WO2024114232A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2024114232A1
WO2024114232A1 PCT/CN2023/127936 CN2023127936W WO2024114232A1 WO 2024114232 A1 WO2024114232 A1 WO 2024114232A1 CN 2023127936 W CN2023127936 W CN 2023127936W WO 2024114232 A1 WO2024114232 A1 WO 2024114232A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
access network
data
terminal
time domain
Prior art date
Application number
PCT/CN2023/127936
Other languages
English (en)
French (fr)
Inventor
顾志方
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024114232A1 publication Critical patent/WO2024114232A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communications, and in particular to a communication method, device and system.
  • multiple access network devices can send signals carrying the same data to a terminal at the same or similar times, which is called multi-station cooperative transmission.
  • the terminal can superimpose and combine the received signals, thereby improving the signal-to-noise ratio of the terminal's received signal and improving communication reliability and capacity.
  • the multicast-multicast service center can act as a control anchor point to copy and distribute the data to multiple evolved Node Bs (eNodeBs, eNBs) through the MBMS gateway, so that multiple eNBs can send these data to the user equipment (UE) at the same time, thereby realizing multi-station collaborative transmission.
  • eNodeBs evolved Node Bs
  • UE user equipment
  • BM-SC cannot guarantee that multiple eNBs can send data to UE at the same time, which affects the transmission efficiency of multi-station collaboration.
  • Embodiments of the present application provide a communication method, device, and system to prevent the transmission efficiency of multi-station collaboration from being affected due to transmission asynchrony.
  • a communication method comprising: a first access network device sends data of a service of a terminal to a second access network device, and receives feedback information from the second access network device.
  • the feedback information is used to determine that the first data has been successfully received by the second access network device, and the first data is at least part of the data of the service.
  • the first access network device sends the first data to the terminal on a first time domain resource.
  • the first time domain resource is also used by the second access network device to send the first data to the terminal.
  • the first access network device as a control anchor point for multi-station collaborative transmission, can determine that it has successfully received at least part of the data, such as the first data, through the feedback of the second access network device after diverting the data of the terminal's service to the second access network device.
  • the first access network device and the second access network device both obtain the same first data, so that the first data can be sent to the terminal in the same time domain resources, so as to avoid affecting the transmission efficiency of multi-station collaboration due to asynchronous transmission.
  • the feedback information includes a first identifier of the first data, and/or a second identifier of the second data in the service data that the second access network device has not successfully received, and the second data is different from the first data.
  • the method described in the first aspect may also include: the first access network device determines that the first data has been successfully received by the second access network device based on the first identifier and/or the second identifier. That is, in the case where the second access network device only feeds back the identifier of the data, the first access network device can also determine which data has been successfully received, thereby reducing the overhead of the feedback information.
  • the second identifier is a serial number of the second data
  • the serial number of the second data is used to characterize the sending order of the second data.
  • the first access network device determines, based on the second identifier, that the first data has been successfully received by the second access network device, including: the first access network device determines, based on the serial number of the second data, the data sent before the second data.
  • the data sent before the second data is the first data that has been successfully received by the second access network device.
  • the first access network device can send service data in a certain order, even if the second access network device only feeds back the serial number of the data that has not been successfully received, the first access network device can determine which data has been successfully received by the second access network device based on the sending order, so as to further reduce the overhead of feedback information and improve communication efficiency.
  • the method according to the first aspect may further include: the first access network device determines, according to the first identifier and/or the second identifier, The second data is determined not to be successfully received by the second access network device; the first access network device sends the second data to the terminal on the second time domain resource.
  • the second time domain resource is a time domain resource different from the first time domain resource. That is to say, when the second access network device fails to successfully receive certain data, the first access network device needs to adjust the data to independent transmission in a timely manner to avoid the terminal failing to successfully receive the data due to different data sent on the same time domain resource.
  • the method described in the first aspect may also include: the first access network device determines that the data volume of the first data has reached a data volume threshold.
  • the data volume threshold is the data volume that triggers the first access network device and the second access network device to send data on the same time domain resource, so as to avoid an increase in transmission overhead due to too little data being sent at a single time.
  • the first access network device determines that the time duration for which the first access network device stores the first data has reached a first threshold time duration.
  • the first threshold time duration is the time duration for which the first data remains valid on the first access network device. That is, the first access network device needs to send the first data before the first data becomes invalid, so that the terminal's service is affected due to the data failure.
  • the method described in the first aspect may also include: the first access network device sends a first indication message to the terminal, and receives a channel measurement result from the terminal.
  • the first indication message is used to trigger the terminal to measure the channel.
  • the channel is the channel between the first access network device and the terminal, and the channel between the second access network device and the terminal.
  • the channel measurement result is used to characterize the state of the channel.
  • the first access network device sends the first data to the terminal on the first time domain resource, including: the first access network device determines to send the first data to the terminal on the first time domain resource according to the state of the channel to ensure that the transmission between the first access network device and the terminal matches the channel state, thereby improving communication efficiency.
  • the method described in the first aspect may further include: the first access network device sends second indication information to the terminal, wherein the second indication information is used to instruct the terminal to suspend measuring the channel.
  • the first access network device may send the second indication information to the terminal to avoid unnecessary overhead caused by the terminal continuing to perform redundant channel measurements.
  • the method described in the first aspect may further include: the first access network device sends third indication information to the second access network device.
  • the third indication information is used to indicate that the second access network device needs to send a reference signal to the terminal, and the reference signal is used by the terminal to measure the channel. In this way, the failure of the channel measurement caused by the second access network device not sending the reference signal can be avoided.
  • the method described in the first aspect may also include: the first access network device sends fourth indication information to the second access network device, wherein the fourth indication information is used to instruct the second access network device to suspend sending the reference signal. For example, if the first access network device and the second access network device do not need to send data on the same time domain resource, the first access network device may send the fourth indication information to the second access network device to avoid unnecessary overhead caused by the second access network device continuing to send redundant reference signals.
  • the method described in the first aspect may also include: the first access network device sends fifth indication information to the second access network device, wherein the fifth indication information is used to trigger the second access network device to send data on the same time domain resource as the first access network device.
  • the second access network device performs multi-station cooperative transmission can be indicated by the first access network device to implement on-demand execution of multi-station cooperative transmission.
  • the method described in the first aspect may also include: the first access network device sends sixth indication information to the second access network device, wherein the sixth indication information is used to trigger the second access network device to suspend sending data on the same time domain resource as the first access network device.
  • the first access network device may send the sixth indication information to the second access network device to avoid unnecessary overhead caused by the second access network device continuing to send redundant data.
  • the method described in the first aspect further includes: the first access network device obtains the data of the service, thereby determining that the data of the service is data that the first access network device and the second access network device need to send on the same time domain resources.
  • whether to adopt multi-station collaborative transmission can be determined by the first access network device according to the type of service to ensure that the service requirements are met.
  • a communication method comprising: a second access network device receives first data, and sends feedback information to the first access network device based on the first data, wherein the first data is at least part of the data of the service of the terminal, the service data is the data sent by the first access network device to the second access network device, and the feedback information is used to determine that the first data has been successfully received by the second access network device.
  • the second access network device sends the first data to the terminal on the first time domain resource.
  • the first time domain resource is also used by the first access network device to send the first data to the terminal.
  • the feedback information may include a first identifier of the first data and/or a second identifier of second data in the service data that is not successfully received by the second access network device, and the second data is different from the first data.
  • the sequence number of the first data is used to characterize the order in which the first data is sent.
  • the method described in the second aspect may also include: the second access network device determines, based on the sequence number of the first data, that the data that has not been successfully received within the transmission duration after receiving the first data is the second data.
  • the transmission duration may be the duration allowed for data transmission between the first access network device and the second access network device. If the data that should be received at a certain time is still not received within the transmission duration after the time, it indicates that the data is not being transmitted, but packet loss has occurred. That is, by setting the transmission duration, the second access network device can accurately determine which data has not been successfully received because it is still being transmitted, and which data has not been successfully received due to packet loss, thereby avoiding misjudgment.
  • the method described in the second aspect may also include: the second access network device determines that the data volume of the first data has reached a data volume threshold, wherein the data volume threshold is the data volume that triggers the first access network device and the second access network device to send data on the same time domain resource. And/or, the second access network device determines that the duration for which the second access network device stores the first data has reached a second threshold duration, wherein the second threshold duration is the duration for which the first data remains valid on the second access network device.
  • the method described in the second aspect may also include: the second access network device receives third indication information from the first access network device, and sends a reference signal according to the third indication information.
  • the third indication information is used to indicate that the second access network device needs to send a reference signal.
  • the reference signal is used by the terminal to measure the channel.
  • the channel is a channel between the first access network device and the terminal, and a channel between the second access network device and the terminal.
  • the method described in the second aspect may further include: the second access network device receives fourth indication information from the first access network device.
  • the fourth indication information is used to instruct the second access network device to suspend sending the reference signal.
  • the method described in the second aspect may further include: the second access network device receives fifth indication information from the first access network device.
  • the fifth indication information is used to trigger the second access network device to send data on the same time domain resource as the first access network device.
  • the method described in the second aspect may further include: the second access network device receives sixth indication information from the first access network device.
  • the sixth indication information is used to trigger the second access network device to suspend sending data on the same time domain resource as the first access network device.
  • a communication method comprising: a first access network device sends data of a terminal service to a second access network device.
  • the second access network device receives the first data and sends feedback information to the first access network device based on the first data.
  • the first access network device receives feedback information from the second access network device.
  • the feedback information is used to determine that the first data has been successfully received by the second access network device, and the first data is at least part of the service data. In this way, the first access network device sends the first data to the terminal on the first time domain resource, and the second access network device sends the first data to the terminal on the first time domain resource.
  • the feedback information includes a first identifier of the first data and/or a second identifier of second data in the service data that is not successfully received by the second access network device, and the second data is different from the first data.
  • the method described in the third aspect may further include: the first access network device determines, based on the first identifier and/or the second identifier, that the first data has been successfully received by the second access network device.
  • the second identifier is a serial number of the second data
  • the serial number of the second data is used to represent a sending order of the second data.
  • the first access network device determines, based on the second identifier, that the first data has been successfully received by the second access network device, including: the first access network device determines, based on the sequence number of the second data, data sent before the second data, wherein the data sent before the second data is the first data that has been successfully received by the second access network device.
  • the method described in the third aspect may also include: the first access network device determines, based on the first identifier and/or the second identifier, that the second data is not successfully received by the second access network device; and the first access network device sends the second data to the terminal on the second time domain resource.
  • the second time domain resource is a time domain resource different from the first time domain resource.
  • the sequence number of the service data is used to characterize the order in which the service data is sent.
  • the method described in the third aspect may also include: the second access network device determines, based on the sequence number of the service data, that data that is not successfully received within the transmission time after receiving the first data is the second data.
  • the method described in the third aspect may also include: the first access network device determines that the data volume of the first data has reached a data volume threshold.
  • the data volume threshold is the data volume that triggers the first access network device and the second access network device to send data on the same time domain resource.
  • the first access network device determines that the duration for which the first access network device stores the first data has reached a first threshold duration.
  • the first threshold duration is the duration for which the first data remains valid on the first access network device.
  • the method described in the third aspect may also include: the second access network device determines that the data volume of the first data has reached a data volume threshold, wherein the data volume threshold is the data volume that triggers the first access network device and the second access network device to send data on the same time domain resource. And/or, the second access network device determines that the duration for which the second access network device stores the first data has reached a second threshold duration, wherein the second threshold duration is the duration for which the first data remains valid on the second access network device.
  • the method described in the third aspect may also include: the first access network device sends a first indication message to the terminal, and receives a channel measurement result from the terminal.
  • the first indication message is used to trigger the terminal to measure the channel.
  • the channel is the channel between the first access network device and the terminal, and the channel between the second access network device and the terminal.
  • the channel measurement result is used to characterize the state of the channel. Accordingly, the first access network device sends the first data to the terminal on the first time domain resource, including: the first access network device determines to send the first data to the terminal on the first time domain resource according to the state of the channel.
  • the method described in the third aspect may also include: the first access network device sends second indication information to the terminal, wherein the second indication information is used to instruct the terminal to suspend measuring the channel.
  • the method described in the third aspect may also include: the first access network device sends third indication information to the second access network device.
  • the second access network device receives the third indication information from the first access network device, and sends a reference signal according to the third indication information.
  • the third indication information is used to indicate that the second access network device needs to send a reference signal to the terminal, and the reference signal is used by the terminal to measure the channel.
  • the method described in the third aspect may also include: the first access network device sends fourth indication information to the second access network device, and the second access network device receives the fourth indication information from the first access network device.
  • the fourth indication information is used to instruct the second access network device to suspend sending the reference signal.
  • the method described in the third aspect may further include: the first access network device sends fifth indication information to the second access network device, and the first access network device sends the fifth indication information to the second access network device.
  • the fifth indication information is used to trigger the second access network device and the first access network device to send data on the same time domain resource.
  • the method described in the third aspect may also include: the first access network device sends sixth indication information to the second access network device, and the second access network device receives the sixth indication information from the first access network device.
  • the sixth indication information is used to trigger the second access network device to suspend sending data on the same time domain resource as the first access network device. according to.
  • the method described in the third aspect also includes: the first access network device obtains the service data, thereby determining that the service data is the data that the first access network device and the second access network device need to send on the same time domain resources.
  • a communication device in a fourth aspect, includes: a module for executing the method described in the first aspect, such as a transceiver module and a processing module.
  • a module for executing the method described in the first aspect such as a transceiver module and a processing module.
  • the transceiver module is used to indicate the transceiver function of the communication device
  • the processing module is used to execute functions of the communication device other than the transceiver function.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the fourth aspect, and the receiving module is used to implement the receiving function of the communication device described in the fourth aspect.
  • the communication device described in the fourth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the method described in the first aspect.
  • the communication device described in the fourth aspect can be a network device, such as a first access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • a communication device in a fifth aspect, includes: a module for executing the method described in the second aspect, such as a transceiver module and a processing module.
  • a module for executing the method described in the second aspect such as a transceiver module and a processing module.
  • the transceiver module is used to indicate the transceiver function of the communication device
  • the processing module is used to execute functions of the communication device other than the transceiver function.
  • the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the fifth aspect, and the receiving module is used to implement the receiving function of the communication device described in the fifth aspect.
  • the communication device described in the fifth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
  • the processing module executes the program or the instruction
  • the communication device may execute the method described in the second aspect.
  • the communication device described in the fifth aspect can be a network device, such as a second access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • a network device such as a second access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • a communication device including: a processor, the processor being configured to execute the method described in any possible implementation manner of the first aspect or the second aspect.
  • the communication device described in the sixth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the sixth aspect to communicate with other communication devices.
  • the communication device described in the sixth aspect may also include a memory.
  • the memory may be integrated with the processor or may be separately provided.
  • the memory may be used to store the computer program and/or data involved in the method described in any one of the first aspect or the second aspect.
  • the communication device described in the sixth aspect may be the network device described in any one of the first aspect or the second aspect, or a chip (system) or other parts or components that may be arranged in the network device, or a device including the network device.
  • the technical effects of the communication device described in the sixth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a communication device comprising: a processor, the processor being coupled to a memory, the processor being configured to execute a computer program stored in the memory, so that the communication device executes the method described in any possible implementation manner in the first aspect or the second aspect.
  • the communication device described in the seventh aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the seventh aspect to communicate with other communication devices.
  • the communication device described in the seventh aspect may be the network device described in any one of the first aspect or the second aspect, or a chip (system) or other parts or components that may be arranged in the network device, or a device including the network device.
  • the technical effects of the communication device described in the seventh aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a communication device comprising: a processor and a memory; the memory is used to store a computer program, and when the processor executes the computer program, the communication device executes the method described in any one of the implementation methods of the first aspect or the second aspect.
  • the communication device described in the eighth aspect may further include a transceiver.
  • the transceiver may be a transceiver circuit or an interface circuit.
  • the transceiver may be used for the communication device described in the eighth aspect to communicate with other communication devices.
  • the communication device described in the eighth aspect may be the network device described in any one of the first aspect or the second aspect, or a chip (system) or other parts or components that may be arranged in the network device, or a device including the network device.
  • the technical effects of the communication device described in the eighth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a chip comprising: a processor, the processor being used to execute a computer program or instruction stored in a memory, so that the chip executes the method described in any one of the implementation modes of the first aspect or the second aspect.
  • the chip described in the ninth aspect may further include an input/output interface.
  • the input/output interface may be used for communication of the chip described in the ninth aspect.
  • the chip described in the ninth aspect may also include a memory.
  • the memory may be integrated with the processor or may be separately provided.
  • the memory may be used to store the computer program and/or data involved in the method described in any one of the first aspect or the second aspect.
  • the technical effects of the communication device described in the ninth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
  • a communication system in a tenth aspect, includes: a first access network device and a second access network device.
  • the first access network device is used to execute the method described in the first aspect
  • the second access network device is used to execute the method described in the second aspect.
  • a computer-readable storage medium comprising: a computer program or instructions; when the computer program or instructions are executed on a computer, the computer executes the method described in any possible implementation manner in the first aspect or the second aspect.
  • a computer program product comprising a computer program or instructions, which, when executed on a computer, enables the computer to execute the method described in any possible implementation of the first aspect or the second aspect.
  • FIG1 is a schematic diagram of the architecture of a 4G system
  • Figure 2 is a schematic diagram of the architecture of 4G MBMS
  • Figure 3 is a schematic diagram of a scenario of multi-station collaborative transmission based on 4G MBMS
  • FIG4 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG5 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG6 is a first structural diagram of a communication device provided in an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • FIG1 is a schematic diagram of the architecture of a 4G system.
  • the 4G system or evolved packet system includes: a terminal, an evolved universal mobile telecommunications system (UMTS) terrestrial radio access network (Evolved UMTS territorial radio access network, E-UTRAN) equipment, a mobile Network elements or devices include mobility management entity (MME), serving gateway (SGW), packet data network (PDN) gateway (PGW), service capability exposure function (SCEF) network element and home subscriber server (HSS).
  • MME mobility management entity
  • SGW serving gateway
  • SCEF service capability exposure function
  • HSS home subscriber server
  • the terminal may be a terminal with transceiver functions, or a chip or chip system that can be set in the terminal.
  • the terminal may also be called user equipment (UE), access terminal, subscriber unit, user station, mobile station (MS), mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • MS mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device.
  • the terminal in the embodiments of the present application can be a mobile phone, a cellular phone, a smart phone, a tablet computer, a wireless data card, a personal digital assistant (PDA), a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle-mounted terminal, a road side unit (RSU) with terminal function, etc.
  • the terminal of the present application may also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit built into the vehicle as one or more components or units.
  • the terminal accesses the E-UTRAN device through LTE-Uu.
  • the E-UTRAN device can be an evolved Node B (eNodeB, eNB) or a next generation eNB (next generation-eNB, ng-eNB).
  • the E-UTRAN device is mainly used to provide network access functions for terminals in specific areas, such as the network signal coverage area of the E-UTRAN device, so that the above terminals can access and attach to the 4G network through the E-UTRAN device.
  • the E-UTRAN device communicates with the MME through S1-MME, and communicates with the SGW through S1-U.
  • the MME network element is mainly responsible for mobility management, bearer management, user authentication, SGW selection and other functions.
  • MME communicates with HSS through S6a
  • MME communicates with SGW through S11
  • MME communicates with SCEF network element through T8
  • SCEF network element communicates with server
  • SGSN communicates with MME through S3
  • SGSN communicates with SGW through S4
  • SGW communicates with PGW through S5, and PGW accesses the server through SGi.
  • the 4G system may also include UTRAN/global system for mobile communication (GSM) or enhanced data rate for GSM evolution (EDGE) radio access network (GSM/EDGE radio access network, GERAN) equipment of the second generation (2G)/third generation (3G) system and serving GPRS support node (SGSN), which participate in the inter-system mobility of the terminal between the 4G system and the 2G/3G system, including idle state mobility and connected state switching, which are uniformly explained here and will not be repeated below.
  • GSM global system for mobile communication
  • EDGE enhanced data rate for GSM evolution
  • GERAN enhanced data rate for GSM evolution
  • SGSN serving GPRS support node
  • the terminal When the terminal accesses from the 2G/3G system, the terminal communicates with the SGSN through the UTRAN/GERAN equipment, the UTRAN/GERAN equipment communicates with the SGW through S12, the SGSN communicates with the MME through S3, and the SGSN communicates with the SGW through S4.
  • the 4G system shown in Figure 1 may also include other network elements, such as a policy and charging rules function (PCRF) network element in the 4G system, etc., which is not specifically limited in the embodiments of the present application.
  • PCRF policy and charging rules function
  • the 4G MBMS architecture includes a terminal, access network equipment, user plane network elements, a broadcast-multicast service centre (BM-SC) and an application function (AF).
  • the BM-SC is used to authorize the MBMS bearer service.
  • the network side authorizes the terminal for the MBS service through the user plane.
  • the terminal sends a request message to the user plane network element through the 4G wireless access network equipment, and the request message is used to request to obtain the data of a certain MBS service.
  • the user plane network element After receiving the request message, the user plane network element sends an authorization request to the BM-SC, and the authorization request is used to request authorization for the terminal to obtain the data of the MBS service.
  • the BM-SC After determining whether to authorize the terminal to use the MBS service, the BM-SC returns the authorization result to the user plane network element, and the authorization result includes authorization success or authorization failure.
  • the user plane network element creates or activates a bearer for transmitting MBS data.
  • Multi-station cooperative transmission can be understood as multiple access network devices sending signals carrying the same data to the terminal at the same or similar time. At this time, the terminal can superimpose and combine the received signals, thereby improving the signal-to-noise ratio of the terminal's received signal and improving communication reliability and capacity.
  • BM-SC can serve as a control anchor point for multi-station cooperative transmission and process the data through multicast broadcast single frequency network (MBSFN) technology.
  • MBSFN multicast broadcast single frequency network
  • BM-SC can add a SYNC header carrying timestamp information to the downlink data packet through the synchronization (SYNC) protocol function of the protocol stack to indicate when the eNB needs to send the downlink data packet to the UE.
  • SYNC synchronization
  • the MBMS gateway can copy and distribute the downlink data packets processed by BM-SC to multiple eNBs so that multiple eNBs (such as eNB1 and eNB2) can send these downlink data packets to the UE at the same time to achieve multi-station cooperative transmission.
  • eNBs such as eNB1 and eNB2
  • BM-SC cannot guarantee that multiple eNBs can send data to UE at the same time, which affects the transmission efficiency of multi-station collaboration. For example, if the air interface transmission time indicated by the timestamp information preset by BM-SC is short to the current time, the eNB may not receive the data packet to be collaboratively transmitted at the transmission time indicated by the timestamp information due to link congestion with BM-SC, that is, packet loss occurs, resulting in the inability to complete collaborative transmission and reduced transmission efficiency.
  • the embodiments of the present application propose the following technical solutions to improve the transmission efficiency under multi-station collaborative transmission.
  • Wi-Fi wireless network
  • V2X vehicle to everything
  • D2D device-to-device
  • Internet of Vehicles communication systems fourth generation (4G) mobile communication systems, such as long term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems
  • 5G systems such as new radio (NR) systems, and future communication systems.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • Figure 4 is a schematic diagram of the architecture of a communication system applicable to the communication method provided in the embodiments of the present application.
  • the communication system may include: a terminal, and at least two access network devices.
  • the access network equipment may also be referred to as the radio access network (RAN) equipment.
  • the RAN equipment may be equipment that provides access for the terminal device.
  • the RAN equipment may include: the access network equipment of the next generation mobile communication system, such as 6G, such as a 6G base station, or in the next generation mobile communication system, the network equipment may also have other naming methods, which are all included in the protection scope of the embodiments of the present application, and the present application does not impose any restrictions on this.
  • the RAN equipment may also include 5G, such as the gNB in the new radio (NR) system, or one or a group of (including multiple antenna panels) antenna panels of the base station in 5G, or it may also be a gNB, a transmission point (transmission and reception point, TRP or
  • the RAN equipment may include a network node with a transmission point (TP) or a transmission measurement function (TMF), such as a building base band unit (BBU), a centralized unit (CU) or a distributed unit (DU), an RSU with a base station function, or a wired access gateway, or a 5G core network.
  • TP transmission point
  • TMF transmission measurement function
  • BBU building base band unit
  • CU centralized unit
  • DU distributed unit
  • RSU with a base station function
  • wired access gateway or a 5G core network.
  • the RAN equipment may also include an access point (AP) in a wireless fidelity (WiFi) system, a wireless relay node, a wireless backhaul node, various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, vehicle-mounted devices, and the like.
  • AP access point
  • WiFi wireless fidelity
  • a wireless relay node a wireless backhaul node
  • various forms of macro base stations such as a Wi-Fi
  • micro base stations also called small stations
  • relay stations such as access points, wearable devices, vehicle-mounted devices, and the like.
  • the first access network device as the control anchor point of multi-station cooperative transmission, can determine that it has successfully received at least part of the data, such as the first data, through the feedback of the second access network device after diverting the data of the terminal's service to the second access network device.
  • the first access network device and the second access network device both obtain the same first data, so that the first data can be sent to the terminal in the same time domain resources, so as to avoid affecting the transmission efficiency of multi-station cooperation due to asynchronous transmission.
  • Fig. 5 is a flow chart of a communication method provided in an embodiment of the present application.
  • the communication method is applicable to the above communication system, and involves interaction between a terminal, a first access network device, and a second access network device.
  • the process of the communication method is as follows:
  • a first access network device sends data of a service of a terminal to a second access network device.
  • the second access network device receives the first data.
  • the service of the terminal may be any possible service, such as video service, audio service, etc.
  • the data of the service may come from a network.
  • the network may be a home network of the terminal, such as a home public land mobile network (HPLMN), or a visited network, such as a visited public land mobile network (VPLMN), without limitation.
  • the first access network device may obtain the data of the service in advance, such as receiving data from the core network through a user plane function (UPF) network element in the network.
  • UPF user plane function
  • the first access network device can determine whether the data of the service is data that needs to be transmitted in a collaborative manner, that is, whether the data of the service is data that the first access network device and the second access network device need to send on the same time domain resources.
  • whether to adopt multi-station collaborative transmission can be determined by the first access network device according to the type of service to ensure that the service requirements are met.
  • the first access network device can determine whether the service is a service that needs to be transmitted in a collaborative manner based on the identifiers of the bearers at different levels in the protocol stack, thereby determining whether the data of the service is data that needs to be transmitted in a collaborative manner.
  • Protocol stack For example, an example of a protocol stack may be shown in Table 1 below.
  • the first access network device can use a certain protocol layer as a diversion point to determine whether the data of the service requires collaborative transmission.
  • the first access network device can first process the data of the service through a protocol at a higher layer than the diversion point, but it cannot determine whether the data of the service requires collaborative transmission until it processes the protocol corresponding to the diversion point, and then it can determine whether the data of the service requires collaborative transmission.
  • the first access network device can determine the type of the service based on the identifier of the data bearer of the RLC layer of the data of the above service, or the identifier of the logical channel of the MAC layer, thereby determining whether the service is a service that requires collaborative transmission.
  • the first access network device can also use the SDAP layer or the PDCP layer as a diversion point.
  • the specific implementation can refer to the RLC layer or the MAC layer, and will not be repeated.
  • the data of the service usually needs to be transmitted independently.
  • the first access network device may cache the data of the service in a first buffer.
  • the first buffer may be used to cache data that needs to be transmitted independently. Thereafter, at an appropriate transmission time, the first access network device may not need the second access network device.
  • the data of the service is directly obtained from the first buffer and sent to the terminal.
  • control signaling generated or received by the first access network device such as MAC control element (MAC control element, MAC CE), radio resource control (radio resource control, RRC) signaling, PDCP control protocol data unit (packet data unit, PDU), RLC control PDU, etc.
  • MAC control element MAC control element
  • RRC radio resource control
  • PDCP control protocol data unit packet data unit, PDU
  • RLC control PDU etc.
  • the data of the service usually requires collaborative transmission.
  • the first access network device may cache the data of the service in a second buffer, wherein the second buffer may be used to cache data that needs to be transmitted in a collaborative manner.
  • the first access network device using a cache to achieve independent transmission and collaborative transmission is only an example and is not limited.
  • the first access network device can also set up two sets of threads, one set of threads for independent transmission and the other set of threads for assisted transmission.
  • the first access network device may also send data of the service to the second access network device.
  • the first access network device may use the general packet radio service (GPRS) tunneling protocol-user plane (GTP-U) to copy the data of the service, and then send the data of the service to the second access network device through the backhaul link to achieve data diversion.
  • GPRS general packet radio service
  • GTP-U tunneling protocol-user plane
  • the first access network device may add corresponding SNs to the data of the service according to the order in which the data of the service is sent, and then send the data of the service to the second access network device in sequence through the backhaul link.
  • the service data includes 6 data packets, which are data packet #0, data packet #1, data packet #2 ... data packet #5 in the order of sending from the first to the last.
  • the first access network device can add SN #0 to the GTP-U message header encapsulated in data packet #0, add SN #1 to the GTP-U message header encapsulated in data packet #1, and so on, add SN #5 to the GTP-U message header encapsulated in data packet #5, and send data packet #0, data packet #1, data packet #2 ... data packet #5 to the second access network device in sequence through the backhaul link.
  • the reception has a certain lag compared to the transmission due to the transmission delay. Therefore, within a period of time after the first access network device sends the data of the service, the second access network device may successfully receive at least part of the data of the service, such as the first data.
  • the second access network device can cache the first data, such as placing the first data in a third buffer. For example, the second access network device can sort the first data in the order of transmission according to the SN of the first data, so as to place the sorted data in the third buffer.
  • the third buffer is similar to the second buffer described above, and can be understood by reference, and will not be repeated.
  • the second access network device using a buffer to implement cooperative transmission is only an example and is not limited thereto.
  • the second access network device may also implement assisted transmission by setting a set of threads.
  • the second access network device can also determine, based on the SN of the first data, whether there is any data that has not been successfully received within the transmission duration after receiving the first data, such as second data that is different from the first data.
  • the SN of the first data can be used to characterize the order in which the first data is sent.
  • the transmission duration can be the duration allowed for data transmission between the first access network device and the second access network device. If the data that should have been received before a certain time has not been received within the above transmission duration, the second access network device will no longer accept the data, and it can be considered that packet loss has occurred. That is, by setting the transmission duration, the second access network device can accurately determine which data has not been successfully received because it is still being transmitted, and which data has not been successfully received due to packet loss, thereby avoiding misjudgment.
  • the second access network device can periodically obtain the SN of all data that has been successfully received (that is, the first data), and determine the maximum SN and the minimum SN therefrom, and use the maximum SN and the minimum SN as two endpoints to determine the SN sequence, which is recorded as SN sequence #1.
  • the second access network device can determine whether there is data corresponding to the SN in SN sequence #1 that has not been received yet based on the SN of all the above data, and record it as data to be received. That is, the data to be received is data that should be received but is not actually received. For the data to be received, the second access network device can determine whether the data to be received is received within the subsequent transmission duration.
  • the second access network device determines that the data is data that has not been successfully received, that is, the second data. If the data to be received is received, the second access network device determines that the data is data that has been successfully received.
  • the second access network device determines the currently received data packets #0, #1, and #2, wherein the largest SN is SN #2, the smallest SN is SN #0, and the SN sequence #1 is SN #0 ⁇ SN #1 ⁇ SN #2. At this time, there is no data to be received, that is, no packet loss occurs in cycle #0, and the second access network device caches data packets #0, #1, and #2. Afterwards, in cycle #1, the second access network device determines the currently received data packets #0, #1, #2, #4, and #5, wherein the largest SN is SN #5, the smallest SN is SN #0, and the SN sequence #1 is SN #0 ⁇ SN #1 ⁇ SN #2 ⁇ SN #4 ⁇ SN #5.
  • the data to be received is the data packet corresponding to SN #3.
  • the second access network device can determine whether the data packet corresponding to SN #3 is received in the subsequent transmission duration. If the data packet corresponding to SN #3, that is, data packet #3, is received, the second access network device can cache data packets #3, #4, and #5. If the data packet corresponding to SN#3 is not received, the second access network device determines that the data packet corresponding to SN#3 is data that has not been successfully received, that is, the data packet corresponding to SN#3 is lost. At this time, only data packets #4 and #5 are cached.
  • the second access network device sends feedback information to the first access network device according to the first data.
  • the first access network device receives the feedback information from the second access network device.
  • the feedback information may be used to determine whether the first data has been successfully received by the second access network device, such as including: a first identifier of the first data, and/or a second identifier of the second data.
  • the first identifier may be the SN of the first data, which may represent the order in which the first data is sent, so that the first access network device can determine the reception status of the second access network device accordingly.
  • the second identifier may be the SN of the second data, which may represent the order in which the second data is sent, so that the first access network device can determine the packet loss status of the second access network device accordingly.
  • the feedback information may further include an indication cell to indicate whether the SN in the feedback information is the SN of the successfully received data, that is, the SN of the first data, or the SN of the unsuccessfully received data, that is, the SN of the second data.
  • the feedback information may not include the indication cell if the feedback information includes the SN of the successfully received data by default, or includes the SN of the unsuccessfully received data by default.
  • the second access network device may periodically send feedback information to the first access network device, and the feedback information sent in each period may include: the SN of the data successfully received by the second access network device in the period, such as the SN of the data cached in the period, and/or the SN of the data not successfully received by the second access network device in the period.
  • the first data may be the data successfully received by the second access network device in one or more periods
  • the second data may be the data not successfully received by the second access network device in one or more periods.
  • the second access network device only feeds back the SN of the data that has been successfully received in each cycle.
  • the second access network device has no packet loss, and can send feedback information #0, including SN #0, SN #1, and SN #2.
  • the second access network device has packet loss, but not all packets are lost, so it can also send feedback information #1, including SN #4 and SN #5.
  • the second access network device only feeds back the SN of the data that was not successfully received in each cycle.
  • the second access network device does not experience packet loss, and feedback information #0 may not be sent.
  • the second access network device experiences packet loss, and therefore feedback information #1 may be sent, including SN #3.
  • the second access network device not only feeds back the SN of the data successfully received in each cycle, but also feeds back the SN of the data not successfully received in each cycle.
  • the second access network device can send feedback information #0, including: the SN of the data successfully received in cycle #1, that is, SN#0, SN#1 and SN#2, and the SN of the data not successfully received in cycle #0, which is empty.
  • the second access network device can send feedback information #1, including: the SN of the data successfully received in cycle #1, that is, SN#4 and SN#5, and the SN of the data not successfully received in cycle #1, that is, SN#3.
  • the second access network device may not send feedback information for this cycle.
  • the second access network device may not send feedback information for this cycle.
  • the second access network device may not send feedback information for this cycle.
  • the second access network device not only feeds back the SN of the data that has been successfully received in each cycle, but also feeds back the SN of the data that has not been successfully received in each cycle, the second access network device needs to send feedback information for each cycle.
  • the period for the second access network device to send feedback information may be the same as or different from the period for the second access network device to obtain the SN in the above 501, and no specific limitation is made to this.
  • the second access network device may send feedback information to the first access network device when packet loss occurs.
  • the feedback information may include: the SN of the data that the second access network device has successfully received when packet loss occurs, or the SN of the data that has been buffered when packet loss occurs, and/or the SN of the data that the second access network device has lost, or the SN of the data that has not been successfully received.
  • the first data may be the data that the second access network device has successfully received when packet loss occurs
  • the second data may be the data that the second access network device has lost.
  • the second access network device determines that the data packet corresponding to SN#3 is lost, it sends feedback information to the first access network device, including: the SN of the data that has been successfully received before the data packet corresponding to SN#3 is lost, that is, SN#0, SN#1, SN#2, SN#4 and SN#5, and/or the SN of the lost data packet, that is, SN#3.
  • the timing for the second access network device to send feedback information may be triggered by the first access network device, that is, the second access network device may send feedback information to the first access network device according to the instruction of the first access network device, and the feedback information may include: the SN of the data successfully received by the second access network device when receiving the instruction of the first access network device, and/or the SN of the data not successfully received by the second access network device.
  • the second access network device receives the instruction of the first access network device, the data successfully received may be understood as the first data, and the data not successfully received may be understood as the second data.
  • the second access network device After determining that the data packet corresponding to SN#3 is lost, the second access network device receives an instruction from the first access network device, and thus sends feedback information #1 to the first access network device.
  • Feedback information #1 includes: the SN of the data that has been successfully received when the instruction from the first access network device is received, that is, SN#0, SN#1, SN#2, SN#4, and SN#5, and/or the SN of the data that has not been successfully received, that is, SN#3.
  • Mode 4 For each piece of data (or each data packet) successfully received, the second access network device can send a feedback message corresponding to the data to the first access network device.
  • each piece of feedback information can include the SN of a piece of data successfully received by the second access network device.
  • the first data can include one or more pieces of data, or one or more data packets.
  • the second access network device When the second access network device successfully receives data packet #0, data packet #1, and data packet #2, it sends feedback information #0 carrying SN#0, feedback information #1 carrying SN#1, and feedback information #2 carrying SN#2 to the first access network device, respectively. Afterwards, since the second access network device did not successfully receive the data packet corresponding to SN#3, the second access network device may not send feedback information #3. Afterwards, when the second access network device successfully receives data packet #4 and data packet #5, it sends feedback information #4 carrying SN#4, and feedback information #5 carrying SN#5 to the first access network device, respectively. Optionally, when the second access network determines that the data packet corresponding to SN#3 has been lost, feedback information #3 may also be sent to indicate that the data packet corresponding to SN#3 has been lost.
  • the first access network device can determine that the first data has been successfully received by the second access network device and that the second data has not been successfully received by the second access network device according to the first identifier of the first data and/or the second identifier of the second data.
  • the first access network device can determine, based on the first identifier, that the first data has been successfully received by the second access network device, and that the second data has not been successfully received by the second access network device. For example, the first access network device can determine, based on the SN of the first data, that the data corresponding to the SN is the data that has been successfully received by the second access network device, that is, the first data. On this basis, the first access network device can determine the largest SN and the smallest SN from the SN of the first data, and use the largest SN and the smallest SN as two endpoints to determine the SN sequence, which is recorded as SN sequence #2.
  • the first access network device can determine whether the SN of SN sequence #2 is the same as the SN of the first data. If the SN of SN sequence #2 is different from the SN of the first data, then the SN in SN sequence #2 that is different from the first data is the SN of the data that has not been successfully received by the second access network device, that is, the SN of the second data. In this way, the first access network device can determine, based on the different SNs, that the second data has not been successfully received by the second access network device. If the SN of SN sequence #2 is the same as the SN of the first data, it means that there is no second access network device yet. Data that was not successfully received by the network device.
  • the first access network device can send service data in a certain order, even if the second access network device only feeds back the serial number of the successfully received data, the first access network device can determine which data has not been successfully received by the second access network device based on the sending order, so as to further reduce the overhead of feedback information and improve communication efficiency.
  • the first access network device obtains SN#0, SN#1, SN#2, SN#4 and SN#5 from the received feedback information, wherein the largest SN is SN#5, the smallest SN is SN#0, and the SN sequence #2 is SN#0 ⁇ SN#1 ⁇ SN#2 ⁇ SN#3 ⁇ SN#4 ⁇ SN#5.
  • the first access network device determines that SN#3 in SN sequence #2 is different from the SN obtained by the first access network device from the feedback information, and thus determines that data packet #3 corresponding to SN#3 is not successfully received by the second access network device.
  • the first access network device can determine, based on the second identifier, that the first data has been successfully received by the second access network device, and that the second data has not been successfully received by the second access network device. For example, the first access network device can determine, based on the SN of the second data, that the data corresponding to the SN is data that has not been successfully received by the second access network device, that is, the second data. On this basis, the first access network device can determine, based on the SN of the second data, the data sent before the second data.
  • the data sent before the second data is the first data that has been successfully received by the second access network device, that is, it is determined that the first data has been successfully received by the second access network device.
  • the first access network device can also determine that the data has been successfully received by the second access network device.
  • the first access network device can send service data in a certain order, even if the second access network device only feeds back the serial number of the data that was not successfully received, the first access network device can determine which data has been successfully received by the second access network device based on the sending order, so as to further reduce the overhead of feedback information and improve communication efficiency.
  • the first access network device can obtain SN#3 from the received feedback information, thereby determining that data packet #3 corresponding to SN#3 has not been successfully received by the second access network device, and that data packets #0, data packet #1, and data packet #2 corresponding to SN#0, SN#1, and SN#2 before SN#3 have been successfully received by the second access network device. Thereafter, the first access network device does not receive SN#4 and SN#5 fed back by the second access network device, thereby determining that data packets #4 and data packets #5 have been successfully received by the second access network device.
  • the first access network device When the first access network device receives the first identifier of the first data and the second identifier of the second data, the first access network device can directly determine, based on the first identifier and the second identifier, that the first data has been successfully received by the second access network device, and that the second data has not been successfully received by the second access network device, without further explanation.
  • the first access network device since the first access network device has previously determined that the service data requires multi-station collaborative transmission (see S501), the first access network device can trigger the execution of S503 when it is determined that the first data is successfully received by the second access network device.
  • S503 The first access network device sends first data to the terminal in the first time domain resource. And the second access network device sends first data to the terminal in the first time domain resource.
  • the first time domain resource may be one or more time units, and the time unit may be one or more of the following: symbol, slot, mini-slot, subframe, radio frame, etc., without limitation.
  • the first time domain resource may be a static resource, such as a time domain resource agreed in advance by the first access network device and the second access network device, or a dynamic resource, such as a time domain resource dynamically determined by the first access network device and the second access network device for use, without specific limitation.
  • the first access network device since the first access network device has previously processed the first data through a high-level protocol (a protocol layer as a diversion point) to achieve data diversion (see S501), in S503, the first access network device can directly process the first data through the underlying protocol (a protocol at a level below the diversion point) to achieve carrying the first data on the first time domain resource, thereby sending the first data to the terminal.
  • a protocol layer as a diversion point
  • the first access network device can process the first data through the protocol of the MAC layer and the protocol of the PHY layer.
  • the second access network device since the second access network device does not perceive a protocol at a higher level than the diversion point, in S503, the second access network device can also directly process the first data through the underlying protocol (a protocol at a level below the diversion point) to achieve carrying the first data on the first time domain resource, thereby sending the first data to the terminal.
  • the underlying protocol a protocol at a level below the diversion point
  • the time domain position of the first time domain resource may have a certain time domain offset relative to the reference time domain position, which is recorded as time domain offset #1.
  • the time domain position of the first time domain resource may also have a certain time domain offset relative to the reference time domain position, which is recorded as time domain offset #2.
  • Time domain offset #1 and time domain offset #2 may be the same or different, and there is no specific limitation on this, which can ensure that the first data sent by the first access network device and the second access network device arrive at the terminal at the same time (or at a relatively close time).
  • the data that the first access network device can schedule includes the data of the service it receives, while the data that the second access network device can schedule only includes the first data it receives.
  • the scheduling behavior of the first access network device is not constrained, the first access network device may schedule more data for downlink transmission, resulting in assisted transmission asynchrony and affecting the receiving performance of the terminal. Therefore, the scheduling behavior of the first access network device should be constrained, that is, the first access network device can only schedule the public part of the data, such as the first data, so as to ensure that the first access network device and the second access network device have the same data content to be transmitted when performing assisted transmission.
  • the first access network device as the control anchor point of multi-station cooperative transmission, can determine that it has successfully received at least part of the data, such as the first data, through the feedback of the second access network device after diverting the data of the terminal's service to the second access network device.
  • the first access network device and the second access network device both obtain the same first data, so that the first data can be sent to the terminal in the same time domain resources, so as to avoid affecting the transmission efficiency of multi-station cooperation due to asynchronous transmission.
  • the first access network device may also determine whether the data volume of the first data has reached a data volume threshold, which may be the data volume that triggers the first access network device and the second access network device to send data on the same time domain resources. If the data volume of the first data does not reach the data volume threshold, the first access network device does not trigger the execution of S503 to avoid an increase in transmission overhead due to too little data being sent at a single time. Otherwise, if the data volume of the first data has reached the data volume threshold, the first access network device triggers the execution of S503.
  • the second access network device may also determine whether the data volume of the first data has reached the above-mentioned data volume threshold. If the data volume of the first data does not reach the data volume threshold, the second access network device does not trigger the execution of S503 either, otherwise, the second access network device triggers the execution of S503.
  • the first access network device may also determine whether the duration for which the first access network device stores the first data has reached a first threshold duration, which may be the duration for which the first data remains valid on the first access network device. If the duration for which the first access network device stores the first data does not reach the first threshold duration, the first access network device does not trigger execution of S503. Otherwise, if the duration for which the first access network device stores the first data has reached the first threshold duration, the first access network device triggers execution of S503. That is, the first access network device needs to send the first data before the first data becomes invalid, so that the service of the terminal is affected due to the invalidation of the data.
  • a first threshold duration which may be the duration for which the first data remains valid on the first access network device.
  • the second access network device may also determine whether the duration for which the second access network device stores the first data has reached a second threshold duration, which may be the duration for which the first data remains valid on the second access network device. If the duration for which the second access network device stores the first data does not reach the second threshold duration, the first access network device does not trigger execution of S503, otherwise, the second access network device triggers execution of S503.
  • a second threshold duration which may be the duration for which the first data remains valid on the second access network device. If the duration for which the second access network device stores the first data does not reach the second threshold duration, the first access network device does not trigger execution of S503, otherwise, the second access network device triggers execution of S503.
  • the method further includes: S504, the first access network device sends first indication information to the terminal, and the terminal receives the first indication information from the first access network device.
  • the first access network device can send the first indication information to the terminal at any transmission time before S503, and there is no specific limitation on this.
  • the first indication information can be used to trigger the terminal to measure the channel.
  • the channel can be the channel between the first access network device and the terminal, and the channel between the second access network device and the terminal, which is recorded as a comprehensive channel. Therefore, after sending the first indication information, the first access network device and the second access network device can both send a reference signal to the terminal, such as a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the terminal can receive a reference signal according to the indication of the first indication information, and thus perform channel measurement according to the reference signal to send channel measurement results to the first access network device and the second access network device respectively.
  • the channel measurement result can be used to characterize the state of the integrated channel, such as channel state information (CSI).
  • CSI channel state information
  • the first access network device can determine to send the first data to the terminal on the first time domain resource according to the state of the integrated channel to ensure that the transmission between the first access network device and the terminal matches the channel state, thereby improving communication efficiency.
  • the second access network device can also determine to send the first data to the terminal on the first time domain resource according to the state of the integrated channel to ensure that the second access network device The transmission between terminals matches the channel status, thereby improving communication efficiency.
  • the method further includes: S505, the first access network device sends second indication information to the terminal, and the terminal receives the second indication information from the first access network device.
  • the second indication information can be used to instruct the terminal to pause or stop measuring the channel. For example, as multi-station collaborative transmission proceeds, the amount of data jointly stored by the first access network device and the second access network device may be reduced to a level that cannot meet the data volume requirements of multi-station collaborative transmission, such as being less than the above-mentioned data volume threshold, or reduced to no data. At this time, the first access network device and the second access network device no longer need to perform multi-station collaborative transmission, or in other words, do not need to continue to send data on the same time domain resources. Therefore, the first access network device can send a second indication information to the terminal to avoid unnecessary overhead caused by the terminal continuing to perform redundant channel measurements.
  • the method further includes: S506, the first access network device sends third indication information to the second access network device, and the second access network device receives the third indication information from the first access network device.
  • the third indication information can be used to indicate the time-frequency position of the reference signal. That is, the time-frequency resources on which the second access network device sends the reference signal can be dynamically indicated by the first access network device through the third indication information.
  • the third indication information may include the resource index of these time-frequency resources.
  • Method B When the second access network device sends a reference signal on a pre-configured or pre-agreed time-frequency resource by default, the third indication information can be used to indicate that the second access network device needs to send a reference signal to the terminal. That is, whether the second access network device sends a reference signal can be dynamically indicated by the first access network device through the third indication information to avoid channel measurement failure due to the second access network device not sending a reference signal.
  • the third indication information can be used to indicate that the second access network device needs to send a reference signal to the terminal, and indicate the time-frequency position of the reference signal. That is, whether the second access network device sends a reference signal and the specific time-frequency resources on which the reference signal is sent can be dynamically indicated by the first access network device through the third indication information.
  • the relevant introduction of the above-mentioned methods A and B please refer to the relevant introduction of the above-mentioned methods A and B, and no further details will be given.
  • the first access network device and the second access network device may also send reference signals by default, and send reference signals on pre-configured or pre-agreed time-frequency resources by default.
  • the method further includes: S507, the first access network device also sends fourth indication information to the second access network device, and the second access network device receives the fourth indication information from the first access network device.
  • the first access network device can send a fourth indication message to the second access network device to instruct the second access network device to suspend or stop sending reference signals to the channel, so as to avoid unnecessary overhead for the second access network device due to continuing to send redundant reference signals.
  • the method further includes: S508, the first access network device sends fifth indication information to the second access network device, and the second access network device can receive the fifth indication information from the first access network device.
  • the fifth indication information can be used to trigger the second access network device to send data on the same time domain resource as the first access network device, that is, trigger the execution of S503. That is, the second access network device can also trigger the start of multi-station cooperative transmission according to the indication of the first access network device to implement the multi-station cooperative transmission on demand.
  • S508 is an optional step.
  • the second access network device can also trigger the start of multi-station cooperative transmission by itself after sending feedback information to the first access network device, that is, trigger the execution of S503 by itself.
  • S508 is not executed.
  • the third indication information can be the same indication information as the fifth indication information, or different indication information, without limitation.
  • the method further includes: S509, the first access network device sends sixth indication information to the second access network device, and the second access network device receives the sixth indication information from the first access network device.
  • the first access network device can send sixth indication information to the second access network device to trigger the second access network device to suspend or stop communicating with the first access network device.
  • the second access network device sends data on the same time domain resources as the second access network device, that is, suspends or stops the multi-station cooperative transmission to avoid unnecessary overhead caused by the second access network device continuing to send redundant data.
  • the fourth indication information and the sixth indication information may be the same indication information, or may be different indication information, without limitation.
  • the first access network device can trigger the sending of one or more of the above-mentioned first indication information, third indication information, or fifth indication information according to the data volume of the first data reaching the data volume threshold and/or the time for which the first access network device stores the first data reaching the first threshold time.
  • the first access network device may transfer the second data from the second buffer to the first buffer so that the second data can be independently sent to the terminal later.
  • the first access network device may send the second data to the terminal on a second time domain resource that is different from the first time domain resource.
  • the first access network device needs to adjust the data to independent transmission in a timely manner to avoid the terminal failing to successfully receive the data due to different data sent on the same time domain resource.
  • the communication method provided in the embodiment of the present application is described in detail above in conjunction with Figure 5.
  • the communication device for executing the communication method provided in the embodiment of the present application is described in detail below in conjunction with Figures 6-7.
  • Fig. 6 is a structural schematic diagram 1 of a communication device provided in an embodiment of the present application.
  • the communication device 600 includes: a transceiver module 601 and a processing module 602.
  • Fig. 6 only shows the main components of the communication device.
  • the communication apparatus 600 may be applicable to the communication system shown in FIG. 4 , and execute the function of the first access network device in the method shown in FIG. 5 .
  • the transceiver module 601 is used to send the service data of the terminal to the second access network device and receive feedback information from the second access network device.
  • the feedback information is used to determine that the first data has been successfully received by the second access network device, and the first data is at least part of the service data.
  • the processing module 602 is used to control the transceiver module 601 to send the first data to the terminal on the first time domain resource.
  • the first time domain resource is also used by the second access network device to send the first data to the terminal.
  • the feedback information includes a first identifier of the first data, and/or a second identifier of second data in the service data that is not successfully received by the second access network device, and the second data is different from the first data.
  • the processing module 602 is further configured to determine, based on the first identifier and/or the second identifier, that the first data has been successfully received by the second access network device.
  • the second identifier is a sequence number of the second data
  • the sequence number of the second data is used to characterize the sending order of the second data.
  • the processing module 602 is further used to determine the data sent before the second data according to the sequence number of the second data.
  • the data sent before the second data is the first data that has been successfully received by the second access network device.
  • the processing module 602 is further configured to determine, based on the first identifier and/or the second identifier, that the second data is not successfully received by the second access network device; and the processing module 602 is further configured to control the transceiver module 601 to send the second data to the terminal on a second time domain resource.
  • the second time domain resource is a time domain resource different from the first time domain resource.
  • the processing module 602 is further used to determine that the data volume of the first data has reached a data volume threshold before sending the first data to the terminal on the first time domain resource.
  • the data volume threshold is the data volume that triggers the communication device 600 to send data on the same time domain resource with the second access network device.
  • the processing module 602 is also used to determine that the time length for which the communication device 600 stores the first data has reached a first threshold time length before sending the first data to the terminal on the first time domain resource.
  • the first threshold time length is the time length for which the first data remains valid on the communication device 600.
  • the transceiver module 601 is also used to send a first indication information to the terminal before sending the first data to the terminal on the first time domain resource, and receive a channel measurement result from the terminal.
  • the first indication information is used to trigger the terminal to measure the channel.
  • the channel is a channel between the communication device 600 and the terminal, and a channel between the second access network device and the terminal.
  • the channel measurement result is used to characterize the state of the channel.
  • the processing module 602 is also used to determine to send the first data to the terminal on the first time domain resource according to the state of the channel.
  • the transceiver module 601 is further used to send second indication information to the terminal after sending the first data to the terminal on the first time domain resource, wherein the second indication information is used to instruct the terminal to suspend measuring the channel.
  • the transceiver module 601 is further configured to send third indication information to the second access network device before sending the first data to the terminal on the first time domain resource, wherein the third indication information is used to indicate that the second access network device needs to send a reference signal to the terminal, and the reference signal is used by the terminal to measure the channel.
  • the transceiver module 601 is also used to send fourth indication information to the second access network device after sending the first data to the terminal on the first time domain resource, wherein the fourth indication information is used to instruct the second access network device to suspend sending the reference signal.
  • the transceiver module 601 is also used to send a fifth indication information to the second access network device on the first time domain resource before sending the first data to the terminal, wherein the fifth indication information is used to trigger the second access network device and the communication device 600 to send data on the same time domain resource.
  • the transceiver module 601 is also used to send sixth indication information to the second access network device after sending the first data to the terminal on the first time domain resources, wherein the sixth indication information is used to trigger the second access network device to suspend sending data on the same time domain resources as the communication device 600.
  • the transceiver module 601 is further used to obtain service data before sending the service data of the terminal to the second access network device.
  • the processing module 602 is further used to determine that the service data is data that the communication device 600 and the second access network device need to send on the same time domain resources.
  • the transceiver module 601 may include a sending module (not shown in FIG. 6 ) and a receiving module (not shown in FIG. 6 ).
  • the sending module is used to implement the sending function of the communication device 600
  • the receiving module is used to implement the receiving function of the communication device 600 .
  • the communication device 600 may further include a storage module (not shown in FIG. 6 ), which stores a program or instruction.
  • the processing module 602 executes the program or instruction, the communication device 600 may perform the function of the first access network device in the method shown in FIG. 5 in the above method.
  • the communication device 600 can be a network device, such as a first access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • a network device such as a first access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • the technical effects of the communication device 600 can refer to the technical effects of the communication method shown in FIG5 , and will not be described in detail here.
  • the communication apparatus 600 may be applicable to the communication system shown in FIG. 4 , and execute the function of the second access network device in the method shown in FIG. 5 .
  • the transceiver module 601 is used to receive the first data.
  • the processing module 602 is used to control the transceiver module 601 to send feedback information to the first access network device according to the first data, wherein the first data is at least part of the data of the service of the terminal, the service data is the data sent by the first access network device to the communication device 600, and the feedback information is used to determine that the first data has been successfully received by the communication device 600.
  • the processing module 602 is also used to control the transceiver module 601 to send the first data to the terminal on the first time domain resource.
  • the first time domain resource is also used by the first access network device to send the first data to the terminal.
  • the feedback information may include a first identifier of the first data and/or a second identifier of second data in the service data that is not successfully received by the communication device 600, where the second data is different from the first data.
  • the sequence number of the first data is used to characterize the order in which the first data is sent.
  • the processing module 602 is further used to determine, after the transceiver module 601 receives the first data and before sending feedback information to the first access network device, based on the sequence number of the first data, that the data that is not successfully received within the transmission time after the first data is received is the second data.
  • the transmission time may be the time allowed for data transmission between the first access network device and the communication device 600.
  • the processing module 602 is further configured to determine, before sending the first data to the terminal on the first time domain resource, that the data volume of the first data has reached a data volume threshold, wherein the data volume threshold is the data volume that triggers the first access network device and the communication device 600 to send data on the same time domain resource. And/or, the processing module 602 is further configured to determine, on the first time domain resource, that the duration for which the communication device 600 stores the first data has reached a second threshold duration, wherein the second threshold duration is the duration for which the first data remains valid on the communication device 600.
  • the transceiver module 601 is further used to receive third indication information from the first access network device before sending the first data to the terminal on the first time domain resource.
  • the processing module 602 is also used to control the transceiver module 601 to send a reference signal according to the third indication information.
  • the third indication information is used to indicate that the communication device 600 needs to send a reference signal.
  • the reference signal is used by the terminal to measure the channel.
  • the channel is a channel between the first access network device and the terminal, and a channel between the communication device 600 and the terminal.
  • the transceiver module 601 is further configured to receive fourth indication information from the first access network device after sending the first data to the terminal on the first time domain resource, wherein the fourth indication information is used to instruct the communication apparatus 600 to suspend sending the reference signal.
  • the transceiver module 601 is further configured to receive fifth indication information from the first access network device before sending the first data to the terminal on the first time domain resource, wherein the fifth indication information is used to trigger the communication device 600 to send data on the same time domain resource as the first access network device.
  • the transceiver module 601 is further configured to receive sixth indication information from the first access network device after sending the first data to the terminal on the first time domain resource, wherein the sixth indication information is used to trigger the communication device 600 to suspend sending data on the same time domain resource as the first access network device.
  • the transceiver module 601 may include a sending module (not shown in FIG. 6 ) and a receiving module (not shown in FIG. 6 ).
  • the sending module is used to implement the sending function of the communication device 600
  • the receiving module is used to implement the receiving function of the communication device 600 .
  • the communication device 600 may further include a storage module (not shown in FIG. 6 ), which stores a program or instruction.
  • the processing module 602 executes the program or instruction, the communication device 600 may perform the function of the second access network device in the method shown in FIG. 5 in the above method.
  • the communication device 600 can be a network device, such as a second access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • a network device such as a second access network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
  • the technical effects of the communication device 600 can refer to the technical effects of the communication method shown in FIG5 , and will not be described in detail here.
  • FIG7 is a second schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device may be a terminal, or a chip (system) or other parts or components that can be set in a terminal.
  • a communication device 700 may include a processor 701.
  • the communication device 700 may also include a memory 702 and/or a transceiver 703.
  • the processor 701 is coupled to the memory 702 and the transceiver 703, such as being connected via a communication bus.
  • the communication device 700 may also be a chip, such as including a processor 701, in which case the transceiver may be the output and input interface of the chip.
  • the processor 701 is the control center of the communication device 700, which can be a processor or a general term for multiple processing elements.
  • the processor 701 is one or more central processing units (CPUs), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • CPUs central processing units
  • ASIC application specific integrated circuit
  • integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
  • the processor 701 can execute various functions of the communication device 700, such as executing the communication method shown in 5 above, by running or executing a software program stored in the memory 702 and calling data stored in the memory 702.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 7 .
  • the communication device 700 may also include multiple processors, such as the processor 701 and the processor 704 shown in FIG7 .
  • processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the memory 702 is used to store the software program for executing the solution of the present application, and the execution is controlled by the processor 701.
  • the specific implementation method can refer to the above method embodiment, which will not be repeated here.
  • the memory 702 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 702 may be integrated with the processor 701, or may exist independently and be coupled to the processor 701 through an interface circuit (not shown in FIG. 7 ) of the communication device 700, which is not specifically limited in the embodiments of the present application.
  • the transceiver 703 is used for communication with other communication devices. For example, if the communication device 700 is a terminal, the transceiver 703 can be used to communicate with a network device, or with another terminal device. For another example, if the communication device 700 is a network device, the transceiver 703 can be used to communicate with a terminal, or with another network device.
  • the transceiver 703 may include a receiver and a transmitter (not shown separately in FIG7 ), wherein the receiver is used to implement a receiving function, and the transmitter is used to implement a sending function.
  • the transceiver 703 may be integrated with the processor 701, or may exist independently and communicate with the processor 701 through the communication device 700.
  • the interface circuit (not shown in FIG. 7 ) is coupled to the processor 701, which is not specifically limited in the embodiment of the present application.
  • the structure of the communication device 700 shown in FIG. 7 does not constitute a limitation on the communication device, and an actual communication device may include more or fewer components than shown in the figure, or combine certain components, or arrange the components differently.
  • the technical effects of the communication device 700 can refer to the technical effects of the methods described in the above method embodiments, which will not be repeated here.
  • processors in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application-specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware or any other combination.
  • the above embodiments can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media sets.
  • the available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid-state hard disk.
  • At least one means one or more, and “more than one” means two or more.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置及系统,属于通信技术领域,用以避免因传输不同步而导致多站协作的传输效率受到影响。该方法中,第一接入网设备作为多站协作传输的控制锚点,在向第二接入网设备分流终端的业务的数据后,可以通过第二接入网设备的反馈,确定其已成功接收到至少部分数据,如第一数据。此时,第一接入网设备和第二接入网设备都获取到相同的第一数据,从而可以在相同的时域资源向终端发送第一数据,以避免因传输不同步而导致多站协作的传输效率受到影响。

Description

通信方法、装置及系统
本申请要求于2022年11月30日提交国家知识产权局、申请号为202211528418.0、申请名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法、装置及系统。
背景技术
在通信系统中,多个接入网设备可以在相同或相近的时刻,向终端发送携带相同数据的信号,也即多站协作传输。此时,终端可以对接收的信号进行叠加合并,从而可以提高终端接收信号的信噪比,提升通信可靠性和容量。
以第4代(4th generation,4G)移动通信系统的多媒体广播多播业务(multicast broadcast multimedia service,MBMS)架构为例,多播广播服务中心(broadcast-multicast service centre,BM-SC)在接收到来自应用功能(application function,AF)的数据后,BM-SC可以作为控制锚点,通过MBMS网关将数据复制分发到多个演进的节点B(eNodeB,eNB),以便多个eNB能够同时向用户设备(uesr equipment,UE)发送这些数据,从而实现多站协作传输。
然而,BM-SC作为控制锚点,无法保证多个eNB一定能够同时向UE发送数据,导致多站协作的传输效率受到影响。
发明内容
本申请实施例提供一种通信方法、装置及系统,用以避免因传输不同步而导致多站协作的传输效率受到影响。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法,该方法包括:第一接入网设备向第二接入网设备发送终端的业务的数据,并接收来自第二接入网设备的反馈信息。其中,反馈信息用于确定第一数据已被第二接入网设备成功接收,第一数据是业务的数据中的至少部分数据。之后,第一接入网设备在第一时域资源上,向终端发送第一数据。其中,第一时域资源还用于第二接入网设备向终端发送第一数据。
基于第一方面所述的方法可知,第一接入网设备作为多站协作传输的控制锚点,在向第二接入网设备分流终端的业务的数据后,可以通过第二接入网设备的反馈,确定其已成功接收到至少部分数据,如第一数据。此时,第一接入网设备和第二接入网设备都获取到相同的第一数据,从而可以在相同的时域资源向终端发送第一数据,以避免因传输不同步而导致多站协作的传输效率受到影响。
一种可能的设计方案中,反馈信息包括第一数据的第一标识,和/或,业务的数据中第二接入网设备未成功接收的第二数据的第二标识,以及,第二数据与第一数据不同。第一方面所述的方法还可以包括:第一接入网设备根据第一标识和/或第二标识,确定第一数据已被第二接入网设备成功接收。也就是说,在第二接入网设备仅反馈数据的标识的情况下,第一接入网设备也能确定哪些数据被成功接收,从而可以降低反馈信息的开销。
可选地,第二标识为第二数据的序列号,第二数据的序列号用于表征第二数据的发送顺序。第一接入网设备根据第二标识,确定第一数据已被第二接入网设备成功接收,包括:第一接入网设备根据第二数据的序列号,确定在第二数据之前发送的数据。其中,在第二数据之前发送的数据为已被第二接入网设备成功接收的第一数据。可以理解,由于第一接入网设备可以按一定顺序发送业务的数据,这样,第二接入网设备即使只反馈未成功接收的数据的序列号,第一接入网设备也能够根据发送顺序,确定哪些数据被第二接入网设备成功接收,以进一步降低反馈信息的开销,提高通信效率。
可选地,第一方面所述的方法还可以包括:第一接入网设备根据第一标识和/或第二标识,确 定第二数据未被第二接入网设备成功接收;第一接入网设备在第二时域资源上,向终端发送第二数据。其中,第二时域资源是与第一时域资源的不同的时域资源。也就是说,在第二接入网设备未能成功接收某些数据的情况下,第一接入网设备需要及时将这些数据调整为独立传输,以避免因在同一时域资源上发送的数据不同而导致终端无法成功接收。
一种可能的设计方案中,在第一接入网设备在第一时域资源上,向终端发送第一数据之前,第一方面所述的方法还可以包括:第一接入网设备确定第一数据的数据量已达到数据量阈值。其中,数据量阈值为触发第一接入网设备与第二接入网设备在相同的时域资源上发送数据的数据量,以避免因单次发送的数据太少而导致传输开销增大。和/或,第一接入网设备确定第一接入网设备保存第一数据的时长已达到第一阈值时长。其中,第一阈值时长为第一数据在第一接入网设备上维持有效的时长。也即,第一接入网设备需要在第一数据失效之前发送第一数据,以便因数据失效而导致终端的业务受到影响。
一种可能的设计方案中,在第一接入网设备在第一时域资源上,向终端发送第一数据之前,第一方面所述的方法还可以包括:第一接入网设备向终端发送第一指示信息,并接收来自终端的信道测量结果。其中,第一指示信息用于触发终端对信道进行测量。信道是第一接入网设备与终端之间的信道,以及第二接入网设备与终端之间的信道。信道测量结果用于表征信道的状态。相应的,第一接入网设备在第一时域资源上,向终端发送第一数据,包括:第一接入网设备根据信道的状态,确定在第一时域资源上向终端发送第一数据,以确保第一接入网设备与终端之间的传输与信道状态匹配,从而能够提高通信效率。
可选地,在第一接入网设备在第一时域资源上,向终端发送第一数据之后,第一方面所述的方法还可以包括:第一接入网设备向终端发送第二指示信息,其中,第二指示信息用于指示终端暂停对信道进行测量。例如,如果第一接入网设备与第二接入网设备不需要在相同的时域资源上发送数据,则第一接入网设备可以向终端发送第二指示信息,以避免终端因继续执行冗余的信道测量而带来不必要的开销。
可选地,在第一接入网设备在第一时域资源上,向终端发送第一数据之前,第一方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第三指示信息。其中,第三指示信息用于指示第二接入网设备需要向终端发送参考信号,参考信号用于终端对信道进行测量。如此,可以避免因第二接入网设备未发送参考信号而导致信道测量失败。
进一步的,在第一接入网设备在第一时域资源上,向终端发送第一数据之后,第一方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第四指示信息,其中,第四指示信息用于指示第二接入网设备暂停发送参考信号。例如,如果第一接入网设备与第二接入网设备不需要在相同的时域资源上发送数据,则第一接入网设备可以向第二接入网设备发送第四指示信息,以避免第二接入网设备因继续发送冗余的参考信号而带来不必要的开销。
一种可能的设计方案中,在第一接入网设备在第一时域资源上,向终端发送第一数据之前,第一方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第五指示信息,其中,第五指示信息用于触发第二接入网设备与第一接入网设备在相同的时域资源上发送数据。也就是说,第二接入网设备是否执行多站协作传输可以由第一接入网设备指示,以实现按需执行多站协作传输。
可选地,在第一接入网设备在第一时域资源上,向终端发送第一数据之后,第一方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第六指示信息,其中,第六指示信息用于触发第二接入网设备暂停在与第一接入网设备相同的时域资源上发送数据。例如,如果第一接入网设备与第二接入网设备不需要在相同的时域资源上发送数据,则第一接入网设备可以向第二接入网设备发送第六指示信息,以避免第二接入网设备因继续发送冗余的数据而带来不必要的开销。
一种可能的设计方案中,在第一接入网设备向第二接入网设备发送终端的业务的数据之前,第一方面所述的方法还包括:第一接入网设备获取业务的数据,从而确定业务的数据为第一接入网设备和第二接入网设备需要在相同的时域资源上发送的数据。也就是说,针对不同业务的数据,其是否采用多站协作传输可以由第一接入网设备根据业务的类型确定,以确保满足业务需求。
第二方面,提供一种通信方法,该方法包括:第二接入网设备接收到第一数据,并根据第一数据,向第一接入网设备发送反馈信息,其中,第一数据是终端的业务的数据中的至少部分数据,业务的数据是第一接入网设备向第二接入网设备发送的数据,反馈信息用于确定第一数据已被第二接入网设备成功接收。如此,第二接入网设备在第一时域资源上,向终端发送第一数据。其中,第一时域资源还用于第一接入网设备向终端发送第一数据。
一种可能的设计方案中,反馈信息可以包括第一数据的第一标识,和/或,业务的数据中第二接入网设备未成功接收的第二数据的第二标识,第二数据与第一数据不同。
可选地,第一数据的序列号用于表征第一数据的发送顺序。在第二接入网设备接收到第一数据之后,以及,在第二接入网设备向第一接入网设备发送反馈信息之前,第二方面所述的方法还可以包括:第二接入网设备根据第一数据的序列号,确定在接收到第一数据之后的传输时长内未成功接收的数据为第二数据。其中,传输时长可以是第一接入网设备与第二接入网设备之间传输数据所允许的时长,如果应该在某个时间接收的数据在该时间之后传输时长内仍未被接收,则表示该数据并不是正在传输,而是发生丢包。也即,通过设置传输时长,第二接入网设备可以准确地确定哪些数据是因为还在传输没有被成功接收,而哪些数据是因为丢包而没有被成功接收,从而可以避免误判断。
一种可能的设计方案中,在第二接入网设备在第一时域资源上,向终端发送第一数据之前,第二方面所述的方法还可以包括:第二接入网设备确定第一数据的数据量已达到数据量阈值,其中,数据量阈值为触发第一接入网设备与第二接入网设备在相同的时域资源上发送数据的数据量。和/或,第二接入网设备确定第二接入网设备保存第一数据的时长已达到第二阈值时长,其中,第二阈值时长为第一数据在第二接入网设备上维持有效的时长。
一种可能的设计方案中,在第二接入网设备在第一时域资源上,向终端发送第一数据之前,第二方面所述的方法还可以包括:第二接入网设备接收来自第一接入网设备的第三指示信息,并根据第三指示信息,发送参考信号。其中,第三指示信息用于指示第二接入网设备需要发送参考信号。参考信号用于终端对信道进行测量。信道是第一接入网设备与终端之间的信道,以及第二接入网设备与终端之间的信道。
可选地,在第二接入网设备在第一时域资源上,向终端发送第一数据之后,第二方面所述的方法还可以包括:第二接入网设备接收来自第一接入网设备的第四指示信息。其中,第四指示信息用于指示第二接入网设备暂停发送参考信号。
一种可能的设计方案中,在第二接入网设备在第一时域资源上,向终端发送第一数据之前,第二方面所述的方法还可以包括:第二接入网设备接收来自第一接入网设备的第五指示信息。其中,第五指示信息用于触发第二接入网设备与第一接入网设备在相同的时域资源上发送数据。
可选地,在第二接入网设备在第一时域资源上,向终端发送第一数据之后,第二方面所述的方法还可以包括:第二接入网设备接收来自第一接入网设备的第六指示信息。其中,第六指示信息用于触发第二接入网设备暂停在与第一接入网设备相同的时域资源上发送数据。
此外,第二方面所述的方法的其他技术效果也可以参考第一方面所述的方法的技术效果,此处不再赘述。
第三方面,提供一种通信方法,该方法包括:第一接入网设备向第二接入网设备发送终端的业务的数据。第二接入网设备接收到第一数据,并根据第一数据,向第一接入网设备发送反馈信息。第一接入网设备接收来自第二接入网设备的反馈信息。其中,反馈信息用于确定第一数据已被第二接入网设备成功接收,第一数据是业务的数据中的至少部分数据。如此,第一接入网设备在第一时域资源上,向终端发送第一数据,以及第二接入网设备在第一时域资源上,向终端发送第一数据。
一种可能的设计方案中,反馈信息包括第一数据的第一标识,和/或,业务的数据中第二接入网设备未成功接收的第二数据的第二标识,以及,第二数据与第一数据不同。
可选地,第三方面所述的方法还可以包括:第一接入网设备根据第一标识和/或第二标识,确定第一数据已被第二接入网设备成功接收。
进一步的,第二标识为第二数据的序列号,第二数据的序列号用于表征第二数据的发送顺序。 第一接入网设备根据第二标识,确定第一数据已被第二接入网设备成功接收,包括:第一接入网设备根据第二数据的序列号,确定在第二数据之前发送的数据。其中,在第二数据之前发送的数据为已被第二接入网设备成功接收的第一数据。
进一步的,第三方面所述的方法还可以包括:第一接入网设备根据第一标识和/或第二标识,确定第二数据未被第二接入网设备成功接收;第一接入网设备在第二时域资源上,向终端发送第二数据。其中,第二时域资源是与第一时域资源的不同的时域资源。
进一步的,业务的数据的序列号用于表征业务的数据的发送顺序。在第二接入网设备接收到第一数据之后,以及,在第二接入网设备向第一接入网设备发送反馈信息之前,第三方面所述的方法还可以包括:第二接入网设备根据业务的数据的序列号,确定在接收到第一数据之后的传输时长内未成功接收的数据为第二数据。
一种可能的设计方案中,在第一接入网设备在第一时域资源上,向终端发送第一数据之前,第三方面所述的方法还可以包括:第一接入网设备确定第一数据的数据量已达到数据量阈值。其中,数据量阈值为触发第一接入网设备与第二接入网设备在相同的时域资源上发送数据的数据量。和/或,第一接入网设备确定第一接入网设备保存第一数据的时长已达到第一阈值时长。其中,第一阈值时长为第一数据在第一接入网设备上维持有效的时长。
一种可能的设计方案中,在第二接入网设备在第一时域资源上,向终端发送第一数据之前,第三方面所述的方法还可以包括:第二接入网设备确定第一数据的数据量已达到数据量阈值,其中,数据量阈值为触发第一接入网设备与第二接入网设备在相同的时域资源上发送数据的数据量。和/或,第二接入网设备确定第二接入网设备保存第一数据的时长已达到第二阈值时长,其中,第二阈值时长为第一数据在第二接入网设备上维持有效的时长。
一种可能的设计方案中,在第一接入网设备在第一时域资源上,向终端发送第一数据之前,第三方面所述的方法还可以包括:第一接入网设备向终端发送第一指示信息,并接收来自终端的信道测量结果。其中,第一指示信息用于触发终端对信道进行测量。信道是第一接入网设备与终端之间的信道,以及第二接入网设备与终端之间的信道。信道测量结果用于表征信道的状态。相应的,第一接入网设备在第一时域资源上,向终端发送第一数据,包括:第一接入网设备根据信道的状态,确定在第一时域资源上向终端发送第一数据。
可选地,在第一接入网设备在第一时域资源上,向终端发送第一数据之后,第三方面所述的方法还可以包括:第一接入网设备向终端发送第二指示信息,其中,第二指示信息用于指示终端暂停对信道进行测量。
可选地,在第一接入网设备在第一时域资源上向终端发送第一数据,以及第二接入网设备在第一时域资源上向终端发送第一数据之前,第三方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第三指示信息。第二接入网设备接收来自第一接入网设备的第三指示信息,并根据第三指示信息,发送参考信号。其中,第三指示信息用于指示第二接入网设备需要向终端发送参考信号,参考信号用于终端对信道进行测量。
进一步的,在第一接入网设备在第一时域资源上向终端发送第一数据,以及第二接入网设备在第一时域资源上向终端发送第一数据之后,第三方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第四指示信息,第二接入网设备接收来自第一接入网设备的第四指示信息。其中,第四指示信息用于指示第二接入网设备暂停发送参考信号。
一种可能的设计方案中,在第一接入网设备在第一时域资源上向终端发送第一数据,以及第二接入网设备在第一时域资源上向终端发送第一数据之前,第三方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第五指示信息,第一接入网设备向第二接入网设备发送第五指示信息。其中,第五指示信息用于触发第二接入网设备与第一接入网设备在相同的时域资源上发送数据。
可选地,在第一接入网设备在第一时域资源上向终端发送第一数据,以及第二接入网设备在第一时域资源上向终端发送第一数据之后,第三方面所述的方法还可以包括:第一接入网设备向第二接入网设备发送第六指示信息,第二接入网设备接收来自第一接入网设备的第六指示信息。其中,第六指示信息用于触发第二接入网设备暂停在与第一接入网设备相同的时域资源上发送数 据。
一种可能的设计方案中,在第一接入网设备向第二接入网设备发送终端的业务的数据之前,第三方面所述的方法还包括:第一接入网设备获取业务的数据,从而确定业务的数据为第一接入网设备和第二接入网设备需要在相同的时域资源上发送的数据。
此外,第三方面所述的方法的技术效果也可以参考第一方面和第二方面所述的方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:用于执行第一方面所述的方法的模块,例如收发模块和处理模块。例如,收发模块,用于指示该通信装置的收发功能,处理模块,用于执行该通信装置除收发功能以外的功能。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第四方面所述的通信装置的发送功能,接收模块用于实现第四方面所述的通信装置的接收功能。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第一方面所述的方法。
可以理解的是,第四方面所述的通信装置可以是网络设备,如第一接入网设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第四方面所述的通信装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:用于执行第二方面所述的方法的模块,例如收发模块和处理模块。例如,收发模块,用于指示该通信装置的收发功能,处理模块,用于执行该通信装置除收发功能以外的功能。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第五方面所述的通信装置的发送功能,接收模块用于实现第五方面所述的通信装置的接收功能。
可选地,第五方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第二方面所述的方法。
可以理解的是,第五方面所述的通信装置可以是网络设备,如第二接入网设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第五方面所述的通信装置的技术效果可以参考第二方面所述的方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:处理器,该处理器用于执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第六方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第六方面所述的通信装置与其他通信装置通信。
在一种可能的设计方案中,第六方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面或第二方面中任一方面所述的方法所涉及的计算机程序和/或数据。
在本申请实施例中,第六方面所述的通信装置可以为第一方面或第二方面中任一方面所述的网络设备,或者可设置于该网络设备中的芯片(系统)或其他部件或组件,或者包含该网络设备的装置。
此外,第六方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第七方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第七方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第七方面所述的通信装置可以为第一方面或第二方面中任一方面所述的网络设备,或者可设置于该网络设备中的芯片(系统)或其他部件或组件,或者包含该网络设备的装置。
此外,第七方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第八方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机程序,当该处理器执行该计算机程序时,以使该通信装置执行第一方面或第二方面中的任意一种实现方式所述的方法。
在一种可能的设计方案中,第八方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第八方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第八方面所述的通信装置可以为第一方面或第二方面中任一方面所述的网络设备,或者可设置于该网络设备中的芯片(系统)或其他部件或组件,或者包含该网络设备的装置。
此外,第八方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第九方面,提供一种芯片,该芯片包括:处理器,该处理器用于执行存储器中存储的计算机程序或指令,以使该芯片执行第一方面或第二方面中的任意一种实现方式所述的方法。
在一种可能的设计方案中,第九方面所述的芯片还可以包括输入输出接口。该输入输出接口可以用于第九方面所述的芯片的通信使用。
在一种可能的设计方案中,第九方面所述的芯片还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面或第二方面中任一方面所述的方法所涉及的计算机程序和/或数据。
此外,第九方面所述的通信装置的技术效果可以参考第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第十方面,提供一种通信系统。该通信系统包括:第一接入网设备以及第二接入网设备。其中,第一接入网设备用于执行第一方面所述的方法,第二接入网设备用于执行第二方面所述的方法。
第十一方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
第十二方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面或第二方面中任意一种可能的实现方式所述的方法。
附图说明
图1为4G系统的架构示意图;
图2为4G MBMS的架构示意图;
图3为基于4G MBMS的多站协作传输的场景示意图;
图4为本申请实施例提供的通信系统的架构示意图;
图5为本申请实施例提供的通信方法的流程示意图;
图6为本申请实施例提供的通信装置的结构示意图一;
图7为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
方便理解,下面先介绍本申请实施例所涉及的技术术语。
1、第4代(4th generation,4G)移动通信系统:
图1为4G系统的架构示意图,如图1所示,该4G系统或者说演进分组系统(evolved packet system,EPS)包括:终端、演进的通用移动通信系统(universal mobile telecommunications system,UMTS)陆地无线接入网(evolved UMTS territorial radio access network,E-UTRAN)设备、移动 管理实体(mobility management entity,MME)、服务网关(serving gateway,SGW)、分组数据网络(packet data network,PDN)网关(PDN gateway,PGW)、业务能力开放功能(service capability exposure function,SCEF)网元以及归属签约用户服务器(home subscriber server,HSS)等网元或设备。
其中,终端可以为具有收发功能的终端,或为可设置于该终端的芯片或芯片系统。该终端也可以称为用户设备(uesr equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station,MS)、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、蜂窝电话(cellular phone)、智能电话(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理电脑(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的路边单元(road side unit,RSU)等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。
终端通过LTE-Uu接入E-UTRAN设备。E-UTRAN设备可以为演进的节点B(eNodeB,eNB),或者下一代eNB(next generation-eNB,ng-eNB)。E-UTRAN设备主要用于为特定区域,如E-UTRAN设备的网络信号覆盖区域内的终端提供入网功能,使得上述终端可以通过E-UTRAN设备接入并附着到4G网络上。E-UTRAN设备通过S1-MME与MME通信,以及通过S1-U与SGW通信。MME网元主要负责移动性管理、承载管理、用户的鉴权认证、SGW选择等功能。不同的MME之间通过S10通信(图1中仅是示例性的给出一个MME),MME通过S6a与HSS通信,MME通过S11与SGW通信,MME通过T8与SCEF网元通信,SCEF网元与服务器通信,SGSN通过S3与MME通信,SGSN通过S4与SGW通信,SGW通过S5与PGW通信,PGW通过SGi接入服务器。
可选地,为了与2G/3G系统提供的通用分组无线业务(general packet radio service,GPRS)数据业务的后向兼容性,更好地实现4G系统与2G/3G系统的互通,如图1所示,该4G系统还可以包括第二代(the second generation,2G)/第三代(the third generation,3G)系统的UTRAN/全球移动通信系统(global system for mobile communication,GSM)或增强型数据速率GSM演进(enhanced data rate for GSM evolution,EDGE)无线接入网络(GSM/EDGE radio access network,GERAN)设备以及服务GPRS支持节点(serving GPRS support node,SGSN),它们参与了终端在4G系统与2G/3G系统之间进行的异系统移动,包括空闲态的移动和连接态的切换,在此统一说明,以下不再赘述。其中,终端从2G/3G系统接入时,终端通过UTRAN/GERAN设备与SGSN通信,UTRAN/GERAN设备通过S12与SGW通信,SGSN通过S3与MME通信,SGSN通过S4与SGW通信。
可选地,图1所示的4G系统还可能包括其他的网元,如4G系统中的策略与计费规则功能(policy and charging rules function,PCRF)网元等,本申请实施例对此不做具体限定。
2、4G多媒体广播多播业务(multicast broadcast multimedia service,MBMS)架构:
如图2所示,该4G MBMS架构中包括终端、接入网设备、用户面网元、多播广播服务中心(broadcast-multicast service centre,BM-SC)以及应用功能(application function,AF)。其中,BM-SC用于授权MBMS承载服务。当终端希望使用一个MBS服务时,网络侧通过用户面对终端进行MBS服务授权。具体的,终端通过4G无线接入网设备向用户面网元发送请求消息,该请求消息用于请求获取某个MBS服务的数据。用户面网元接收到该请求消息之后,向BM-SC发送授权请求,该授权请求用于请求授权终端获取该MBS服务的数据。BM-SC确定是否授权终端使用MBS服务后,向用户面网元返回授权结果,授权结果包括授权成功或授权失败。当授权结果为成功时,则用户面网元创建或激活用于传输MBS数据的承载。
3、多站协作传输:
多站协作传输可以理解为多个接入网设备可以在相同或相近的时刻,向终端发送携带相同数据的信号。此时,终端可以对接收的信号进行叠加合并,从而可以提高终端接收信号的信噪比,提升通信可靠性和容量。
以4G MBMS架构为例,如图3所示,BM-SC在接收来自AF的数据后,可以作为多站协作传输的控制锚点,通过多播广播单频网(multicast broadcast single frequency network,MBSFN)技术对数据进行处理。例如,BM-SC可以通过协议栈的同步(SYNC)协议的功能,为下行数据包添加携带时戳信息的SYNC包头,用以指示eNB需要在什么时刻向UE发送该下行数据包。MBMS网关可以将BM-SC处理过的下行数据包复制分发到多个eNB,以便多个eNB(如eNB1和eNB2)能够同时向UE发送这些下行数据包,以实现多站协作传输。
然而,BM-SC作为控制锚点,无法保证多个eNB一定能够同时向UE发送数据,导致多站协作的传输效率受到影响。例如,若BM-SC预设的时戳信息指示的空口传输时刻距离当前时刻的时间较短,则eNB可能因与BM-SC的链路拥塞而无法在时戳信息指示的传输时间收到待协作传输的数据包,也即出现丢包,导致无法完成协作传输,传输效率降低。
针对上述技术问题,本申请实施例提出了如下技术方案,用以提高多站协作传输下的传输效率。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如无线网络(Wi-Fi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第四代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G),如新空口(new radio,NR)系统,以及未来的通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。此外,本申请提到的“/”可以用于表示“或”的关系。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图4中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性的,图4为本申请实施例提供的通信方法所适用的一种通信系统的架构示意图。
如图4所示,该通信系统可以包括:终端,以及至少两个接入网设备。
终端可以参考上述关于终端的相关介绍,不再赘述。
接入网设备也可以称为无线接入网设备(radio access network,RAN)设备。RAN设备可以是为终端装置提供接入的设备。例如,RAN设备可以包括:下一代移动通信系统,例如6G的接入网设备,例如6G基站,或者在下一代移动通信系统中,该网络设备也可以有其他命名方式,其均涵盖在本申请实施例的保护范围以内,本申请对此不做任何限定。或者,RAN设备也可以包括5G,如新空口(new radio,NR)系统中的gNB,或,5G中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB、传输点(transmission and reception point,TRP或 者transmission point,TP)或传输测量功能(transmission measurement function,TMF)的网络节点,如基带单元(building base band unit,BBU),或,集中单元(centralized unit,CU)或分布单元(distributed unit,DU)、具有基站功能的RSU,或者有线接入网关,或者5G的核心网。或者,RAN设备还可以包括无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),无线中继节点、无线回传节点、各种形式的宏基站、微基站(也称为小站)、中继站、接入点、可穿戴设备、车载设备等等。
以第一接入网设备和第二接入网设备为例,第一接入网设备作为多站协作传输的控制锚点,在向第二接入网设备分流终端的业务的数据后,可以通过第二接入网设备的反馈,确定其已成功接收到至少部分数据,如第一数据。此时,第一接入网设备和第二接入网设备都获取到相同的第一数据,从而可以在相同的时域资源向终端发送第一数据,以避免因传输不同步而导致多站协作的传输效率受到影响。
下面将结合图5,通过方法实施例具体介绍上述通信系统中各网元/设备之间的交互流程。本申请实施例提供的通信方法可以适用于上述通信系统,并具体应用到上述通信系统中提到的各种场景,下面具体介绍。
图5为本申请实施例提供的通信方法的流程示意图一。该通信方法适用到上述通信系统,涉及终端,第一接入网设备以及第二接入网设备之间的交互。
具体的,如图5所示,该通信方法的流程如下:
S501,第一接入网设备向第二接入网设备发送终端的业务的数据。第二接入网设备接收到第一数据。
其中,终端的业务可以是任何可能的业务,如视频业务、音频业务等。该业务的数据可以来自网络。该网络可以是终端的归属网络,如家乡公用陆地移动网络(home public land mobile network,HPLMN),或拜访网络,如拜访公用陆地移动网络(visited public land mobile network,VPLMN),不做限定。也就是说,第一接入网设备事先可以获取该业务的数据,如通过网络中的用户面功能(user plane function,UPF)网元接收来自核心网的数据。
在接收到上述业务的数据后,第一接入网设备可以确定该业务的数据是否为需要协作传输的数据,也即,该业务的数据是否为第一接入网设备和第二接入网设备需要在相同的时域资源上发送的数据。也就是说,针对不同业务的数据,其是否采用多站协作传输可以由第一接入网设备根据业务的类型确定,以确保满足业务需求。例如,第一接入网设备可以根据协议栈中不同层级的承载的标识,确定该业务是否为需要协作传输的业务,从而确定该业务的数据是否为需要协作传输的数据。
例如,协议栈的一种示例可以如下表1所示。
表1
根据表1所示,第一接入网设备可以以某一个协议层作为分流点,以确定业务的数据是否需要协作传输。也就是说,第一接入网设备可以先通过比分流点更高层的协议,对业务的数据进行处理,但无法确定业务的数据是否需要协作传输,直至处理到分流点对应的协议,才能够确定业务的数据是否需要协作传输。例如,以RLC层或MAC层作为分流点为例,第一接入网设备可以根据上述业务的数据在RLC层的数据承载的标识,或者MAC层的逻辑信道的标识,确定该业务的类型,从而确定该业务是否为需要协作传输的业务。此外,第一接入网设备也可以以SDAP层或者PDCP层作为分流点,具体实现可以参考RLC层或MAC层,不再赘述。
如果上述业务不是需要协作传输的业务,则该业务的数据通常需要独立传输。
第一接入网设备可以将该业务的数据缓存到第一缓存器(buffer)中。第一缓存器可以用于缓存需要独立传输的数据。此后,在合适的传输时机,第一接入网设备可以不需要第二接入网设备 的协作,直接从第一缓存器中获取并向终端发送该业务的数据。
可以理解,在一种可能的实现方式中,对于第一接入网设备生成或者接收的控制信令,例如MAC控制元素(MAC control element,MAC CE)、无线资源控制(radio resource control,RRC)信令,PDCP控制协议数据单元(packet data unit,PDU),RLC控制PDU等。这些控制信令通常需要较快的发送至终端,不适合进行协作传输。因此,第一接入网设备也可以将这些控制信令置入第一缓存器,以实现独立传输。
或者,如果上述业务是需要协作传输的业务,则该业务的数据通常需要协作传输。
第一接入网设备可以将该业务的数据缓存到第二缓存器中。其中,第二缓存器可以用于缓存需要协作传输的数据。
可以理解,第一接入网设备采用缓存器来实现独立传输和协作传输仅为一种示例,不做限定,例如,第一接入网设备也可以设置两套线程,一套线程用于实现独立传输,另一套线程用于实现协助传输。
第一接入网设备还可以向第二接入网设备发送该业务的数据。示例性的,第一接入网设备可以利用通用分组无线业务(general packet radio service,GPRS)隧道协议-用户面部分(GPRS tunneling protocol-user plane,GTP-U),将该业务的数据复制一份,再通过回传链路向第二接入网设备发送该业务的数据,以实现数据分流。其中,在复制的过程中,第一接入网设备可以按照该业务的数据的发送顺序,为业务的数据添加对应的SN,再通过回传链路向第二接入网设备依次发送业务的数据。
作为一种示例:
业务的数据包括6个数据包,按照从先往后的发送顺序,分别是数据包#0、数据包#1、数据包#2…数据包#5。第一接入网设备可以在数据包#0封装的GTP-U报文头部中添加SN#0,在数据包#1封装的GTP-U报文头部中添加SN#1,依次类推,在数据包#5封装的GTP-U报文头部中添加SN#5,并通过回传链路向第二接入网设备依次发送数据包#0、数据包#1、数据包#2…数据包#5。
对于第二接入网设备而言,由于传输时延导致接收相较于发送具有一定滞后性,因此在第一接入网设备发送该业务的数据之后的一段时间内,第二接入网设备成功接收到的可能是该业务的数据中的至少部分数据,如第一数据。第二接入网设备可以缓存第一数据,如将第一数据置于第三缓存器中。例如,第二接入网设备可以根据第一数据的SN,将第一数据按照发送顺序进行排序,从而将排序后的数据置于第三缓存器中。该第三缓存器中与上述的第二缓存器类似,可以参考理解,不再赘述。
可以理解,第二接入网设备采用缓存器来实现协作传输仅为一种示例,不做限定,例如,第二接入网设备也可以通过设置一套线程来实现协助传输。
以及,第二接入网设备还可以根据第一数据的SN,确定在接收到第一数据之后的传输时长内是否有未成功接收的数据,如与第一数据不同的第二数据。其中,第一数据的SN可以用于表征第一数据的发送顺序。传输时长可以是第一接入网设备与第二接入网设备之间传输数据所允许的时长,如果应该在某个时间之前接收的数据,上述传输时长内仍未被接收,则第二接入网设备不再接受该数据,可认为发生丢包。也即,通过设置传输时长,第二接入网设备可以准确地确定哪些数据是因为还在传输没有被成功接收,而哪些数据是因为丢包而没有被成功接收,从而可以避免误判断。
例如,第二接入网设备可以周期性地获取当前已成功接收的所有数据(也即第一数据)的SN,并从中确定最大的SN和最小的SN,以最大的SN和最小的SN作为两个端点,确定SN序列,记为SN序列#1。第二接入网设备可以根据上述所有数据的SN,确定SN序列#1中是否有SN对应的数据当前还未接收到,记为待接收的数据。也即,待接收的数据是当前应当接收但实际未接收的数据。对于待接收的数据而言,第二接入网设备可以在后续的传输时长内,确定是否接收到待接收的数据。此时,如果仍没有接收到待接收的数据,则第二接入网设备确定该数据为未被成功接收的数据,也即为第二数据。如果接收到待接收的数据,则第二接入网设备确定该数据为成功接收的数据。
继续上述示例:
在周期#0内,第二接入网设备确定当前接收到的数据包#0、数据包#1和数据包#2,其中,最大的SN为SN#2,最小的SN为SN#0,SN序列#1为SN#0→SN#1→SN#2。此时,没有待接收的数据,也即周期#0内没有出现丢包,第二接入网设备缓存数据包#0、数据包#1和数据包#2。之后,在周期#1内,第二接入网设备确定当前接收到的数据包#0、数据包#1、数据包#2、数据包#4和数据包#5,其中,最大的SN为SN#5,最小的SN为SN#0,SN序列#1为SN#0→SN#1→SN#2→SN#4→SN#5。此时,待接收的数据为SN#3对应的数据包。第二接入网设备可以在后续的传输时长内,确定是否接收到SN#3对应的数据包。如果接收到SN#3对应的数据包,也即数据包#3,则第二接入网设备可以缓存数据包#3、数据包#4和数据包#5。如果没有接收到SN#3对应的数据包,则第二接入网设备确定SN#3对应的数据包为未成功接收的数据,也即,SN#3对应的数据包丢包,此时,仅缓存数据包#4和数据包#5。
S502,第二接入网设备根据第一数据,向第一接入网设备发送反馈信息。第一接入网设备接收来自第二接入网设备的反馈信息。
其中,反馈信息可以用于确定第一数据已被第二接入网设备成功接收,如包括:第一数据的第一标识,和/或,第二数据的第二标识。其中,第一标识可以是第一数据的SN,该SN可以表征第一数据的发送顺序,用以第一接入网设备据此确定第二接入网设备的接收情况。同理,第二标识可以是第二数据的SN,该SN可以表征第二数据的发送顺序,用以第一接入网设备据此确定第二接入网设备的丢包情况。
可选地,反馈信息还可以包括指示信元,用以指示反馈信息中的SN是已成功接收的数据的SN,也即第一数据的SN,还是未成功接收的数据的SN,也即第二数据的SN。当然,如果反馈信息默认包含已成功接收的数据的SN,或者默认包含未成功接收的数据的SN,则反馈信息也可以不包含指示信元。
本申请实施例中,第二接入网设备发送反馈信息的方式可以有多种,下面具体介绍。
方式1:
第二接入网设备可以周期性地向第一接入网设备发送反馈信息,每个周期发送的反馈信息可以包括:第二接入网设备在该周期内已成功接收的数据的SN,如该周期内已缓存的数据的SN,和/或,第二接入网设备在该周期内未成功接收的数据的SN。在此基础上,第一数据可以是第二接入网设备在一个或多个周期内已成功接收的数据,第二数据可以是第二接入网设备在一个或多个周期内未成功接收的数据。
继续上述示例:
第二接入网设备仅反馈在每个周期内已成功接收的数据的SN。此时,在周期#0内,第二接入网设备未出现丢包,可以发送反馈信息#0,包括SN#0、SN#1以及SN#2。之后,在周期#1中,第二接入网设备出现丢包,但没有全部丢包,因此也可以发送反馈信息#1,包括SN#4和SN#5。
或者,第二接入网设备仅反馈在每个周期内未成功接收的数据的SN。此时,在周期#0中,第二接入网设备未出现丢包,可以不发送反馈信息#0。之后,在周期#1中,第二接入网设备出现丢包,因此可以发送反馈信息#1,包括SN#3。
或者,第二接入网设备不仅反馈在每个周期内已成功接收的数据的SN,也反馈在每个周期内未成功接收的数据的SN。此时,在周期#0中,第二接入网设备可以发送反馈信息#0,包括:在周期#1内已成功接收的数据的SN,也即SN#0、SN#1以及SN#2,以及在周期#0内未成功接收的数据的SN,该SN为空。之后,在周期#1中,第二接入网设备可以发送反馈信息#1,包括:在周期#1内已成功接收的数据的SN,也即SN#4和SN#5,以及在周期#1内未成功接收的数据的SN,也即SN#3。
可以看出,如果第二接入网设备仅反馈在每个周期内已成功接收的数据的SN,则第二接入网设备在某个周期内没有成功接收任何数据的情况下,第二接入网设备可以不发送针对该周期的反馈信息。同理,如果第二接入网设备仅反馈在每个周期内未成功接收的数据的SN,则第二接入网设备在某个周期内成功接所有数据的情况下,第二接入网设备也可以不发送针对该周期的反馈信息。但是,如果第二接入网设备不仅反馈在每个周期内已成功接收的数据的SN,还反馈在每个周期内未成功接收的数据的SN,则第二接入网设备针对每个周期都需要发送反馈信息。
此外,第二接入网设备发送反馈信息的周期,与上述501中第二接入网设备获取SN的周期可以相同或不同,对此不做具体限定。
方式2:
第二接入网设备可以在出现丢包时,向第一接入网设备发送反馈信息。此时,反馈信息可以包括:第二接入网设备在出现丢包时已成功接收的数据的SN,或者说在出现丢包时已缓的数据的SN,和/或,第二接入网设备已丢包的数据的SN,或者说未成功接收的数据的SN。在此基础上,第一数据可以是第二接入网设备在出现丢包时已成功接收的数据,第二数据可以是第二接入网设备已丢包的数据。
继续上述示例:
第二接入网设备在确定SN#3对应的数据包丢包时,向第一接入网设备发送反馈信息,包括:在SN#3对应的数据包丢包之前已成功接收的数据的SN,也即SN#0、SN#1、SN#2、SN#4以及SN#5,和/或,已丢包的数据包的SN,也即,SN#3。
方式3:
第二接入网设备发送反馈信息的时机可以由第一接入网设备触发,也即,第二接入网设备可以根据第一接入网设备的指示,向第一接入网设备发送反馈信息,该反馈信息可以包括:在接收到第一接入网设备的指示时,第二接入网设备已成功接收的数据的SN,和/或,第二接入网设备未成功接收的数据的SN。在此基础上,第二接入网设备在接收到第一接入网设备的指示时,已成功接收的数据可以理解为第一数据,未成功接收的数据可以理解为第二数据。
继续上述示例:
第二接入网设备在确定SN#3对应的数据包丢包后,接收到第一接入网设备的指示,从而向第一接入网设备发送反馈信息#1。反馈信息#1包括:在接收到第一接入网设备的指示时已成功接收的数据的SN,也即SN#0、SN#1、SN#2、SN#4以及SN#5,和/或,未成功接收的数据的SN,也即,SN#3。
方式4:第二接入网设备针对已成功接收的每一份数据(或者说每一个数据包),都可以向第一接入网设备发送该数据对应的一个反馈信息。此时,反馈信息可以有一个或多个,每个反馈信息可以包括第二接入网设备已成功接收的一份数据的SN。此时,第一数据可以包括一份或多份数据,或者说一个或多个数据包。
继续上述示例:
第二接入网设备在成功接收到数据包#0、数据包#1以及数据包#2时,分别向第一接入网设备发送携带SN#0的反馈信息#0、携带SN#1的反馈信息#1以及携带SN#2的反馈信息#2。之后,由于第二接入网设备未成功接收到SN#3对应的数据包,第二接入网设备可以不发送反馈信息#3。之后,第二接入网设备在成功接收到数据包#4以及数据包#5时,分别向第一接入网设备发送携带SN#4的反馈信息#4,以及携带SN#5的反馈信息#5。可选地,当第二接入网确定SN#3对应的数据包已丢包时,也可以发送反馈信息#3,用以指示SN#3对应的数据包已丢包。
对于第一接入网设备而言,第一接入网设备可以根据第一数据的第一标识和/或第二数据的第二标识,确定第一数据已被第二接入网设备成功接收,以及第二数据未被第二接入网设备成功接收。下面具体介绍。
情况1:
第一接入网设备在接收到第一数据的第一标识的情况下,第一接入网设备可以根据第一标识,确定第一数据已被第二接入网设备成功接收,以及第二数据未被第二接入网设备成功接收。例如,第一接入网设备可以根据第一数据的SN,确定该SN对应的数据为已被第二接入网设备成功接收的数据,也即第一数据。在此基础上,第一接入网设备可以从第一数据的SN中确定最大的SN和最小的SN,以最大的SN和最小的SN作为两个端点,确定SN序列,记为SN序列#2。第一接入网设备可以确定SN序列#2的SN是否与第一数据的SN相同。如果SN序列#2的SN与第一数据的SN不同,则SN序列#2中与第一数据不同的SN即为未被第二接入网设备成功接收的数据的SN,也即第二数据的SN。这样,第一接入网设备可以根据该不同的SN,确定第二数据未被第二接入网设备成功接收。如果SN序列#2的SN与第一数据的SN相同,则表示目前还没有第二接入 网设备未成功接收的数据。
可以理解,由于第一接入网设备可以按一定顺序发送业务的数据,这样,第二接入网设备即使只反馈成功接收的数据的序列号,第一接入网设备也能够根据发送顺序,确定哪些数据未被第二接入网设备成功接收,以进一步降低反馈信息的开销,提高通信效率。
继续上述示例:
第一接入网设备从接收到的反馈信息中获取SN#0、SN#1、SN#2、SN#4以及SN#5,其中,最大的SN为SN#5,最小的SN为SN#0,SN序列#2为SN#0→SN#1→SN#2→SN#3→SN#4→SN#5。第一接入网设备确定SN序列#2中的SN#3与第一接入网设备从反馈信息中获取到的SN不同,从而确定SN#3对应的数据包#3未被第二接入网设备成功接收。
情况2:
第一接入网设备在接收到第二数据的第二标识的情况下,第一接入网设备可以根据第二标识,确定第一数据已被第二接入网设备成功接收,以及第二数据未被第二接入网设备成功接收。例如,第一接入网设备可以根据第二数据的SN,确定该SN对应的数据为未被第二接入网设备成功接收的数据,也即第二数据。在此基础上,第一接入网设备可以根据第二数据的SN,确定在第二数据之前发送的数据。其中,在第二数据之前发送的数据即为已被第二接入网设备成功接收的第一数据,也即,确定第一数据已被第二接入网设备成功接收。此外,对于第二数据之后发送的数据,如果第一接入网设备在一定时间内没有接收到第二接入网设备针对这些数据反馈的SN,则第一接入网设备也可以确定这些数据已被第二接入网设备成功接收。
可以理解,由于第一接入网设备可以按一定顺序发送业务的数据,这样,第二接入网设备即使只反馈未成功接收的数据的序列号,第一接入网设备也能够根据发送顺序,确定哪些数据已被第二接入网设备成功接收,以进一步降低反馈信息的开销,提高通信效率。
继续上述示例:
第一接入网设备可以从接收到的反馈信息中获取SN#3,从而确定SN#3对应的数据包#3未被第二接入网设备成功接收,以及SN#3之前的SN#0、SN#1和SN#2对应的数据包#0、数据包#1和数据包#2已被第二接入网设备成功接收。此后,第一接入网设备未接收到第二接入网设备反馈的SN#4和SN#5,从而确定数据包#4和数据包#5已被第二接入网设备成功接收。
情况3:
第一接入网设备在接收到第一数据的第一标识和第二数据的第二标识的情况下,第一接入网设备可以直接根据第一标识和第二标识,确定第一数据已被第二接入网设备成功接收,以及第二数据未被第二接入网设备成功接收,不再赘述。
可以理解,由于第一接入网设备事先已确定业务的数据需要多站协作传输(参见S501),因此,第一接入网设备可以在确定第一数据被第二接入网设备成功接收的情况下,触发执行S503。
S503,第一接入网设备在第一时域资源上,向终端发送第一数据。以及,第二接入网设备在第一时域资源上,向终端发送第一数据。
其中,第一时域资源可以是一个或多个时间单元,该时间单元可以是如下一种或多项:符号(symbol)、时隙(slot)、迷你时隙(mini-slot)、子帧(subframe)、无线帧等(radio frame),不做限定。第一时域资源可以是静态的资源,如第一接入网设备和第二接入网设备事先约定好使用的时域资源,或者也可以是动态的资源,如第一接入网设备和第二接入网设备动态确定使用的时域资源,对此不做具体限定。
可以理解,由于第一接入网设备事先已通过高层协议(作为分流点的协议层),对第一数据进行过处理,从而实现数据分流(参见S501),因此,在S503中,第一接入网设备可以直接通过底层协议(分流点以下层级的协议),对第一数据进行处理,以实现将第一数据承载在第一时域资源上,从而向终端发送第一数据。例如,以RLC层作为分流点为例,第一接入网设备可以通过MAC层的协议以及PHY层的协议,对第一数据进行处理。此外,由于第二接入网设备不感知比分流点更高层的协议,因此在S503中,第二接入网设备也可以直接通过底层协议(分流点以下层级的协议),对第一数据进行处理,以实现将第一数据承载在第一时域资源上,从而向终端发送第一数据。
此外,对于第一接入网设备而言,第一时域资源的时域位置相对于参考时域位置可以存在一定的时域偏移,记为时域偏移#1。对于第二接入网设备而言,第一时域资源的时域位置相对于参考时域位置也可以存在一定的时域偏移,记为时域偏移#2。时域偏移#1与时域偏移#2可以相同,或者也可以不同,对此不做具体限定,其能够保证第一接入网设备和第二接入网设备发送的第一数据同时(或较为接近的时间)到达终端即可。
还可以理解,在协助传输的情况下,第一接入网设备可以调度的数据包括其接收到的业务的数据,而第二接入网设备可以调度的数据仅包括其接收到的第一数据,此时,如果不对第一接入网设备的调度行为进行约束,则第一接入网设备可能会调度更多的数据用于下行传输,从而导致协助传输不同步,影响终端的接收性能。因此,应当约束第一接入网设备的调度行为,也即,第一接入网设备也只能调度公共部分的数据,如第一数据,从而保证第一接入网设备与第二接入网设备在进行协助传输时,其待传输的数据内容一致。
综上,第一接入网设备作为多站协作传输的控制锚点,在向第二接入网设备分流终端的业务的数据后,可以通过第二接入网设备的反馈,确定其已成功接收到至少部分数据,如第一数据。此时,第一接入网设备和第二接入网设备都获取到相同的第一数据,从而可以在相同的时域资源向终端发送第一数据,以避免因传输不同步而导致多站协作的传输效率受到影响。
结合上述实施例,第一种可能的设计方案中:
在S502之后,以及在S503之前,第一接入网设备还可以确定第一数据的数据量是否已达到数据量阈值,该数据量阈值可以为触发第一接入网设备与第二接入网设备在相同的时域资源上发送数据的数据量。如果第一数据的数据量未达到数据量阈值,则第一接入网设备不触发执行S503,以避免因单次发送的数据太少而导致传输开销增大。否则,如果第一数据的数据量已达到数据量阈值,则第一接入网设备触发执行S503。同时,第二接入网设备也可以确定第一数据的数据量是否已达到上述的数据量阈值。如果第一数据的数据量未达到数据量阈值,则第二接入网设备也不触发执行S503,否则,第二接入网设备触发执行S503。
和/或;
在S502之后,以及在S503之前,第一接入网设备还可以确定第一接入网设备保存第一数据的时长是否已达到第一阈值时长,该第一阈值时长可以为第一数据在第一接入网设备上维持有效的时长。如果第一接入网设备保存第一数据的时长未达到第一阈值时长,则第一接入网设备不触发执行S503。否则,如果第一接入网设备保存第一数据的时长已达到第一阈值时长,则第一接入网设备触发执行S503。也即,第一接入网设备需要在第一数据失效之前发送第一数据,以便因数据失效而导致终端的业务受到影响。同时,第二接入网设备也可以确定第二接入网设备保存第一数据的时长是否已达到第二阈值时长,该第二阈值时长可以为第一数据在第二接入网设备上维持有效的时长。如果第二接入网设备保存第一数据的时长未达到第二阈值时长,则第一接入网设备不触发执行S503,否则,第二接入网设备触发执行S503。
结合上述实施例,第二种可能的设计方案中:
在S503之前,该方法还包括:S504,第一接入网设备向终端发送第一指示信息,终端接收来自第一接入网设备的第一指示信息。
其中,第一接入网设备可以在S503之前的任意传输时机,向终端发送第一指示信息,对此不做具体限定。该第一指示信息可以用于触发终端对信道进行测量。该信道可以是第一接入网设备与终端之间的信道,以及第二接入网设备与终端之间的信道,记为综合信道。因此,在发送第一指示信息之后,第一接入网设备和第二接入网设备都可以向终端发送参考信号,如信道状态信息参考信号(channel state information reference signal,CSI-RS)。
终端可以根据第一指示信息的指示接收到参考信号,从而根据参考信号执行信道测量,以向第一接入网设备和第二接入网设备分别发送信道测量结果。其中,该信道测量结果可以用于表征综合信道的状态,如信道状态信息(channel state information,CSI)。如此,在S503中,第一接入网设备可以根据综合信道的状态,确定在第一时域资源上向终端发送第一数据,以确保第一接入网设备与终端之间的传输与信道状态匹配,从而能够提高通信效率。同理,第二接入网设备也可以根据综合信道的状态,确定在第一时域资源上向终端发送第一数据,以确保第二接入网设备 与终端之间的传输与信道状态匹配,从而能够提高通信效率。
结合上述实施例,第三种可能的设计方案中:
在S503之后,该方法还包括:S505,第一接入网设备向终端发送第二指示信息,终端接收来自第一接入网设备的第二指示信息。
第二指示信息可以用于指示终端暂停或停止对信道进行测量。例如,随着多站协作传输的进行,第一接入网设备与第二接入网设备共同保存的数据的数据量可能会减少到无法满足多站协作传输的数据量要求,如小于上述的数据量阈值,或者减少到没有数据。此时,第一接入网设备与第二接入网设备不需要再进行多站协作传输,或者说,不需要继续在相同的时域资源上发送数据,因此,第一接入网设备可以向终端发送第二指示信息,以避免终端因继续执行冗余的信道测量而带来不必要的开销。
结合上述实施例,第四种可能的设计方案中:
在S503之前,该方法还包括:S506,第一接入网设备向第二接入网设备发送第三指示信息,第二接入网设备接收来自第一接入网设备的第三指示信息。
方式A:在第二接入网设备默认发送参考信号的情况下,第三指示信息可以用于指示参考信号的时频位置,也即第二接入网设备具体在哪些时频资源上发送参考信号可以由第一接入网设备通过第三指示信息动态指示,例如,第三指示信息可以包括这些时频资源的资源索引。
方式B:在第二接入网设备默认在提前配置或提前约定的时频资源上发送参考信号的情况下,第三指示信息可以用于指示第二接入网设备需要向终端发送参考信号,也即,第二接入网设备是否发送参考信号可以由第一接入网设备通过第三指示信息动态指示,以避免因第二接入网设备未发送参考信号而导致信道测量失败。
方式C:第三指示信息可以用于指示第二接入网设备需要向终端发送参考信号,并指示参考信号的时频位置,也即第二接入网设备是否发送参考信号,以及具体在哪些时频资源上发送参考信号都可以由第一接入网设备通过第三指示信息动态指示,具体实现可以参考上述方式A和方式B的相关介绍,不再赘述。
可以理解,上述的方式A至方式C仅为一些示例,例如,第一接入网设备与第二接入网设备也可以默认发送参考信号,并且默认在提前配置或提前约定的时频资源上发送参考信号。
结合上述实施例,第五种可能的设计方案中:
在S503之后,该方法还包括:S507,第一接入网设备也向第二接入网设备发送第四指示信息,第二接入网设备接收来自第一接入网设备的第四指示信息。
如果第一接入网设备与第二接入网设备不需要再进行多站协作传输,则第一接入网设备可以向第二接入网设备发送第四指示信息,用以指示第二接入网设备暂停或停止对信道发送参考信号,以避免第二接入网设备因继续发送冗余的参考信号而带来不必要的开销。
结合上述实施例,第六种可能的设计方案中:
在S503之前,该方法还包括:S508,第一接入网设备向第二接入网设备发送第五指示信息,第二接入网设备可以接收来自第一接入网设备的第五指示信息。
其中,第五指示信息可以用于触发第二接入网设备与第一接入网设备在相同的时域资源上发送数据,也即,触发执行S503。也即,第二接入网设备也可以根据第一接入网设备的指示,触发启动多站协作传输,以实现按需执行多站协作传输。
可以理解,S508为可选步骤,例如,第二接入网设备也可以在向第一接入网设备发送反馈信息后,自行触发启动多站协作传输,也即,自行触发执行S503,这种情况下,S508不执行。此外,上述的第三指示信息可以与上述的第五指示信息是同一指示信息,也可以是不同的指示信息,不做限定。
结合上述实施例,第七种可能的设计方案中:
在S503之后,该方法还包括:S509,第一接入网设备向第二接入网设备发送第六指示信息,第二接入网设备接收来自第一接入网设备的第六指示信息。
例如,如果第一接入网设备与第二接入网设备不需要再进行多站协作传输,则第一接入网设备可以向第二接入网设备发送第六指示信息,用以触发第二接入网设备暂停或停止在与第一接入 网设备相同的时域资源上发送数据,也即,暂停或停止多站协作传输,以避免第二接入网设备因继续发送冗余的数据而带来不必要的开销。
可以理解,第四指示信息和第六指示信息可以是同一指示信息,或者也可以是不同的指示信息,不做限定。
还可以理解,上述各种设计方案也可以组合实施。例如,第一接入网设备可以根据第一数据的数据量已达到数据量阈值,和/或第一接入网设备保存第一数据的时长已达到第一阈值时长,触发发送上述的第一指示信息、第三指示信息、或第五指示信息中的一项或多项信息。
结合上述实施例,第八种可能的设计方案中:
对于第一接入网设备未成功接收的第二数据,第一接入网设备可以将第二数据从第二缓存器转移到第一缓存器中,以便后续能力独立向终端发送该第二数据。例如,第一接入网设备可以在与第一时域资源不同的第二时域资源上,向终端发送第二数据。也就是说,在第二接入网设备未能成功接收某些数据的情况下,第一接入网设备需要及时将这些数据调整为独立传输,以避免因在同一时域资源上发送的数据不同而导致终端无法成功接收。
以上结合图5详细说明了本申请实施例提供的通信方法。以下结合图6-图7详细说明用于执行本申请实施例提供的通信方法的通信装置。
图6是本申请实施例提供的通信装置的结构示意图一。示例性的,如图6所示,通信装置600包括:收发模块601和处理模块602。为了便于说明,图6仅示出了该通信装置的主要部件。
一些实施例中,通信装置600可适用于图4中所示出的通信系统中,执行上述图5所示的方法中的第一接入网设备的功能。
其中,收发模块601,用于向第二接入网设备发送终端的业务的数据,并接收来自第二接入网设备的反馈信息。其中,反馈信息用于确定第一数据已被第二接入网设备成功接收,第一数据是业务的数据中的至少部分数据。之后,处理模块602,用于在第一时域资源上,控制收发模块601向终端发送第一数据。其中,第一时域资源还用于第二接入网设备向终端发送第一数据。
一种可能的设计方案中,反馈信息包括第一数据的第一标识,和/或,业务的数据中第二接入网设备未成功接收的第二数据的第二标识,以及,第二数据与第一数据不同。处理模块602,还用于根据第一标识和/或第二标识,确定第一数据已被第二接入网设备成功接收。
可选地,第二标识为第二数据的序列号,第二数据的序列号用于表征第二数据的发送顺序。处理模块602,还用于根据第二数据的序列号,确定在第二数据之前发送的数据。其中,在第二数据之前发送的数据为已被第二接入网设备成功接收的第一数据。
可选地,处理模块602,还用于根据第一标识和/或第二标识,确定第二数据未被第二接入网设备成功接收;处理模块602,还用于在第二时域资源上,控制收发模块601向终端发送第二数据。其中,第二时域资源是与第一时域资源的不同的时域资源。
一种可能的设计方案中,处理模块602,还用于在第一时域资源上,向终端发送第一数据之前,确定第一数据的数据量已达到数据量阈值。其中,数据量阈值为触发通信装置600与第二接入网设备在相同的时域资源上发送数据的数据量。和/或,理模块602,还用于在第一时域资源上,向终端发送第一数据之前,确定通信装置600保存第一数据的时长已达到第一阈值时长。其中,第一阈值时长为第一数据在通信装置600上维持有效的时长。
一种可能的设计方案中,收发模块601,还用于在第一时域资源上,向终端发送第一数据之前,向终端发送第一指示信息,并接收来自终端的信道测量结果。其中,第一指示信息用于触发终端对信道进行测量。信道是通信装置600与终端之间的信道,以及第二接入网设备与终端之间的信道。信道测量结果用于表征信道的状态。相应的,处理模块602,还用于根据信道的状态,确定在第一时域资源上向终端发送第一数据。
可选地,收发模块601,还用于在第一时域资源上,向终端发送第一数据之后,向终端发送第二指示信息,其中,第二指示信息用于指示终端暂停对信道进行测量。
可选地,收发模块601,还用于在第一时域资源上,向终端发送第一数据之前,向第二接入网设备发送第三指示信息。其中,第三指示信息用于指示第二接入网设备需要向终端发送参考信号,参考信号用于终端对信道进行测量。
进一步的,收发模块601,还用于在在第一时域资源上,向终端发送第一数据之后,向第二接入网设备发送第四指示信息,其中,第四指示信息用于指示第二接入网设备暂停发送参考信号。
一种可能的设计方案中,收发模块601,还用于在第一时域资源上,向终端发送第一数据之前,向第二接入网设备发送第五指示信息,其中,第五指示信息用于触发第二接入网设备与通信装置600在相同的时域资源上发送数据。
可选地,收发模块601,还用于在第一时域资源上,向终端发送第一数据之后,向第二接入网设备发送第六指示信息,其中,第六指示信息用于触发第二接入网设备暂停在与通信装置600相同的时域资源上发送数据。
一种可能的设计方案中,收发模块601,还用于向第二接入网设备发送终端的业务的数据之前,获取业务的数据。处理模块602,还用于确定业务的数据为通信装置600和第二接入网设备需要在相同的时域资源上发送的数据。
可选地,收发模块601可以包括发送模块(图6中未示出)和接收模块(图6中未示出)。其中,发送模块用于实现通信装置600的发送功能,接收模块用于实现通信装置600的接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当该处理模块602执行该程序或指令时,使得该通信装置600可以执行上述方法中图5所示的方法中第一接入网设备的功能。
可以理解,通信装置600可以是网络设备,如第一接入网设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置600的技术效果可以参考图5所示的通信方法的技术效果,此处不再赘述。
一些实施例中,通信装置600可适用于图4中所示出的通信系统中,执行上述图5所示的方法中的第二接入网设备的功能。
其中,收发模块601,用于接收到第一数据。处理模块602,用于根据第一数据,控制收发模块601向第一接入网设备发送反馈信息,其中,第一数据是终端的业务的数据中的至少部分数据,业务的数据是第一接入网设备向通信装置600发送的数据,反馈信息用于确定第一数据已被通信装置600成功接收。如此,处理模块602,还用于在第一时域资源上,控制收发模块601向终端发送第一数据。其中,第一时域资源还用于第一接入网设备向终端发送第一数据。
一种可能的设计方案中,反馈信息可以包括第一数据的第一标识,和/或,业务的数据中通信装置600未成功接收的第二数据的第二标识,第二数据与第一数据不同。
可选地,第一数据的序列号用于表征第一数据的发送顺序。处理模块602,还用于在收发模块601接收到第一数据之后,以及向第一接入网设备发送反馈信息之前,根据第一数据的序列号,确定在接收到第一数据之后的传输时长内未成功接收的数据为第二数据。其中,传输时长可以是第一接入网设备与通信装置600之间传输数据所允许的时长。
一种可能的设计方案中,处理模块602,还用于在第一时域资源上,向终端发送第一数据之前,确定第一数据的数据量已达到数据量阈值,其中,数据量阈值为触发第一接入网设备与通信装置600在相同的时域资源上发送数据的数据量。和/或,处理模块602,还用于在第一时域资源上,确定通信装置600保存第一数据的时长已达到第二阈值时长,其中,第二阈值时长为第一数据在通信装置600上维持有效的时长。
一种可能的设计方案中,收发模块601,还用于在第一时域资源上,向终端发送第一数据之前,接收来自第一接入网设备的第三指示信息。处理模块602,还用于根据第三指示信息,控制收发模块601发送参考信号。其中,第三指示信息用于指示通信装置600需要发送参考信号。参考信号用于终端对信道进行测量。信道是第一接入网设备与终端之间的信道,以及通信装置600与终端之间的信道。
可选地,收发模块601,还用于在第一时域资源上,向终端发送第一数据之后,接收来自第一接入网设备的第四指示信息。其中,第四指示信息用于指示通信装置600暂停发送参考信号。
一种可能的设计方案中,收发模块601,还用于在第一时域资源上,向终端发送第一数据之前,接收来自第一接入网设备的第五指示信息。其中,第五指示信息用于触发通信装置600与第一接入网设备在相同的时域资源上发送数据。
可选地,收发模块601,还用于在第一时域资源上,向终端发送第一数据之后,接收来自第一接入网设备的第六指示信息。其中,第六指示信息用于触发通信装置600暂停在与第一接入网设备相同的时域资源上发送数据。
可选地,收发模块601可以包括发送模块(图6中未示出)和接收模块(图6中未示出)。其中,发送模块用于实现通信装置600的发送功能,接收模块用于实现通信装置600的接收功能。
可选地,通信装置600还可以包括存储模块(图6中未示出),该存储模块存储有程序或指令。当该处理模块602执行该程序或指令时,使得该通信装置600可以执行上述方法中图5所示的方法中第二接入网设备的功能。
可以理解,通信装置600可以是网络设备,如第二接入网设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置600的技术效果可以参考图5所示的通信方法的技术效果,此处不再赘述。
图7为本申请实施例提供的通信装置的结构示意图二。示例性地,该通信装置可以是终端,也可以是可设置于终端的芯片(系统)或其他部件或组件。如图7所示,通信装置700可以包括处理器701。可选地,通信装置700还可以包括存储器702和/或收发器703。其中,处理器701与存储器702和收发器703耦合,如可以通过通信总线连接。此外,通信装置700也可以是芯片,如包括处理器701,此时,收发器可以是芯片的输出输入接口。
下面结合图7对通信装置700的各个构成部件进行具体的介绍:
其中,处理器701是通信装置700的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器701是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器701可以通过运行或执行存储在存储器702内的软件程序,以及调用存储在存储器702内的数据,执行通信装置700的各种功能,例如执行上述5所示的通信方法。
在具体的实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置700也可以包括多个处理器,例如图7中所示的处理器701和处理器704。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
其中,所述存储器702用于存储执行本申请方案的软件程序,并由处理器701来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器702可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器702可以和处理器701集成在一起,也可以独立存在,并通过通信装置700的接口电路(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
收发器703,用于与其他通信装置之间的通信。例如,通信装置700为终端,收发器703可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置700为网络设备,收发器703可以用于与终端通信,或者与另一个网络设备通信。
可选地,收发器703可以包括接收器和发送器(图7中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器703可以和处理器701集成在一起,也可以独立存在,并通过通信装置700 的接口电路(图7中未示出)与处理器701耦合,本申请实施例对此不作具体限定。
可以理解的是,图7中示出的通信装置700的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置700的技术效果可以参考上述方法实施例所述的方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单 元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一接入网设备向第二接入网设备发送终端的业务的数据;
    所述第一接入网设备接收来自所述第二接入网设备的反馈信息,其中,所述反馈信息用于确定第一数据已被所述第二接入网设备成功接收,所述第一数据是所述业务的数据中的至少部分数据;
    所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据,其中,所述第一时域资源还用于所述第二接入网设备向所述终端发送所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述反馈信息包括所述第一数据的第一标识,和/或,所述业务的数据中所述第二接入网设备未成功接收的第二数据的第二标识,所述第二数据与所述第一数据不同,所述方法还包括:
    所述第一接入网设备根据所述第一标识和/或所述第二标识,确定所述第一数据已被所述第二接入网设备成功接收。
  3. 根据权利要求2所述的方法,其特征在于,所述第二标识为所述第二数据的序列号,所述序列号用于表征所述第二数据的发送顺序,所述第一接入网设备根据所述第二标识,确定所述第一数据已被所述第二接入网设备成功接收,包括:
    所述第一接入网设备根据所述第二数据的序列号,确定在所述第二数据之前发送的数据,其中,在所述第二数据之前发送的数据为已被所述第二接入网设备成功接收的所述第一数据。
  4. 根据权利要求2或3所述的方法,其特征在于,所述方法还包括:
    所述第一接入网设备根据所述第一标识和/或所述第二标识,确定所述第二数据未被所述第二接入网设备成功接收;
    所述第一接入网设备在第二时域资源上,向所述终端发送所述第二数据,其中,所述第二时域资源是与所述第一时域资源的不同的时域资源。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第一接入网设备确定所述第一数据的数据量已达到数据量阈值,其中,所述数据量阈值为触发所述第一接入网设备与所述第二接入网设备在相同的时域资源上发送数据的数据量;和/或,
    所述第一接入网设备确定所述第一接入网设备保存所述第一数据的时长已达到第一阈值时长,其中,所述第一阈值时长为所述第一数据在所述第一接入网设备上维持有效的时长。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第一接入网设备向所述终端发送第一指示信息,其中,所述第一指示信息用于触发所述终端对信道进行测量,所述信道是所述第一接入网设备与所述终端之间的信道,以及所述第二接入网设备与所述终端之间的信道;
    所述第一接入网设备接收来自所述终端的信道测量结果,其中,所述信道测量结果用于表征所述信道的状态;
    相应的,所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据,包括:
    所述第一接入网设备根据所述信道的状态,确定在所述第一时域资源上向所述终端发送所述第一数据。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之后,所述方法还包括:
    所述第一接入网设备向所述终端发送第二指示信息,其中,所述第二指示信息用于指示所述终端暂停对所述信道进行测量。
  8. 根据权利要求6或7所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第一接入网设备向所述第二接入网设备发送第三指示信息,其中,所述第三指示信息用 于指示所述第二接入网设备需要向所述终端发送参考信号,所述参考信号用于所述终端对所述信道进行测量。
  9. 根据权利要求8所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之后,所述方法还包括:
    所述第一接入网设备向所述第二接入网设备发送第四指示信息,其中,所述第四指示信息用于指示所述第二接入网设备暂停发送所述参考信号。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第一接入网设备向所述第二接入网设备发送第五指示信息,其中,所述第五指示信息用于触发所述第二接入网设备与所述第一接入网设备在相同的时域资源上发送数据。
  11. 根据权利要求10所述的方法,其特征在于,在所述第一接入网设备在第一时域资源上,向所述终端发送所述第一数据之后,所述方法还包括:
    所述第一接入网设备向所述第二接入网设备发送第六指示信息,其中,所述第六指示信息用于触发所述第二接入网设备暂停在与所述第一接入网设备相同的时域资源上发送数据。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,在所述第一接入网设备向第二接入网设备发送终端的业务的数据之前,所述方法还包括:
    所述第一接入网设备获取所述业务的数据;
    所述第一接入网设备确定所述业务的数据为所述第一接入网设备和所述第二接入网设备需要在相同的时域资源上发送的数据。
  13. 一种通信方法,其特征在于,所述方法包括:
    第二接入网设备接收到第一数据,其中,所述第一数据是终端的业务的数据中的至少部分数据,所述业务的数据是所述第一接入网设备向所述第二接入网设备发送的数据;
    所述第二接入网设备根据所述第一数据,向所述第一接入网设备发送反馈信息,其中,所述反馈信息用于确定所述第一数据已被所述第二接入网设备成功接收;
    所述第二接入网设备在第一时域资源上,向所述终端发送所述第一数据,其中,所述第一时域资源还用于所述第一接入网设备向所述终端发送所述第一数据。
  14. 根据权利要求13所述的方法,其特征在于,所述反馈信息包括所述第一数据的第一标识,和/或,所述业务的数据中所述第二接入网设备未成功接收的第二数据的第二标识,所述第二数据与所述第一数据不同。
  15. 根据权利要求14所述的方法,其特征在于,所述第一数据的序列号用于表征所述第一数据的发送顺序,在所述第二接入网设备接收到第一数据之后,以及,在所述第二接入网设备向所述第一接入网设备发送反馈信息之前,所述方法还包括:
    所述第二接入网设备根据所述第一数据的序列号,确定在接收到所述第一数据之后的传输时长内未成功接收的数据为所述第二数据,其中,所述传输时长是所述第一接入网设备与所述第二接入网设备之间传输数据所允许的时长。
  16. 根据权利要求13-15中任一项所述的方法,其特征在于,在所述第二接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第二接入网设备确定所述第一数据的数据量已达到数据量阈值,其中,所述数据量阈值为触发所述第一接入网设备与所述第二接入网设备在相同的时域资源上发送数据的数据量;和/或,
    所述第二接入网设备确定所述第二接入网设备保存所述第一数据的时长已达到第二阈值时长,其中,所述第二阈值时长为所述第一数据在所述第二接入网设备上维持有效的时长。
  17. 根据权利要求13-16中任一项所述的方法,其特征在于,在所述第二接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第二接入网设备接收来自所述第一接入网设备的第三指示信息,其中,所述第三指示信息用于指示所述第二接入网设备需要发送参考信号,所述参考信号用于所述终端对信道进行测量,所述信道是所述第一接入网设备与终端之间的信道,以及所述第二接入网设备与所述终端之间的 信道;
    所述第二接入网设备根据所述第三指示信息,发送所述参考信号。
  18. 根据权利要求17所述的方法,其特征在于,在所述第二接入网设备在第一时域资源上,向所述终端发送所述第一数据之后,所述方法还包括:
    所述第二接入网设备接收来自所述第一接入网设备的第四指示信息,其中,所述第四指示信息用于指示所述第二接入网设备暂停发送所述参考信号。
  19. 根据权利要求13-18中任一项所述的方法,其特征在于,在所述第二接入网设备在第一时域资源上,向所述终端发送所述第一数据之前,所述方法还包括:
    所述第二接入网设备接收来自所述第一接入网设备的第五指示信息,其中,所述第五指示信息用于触发所述第二接入网设备与所述第一接入网设备在相同的时域资源上发送数据。
  20. 根据权利要求19所述的方法,其特征在于,在所述第二接入网设备在第一时域资源上,向所述终端发送所述第一数据之后,所述方法还包括:
    所述第二接入网设备接收来自所述第一接入网设备的第六指示信息,其中,所述第六指示信息用于触发所述第二接入网设备暂停在与所述第一接入网设备相同的时域资源上发送数据。
  21. 一种通信装置,其特征在于,所述装置包括:用于执行如权利要求1-12中任一项所述的方法的模块。
  22. 一种通信装置,其特征在于,所述装置包括:用于执行如权利要求13-20中任一项所述的方法的模块。
  23. 一种通信系统,其特征在于,所述系统包括:用于执行如权利要求1-12中任一项所述的方法的第一接入网设备,以及用于执行如权利要求13-20中任一项所述的方法的第二接入网设备。
  24. 一种芯片,其特征在于,所述芯片包括:处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使所述芯片执行如权利要求1-20中任一项所述的方法。
  25. 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器;所述存储器用于存储计算机指令,当所述处理器执行所述指令时,以使所述通信装置执行如权利要求1-20中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-20中任一项所述的方法。
PCT/CN2023/127936 2022-11-30 2023-10-30 通信方法、装置及系统 WO2024114232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211528418.0A CN118118141A (zh) 2022-11-30 2022-11-30 通信方法、装置及系统
CN202211528418.0 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024114232A1 true WO2024114232A1 (zh) 2024-06-06

Family

ID=91212690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127936 WO2024114232A1 (zh) 2022-11-30 2023-10-30 通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN118118141A (zh)
WO (1) WO2024114232A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098709A (ja) * 2011-10-31 2013-05-20 Mitsubishi Electric Corp 無線通信システム
CN103582079A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种联合传输的实现方法和系统
CN105451355A (zh) * 2014-08-18 2016-03-30 上海贝尔股份有限公司 用于向自身服务的用户设备传输数据的方法、基站和系统
CN111194086A (zh) * 2018-11-14 2020-05-22 华为技术有限公司 发送和接收数据的方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098709A (ja) * 2011-10-31 2013-05-20 Mitsubishi Electric Corp 無線通信システム
CN103582079A (zh) * 2012-08-10 2014-02-12 中兴通讯股份有限公司 一种联合传输的实现方法和系统
CN105451355A (zh) * 2014-08-18 2016-03-30 上海贝尔股份有限公司 用于向自身服务的用户设备传输数据的方法、基站和系统
CN111194086A (zh) * 2018-11-14 2020-05-22 华为技术有限公司 发送和接收数据的方法和通信装置

Also Published As

Publication number Publication date
CN118118141A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
WO2020164410A1 (zh) 时延测量方法、网络设备和终端设备
CN108370506A (zh) 无线通信系统中的服务节点重新定位方法及其设备
WO2021180098A1 (zh) 无线通信方法和通信装置
WO2018112871A1 (zh) 数据发送/接收装置、方法以及通信系统
US11202333B2 (en) Layer 2 processing method, central unit and distributed unit
EP4033799A1 (en) Relay transmission method, relay terminal and remote terminal
WO2021031022A1 (zh) 链路切换的方法和通信设备
EP3051893A1 (en) Paging method, network device and communication system
US20230007729A1 (en) Sidelink Communication Method and Communication Apparatus
WO2019214733A1 (zh) 一种通信方法及装置
WO2021056152A1 (zh) 一种信息配置方法及装置、终端设备、网络设备
WO2021174377A1 (zh) 切换方法和通信装置
WO2024114232A1 (zh) 通信方法、装置及系统
WO2022205239A1 (zh) 边链路非连续接收命令的触发方法、装置和系统
WO2021163832A1 (zh) 数据传输的方法和装置
WO2022027523A1 (zh) 一种辅助信息的配置方法及通信装置
WO2021142767A1 (zh) 通信方法和通信装置
WO2024001950A1 (zh) 数据传输的方法和装置
WO2024098796A1 (zh) 通信方法及装置
WO2018201451A1 (zh) 一种设备接入方法、用户设备及网络设备
WO2024092725A1 (zh) 数据映射装置以及方法
WO2021189458A1 (zh) 一种数据转发方法及装置、通信设备
WO2014000611A1 (zh) 传输数据的方法和装置
WO2024140600A1 (zh) 通信方法、通信装置及通信系统
WO2022021235A1 (zh) 一种mbs业务的传输方法及装置、通信设备