力,因而可同步调整动作电压和复归电压,而无需调整继电器其他零部件的散差,降低了对其他零部件精度的要求。
可以理解的是,调整第二弹性部520的弹性力的大小可以通过改变第二弹性部520的弹性模量,举例来说,改变第二弹性部520的弹性模量的方式:可以通过改变第二弹性部520在未受压状态下的形变量来调整第二弹性部520的弹性力大小,可以通过改变第二弹性部520的宽度大小,但不以此为限。
请返回参阅图21至图23,第二触点组件40b与第一触点组件40a沿着杆部211的轴向方向D3布置。推动杆210还包括间隔部215、第三侧部216和第四侧部217,第三侧部216连接于第一侧部213背向底部212的一端,第四侧部217连接于第二侧部214背向底部212的一端,间隔部215设置于第三侧部216和第四侧部217之间。第三侧部216具有第三通孔2161,第四侧部217具有第四通孔2171,第二动簧片430穿设于第三通孔2161和第四通孔2171。第三通孔2161位于间隔部215沿杆部211的轴向方向D3的一侧,第一通孔2131位于间隔部215沿杆部211的轴向方向D3的另一侧。第四通孔2171位于间隔部215沿杆部211的轴向方向D3的一侧,第二通孔2141位于间隔部215沿杆部211的轴向方向D3的另一侧。沿着杆部211的轴向方向D3,第二动簧片430相对于第三通孔2161和第四通孔2171在第三位置和第四位置之间可移动。在第三位置,第二动簧片430分别与第三通孔2161的孔壁和第四通孔2171的孔壁抵接。
第二弹性件500b设于第二动簧片430和间隔部215之间,用于向第二动簧片430施加朝着第三位置移动的弹性力。
推动杆210驱动第二动簧片430与第二静簧片440接触或分离的动作过程与第一触点组件40a的相同,此处不再赘述。并且,第二弹性件500b与第一弹性件500a的结构类似,所起到的作用也基本相同,此处不再赘述。
因此,第三通孔2161的孔壁与第二动簧片430抵接的位置相当于一个力的作用点,第四通孔2171的孔壁与第二动簧片430抵接的位置相当于另一个力的作用点,通过设置两个力的作用点,且两个力的作用点沿着第二动簧片430的长度方向D1布置,第二动簧片430所受推动杆210的拉力受力面积更大,使得推动杆210带动第二动簧片430移动时更加平稳。
如图21所示,底部212、间隔部215、第一侧部213和第二侧部214合围成一空腔218,第一通孔2131和第二通孔2141均与空腔218连通,第三通孔2161和第四通孔2171不与空腔218连通。空腔218可以用于容纳抗短路结构。如图22所示,抗短路结构可以包括第一导磁体610和第二导磁体620,第一导磁体610和第二导磁体620均设置于空腔218内。第一导磁体610固定连接于底座10,第二导磁体620固定连接于第一动簧片410,且第二导磁体620设置于第一动簧片410背向第一导磁体610的一侧。第一导磁体610与第二导磁体620之间形成导磁回路,当短路电流通过第一动簧片410时,第一导磁体610和第二导磁体620之间产生沿触点压力方向上的吸力,该吸力与触点压力叠加产生更大的触点压力,能够抵抗第一动簧片410的动触点与第一静簧片420的静触点之间因短路电流产生的电动斥力,确保第一动簧片410的动触点与第一静簧片420的静触点不发生弹开。
如图22所示,第二动簧片430的长度方向D1的两端均设有第二动触点431,其中一个第二动触点431位于第三侧部216背向第四侧部217的一侧,另一个第二动触点431位于第四侧部217背向第三侧部216的一侧。也就是说,第三侧部216和第四侧部217作用于第二动簧片430的两个力的作用点是位于第二动簧片430的两个第二动触点431之间。
请参阅图24和图25,第二动簧片430的一侧凸设有第三定位部432和第四定位部433,第三定位部432与第三侧部216的位置对应,第四定位部433与第四侧部217的位置对应。在第二动簧片430的长度方向D1上,第二动簧片430通过第三定位部432和第四定位部433设置在推动杆210的预定位置。
在本实施例中,通过在第二动簧片430上设置第三定位部432和第四定位部433,使得第二动簧片430能够在其长度方向D1上,安装在推动杆210的预定位置,避免第二动簧片430与第三侧部216和第四侧部217之间发生相对晃动,进一步提升第二动簧片430在移动过程中的平稳性。
具体来说,在杆部211的轴向方向D3上,第二弹性件500b设置于间隔部215和第二动簧片430之间,第二动簧片430始终受到第二弹性件500b的弹性力,使得第二动簧片430分别与第三通孔2161的孔壁和第四通孔2171的孔壁抵接,因此在杆部211的轴向方向D3上,第二动簧片430与推动杆210之间不会产生相对晃动。
在第二动簧片430的长度方向D1,通过第三定位部432和第四定位部433的设置,第二动簧片430与推动杆210之间也不会产生相对晃动。
在第二动簧片430的宽度方向D2上,可以通过限定第三通孔2161和第四通孔2171的尺寸,使得在第二动簧片430的宽度方向D2上,第三通孔2161和第四通孔2171的尺寸与第二动簧片430的宽度相适配,避免第二动簧片430与第三和第四通孔的孔壁之间存在较大的缝隙。
请继续参阅图25,第三侧部216朝向第四侧部217的一侧具有第三止挡面2162,第四侧部217朝向第三侧部216的一侧具有第四止挡面2172。第三定位部432与第三止挡面2162抵接,第四定位部433与第四止挡面2172抵接。
当然,在其他实施方式中,第三定位部432与第三止挡面2162之间可以具有缝隙,第四定位部433与第四止挡面2172之间可以具有缝隙。
第三定位部432和第四定位部433凸设于第二动簧片430朝向第二静簧片440的一侧表面。
推动杆210的杆部211、底部212、第一侧部213、第二侧部214、间隔部215、第三侧部216和第四侧部217为一体结构。
作为一示例,推动杆210可以由塑料制成,且通过注塑而成。
第一弹性件500a和第二弹性件500b可以为簧片,但不以此为限。
可以理解的是,本公开提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合,此处不再一一举例说明。
在部分继电器中,会设置辅助触点组件用以监测主触点的接通状态。由于辅助触点组件流通的监测电流很小(毫安级别),因此辅助触点组件的体积较小。
现有技术中的辅助触点组件包括辅助动簧和辅助静簧,通常采用一颗较小的银触点铆接在辅助动簧上作为动触点。然而,如前所述,由于辅助触点组件的体积较小,导致银触点的装配不方便。
本公开实施例提供一种继电器及其辅助触点组件,以解决现有技术中存在的辅助触点装配不便的问题。
本公开实施例的辅助触点组件,应用于继电器,所述辅助触点组件包括辅助动簧和辅助静簧,辅助动簧包括动簧引出端和动簧接触端;辅助静簧为针形结构;沿着所述针形结构的轴向方向,所述辅助静簧包括静簧引出端和静簧接触端,所述静簧接触端的侧面用于与所述动簧接触端接触或分离。
根据本公开的一些实施方式,所述动簧接触端包括:
基体;以及
凸苞,凸设于所述基体朝向所述静簧接触端的一侧表面,用于与所述静簧接触端的侧面接触或分离。
根据本公开的一些实施方式,所述基体包括第一弹性臂和第二弹性臂,所述第一弹性臂和所述第二弹性臂之间具有缝隙,且所述第一弹性臂和所述第二弹性臂朝向所述静簧接 触端的一侧表面均凸设有所述凸苞,所述第一弹性臂和所述第二弹性臂在所述针形结构的轴向方向上相对设置。
根据本公开的一些实施方式,所述凸苞为长条形。
根据本公开的一些实施方式,所述凸苞的延伸方向与所述针形结构的轴向方向垂直。
根据本公开的一些实施方式,所述辅助动簧还包括:
转向段,一端与所述动簧接触端连接,另一端相对于所述动簧接触端转向一角度;以及
倾斜段,一端连接于所述转向段的另一端,所述倾斜段的另一端连接于所述动簧引出端;所述倾斜段自所述动簧引出端所在平面朝着远离所述辅助静簧的方向倾斜,以使所述动簧引出端与所述辅助静簧共面设置。
根据本公开的一些实施方式,所述辅助动簧还包括:
加宽段,设置于所述动簧引出端和所述静簧引出端之间。
本公开实施例的继电器,包括:
底座;
触点组件,包括动簧片和静簧片,所述静簧片固定连接于所述底座;
推杆机构,相对于所述底座可移动;所述动簧片设置于所述推杆机构上,以使所述推杆机构能够驱动所述动簧片与所述静簧片接触或分离;以及
如上述任一项所述的辅助触点组件,所述辅助触点组件的辅助动簧连接于所述底座,且用于受所述推杆机构的抵推,所述辅助触点组件的辅助静簧固定连接于所述底座。
根据本公开的一些实施方式,所述辅助动簧和所述辅助静簧均插装于所述底座,且所述辅助动簧的动簧引出端、所述辅助静簧的静簧引出端以及所述静簧片的引出端均伸出所述底座的底面。
根据本公开的一些实施方式,沿所述推杆机构的运动方向,所述辅助触点组件设置于所述推杆机构远离所述动簧片的一端。
根据本公开的一些实施方式,所述推杆机构远离所述动簧片的一端具有缺口,所述辅助动簧穿过所述缺口。
上述实用新形中的一个实施例至少具有如下优点或有益效果:
本公开实施例的辅助触点组件,辅助静簧为针形结构,具有零件结构简化、成形简单且便于装配的优点,例如辅助静簧可以由圆丝或方丝切割而成。另外,辅助静簧的静簧接触端的侧面用于与动簧接触端接触或分离,由于静簧接触端的侧面的宽度较大,使得动簧接触端与静簧接触端更容易实现接触,避免动簧接触端与静簧接触端发生错位后而影响监测动簧片和静簧片的接触状态。
以下参考附图详细描述本公开的实施例。
如图28至图30所示,图28示出的是本公开实施例继电器的俯视图,其中省略了上盖,图29示出的是图28中沿H-H的剖视图,图30示出的是图29中沿I-I的剖视图。本 公开实施例的继电器包括底座10、推杆机构20、磁路机构30和触点组件40。推杆机构20、磁路机构30和触点组件40设置在底座10上,磁路机构30通过推杆机构20以控制触点组件40的触点接触或分离。
磁路机构30包括轭铁结构310、线架320和线圈330。轭铁结构310形成一腔室,线架320和线圈330均设置于轭铁结构310的腔室内。线圈330绕设于线架320的外周,以形成磁控回路。线架320在触点组件40的触点接触分离方向上设有中心孔321,中心孔321用以供推杆机构20的一端穿设。
作为一示例,轭铁结构310包括轭铁板311和U形轭铁312,轭铁板311与U形轭铁312连接共同形成环形。轭铁板311开设有贯通孔3111,该贯通孔3111用于供推杆机构20穿设。
当然,在其他实施例中,轭铁结构310还可以包括圆筒状轭铁和轭铁板311,圆筒状轭铁和轭铁板311连接共同形成环形。
磁路机构30还包括两个永磁体340,两个永磁体340设置于线架320,且位于推杆机构20的运动方向的两侧。两个永磁体340形成磁保持的磁路结构,有利于降低用电成本较,延长使用寿命较,提升稳定性。
当然,在其他实施例中,不含永磁体340也是可以的。
推杆机构20相对于底座10沿触点的接触或分离方向可移动。推杆机构20包括推动杆210和铁芯220,铁芯220连接于推动杆210。铁芯220在线圈330形成的磁控回路的作用下能够沿触点接触或分离的方向上移动,进而带动推动杆210移动,以控制触点组件40的触点接触或分离。
请继续参阅图28至图30,触点组件40包括动簧片450和静簧片460,静簧片460固定安装于底座10上,动簧片450安装于推杆机构20的推动杆210上,且与推杆机构20随动。
在本实施例中,触点组件40为两组,两组触点组件40沿着推杆机构20的运动方向布置。
当然,在其他实施例中,触点组件40也可以为一组或其他数量。
动簧片450的长度方向的两端作为动触点,动触点可以凸出于动簧片450的其他部分,也可以是与其他部分齐平。静簧片460与动簧片450接触的部分作为静触点,静触点可以凸出于静簧片460的其他部分,也可以是与其他部分齐平。
作为一示例,动簧片450包括动簧本体451和动触点452,动触点452与动簧本体451为分体结构,动触点452与动簧本体451可以采用铆接方式相连接,但不以此为限。静簧片460包括静簧本体461和静触点462,静触点462与静簧本体461为分体结构,静触点462与静簧本体461可以采用铆接方式相连接,但不以此为限。
当然,在另一实施例中,动触点452与动簧本体451也可以为一体结构,静触点462与静簧本体461为一体结构。
如图31所示,图31示出的是本公开实施例继电器中辅助触点组件70设置于推杆机构20一端的示意图。本公开实施例的继电器还包括辅助触点组件70,辅助触点组件70包括辅助动簧710和辅助静簧720,辅助动簧710包括动簧接触端712和动簧引出端711,辅助静簧720包括静簧接触端722和静簧引出端721。动簧接触端712用于与静簧接触端722接触或分离,动簧引出端711和静簧引出端721能够与监测单元电连接,通过动簧接触端712与静簧接触端722的接触或分离,使得辅助动簧710、辅助静簧720和监测单元形成的回路导通或断开,从而使得监测单元能够监测触点组件40的动簧片450和静簧片460的接触状态。
辅助触点组件70的辅助动簧710连接于底座10,且受推杆机构20的抵推,辅助触点组件70的辅助静簧720固定连接于底座10。
在磁路机构30驱动推杆机构20移动的过程中,推杆机构20不仅能够带动动簧片450移动,而且还能够抵推辅助动簧710的动簧接触端712移动,使得辅助动簧710的动簧接触端712与辅助静簧720接触或分离。
在一实施方式中,当动簧片450与静簧片460接触时,辅助动簧710与辅助静簧720分离,当动簧片450与静簧片460分离时,辅助动簧710与辅助静簧720接触。
在另一实施方式中,当动簧片450与静簧片460接触时,辅助动簧710与辅助静簧720接触,当动簧片450与静簧片460分离时,辅助动簧710与辅助静簧720分离。
请继续参阅图31,辅助动簧710和辅助静簧720均插装于底座10,且辅助动簧710的动簧引出端711和辅助静簧720的静簧引出端721均伸出底座10的底面。动簧引出端711和静簧引出端721伸出底座10的底面,便于与电路板连接。需要说明的是,底座10的底面是指:当继电器组装于电路板时,底座10朝向电路板的一侧表面。
当然,静簧片460的引出端也可以伸出底座10的底面。
沿推杆机构20的运动方向,辅助触点组件70设置于推杆机构20远离动簧片450的一端。
如图31至图33所示,图32示出的是本公开实施例辅助动簧710的示意图。图33示出的是本公开实施例辅助静簧720的示意图。辅助静簧720为针形结构,且插装于底座10。沿着针形结构的轴向方向,针形结构的一端为静簧引出端721,针形结构的另一端为静簧接触端722。静簧接触端722的侧面用于与动簧接触端712接触或分离。
在本实施例中,辅助静簧720为针形结构,具有零件结构简化、成形简单且便于装配的优点,例如辅助静簧720可以由圆丝或方丝切割而成。另外,辅助静簧720的静簧接触端722的侧面用于与动簧接触端712接触或分离,由于静簧接触端722的侧面的宽度较大,使得动簧接触端712与静簧接触端722更容易实现接触,避免动簧接触端712与静簧接触端722发生错位后而影响监测动簧片450和静簧片460的接触状态。
可以理解的是,“针形结构”是指细长的丝材、棒材等,其轴向的尺寸远大于径向的尺寸。
如图32所示,本公开实施例的辅助动簧710为片状结构,但不以此为限。动簧接触端712包括基体713和凸苞714,基体713与动簧引出端711连接,凸苞714凸设于基体713朝向静簧接触端722的一侧表面,用于与静簧接触端722的侧面接触或分离。由于凸苞714凸设于基体713,且凸苞714用于与静簧接触端722接触,故当动簧接触端712与静簧接触端722接触后,静簧接触端722的侧面是与凸苞714抵接,而并不会与基体713朝向静簧接触端722的一侧表面抵接。
作为一示例,凸苞714为长条形。凸苞714的延伸方向与针形结构的轴向方向垂直。通过将凸苞714的形状限定为长条形,且凸苞714的延伸方向与针形结构的轴向方向垂直,使得凸苞714与针形结构在空间上正交,这样动簧接触端712与静簧接触端722接触时,即便辅助动簧710与辅助静簧720发生了微小的错位,也不会影响凸苞714与静簧接触端722接触。
当然,凸苞714的延伸方向与针形结构的轴向方向也可以不垂直,例如凸苞714的延伸方向与针形结构的轴向方向相交。
此外,凸苞714的形状并不限于长条形,例如凸苞714的形状还可以为圆形、椭圆形等。
请继续参阅图32,基体713包括第一弹性臂7131和第二弹性臂7132,第一弹性臂7131和第二弹性臂7132之间具有缝隙715,且第一弹性臂7131和第二弹性臂7132朝向静簧接触端722的一侧表面均凸设有凸苞714。第一弹性臂7131和第二弹性臂7132在针形结构的轴向方向上相对设置。当动簧接触端712与静簧接触端722接触时,两个凸苞714均与静簧接触端722的侧面接触,提高接触可靠性。
辅助动簧710还包括转向段716、倾斜段717和加宽段718。由动簧接触端712至动簧引出端711的方向上,转向段716、倾斜段717和加宽段718依次布置。转向段716的一端与动簧接触端712连接,另一端相对于动簧接触端712转向一角度。倾斜段717的一端连接于转向段716的另一端,倾斜段717的另一端与加宽段718的一端连接。加宽段718的另一端与动簧引出端711连接。
在本实施例中,该转向段716转向的角度可以为90度,当然也可以为其他角度。当转向段716转向的角度为90度时,动簧接触端712的延伸方向与动簧引出端711的延伸方向相垂直。
倾斜段717自动簧引出端711所在平面朝着远离辅助静簧720的方向倾斜,以使动簧引出端711与辅助静簧720共面设置。由于倾斜段717的设置,使得动簧引出端711与动簧接触端712不共面,这样辅助静簧720就可以与动簧引出端711共面设置,也不会影响动簧接触端712与静簧接触端722相接触。由于动簧引出端711与辅助静簧720共面,且动簧接触端712通过倾斜段717向继电器的内部倾斜,使得辅助触点组件70的设置并不会过多地占用继电器的推杆机构20运动方向上的空间,有利于实现继电器小形化。
加宽段718的宽度大于辅助动簧710的动簧接触端712、转向段716、倾斜段717和动簧引出端711的宽度。当辅助动簧710插装于底座10时,加宽段718设置在底座10的插装孔内(如图31),由于加宽段718的宽度较大,从而加宽段718的表面积较大。辅助动簧710通过加宽段718与底座10连接,使得连接强度更高。
如图34所示,图34示出的是推动杆210与辅助触点组件70组装后的示意图。辅助动簧710与推杆机构20的推动杆210连接。作为一示例,辅助动簧710与推动杆210远离动簧片450的一端连接。
推动杆210远离动簧片450的一端具有缺口2100,辅助动簧710穿过缺口2100。当推动杆210朝着辅助静簧720的方向移动时,推动杆210能够抵推辅助动簧710的动簧接触端712移动,直至动簧接触端712与辅助静簧720接触。当推动杆210朝着远离辅助静簧720的方向移动时,辅助静簧720凭借自身的弹性力恢复至原位,此时动簧接触端712与辅助静簧720分离。由于辅助动簧710是穿过缺口2100,故辅助动簧710不会占用继电器在推杆机构20的运动方向上的空间。
可以理解的是,本公开提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合,此处不再一一举例说明。
继电器在组装过程中,为了使动簧片、静簧片等部件插入底座后能够牢固,现有技术通过将动簧片、静簧片等部件与底座过盈配合或零间隙配合。但是,由于底座由塑料材料制成,塑料在高温下的定位强度会变弱,影响动簧片、静簧片等部件的组装。
进一步地,为了解决塑料在高温下的定位强度变弱的问题,现有技术中提出了采用热固性的密封胶填充在部件与底座之间,即先在继电器内部对部件点胶来加大定位强度,之后再从继电器的底部点胶塑封,避免水或灰尘进入继电器内部。
由此可见,现有技术中采用了至少两次点胶工艺,导致继电器的组装工艺复杂,且组装效率较低。
因此,本公开实施例提供一种能够提升组装效率的继电器及其底座密封结构。
本公开实施例的底座密封结构,应用于继电器,所述底座密封结构包括底座、金属件和密封胶,底座具有贯穿其内表面和底面的安装孔,所述安装孔的孔壁具有定位壁结构和间隙壁结构;金属件穿设于所述安装孔,且所述金属件的部分外壁面与所述定位壁结构相抵接,所述金属件的部分外壁面与所述间隙壁结构之间具有间隙;密封胶填充于所述间隙内。
根据本公开的一些实施方式,所述定位壁结构包括第一定位壁和第二定位壁,所述第一定位壁与所述第二定位壁沿一定位方向相对设置。
根据本公开的一些实施方式,所述金属件的部分外壁面分别与所述第一定位壁和所述第二定位壁过盈配合。
根据本公开的一些实施方式,所述定位壁结构与所述间隙壁结构通过过渡斜面连接。
根据本公开的一些实施方式,所述金属件包括静簧片引出脚、线圈引出脚或辅助触点引出脚。
根据本公开的一些实施方式,所述底座的底面还设有封胶槽,所述封胶槽与所述安装孔连通;
所述密封胶还填充于所述封胶槽。
根据本公开的一些实施方式,所述金属件的部分外壁面与所述定位壁结构过盈配合。
根据本公开的一些实施方式,所述安装孔的孔壁与所述底座的底面的连接处具有斜面。
根据本公开的一些实施方式,所述金属件的一端伸出所述底座的底面。
本公开实施例的继电器,包括上述任一项所述的底座密封结构。
上述实用新形中的一个实施例至少具有如下优点或有益效果:
本公开实施例的底座密封结构,通过金属件与安装孔的定位壁结构实现初步定位,再向金属件与安装孔的间隙壁结构之间的间隙填充密封胶,即可完成金属件与底座之间的密封组装。相比于现有技术,本公开减少了一道点胶步骤,有效地降低了成本,且提升了组装效率。
以下参考附图详细描述本公开的实施例。
如图35至图37所示,图35示出的是本公开实施例继电器的俯视图,其中省略了上盖,图36示出的是图35中沿J-J的剖视图,图37示出的是图36中沿K-K的剖视图。本公开实施例的继电器包括底座10、推杆机构20、磁路机构30和触点组件40。推杆机构20、磁路机构30和触点组件40设置在底座10上,磁路机构30通过推杆机构20以控制触点组件40的触点接触或分离。
磁路机构30包括轭铁结构310、线架320和线圈330。轭铁结构310形成一腔室,线架320和线圈330均设置于轭铁结构310的腔室内。线圈330绕设于线架320的外周,以形成磁控回路。线架320在触点组件40的触点接触分离方向上设有中心孔321,中心孔321用以供推杆机构20的一端穿设。
作为一示例,轭铁结构310包括轭铁板311和U形轭铁312,轭铁板311与U形轭铁312连接共同形成环形。轭铁板311开设有贯通孔3111,该贯通孔3111用于供推杆机构20穿设。
当然,在其他实施例中,轭铁结构310还可以包括圆筒状轭铁和轭铁板311,圆筒状轭铁和轭铁板311连接共同形成环形。
磁路机构30还包括两个永磁体340,两个永磁体340设置于线架320,且位于推杆机构20的运动方向的两侧。两个永磁体340形成磁保持的磁路结构,有利于降低用电成本较,延长使用寿命较,提升稳定性。
当然,在其他实施例中,不含永磁体340也是可以的。
请继续参阅图35至图37,触点组件40包括动簧片450和静簧片460,静簧片460固定安装于底座10上,动簧片450安装于推杆机构20,且与推杆机构20随动。
在本实施例中,触点组件40为两组,两组触点组件40沿着推杆机构20的运动方向布置。
当然,在其他实施例中,触点组件40也可以为一组或其他数量。
动簧片450的长度方向的两端作为动触点,动触点可以凸出于动簧片450的其他部分,也可以是与其他部分齐平。静簧片460与动簧片450接触的部分作为静触点,静触点可以凸出于静簧片460的其他部分,也可以是与其他部分齐平。
作为一示例,动簧片450包括动簧本体451和动触点452,动触点452与动簧本体451为分体结构,动触点452与动簧本体451可以采用铆接方式相连接,但不以此为限。静簧片460包括静簧本体461和静触点462,静触点462与静簧本体461为分体结构,静触点462与静簧本体461可以采用铆接方式相连接,但不以此为限。
当然,在另一实施例中,动触点452与动簧本体451也可以为一体结构,静触点462与静簧本体461为一体结构。
如图37所示,推杆机构20包括推动杆210和铁芯220,铁芯220连接于推动杆210。铁芯220在线圈330形成的磁控回路的作用下能够沿触点接触或分离的方向上移动,进而带动推动杆210移动,以控制触点组件40的触点接触或分离。
如图38和图39所示,图38示出的是图36中沿M-M的剖视图。图39示出的是图38中X3处的局部放大图。本公开实施例的继电器还包括底座密封结构,底座密封结构包括底座10、金属件120和密封胶(图中省略)。底座10具有贯穿其内表面和底面的安装孔110,安装孔110的孔壁具有定位壁结构111和间隙壁结构112。金属件120穿设于安装孔110,且金属件120的部分外壁面与定位壁结构111相抵接,金属件120的部分外壁面与间隙壁结构112之间具有间隙。密封胶填充于间隙内。
本公开实施例的底座密封结构,底座的安装孔110的孔壁具有定位壁结构111和间隙壁结构112,金属件120与底座10组装时,金属件120穿设于安装孔110。一方面,金属件120的部分外壁面与定位壁结构111相抵接,从而实现金属件120的初步定位。另一方面,金属件120的部分外壁面与间隙壁结构112之间具有间隙,利用虹吸效应,密封胶能够由底座10的底面一侧沿着间隙向底座10的内表面一侧爬升,直至爬升至安装孔110的开口处,使得密封胶填满该间隙内,进一步加强金属件120与底座10之间的密封性和定位强度。同时,利用密封胶的耐熔性强于塑料材料的特性来提升继电器产品的耐焊接热能力。
由此可见,本公开实施例的底座密封结构,先通过金属件120与安装孔110的定位壁结构111实现初步定位,再通过向金属件120与安装孔110的间隙壁结构112之间的间隙填充密封胶的方式,即可完成金属件120与底座之间的密封组装。相比于现有技术,本公开减少了一道点胶步骤,有效地降低了成本,且提升了组装效率。
可以理解的是,金属件120可以是继电器中任意一个需要与底座10的安装孔110进行组装的部件,包括但不限于:静簧片引出脚、线圈引出脚或辅助触点引出脚。
作为一示例,金属件120的一端通过安装孔110伸出于底座10的底面。当然,在其他实施例中,金属件120的一端也可以不伸出底座10的底面。
如图39所示,定位壁结构111包括第一定位壁113和第二定位壁114,第一定位壁113与第二定位壁114沿一定位方向D相对设置。通过第一定位壁113与第二定位壁114分别与金属件120相抵接,进而限定了金属件120与底座10在定位方向D上的自由度。
其中,定位方向D可以是继电器的长度方向。
可以理解的是,第一定位壁113和第二定位壁114的形状是与金属件120的外轮廓形状相适配。举例来说,当金属件120的截面形状为矩形时,第一定位壁113和第二定位壁114可以为平面。当然,在其他实施方式中,当金属件120的截面形状为圆形时,第一定位壁113和第二定位壁114的形状可以为弧面。
金属件120的部分外壁面与定位壁结构111过盈配合。在本公开实施例中,金属件120的部分外壁面分别与第一定位壁113和第二定位壁114过盈配合。当然,在其他实施例中,金属件120的部分外壁面与定位壁结构111之间也可以采用零间隙配合。
定位壁结构111与间隙壁结构112通过过渡斜面115连接。
如图40至图43所示,图40示出的是图35中沿N-N的剖视图。图41示出的是图40中X4处的局部放大图。图42示出的是图35中沿P-P的剖视图。图43示出的是图42中X5处的局部放大图。图40是沿着金属件120与安装孔110的定位壁结构111对应的位置剖切后的剖视图,图42是沿着金属件120与安装孔110的间隙壁结构112对应的位置剖切后的剖视图。
安装孔110的孔壁与底座10的底面的连接处具有斜面116。通过斜面116的设置,可增大密封胶流动的深度。
如图44所示,图44示出的是本公开实施例继电器的立体示意图,其中底座的底面朝上。底座10的底面还设有封胶槽130,封胶槽130与安装孔110连通。密封胶还填充于封胶槽130,以增大密封胶所覆盖的范围。封胶槽130的槽底通过斜面116与安装孔110的孔壁连接。
当然,在其他实施例中,封胶槽130和斜面116可以为同一斜面。
下面结合图44详细说明本公开实施例继电器的点胶过程:
根据背景技术所述,现有技术中的继电器需要先按照图1中箭头所示方向在部件与底座之间进行一次点胶,之后再按照图2中箭头所示方向进行第二次点胶,如此需要至少两次点胶工艺,且两次点胶的方向是不同的。
再看本公开实施例的继电器,承前所述,利用金属件120的部分外壁面与定位壁结构111相抵接,实现金属件120的初步定位(初步定位过程中并不需要进行点胶)。之后,按照图44的箭头方向(即由底座10的底面一侧)向金属件120与间隙壁结构112之间的间隙进行点胶。与此同时,按照图44的箭头方向,还可一并对上盖与底座10之间的缝隙进行点胶。由此可见,于本公开实施例中,沿着一个点胶方向(图44的箭头方向)即可 对静簧片引出脚463与底座10之间的缝隙、线圈引出脚331与底座10之间的缝隙、辅助触点引出脚710与底座10之间的缝隙、上盖与底座10之间的缝隙进行点胶,显著提升了点胶效率。
可以理解的是,本公开提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合,此处不再一一举例说明。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书所述的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (24)

  1. 一种继电器,其特征在于,包括:
    壳体;
    第一导磁体,固定连接于所述壳体,并位于所述动簧片的朝向所述静簧片的一侧;
    触点组件,包括动簧片和静簧片,所述静簧片固定连接于所述壳体,所述动簧片设于所述壳体内;以及
    推动杆,相对于所述壳体可移动;所述推动杆包括杆部、底部、第一侧部和第二侧部,所述底部连接于所述杆部轴向的一端,所述第一侧部和所述第二侧部均连接于所述底部,且沿着所述动簧片的长度方向相对设置;所述第一侧部设有第一通孔,所述第二侧部设有第二通孔,所述动簧片穿设于所述第一通孔和所述第二通孔;沿着所述杆部的轴向,所述动簧片相对于所述第一通孔和所述第二通孔在第一位置和第二位置之间可移动;在所述第一位置,所述动簧片分别与所述第一通孔的孔壁和所述第二通孔的孔壁抵接;沿着所述杆部的轴向,所述动簧片具有与所述第一导磁体对应的导磁区域,所述导磁区域与所述第一导磁体之间不容纳所述推动杆的任何部分。
  2. 根据权利要求1所述的继电器,其特征在于,还包括:
    第一弹性件,连接于所述动簧片和所述推动杆之间,用于向所述动簧片施加朝着所述第一位置移动的弹性力。
  3. 根据权利要求1所述的继电器,其特征在于,所述导磁区域位于所述第一侧部和所述第二侧部之间。
  4. 根据权利要求1所述的继电器,其特征在于,所述动簧片的长度方向的两端部均设有动触点,其中一个所述动触点位于所述第一侧部背向所述第二侧部的一侧,另一个所述动触点位于所述第二侧部背向所述第一侧部的一侧;所述导磁区域位于两个所述动触点之间。
  5. 根据权利要求1所述的继电器,其特征在于,所述动簧片的一侧凸设有第一定位部和第二定位部,所述第一定位部与所述第一侧部的位置对应,所述第二定位部与所述第二侧部的位置对应;
    在所述动簧片的长度方向上,所述动簧片通过所述第一定位部和所述第二定位部设置在所述推动杆的预定位置。
  6. 根据权利要求5所述的继电器,其特征在于,所述第一侧部朝向所述第二侧部的一侧具有第一止挡面,所述第二侧部朝向所述第一侧部的一侧具有第二止挡面;
    所述第一定位部与所述第一止挡面抵接,所述第二定位部与所述第二止挡面抵接。
  7. 根据权利要求5所述的继电器,其特征在于,所述第一定位部和所述第二定位部凸设于所述动簧片朝向所述静簧片的一侧表面。
  8. 根据权利要求1所述的继电器,其特征在于,所述继电器还包括第二导磁体,所 述第二导磁体连接于所述动簧片的导磁体区域,且所述第二导磁体固定连接于所述动簧片背向所述第一导磁体的一侧,以使所述第一导磁体与所述第二导磁体之间在所述动簧片的宽度方向上形成导磁回路;
    其中,沿着所述杆部的轴向,所述第二导磁体与所述第一导磁体之间不容纳所述推动杆的任何部分。
  9. 根据权利要求8所述的继电器,其特征在于,所述第二导磁体为U形,且沿着所述动簧片的宽度方向包覆所述导磁区域。
  10. 根据权利要求8所述的继电器,其特征在于,所述第二导磁体包括至少两个子导磁体,每个所述子导磁体为U形;
    所述动簧片设有至少一个穿孔,至少两个所述子导磁体均连接于所述动簧片背向所述第一导磁体的一侧,且至少两个所述子导磁体的侧部穿过至少一个穿孔,以通过所述穿孔与所述第一导磁体靠近或相互接触,并在所述动簧片的宽度方向上形成至少两个独立的导磁回路。
  11. 根据权利要求10所述的继电器,其特征在于,位于一个所述穿孔中的两个所述侧部之间具有间隙。
  12. 根据权利要求1至11任一项所述的继电器,其特征在于,所述壳体具有安装部,所述安装部位于所述推动杆的径向方向上的一侧,所述径向方向与所述推动杆的运动方向垂直;所述第一导磁体固定连接于所述安装部。
  13. 根据权利要求12所述的继电器,其特征在于,所述壳体包括侧壁,所述侧壁位于所述推动杆径向方向上的一侧,所述安装部形成于所述侧壁。
  14. 根据权利要求13所述的继电器,其特征在于,所述侧壁沿着所述推动杆的周向方向环绕所述推动杆。
  15. 根据权利要求13所述的继电器,其特征在于,所述壳体包括:
    底座;以及
    外罩,连接于所述底座,所述外罩和所述底座形成一用以容纳所述触点组件、所述推动杆和所述第一导磁体的腔室;所述底座和/或所述外罩形成所述侧壁。
  16. 根据权利要求12所述的继电器,其特征在于,所述第一导磁体包括连接部和悬空部,所述连接部固定连接于所述安装部;
    其中,定义一个垂直于所述推动杆的运动方向的虚拟平面,所述连接部在所述虚拟平面上具有第一正投影,所述悬空部在所述虚拟平面上具有第二正投影,所述动簧片在所述虚拟平面上具有第三正投影,所述第一正投影与所述第三正投影不重合,所述第二正投影与所述第三正投影至少部分重合。
  17. 根据权利要求16所述的继电器,其特征在于,所述第一导磁体为平板结构。
  18. 根据权利要求12所述的继电器,其特征在于,所述第一导磁体沿一插装方向插装于所述壳体的所述安装部,所述插装方向垂直于所述推动杆的运动方向。
  19. 根据权利要求18所述的继电器,其特征在于,所述安装部包括第一安装孔,所述第一安装孔贯穿所述壳体的内表面和外表面,所述第一安装孔的孔壁具有第一定位壁结构和第一间隙壁结构;
    所述第一导磁体插装于所述第一安装孔,且所述第一导磁体的部分外壁面与所述第一定位壁结构相抵接,所述第一导磁体的部分外壁面与所述第一间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
  20. 根据权利要求19所述的继电器,其特征在于,所述第一导磁体的部分外壁面与所述第一定位壁结构过盈配合。
  21. 根据权利要求18所述的继电器,其特征在于,所述第一导磁体的插装方向与所述动簧片的长度方向垂直。
  22. 根据权利要求18所述的继电器,其特征在于,所述静簧片沿所述插装方向插装于所述壳体。
  23. 根据权利要求22所述的继电器,其特征在于,所述壳体还具有贯穿其内表面和外表面的第二安装孔,所述第二安装孔的孔壁具有第二定位壁结构和第二间隙壁结构;
    所述静簧片插装于所述第二安装孔,且所述静簧片的部分外壁面与所述第二定位壁结构抵接,所述静簧片的部分外壁面与所述第二间隙壁结构之间具有间隙,所述间隙内填充有密封胶。
  24. 根据权利要求23所述的继电器,其特征在于,所述静簧片的部分外壁面与所述第二定位壁结构过盈配合。
PCT/CN2023/135695 2022-12-01 2023-11-30 继电器 WO2024114773A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202223234176.2 2022-12-01
CN202223234176.2U CN218867003U (zh) 2022-12-01 2022-12-01 继电器及其辅助触点组件
CN202223233526.3U CN218996614U (zh) 2022-12-01 2022-12-01 继电器及其底座密封结构
CN202223233526.3 2022-12-01
CN202223234023.8U CN218867005U (zh) 2022-12-01 2022-12-01 继电器
CN202223234023.8 2022-12-01
CN202211544804.9A CN118136457A (zh) 2022-12-01 2022-12-01 继电器
CN202211544804.9 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024114773A1 true WO2024114773A1 (zh) 2024-06-06

Family

ID=91323039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135695 WO2024114773A1 (zh) 2022-12-01 2023-11-30 继电器

Country Status (1)

Country Link
WO (1) WO2024114773A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059702A (ja) * 2004-08-20 2006-03-02 Fujitsu Component Ltd 電磁継電器
CN109559939A (zh) * 2018-11-09 2019-04-02 厦门宏发电力电器有限公司 一种抗短路电流的直流继电器
CN218867005U (zh) * 2022-12-01 2023-04-14 厦门宏发电力电器有限公司 继电器
CN218866992U (zh) * 2022-12-01 2023-04-14 厦门宏发电力电器有限公司 继电器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059702A (ja) * 2004-08-20 2006-03-02 Fujitsu Component Ltd 電磁継電器
CN109559939A (zh) * 2018-11-09 2019-04-02 厦门宏发电力电器有限公司 一种抗短路电流的直流继电器
CN218867005U (zh) * 2022-12-01 2023-04-14 厦门宏发电力电器有限公司 继电器
CN218866992U (zh) * 2022-12-01 2023-04-14 厦门宏发电力电器有限公司 继电器

Similar Documents

Publication Publication Date Title
US6975194B2 (en) Switching device
US20180061600A1 (en) Electromagnetic relay
EP3846195B1 (en) Direct current relay
CN102103943A (zh) 一种新磁路的磁保持继电器
JP2019009070A (ja) 電磁継電器
WO2024114773A1 (zh) 继电器
CN218866992U (zh) 继电器
CN218866991U (zh) 继电器
CN213845169U (zh) 磁保持继电器
JP2005183097A (ja) 電磁リレー
WO2024114755A1 (zh) 继电器
US4482875A (en) Polarized electromagnetic midget relay
CN220963164U (zh) 继电器
WO2024114759A1 (zh) 继电器
CN118136457A (zh) 继电器
JPH0330971Y2 (zh)
WO2024027774A1 (zh) 一种继电器
CN221101960U (zh) 继电器
WO2024078543A1 (zh) 继电器
CN218385044U (zh) 一种继电器
WO2024078423A1 (zh) 继电器
CN219873350U (zh) 继电器
WO2024078455A1 (zh) 继电器
CN220341135U (zh) 一种动簧片、接触单元和继电器
CN219873343U (zh) 继电器