WO2024114415A1 - 一种薄膜沉积方法 - Google Patents

一种薄膜沉积方法 Download PDF

Info

Publication number
WO2024114415A1
WO2024114415A1 PCT/CN2023/132347 CN2023132347W WO2024114415A1 WO 2024114415 A1 WO2024114415 A1 WO 2024114415A1 CN 2023132347 W CN2023132347 W CN 2023132347W WO 2024114415 A1 WO2024114415 A1 WO 2024114415A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
thin film
process chamber
flow ratio
reactant
Prior art date
Application number
PCT/CN2023/132347
Other languages
English (en)
French (fr)
Inventor
许嘉毓
野沢俊久
Original Assignee
拓荆科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拓荆科技股份有限公司 filed Critical 拓荆科技股份有限公司
Publication of WO2024114415A1 publication Critical patent/WO2024114415A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present application relates generally to the field of semiconductor manufacturing, and more particularly to a thin film deposition method.
  • the plasma enhanced atomic layer deposition (PEALD) process is one of the most widely used deposition processes.
  • PEALD plasma enhanced atomic layer deposition
  • a precursor and a reactant are usually provided to a process chamber and plasma is applied to deposit a thin film.
  • Depositing different thin films requires meeting different process requirements, such as the growth rate, film quality, and film profile of the film.
  • the present application provides a thin film deposition method, which can independently regulate the growth rate, film quality, film profile, etc. of the thin film, thereby meeting the process requirements of different thin films.
  • a thin film deposition method may include: injecting a precursor from a precursor source into a process chamber; and providing a reactant from a reactant source to the process chamber and applying plasma to the process chamber to deposit a thin film, wherein, in the precursor injection step and/or the plasma applying step, the reactant and a first gas from a first gas source are provided to the process chamber simultaneously, and in the purge step between the precursor injection step and the plasma applying step, the first gas is not provided to the process chamber.
  • the reactant may include nitrogen.
  • the first gas may include at least one of hydrogen and ammonia.
  • a flow ratio of the first gas and the reactant provided simultaneously to the process chamber may be 0.025%-0.1%.
  • the first gas when the first gas is ammonia, the first gas is provided to the process chamber at the same time.
  • the flow ratio of the first gas to the reactant may be 2.5%-50%.
  • the reactant may be provided to the process chamber.
  • the reactant may be a gas
  • the reactant and the first gas may be provided to the process chamber via at least one gas pipeline.
  • the at least one gas pipeline may include a first gas pipeline and a second gas pipeline, the first gas pipeline being coupled to a center position of the process chamber, and the second gas pipeline being coupled to an edge position of the process chamber.
  • the first gas and the reactant can both flow into the first gas pipeline and the second gas pipeline, and the first gas in the first gas pipeline has a first flow ratio to the reactant, and the first gas in the second gas pipeline has a second flow ratio to the reactant, and the first flow ratio is different from the second flow ratio.
  • the first flow ratio in the precursor injecting step may be different from the first flow ratio in the plasma applying step.
  • the second flow ratio in the precursor injecting step may be different from the second flow ratio in the plasma applying step.
  • the at least one gas pipeline may further include a third gas pipeline, and the third gas pipeline may be coupled to any position between the center position and the edge position of the process chamber.
  • the first gas and the reactant may both flow into a third gas pipeline, and the first gas and the reactant in the third gas pipeline have a third flow ratio, and the third flow ratio may be different from the first flow ratio or the second flow ratio.
  • the precursor includes a silicon precursor
  • the reactant includes nitrogen
  • the film may be a silicon nitride film.
  • a thin film deposition method may include: injecting a precursor from a precursor source into a process chamber; and providing a reactant from a reactant source to the process chamber and applying plasma to the process chamber to deposit a thin film, wherein, in the precursor injection step and/or the plasma application step, the reactant and a first gas from a first gas source are simultaneously provided to the process chamber via at least a first gas pipeline and a second gas pipeline, the first gas in the first gas pipeline has a first flow ratio to the reactant, the first gas in the second gas pipeline has a second flow ratio to the reactant, and the first flow ratio is different from the second flow ratio.
  • the first gas pipeline may be coupled to a central position of the process chamber.
  • the second gas pipeline can be coupled to an edge position of the process chamber.
  • the first flow ratio in the precursor injecting step may be different from the first flow ratio in the plasma applying step.
  • the second flow ratio in the precursor injecting step may be different from the second flow ratio in the plasma applying step.
  • the reactant and the first gas in the precursor injection step and/or the plasma application step, can be further provided to the process chamber via a third gas pipeline, and the third gas pipeline can be coupled to any position between the center position and the edge position of the process chamber.
  • the first gas in the third gas pipeline may have a third flow ratio to the reactant, and the third flow ratio may be different from the first flow ratio or the second flow ratio.
  • the precursor includes a silicon precursor
  • the reactant may include nitrogen
  • the first gas may include at least one of hydrogen and ammonia
  • the film is a silicon nitride film.
  • the first flow ratio or the second flow ratio may be 0.025%-0.1%.
  • the first flow ratio or the second flow ratio may be 2.5%-50%.
  • the method may further include a purging step, in which the reactant is provided to the process chamber, while the first gas is not provided to the process chamber.
  • the present application also provides a semiconductor processing device using the above-mentioned thin film deposition method, wherein the semiconductor processing device has good process compatibility and can produce thin films that meet various process requirements.
  • FIG. 1 is a process flow chart of a thin film deposition method in the prior art.
  • FIG. 2 is a process flow chart of another thin film deposition method in the prior art.
  • FIG. 3 shows the growth rate of the thin film obtained by using different hydrogen flow rates.
  • FIG. 4 is a process flow chart of a thin film deposition method according to an embodiment of the present application.
  • FIG. 5 is a process flow chart of a thin film deposition method according to another embodiment of the present application.
  • FIG. 6 is a process flow chart of a thin film deposition method according to yet another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a semiconductor processing device according to an embodiment of the present application.
  • Coupled or “connection” referred to herein should be understood to cover “direct coupling”, “direct connection” and “coupling via one or more intermediate components", “connecting via one or more intermediate components”.
  • the names of the various components used in this specification are for illustrative purposes only and do not have a limiting effect. Different manufacturers may use different names to refer to components with the same function.
  • FIG1 is a process flow chart of a thin film deposition method in the prior art.
  • the thin film deposition method in the prior art includes a plurality of process cycles, each process cycle including a precursor injection step, a plasma application step and two purge steps.
  • a precursor injection step a precursor is injected into a process chamber from a precursor source.
  • a plasma application step a reactant from a reactant source is provided to the process chamber and plasma is applied to the process chamber to deposit a thin film.
  • the purge step excess precursor or reaction by-products are removed from the process chamber to purify the process chamber.
  • a reactant is continuously provided to the process chamber at a constant flow rate, while a precursor is only provided to the process chamber in the precursor injection step.
  • the reactant may be nitrogen (N 2 ).
  • the precursor may be bis(diethylamino)silane (SAM.24), a halogen silane compound or a polysilicon halogen compound, etc.
  • FIG2 is a process flow chart of another thin film deposition method in the prior art.
  • the difference between the thin film deposition method shown in FIG2 and the thin film deposition method shown in FIG1 is that, in each process cycle, in addition to the reactant, hydrogen is also continuously provided to the process chamber at a constant flow rate.
  • providing hydrogen to the process chamber can increase the growth rate (growth per cycle, GPC) of the thin film.
  • FIG3 shows the growth rate of the film obtained by using different hydrogen flow rates.
  • the growth rate of the film is positively correlated with the flow rate of hydrogen. Therefore, the growth rate of the film can be increased by increasing the flow rate of hydrogen.
  • the thin film deposition method shown in FIG2 can improve the growth rate of the thin film.
  • the introduction of hydrogen in the plasma application step will change the quality of the film, for example, resulting in an increase in the wet etch rate (WER). Therefore, the thin film deposition method shown in FIG2 will change the growth rate and film quality of the film at the same time, and the two cannot be regulated separately. Therefore, the thin film deposition method in the prior art shown in FIG1 and FIG2 still needs to frequently replace hardware and adjust process steps when depositing thin films with different process requirements, resulting in high time cost and process cost for depositing thin films.
  • the present application provides an improved thin film deposition method to solve at least one of the above problems.
  • the thin film deposition method according to an embodiment of the present application will be described in detail with reference to FIGS. 4 to 6 .
  • FIG. 4 is a process flow chart of a thin film deposition method according to an embodiment of the present application.
  • the thin film deposition method according to an embodiment of the present application includes a plurality of process cycles, each process cycle including a precursor injection step, a plasma application step and two purge steps.
  • a precursor injection step a precursor is injected into a process chamber from a precursor source.
  • a plasma application step a reactant is provided from a reactant source to the process chamber and plasma is applied to the process chamber to deposit a thin film.
  • the purge step excess precursor or reaction byproducts are removed from the process chamber to purify the process chamber.
  • the reactant and the first gas from the first gas source are simultaneously provided to the process chamber; and in the purge step between the precursor injection step and the plasma application step, the plasma application step, and the plasma application step and the precursor injection step of another cycle, the first gas is not provided to the process chamber.
  • the first gas is provided to the process chamber only in the precursor injection step.
  • durations of the precursor injection step, the plasma application step, and the two purge steps may be set according to process requirements and are not specifically limited herein.
  • the precursor may be any suitable precursor for preparing a thin film.
  • the precursor may be a silicon precursor for depositing a silicon nitride thin film.
  • the precursor includes bis(diethylamino)silane (SAM.24), a halogen silane compound or a polysilicon halogen compound, wherein examples of the halogen silane compound include hexadecene, Chlorosilane (HCDS), monochlorosilane and dichlorosilane (DCS), but not limited thereto.
  • SAM.24 bis(diethylamino)silane
  • HCDS Chlorosilane
  • DCS dichlorosilane
  • the precursor can be injected into the process chamber at a suitable flow rate according to the process requirements.
  • the reactant may be any suitable reactant for preparing a thin film.
  • the reactant may be a gas.
  • the reactant may be a reactant for preparing a silicon nitride thin film.
  • the reactant includes nitrogen (N 2 ).
  • the reactant may also be provided to the process chamber in the precursor injection step to serve as a carrier gas for carrying the precursor, and provided to the process chamber in the purge step to serve as a purge gas for purging the process chamber. Therefore, in each process cycle, the reactant may be provided to the process chamber uninterruptedly at a constant flow rate.
  • the reactant may be provided to the process chamber at a flow rate of about 10,000 sccm to about 20,000 sccm, for example, about 10,000 sccm, 12,000 sccm, about 15,000 sccm, 18,000 sccm, or about 20,000 sccm, or a range consisting of any two of the above values, for example, about 10,000 sccm to about 15,000 sccm, about 12,000 sccm to about 20,000 sccm, or about 10,000 sccm to about 18,000 sccm, etc.
  • the reactant may be provided to the process chamber in a discontinuous manner, such as only in the precursor injection step and the plasma application step.
  • the first gas may be a gas that improves the adsorption of the precursor. Introducing the first gas into the process chamber may increase the active sites on the deposition surface, thereby improving the adsorption of the precursor. In some embodiments, the introduction of the first gas may increase the nitrogen-hydrogen bonds on the deposition surface, thereby increasing the active sites and improving the adsorption of the precursor. In some embodiments, the first gas includes at least one of hydrogen (H 2 ) or ammonia (NH 3 ).
  • the first gas is hydrogen and may be provided to the process chamber at a flow rate of about 5 sccm to about 10 sccm, for example, about 5 sccm, about 6 sccm, about 7 sccm, about 8 sccm or about 10 sccm or a range consisting of any two of the above values, for example, about 5 sccm to about 8 sccm or about 7 sccm to about 10 sccm, etc.
  • the first gas is ammonia and can be provided to the process chamber at a flow rate of about 500 sccm to about 5000 sccm, for example, about 500 sccm, about 1000 sccm, about 2000 sccm, about 3000 sccm, about 4000 sccm or about 5000 sccm or a range consisting of any two of the above values, for example, about 500 sccm to about 1000 sccm, about 500 sccm to about 3000 sccm or about 1000 sccm to about 5000 sccm, etc.
  • the flow ratio of the first gas and the reactant provided simultaneously to the process chamber can be about 0.025% to about 0.1%, for example, about 0.025%, about 0.03%, about 0.05%, about 0.08% or about 0.1% or a range consisting of any two of the above values, for example, about 0.025% to about 0.05% or about 0.05% to about 0.1%, etc.
  • the flow ratio of the first gas and the reactant provided simultaneously to the process chamber can be about 2.5% to about 50%, for example, about 2.5%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 40% or about 50% or a range consisting of any two of the above values, for example, about 2.5% to about 25%, about 5% to about 25% or about 5% to about 50%, etc.
  • the reactant and the first gas may be provided to the process chamber via at least one gas pipeline.
  • At least one gas pipeline includes a first gas pipeline and a second gas pipeline, the first gas pipeline is coupled to the center position of the process chamber, the second gas pipeline is coupled to the edge position of the process chamber, the first gas and the reactant both flow into the first gas pipeline and the second gas pipeline, and the first gas in the first gas pipeline has a first flow ratio with the reactant, the first gas in the second gas pipeline has a second flow ratio with the reactant, and the first flow ratio is different from the second flow ratio.
  • At least one gas pipeline further includes a third gas pipeline, the third gas pipeline is coupled to any position between the center position and the edge position of the process chamber, the first gas and the reactant both flow into the third gas pipeline, and the first gas in the third gas pipeline has a third flow ratio with the reactant, and the third flow ratio is different from the first flow ratio or the second flow ratio. This will be described in detail later with reference to FIG. 7.
  • the thin film deposition method shown in FIG4 can increase the growth rate of the thin film by increasing the flow rate of the first gas without affecting the quality of the thin film, thereby achieving independent regulation of the growth rate of the deposited thin film. Therefore, the thin film deposition method shown in FIG4 can regulate the thickness and profile of the thin film without affecting the quality of the thin film.
  • FIG. 5 is a process flow chart of a thin film deposition method according to another embodiment of the present application.
  • the thin film deposition method shown in Figure 5 is different from the thin film deposition method shown in Figure 4 in that in the plasma applying step, the reactant and the first gas are provided to the process chamber simultaneously.
  • the thin film deposition method includes a plurality of process cycles, each process cycle including a precursor injection step, a plasma application step and two purge steps.
  • the precursor injection step the precursor is injected into the process chamber from the precursor source.
  • the plasma application step the reactant is provided from the reactant source to the process chamber and plasma is applied to the process chamber to deposit a thin film.
  • the purge step excess precursor or reaction byproducts are removed from the process chamber to purify the process chamber.
  • the reactant is provided to the process chamber simultaneously with the first gas from the first gas source; and in the precursor injection step, the purge step between the precursor injection step and the plasma application step, and the purge step between the plasma application step and the precursor injection step of another cycle, the first gas is not provided to the process chamber.
  • the first gas is provided to the process chamber only in the plasma application step.
  • the precursor, reactant and first gas in FIG. 5 are the same as the precursor, reactant and first gas in FIG. 4, and are not repeated here.
  • the film quality can be changed (eg, WER can be increased) by increasing the flow rate of the first gas without affecting the film growth rate, thereby achieving independent regulation of the film quality.
  • Figure 6 is a process flow chart of a thin film deposition method according to another embodiment of the present application.
  • the thin film deposition method described in Figure 6 is different from the thin film deposition method shown in Figure 4 in that in the precursor injection step and the plasma application step, the reactant and the first gas are provided to the process chamber at the same time.
  • the thin film deposition method includes a plurality of process cycles, each process cycle including a precursor injection step, a plasma application step and two purge steps.
  • the precursor injection step the precursor is injected into the process chamber from the precursor source.
  • the plasma application step the reactant is provided to the process chamber and plasma is applied to the process chamber to deposit a thin film.
  • the purge step excess precursor or reaction byproducts are removed from the process chamber to purify the process chamber.
  • the reactant and the first gas from the first gas source are provided to the process chamber at the same time; and in the purge step between the precursor injection step and the plasma application step and the purge step between the plasma application step and the precursor injection step of another cycle, the first gas is not provided to the process chamber. Therefore, in the process cycle shown in FIG6, the first gas is provided to the process chamber in the two steps of the precursor injection and the plasma application step.
  • the precursor, reactant and first gas in FIG6 are the same as the precursor, reactant and first gas in FIG4, and are not repeated here.
  • the first gas is provided to the process chamber at a first flow rate F1
  • the first gas is provided to the process chamber at a second flow rate F2.
  • the first flow rate F1 is equal to the second flow rate F2.
  • the first flow rate F1 is greater than or less than the second flow rate F2.
  • the first flow rate F1 and/or the second flow rate F2 can be about 5 sccm to about 10 sccm, for example, about 5 sccm, about 6 sccm, about 7 sccm, about 8 sccm or about 10 sccm or a range consisting of any two of the above values, for example, about 5 sccm to about 8 sccm or about 7 sccm to about 10 sccm, etc.
  • the first flow rate F1 and/or the second flow rate F2 can be about 500 sccm to about 5000 sccm, for example, about 500 sccm, about 1000 sccm, about 2000 sccm, about 3000 sccm, about 4000 sccm or about 5000 sccm or a range consisting of any two of the above values, for example, about 500 sccm to about 1000 sccm, about 500 sccm to about 3000 sccm or about 1000 sccm to about 5000 sccm, etc.
  • the flow ratio of the first gas to the reactant in the precursor injection step is equal to the flow ratio of the first gas to the reactant in the plasma application step. In some embodiments, the flow ratio of the first gas to the reactant in the precursor injection step is different from the flow ratio of the first gas to the reactant in the plasma application step.
  • the flow ratio of the first gas to the reactant in the precursor injection step and/or the plasma application step can be about 0.025% to about 0.1%, for example, about 0.025%, about 0.03%, about 0.05%, about 0.08%, or about 0.1% or a range consisting of any two of the above values, for example, about 0.025% to about 0.05% or about 0.05% to about 0.1%, etc.
  • the flow ratio of the first gas to the reactant in the precursor injection step and/or the plasma application step can be about 2.5% to about 50%, for example, about 2.5%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 40% or about 50% or a range consisting of any two of the above values, for example, about 2.5% to about 25%, about 5% to about 25% or about 5% to about 50%, etc.
  • the first gas can be supplied at different flow rates (or the first gas and the reactant at different flow ratios).
  • the first gas is provided to the process chamber, so the growth rate and film quality of the deposited film can be individually regulated by setting different first gas flow rates (or different first gas to reactant flow ratios). Therefore, the thin film deposition method shown in FIG6 can individually regulate the profile and quality of the film.
  • the thin film deposition methods in Figures 1 to 5 are used to deposit thin films, respectively, and the growth rate and wet etching rate of the thin films are shown in Table 1.
  • Comparative Example 1 and Comparative Document 2 use the thin film deposition methods shown in Figures 1 and 2, respectively, and Examples 1 to 3 use the thin film deposition methods shown in Figures 4 to 6, respectively.
  • the precursor is hexachlorodisilane (HCDS)
  • the reactant is nitrogen
  • the flow rate of nitrogen is 10000sccm.
  • the flow rate of hydrogen is 1sccm.
  • the first gas is hydrogen
  • the flow rate of hydrogen is 5sccm (F1 in Example 3 is equal to F2).
  • FIG7 is a schematic diagram of the structure of a semiconductor processing device according to an embodiment of the present application.
  • the semiconductor processing device 10 includes a process chamber 1 and a precursor pipeline 3 and a plurality of gas pipelines 4, 5 and 6 coupled to the process chamber 1.
  • the precursor pipeline 3 is coupled to the center position of the process chamber 1, and the precursor enters the process chamber 1 via the precursor pipeline 3.
  • the first gas pipeline 4 is coupled to the center position of the process chamber 1
  • the second gas pipeline 5 is coupled to the edge position of the process chamber 1
  • the third gas pipeline 6 is coupled to any position between the center position and the edge position of the process chamber 1, for example, 1/2 or 1/4 between the center position and the edge position.
  • the reactant from the reactant source and the first gas from the first gas source can flow into at least one of the first gas pipeline 4, the second gas pipeline 5 and the third gas pipeline 6 together, To provide to the process chamber 1.
  • the process chamber 1 can provide to the process chamber 1.
  • three gas pipelines are shown in FIG7 , more or less gas pipelines may be provided.
  • changing the flow ratio of the first gas to the reactant in the first gas pipeline 4 can regulate the thin film in the first region 21 of the substrate 2; changing the flow ratio of the first gas to the reactant in the second gas pipeline 5 can regulate the thin film in the second region 22 of the substrate 2; changing the flow ratio of the first gas to the reactant in the third gas pipeline 6 can regulate the thin film in the third region 23 of the substrate 2. Therefore, the growth rate and/or the quality of the thin film in different regions of the substrate 2 can be adjusted by regulating the flow ratio of the first gas to the reactant in the first gas pipeline 4, the second gas pipeline 5, and the third gas pipeline 6 at each step, thereby changing the thickness and profile of the thin film.
  • the reactant and the first gas are simultaneously provided to the process chamber 1 via the first gas pipeline 4.
  • the first gas in the first gas pipeline 4 has a first flow ratio with the reactant.
  • the first flow ratio in the precursor injection step may be different from the first flow ratio in the plasma application step.
  • the reactant and the first gas are simultaneously provided to the process chamber 1 via the first gas line 4 and the second gas line 5.
  • the first gas in the first gas line 4 has a first flow ratio to the reactant
  • the first gas in the second gas line 5 has a second flow ratio to the reactant.
  • the first flow ratio may be different from the second flow ratio.
  • the first flow ratio in the precursor injection step may be different from the first flow ratio in the plasma application step.
  • the second flow ratio in the precursor injection step may be different from the second flow ratio in the plasma application step.
  • the growth rate of the thin film in different regions and/or the quality of the thin film can be controlled, thereby obtaining a thin film with different profiles and/or film quality.
  • the reactant and the first gas are simultaneously provided to the process chamber 1 via the first gas line 4, the second gas line 5, and the third gas line 6.
  • the first gas in the first gas line 4 has a first flow ratio to the reactant
  • the first gas in the second gas line 5 has a second flow ratio to the reactant
  • the first gas in the third gas line 6 has a third flow ratio to the reactant.
  • the first flow ratio may be different from the second flow ratio
  • the third flow ratio may be different from the first flow ratio or the second flow ratio.
  • the first flow ratio may be different from the second flow ratio
  • the third flow ratio may be the same as the first flow ratio or the second flow ratio.
  • the first flow ratio in the precursor injection step may be Different from the first flow ratio in the plasma applying step.
  • the second flow ratio in the precursor injection step may be different from the second flow ratio in the plasma applying step.
  • the third flow ratio in the precursor injection step may be different from the third flow ratio in the plasma applying step.
  • the first flow ratio, the second flow ratio or the third flow ratio can be about 0.025% to about 0.1%, for example, about 0.025%, about 0.03%, about 0.05%, about 0.08% or about 0.1% or a range consisting of any two of the above values, for example, about 0.025% to about 0.05% or about 0.05% to about 0.1%, etc.
  • the first flow ratio, the second flow ratio or the third flow ratio can be about 2.5% to about 50%, for example, about 2.5%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 40% or about 50% or a range consisting of any two of the above values, for example, about 2.5% to about 25%, about 5% to about 25% or about 5% to about 50%, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种薄膜沉积方法,包括:将前驱体从前驱体源注入工艺腔(1);以及将来自反应体源的反应体提供至所述工艺腔(1)并向所述工艺腔(1)施加等离子体以沉积薄膜,其中,在前驱体注入步骤和/或施加等离子体步骤中,将所述反应体与来自第一气体源的第一气体同时提供至所述工艺腔(1),并且在前驱体注入步骤和施加等离子体步骤之间的吹扫步骤中,所述第一气体不提供至所述工艺腔(1)。所述薄膜沉积方法可以单独调控薄膜的生长速率、薄膜质量和薄膜轮廓等,因此可以使用同一半导体处理装置(10)制备不同工艺要求的薄膜。

Description

一种薄膜沉积方法 技术领域
本申请大体上涉及半导体制造领域,具体地,涉及一种薄膜沉积方法。
背景技术
在半导体制造领域,等离子增强原子层沉积(PEALD)工艺是最广泛应用的沉积工艺之一。在PEALD工艺中,通常将前驱体(precursor)和反应体(reactant)提供至工艺腔并施加等离子体以沉积薄膜。沉积不同的薄膜需要满足不同的工艺要求,例如,薄膜的生长速率、薄膜质量和薄膜轮廓等。为了获得不同工艺要求的薄膜,通常需要更换半导体处理装置的硬件并调节工艺步骤,这大大增加了沉积薄膜的时间成本和工艺成本。
因此,需要改善薄膜沉积方法,以实现使用同一半导体处理装置制备不同工艺要求的薄膜,从而提升半导体制造机台的工艺兼容性。
发明内容
本申请提供了一种薄膜沉积方法,所述薄膜沉积方法可以单独地调控薄膜的生长速率、薄膜质量和薄膜轮廓等,因此可以满足不同薄膜的工艺要求。
根据本申请的一些实施例,一种薄膜沉积方法可以包括:将前驱体从前驱体源注入工艺腔;以及将反应体从反应体源提供至所述工艺腔并向所述工艺腔施加等离子体以沉积薄膜,其中,在前驱体注入步骤和/或施加等离子体步骤中,将所述反应体与来自第一气体源的第一气体同时提供至所述工艺腔,并且在所述前驱体注入步骤和所述施加等离子体步骤之间的吹扫步骤中,所述第一气体不提供至所述工艺腔。
根据本申请的一些实施例,所述反应体可以包括氮气。
根据本申请的一些实施例,所述第一气体可以包括氢气和氨气中的至少一种。
根据本申请的一些实施例,当所述第一气体为氢气时,同时提供至所述工艺腔的所述第一气体与所述反应体的流量比可以为0.025%-0.1%。
根据本申请的一些实施例,当所述第一气体为氨气时,同时提供至所述工艺腔的所 述第一气体与所述反应体的流量比可以为2.5%-50%。
根据本申请的一些实施例,在所述吹扫步骤中,所述反应体可以提供至所述工艺腔。
根据本申请的一些实施例,所述反应体可以为气体,并且所述反应体与所述第一气体可以经由至少一个气体管线提供至所述工艺腔。
根据本申请的一些实施例,所述至少一个气体管线可以包括第一气体管线和第二气体管线,所述第一气体管线耦接到所述工艺腔的中心位置,所述第二气体管线耦接到所述工艺腔的边缘位置。
根据本申请的一些实施例,所述第一气体和所述反应体均可以流入所述第一气体管线和所述第二气体管线,且所述第一气体管线中的所述第一气体与所述反应体具有第一流量比,所述第二气体管线中的所述第一气体与所述反应体具有第二流量比,所述第一流量比不同于所述第二流量比。
根据本申请的一些实施例,前驱体注入步骤中的所述第一流量比可以不同于施加等离子体步骤中的所述第一流量比。
根据本申请的一些实施例,前驱体注入步骤中的所述第二流量比可以不同于施加等离子体步骤中的所述第二流量比。
根据本申请的一些实施例,所述至少一个气体管线进一步可以包括第三气体管线,所述第三气体管线可以耦接到所述工艺腔的所述中心位置与所述边缘位置之间的任一位置。
根据本申请的一些实施例,所述第一气体和所述反应体可以均流入第三气体管线,且所述第三气体管线中的所述第一气体与所述反应体具有第三流量比,所述第三流量比可以不同于所述第一流量比或所述第二流量比。
根据本申请的一些实施例,所述前驱体包括硅前驱体,所述反应体包括氮气,并且所述薄膜可以为氮化硅薄膜。
根据本申请的一些实施例,一种薄膜沉积方法可以包括:将前驱体从前驱体源注入工艺腔;以及来自反应体源的反应体提供至所述工艺腔并向所述工艺腔施加等离子体以沉积薄膜,其中,在前驱体注入步骤和/或施加等离子体步骤中,将所述反应体与来自第一气体源的第一气体经由至少第一气体管线和第二气体管线同时提供至所述工艺腔,所述第一气体管线中的所述第一气体与所述反应体具有第一流量比,所述第二气体管线中的所述第一气体与所述反应体具有第二流量比,所述第一流量比不同于所述第二流量比。
根据本申请的一些实施例,所述第一气体管线可以耦接到所述工艺腔的中心位置, 且所述第二气体管线可以耦接到所述工艺腔的边缘位置。
根据本申请的一些实施例,前驱体注入步骤中的所述第一流量比可以不同于施加等离子体步骤中的所述第一流量比。
根据本申请的一些实施例,前驱体注入步骤中的所述第二流量比可以不同于施加等离子体步骤中的所述第二流量比。
根据本申请的一些实施例,在前驱体注入步骤和/或施加等离子体步骤中,可以进一步经由第三气体管线将所述反应体和所述第一气体提供至所述工艺腔,所述第三气体管线可以耦接到所述工艺腔的所述中心位置与所述边缘位置之间的任一位置。
根据本申请的一些实施例,所述第三气体管线中的所述第一气体与所述反应体可以具有第三流量比,所述第三流量比可以不同于所述第一流量比或所述第二流量比。
根据本申请的一些实施例,所述前驱体包括硅前驱体,所述反应体可以包括氮气,所述第一气体可以包括氢气和氨气中的至少一种,并且所述薄膜为氮化硅薄膜。
根据本申请的一些实施例,当所述第一气体为氢气时,所述第一流量比或所述第二流量比可以为0.025%-0.1%。
根据本申请的一些实施例,当所述第一气体为氨气时,所述第一流量比或所述第二流量比可以为2.5%-50%。
根据本申请的一些实施例,所述方法可以进一步包括吹扫步骤,在所述吹扫步骤中,所述反应体提供至所述工艺腔,而所述第一气体不提供至所述工艺腔。
本申请还提供了一种使用上述薄膜沉积方法的半导体处理装置,所述半导体处理装置具有良好的工艺兼容性,可以满足多种工艺要求的薄膜。
在以下附图及描述中阐述本申请的一或多个实例的细节。其他特征、目标及优势将根据所述描述及附图以及权利要求书而显而易见。
附图说明
本说明书中的公开内容提及且包含以下各图:
图1为现有技术中的薄膜沉积方法的工艺流程图。
图2为现有技术中的另一种薄膜沉积方法的工艺流程图。
图3示出了采用不同的氢气流量获得的薄膜的生长速率。
图4为根据本申请的实施例的薄膜沉积方法的工艺流程图。
图5为根据本申请的另一实施例的薄膜沉积方法的工艺流程图。
图6为根据本申请的又一实施例的薄膜沉积方法的工艺流程图。
图7为根据本申请的实施例的半导体处理装置的结构示意图。
根据惯例,图示中所说明的各种特征可能并非按比例绘制。因此,为了清晰起见,可任意扩大或减小各种特征的尺寸。图示中所说明的各部件的形状仅为示例性形状,并非限定部件的实际形状。另外,为了清楚起见,可简化图示中所说明的实施方案。因此,图示可能并未说明给定设备或装置的全部组件。最后,可贯穿说明书和图示使用相同参考标号来表示相同特征。
具体实施方式
为更好地理解本发明的精神,以下结合本发明的部分实施例对其作进一步说明。
本说明书内使用的词汇“在一实施例”或“根据一实施例”并不必要参照相同具体实施例,且本说明书内使用的“在其他(一些/某些)实施例”或“根据其他(一些/某些)实施例”并不必要参照不同的具体实施例。其目的在于例如主张的主题包括全部或部分范例具体实施例的组合。本文所指“上”和“下”的意义并不限于图式所直接呈现的关系,其应包含具有明确对应关系的描述,例如“左”和“右”,或者是“上”和“下”的相反。本文所称的“耦接”或“连接”应理解为涵盖“直接耦接”、“直接连接”以及“经由一或多个中间部件耦接”、“经由一或多个中间部件连接”。本说明书中所使用的各种部件的名称仅出于说明的目的,并不具备限定作用,不同厂商可使用不同的名称来指代具备相同功能的部件。
以下详细地讨论本申请的各种实施方式。尽管讨论了具体的实施,但是应当理解,这些实施方式仅用于示出的目的。相关领域中的技术人员将认识到,在不偏离本申请的精神和保护范围的情况下,可以使用其他部件和配置。本申请的实施可不必包含说明书所描述的实施例中的所有部件或步骤,也可根据实际应用而调整各步骤的执行顺序。
图1为现有技术中的薄膜沉积方法的工艺流程图。如图1所示,现有技术中的薄膜沉积方法包括多个工艺循环,每个工艺循环包括前驱体注入步骤、施加等离子体步骤和两个吹扫步骤。在前驱体注入步骤中,将前驱体从前驱体源注入工艺腔。在施加等离子体步骤中,将来自反应体源的反应体提供至所述工艺腔并向所述工艺腔施加等离子体以沉积薄膜。在吹扫步骤中,将多余的前驱体或反应副产物从工艺腔除去,以净化工艺腔。在图1所示的薄膜沉积方法中,反应体以恒定的流量不间断地提供至工艺腔,而前驱体仅在前驱体注入步骤提供至工艺腔。反应体可以是氮气(N2)。前驱体可以是双(二乙基氨基)硅烷(SAM.24)、卤族硅烷化合物或多硅卤族化合物等。当制备不同的薄膜(例如,薄膜质量不同)时,通常需要调节工艺步骤,有时甚至需要更换硬件设备,这导致 沉积薄膜的时间成本和工艺成本增加。
图2为现有技术中的另一薄膜沉积方法的工艺流程图。图2所示的薄膜沉积方法与图1所示的薄膜沉积方法的区别之处在于,在每个工艺循环中,除了反应体之外,还将氢气以恒定的流量不间断地提供至工艺腔。在图2所示的薄膜沉积方法中,将氢气提供至工艺腔可以提高薄膜的生长速率(growth per cycle,GPC)。
图3示出了采用不同的氢气流量获得的薄膜的生长速率。如图3所示,当采用图2所示的薄膜沉积方法将氢气以不同的流量不间断地提供至工艺腔时,薄膜的生长速率与氢气的流量成正相关。因此,可以通过增大氢气的流量来提高薄膜的生长速率。
相较于图1所示的薄膜沉积方法,图2所示的薄膜沉积方法可以改善薄膜的生长速率。然而,在施加等离子体步骤中引入氢气会改变薄膜质量,例如,导致湿法蚀刻速率(wet etch rate,WER)增大。因此,图2所示的薄膜沉积方法会同时改变薄膜的生长速率和薄膜质量,而不能单独调控这两者。因此,图1和图2所示的现有技术中的薄膜沉积方法在沉积不同工艺要求的薄膜时仍需经常更换硬件和调节工艺步骤,导致沉积薄膜的时间成本和工艺成本高。
为解决现有技术中的缺陷,本申请提供了改进的薄膜沉积方法来解决上述问题中的至少一者。下面将参照图4至图6详细地描述根据本申请的实施例的薄膜沉积方法。
图4为根据本申请的实施例的薄膜沉积方法的工艺流程图。如图4所示,根据本申请的实施例的薄膜沉积方法包括多个工艺循环,每个工艺循环包括前驱体注入步骤、施加等离子体步骤和两个吹扫步骤。在前驱体注入步骤中,将前驱体从前驱体源注入工艺腔。在施加等离子步骤中,将反应体从反应体源提供至工艺腔并向工艺腔施加等离子体以沉积薄膜。在吹扫步骤中,将多余的前驱体或反应副产物从工艺腔除去,以净化工艺腔。在前驱体注入步骤中,在将前驱体注入工艺腔的同时,将反应体与来自第一气体源的第一气体同时提供至工艺腔;而在前驱体注入步骤与施加等离子体步骤之间的吹扫步骤、施加等离子体步骤、以及施加等离子体步骤与另一循环的前驱体注入步骤之间的吹扫步骤中,第一气体不提供至工艺腔。如图4所示,在每个工艺循环中,第一气体仅在前驱体注入步骤中提供至工艺腔。
前驱体注入步骤、施加等离子体步骤和两个吹扫步骤的持续时间可以根据工艺需求而设置,在此不进行具体限制。
前驱体可以是制备薄膜的任何合适的前驱体。在一些实施例中,前驱体可以是用于沉积氮化硅薄膜的硅前驱体。在一些实施例中,前驱体包括双(二乙基氨基)硅烷(SAM.24)、卤族硅烷化合物或多硅卤族化合物等,其中卤族硅烷化合物的实例包括六 氯二硅烷(HCDS)、单氯硅烷和二氯硅烷(DCS),但不以此为限。前驱体可以根据工艺需求以合适的流量注入工艺腔。
反应体可以是制备薄膜的任何合适的反应体。在一些实施例中,反应体可以是气体。在一些实施例中,反应体可以是制备氮化硅薄膜的反应体。在一些实施例中,反应体包括氮气(N2)。除了与前驱体反应以形成薄膜,反应体还可以在前驱体注入步骤中提供至工艺腔以用作携带前驱体的载气,并且在吹扫步骤中提供至工艺腔以用作净化工艺腔的净化气体。因此,在每个工艺循环中,反应体可以以恒定的流量不间断地提供至工艺腔。在一些实施例中,反应体可以以约10000sccm至约20000sccm的流量提供至工艺腔,例如,约10000sccm、12000sccm、约15000sccm、18000sccm或约20000sccm或以上任意两数值组成的范围,例如约10000sccm至约15000sccm、约12000sccm至约20000sccm或约10000sccm至约18000sccm等。在一些实施例中,反应体可以不连续方式,如只在前驱体注入步骤与施加等离子体步骤中提供至工艺腔。
第一气体可以是改善前驱体吸附的气体。将第一气体引入工艺腔可以增加沉积表面的活性位点,从而改善前驱体的吸附。一些实施例中,第一气体的引入可以增加沉积表面的氮氢键,从而增加活性位点并改善前驱体的吸附。在一些实施例中,第一气体包括氢气(H2)或者氨气(NH3)中的至少一种。在一些实施例中,第一气体是氢气,并且可以以约5sccm至约10sccm的流量提供至工艺腔,例如,约5sccm、约6sccm、约7sccm、约8sccm或约10sccm或以上任意两数值组成的范围,例如约5sccm至约8sccm或约7sccm至约10sccm等。在一些实施例中,第一气体是氨气,并且可以以约500sccm至约5000sccm的流量提供至工艺腔,例如,约500sccm、约1000sccm、约2000sccm、约3000sccm、约4000sccm或约5000sccm或以上任意两数值组成的范围,例如约500sccm至约1000sccm、约500sccm至约3000sccm或约1000sccm至约5000sccm等。
在一些实施例中,当第一气体为氢气时,同时提供至工艺腔的第一气体与反应体的流量比可以是约0.025%至约0.1%,例如,约0.025%、约0.03%、约0.05%、约0.08%或约0.1%或以上任意两数值组成的范围,例如约0.025%至约0.05%或约0.05%至约0.1%等。
在一些实施例中,当第一气体为氨气时,同时提供至工艺腔的第一气体与反应体的流量比可以是约2.5%至约50%,例如,约2.5%、约5%、约10%、约15%、约20%、约25%、约30%、约40%或约50%或以上任意两数值组成的范围,例如约2.5%至约25%、约5%至约25%或约5%至约50%等。
反应体与第一气体可以经由至少一个气体管线提供至工艺腔。在一些实施例中,至 少一个气体管线包括第一气体管线和第二气体管线,第一气体管线耦接到工艺腔的中心位置,第二气体管线耦接到所述工艺腔的边缘位置,第一气体和反应体均流入第一气体管线和第二气体管线,且第一气体管线中的第一气体与所述反应体具有第一流量比,第二气体管线中的第一气体与反应体具有第二流量比,第一流量比不同于第二流量比。在一些实施例中,至少一个气体管线进一步包括第三气体管线,第三气体管线耦接到工艺腔的中心位置与边缘位置之间的任一位置,第一气体和反应体均流入第三气体管线,且第三气体管线中的第一气体与反应体具有第三流量比,第三流量比不同于第一流量比或第二流量比。后面将参照图7详细描述。
由于第一气体仅在前驱体注入步骤提供至工艺腔,因此图4所示的薄膜沉积方法可以通过增大第一气体的流量来提高薄膜的生长速率,而不影响薄膜质量,从而实现单独调控沉积薄膜的生长速率。因此,图4所示的薄膜沉积方法可以调控薄膜的厚度和轮廓,不影响薄膜质量。
图5为根据本申请的另一实施例的薄膜沉积方法的工艺流程图。图5所述的薄膜沉积方法与图4所示的薄膜沉积方法的不同之处在于,在施加等离子体步骤中,将反应体与第一气体同时提供至工艺腔。
如图5所示,根据本申请的实施例的薄膜沉积方法包括多个工艺循环,每个工艺循环包括前驱体注入步骤、施加等离子体步骤和两个吹扫步骤。在前驱体注入步骤中,将前驱体从前驱体源注入工艺腔。在施加等离子步骤中,将反应体从反应体源提供至工艺腔并向工艺腔施加等离子体以沉积薄膜。在吹扫步骤中,将多余的前驱体或反应副产物从工艺腔除去,以净化工艺腔。在施加等离子体步骤中,将反应体与来自第一气体源的第一气体同时提供至工艺腔;而在前驱体注入步骤、前驱体注入步骤和施加等离子体步骤之间的吹扫步骤以及施加等离子体步骤和另一循环的前驱体注入步骤之间的吹扫步骤中,第一气体不提供至工艺腔。如图5所示,在每个工艺循环中,第一气体仅在施加等离子体步骤中提供至工艺腔。图5中的前驱体、反应体和第一气体与图4中的前驱体、反应体和第一气体相同,在此不再赘述。
如图5所示,由于第一气体仅在施加等离子体步骤提供至工艺腔,因此可以通过增大第一气体的流量来改变薄膜质量(例如,增大WER),而不影响薄膜的生长速率,从而实现单独调控薄膜质量。
图6为根据本申请的又一实施例的薄膜沉积方法的工艺流程图。图6所述的薄膜沉积方法与图4所示的薄膜沉积方法的不同之处在于,在前驱体注入步骤和施加等离子体步骤中,将反应体与第一气体同时提供至工艺腔。
如图6所示,根据本申请的实施例的薄膜沉积方法包括多个工艺循环,每个工艺循环包括前驱体注入步骤、施加等离子体步骤和两个吹扫步骤。在前驱体注入步骤中,将前驱体从前驱体源注入工艺腔。在施加等离子步骤中,将反应体提供至工艺腔并向工艺腔施加等离子体以沉积薄膜。在吹扫步骤中,将多余的前驱体或反应副产物从工艺腔除去,以净化工艺腔。在前驱体注入步骤和施加等离子体步骤中,将反应体与来自第一气体源的第一气体同时提供至工艺腔;而在前驱体注入步骤与施加等离子体步骤之间的吹扫步骤以及施加等离子体步骤与另一循环的前驱体注入步骤之间的吹扫步骤中,第一气体不提供至工艺腔。因此,在图6示出的工艺循环中,第一气体在前驱体注入和施加等离子体步骤这两个步骤中提供至工艺腔。图6中的前驱体、反应体和第一气体与图4中的前驱体、反应体和第一气体相同,在此不再赘述。
在前驱体注入步骤中,第一气体以第一流量F1提供至工艺腔,在施加等离子体步骤中,第一气体以第二流量F2提供至工艺腔。在一些实施例中,第一流量F1等于第二流量F2。在一些实施例中,第一流量F1大于或小于第二流量F2。当第一气体为氢气时,第一流量F1和/或第二流量F2可以为约5sccm至约10sccm,例如,约5sccm、约6sccm、约7sccm、约8sccm或约10sccm或以上任意两数值组成的范围,例如约5sccm至约8sccm或约7sccm至约10sccm等。当第一气体为氨气时,第一流量F1和/或第二流量F2可以为约500sccm至约5000sccm,例如,约500sccm、约1000sccm、约2000sccm、约3000sccm、约4000sccm或约5000sccm或以上任意两数值组成的范围,例如约500sccm至约1000sccm、约500sccm至约3000sccm或约1000sccm至约5000sccm等。
在一些实施例中,前驱体注入步骤中的第一气体与反应体的流量比等于施加等离子体步骤中的第一气体与反应体的流量比。在一些实施例中,前驱体注入步骤中的第一气体与反应体的流量比不同于施加等离子体步骤中的第一气体与反应体的流量比。
在一些实施例中,当第一气体为氢气时,前驱体注入步骤和/或施加等离子体步骤中的第一气体与反应体的流量比可以是约0.025%至约0.1%,例如,约0.025%、约0.03%、约0.05%、约0.08%、或约0.1%或以上任意两数值组成的范围,例如约0.025%至约0.05%或约0.05%至约0.1%等。
在一些实施例中,当第一气体为氨气时,前驱体注入步骤和/或施加等离子体步骤中的第一气体与反应体的流量比可以是约2.5%至约50%,例如,约2.5%、约5%、约10%、约15%、约20%、约25%、约30%、约40%或约50%或以上任意两数值组成的范围,例如约2.5%至约25%、约5%至约25%或约5%至约50%等。
如图6所示,第一气体可以以不同的流量(或第一气体与反应体以不同的流量比) 在前驱体注入步骤和施加等离子体步骤中提供至工艺腔,因此可以通过设置不同的第一气体的流量(或不同的第一气体与反应体的流量比)来单独调控沉积薄膜的生长速率和薄膜质量。因此,图6所示的薄膜沉积方法可以单独调控薄膜的轮廓和质量。
分别使用图1至图5中的薄膜沉积方法来沉积薄膜,薄膜的生长速率和湿法蚀刻速率如表1所示。在表1中,对比例1和对比文件2分别使用图1和图2所示的薄膜沉积方法,实施例1至实施例3分别使用图4至图6所示的薄膜沉积方法。在对比例1和对比例2以及实施例1至实施例3中,前驱体为六氯二硅烷(HCDS),反应体为氮气,氮气的流量为10000sccm。在对比例2中,氢气的流量为1sccm。在实施例1至实施例3中,第一气体为氢气,氢气的流量为5sccm(实施例3中的F1等于F2)。
表1薄膜的生长速率和湿法蚀刻速率
根据表1可知,当在仅前驱体注入步骤中引入第一气体时,薄膜的生长速率显著增大,而薄膜质量基本不变;当在仅施加等离子体步骤中引入第一气体时,薄膜的生长速率基本不变,而薄膜质量改变,故可以藉此单独调控薄膜的轮廓和质量;当在前驱体注入步骤和施加等离子体步骤中引入第一气体并增大第一气体的流量时,可以提高薄膜的生长速率并改变薄膜质量。虽然实施例3中的F1等于F2,但是F1与F2也可以不同。在一些实施例中,F2小于F1,可以实现GPC显著增大且WER基本不变。
下面将参照图7详细地描述本申请的薄膜沉积方法在半导体处理装置中的应用。
图7为根据本申请的实施例的半导体处理装置的结构示意图。如图7所示,半导体处理装置10包括工艺腔1以及耦接到工艺腔1的前驱体管线3和多个气体管线4、5和6。前驱体管线3耦接到工艺腔1的中心位置,前驱体经由前驱体管线3进入工艺腔1。第一气体管线4耦接到工艺腔1的中心位置,第二气体管线5耦接到工艺腔1的边缘位置,第三气体管线6耦接到工艺腔1的中心位置与边缘位置之间的任一位置,例如,中心位置与边缘位置之间的1/2或1/4处。来自反应体源的反应体与来自第一气体源的第一气体可以一起流入第一气体管线4、第二气体管线5和第三气体管线6中的至少一者, 以提供至工艺腔1。虽然图7中示出了三个气体管线,但是也可以设置更多或更少个气体管线。
如图7所示,改变第一气体管线4中的第一气体与反应体的流量比可以调控衬底2的第一区域21中的薄膜;改变第二气体管线5中的第一气体与反应体的流量比可以调控衬底2的第二区域22中的薄膜;改变第三气体管线6中的第一气体与反应体的流量比可以调控衬底2的第三区域23中的薄膜。因此,可以通过在各个步骤调控第一气体管线4、第二气体管线5和第三气体管线6中的第一气体与反应体的流量比来调节衬底2的不同区域的薄膜的生长速率和/或薄膜质量,从而改变薄膜的厚度和轮廓。
在一些实施例中,在前驱体注入步骤和/或施加等离子体步骤中,将反应体与第一气体经由第一气体管线4同时提供至工艺腔1。第一气体管线4中的第一气体与反应体具有第一流量比。在一些实施例中,当反应体与第一气体在前驱体注入步骤和施加等离子体步骤中同时提供至工艺腔1时,前驱体注入步骤中的第一流量比可以不同于施加等离子体步骤中的第一流量比。通过调整前驱体注入步骤和/或施加等离子体步骤中的第一流量比,可以实现薄膜的生长速率和/或薄膜质量的调控,进而得到具有不同轮廓和/或薄膜质量的薄膜。
在一些实施例中,在前驱体注入步骤和/或施加等离子体步骤中,将反应体与第一气体经由第一气体管线4和第二气体管线5同时提供至工艺腔1。第一气体管线4中的第一气体与反应体具有第一流量比,第二气体管线5中的第一气体与反应体具有第二流量比。在一些实施例中,第一流量比可以不同于第二流量比。在一些实施例中,前驱体注入步骤中的第一流量比可以不同于施加等离子体步骤中的第一流量比。在一些实施例中,前驱体注入步骤中的第二流量比可以不同于施加等离子体步骤中的第二流量比。通过调整前驱体注入步骤和/或施加等离子体步骤中的第一流量比和第二流量比,可以实现不同区域的薄膜的生长速率和/或薄膜质量的调控,进而得到具有不同轮廓和/或薄膜质量的薄膜。
在一些实施例中,在前驱体注入步骤和/或施加等离子体步骤中,将反应体与第一气体经由第一气体管线4、第二气体管线5和第三气体管线6同时提供至工艺腔1。第一气体管线4中的第一气体与反应体具有第一流量比,第二气体管线5中的第一气体与反应体具有第二流量比,第三气体管线6中的第一气体与反应体具有第三流量比。在一些实施例中,第一流量比可以不同于第二流量比,且第三流量比可以不同于第一流量或第二流量比。在一些实施例中,第一流量比可以不同于第二流量比,且第三流量比可以与第一流量比或第二流量比相同。在一些实施例中,前驱体注入步骤中的第一流量比可以 不同于施加等离子体步骤中的第一流量比。在一些实施例中,前驱体注入步骤中的第二流量比可以不同于施加等离子体步骤中的第二流量比。在一些实施例中,前驱体注入步骤中的第三流量比可以不同于施加等离子体步骤中的第三流量比。通过调整前驱体注入步骤和/或施加等离子体步骤中的第一流量比、第二流量比和第三流量比,可以实现不同区域的薄膜的生长速率和/或薄膜质量的调控,进而得到具有不同轮廓和/或薄膜质量的薄膜。
在一些实施例中,当第一气体为氢气时,第一流量比、第二流量比或第三流量比可以是约0.025%至约0.1%,例如,约0.025%、约0.03%、约0.05%、约0.08%或约0.1%或以上任意两数值组成的范围,例如约0.025%至约0.05%或约0.05%至约0.1%等。
在一些实施例中,当第一气体为氨气时,第一流量比、第二流量比或第三流量比可以是约2.5%至约50%,例如,约2.5%、约5%、约10%、约15%、约20%、约25%、约30%、约40%或约50%或以上任意两数值组成的范围,例如约2.5%至约25%、约5%至约25%或约5%至约50%等。
本说明书中的描述经提供以使所述领域的技术人员能够进行或使用本发明。所属领域的技术人员将易于显而易见对本发明的各种修改,且本说明书中所定义的一般原理可应用于其它变化形式而不会脱离本发明的精神或范围。因此,本发明不限于本说明书所述的实例和设计,而是被赋予与本说明书所揭示的原理和新颖特征一致的最宽范围。

Claims (24)

  1. 一种薄膜沉积方法,其包括:
    将前驱体从前驱体源注入工艺腔;以及
    将反应体从反应体源提供至所述工艺腔并向所述工艺腔施加等离子体以沉积薄膜,
    其中,在前驱体注入步骤和/或施加等离子体步骤中,将所述反应体与来自第一气体源的第一气体同时提供至所述工艺腔,并且在所述前驱体注入步骤和所述施加等离子体步骤之间的吹扫步骤中,所述第一气体不提供至所述工艺腔。
  2. 根据权利要求1所述的薄膜沉积方法,其中所述反应体包括氮气。
  3. 根据权利要求2所述的薄膜沉积方法,其中所述第一气体包括氢气和氨气中的至少一种。
  4. 根据权利要求3所述的薄膜沉积方法,其中当所述第一气体为氢气时,同时提供至所述工艺腔的所述第一气体与所述反应体的流量比为0.025%-0.1%。
  5. 根据权利要求3所述的薄膜沉积方法,其中当所述第一气体为氨气时,同时提供至所述工艺腔的所述第一气体与所述反应体的流量比为2.5%-50%。
  6. 根据权利要求1所述的薄膜沉积方法,其中在所述吹扫步骤中,所述反应体提供至所述工艺腔。
  7. 根据权利要求1所述的薄膜沉积方法,其中所述反应体为气体,并且所述反应体与所述第一气体经由至少一个气体管线提供至所述工艺腔。
  8. 根据权利要求7所述的薄膜沉积方法,其中所述至少一个气体管线包括第一气体管线和第二气体管线,所述第一气体管线耦接到所述工艺腔的中心位置,所述第二气体管线耦接到所述工艺腔的边缘位置。
  9. 根据权利要求8所述的薄膜沉积方法,其中所述第一气体和所述反应体均流入所述第一气体管线和所述第二气体管线,且所述第一气体管线中的所述第一气体与所述反应体具有第一流量比,所述第二气体管线中的所述第一气体与所述反应体具有第二流量比,所述第一流量比不同于所述第二流量比。
  10. 根据权利要求9所述的薄膜沉积方法,其中前驱体注入步骤中的所述第一流量比不同于施加等离子体步骤中的所述第一流量比。
  11. 根据权利要求9所述的薄膜沉积方法,其中前驱体注入步骤中的所述第二流量比不同于施加等离子体步骤中的所述第二流量比。
  12. 根据权利要求9所述的薄膜沉积方法,其中所述至少一个气体管线进一步包括第三气体管线,所述第三气体管线耦接到所述工艺腔的所述中心位置与所述边缘位置之间的任一位置。
  13. 根据权利要求12所述的薄膜沉积方法,其中所述第一气体和所述反应体均流入第三气体管线,且所述第三气体管线中的所述第一气体与所述反应体具有第三流量比,所述第三流量比不同于所述第一流量比或所述第二流量比。
  14. 根据权利要求1至13中任一权利要求所述的薄膜沉积方法,所述前驱体包括硅前驱体,所述反应体包括氮气,并且所述薄膜为氮化硅薄膜。
  15. 一种薄膜沉积方法,其包括:
    将前驱体从前驱体源注入工艺腔;以及
    来自反应体源的反应体提供至所述工艺腔并向所述工艺腔施加等离子体以沉积薄膜,
    其中,在前驱体注入步骤和/或施加等离子体步骤中,将所述反应体与来自第一气体源的第一气体经由至少第一气体管线和第二气体管线同时提供至所述工艺腔,所述第一气体管线中的所述第一气体与所述反应体具有第一流量比,所述第二气体管线中的所述第一气体与所述反应体具有第二流量比,所述第一流量比不同于所述第二流量比。
  16. 根据权利要求15所述的薄膜沉积方法,其中所述第一气体管线耦接到所述工艺腔的中心位置,且所述第二气体管线耦接到所述工艺腔的边缘位置。
  17. 根据权利要求16所述的薄膜沉积方法,其中前驱体注入步骤中的所述第一流量比不同于施加等离子体步骤中的所述第一流量比。
  18. 根据权利要求16所述的薄膜沉积方法,其中前驱体注入步骤中的所述第二流量比不同于施加等离子体步骤中的所述第二流量比。
  19. 根据权利要求15所述的薄膜沉积方法,其中在前驱体注入步骤和/或施加等离子体步骤中,进一步经由第三气体管线将所述反应体和所述第一气体提供至所述工艺腔,所述第三气体管线耦接到所述工艺腔的所述中心位置与所述边缘位置之间的任一位置。
  20. 根据权利要求19所述的薄膜沉积方法,其中所述第三气体管线中的所述第一气体与所述反应体具有第三流量比,所述第三流量比不同于所述第一流量比或所述第二流量比。
  21. 根据权利要求15所述的薄膜沉积方法,其中所述前驱体包括硅前驱体,所述反应体包括氮气,所述第一气体包括氢气和氨气中的至少一种,并且所述薄膜为氮化硅薄膜。
  22. 根据权利要求21所述的薄膜沉积方法,其中当所述第一气体为氢气时,所述第一流量比或所述第二流量比为0.025%-0.1%。
  23. 根据权利要求21所述的薄膜沉积方法,其中当所述第一气体为氨气时,所述第一流量比或所述第二流量比为2.5%-50%。
  24. 根据权利要求15所述的薄膜沉积方法,其中所述方法进一步包括吹扫步骤,在所述吹扫步骤中,所述反应体提供至所述工艺腔,而所述第一气体不提供至所述工艺腔。
PCT/CN2023/132347 2022-11-30 2023-11-17 一种薄膜沉积方法 WO2024114415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211525793.X 2022-11-30
CN202211525793.XA CN115976492A (zh) 2022-11-30 2022-11-30 一种薄膜沉积方法

Publications (1)

Publication Number Publication Date
WO2024114415A1 true WO2024114415A1 (zh) 2024-06-06

Family

ID=85968956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132347 WO2024114415A1 (zh) 2022-11-30 2023-11-17 一种薄膜沉积方法

Country Status (3)

Country Link
CN (1) CN115976492A (zh)
TW (1) TW202424255A (zh)
WO (1) WO2024114415A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115976492A (zh) * 2022-11-30 2023-04-18 拓荆科技股份有限公司 一种薄膜沉积方法
CN117328035A (zh) * 2023-10-31 2024-01-02 拓荆科技(上海)有限公司 TiAlC薄膜的制备方法、制备装置及NMOS器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170241019A1 (en) * 2016-02-22 2017-08-24 Ultratech, Inc. Pe-ald methods with reduced quartz-based contamination
CN107148661A (zh) * 2014-10-17 2017-09-08 朗姆研究公司 包括用于可调气流控制的气体分流器的气体供应输送装置
CN111364017A (zh) * 2020-04-20 2020-07-03 国家纳米科学中心 一种氮化铝薄膜及其制备方法和用途
CN113308683A (zh) * 2020-02-10 2021-08-27 Spts科技有限公司 Pe-cvd设备及方法
CN114207184A (zh) * 2019-08-06 2022-03-18 朗姆研究公司 含硅膜的热原子层沉积
CN115261821A (zh) * 2022-08-08 2022-11-01 中国科学院上海高等研究院 一种氢化ald薄膜的方法
CN115976492A (zh) * 2022-11-30 2023-04-18 拓荆科技股份有限公司 一种薄膜沉积方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125074B1 (ko) * 2015-08-31 2020-06-19 주식회사 원익아이피에스 질화막의 제조방법
WO2018016871A1 (ko) * 2016-07-22 2018-01-25 (주)디엔에프 플라즈마 원자층 증착법을 이용한 실리콘 질화 박막의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148661A (zh) * 2014-10-17 2017-09-08 朗姆研究公司 包括用于可调气流控制的气体分流器的气体供应输送装置
US20170241019A1 (en) * 2016-02-22 2017-08-24 Ultratech, Inc. Pe-ald methods with reduced quartz-based contamination
CN114207184A (zh) * 2019-08-06 2022-03-18 朗姆研究公司 含硅膜的热原子层沉积
CN113308683A (zh) * 2020-02-10 2021-08-27 Spts科技有限公司 Pe-cvd设备及方法
CN111364017A (zh) * 2020-04-20 2020-07-03 国家纳米科学中心 一种氮化铝薄膜及其制备方法和用途
CN115261821A (zh) * 2022-08-08 2022-11-01 中国科学院上海高等研究院 一种氢化ald薄膜的方法
CN115976492A (zh) * 2022-11-30 2023-04-18 拓荆科技股份有限公司 一种薄膜沉积方法

Also Published As

Publication number Publication date
TW202424255A (zh) 2024-06-16
CN115976492A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2024114415A1 (zh) 一种薄膜沉积方法
US6815350B2 (en) Method for forming a thin film using an atomic layer deposition (ALD) process
US20190066997A1 (en) Layer forming method and apparatus
JP3265042B2 (ja) 成膜方法
US20180082838A1 (en) Atomic layer deposition of silicon carbon nitride based materials
US7067438B2 (en) Atomic layer deposition method of forming an oxide comprising layer on a substrate
US6528430B2 (en) Method of forming silicon containing thin films by atomic layer deposition utilizing Si2C16 and NH3
US20230090196A1 (en) Methods For Atomic Layer Deposition Of SiCO(N) Using Halogenated Silylamides
US8357430B2 (en) Method for producing silicon nitride films
US20070134433A1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
US20030215570A1 (en) Deposition of silicon nitride
KR20090016403A (ko) 실리콘 산화막 증착 방법
JP2003517731A (ja) 原子層堆積中の寄生化学気相成長を最小限に抑える装置と方法
JP2005317980A5 (zh)
JP2009500857A (ja) シリコン含有膜の堆積方法
TW201900919A (zh) 矽氮化膜之成膜方法及成膜裝置
TWI688060B (zh) 半導體裝置之製造方法、基板處理裝置及記錄媒體
CN110468388A (zh) 原子层沉积法形成氮化物膜的方法
JP6637095B2 (ja) セラミック薄膜の低温堆積方法
CN101122014A (zh) 组份渐变的介质薄膜的形成方法
CN106783543A (zh) 无定形硅的沉积方法和3d‑nand闪存的制作方法
WO2022077986A1 (zh) 半导体结构的制备工艺及半导体结构
US20200075325A1 (en) Film forming method
US20060198958A1 (en) Methods for producing silicon nitride films by vapor-phase growth
CN111876749A (zh) 改善炉管工艺中硅片薄膜厚度差异的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896567

Country of ref document: EP

Kind code of ref document: A1