WO2024001950A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2024001950A1
WO2024001950A1 PCT/CN2023/102100 CN2023102100W WO2024001950A1 WO 2024001950 A1 WO2024001950 A1 WO 2024001950A1 CN 2023102100 W CN2023102100 W CN 2023102100W WO 2024001950 A1 WO2024001950 A1 WO 2024001950A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
distributed unit
unit
information
centralized
Prior art date
Application number
PCT/CN2023/102100
Other languages
English (en)
French (fr)
Inventor
顾志方
娄崇
范强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024001950A1 publication Critical patent/WO2024001950A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more specifically, to a data transmission method and device.
  • terminal devices can be served by multiple network devices at the same time.
  • the terminal device can communicate with multiple transmission reception points (TRPs) located in different geographical locations.
  • TRPs transmission reception points
  • These multiple TRPs can be multiple physical antennas belonging to one base station, or multiple physical antennas under different base stations.
  • These TRPs need to cooperate to jointly serve terminal equipment.
  • the same data content needs to be sent to the UE from multiple TRPs at the same time.
  • CU centralized units
  • DU distributed units
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data aggregation protocol
  • RLC wireless link control
  • MAC media access control layer
  • PHY physical layer
  • This application provides a data transmission method and device, which can enable different distributed units to perform synchronous transmission to terminal equipment, thereby improving the reliability of data transmission.
  • the first aspect provides a data transmission method.
  • the method can be executed by a centralized unit in the access network equipment, or it can also be executed by a component of the centralized unit (such as a chip or circuit). No modification is made to this. limited. For convenience of description, the following description takes execution by the first centralized unit as an example.
  • the method includes: a first centralized unit receiving data from a user plane functional network element; the first centralized unit determining time information for the first distributed unit and the second distributed unit to synchronously transmit the data; the first centralized unit The centralized unit sends the data and the time information to the first distributed unit and the data and the time information to the second distributed unit.
  • the first centralized unit determines the time information corresponding to the data, it sends the data and the time information to the first distributed unit and the second distributed unit respectively, so that the first distributed unit and the second distributed unit
  • the formula unit can synchronously transmit the data according to the time information, thereby improving the reliability of data transmission.
  • a data transmission method is provided.
  • the method can be executed by a centralized unit in the access network equipment, or it can also be executed by a component of the centralized unit (such as a chip or a circuit). No further steps are taken to this. limited. For convenience of description, the following description takes execution by the first centralized unit as an example.
  • the method includes: a first centralized unit receiving data from a user plane functional network element; the first centralized unit determining time information for the first distributed unit and the second distributed unit to synchronously transmit the data; the first centralized unit The centralized unit sends the data and the time information to the first distributed unit; the first centralized unit sends the information indicating the data and the time information to the second centralized unit, and the second centralized unit communicates with the second distributed unit corresponding to the formula unit.
  • the first distributed unit and the second distributed unit perform synchronous transmission to the terminal device, after the first centralized unit receives the data from the user plane functional network element, it determines the time information corresponding to the data, and send the time information to the A distributed unit, and a second centralized unit corresponding to the second distributed unit, so that the second centralized unit can send the time information to the second distributed unit, so that the first distributed unit and the second distributed unit
  • the data can be transmitted synchronously based on the time information, thereby improving the reliability of data transmission.
  • the first centralized unit determines time information for the first distributed unit and the second distributed unit to synchronously transmit the data, including: the The first centralized unit determines the time information based on one or more of the following information: the size of the data cached by the first distributed unit, the size of the data cached by the second distributed unit, the first centralized unit The transmission delay between the first distributed unit and the first distributed unit, the transmission delay between the first centralized unit and the second distributed unit, the length of time for the first distributed unit to process the data, the The length of time for the two distributed units to process the data, the transmission delay between the first distributed unit and the terminal device, the transmission delay between the second distributed unit and the terminal device, the data from the first distributed unit
  • the indication information of the formula unit and/or the second distributed unit is used to adjust the time information.
  • the method further includes: the first centralized unit based on the first configuration information used for communication between the first distributed unit and the terminal device, Send second configuration information for communication between the second distributed unit and the terminal device to a second centralized unit, where the second centralized unit corresponds to the second distributed unit.
  • the first centralized unit sends second configuration information to the second centralized unit.
  • the second configuration information is used for the second distributed unit to communicate with the terminal device.
  • the second configuration information can be combined with the first configuration information.
  • it may also be information determined based on the first configuration information.
  • the first distributed unit and the second distributed unit can use the same configuration to transmit data to the terminal device, so as to ensure that the first distributed unit and the second distributed unit can send data to the terminal device synchronously. Improve the efficiency and reliability of synchronous transmission.
  • the first configuration information includes one or more of the following information: physical layer channel configuration information of the first distributed unit, the first The medium access control layer configuration information of the distributed unit, the radio link control layer configuration information of the first distributed unit, and the packet data convergence layer configuration information of the first centralized unit;
  • the second configuration information includes the following information One or more of: the physical layer channel configuration information of the second distributed unit, the medium access control layer configuration information of the second distributed unit, the radio link control layer configuration information of the second distributed unit, Packet data aggregation layer configuration information of the second centralized unit.
  • the method further includes: the first centralized unit sending information requesting synchronous transmission to the terminal device to the second centralized unit, and the second centralized unit
  • the centralized unit corresponds to the second distributed unit; the first centralized unit receives information from the second centralized unit indicating that it accepts a request for synchronous transmission to the terminal device.
  • the first centralized unit determines according to one or more of the following The second centralized unit: the measurement result of the signal of the second centralized unit; the transmission delay between the first centralized unit and the second centralized unit; the first centralized unit and the second centralized unit distance between formula units.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data convergence layer; at the radio link control layer The time to process the data; the time to process the data at the medium access control layer; and the time to send the data to the terminal device.
  • the third aspect provides a data transmission method, which can be executed by a terminal device, or can also be executed by a component (such as a chip or circuit) of the terminal device, without limitation.
  • a component such as a chip or circuit
  • the following description takes execution by a terminal device as an example.
  • the method includes: a terminal device receiving information about cached data from a first distributed unit; and the terminal device sending indication information to the first distributed unit and a second distributed unit respectively, the indication information being based on the cached data.
  • the indication information is used to instruct the first distributed unit and the second distributed unit to synchronously transmit data to the terminal device.
  • the terminal device can determine the indication information indicating the data that needs to be synchronously transmitted based on the cached data information of the first distributed unit, and send the indication information to the first distributed unit and the second distributed unit, Therefore, the first distributed unit and the second distributed unit can synchronously send the data indicated by the indication information to the terminal device according to the indication information, thereby improving the reliability of data transmission.
  • the method further includes: the terminal device further receiving information from the cached data of the second distributed unit; When it is determined that the data and the data cached by the second distributed unit can be transmitted synchronously, the terminal device determines the indication information.
  • determining that synchronous transmission can be performed based on the cached data of the first distributed unit and the cached data of the second distributed unit includes: determining that the first There is the same data between the data cached by the distributed unit and the data cached by the second distributed unit; or, determine the amount of data cached by the first distributed unit and the amount of data cached by the second distributed unit. The quantity is the same; or, it is determined that the size of the data cached by the first distributed unit is the same as the size of the data cached by the second distributed unit.
  • the method further includes: the terminal device further receiving information from the cached data of the second distributed unit; When it is determined that the data cached by the second distributed unit cannot be synchronously transmitted, a notification message is sent to the first distributed unit and/or the second distributed unit, and the notification message is used to notify the first distribution unit.
  • the data cached in the formula unit and the data cached in the second distributed unit cannot be transmitted synchronously.
  • determining that synchronous transmission cannot be performed based on the cached data of the first distributed unit and the cached data of the second distributed unit includes: determining that the first There is no identical data between the data cached by the distributed unit and the data cached by the second distributed unit; or, determine the amount of data cached by the first distributed unit and the data cached by the second distributed unit. The quantity is different; or, it is determined that the quantity of data cached by the first distributed unit and the size of data cached by the second distributed unit are different.
  • the terminal device can notify the first distributed unit and the second distributed unit so that the first distributed unit and the second distributed unit
  • the two distributed units can synchronize cached data, thereby improving the efficiency and reliability of synchronous transmission.
  • the information of the cached data includes one or more of the following: the sequence number of the cached data, the quantity of the cached data, the number of the cached data size.
  • the method before the terminal device receives information about the cached data from the first distributed unit, the method further includes: the terminal device receives information from the first distributed unit.
  • the identification information of the second distributed unit is used for synchronous transmission with the first distributed unit to the terminal device.
  • the first distributed unit may send the identification information of the second distributed unit to the terminal device.
  • the indication information may be sent to the first distributed unit and the second distributed unit, so that the first distributed unit and the second distributed unit
  • the two distributed units may synchronously send the data indicated by the indication information to the terminal device according to the indication information.
  • the indication information is used to indicate one or more of the following: the sequence number of the synchronously transmitted data; the size of the synchronously transmitted data; The data processing window in the radio link control layer.
  • the method further includes: the terminal device sending time information to the first distributed unit and the second distributed unit respectively, the time information being used to indicate to the first distributed unit and the second distributed unit. The time the terminal device sent this data.
  • the terminal device in addition to sending indication information to the first distributed unit and the second distributed unit, can also send time information to the first distributed unit and the second distributed unit, and the time information is used to indicate the Indicate the sending time of the data indicated by the information, and the first distributed unit and the second distributed unit may synchronously send data to the terminal device based on the time information.
  • the fourth aspect provides a data transmission method, which can be executed by a distributed unit in the access network device, or can also be executed by a component of the distributed unit (such as a chip or circuit), which is not limited. .
  • a component of the distributed unit such as a chip or circuit
  • the following description takes execution by the first distributed unit as an example.
  • the method includes: a first distributed unit receiving data from a first centralized unit, and time information for the first distributed unit and a second distributed unit to synchronously transmit the data; the first distributed unit according to the Time information is sent to the terminal device.
  • the first distributed unit after receiving the data and time information from the first centralized unit, the first distributed unit sends the data to the terminal device according to the time information. Since the time information is used for the first distributed unit and the second distributed unit to synchronously transmit the data, if the second distributed unit also sends data to the terminal device according to the time information, the first distributed unit can be Send data to the terminal device synchronously with the second distributed unit, thereby improving the reliability of data transmission.
  • the method further includes: when the first distributed unit determines that the data transmission fails, the first distributed unit retransmits the data.
  • the reliability of data transmission can be improved by retransmitting failed data.
  • the method further includes: the first distributed unit transmits data to the second distributed unit.
  • the unit sends a message indicating that the data transmission failed.
  • the first distributed unit when data transmission fails, can indicate the data transmission failure to the second distributed unit, so that the second distributed unit transmits the data synchronously with the first distributed unit, and synchronizes the second distributed unit with the first distributed unit.
  • the downlink data cached by one distributed unit and the downlink data cached by the second distributed unit avoid subsequent synchronous transmission failures due to unsynchronized downlink data.
  • the first distributed unit when the first distributed unit determines that the data transmission fails, the first distributed unit retransmits the data, including: in the If the first distributed unit determines that the data transmission fails, the first distributed unit retransmits the data at the next available time corresponding to the time of sending the data corresponding to the hybrid automatic retransmission process number.
  • the first distributed unit can retransmit the data at the next available time corresponding to the time when the data is sent corresponding to the hybrid automatic retransmission process number, and the hybrid automatic retransmission Other data corresponding to the transmitted process number can be transmitted in sequence, thereby improving the efficiency of data transmission.
  • the first distributed unit determines that the data transmission fails, including: the first distributed unit receives a first feedback message from the terminal device, and the first distributed unit A feedback message is used to indicate that the terminal device has not successfully received the data; or, the first distributed unit has not received a second feedback message from the terminal device, and the second feedback message is used to indicate that the terminal device has successfully received the data. data.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; the time for processing the data at the radio link control layer The time when the data is processed; the time when the data is processed at the medium access control layer; the time when the data is sent to the terminal device.
  • the method further includes: the first distributed unit sending cached data information to the first centralized unit, and the cached data information is used to determine the time information.
  • the fifth aspect provides a communication method, which can be executed by a centralized unit in the access network device, or can also be executed by a component (such as a chip or circuit) of the centralized unit, which is not limited.
  • a component such as a chip or circuit
  • the following description takes execution by the first centralized unit as an example.
  • the method includes: the first centralized unit receives data from the user plane functional network element and the time information corresponding to the data; the first centralized unit sends the data and the time information to the first distributed unit, and the time The information is used for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the first centralized unit After receiving the data and the time information corresponding to the data from the user plane functional network element, the first centralized unit sends the data and the time information to the first distributed unit so that the first distributed unit can According to the time information, the data is transmitted synchronously with the second distributed unit, thereby improving the reliability of data transmission.
  • the method further includes: the first centralized unit providing the first centralized unit with the first configuration information for communicating with the terminal device.
  • the second centralized unit sends second configuration information for the second distributed unit to communicate with the terminal device, and the second centralized unit corresponds to the second distributed unit.
  • the first configuration information includes one or more of the following information: physical layer channel configuration information of the first distributed unit, the first distributed unit The medium access control layer configuration information, the radio link control layer configuration information of the first distributed unit, and the packet data convergence layer configuration information of the first centralized unit.
  • the method further includes: the first centralized unit sending information requesting synchronous transmission to the terminal device to the second centralized unit, and the second centralized unit Corresponding to the second distributed unit; the first centralized unit receives information from the second centralized unit indicating acceptance of a request for synchronous transmission to the terminal device.
  • the first centralized unit determines the third unit according to one or more of the following: Two centralized units: the measurement results of the signal of the second centralized unit; the transmission delay between the first centralized unit and the second centralized unit; the first centralized unit and the second centralized unit the distance between.
  • the method further includes: the first centralized unit sending the cached data information of the first distributed unit to the user plane functional network element, and the cached unit The data information is used to determine the time information.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; the time for processing the data at the radio link control layer The time when the data is processed; the time when the data is processed at the medium access control layer; and the time when the data is sent to the terminal device.
  • the sixth aspect provides a data transmission method, which can be executed by a distributed unit in the access network device, or can also be executed by a component of the distributed unit (such as a chip or circuit), which is not limited. .
  • a component of the distributed unit such as a chip or circuit
  • the following description takes execution by the first distributed unit as an example.
  • the method includes: a first distributed unit receiving indication information from a terminal device, the indication information being used to indicate information on data to be synchronously transmitted by the first distributed unit and the second distributed unit to the terminal device; the first distributed unit The formula unit sends the data to the terminal device according to the instruction information.
  • the first distributed unit sends the data indicated by the instruction information to the terminal device according to the instruction information from the terminal device.
  • the instruction information indicates the information of the data that the first distributed unit and the second distributed unit synchronously transmit to the terminal device. Therefore, the second distributed unit also sends the data to the terminal device according to the instruction information, thereby The first distributed unit and the second distributed unit can be caused to synchronously transmit the data to the terminal device, thereby improving the reliability of data transmission.
  • the method before the first distributed unit receives the indication information from the terminal device, the method further includes: the first distributed unit sends the cached information to the terminal device. Data information, the cached data information is used to determine the indication information.
  • the information of the cached data includes one or more of the following: the sequence number of the cached data, the quantity of the cached data, the number of the cached data size.
  • the method before the first distributed unit receives the indication information from the terminal device, the method further includes: the first distributed unit sends the second second distributed unit to the terminal device. Identification information of the distributed unit, which the second distributed unit is used to transmit synchronously with the first distributed unit to the terminal device.
  • the first distributed unit can also send the identification information of the second distributed unit to the terminal device, so that the terminal device can determine the relationship between the second distributed unit and the first distributed unit based on the identification information of the second distributed unit.
  • the unit performs synchronous transmission to itself, so that the terminal device can send the indication information to the first distributed unit and the second distributed unit.
  • the indication information is used to indicate one or more of the following: the sequence number of the synchronously transmitted data; the size of the synchronously transmitted data; The data processing window in the radio link control layer.
  • the method further includes: the first distributed unit receiving time information from the terminal device, the time information being used to indicate the time to send the data to the terminal device. time; the first distributed unit sends the data to the terminal device according to the instruction information, including: the first distributed unit sends the data to the terminal device at the time indicated by the time information.
  • a seventh aspect provides a communication method, which can be executed by a user plane functional network element, or can also be executed by a component (such as a chip or circuit) of the user plane functional network element, which is not limited.
  • a component such as a chip or circuit
  • the following description takes the execution by the user plane functional network element as an example.
  • the method includes: a user plane functional network element determines time information for synchronous transmission of data between a first distributed unit and a second distributed unit; the user plane functional network element sends the data and the time information to the first centralized unit, The first centralized unit corresponds to the first distributed unit.
  • the user plane functional network element can determine the time information corresponding to the data, and send the data and the time information to the first centralized unit, so that the first centralized unit can send the data and the time information to the
  • the first distributed unit and the second distributed unit are synchronously transmitted, so that the first distributed unit and the second distributed unit can synchronously send the data to the terminal device according to the time information.
  • the method further includes: the user plane functional network element sending the data and the time information to a second centralized unit, and the second centralized unit communicates with the third centralized unit. Corresponding to two distributed units.
  • the user plane functional network element determines time information for the first distributed unit and the second distributed unit to synchronously transmit data, including: the user plane functional network element
  • the time information is determined according to one or more of the following information: information about the data cached by the first distributed unit, information about the data cached by the second distributed unit, the first centralized unit and the third
  • the transmission delay between distributed units, the transmission delay between the second centralized unit and the second distributed unit, the first centralized unit and/or the first distributed unit perform the processing on the data
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; the time for processing the data at the radio link control layer The time when the data is processed; the time when the data is processed at the medium access control layer; and the time when the data is sent to the terminal device.
  • a data transmission device includes: a transceiver module for receiving data from a user plane functional network element; and a processing module for determining whether to use the first distributed unit and the second distributed unit.
  • the unit synchronously transmits the time information of the data; the transceiver module is also used to send the data and the time information to the first distributed unit, and to send the data and the time information to the second distributed unit.
  • the device includes: a transceiver module, used to receive data from the user plane functional network element; a processing module, used to determine whether the first distributed unit and the second distributed unit synchronously transmit the data time information; the transceiver module is also used to send the data and the time information to the first distributed unit; the first centralized unit sends information indicating the data and the time information to the second centralized unit, and the third centralized unit
  • the second centralized unit corresponds to the second distributed unit.
  • the processing module is specifically configured to determine the time information based on one or more of the following information: the size of the data cached by the first distributed unit, The size of the data cached by the second distributed unit, the transmission delay between the device and the first distributed unit, the transmission delay between the device and the second distributed unit, the first distributed unit The length of time for processing the data, the length of time for the second distributed unit to process the data, and instruction information from the first distributed unit and/or the second distributed unit, the instruction information being used to adjust the time information.
  • the processing module is also configured to send a request to the second centralized unit according to the first configuration information used for communication between the first distributed unit and the terminal device. Send second configuration information for the second distributed unit to communicate with the terminal device, and the second centralized unit corresponds to the second distributed unit.
  • the first configuration information includes one or more of the following information: physical layer channel configuration information of the first distributed unit, the first distributed The medium access control layer configuration information of the unit, the radio link control layer configuration information of the first distributed unit, and the packet data convergence layer configuration information of the device;
  • the second configuration information includes one or more of the following information : the physical layer channel configuration information of the second distributed unit, the medium access control layer configuration information of the second distributed unit, the radio link control layer configuration information of the second distributed unit, the second centralized unit Packet data aggregation layer configuration information.
  • the transceiver module is also used to send information requesting synchronous transmission to the terminal device to a second centralized unit, and the second centralized unit and the second centralized unit The distributed unit corresponds; the first centralized unit receives information from the second centralized unit indicating that it accepts a request for synchronous transmission to the terminal device.
  • the processing module is also used to determine the second centralized unit based on one or more of the following: the measurement result of the signal of the second centralized unit; The transmission delay between the device and the second centralized unit; the distance between the device and the second centralized unit.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; the time for processing the data at the radio link control layer The time when the data is processed; the time when the data is processed at the medium access control layer; and the time when the data is sent to the terminal device.
  • a data transmission device includes: a transceiver module, configured to receive cached data information from the first distributed unit; and, to the first distributed unit and the second distributed unit respectively.
  • the formula unit sends indication information, the indication information is determined based on the cached data information, and the indication information is used to instruct the first distribution unit and the second distribution unit to synchronously transmit data to the terminal device.
  • the transceiver module is also configured to receive information from the cached data of the second distributed unit; the processing module is configured to perform the processing according to the first distributed unit. If it is determined that the cached data of the unit and the data cached of the second distributed unit can be transmitted synchronously, the indication information is determined.
  • the transceiver module is also used to receive information from the cached data of the second distributed unit; the transceiver module is also used to determine whether the first When the data cached by the distributed unit and the data cached by the second distributed unit cannot be transmitted synchronously, a notification message is sent to the first distributed unit and/or the second distributed unit, and the notification message is used to Notify that the cached data of the first distributed unit and the cached data of the second distributed unit cannot be transmitted synchronously.
  • the information of the cached data includes one or more of the following: the sequence number of the cached data, the quantity of the cached data, the number of the cached data size.
  • the transceiver module is also configured to receive identification information of the second distributed unit from the first distributed unit, and the second distributed unit is configured to communicate with The first distributed unit performs synchronous transmission to the terminal device.
  • the indication information is used to indicate one or more of the following: the sequence number of the synchronously transmitted data; the size of the synchronously transmitted data; The data processing window in the radio link control layer.
  • the transceiver module is further configured to send time information to the first distributed unit and the second distributed unit respectively, where the time information is used to indicate to the terminal The time the device sent this data.
  • a data transmission device in a tenth aspect, includes: a transceiver module for receiving data from the first centralized unit, and for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the time information of the data the processing module is used to send the data to the terminal device according to the time information.
  • the processing module is also used to retransmit the data through the transceiver module when it is determined that the data transmission fails.
  • the transceiver module is also configured to send information indicating that the data transmission fails to the second distributed unit.
  • the transceiver module is specifically used to determine that when the data transmission fails, the first distributed unit sends the data corresponding to the hybrid automatic retransmission process number. The data is retransmitted at the next available time.
  • the processing module is specifically configured to determine that the data transmission fails when the transceiver module receives a first feedback message from the terminal device, and the first feedback The message is used to indicate that the terminal device has not successfully received the data; or, the processing module is specifically used to determine that the data transmission fails when the transceiver module does not receive a second feedback message from the terminal device. The second feedback The message is used to indicate that the terminal device successfully received the data.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; the time for processing the data at the radio link control layer The time when the data is processed; the time when the data is processed at the medium access control layer; the time when the data is sent to the terminal device.
  • the transceiver module is also configured to send cached data information to the first centralized unit, and the cached data information is used to determine the time information.
  • a communication device in an eleventh aspect, includes: a transceiver module for receiving data from a user plane functional network element and time information corresponding to the data; and sending the data to a first distributed unit. and the time information, which is used for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the apparatus further includes a processing module configured to communicate according to the first configuration for the first distributed unit and the terminal device.
  • Information is sent to the second centralized unit through the transceiver module for the second distributed unit to communicate with the terminal device, and the second centralized unit corresponds to the second distributed unit.
  • the first configuration information includes one or more of the following information: physical layer channel configuration information of the first distributed unit, the first distribution The medium access control layer configuration information of the distributed unit, the radio link control layer configuration information of the first distributed unit, and the packet data convergence layer configuration information of the first centralized unit.
  • the transceiver module is also used to send information requesting synchronous transmission to the terminal device to a second centralized unit, and the second centralized unit and the second centralized unit The second distributed unit corresponds; the first centralized unit receives information from the second centralized unit indicating acceptance of a request for synchronous transmission to the terminal device.
  • the processing module is also used to determine the second centralized unit according to one or more of the following: measurement of the signal of the second centralized unit The result; the transmission delay between the first centralized unit and the second centralized unit; the distance between the first centralized unit and the second centralized unit.
  • the transceiver module is also configured to send information about the cached data of the first distributed unit to the user plane functional network element.
  • the cached data The information is used to determine the time information.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; at the radio link control layer The time to process the data; the time to process the data at the medium access control layer; and the time to send the data to the terminal device.
  • a data transmission device includes: a transceiver module, configured to receive indication information from a terminal device, the indication information being used to instruct the first distributed unit and the second distributed unit to Information about the data transmitted synchronously by the terminal device; the transceiver module is also used to send the data to the terminal device according to the instruction information.
  • the transceiver module is also configured to send cached data information to the terminal device, and the cached data information is used to determine the indication information.
  • the information of the cached data includes one or more of the following: the sequence number of the cached data, the amount of the cached data, the cached data The size of the data.
  • the transceiver module is further configured to send identification information of the second distributed unit to the terminal device, and the second distributed unit is configured to communicate with the terminal device.
  • the first distributed unit performs synchronous transmission to the terminal device.
  • the indication information is used to indicate one or more of the following: the sequence number of the synchronously transmitted data; the size of the synchronously transmitted data; The transmitted data is processed within the radio link control layer's processing window.
  • the transceiver module is also used to receive time information from the terminal device, where the time information is used to indicate the time to send the data to the terminal device; The transceiver module is specifically used to send the data to the terminal device at the time indicated by the time information.
  • a communication device in a thirteenth aspect, includes: a processing module for determining time information for synchronous transmission of data between the first distributed unit and the second distributed unit; and a transceiver module for transmitting data to the first distributed unit.
  • the centralized unit sends the data and the time information, and the first centralized unit corresponds to the first distributed unit.
  • the transceiver module is also used to send the data and the time information to a second centralized unit, and the second centralized unit communicates with the second distributed unit. corresponding to the formula unit.
  • the processing module is specifically configured to determine the time information based on one or more of the following information: data cached by the first distributed unit information, information about the cached data of the second distributed unit, transmission delay between the first centralized unit and the first distributed unit, between the second centralized unit and the second distributed unit.
  • the transmission delay between, the time for the first centralized unit and/or the first distributed unit to process the data, the time for the second centralized unit and/or the second distributed unit to process the data The duration, the duration for the user plane functional network element to copy the data, the transmission delay between the user plane functional network element and the first centralized unit, the user plane functional network element and the second centralized unit transmission delay between.
  • the time information is used to indicate one or more of the following: the time for processing the data at the packet data aggregation layer; at the radio link control layer The time to process the data; the time to process the data at the medium access control layer; and the time to send the data to the terminal device.
  • a communication device which is used to perform any one of the methods provided in the above-mentioned first to seventh aspects.
  • the device may include units and/or modules for executing the methods provided in the first to seventh aspects, such as a processing module and/or a transceiver module (which may also become a communication module).
  • the device is a network device.
  • the device is a centralized unit or a distributed unit in the access network device.
  • the communication module may be a transceiver, or an input/output interface; the processing module may be a processor.
  • the device is a chip, a chip system or a circuit for a centralized unit.
  • the transceiver module may be an input/output interface, interface circuit, output circuit, input circuit, pin or related on the chip, chip system or circuit. Circuits, etc.; the processing module can be a processor, processing circuit or logic circuit, etc.
  • the device is a centralized unit or a chip, chip system or circuit in a centralized unit.
  • the device may include units and/or modules for performing the method provided by the first aspect, the second aspect, the fifth aspect or the sixth aspect, such as a processing module and/or a transceiver module.
  • the device is a chip, a chip system or a circuit for a distributed unit.
  • the transceiver module may be an input/output interface, interface circuit, output circuit, input circuit, pin or related on the chip, chip system or circuit. Circuits, etc.; the processing module can be a processor, processing circuit or logic circuit, etc.
  • the device is a chip, chip system or circuit in a distributed unit or a centralized unit.
  • the device may include units and/or modules for performing the method provided in the fourth aspect, such as a processing module and/or a transceiver module.
  • the device is a user plane functional network element.
  • the communication module can is a transceiver, or, input/output interface; the processing module may be a processor.
  • the device is a chip, chip system or circuit used for user plane functional network elements.
  • the transceiver module may be an input/output interface, interface circuit, output circuit, input circuit or pin on the chip, chip system or circuit. or related circuits, etc.;
  • the processing module can be a processor, processing circuit or logic circuit, etc.
  • the device is a user plane functional network element or a chip, chip system or circuit in a user plane functional network element.
  • the device may include units and/or modules for performing the method provided in the seventh aspect, such as a processing module and/or a transceiver module.
  • the device is a terminal device.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be a processor.
  • the device is a terminal device or a chip, chip system or circuit in the terminal device.
  • the device may include units and/or modules for performing the method provided in the third aspect, such as a processing module and/or a transceiver module.
  • the above-mentioned transceiver may be a transceiver circuit.
  • the above input/output interface may be an input/output circuit.
  • the above-mentioned transceiver may be a transceiver circuit.
  • the above input/output interface may be an input/output circuit.
  • a communication device in a fifteenth aspect, includes: a memory for storing a program; a processor for executing the program stored in the memory.
  • the processor When the program stored in the memory is executed, the processor is configured to execute the first aspect. to any method provided in the seventh aspect.
  • this application provides a processor for executing the methods provided in the above aspects.
  • the process of sending the above information and obtaining/receiving the above information in the above method can be understood as the process of the processor outputting the above information, and the process of the processor receiving the input above information.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the transceiver obtains/receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • the receiving request message mentioned in the foregoing method can be understood as the processor receiving input information.
  • the above-mentioned processor may be a processor specifically designed to perform these methods, or may be a processor that executes computer instructions in a memory to perform these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be separately provided on different chips.
  • ROM read-only memory
  • a computer-readable storage medium stores a program code for device execution.
  • the program code includes a program code for executing any one of the methods provided in the above-mentioned first to seventh aspects.
  • An eighteenth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute any of the methods provided in the first to seventh aspects.
  • a nineteenth aspect provides a chip, which includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes any one of the methods provided in the first to seventh aspects.
  • the chip may also include a memory, in which instructions are stored, and the processor is used to execute the instructions stored in the memory.
  • the processor is used to execute the above-mentioned first step. Any method provided by the first aspect to the seventh aspect.
  • a twentieth aspect provides an access network device, which includes a centralized unit as shown in any of the first aspect, the second aspect, the fifth aspect, and the sixth aspect, and as shown in the second aspect.
  • a twenty-first aspect provides a communication system, which includes a centralized unit that performs the method shown in the first aspect, and a distributed unit that performs the method shown in the fourth aspect.
  • a twenty-second aspect provides a communication system, which includes a centralized unit that performs the method shown in the second aspect, and a distributed unit that performs the method shown in the fourth aspect.
  • the communication system may further include a user plane functional network element that performs the method shown in the seventh aspect.
  • a communication system comprising a centralized unit performing the method shown in the sixth aspect, and a terminal device performing the method as shown in the second aspect.
  • Figure 1 is a schematic diagram of a communication system applied in an embodiment of the present application.
  • Figure 2 shows a schematic diagram of a base station applying an embodiment of the present application.
  • Figure 3 shows a schematic flowchart of cooperative transmission.
  • Figure 4 shows a schematic diagram of the method 400 provided by the embodiment of the present application.
  • Figure 5 shows a possible flow chart corresponding to the method 400 provided by the embodiment of this application.
  • Figure 6 shows a schematic diagram of the method 600 provided by the embodiment of the present application.
  • Figure 7 shows a possible flow chart corresponding to the method 600 provided by the embodiment of this application.
  • Figure 8 shows a schematic diagram of the method 800 provided by the embodiment of the present application.
  • Figure 9 shows a possible flow chart corresponding to the method 800 provided by the embodiment of this application.
  • Figure 10 shows a schematic diagram of the method 1000 provided by the embodiment of the present application.
  • Figure 11 shows a possible flow chart corresponding to the method 1000 provided by the embodiment of this application.
  • Figure 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • Figure 14 is a schematic block diagram of a communication device provided by yet another embodiment of the present application.
  • NB-IoT narrowband-internet of things
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for embodiments of the present application.
  • the terminal 130 accesses the wireless network to obtain services from an external network (such as the Internet) through the wireless network, or to communicate with other terminals through the wireless network.
  • the wireless network includes a network device 110 and a core network (core network, CN) 120, where the network device 110 is used to connect the terminal device 130 to To the wireless network, CN120 is used to manage the terminal and provide a gateway for communication with the external network.
  • core network core network
  • terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • UE user equipment
  • UE mobile station
  • MT mobile terminal
  • UE user equipment
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical surgery and smart grids wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the network device is a device in the wireless network, such as a radio access network (RAN) node that connects the terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (radio network controller, RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit , BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • network equipment may include centralized unit (CU) nodes, distributed unit (DU) nodes, or RAN equipment including CU nodes and DU nodes.
  • Figure 2 shows a schematic diagram of a base station applying an embodiment of the present application.
  • the base station can be composed of CU and DU, that is, the functions of the base station in the original access network are split, some functions of the base station are deployed in a CU, and the remaining functions are deployed in DU, and multiple DUs share
  • a CU saves costs on the one hand and facilitates network expansion on the other.
  • CU and DU can be divided according to the protocol stack.
  • Radio resource control RRC
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • CU and DU are connected through the F1 interface
  • gNB and gNB are connected through the Xn interface to realize information exchange between base stations
  • gNB and the 5G core network are connected through the NG interface to realize the communication between the base station and the core network. information interaction. It is understandable that in some deployment scenarios, when there is no Xn interface between gNB and gNB, the information exchange between gNB and gNB needs to be completed through the information transmission of the core network.
  • the terminal device can be provided with services by multiple network devices at the same time.
  • the terminal device can communicate with multiple TRPs located in different geographical locations. These multiple TRPs can belong to multiple TRPs under one base station.
  • a physical antenna can also be multiple physical antennas under different base stations. These TRPs need to cooperate to jointly serve terminal equipment.
  • multicast broadcast single frequency network MMSFN
  • BM broadcast multicast service center
  • MBMS multicast broadcast multimedia service gateway
  • the protocol stack of BM-SC has the function of synchronization (SYNC) protocol, which adds a SYNC header to each downlink data packet.
  • SYNC header includes timestamp, packet number information and statistical information, where the timestamp is used for Indicates the time when the base station schedules/sends the downlink data packet to the UE.
  • the number information and statistical information of the data packet are used by the eNB to identify whether packet loss has occurred and the number of packet loss.
  • multiple eNBs can send data to the UE at the same time to achieve coordinated transmission.
  • embodiments of the present application provide a data transmission method that can be applied to the separation architecture of centralized units and distributed units, which can enable different distributed units to achieve synchronous transmission.
  • the first network node directly sends information to the second network node (for example, there is a direct link between the first network node and the second network node); in another possible form, the first network node sends information through The intermediate node forwards the information to the second network node (for example If there is a routing node between the first network node and the second network node, the routing node forwards the information sent by the first network node to the second network node to the second network node).
  • the first network node and the second network node may be, for example, any two nodes among the first centralized unit, the second centralized unit, the first distributed unit, and the second distributed unit in the embodiment of the present application.
  • the first network node sending information to the second network node may be the first network node sending the information directly to the second network node, or the first network node sending the information to the second network node through an intermediate node.
  • Information; accordingly, the first network node receiving information from the second network node may be the first network node directly receiving the information from the second network node, or the first network node receiving the information from the second network node through an intermediate node .
  • Figure 4 shows an exemplary flow chart of the method 400 provided by the embodiment of the present application.
  • the first centralized unit determines the time information corresponding to the data, and sends the data and the time information to the first distributed unit and the second distributed unit that perform synchronous transmission of the data.
  • the first distributed unit The formula unit and the second distributed unit synchronously send the data to the terminal device based on the time information.
  • the method 400 is illustratively described below in conjunction with each step in FIG. 4 .
  • the user plane functional network element sends data to the first centralized unit.
  • the first centralized unit receives data from the user plane functional network element.
  • the specific method is not limited in this application.
  • the first centralized unit determines time information for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the first centralized unit determines that the data corresponds to The time information is used by different sites to synchronously transmit the data to the terminal device. For example, the first centralized unit pre-configures (or determines through negotiation) the association between multiple sites and the identification of the terminal device, and the association is used to indicate that the multiple sites are used to cooperatively transmit data to the terminal device. .
  • the first centralized unit receives the data from the user plane functional network element, if the data is sent to the terminal device (that is, the destination address of the data points to the terminal device), the first centralized unit determines the address corresponding to the data. time information.
  • time information is just an example.
  • the time information may also be called a timestamp, or timestamp information, or indication information, etc., which is not limited in this application.
  • the time information can be a newly added cell or an existing cell.
  • the time information can be the packet data convergence protocol sequence number of the data. For details, please refer to step S443. The subsequent description of time information will not be described in detail here.
  • sending the data to the terminal device through cooperative transmission means that multiple different sites that provide services for the terminal device send the same data content at the same time (or within the allowed time difference range) to the terminal device. Therefore, cooperative transmission can also be called synchronous transmission, and this application does not make a distinction between this.
  • the first centralized unit determines the time information, which is used for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the time information is used for the first distributed unit and the second distributed unit to synchronously transmit the data, which means that the first distributed unit and the second distributed unit can synchronously send the data to the terminal device according to the time information.
  • the error between the data, or in other words, the time when the first distributed unit sends the data to the terminal device based on the time information, and the time when the second distributed unit sends the data to the terminal device based on the time information is within the allowable range.
  • the time information is used to indicate one or more of the following: the time when the data is processed at the radio link control layer, the time when the data is processed at the medium access control layer, and the time when the data is sent at the physical layer. Data time.
  • the time when the data is processed in the radio link control layer may refer to the time when the data is processed in the radio link control layer, or may refer to the time when the data is processed in the radio link control layer.
  • the time when the data is processed may also refer to the time period during which the data is processed at the radio link control layer.
  • the time when the data is processed at the medium access control layer can also be explained similarly, and will not be described again.
  • the following is an exemplary description of the specific implementation manner in which the first centralized unit determines the time information.
  • the first centralized unit may determine the time information corresponding to the data based on one or more of the following information:
  • the size of the data cached by the first distributed unit, the size of the data cached by the second distributed unit, the transmission delay between the first centralized unit and the first distributed unit, the first centralized unit and the second distributed unit The transmission delay between units, the time it takes the first distributed unit to process the data packet, the time it takes the second distributed unit to process the data packet, the time it takes the first centralized unit to copy the data, and the time it takes the first centralized unit to copy the data.
  • the instruction information is used to adjust the time time information.
  • the transmission delay between the first centralized unit and the second distributed unit refers to the The transmission delay when a centralized unit and the second distributed unit communicate directly; when the first centralized unit and the second centralized unit belong to different access network equipment, the first centralized unit and the second distributed unit
  • the transmission delay between centralized units refers to the transmission delay between the first centralized unit and the second centralized unit (the second centralized unit corresponds to the second distributed unit) and the second centralized unit and the transmission delay between the second distributed unit.
  • the first centralized unit obtains the transmission delay between the first centralized unit and the first distributed unit (recorded as the first delay), and the transmission delay between the first centralized unit and the second distributed unit. delay (recorded as the second delay), and then determine the time information based on the first delay and the second delay.
  • the time information is used to indicate the processing time of the data packet at the radio link control layer.
  • the time information indicates time and the current time (the current time may refer to the time when the first centralized unit generates the time information, or the time when the time information is added to the header of the data packet carrying the data, or the time when the time information is sent ) should be greater than or equal to the larger value of the first delay and the second delay.
  • the first centralized unit obtains the first delay by sending a delay detection data packet to the first distributed unit. For example, the first centralized unit sends a delay detection packet to the first distributed unit at time T1. The unit sends a delay detection data packet and adds time T1 information to the delay detection data packet. The first distributed unit receives the delay detection data packet at time T2 and calculates the difference between T2 and T1 (i.e., the first distributed unit (one delay), and inform the first centralized unit of the difference. The first centralized unit can obtain the second delay in a similar manner, which will not be described again here.
  • the first centralized unit obtains the transmission delay between the first distributed unit and the terminal device (denoted as the third delay), and the transmission delay between the second distributed unit and the terminal device (denoted as the third delay).
  • the fourth delay determines the time information based on the third delay and the fourth delay.
  • the time information is used to indicate the processing time of the data packet at the radio link control layer.
  • the time indicated by the time information is different from the current time.
  • the difference should be greater than or equal to the larger value of the third delay and the fourth delay.
  • the first centralized unit may request the first distributed unit and the second distributed unit to obtain the third delay and the fourth delay respectively.
  • the first centralized unit sends a request message to the first distributed unit to request to obtain the transmission delay between the first distributed unit and the terminal device.
  • the first distributed unit can send a request message to the first distributed unit.
  • the terminal device obtains the third delay by sending a delay detection data packet (for specific methods, please refer to the method of obtaining the first delay by the first centralized unit in the above example), and then the first distributed unit sends the third delay to First centralized unit. It can be understood that the first centralized unit can pre-acquire the third delay and the fourth delay before receiving data from the user plane functional network element to reduce transmission delay.
  • the first centralized unit determines the time information based on the size of cached data of the first distributed unit. For example, the first centralized unit obtains the size of the cached data from the first distributed unit. When the size of the cached data is greater than threshold #1, the time indicated by the time information determined by the first centralized unit The difference from the current time should be greater than threshold #2; or, the first centralized unit estimates the length of time for the first distributed unit to process the cached data based on the size of the cached data, then the time information determined by the first centralized unit The difference between the indicated time and the current time is greater than or equal to this duration.
  • the first centralized unit needs to reserve a large time difference when determining the time information, that is, the time indicated by the time information should be different from the current time. have a large difference.
  • the first distributed unit may periodically inform the first centralized unit of the cached data information, or may send the cached data information to the first centralized unit according to a request from the first centralized unit. unit.
  • the first centralized unit may also adjust the time information based on the indication information from the first distributed unit and/or the second distributed unit.
  • the second distributed unit receives data and time information from the first centralized unit.
  • the time information is used to indicate the time to send the data to the terminal device.
  • the second distributed unit currently caches a lot of data and cannot The data is sent according to the time indicated by the time information.
  • the second distributed unit sends instruction information to the first centralized unit.
  • the instruction information is used to instruct to increase the time for sending the time information and the time information.
  • the time difference between the indicated times, or the indication information is used to indicate that the second distributed unit cannot send data at the time indicated by the time information, or the time information may be information about data cached by the second distributed unit, etc.
  • the first centralized unit adjusts the time information according to the indication information. For example, the first centralized unit increases the time difference between the time indicated by the time information and the current time.
  • the first centralized unit can directly receive the indication information from the second distributed unit; in the case where the second distributed unit and the first centralized unit belong to different access network devices, for example, the second The distributed unit belongs to the second access network device, and the first centralized unit belongs to the first access network device.
  • the second distributed unit can send the indication information to the second centralized unit of the second access network device, and then the The second centralized unit sends the indication information to the first access network device.
  • S430a The first centralized unit sends the data and the time information to the first distributed unit.
  • S430b The first centralized unit sends the data and the time information to the second distributed unit.
  • the first centralized unit determines the time information, it sends the time information and the data corresponding to the time information to the first distributed unit, and sends the time information and the data corresponding to the time information to the first distributed unit.
  • Two distributed units Two distributed units.
  • the first centralized unit, the first distributed unit and the second distributed unit may belong to the same access network device or may belong to different access network devices.
  • the first centralized unit and the first distributed unit belong to the first access network equipment
  • the second distributed unit belongs to the second access network equipment; for another example, the first centralized unit, the first distributed unit and the third Both distributed units belong to the first access network equipment.
  • the first access network device and the second access network device in the above examples refer to different access network devices.
  • the first centralized unit can transmit the data and time information through other nodes. Forwarded to the second distributed unit, for example, the first centralized unit sends the data and time information to the second centralized unit, and then the second centralized unit forwards the data and time information to the second distributed unit,
  • the second centralized unit belongs to the second access network device, that is, the second centralized unit corresponds to the second distributed unit.
  • the first access network device and the second access network device may perform a collaborative transmission negotiation process before S410, and the specific process is as shown in S440. The following is an exemplary description of the negotiation process in conjunction with each step in S440.
  • the terminal device sends the measurement result to the first centralized unit.
  • the first centralized unit receives the measurement result from the terminal device.
  • the terminal device measures the reference signal of the current serving cell and/or the reference signal of the adjacent cell to obtain a measurement result, and sends the measurement result to the first centralized unit.
  • the first centralized unit belongs to the network device corresponding to the current serving cell of the terminal device (ie, the first access network device).
  • the first centralized unit After receiving the measurement results from the terminal equipment, the first centralized unit determines the site for collaborative transmission based on the measurement results (which may optionally include other information).
  • the first centralized unit determines that the second centralized unit (or determines the access network device where the second centralized unit is located) is a site for coordinated transmission based on one or more of the following:
  • the distance between the second centralized unit and the first centralized unit is the distance between the second centralized unit and the first centralized unit.
  • the first centralized unit selects the second centralized unit For collaborative transfer:
  • the distance to the first centralized unit or terminal device is less than threshold #5.
  • the first centralized unit may determine one or multiple sites for collaborative transmission, which is not limited in this application.
  • the first centralized unit sends a collaboration request message to the second centralized unit.
  • the second centralized unit receives the cooperation request message from the first centralized unit.
  • the first centralized unit after determining to perform cooperative transmission with the second centralized unit, the first centralized unit sends a cooperative transmission request message to the second centralized unit.
  • the cooperative transmission request message includes information requesting synchronous transmission to the terminal device.
  • the first centralized unit may send the above-mentioned cooperation request information to multiple sites suitable for cooperative transmission, that is, the first centralized unit may request coordinated transmission from two or more sites, which is not limited in this application. .
  • the first centralized unit may also send to the second centralized unit the configuration information used for the second distributed unit to communicate with the terminal device based on the first configuration information used for the communication between the first distributed unit and the terminal device.
  • Second configuration information is related to The first configuration information is the same, or the second configuration information is information determined based on the first configuration information.
  • the first centralized unit sends the second configuration information to the second centralized unit in order to allow the first distributed unit to communicate with the terminal device and the second distributed unit to communicate with the terminal device.
  • the configuration is consistent, that is, by sending the second configuration information to the second centralized unit, the first distributed unit and the second distributed unit can use the same configuration information and/or scheduling control information to send coordinated transmission to the terminal device.
  • the data please refer to the descriptions of S450a and S450b, which will not be described in detail here.
  • the first configuration information includes one or more of the following information: physical layer channel configuration information of the first distributed unit, medium access control layer configuration information of the first distributed unit, Radio link control layer configuration information of a distributed unit and packet data convergence layer configuration information of the first centralized unit.
  • the first configuration information includes one or more of the following information: identity information of the terminal device, such as cell radio network temporary identifier (C-RNTI), first access network device Time-frequency resource information for communication with the terminal device, radio bearer (RB) information allocated by the first access network device to the terminal device, system frame synchronization information, uplink and downlink time slot configuration of the first access network device.
  • C-RNTI cell radio network temporary identifier
  • RB radio bearer
  • the ratio information includes the number of hybrid automatic repeat request processes and/or the hybrid automatic repeat request process number used by the first access network device.
  • the communication configuration information between the first centralized unit and the terminal device and the communication between the first distributed unit and the terminal device can also be described as communication configuration information between the first access network device and the terminal device.
  • the first configuration information may also include other types of information.
  • the first configuration information includes control information for scheduling of the terminal device by the first access network device, such as scheduling priority, proportional fairness (Proportion Fair). Scheduling information, where the proportional fair scheduling information is an input parameter of the scheduling algorithm of the first access network device, and is used by the first access network device to schedule different terminal devices in a fairer manner.
  • the second configuration information includes one or more of the following information: physical layer channel configuration information of the second distributed unit, medium access control layer configuration information of the second distributed unit, the second The wireless link control layer configuration information of the distributed unit, the packet data aggregation layer configuration information of the second centralized unit, the identification information of the terminal device, etc.
  • physical layer channel configuration information of the second distributed unit medium access control layer configuration information of the second distributed unit
  • second The wireless link control layer configuration information of the distributed unit the packet data aggregation layer configuration information of the second centralized unit
  • the identification information of the terminal device etc.
  • the second centralized unit sends a collaboration response message to the first centralized unit.
  • the first centralized unit receives the collaboration response message from the second centralized unit.
  • the second centralized unit determines whether the second access network device supports coordinated transmission with the first access network device. If supported, the second centralized unit sends a collaboration response message to the first centralized unit.
  • the response message includes information indicating acceptance of the request for synchronous transmission to the terminal device (or information indicating agreement to perform coordinated transmission). , otherwise the second centralized unit sends a collaboration response message to the first centralized unit to refuse collaborative transmission.
  • the first centralized unit and the second distributed unit can repeatedly perform the process of S442-S443 to negotiate the configuration information for collaborative transmission, or, after subsequent collaborative transmission starts, the first centralized unit and the second distributed unit
  • the second centralized unit can still exchange some information through the process of S442-S443.
  • the second centralized unit can still exchange some information through the process of S442-S443.
  • One centralized unit and a second centralized unit can perform information/configuration synchronization through the above negotiation process.
  • the first centralized unit may select all sites that indicate that collaborative transmission is allowed for collaborative transmission, or may select one or more sites among the sites that indicate that collaborative transmission is allowed for collaborative transmission, which is not limited by this application.
  • the following is an exemplary description of the specific manner in which the first centralized unit sends data and time information to the first distributed unit, and sends data and time information to the second distributed unit.
  • the first centralized unit may carry the time information in the packet data aggregation protocol header.
  • the first centralized unit encrypts the data at the packet data convergence protocol layer to obtain encrypted data, and then adds time information to the packet data convergence protocol header of the data packet carrying the encrypted data. , and then copies the data packet with added time information, and sends the data packet to the first distributed unit and the second distributed unit respectively.
  • the packet data aggregation protocol header of the data packet carries the time information.
  • the time information may be a newly added cell or an existing cell.
  • the time information can be a packet data convergence protocol sequence number, such as PDCP SN.
  • different packet data convergence protocol sequence numbers and different times can be configured in the first distributed unit and the second distributed unit in advance. corresponding relationship, So that the first distributed unit and the second distributed unit can determine the time to send/process the data through the packet data convergence protocol sequence number.
  • the first centralized unit may carry the time information in a packet header of a tunnel carrying the data.
  • the first centralized unit may carry the time information in a general wireless packet carrying the data.
  • PDU protocol data unit
  • GTP-U general packet radio service tunneling protocol for the user plane
  • the first centralized unit first copies the data, processes the two copies of the data using a tunnel protocol (such as the GTP-U protocol), and then sends the data to the first distributed unit through the tunnel.
  • the unit and the second distributed unit send the data, and the packet header of the tunnel includes the time information.
  • the first centralized unit can generate time information for each data that undergoes cooperative transmission.
  • the first distributed unit or the second distributed unit receives the data from the first centralized unit, according to the data
  • Corresponding time information processes the data or sends the data, that is, the first distributed unit and the second distributed unit synchronously send the data according to the time information corresponding to the data.
  • the first centralized unit may generate time information for the first data to be transmitted collaboratively. That is to say, the first centralized unit may not generate time information for subsequent consecutively sent data.
  • the first distributed unit or the second distributed unit synchronously sends the first one for cooperative transmission according to the time information, and the remaining data can be processed/sent in sequence.
  • the first centralized unit can generate time information for part of the data according to a certain period. For example, the first centralized unit generates time information according to a certain time period. Specifically, for example, the first centralized unit generates time information for the next (or multiple) data to be transmitted every 10 ms; for another example, the first centralized unit generates time information for the next (or multiple) data to be transmitted. The unit generates time information according to a certain number of cycles. Specifically, for example, every time the first centralized unit transmits 10 data, it generates time information for the next (or more) data to be transmitted.
  • the first distributed unit and the second distributed unit receive the data from the first centralized unit, if time information corresponding to the data is also received, then the first distributed unit and the second distributed unit The distributed unit sends the data synchronously based on the time information, and then processes/or sends the remaining data packets in sequence until data carrying the time information is received again, and then the above process is repeated.
  • the first centralized unit can generate time information for the data to be transmitted when triggered by a certain event, that is, when certain trigger conditions are met, the first centralized unit generates time information for the data to be transmitted.
  • Data generation time information For example, in the case where the first centralized unit receives feedback information from the terminal device indicating that the cooperative transmission is not synchronized, the first centralized unit generates time information for the next (or more) data to be transmitted; and For example, after the downlink transmission of the first centralized unit is interrupted and the downlink transmission is resumed, the first centralized unit generates time information for the next (or more) data to be transmitted.
  • the first centralized unit generates time information for a cluster of data corresponding to a specific service type.
  • the core network equipment such as user plane functional network element
  • the first centralized unit can generate a cluster of data for the cluster of data.
  • a piece of time information, the first distributed unit and the second distributed unit can process the cluster of data in sequence according to the time information.
  • S450a The first distributed unit sends data to the terminal device according to the time information.
  • S450b The second distributed unit sends data to the terminal device according to the time information.
  • the first distributed unit and the second distributed unit respectively send data to the terminal device according to the time information.
  • the first distributed unit receives data and time information from the first centralized unit, and the time information is used to indicate the time when the data is processed at the wireless link control layer, then the first distributed unit responds according to the time information. At the indicated time, the data is processed at the radio link control layer, and then sent to the terminal device after being processed by other layers.
  • the first distributed unit receives data and time information from the first centralized unit.
  • the time information is used to indicate the time when the data is processed at the medium access control layer. Then the first distributed unit receives data based on the time. At the time indicated by the information, the media access control layer processes the data, and then sends the data to the terminal device after being processed by other layers.
  • the first distributed unit and the second distributed unit belong to different access network devices, for example, the first distributed unit belongs to the first access network device and the second distributed unit The unit belongs to the second access network device, then before cooperative transmission, the first access network device and the second access network device can negotiate configuration information for communicating with the terminal device, for example, the first access network device and The second access network device reuses the process of S442-S443 and negotiates the configuration information, which includes physical layer channel configuration information, medium access control configuration information, wireless link control configuration information, packet data aggregation protocol configuration information, etc. .
  • the first distributed unit and the second distributed unit can synchronize and process the data at the radio link control layer based on the time information, and since the first access network device and the second access network device have negotiated the same configuration information, therefore, the length of time for the first distributed unit and the second distributed unit to process the data can be approximately equal, so that the first distributed unit and the second distributed unit can synchronously send the data to the terminal device.
  • the first distributed unit receives data and time information from the first centralized unit, and the time information is used to indicate the time when the data is sent at the physical layer, then the first distributed unit receives the time indicated by the time information, Send this data to the terminal device.
  • the first distributed unit may or may not send the time information to the terminal device.
  • the first distributed unit can delete the time information from the packet data convergence protocol header of the data packet carrying the data, and then send the time information to the terminal device. data pack.
  • the first distributed unit can delete the time information from the GTP-U header of the GTP-U tunnel carrying the data, and then send the time information to the terminal device. Send this packet. It should be understood that this application does not limit which layer of protocol data packets the time information is carried in.
  • the packet data aggregation protocol provides cross-layer indication information to the wireless link control layer (or medium access control layer, or physical layer). This cross-layer indication information should be deleted before being sent to the terminal device, and does not need to be sent to the terminal device.
  • the first distributed unit and/or the second distributed unit may also adjust the sending time of the data (or the time indicated by the time information) to reduce the time required by the terminal device.
  • the terminal device measures the time difference between the time when the downlink signal of the first distributed unit reaches the terminal device and the time when the downlink signal of the second distributed unit reaches the terminal device. That is, the terminal device measures the time when the downlink signal of the first distributed unit reaches the terminal device.
  • the terminal device determines that the time difference is d through measurement, that is, in the case of synchronous transmission, the signal of the first distributed unit is received by the terminal device d period earlier than the signal of the second distributed unit, and the terminal device uses the time difference d informs the first distributed unit, and the first distributed unit adjusts the data sending time according to the time difference d.
  • the first distributed unit sends the data to the terminal device at time T+d based on the time information and the time difference.
  • the terminal device may not send the above time difference to the second distributed unit, that is, the second distributed unit may not adjust the data sending time.
  • the time information received from the first centralized unit by the first distributed unit and/or the second distributed unit may indicate that the first distributed unit and/or the second distributed unit The latest time when the formula unit completes processing at the medium access control layer, for example, before the time indicated by the above time information, the first distributed unit and/or the second distributed unit completes processing of the data at the medium access control layer , and store the data corresponding to the time information.
  • the first distributed unit and/or the second distributed unit When the first distributed unit and/or the second distributed unit receive the instruction information from the terminal device (for example, the first distributed unit and the second distributed unit instructed by the terminal device The time difference between the unit's downlink signal arriving at the terminal equipment, or the channel state information indicated by the terminal equipment and used as a reference for downlink scheduling by the network equipment), the first distributed unit and/or the second distributed unit sends the stored data to the terminal equipment.
  • any one of the following methods can be used for processing (hereinafter referred to as the second distributed unit Take an example to illustrate):
  • Method 1 The second distributed unit notifies the first centralized unit to retransmit the lost data.
  • the second distributed unit notifies the first centralized unit through the downlink data delivery status (DDDS) and requests retransmission of the lost data.
  • DDDS downlink data delivery status
  • Method 2 When the second distributed unit belongs to the second access network device, and the first centralized unit and the first distributed unit belong to the first access network device, the second distributed unit notifies the first centralized unit Cancel collaborative transfer. In this implementation, the second distributed unit does not send signals during the sending period corresponding to the lost data. The first distributed unit receives a notification from the second distributed unit After the message, independent downstream data transmission can be performed.
  • Method 3 The second distributed unit notifies the terminal device to stop receiving data between time slot x to time slot y through physical layer or medium access control layer signaling (time slot x to time slot y are corresponding to packet loss). sending time slot).
  • the second distributed unit notifies the terminal device of the serial number (for example, SN1, SN3, SN5) of the lost data.
  • the terminal device determines the lost data according to the instructions of the second distributed unit, it can correspondingly
  • the time slots i.e., time slot x ⁇ time slot y
  • the first distributed unit can be notified of the packet loss. After the first distributed unit determines the lost data according to the instructions of the terminal device, This data can no longer be sent to the end device to save resources.
  • the above packet loss processing method is applicable to situations in certain cooperation methods where the terminal device needs to receive complete signals from multiple network devices to correctly decode the data.
  • the second distributed unit can request the first centralized unit to resend the lost packet data. This is suitable for when the time when the packet loss is detected is long away from the time when the packet loss is sent to the terminal device, and there is still time to retransmit the lost packet. Data packets are restored and collaborative transmission is completed.
  • the first distributed unit can avoid unnecessary transmission and/or the terminal device can avoid unnecessary reception, saving the power consumption of the overall communication system.
  • Methods 2 and 3 are suitable for the moment when packet loss is detected. Scenarios when the time to send to the terminal device is short.
  • the terminal device receives data from the first distributed unit and data from the second distributed unit.
  • the terminal device sends a first feedback message (such as a NACK message) to the first distributed unit, the first feedback message is used to indicate that the terminal device was unsuccessful. Receive this data. If the terminal device can correctly decode the data from the first distributed unit, the terminal device sends a second feedback message (such as an ACK message) to the first distributed unit, where the second feedback message is used to indicate successful data reception. Similarly, if the terminal device does not correctly decode the data from the second distributed unit, the terminal device sends the first feedback message to the second distributed unit; if the terminal device can correctly decode the data from the second distributed unit, the terminal device Send a second feedback message to the second distributed unit.
  • a first feedback message such as a NACK message
  • the data is retransmitted.
  • the following description takes the first distributed unit as an example.
  • the first distributed unit when the first distributed unit receives the first feedback information from the terminal device and determines that the data transmission fails, the first distributed unit retransmits the data. .
  • the first distributed unit determines that the data transmission fails. For example, the first distributed unit presets If no second feedback information is received from the terminal device within the time, it is determined that the data transmission fails. In this case, the first distributed unit retransmits the data.
  • the terminal device can send a feedback message to the first distributed unit and the second distributed unit to indicate whether the data is received successfully, and the first distributed unit and the second distributed unit can perform the processing according to whether the terminal device
  • the feedback and the content indicated by the information fed back by the terminal device are used to determine whether the data is sent successfully or failed.
  • the first distributed unit and the second distributed unit can retransmit the failed data, thereby improving the reliability of data transmission.
  • the first distributed unit may send information indicating the data transmission failure to the second distributed unit, the information being used for the second distributed unit and the third distributed unit.
  • a distributed unit resynchronizes and transmits the data that has failed to be sent.
  • the information indicating that the data has failed to be sent may be, for example, the sequence number of the data.
  • the first distributed unit can directly send the indication information to the second distributed unit, and the first distributed unit
  • the unit may also send indication information to the second distributed unit through the first centralized unit; in the case that the first distributed unit and the second distributed unit belong to different access network devices, the first distributed unit may use the first distributed unit.
  • the centralized unit corresponding to the distributed unit and the centralized unit corresponding to the second distributed unit send the information to the second distributed unit.
  • the first distributed unit and the second centralized unit belong to the first access network device
  • the second distributed unit and the second centralized unit belong to the second access network device.
  • the first distributed unit The unit sends information indicating that the data transmission failed to the first centralized unit, and then the first centralized unit determines that the second access network device is a site that performs cooperative transmission with the first access network device, so the first centralized unit The information is sent to the second centralized unit in the second access network device, and then the second centralized unit sends the information to the second distributed unit. After receiving the information indicating that the data transmission failed from the first distributed unit, the second distributed unit retransmits the data, that is, performs cooperative transmission with the first distributed unit.
  • the second distributed unit should Some of the transmitted data is stored, and upon receiving information from the first distributed unit indicating the retransmission of certain data, the second distributed unit retransmits the data.
  • the second distributed unit can set a timer for each data (packet). After the initial transmission of the data (packet), the timer is started. Before the timer expires, the second distributed unit stores the timer. Data (packet); when the timer expires, the second distributed unit clears the data (packet) from storage.
  • the first distributed unit also adopts a similar method. When the second distributed unit indicates to the first distributed unit that certain data (packet) needs to be retransmitted, the first distributed unit reads the data (packet) from the storage. data and retransmit it.
  • the first distributed unit may periodically exchange information about the cached data with the second distributed unit. For example, the first distributed unit sends the sequence number of the cached data to the second distributed unit every 100ms. After receiving the sequence number of the cached data from the first distributed unit, the second distributed unit determines the Whether the data cached by one distributed unit is consistent with the data cached by itself, if not, the second distributed unit updates its cached data to be consistent with the data cached by the first distributed unit. Through this solution, the first distributed unit and the second distributed unit are allowed to align the cooperatively transmitted data.
  • the terminal device After the terminal device receives data from the first distributed unit and data from the second distributed unit, if the data decoding is successful, the terminal device sends second feedback to the first distributed unit and the second distributed unit respectively. information. If the first distributed unit correctly receives the second feedback message, but the second distributed unit mistakenly detects the second feedback message as the first feedback message, or the second distributed unit does not receive the second feedback message, Then the second distributed unit may retransmit the data, causing the subsequent collaborative transmission data of the first distributed unit and the second distributed unit to be unable to be aligned.
  • the first distributed unit can be periodically aligned. and the data cached by the second distributed unit to avoid problems caused by misalignment of collaboratively transmitted data.
  • the first distributed unit may exchange cached data information with the second distributed unit if certain trigger conditions are met. For example, when the first distributed unit receives the first feedback message from the terminal device, or when the first distributed unit receives the first feedback message from the terminal device multiple times in succession, the first distributed unit Send the sequence number of the cached data to the second distributed unit. After receiving the sequence number of the cached data from the first distributed unit, the second distributed unit determines whether the data cached by the first distributed unit is the same as its own cached data. Whether the data is consistent, if not, the second distributed unit updates its own cached data to be consistent with the data cached by the first distributed unit. Through this solution, the first distributed unit and the second distributed unit are allowed to align the cooperatively transmitted data.
  • the first distributed unit when the first distributed unit determines that data transmission fails, the first distributed unit processes the data at the next available time corresponding to the hybrid automatic retransmission process number at which the data is sent. Perform retransmission.
  • the time information for example, there is a corresponding relationship between the time information and the hybrid automatic repeat transmission process number used in downlink transmission.
  • the time information as the packet data aggregation protocol sequence number as an example
  • the correspondence between the packet data aggregation protocol sequence number and the hybrid automatic retransmission process number can be pre-configured: Assume that the first distributed unit and the second distributed unit negotiate to use 8 A hybrid automatic retransmission process number communicates with the terminal device.
  • the eight hybrid automatic retransmission process numbers are 0 to 7 respectively.
  • the hybrid automatic retransmission process corresponding to the process number 0 is used for data transmission.
  • the slot number will be reset to zero and counted again after accumulating to the preset maximum value, but the above correspondence relationship can continue.
  • 10 of the wireless frame 0 can be The slots are recorded as slot0 ⁇ slot9
  • the 10 slots of wireless frame 1 can be recorded as slot10 ⁇ slot19
  • the 10 slots of wireless frame 2 can be recorded as slot20 ⁇ slot29, and so on.
  • the hybrid automatic retransmission process number can be selected for downlink transmission according to the above corresponding relationship.
  • the data can be retransmitted at the next available time corresponding to the same hybrid automatic retransmission process number as the initial transmission.
  • the packet data aggregation protocol sequence number When the data with a sequence number of 8 needs to be retransmitted, the data with a sequence number of 8 in the packet data aggregation protocol can be retransmitted at the time corresponding to the original data with a sequence number of 16 in the packet data aggregation protocol.
  • the downlink processing/sending time of other untransmitted data packets corresponding to the hybrid automatic retransmission process number is affected by the retransmission, corresponding to the backward delay, that is, the data with the packet data aggregation protocol sequence number 16
  • the data is transmitted at the sending time corresponding to the original packet data aggregation protocol sequence number 24, and the rest of the data is similarly delayed.
  • the first distributed unit and the second distributed unit can synchronously transmit data to the terminal device, thereby improving the reliability of data transmission.
  • the terminal device can also provide feedback to the first distributed unit or the second distributed unit, so that the first distributed unit or the second distributed unit can cooperatively re-retransmit the failed data. transmission, reducing data packet loss rate and improving user experience.
  • the above solution can be applied to various communication systems, such as 5G communication systems or future 6G communication systems.
  • the user plane functional network element in the embodiment of this application may correspond to the UPF in 5G
  • the access network equipment may correspond to the gNB in 5G
  • the centralized unit may correspond to the CU in the gNB
  • the distributed unit may correspond to the CU in the gNB.
  • the unit may correspond to the DU in gNB, the hybrid automatic repeat process number may correspond to the HARQ process number in 5G, the packet data aggregation protocol may correspond to PDCP in 5G, and the radio link control protocol may correspond to RLC in 5G, The medium access control protocol can correspond to the MAC in 5G, and the physical layer can correspond to the PHY in 5G.
  • gNB-CU#1 and gNB-DU#1 belong to gNB#1, gNB-CU#2 and gNB-DU#2 belong to gNB#2, and gNB#1 and gNB#2 are used to transmit signals to the UE.
  • Collaborative transfer site Assume that gNB-CU#1 receives two data packets from UPF, and these two data packets are recorded as Packet#1 and Packet#2 respectively.
  • gNB-CU#1 generates time information Timestamp#1 for Packet#1, generates time information Timestamp#2 for Packet#2, adds Timestamp#1 to the PDCP header of Packet#1, and adds Timestamp#2 to Packet#2 PDCP header, where Timestamp#1 is used to indicate sending Packet#1 in slot#2, and Timestamp#2 is used to indicate sending Packet#2 in slot#4.
  • gNB-CU#1 copies Packet#1 and Packet#2, it sends Packet#1 and Packet#2 to gNB-DU#1, and sends the Packet#1 and Packet#2 to gNB-CU#2 through gNB-CU#2.
  • gNB-DU#2 it should be understood that in some network deployment methods, gNB-CU#1 can directly send the Packet#1 and Packet#2 to gNB-DU#2, or can also send the Packet#1 and Packet# 2 is forwarded to gNB-DU#2 through the core network node.
  • gNB-DU#1 and gNB-DU#2 send Packet#1 to the UE in slot#2 based on Timestamp#1, and send Packet#2 to the UE in slot#4 based on Timestamp#2.
  • Figure 6 shows an exemplary flowchart of the method 600 provided by the embodiment of the present application.
  • the user plane functional network element determines the time information corresponding to the data, and sends the data and the time information to the first centralized unit and the second centralized unit, and the first centralized unit and the second centralized unit.
  • the data and the time information are respectively sent to the first distributed unit and the second distributed unit that cooperatively transmit the data.
  • the first distributed unit and the second distributed unit synchronously send the data to the terminal device according to the time information. the data.
  • the user plane functional network element determines the time information used for the first distributed unit and the second distributed unit to synchronously transmit data.
  • the user plane functional network element determines time information for the data, and the time information is used for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the first distributed unit, the second distributed unit and the time information please refer to the S420 part in the method 400, which will not be described in detail here.
  • the time information is used to indicate one or more of the following: the time when the data is processed at the packet data convergence protocol layer, the time when the data is processed at the radio link control layer, and the time when the data is processed at the medium access control layer. The time it takes for the data to be processed by the physical layer and the time it takes to send the data at the physical layer.
  • the time when the data is processed at the packet data aggregation protocol layer may refer to the moment when the data is processed at the packet data aggregation protocol layer, or may refer to the time when the data is processed at the packet data aggregation protocol layer.
  • the time when the data is processed may also refer to the time period during which the data is processed at the packet data aggregation protocol layer.
  • the user plane functional network element may determine the time information based on one or more of the following information: information about the data cached by the first distributed unit, information about the data cached by the second distributed unit, the first centralized unit and the third The transmission delay between a distributed unit, the transmission delay between the second centralized unit and the second distributed unit, the time for the first centralized unit and/or the first distributed unit to process data, the The time it takes for the second centralized unit and/or the second distributed unit to process data, the time it takes for the user plane functional network element to copy and process data, the transmission delay between the user plane functional network element and the first centralized unit, the user plane The transmission delay between the functional network element and the second centralized unit.
  • the specific way in which the user plane functional network element obtains one or more of the above information is similar to the way in which the first centralized unit obtains the information for determining time information in S420 of method 400.
  • the difference lies in the execution subject and the message sending and receiving nodes. , for the sake of brevity, we will not go into details here.
  • the user plane functional network element sends the data and the time information to the first centralized unit, and sends the data and the time information to the second centralized unit.
  • the first centralized unit and the second centralized unit receive the data and the time information from the user plane functional network element.
  • the first centralized unit and the first distributed unit belong to the first access network device
  • the second centralized unit and the second distributed unit belong to the second access network device. Therefore, before S610, the first access network device and the second access network device may perform a collaborative transmission negotiation process. For details, reference may be made to S440 in the method 400, which will not be described again here. It can also be understood that after the sites for collaborative transmission are determined through the negotiation process, the user plane functional network element should be informed of the identity information/address information of multiple collaborating sites, so that the user plane functional network element can copy the The resulting data is sent to the corresponding multiple sites.
  • the user plane functional network element After determining the time information corresponding to the data, the user plane functional network element sends the data and the time information to the first centralized unit, and sends the data and the time information to the second centralized unit.
  • the user plane functional network element can carry the time information in the packet header of the tunnel carrying the data.
  • the first centralized unit sends the data and time information to the first distributed unit, and sends the data and time information to the second distributed unit.
  • the user plane functional network element sends data and time information to the first centralized unit, and sends data and time information to the second centralized unit.
  • we won’t go into details here.
  • the above embodiments take the user plane function network element to directly send data and time information to the first centralized unit and the second centralized unit as an example.
  • the user plane function network element directly sends data and time information to the first centralized unit and the second centralized unit.
  • the network element may also first send the data and time information to the first centralized unit, and then the first centralized unit sends the data and time information to the second centralized unit. This application does not limit this.
  • S630a The first centralized unit sends the data and time information to the first distributed unit.
  • S630b The second centralized unit sends the data and time information to the second distributed unit.
  • the first centralized unit after receiving the data and the time information from the user plane functional network element, the first centralized unit sends the data and/or the time information to the first distributed unit.
  • the second centralized unit after receiving the data and the time information from the user plane functional network element, the second centralized unit sends the data and/or the time information to the second distributed unit. It should be understood that if the above time information indicates the time when the data is processed at the packet data aggregation protocol layer, the first centralized unit may not send the time information to the first distributed unit, and the second centralized unit may not send the time information to the first distributed unit. The time information may not be sent to the second distributed unit. In this case, after receiving the data from the first centralized unit, the first distributed unit processes the data at the packet data aggregation protocol layer.
  • the second distributed unit processes the data at the packet data aggregation protocol layer.
  • the following steps S640a-S640b are described by taking the case where the first centralized unit sends the time information to the first distributed unit, and the second centralized unit sends the time information to the second distributed unit as an example.
  • the first centralized unit and the second centralized unit need to use the same Security parameters (such as secret keys, encryption algorithms, etc.) are used to perform encryption and other security processing on the data.
  • the first centralized unit and the second centralized unit may negotiate and determine the same security parameters during the negotiation process of cooperative transmission.
  • the first centralized unit and the second centralized unit process the data using the same security parameters, thereby ensuring that the encrypted data is consistent and preventing collaborative transmission failure due to inconsistent data received by the terminal device. . It should be understood that this step is not limited to this embodiment, but is also applicable to other solutions of this application, that is, this solution can be applied to scenarios where different network devices perform security-related operations on data.
  • the first distributed unit sends data to the terminal device according to the time information.
  • S640b The second distributed unit sends data to the terminal device according to the time information.
  • S640a-S640b are similar to S450a-S450b in method 400, and will not be described again here for the sake of brevity.
  • the first distributed unit and the second distributed unit can synchronously transmit data to the terminal device, thereby improving the reliability of data transmission.
  • the user plane functional network element directly copies the data and distributes it to multiple sites for collaborative transmission, there is no need to wait for one site to process the data and then forward it to other sites, which can reduce the overall communication delay.
  • gNB-CU#1 and gNB-DU#1 belong to gNB#1, gNB-CU#2 and gNB-DU#2 belong to gNB#2, and gNB#1 and gNB#2 are used to transmit signals to the UE. Collaborative transfer site.
  • UPF generates time information Timestamp#1 for Packet#1, generates time information Timestamp#2 for Packet#2, and adds Timestamp#1 to the GTP of Packet#1 -U packet header, add Timestamp#2 to the GTP-U packet header of Packet#2, where Timestamp#1 is used to instruct Packet#1 to be sent in slot#2, and Timestamp#2 is used to instruct Packet#2 to be sent in slot#4.
  • gNB-CU#1 sends Packet#1 with Timestamp#1 added and Packet#2 with Timestamp#2 added to gNB-DU#1, gNB-DU#1 deletes Timestamp#1 in Packet#1, and Timestamp#1 sends Packet#1 to the UE in slot#2; and deletes Timestamp#2 in Packet#2, and sends Packet#2 to the UE in slot#4 according to Timestamp#2.
  • gNB-CU#1 does not directly forward Packet#1 containing Timestamp#1 from UPF to gNB-DU#1, but performs additional data processing, such as Read Timestamp#1 from the GTP-U packet header, add it to the PDCP packet header, and send it to gNB-DU#1.
  • additional data processing such as Read Timestamp#1 from the GTP-U packet header, add it to the PDCP packet header, and send it to gNB-DU#1.
  • This application does not limit which layer of protocol data packets the time information is carried in.
  • the indication of time information can also be completed through cross-layer indication.
  • gNB-CU#2 sends Packet#1 with Timestamp#1 added and Packet#2 with Timestamp#2 added to gNB-DU#2, and gNB-DU#2 deletes Timestamp#1 in Packet#1. , and sends Packet#1 to the UE in slot#2 based on Timestamp#1; and deletes Timestamp#2 in Packet#2, and sends Packet#2 to the UE in slot#4 based on Timestamp#2.
  • gNB-CU#2 does not directly forward Packet#1 containing Timestamp#1 from UPF to gNB-DU#2, but performs additional data processing, such as Timestamp#1 is read from the GTP-U packet header, added to the PDCP packet header, and sent to gNB-DU#2.
  • This application does not limit which layer of protocol data packets the time information is carried in.
  • the indication of time information can also be completed through cross-layer indication.
  • Figure 8 shows an exemplary flow chart of the method 800 provided by the embodiment of the present application.
  • the user plane functional network element sends data to the first centralized unit and the second centralized unit, and then the first centralized unit determines the time information corresponding to the data and sends the time information to the second centralized unit.
  • Centralized unit The first centralized unit and the second centralized unit respectively send the data and the time information to the first distributed unit and the second distributed unit that cooperatively transmit the data.
  • the first distributed unit and the second distributed unit The unit synchronously sends the data to the terminal device based on the time information.
  • the method 800 is illustratively described below with reference to each step in FIG. 8 .
  • the user plane functional network element sends data to the first centralized unit and the second centralized unit respectively.
  • the first centralized unit and the second centralized unit respectively receive data from the user plane functional network element.
  • the first centralized unit and the first distributed unit belong to the first access network device
  • the second centralized unit and the second distributed unit belong to the second access network device. Therefore, before S810, the first access network device and the second access network device may perform a collaborative transmission negotiation process. For details, reference may be made to S440 in the method 400, which will not be described again here. It can also be understood that after the sites for collaborative transmission are determined through the negotiation process, the user plane functional network element should be informed of the identity information/address information of multiple collaborating sites, so that the user plane functional network element can copy the The resulting data is sent to the corresponding multiple sites.
  • the user plane functional network element copies the data, and then sends the data to the first centralized unit and the second centralized unit respectively.
  • the first centralized unit determines time information for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • S820 is similar to S420 in method 400 and will not be described again here.
  • the first centralized unit can determine the time information after receiving the data from the user plane functional network element, or can predetermine the time before receiving the data from the user plane functional network element. information. By predetermining the time information, the delay can be reduced.
  • S830 The first centralized unit sends time information and information indicating the data to the second centralized unit.
  • the first centralized unit sends the time information to the second centralized unit after receiving the data from the user plane functional network element.
  • information and information indicating the data such as the sequence number of the data
  • the first centralized unit determines the time information after receiving the data from the user plane functional network element
  • the first centralized unit determines the data
  • the time information and information indicating the data are sent to the second centralized unit. It can be understood that if the sequence number of the data is used to represent the time information corresponding to the data, S830 only needs to send the sequence number.
  • S820 can also be performed by the second centralized unit.
  • the second centralized unit sends the time information and information indicating the data to the first centralized unit.
  • the first centralized unit and the second centralized unit can negotiate in advance to determine who will determine and provide the time information.
  • the first centralized unit and the second centralized unit can determine who will determine and provide the time information during the negotiation process of synchronous transmission.
  • Provide time information may be determined and provided by default by the station initiating the collaborative transmission request (ie, the first centralized unit).
  • S840a The first centralized unit sends the data and the time information to the first distributed unit.
  • S840a is similar to S430a in method 400 and will not be described again here.
  • S840b The second centralized unit sends the data and the time information to the second distributed unit.
  • the second centralized unit determines the data based on the information indicating the data, and sends the data and the time information to the third centralized unit.
  • the specific sending process is similar to S430b in method 400, and will not be described again here.
  • the first centralized unit and the second centralized unit need to use the same Security parameters (such as secret keys, encryption algorithms, etc.) are used to perform encryption and other security processing on the data.
  • Security parameters such as secret keys, encryption algorithms, etc.
  • S850a The first distributed unit sends data to the terminal device according to the time information.
  • S850b The second distributed unit sends data to the terminal device according to the time information.
  • S850a-S850b are similar to S450a-S450b in method 400, and will not be described again here for the sake of brevity.
  • the first distributed unit and the second distributed unit can synchronously transmit data to the terminal device, thereby improving the reliability of data transmission.
  • the user plane functional network element since the user plane functional network element directly copies the data and distributes it to multiple sites for collaborative transmission, there is no need to wait for one site to process the data and then forward it to other sites, and the time information may be sent to the third site in advance. Once planned by one centralized unit, it is sent to the second centralized unit and the delay can be reduced.
  • gNB-CU#1 and gNB-DU#1 belong to gNB#1, gNB-CU#2 and gNB-DU#2 belong to gNB#2, and gNB#1 and gNB#2 are used to transmit signals to the UE. Collaborative transfer site.
  • UPF After UPF copies the data Packet#1 and Packet#2 to be transmitted, it sends Packet#1 and Packet#2 to gNB-CU#1, and sends Packet#1 and Packet#2 to gNB-CU#2.
  • gNB-CU#1 generates time information Timestamp#1 corresponding to Packet#1, and sends Timestamp#1 and SN#1 corresponding to Packet#1 to gNB-CU#2; similarly, gNB-CU#1 generates The time information Timestamp#2 of Packet#2 is sent to gNB-CU#2 with Timestamp#2 and the corresponding SN#2 of Packet#2. Timestamp#1 is used to instruct Packet#1 to be sent in slot#2, and Timestamp#2 is used to instruct Packet#2 to be sent in slot#4.
  • gNB-CU#1 adds Timestamp#1 to the PDCP header of Packet#1, adds Timestamp#2 to the PDCP header of Packet#2, and adds Timestamp#1 to Packet#1 and Timestamp#2 to the Packet #2 is sent to gNB-DU#1.
  • gNB-DU#1 deletes Timestamp#1 in Packet#1 and sends Packet#1 to the UE in slot#2 according to Timestamp#1; and deletes Timestamp#2 in Packet#2 and sends it in slot#2 according to Timestamp#2.
  • #4 sends Packet#2 to UE.
  • gNB-CU#2 After gNB-CU#2 receives Timestamp#1 and SN#1 from gNB-CU#1, it determines the corresponding Packet#1 based on SN#1, then adds Timestamp#1 to the PDCP header of Packet#1, and Packet#1 with Timestamp#1 added is sent to gNB-DU#1; similarly, after gNB-CU#2 receives Timestamp#2 and SN#2 from gNB-CU#1, it determines the corresponding Packet#2, then adds Timestamp#2 to the PDCP header of Packet#2, and sends Packet#2 with Timestamp#2 added to gNB-DU#2.
  • gNB-DU#2 deletes Timestamp#1 in Packet#1 and sends Packet#1 to the UE in slot#2 according to Timestamp#1; and deletes Timestamp#2 in Packet#2 and sends it in slot#2 according to Timestamp#2. #4 sends Packet#2 to UE.
  • Figure 10 shows a schematic flowchart of the method 1000 provided by the embodiment of the present application.
  • the first distributed unit and/or the second distributed unit sends the cached data information to the terminal device.
  • the terminal device determines the data to be transmitted based on the received cached data information, and sends the cached data information to the terminal device.
  • the data to be transmitted is indicated to a first distributed unit and a second distributed unit for cooperative transmission of the data.
  • the first distributed unit and the second distributed unit synchronously send the data to the terminal device according to the instruction of the terminal device.
  • the method 1000 is illustrated below in conjunction with each step in Figure 10.
  • the first distributed unit sends cached data information to the terminal device.
  • the terminal device receives the data from the first distribution Information about the cached data of the formula unit.
  • the first distributed unit receives data from the first centralized unit and caches the data locally. Before performing collaborative transmission of downlink data, the first distributed unit sends cached downlink data information to the terminal device.
  • the cached downlink data information includes any one or more of the following: a sequence of data cached by the first distributed unit number, and the size of the data cached by the first distributed unit (for example, the number of bytes).
  • the cached downlink data information can be carried in radio resource control (RRC) messages, or media access control element (MAC CE), or downlink control information (DCI). ), or other forms of messages, this application does not limit this.
  • RRC radio resource control
  • MAC CE media access control element
  • DCI downlink control information
  • the first distribution unit may also add cached data information as padding information to each downlink data packet, which is not limited in this application.
  • the first distributed unit may also send the identification information of the second distributed unit to the terminal device, and the second distributed unit is used to perform synchronous transmission with the first distributed unit to the terminal device.
  • the terminal device receives the identification information of the second distributed unit from the first distributed unit, and the terminal device can determine based on the identification information that the second distributed unit is a distributed unit that performs synchronous transmission with the first distributed unit. .
  • the second distributed unit sends buffered downlink data information to the terminal device.
  • the terminal device receives the cached downlink data information from the second distributed unit.
  • S1020 is similar to S1010, except that S1020 is executed by the second distributed unit, which will not be described again here.
  • the downlink data buffering information can be sent to the terminal device by any one of the multiple sites performing cooperative transmission (such as the first distributed unit in the embodiment of the present application), or by multiple sites performing cooperative transmission.
  • One or more sites (such as the first distributed unit and the second distributed unit in the embodiment of this application) send downlink data cache information to the terminal device, which is not limited by this application.
  • the terminal device can determine whether synchronous transmission is possible. For example, the terminal device receives information from the cached data of the first distributed unit, and information from the cached data of the second distributed unit. When it is determined that synchronous transmission is possible based on the data cached by the first distributed unit and the data cached by the second distributed unit, the terminal device executes S1030. Specifically, the terminal device determines the indication information. For specific examples, please refer to the description of S1030. No further details will be given here.
  • the terminal device determines that synchronous transmission is possible. For example, the first terminal device receives the cached sequence number of the first distributed unit (denoted as the first sequence number), and receives the sequence number of the cached data of the second distributed unit (denoted as the second sequence number).
  • the terminal device determines that the data cached by the first distributed unit is the same as the first serial number. The same data exists between the data cached by the two distributed units.
  • the terminal device determines that synchronous transmission is possible. Or, when it is determined that the size of the data cached by the first distributed unit and the size of the data cached by the second distributed unit are the same, or when it is determined that the size of the data cached by the first distributed unit is the same as the size of the data cached by the second distributed unit. When the difference between the sizes of data is less than or equal to the set threshold, the terminal device determines that synchronous transmission is possible. Or, when it is determined that the size of the data cached by the first distributed unit and the size of the data cached by the second distributed unit are the same, or when it is determined that the size of the data cached by the first distributed unit is the same as the size of the data cached by the second distributed unit. When the difference between the sizes of the data is less than or equal to the set threshold, the terminal device determines that synchronous transmission is possible.
  • the terminal device When it is determined that synchronous transmission cannot be performed based on the data cached by the first distributed unit and the data cached by the second distributed unit, the terminal device sends a notification message to the first distributed unit and/or the second distributed unit.
  • the notification message is used to notify that the data of the first distributed unit and the data of the second distributed unit cannot be transmitted synchronously.
  • the terminal device determines that synchronous transmission cannot be performed. For example, the first terminal device receives the cached sequence number of the first distributed unit (denoted as the first sequence number), and receives the sequence number of the cached data of the second distributed unit (denoted as the second sequence number).
  • the terminal device determines the data cached by the first distributed unit The data cached by the second distributed unit cannot be transmitted synchronously.
  • the terminal device determines that synchronous transmission is not possible.
  • the terminal device determines that synchronous transmission is not possible.
  • the first distribution unit and the second distribution unit After receiving the notification message from the terminal device, the first distribution unit and the second distribution unit synchronize the cached downlink data according to the notification message, or the first distribution unit performs independent transmission.
  • S1030 The terminal device sends indication information to the first distributed unit and the second distributed unit respectively.
  • the first distribution unit and the second distribution unit respectively receive the indication information from the terminal device.
  • the terminal device determines the indication information according to the information about the cached data of the first distributed unit, and the indication information is used to indicate the first distributed unit and
  • the second distributed unit synchronously transmits data information to the terminal device.
  • the indication information may be at least one of the following information: the sequence number of the next one or more data to be received, the radio link control layer protocol processing window of the next one or more data to be received, the next one or more data to be received.
  • the radio link control layer protocol processing window may refer to the sequence number range of the radio link control layer protocol service data unit to be sent (for example, RLCSDU in 5G), and the radio link control layer protocol within this range The business data unit will be sent.
  • the terminal device determines the indication information. For example, if the sequence numbers of the data cached by the first distributed unit are 1, 2, 3, and 4, and the sequence numbers of the data cached by the second distributed unit are 1, 3, 4, and 5, then the terminal device can determine the first distribution unit.
  • the cached data of the formula unit and the cached data of the second distributed unit have the same data, that is, the data with serial numbers 1, 3, and 4. In this case, the data indicated by the indication information determined by the terminal device should be It is one or more of the data with sequence numbers 1, 3, and 4.
  • the terminal device sends the indication information to the first distributed unit and the second distributed unit respectively.
  • the terminal device may receive the information from the cached data of the second distribution unit.
  • the identification information of the second distributed unit of the first distributed unit determines that the second distributed unit is a distributed unit that performs cooperative transmission with the first distributed unit, so that the indication information can be sent to the second distributed unit.
  • the terminal device may also send time information to the first distributed unit and the second distributed unit, where the time information is used to indicate the time at which the data indicated by the indication information is sent at the physical layer.
  • the first distributed unit sends data to the terminal device according to the instruction information.
  • the first distributed unit determines the data to be transmitted based on the indication information, and then sends the data to the terminal device.
  • the first distributed unit sends the data to the terminal device at the time indicated by the time information.
  • S1040b The second distributed unit sends data to the terminal device according to the instruction information.
  • S1040b is similar to S1040a, except that S1040b is executed by the second distributed unit and S1040a is executed by the first distributed unit, which will not be described again here.
  • the first distributed unit and the second distributed unit can synchronously transmit data to the terminal device, thereby improving the reliability of data transmission.
  • gNB-CU#1 and gNB-DU#1 belong to gNB#1
  • gNB-CU#2 and gNB-DU#2 belong to gNB#2
  • gNB#1 and gNB#2 are used to transmit signals to the UE. Collaborative transfer site.
  • gNB-DU#1 obtains the downlink data (recorded as Packet#1 and Packet#2) from UPF through gNB-CU#1 and caches them locally.
  • gNB-DU#2 obtains the downlink data from UPF (ie, Packet#1 and Packet#2) through gNB-CU#2 and caches it locally.
  • gNB-DU#1 sends the information of its own cached data to the UE, and gNB-DU#2 also sends the information of its own cached data to the UE.
  • the UE determines the data to be transmitted based on the information of the data cached by gNB-DU#1 (it can also be gNB-DU#2), and The sequence number of the data to be transmitted (denoted as SN#2) is sent to gNB-DU#1 and gNB-DU#2.
  • gNB-DU#1 and gNB-DU#2 send Packet#2 corresponding to SN#2 to the UE according to SN#2.
  • embodiments of the present application also provide corresponding devices, which include modules for executing corresponding modules in each of the above method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments. Therefore, content that is not described in detail can be referred to the above method embodiments. For the sake of brevity, they will not be described again here.
  • FIG 12 is a schematic block diagram of the communication device 10 provided by the embodiment of the present application.
  • the device 10 includes a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 can implement corresponding communication functions, and the processing module 12 is used to perform data processing, or in other words, the transceiver module 11 is used to perform operations related to receiving and sending, and the processing module 12 is used to perform other operations besides receiving and sending.
  • the transceiver module 11 may also be called a communication interface or communication unit.
  • the device 10 may also include a storage module 13, which may be used to store instructions and/or data, and the processing module 12 may read the instructions and/or data in the storage module, so that the device implements each of the foregoing. Actions of the device or network element in the method embodiment.
  • the device 10 may correspond to the first centralized unit in the above method embodiment, or be a component (such as a chip) of the first centralized unit.
  • the device 10 can implement steps or processes corresponding to those performed by the first centralized unit in the above method embodiment, wherein the transceiver module 11 can be used to perform operations related to the transceiver of the first centralized unit in the above method embodiment,
  • the processing module 12 may be configured to perform operations related to processing of the first centralized unit in the above method embodiments.
  • the transceiver module 11 is used to receive data from the user plane functional network element; the processing module 12 is used to determine the time for the first distributed unit and the second distributed unit to synchronously transmit the data. Information; the transceiver module 11 is also used to send the data and the time information to the first distributed unit, and to send the data and the time information to the second distributed unit.
  • the transceiver module 11 is used to receive data from the user plane functional network element; the processing module 12 is used to determine the method for the first distributed unit and the second distributed unit to synchronously transmit the data. Time information; the transceiver module 11 is also used to send the data and the time information to the first distributed unit, and to send information indicating the data and the time information to the second centralized unit, which is connected to the second centralized unit. Corresponding to two distributed units.
  • the transceiver module 11 is configured to receive data from the user plane functional network element and the time information corresponding to the data; the transceiver module 11 is also configured to send the data to the first distributed unit. The data and the time information are used for the first distributed unit and the second distributed unit to synchronously transmit the data.
  • the device 10 may correspond to the second centralized unit in the above method embodiment, or be a component (such as a chip) of the second centralized unit.
  • the device 10 can implement steps or processes corresponding to those performed by the second centralized unit in the above method embodiment, wherein the transceiver module 11 can be used to perform operations related to the transceiver of the second centralized unit in the above method embodiment,
  • the processing module 12 may be configured to perform operations related to processing of the second centralized unit in the above method embodiments.
  • the transceiver module 11 is used to receive data from the user plane functional network element; the transceiver module 11 is also used to receive data from the first centralized unit for the first distributed unit and the second distributed unit.
  • the first distributed unit synchronously transmits the time information of the data, and the first distributed unit corresponds to the first centralized unit; the transceiver module 11 is also used to send the data and the time information to the second distributed unit.
  • the device 10 may correspond to the first distributed unit or the second distributed unit in the above method embodiment, or be a component (such as a chip) of the first distributed unit or the second distributed unit. ).
  • the device 10 can implement steps or processes corresponding to those performed by the first distributed unit or the second distributed unit in the above method embodiment, wherein the transceiver module 11 can be used to perform the first distributed unit in the above method embodiment.
  • the processing module 12 may be configured to perform operations related to processing of the first distributed unit or the second distributed unit in the above method embodiment.
  • the transceiver module 11 is used to receive data from the first centralized unit, and to synchronize the time information of the data transmission between the first distributed unit and the second distributed unit; the processing module 12 , used to send the data to the terminal device based on the time information.
  • the transceiver module 11 is configured to receive indication information from the terminal device, where the indication information is used to instruct the first distributed unit and the second distributed unit to synchronously transmit data to the terminal device.
  • the device 10 may correspond to the terminal equipment in the above method embodiment, or be a component of the terminal equipment (such as chip).
  • the device 10 can implement steps or processes corresponding to those performed by the terminal device in the above method embodiment, wherein the transceiver module 11 can be used to perform operations related to the transceiver of the terminal device in the above method embodiment, and the processing module 12 can be used to Perform operations related to processing of the terminal device in the above method embodiment.
  • the transceiver module 11 is configured to receive cached data information from the first distributed unit; the transceiver module 11 is also configured to send data to the first distributed unit and the second distributed unit respectively. Instruction information, the indication information is determined based on the cached data information, and the indication information is used to indicate the information of the data that the first distributed unit and the second distributed unit synchronously transmit to the terminal device.
  • the device 10 may correspond to the user plane functional network element in the above method embodiment, or be a component (such as a chip) of the user plane functional network element.
  • the device 10 can implement steps or processes corresponding to the execution of the user plane functional network element in the above method embodiment, wherein the transceiver module 11 can be used to perform operations related to transceiver of the user plane functional network element in the above method embodiment.
  • the processing module 12 may be used to perform operations related to processing of the user plane functional network element in the above method embodiment.
  • the processing module 12 is used to determine the time information for the first distributed unit and the second distributed unit to synchronously transmit data; the transceiving module 11 is used to send the data to the first centralized unit and the time information, the first centralized unit corresponds to the first distributed unit.
  • the device 10 here is embodied in the form of a functional module.
  • module may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the device 10 can be specifically the first centralized unit in the above embodiments, and can be used to execute various processes corresponding to the first centralized unit in the above method embodiments.
  • the device 10 can be specifically the second centralized unit in the above embodiments, which can be used to execute various processes and/or steps corresponding to the second centralized unit in the above method embodiments; or, The device 10 may be specifically the first distributed unit or the second distributed unit in the above embodiments, and may be used to execute various processes and/or processes corresponding to the first distributed unit or the second distributed unit in the above method embodiments. or steps; or, the device 10 can be specifically a terminal device in the above embodiments, and can be used to perform various processes and/or steps corresponding to the terminal device in the above method embodiments; or the device 10 can be specifically a terminal device in the above embodiments.
  • the user plane functional network elements in can be used to execute various processes and/or steps corresponding to the user plane functional network elements in the above method embodiments. To avoid duplication, they will not be described again here.
  • the device 10 of each of the above solutions has equipment for implementing the above method (such as a first centralized unit, or a second centralized unit, or a first distributed unit, or a second distributed unit, or terminal equipment, or a user plane function network). Yuan)
  • This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver module can be replaced by a transceiver (for example, the sending unit in the transceiver module can be replaced by a transmitter, and the receiving unit in the transceiver module can be replaced by a receiver.
  • other units, such as processing modules, etc. can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver module 11 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing module may be a processing circuit.
  • FIG. 13 is a schematic diagram of another communication device 20 according to an embodiment of the present application.
  • the device 20 includes a processor 21, which is used to execute computer programs or instructions stored in the memory 22, or read data/signaling stored in the memory 22, to perform the methods in each of the above method embodiments.
  • processors 21 there are one or more processors 21 .
  • the device 20 further includes a memory 22, which is used to store computer programs or instructions and/or data.
  • the memory 22 may be integrated with the processor 21 or may be provided separately.
  • the device 20 also includes a transceiver 23, which is used for receiving and/or transmitting signals.
  • the processor 21 is used to control the transceiver 23 to receive and/or transmit signals.
  • the device 20 is used to implement the operations performed by the first centralized unit in each of the above method embodiments.
  • the device 20 is used to implement the operations performed by the second centralized unit in each of the above method embodiments.
  • the device 20 is used to implement the operations performed by the first distributed unit or the second distributed unit in each of the above method embodiments.
  • the device 20 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the device 20 is used to implement the operations performed by the user plane functional network element in each of the above method embodiments.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 14 is a schematic diagram of a chip system 30 provided by an embodiment of the present application.
  • the chip system 30 (or can also be called a processing system) includes a logic circuit 31 and an input/output interface 32.
  • the logic circuit 31 may be a processing circuit in the chip system 30 .
  • the logic circuit 31 can be coupled to the memory unit and call instructions in the memory unit, so that the chip system 30 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 32 can be an input/output circuit in the chip system 30, which outputs information processed by the chip system 30, or inputs data or signaling information to be processed into the chip system 30 for processing.
  • the chip system 30 is used to implement the operations performed by the first centralized unit in each of the above method embodiments.
  • the logic circuit 31 is used to implement processing-related operations performed by the first centralized unit in the above method embodiments, such as the first centralized unit in the embodiments shown in FIG. 4, FIG. 6, FIG. 8, and FIG. 10.
  • the input/output interface 32 is used to implement the sending and/or receiving related operations performed by the first centralized unit in the above method embodiment, such as Figure 4, Figure 6, Figure 8,
  • the first centralized unit in the embodiment shown in Figure 10 performs sending and/or receiving related operations.
  • the chip system 30 is used to implement the operations performed by the second centralized unit in each of the above method embodiments.
  • the logic circuit 31 is used to implement processing-related operations performed by the second centralized unit in the above method embodiments, such as the second centralized unit in the embodiments shown in FIG. 4, FIG. 6, FIG. 8, and FIG. 10.
  • the input/output interface 32 is used to implement the sending and/or receiving related operations performed by the second centralized unit in the above method embodiment, such as Figure 4, Figure 6, Figure 8,
  • the second centralized unit in the embodiment shown in Figure 10 performs sending and/or receiving related operations.
  • the chip system 30 is used to implement the operations performed by the first distributed unit or the second distributed unit in each of the above method embodiments.
  • the logic circuit 31 is used to implement processing-related operations performed by the first distributed unit or the second distributed unit in the above method embodiment, such as the embodiments shown in Figure 4, Figure 6, Figure 8, and Figure 10 Processing-related operations performed by the first distributed unit or the second distributed unit in /or receive related operations, such as sending and/or receiving related operations performed by the first distributed unit or the second distributed unit in the embodiments shown in FIG. 4, FIG. 6, FIG. 8, and FIG. 10.
  • the chip system 30 is used to implement the operations performed by the terminal device in each of the above method embodiments.
  • the logic circuit 31 is used to implement processing-related operations performed by the terminal device in the above method embodiments, such as processing-related operations performed by the terminal device in the embodiments shown in FIG. 4, FIG. 6, FIG. 8, and FIG. 10.
  • Operation the input/output interface 32 is used to implement the sending and/or receiving related operations performed by the terminal device in the above method embodiment, such as the terminal in the embodiment shown in Figure 4, Figure 6, Figure 8, and Figure 10 Send and/or receive related operations performed by the device.
  • the chip system 30 is used to implement the operations performed by the user plane functional network element in each of the above method embodiments.
  • the logic circuit 31 is used to implement processing-related operations performed by the user plane functional network element in the above method embodiment, such as the user plane functional network in the embodiments shown in Figure 4, Figure 6, Figure 8, and Figure 10
  • the input/output interface 32 is used to implement the sending and/or receiving related operations performed by the user plane functional network element in the above method embodiment, such as Figure 4, Figure 6, Figure 8,
  • the user plane functional network element in the embodiment shown in Figure 10 performs sending and/or receiving related operations.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the methods executed by the device in each of the above method embodiments are stored.
  • the computer program when executed by a computer, the computer can implement the method executed by the first centralized unit in each embodiment of the above method.
  • the computer program when executed by a computer, the computer can implement the method executed by the second centralized unit in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the first distributed unit or the second distributed unit in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product, which includes instructions.
  • the instructions When the instructions are executed by a computer, the instructions are implemented by the device (such as the first centralized unit, or the second centralized unit, or the third centralized unit) in each of the above method embodiments.
  • the embodiment of the present application also provides a communication system, including the aforementioned first centralized unit, first distributed unit and second distributed unit; optionally, also including the aforementioned second centralized unit, terminal equipment, user One or more functional network elements.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated therein.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer And Data Communications (AREA)
  • Small-Scale Networks (AREA)
  • Electric Clocks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输的方法和装置,该方法包括:第一集中式单元接收来自用户面功能网元的数据,然后确定该数据对应的时间信息,该时间信息用于第一分布式单元和第二分布式单元对该数据进行同步传输。进一步地,该第一集中式单元分别向该第一分布式单元和第二分布式单元发送该数据和该时间信息。第一分布式单元和第二分布式单元根据该时间信息,向终端设备发送该数据。通过该方法可以使得第一分布式单元和第二分布式单元向终端设备进行同步传输,从而提高数据传输的可靠性。

Description

数据传输的方法和装置
本申请要求于2022年6月30日提交中国国家知识产权局、申请号为202210771939.2、申请名称为“数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更加具体地,涉及一种数据传输的方法和装置。
背景技术
为提升无线通信的容量与可靠性,终端设备可以同时由多个网络设备提供服务,例如终端设备可以与位于不同地理位置的多个传输接收点(transmission reception point,TRP)进行通信,这多个TRP可以是属于一个基站下的多个物理天线,也可以是不同基站下的多个物理天线,这些TRP需要进行协作,共同服务终端设备。在一些多TRP协作的方式中,需要相同的数据内容在相同的时刻从多个TRP发送给UE。
另一方面,在第五代移动通信技术(the 5th generation mobile communication technology,5G)系统中,基站采用集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)独立部署的方式,即将基站的部分功能部署在一个CU,将剩余功能部署在DU,多个DU共用一个CU,一方面节省了成本,另一方面易于网络扩展。CU和DU可以按照协议栈进行切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC),服务数据适应协议(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层,介质访问层(media access control,MAC)层以及物理层(physical,PHY)部署在DU。
如何在CU-DU分离架构中,实现同步传输,是当前需要考虑的问题。
发明内容
本申请提供一种数据传输的方法和装置,可以使得不同的分布式单元向终端设备进行同步传输,从而提高数据传输的可靠性。
第一方面,提供了一种数据传输的方法,该方法可以由接入网设备中的集中式单元执行,或者,也可以由集中式单元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由第一集中式单元执行为例进行说明。
该方法包括:第一集中式单元接收来自用户面功能网元的数据;该第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息;该第一集中式单元向该第一分布式单元发送该数据和该时间信息,以及向该第二分布式单元发送该数据和该时间信息。
基于上述方案,第一集中式单元确定数据对应的时间信息之后,将该数据以及该时间信息,分别发送给第一分布式单元和第二分布式单元,以便第一分布式单元和第二分布式单元可以根据该时间信息同步传输该数据,从而提高数据传输的可靠性。
第二方面,提供了一种数据传输的方法,该方法可以由接入网设备中的集中式单元执行,或者,也可以由集中式单元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由第一集中式单元执行为例进行说明。
该方法包括:第一集中式单元接收来自用户面功能网元的数据;该第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息;该第一集中式单元向第一分布式单元发送该数据和该时间信息;该第一集中式单元向第二集中式单元发送指示该数据的信息和该时间信息,该第二集中式单元与第二分布式单元对应。
基于上述方案,在第一分布式单元和第二分布式单元向终端设备进行同步传输的场景中,第一集中式单元从用户面功能网元接收到数据之后,确定该数据对应的时间信息,并将该时间信息发送给第 一分布式单元,以及第二分布式单元对应的第二集中式单元,以便第二集中式单元可以将该时间信息发送给第二分布式单元,使得第一分布式单元和第二分布式单元可以根据该时间信息同步传输该数据,从而提高数据传输的可靠性。
结合第一方面或第二方面,在一种的可能的实现方式中,该第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息,包括:该第一集中式单元根据以下信息中的一项或多项确定该时间信息:该第一分布式单元缓存的数据的大小、该第二分布式单元缓存的数据的大小、该第一集中式单元和该第一分布式单元之间的传输时延、该第一集中式单元和该第二分布式单元之间的传输时延、该第一分布式单元对该数据进行处理的时长、该第二分布式单元对该数据进行处理的时长、该第一分布式单元和终端设备之间的传输时延、该第二分布式单元和该终端设备之间的传输时延、来自该第一分布式单元和/或该第二分布式单元的指示信息,该指示信息用于调整该时间信息。
结合第一方面或第二方面,在一种可能的实现方式中,该方法还包括:该第一集中式单元根据用于该第一分布式单元和该终端设备进行通信的第一配置信息,向第二集中式单元发送用于该第二分布式单元与该终端设备进行通信的第二配置信息,该第二集中式单元与该第二分布式单元对应。
基于上述方案,第一集中式单元向第二集中式单元发送第二配置信息,该第二配置信息用于第二分布式单元与终端设备进行通信,该第二配置信息可以与第一配置信息相同,也可以是根据第一配置信息确定的信息。通过该方案,可以使得第一分布式单元和第二分布式单元可以采用相同的配置向终端设备进行传输,以保障第一分布式单元和第二分布式单元可以同步将数据发送给终端设备,提高同步传输的效率和可靠性。
结合第一方面或第二方面,在一种可能的实现方式中,该第一配置信息包括以下信息中的一项或多项:该第一分布式单元的物理层信道配置信息、该第一分布式单元的介质接入控制层配置信息、该第一分布式单元的无线链路控制层配置信息、该第一集中式单元的分组数据汇聚层配置信息;该第二配置信息包括以下信息中的一项或多项:该第二分布式单元的物理层信道配置信息、该第二分布式单元的介质接入控制层配置信息、该第二分布式单元的无线链路控制层配置信息、该第二集中式单元的分组数据汇聚层配置信息。
结合第一方面或第二方面,在一种可能的实现方式中,该方法还包括:该第一集中式单元向第二集中式单元发送请求向终端设备进行同步传输的信息,该第二集中式单元与该第二分布式单元对应;该第一集中式单元接收来自该第二集中式单元的指示接受向该终端设备进行同步传输的请求的信息。
结合第一方面或第二方面,在一种可能的实现方式中,在该第一集中式单元接收来自用户面功能网元的数据之前,该第一集中式单元根据以下一项或多项确定该第二集中式单元:该第二集中式单元的信号的测量结果;该第一集中式单元与该第二集中式单元之间的传输时延;该第一集中式单元和该第二集中式单元之间的距离。
结合第一方面或第二方面,在一种可能的实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向该终端设备发送该数据的时间。
第三方面,提供了一种数据传输的方法,该方法可以由终端设备执行,或者,也可以由终端设备的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由终端设备执行为例进行说明。
该方法包括:终端设备接收来自第一分布式单元的缓存的数据的信息;该终端设备分别向该第一分布式单元和第二分布式单元发送指示信息,该指示信息是根据该缓存的数据的信息确定的,该指示信息用于指示该第一分布式单元和第二分布式单元向该终端设备同步传输的数据。
基于上述方案,终端设备可以根据第一分布式单元的缓存的数据的信息,确定指示需要同步传输的数据的指示信息,并将该指示信息发送给第一分布式单元和第二分布式单元,以便第一分布式单元和第二分布式单元可以根据该指示信息同步向终端设备发送该指示信息所指示的数据,提高数据传输的可靠性。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备还接收来自该第二分布式单元的缓存的数据的信息;在根据该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据确定能够同步传输的情况下,该终端设备确定该指示信息。
结合第三方面,在第三方面的某些实现方式中,该根据该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据确定能够进行同步传输,包括:确定该第一分布式单元的缓存的数据和该第二分布式单元缓存的数据之间存在相同的数据;或者,确定该第一分布式单元的缓存的数据的数量和该第二分布式单元缓存的数据的数量相同;或者,确定该第一分布式单元的缓存的数据的大小和该第二分布式单元缓存的数据的大小相同。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备还接收来自该第二分布式单元的缓存的数据的信息;在根据该第一分布式单元缓存的数据与第二分布式单元缓存的数据确定不能够进行同步传输的情况下,向该第一分布式单元和/或该第二分布式单元发送通知消息,该通知消息用于通知该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据不能同步传输。
结合第三方面,在第三方面的某些实现方式中,该根据该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据确定不能够进行同步传输包括:确定该第一分布式单元的缓存的数据和该第二分布式单元缓存的数据之间不存在相同的数据;或者,确定该第一分布式单元的缓存的数据的数量和该第二分布式单元缓存的数据的数量不同;或者,确定该第一分布式单元的缓存的数据的数量和该第二分布式单元缓存的数据的大小不同。
基于上述方案,在第一分布式单元和第二分布式单元缓存的数据不能同步传输的情况下,终端设备可以通知第一分布式单元和第二分布式单元,以便第一分布式单元和第二分布式单元可以同步缓存的数据,从而提高同步传输的效率和可靠性。
结合第三方面,在第三方面的某些实现方式中,该缓存的数据的信息包括以下一项或多项:该缓存的数据的序列号、该缓存的数据的数量、该缓存的数据的大小。
结合第三方面,在第三方面的某些实现方式中,在该终端设备接收来自第一分布式单元的缓存的数据的信息之前,该方法还包括:终端设备接收来自第一分布式单元的该第二分布式单元的标识信息,该第二分布式单元用于与该第一分布式单元向该终端设备进行同步传输。
基于上述方案,在第一分布式单元和第二分布式单元向终端设备进行同步传输的场景中,第一分布式单元可以将第二分布式单元的标识信息发送给终端设备。在这种情况下,即使终端设备接收到了来自第一分布式单元缓存的数据的信息,也可以将指示信息发送给第一分布式单元以及第二分布式单元,以便第一分布式单元和第二分布式单元可以根据该指示信息同步向终端设备发送该指示信息所指示的数据。
结合第三方面,在第三方面的某些实现方式中,该指示信息用于指示以下一项或多项:该同步传输的数据的序列号;该同步传输的数据的大小;该同步传输的数据在无线链路控制层的处理窗口。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该终端设备分别向该第一分布式单元和该第二分布式发送时间信息,该时间信息用于指示向该终端设备发送该数据的时间。
在上述方案中,终端设备除了向第一分布式单元和第二分布式单元发送指示信息以外,还可以向第一分布式单元和第二分布式单元发送时间信息,该时间信息用于指示该指示信息所指示的数据的发送时间,第一分布式单元和第二分布式单元可以根据该时间信息同步向终端设备发送数据。
第四方面,提供了一种数据传输的方法,该方法可以接入网设备中的分布式单元执行,或者,也可以由分布式单元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由第一分布式单元执行为例进行说明。
该方法包括:第一分布式单元接收来自第一集中式单元的数据,以及用于该第一分布式单元和第二分布式单元同步传输该数据的时间信息;该第一分布式单元根据该时间信息向终端设备发送该数据。
基于上述方案,第一分布式单元接收来自第一集中式单元的数据以及时间信息之后,根据该时间信息向终端设备发送该数据。由于该时间信息用于第一分布式单元和第二分布式单元同步传输该数据,因此,如果第二分布式单元也按照该时间信息向终端设备发送数据的话,便可以使得第一分布式单元和第二分布式单元同步向终端设备发送数据,从而提高数据传输的可靠性。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:在该第一分布式单元确定该数据发送失败的情况下,该第一分布式单元对该数据进行重传。
基于上述方案,通过对发送失败的数据进行重传,可以提高数据传输的可靠性。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该第一分布式单元向第二分布式 单元发送指示该数据发送失败的信息。
基于上述方案,在数据发送失败的情况下,第一分布式单元可以向第二分布式指示该数据发送失败,以便第二分布式单元与该第一分布式单元同步传输该数据,以及同步第一分布式单元缓存的下行数据和第二分布式单元缓存的下行数据,避免后续因下行数据未同步导致同步传输失败的情况。
结合第四方面,在第四方面的某些实现方式中,该在该第一分布式单元确定该数据发送失败的情况下,该第一分布式单元对该数据进行重传,包括:在该第一分布式单元确定该数据发送失败的情况下,该第一分布式单元在混合自动重传进程号对应的发送该数据的时刻的下一个可用的时刻对该数据进行重传。
基于上述方案,在数据发送失败的情况下,第一分布式单元可以在混合自动重传进程号对应的发送该数据的时刻的下一个可用的时刻对该数据进行重传,而该混合自动重传进程号对应的其他数据可以依次按顺序进行传输,从而可以提高数据传输的效率。
结合第四方面,在第四方面的某些实现方式中,该第一分布式单元确定该数据发送失败,包括:该第一分布式单元接收到来自该终端设备的第一反馈消息,该第一反馈消息用于指示该终端设备未成功接收该数据;或者,该第一分布式单元没有接收到来自该终端设备的第二反馈消息,该第二反馈消息用于指示该终端设备成功接收该数据。
结合第四方面,在第四方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向终端设备发送该数据的时间。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该第一分布式单元向该第一集中式单元发送缓存的数据的信息,该缓存的数据的信息用于确定该时间信息。
第五方面,提供了一种通信方法,该方法可以由接入网设备中的集中式单元执行,或者,也可以由集中式单元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由第一集中式单元执行为例进行说明。
该方法包括:第一集中式单元接收来自用户面功能网元的数据,以及与该数据对应的时间信息;该第一集中式单元向第一分布式单元发送该数据和该时间信息,该时间信息用于该第一分布式单元和第二分布式单元同步传输该数据。
基于上述方案,第一集中式单元从用户面功能网元接收到数据以及与该数据对应的时间信息之后,将该数据以及该时间信息发送给第一分布式单元,以便第一分布式单元可以根据该时间信息,与第二分布式单元同步传输该数据,从而提高数据传输的可靠性。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:该第一集中式单元根据用于该第一分布式单元和该终端设备进行通信的第一配置信息,向第二集中式单元发送用于该第二分布式单元与该终端设备进行通信的第二配置信息,该第二集中式单元与该第二分布式单元对应。
结合第五方面,在第五方面的某些实现方式中,第一配置信息包括以下信息中的一项或多项:该第一分布式单元的物理层信道配置信息、该第一分布式单元的介质接入控制层配置信息、该第一分布式单元的无线链路控制层配置信息、该第一集中式单元的分组数据汇聚层配置信息。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:该第一集中式单元向第二集中式单元发送请求向终端设备进行同步传输的信息,该第二集中式单元与该第二分布式单元对应;该第一集中式单元接收来自该第二集中式单元的指示接受向终端设备进行同步传输的请求的信息。
结合第五方面,在第五方面的某些实现方式中,在该第一集中式单元接收来自用户面功能网元的数据之前,该第一集中式单元根据以下一项或多项确定该第二集中式单元:该第二集中式单元的信号的测量结果;该第一集中式单元与该第二集中式单元之间的传输时延;该第一集中式单元和该第二集中式单元之间的距离。
结合第五方面,在第五方面的某些实现方式中,该方法还包括:该第一集中式单元向该用户面功能网元发送该第一分布式单元的缓存的数据的信息,该缓存的数据的信息用于确定该时间信息。
结合第五方面,在第五方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向该终端设备发送该数据的时间。
第六方面,提供了一种数据传输的方法,该方法可以接入网设备中的分布式单元执行,或者,也可以由分布式单元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由第一分布式单元执行为例进行说明。
该方法包括:第一分布式单元接收来自终端设备的指示信息,该指示信息用于指示该第一分布式单元和第二分布式单元向该终端设备同步传输的数据的信息;该第一分布式单元根据该指示信息向该终端设备发送该数据。
基于上述方案,第一分布式单元根据来自终端设备的指示信息,向终端设备发送该指示信息所指示的数据。其中,该指示信息指示的是该第一分布式单元和第二分布式单元向该终端设备同步传输的数据的信息,因此第二分布式单元也根据该指示信息向终端设备发送该数据,从而可以使得第一分布式单元和第二分布式单元同步向终端设备传输该数据,提高了数据传输的可靠性。
结合第六方面,在第六方面的某些实现方式中,在该第一分布式单元接收来自终端设备的指示信息之前,该方法还包括:该第一分布式单元向该终端设备发送缓存的数据的信息,该缓存的数据的信息用于确定该指示信息。
结合第六方面,在第六方面的某些实现方式中,该缓存的数据的信息包括以下一项或多项:该缓存的数据的序列号、该缓存的数据的数量、该缓存的数据的大小。
结合第六方面,在第六方面的某些实现方式中,在该第一分布式单元接收来自终端设备的指示信息之前,该方法还包括:第一分布式单元向该终端设备发送该第二分布式单元的标识信息,该第二分布式单元用于与该第一分布式单元向该终端设备进行同步传输。
基于上述方案,第一分布式单元还可以将第二分布式单元的标识信息发送给终端设备,使得终端设备可以根据第二分布式单元的标识信息,确定第二分布式单元与第一分布式单元向自身进行同步传输,以便终端设备可以将指示信息发送给第一分布式单元以及第二分布式单元。
结合第六方面,在第六方面的某些实现方式中,该指示信息用于指示以下一项或多项:该同步传输的数据的序列号;该同步传输的数据的大小;该同步传输的数据在无线链路控制层的处理窗口。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:该第一分布式单元接收来自该终端设备的时间信息,该时间信息用于指示向该终端设备发送该数据的时间;该第一分布式单元根据该指示信息向该终端设备发送该数据,包括:该第一分布式单元在该时间信息所指示的时间,向该终端设备发送该数据。
第七方面,提供了一种通信方法,该方法可以由用户面功能网元执行,或者,也可以由用户面功能网元的组成部件(例如芯片或者电路)执行,对此不作限定。为了便于描述,下面以由用户面功能网元执行为例进行说明。
该方法包括:用户面功能网元确定用于第一分布式单元和第二分布式单元同步传输数据的时间信息;该用户面功能网元向第一集中式单元发送该数据和该时间信息,该第一集中式单元与该第一分布式单元对应。
基于上述方案,用户面功能网元可以确定数据对应的时间信息,并将该数据以及该时间信息发送给第一集中式单元,以便第一集中式单元可以将该数据以及该时间信息发送给进行同步传输的第一分布式单元和第二分布式单元,使得第一分布式单元和第二分布式单元可以根据该时间信息同步向终端设备发送该数据。
结合第七方面,在第七方面的某些实现方式中,该方法还包括:该用户面功能网元向第二集中式单元发送该数据和该时间信息,该第二集中式单元与该第二分布式单元对应。
结合第七方面,在第七方面的某些实现方式中,用户面功能网元确定用于第一分布式单元和第二分布式单元同步传输数据的时间信息,包括:该用户面功能网元根据以下信息中的一项或多项,确定该时间信息:该第一分布式单元缓存的数据的信息、该第二分布式单元的缓存的数据的信息、该第一集中式单元和该第一分布式单元之间的传输时延、该第二集中式单元和该第二分布式单元之间的传输时延、该第一集中式单元和/或该第一分布式单元对该数据进行处理的时长、该第二集中式单元和/或该第二分布式单元对该数据进行处理的时长、该用户面功能网元对该数据进行复制处理的时长、该用户面功能网元和该第一集中式单元之间的传输时延、该用户面功能网元和该第二集中式单元之间的传输时延。
结合第七方面,在第七方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向该终端设备发送该数据的时间。
第八方面,提供了一种数据传输的装置,该装置包括:收发模块,用于接收来自用户面功能网元的数据;处理模块,用于确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息;该收发模块,还用于向该第一分布式单元发送该数据和该时间信息,以及向该第二分布式单元发送该数据和该时间信息。
在另一种实现方式中,该装置包括:收发模块,用于接收来自用户面功能网元的数据;处理模块,用于确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息;该收发模块,还用于向第一分布式单元发送该数据和该时间信息;该第一集中式单元向第二集中式单元发送指示该数据的信息和该时间信息,该第二集中式单元与第二分布式单元对应。
结合第八方面,在第八方面的某些实现方式中,该处理模块,具体用于根据以下信息中的一项或多项确定该时间信息:该第一分布式单元缓存的数据的大小、该第二分布式单元缓存的数据的大小、该装置和该第一分布式单元之间的传输时延、该装置和该第二分布式单元之间的传输时延、该第一分布式单元对该数据进行处理的时长、该第二分布式单元对该数据进行处理的时长、来自该第一分布式单元和/或该第二分布式单元的指示信息,该指示信息用于调整该时间信息。
结合第八方面,在第八方面的某些实现方式中,该处理模块,还用于根据用于该第一分布式单元和该终端设备进行通信的第一配置信息,向第二集中式单元发送用于该第二分布式单元与该终端设备进行通信的第二配置信息,该第二集中式单元与该第二分布式单元对应。
结合第八方面,在第八方面的某些实现方式中,该第一配置信息包括以下信息中的一项或多项:该第一分布式单元的物理层信道配置信息、该第一分布式单元的介质接入控制层配置信息、该第一分布式单元的无线链路控制层配置信息、该装置的分组数据汇聚层配置信息;该第二配置信息包括以下信息中的一项或多项:该第二分布式单元的物理层信道配置信息、该第二分布式单元的介质接入控制层配置信息、该第二分布式单元的无线链路控制层配置信息、该第二集中式单元的分组数据汇聚层配置信息。
结合第八方面,在第八方面的某些实现方式中,该收发模块,还用于向第二集中式单元发送请求向终端设备进行同步传输的信息,该第二集中式单元与该第二分布式单元对应;该第一集中式单元接收来自该第二集中式单元的指示接受向该终端设备进行同步传输的请求的信息。
结合第八方面,在第八方面的某些实现方式中,该处理模块,还用于根据以下一项或多项确定该第二集中式单元:该第二集中式单元的信号的测量结果;该装置与该第二集中式单元之间的传输时延;该装置和该第二集中式单元之间的距离。
结合第八方面,在第八方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向该终端设备发送该数据的时间。
第九方面,提供了一种数据传输的装置,该装置包括:收发模块,用于接收来自第一分布式单元的缓存的数据的信息;以及,分别向该第一分布式单元和第二分布式单元发送指示信息,该指示信息是根据该缓存的数据的信息确定的,该指示信息用于指示该第一分布式单元和第二分布式单元向该终端设备同步传输的数据。
结合第九方面,在第九方面的某些实现方式中,该收发模块,还用于接收来自该第二分布式单元的缓存的数据的信息;处理模块,用于在根据该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据确定能够同步传输的情况下,确定该指示信息。
结合第九方面,在第九方面的某些实现方式中,该收发模块,还用于接收来自该第二分布式单元的缓存的数据的信息;该收发模块,还用于在确定该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据不能够同步传输的情况下,向该第一分布式单元和/或该第二分布式单元发送通知消息,该通知消息用于通知该第一分布式单元的缓存的数据与该第二分布式单元缓存的数据不能同步传输。
结合第九方面,在第九方面的某些实现方式中,该缓存的数据的信息包括以下一项或多项:该缓存的数据的序列号、该缓存的数据的数量、该缓存的数据的大小。
结合第九方面,在第九方面的某些实现方式中,该收发模块,还用于接收来自第一分布式单元的该第二分布式单元的标识信息,该第二分布式单元用于与该第一分布式单元向该终端设备进行同步传输。
结合第九方面,在第九方面的某些实现方式中,该指示信息用于指示以下一项或多项:该同步传输的数据的序列号;该同步传输的数据的大小;该同步传输的数据在无线链路控制层的处理窗口。
结合第九方面,在第九方面的某些实现方式中,该收发模块,还用于分别向该第一分布式单元和该第二分布式发送时间信息,该时间信息用于指示向该终端设备发送该数据的时间。
第十方面,提供了一种数据传输的装置,该装置包括:收发模块,用于接收来自第一集中式单元的数据,以及用于该第一分布式单元和第二分布式单元同步传输该数据的时间信息;处理模块,用于根据该时间信息向终端设备发送该数据。
结合第十方面,在第十方面的某些实现方式中,该处理模块,还用于确定该数据发送失败的情况下,通过收发模块对该数据进行重传。
结合第十方面,在第十方面的某些实现方式中,该收发模块,还用于向第二分布式单元发送指示该数据发送失败的信息。
结合第十方面,在第十方面的某些实现方式中,该收发模块,具体用于确定该数据发送失败的情况下,该第一分布式单元在混合自动重传进程号对应的发送该数据的时刻的下一个可用的时刻对该数据进行重传。
结合第十方面,在第十方面的某些实现方式中,该处理模块,具体用于在收发模块接收到来自该终端设备的第一反馈消息的情况下确定该数据发送失败,该第一反馈消息用于指示该终端设备未成功接收该数据;或者,该处理模块,具体用于在收发模块没有接收到来自该终端设备的第二反馈消息的情况下确定该数据发送失败,该第二反馈消息用于指示该终端设备成功接收该数据。
结合第十方面,在第十方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向终端设备发送该数据的时间。
结合第十方面,在第十方面的某些实现方式中,该收发模块,还用于向该第一集中式单元发送缓存的数据的信息,该缓存的数据的信息用于确定该时间信息。
第十一方面,提供了一种通信装置,该装置包括:收发模块,用于接收来自用户面功能网元的数据,以及与该数据对应的时间信息;以及向第一分布式单元发送该数据和该时间信息,该时间信息用于该第一分布式单元和第二分布式单元同步传输该数据。
结合第十一方面,在第十一方面的某些实现方式中,该装置还包括处理模块,该处理模块,用于根据用于该第一分布式单元和该终端设备进行通信的第一配置信息,通过收发模块向第二集中式单元发送用于该第二分布式单元与该终端设备进行通信的第二配置信息,该第二集中式单元与该第二分布式单元对应。
结合第十一方面,在第十一方面的某些实现方式中,第一配置信息包括以下信息中的一项或多项:该第一分布式单元的物理层信道配置信息、该第一分布式单元的介质接入控制层配置信息、该第一分布式单元的无线链路控制层配置信息、该第一集中式单元的分组数据汇聚层配置信息。
结合第十一方面,在第十一方面的某些实现方式中,该收发模块,还用于向第二集中式单元发送请求向终端设备进行同步传输的信息,该第二集中式单元与该第二分布式单元对应;该第一集中式单元接收来自该第二集中式单元的指示接受向该终端设备进行同步传输的请求的信息。
结合第十一方面,在第十一方面的某些实现方式中,该处理模块,还用于根据以下一项或多项确定该第二集中式单元:该第二集中式单元的信号的测量结果;该第一集中式单元与该第二集中式单元之间的传输时延;该第一集中式单元和该第二集中式单元之间的距离。
结合第十一方面,在第十一方面的某些实现方式中,该收发模块,还用于向该用户面功能网元发送该第一分布式单元的缓存的数据的信息,该缓存的数据的信息用于确定该时间信息。
结合第十一方面,在第十一方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向该终端设备发送该数据的时间。
第十二方面,提供了一种数据传输的装置,该装置包括:收发模块,用于接收来自终端设备的指示信息,该指示信息用于指示该第一分布式单元和第二分布式单元向该终端设备同步传输的数据的信息;该收发模块,还用于根据该指示信息向该终端设备发送该数据。
结合第十二方面,在第十二方面的某些实现方式中,该收发模块,还用于向该终端设备发送缓存的数据的信息,该缓存的数据的信息用于确定该指示信息。
结合第十二方面,在第十二方面的某些实现方式中,该缓存的数据的信息包括以下一项或多项:该缓存的数据的序列号、该缓存的数据的数量、该缓存的数据的大小。
结合第十二方面,在第十二方面的某些实现方式中,该收发模块,还用于向该终端设备发送该第二分布式单元的标识信息,该第二分布式单元用于与该第一分布式单元向该终端设备进行同步传输。
结合第十二方面,在第十二方面的某些实现方式中,该指示信息用于指示以下一项或多项:该同步传输的数据的序列号;该同步传输的数据的大小;该同步传输的数据在无线链路控制层的处理窗口。
结合第十二方面,在第十二方面的某些实现方式中,该收发模块,还用于接收来自该终端设备的时间信息,该时间信息用于指示向该终端设备发送该数据的时间;该收发模块,具体用于在该时间信息所指示的时间,向该终端设备发送该数据。
第十三方面,提供了一种通信装置,该装置包括:处理模块,用于确定用于第一分布式单元和第二分布式单元同步传输数据的时间信息;收发模块,用于向第一集中式单元发送该数据和该时间信息,该第一集中式单元与该第一分布式单元对应。
结合第十三方面,在第十三方面的某些实现方式中,该收发模块,还用于向第二集中式单元发送该数据和该时间信息,该第二集中式单元与该第二分布式单元对应。
结合第十三方面,在第十三方面的某些实现方式中,该处理模块,具体用于根据以下信息中的一项或多项,确定该时间信息:该第一分布式单元缓存的数据的信息、该第二分布式单元的缓存的数据的信息、该第一集中式单元和该第一分布式单元之间的传输时延、该第二集中式单元和该第二分布式单元之间的传输时延、该第一集中式单元和/或该第一分布式单元对该数据进行处理的时长、该第二集中式单元和/或该第二分布式单元对该数据进行处理的时长、该用户面功能网元对该数据进行复制处理的时长、该用户面功能网元和该第一集中式单元之间的传输时延、该用户面功能网元和该第二集中式单元之间的传输时延。
结合第十三方面,在第十三方面的某些实现方式中,该时间信息用于指示以下一项或多项:在分组数据汇聚层对该数据进行处理的时间;在无线链路控制层对该数据进行处理的时间;在介质接入控制层对该数据进行处理的时间;向该终端设备发送该数据的时间。
第十四方面,提供了一种通信装置,该装置用于执行上述第一方面至第七方面提供的任一方法。具体地,该装置可以包括用于执行第一方面至第七方面提供的方法的单元和/或模块,如处理模块和/或收发模块(也可以成为通信模块)。
在一种实现方式中,该装置为网络设备,例如,该装置为接入网设备中的集中式单元,或者分布式单元。当该装置为网络设备时,通信模块可以是收发器,或,输入/输出接口;处理模块可以是处理器。
例如,该装置为用于集中式单元的芯片、芯片系统或电路。当该装置为用于集中式单元中的芯片、芯片系统或电路时,收发模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理模块可以是处理器、处理电路或逻辑电路等。
一种可能情况,该装置为集中式单元或集中式单元中的芯片、芯片系统或电路。在该情况下,该装置可以包括用于执行第一方面、第二方面、第五方面或第六方面提供的方法的单元和/或模块,如处理模块和/或收发模块。
又例如,该装置为用于分布式单元的芯片、芯片系统或电路。当该装置为用于分布式单元中的芯片、芯片系统或电路时,收发模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理模块可以是处理器、处理电路或逻辑电路等。
一种可能情况,该装置为分布式单元或集中式单元中的芯片、芯片系统或电路。在该情况下,该装置可以包括用于执行第四方面提供的方法的单元和/或模块,如处理模块和/或收发模块。
在另一种实现方式中,该装置为用户面功能网元。当该装置为用户面功能网元时,通信模块可以 是收发器,或,输入/输出接口;处理模块可以是处理器。
例如,该装置为用于用户面功能网元的芯片、芯片系统或电路。当该装置为用于用户面功能网元中的芯片、芯片系统或电路时,收发模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理模块可以是处理器、处理电路或逻辑电路等。
一种可能情况,该装置为用户面功能网元或用户面功能网元中的芯片、芯片系统或电路。在该情况下,该装置可以包括用于执行第七方面提供的方法的单元和/或模块,如处理模块和/或收发模块。
在另一种实现方式中,该装置为终端设备。当该装置为终端设备时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是处理器。
一种可能情况,该装置为终端设备或终端设备中的芯片、芯片系统或电路。在该情况下,该装置可以包括用于执行第三方面提供的方法的单元和/或模块,如处理模块和/或收发模块。
可选地,上述收发器可以为收发电路。可选地,上述输入/输出接口可以为输入/输出电路。
可选地,上述收发器可以为收发电路。可选地,上述输入/输出接口可以为输入/输出电路。
第十五方面,提供一种通信装置,该装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当存储器存储的程序被执行时,处理器用于执行上述第一方面至第七方面提供的任一方法。
第十六方面,本申请提供一种处理器,用于执行上述各方面提供的方法。在执行这些方法的过程中,上述方法中有关发送上述信息和获取/接收上述信息的过程,可以理解为由处理器输出上述信息的过程,以及处理器接收输入的上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后再到达收发器。类似的,处理器接收输入的上述信息时,收发器获取/接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后再输入处理器。
基于上述原理,举例来说,前述方法中提及的接收请求消息可以理解为处理器接收输入的信息。
对于处理器所涉及的发射、发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第十七方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第七方面提供的任一方法。
第十八方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第七方面提供的任一方法。
第十九方面,提供一种芯片,该芯片包括处理器与通信接口,该处理器通过该通信接口读取存储器上存储的指令,执行上述第一方面至第七方面提供的任一方法。
可选地,作为一种实现方式,该芯片还可以包括存储器,该存储器中存储有指令,该处理器用于执行该存储器上存储的指令,当该指令被执行时,该处理器用于执行上述第一方面至第七方面提供的任一方法。
第二十方面,提供了一种接入网设备,该接入网设备包括如第一方面、第二方面、第五方面、第六方面中的任意方面所示的集中式单元,以及如第四方面所示的分布式单元。
第二十一方面,提供了一种通信系统,该通信系统包括执行如第一方面所示方法的集中式单元,以及如执行第四方面所示方法的分布式单元。
第二十二方面,提供了一种通信系统,该通信系统包括执行如第二方面所示方法的集中式单元,以及执行如第四方面所示方法的分布式单元。可选地,该通信系统还可以包括执行如第七方面所示方法的用户面功能网元。
第二十三方面,提供了一种通信系统,该通信系统包括执行如第六方面所示方法的集中式单元, 以及执行如第二方面所示方法的终端设备。
附图说明
图1是本申请实施例应用的通信系统的示意图。
图2示出了应用本申请实施例的一种基站的示意性图。
图3示出了一种协作传输的流程示意图。
图4示出了本申请实施例提供的方法400的示意图。
图5示出了本申请实施例提供的方法400对应的一种可能的流程图。
图6示出了本申请实施例提供的方法600的示意图。
图7示出了本申请实施例提供的方法600对应的一种可能的流程图。
图8示出了本申请实施例提供的方法800的示意图。
图9示出了本申请实施例提供的方法800对应的一种可能的流程图。
图10示出了本申请实施例提供的方法1000的示意图。
图11示出了本申请实施例提供的方法1000对应的一种可能的流程图。
图12是本申请一个实施例提供的通信装置的示意性框图。
图13是本申请另一个实施例提供的通信装置的示意性框图。
图14是本申请又一个实施例提供的通信装置的示意性框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”以及其他各种术语标号等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例的技术方案可以应用于各种通信系统,例如但不限于,窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或未来第六代通信系统等。
为便于理解本申请实施例,首先结合图1详细说明一种适用于本申请实施例的通信系统。
图1示出了适用于本申请实施例的通信系统100的示意图。如图1所示,终端130接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。该无线网络包括网络设备110和核心网(core network,CN)120,其中网络设备110用于将终端设备130接入 到无线网络,CN120用于对终端进行管理并提供与外网通信的网关。
其中,终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
其中,网络设备是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
图2示出了应用本申请实施例的一种基站的示意性图。如图2所示,基站可以由CU和DU构成,即对原接入网中的基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在DU,多个DU共用一个CU,一方面节省了成本,另一方面易于网络扩展。CU和DU可以按照协议栈进行切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC)层,服务数据适配协议(service data adaptation protocol,SDAP)层以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,无线链路控制(radio link control,RLC)层,介质接入控制(media access control,MAC)层以及物理层(physical,PHY)部署在DU。
在5G系统中,CU和DU之间通过F1接口连接,gNB和gNB之间通过Xn接口连接以实现基站之间的信息交互,gNB与5G核心网通过NG接口连接以实现基站和核心网之间的信息交互。可以理解的是,在一些部署场景中,gNB与gNB之间没有Xn接口时,需通过核心网的信息传递,完成gNB与gNB之间的信息交互。
为提升无线通信的容量与可靠性,终端设备可以同时由多个网络设备提供服务,例如终端设备可以与位于不同地理位置的多个TRP进行通信,这多个TRP可以是属于一个基站下的多个物理天线,也可以是不同基站下的多个物理天线,这些TRP需要进行协作,共同服务终端设备。
在一些多TRP协作的方式中,需要相同的数据内容在相同的时刻从多个TRP发送给UE。在4G LTE通信系统中,引入了多播广播单频网(multicast broadcast single frequency network,MBSFN)技术,在该技术中,来自应用服务的数据,经由广播多播服务中心(broadcast multicast service center,BM-SC)的处理,随后经过多播广播多媒体服务(multicast broadcast multimedia service,MBMS)网关复制分发到多个4G基站eNB,具体流程如图3所示。
BM-SC的协议栈具有同步(SYNC)协议的功能,该功能对每个下行数据包加上SYNC包头,该SYNC包头包括时间戳、数据包的编号信息与统计信息,其中该时间戳用于指示基站调度/发送该下行数据包给UE的时刻,数据包的编号信息和统计信息用于eNB识别是否发生了丢包以及丢包的数量。通过SYNC包头中的时间戳,多个eNB可以在相同的时刻发送数据给UE,实现协作传输。
然而,在上述MBSFN技术中,除了进行协作传输的eNB之外,还需要引入额外的BM-SC和MBMS网关对数据包进行处理以及分发,从而使得该系统较为复杂,数据传输的可靠性也会受到影响。鉴于此,本申请实施例提供了一种可以应用于集中式单元和分布式单元分离架构的数据传输的方法,可以使得不同分布式单元实现同步传输。
应理解,在本申请中,不同网络节点之间在进行信息传输时可采用不同的形式,本申请不作限定。一种可能的形式,第一网络节点直接向第二网络节点发送信息(例如第一网络节点和第二网络节点之间存在直连链路);另一种可能的形式,第一网络节点通过中间节点转发向第二网络节点发送信息(例 如第一网络节点和第二网络节点之间存在路由节点,由该路由节点向第二网络节点转发第一网络节点发送给第二网络节点的信息)。该第一网络节点和该第二网络节点例如可以是本申请实施例中的第一集中式单元、第二集中式单元、第一分布式单元、第二分布式单元中的任意两个节点。
也就是说,在本申请中,第一网络节点向第二网络节点发送信息可以是第一网络节点直接向第二网络节点发送信息,或者是第一网络节点通过中间节点向第二网络节点发送信息;相应地,第一网络节点接收来自第二网络节点的信息可以是第一网络节点直接接收来自第二网络节点的信息,或者是第一网络节点通过中间节点接收来自第二网络节点的信息。
图4示出了本申请实施例提供的方法400的示例性流程图。在方法400中,由第一集中式单元确定数据对应的时间信息,并将该数据以及该时间信息发送给对该数据进行同步传输的第一分布式单元和第二分布式单元,第一分布式单元和第二分布式单元根据该时间信息,同步向终端设备发送该数据。
下面结合图4中的各个步骤对方法400作示例性说明。
S410,用户面功能网元向第一集中式单元发送数据。对应地,第一集中式单元接收来自用户面功能网元的数据。具体方式本申请不作限定。
S420,第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息。
示例性地,第一集中式单元从用户面功能网元接收数据之后,如果第一集中式单元确定需要通过协作传输的方式向终端设备发送该数据的话,则第一集中式单元确定该数据对应的时间信息,该时间信息用于不同站点同步向终端设备传输该数据。例如,第一集中式单元预先配置(或通过协商后确定)了多个站点与终端设备的标识之间的关联关系,该关联关系用于指示该多个站点用于向该终端设备协作传输数据。第一集中式单元接收来自用户面功能网元的数据之后,如果该数据是发送给该终端设备的话(即该数据的目的地址指向该终端设备),则第一集中式单元确定该数据对应的时间信息。
可以理解的是,该时间信息的名称仅仅是一种示例,在不同场景中,该时间信息还可以称为时间戳,或者时戳信息,或者指示信息等,本申请不作限定。还可以理解的是,该时间信息可以是新增的信元,也可以是某种现有的信元,例如,该时间信息可以是该数据的分组数据汇聚协议序列号,具体可参考步骤S443之后针对时间信息的描述,这里不做详细说明。
其中,通过协作传输的方式向终端设备发送该数据,指的是多个为该终端设备提供服务的不同的站点,将相同的数据内容在相同的时刻(或者是在允许的时差范围内)发送给该终端设备。因此,协作传输也可以称为同步传输,本申请对此不作区分。
本申请实施例以第一分布式单元和第二分布式单元为向该终端设备进行同步传输的站点为例进行说明。可以理解的是,本申请实施例同样适用于三个或三个以上站点的情况。因此,在本申请给出的示例中,第一集中式单元确定时间信息,该时间信息用于第一分布式单元和第二分布式单元同步传输该数据。其中,该时间信息用于第一分布式单元和第二分布式单元同步传输该数据,指的是,第一分布式单元和第二分布式单元可以根据该时间信息,同步向终端设备发送该数据,或者说,第一分布式单元根据该时间信息向终端设备发送该数据的时间,以及第二分布式单元根据该时间信息向终端设备发送该数据的时间之间的误差在允许范围内。
示例性地,该时间信息用于指示以下一项或多项:在无线链路控制层对该数据进行处理的时间,在介质接入控制层对该数据进行处理的时间,在物理层发送该数据的时间。
可以理解的是,在无线链路控制层对该数据进行处理的时间,可以指的是开始在无线链路控制层对该数据进行处理的时刻,也可以指的是结束在无线链路控制层对该数据进行处理的时刻,还可以指的是在无线链路控制层对该数据进行处理的时间段。在介质接入控制层对该数据进行处理的时间也可以进行类似解释,不再赘述。
下面对第一集中式单元确定时间信息的具体实现方式作示例性说明。
示例性地,第一集中式单元可以根据以下信息中的一项或多项确定该数据对应的时间信息:
第一分布式单元缓存的数据的大小、第二分布式单元缓存的数据的大小、第一集中式单元与第一分布式单元之间的传输时延、第一集中式单元和第二分布式单元之间的传输时延、第一分布式单元对该数据包进行处理的时长、第二分布式单元对该数据包进行处理的时长、第一集中式单元对数据进行复制处理的时长、该第一分布式单元和终端设备之间的传输时延、该第二分布式单元和该终端设备之间的传输时延、来自第一分布式单元和/或第二分布式单元的指示信息,其中该指示信息用于调整该时 间信息。
可以理解的是,在第一集中式单元和第二分布式单元属于同一个接入网设备的情况下,第一集中式单元和第二分布式单元之间的传输时延,指的是第一集中式单元和第二分布式单元进行直接通信时的传输时延;在第一集中式单元和第二集中式单元属于不同接入网设备的情况下,第一集中式单元和第二分布式单元之间的传输时延,指的是第一集中式单元和第二集中式单元(第二集中式单元与第二分布式单元对应)之间的传输时延以及该第二集中式单元和第二分布式单元之间的传输时延。
例如,第一集中式单元获取第一集中式单元与第一分布式单元之间的传输时延(记为第一时延),以及第一集中式单元与第二分布式单元之间的传输时延(记为第二时延),然后根据第一时延和第二时延确定该时间信息,该时间信息用于指示数据包在无线链路控制层的处理时间,该时间信息所指示的时间与当前时间(当前时间可以指的是第一集中式单元生成该时间信息的时间,或是在承载该数据的数据包的包头添加该时间信息的时间,或者是发送该时间信息的时间)的差值应大于或等于第一时延和第二时延中的较大值。在一种可能的实现方式中,第一集中式单元通过向第一分布式单元发送时延检测数据包的方式,获得第一时延,例如第一集中式单元在时刻T1向第一分布式单元发送时延检测数据包,并在该时延检测数据包中增加时刻T1的信息,第一分布式单元在时刻T2接收到该时延检测数据包,计算T2与T1的差值(即第一时延),并将该差值告知第一集中式单元。第一集中式单元可通过类似的方式,获取第二时延,这里不再赘述。
又例如,第一集中式单元获取第一分布式单元和终端设备之间的传输时延(记为第三时延),以及第二分布式单元和终端设备之间的传输时延(记为第四时延),然后根据第三时延和第四时延确定该时间信息,该时间信息用于指示数据包在无线链路控制层的处理时间,该时间信息所指示的时间与当前时间的差值应大于或等于第三时延和第四时延中的较大值。在一种可能的实现方式中,第一集中式单元可以分别向第一分布式单元和第二分布式单元请求获取第三时延和第四时延。以第一分布式单元为例,第一集中式单元向第一分布式单元发送请求消息,以请求获取第一分布式单元和终端设备之间的传输时延,第一分布式单元可以通过向终端设备发送时延检测数据包的方式获取第三时延(具体方式可参考上述示例中第一集中式单元获取第一时延的方式),然后第一分布式单元将第三时延发送给第一集中式单元。可以理解的是,第一集中式单元可以在接收到来自用户面功能网元的数据之前,预先获取第三时延和第四时延,以较少传输时延。
又例如,第一集中式单元根据第一分布式单元的缓存的数据的大小确定该时间信息。具体例如,第一集中式单元从第一分布式单元获取缓存的数据的大小,在该缓存的数据的大小大于阈值#1的情况下,第一集中式单元确定的该时间信息所指示的时间与当前时间的差值应大于阈值#2;或者,第一集中式单元根据缓存的数据的大小估计第一分布式单元处理缓存的数据的时长,则第一集中式单元确定的该时间信息所指示的时间与当前时间的差值大于或等于该时长。也就是说,在第一集中式单元当前缓存的数据量较大时,第一集中式单元在确定时间信息时,需要预留较大的时间差,即该时间信息所指示的时间与当前时间应具有较大的差值。可以理解的是,第一分布式单元可以周期性地将缓存的数据的信息告知第一集中式单元,也可以根据由第一集中式单元的请求将缓存的数据的信息发送给第一集中式单元。
又例如,第一集中式单元还可以根据来自第一分布式单元和/或第二分布式的指示信息,对该时间信息进行调整。具体例如,第二分布式单元接收来自第一集中式单元的数据和时间信息,该时间信息用于指示向终端设备发送该数据的时间,然而第二分布式单元当前缓存的数据较多,无法按照该时间信息所指示的时间发送该数据,在这种情况下,第二分布式单元向第一集中式单元发送指示信息,该指示信息用于指示增加发送该时间信息的时间与该时间信息所指示的时间之间的时间差,或者该指示信息用于指示第二分布式单元无法按照时间信息所指示的时间发送数据,或者该时间信息可以是第二分布式单元缓存的数据的信息等。第一集中式单元接收来自第二分布式单元的该指示信息之后,根据该指示信息对该时间信息进行调整,例如,第一集中式单元增加时间信息所指示的时间与当前时间的时间差。
可以理解的是,在第二分布式单元和第一集中式单元均属于同一个接入网设备的情况下,例如,第二分布式单元和第一集中式单元均属于第一接入网设备,第一集中式单元可以直接从第二分布式单元接收该指示信息;在第二分布式单元和第一集中式单元属于不同接入网设备的情况下,例如,第二 分布式单元属于第二接入网设备,第一集中式单元属于第一接入网设备,第二分布式单元可以将指示信息发送给第二接入网设备的第二集中式单元,然后由第二集中式单元将该指示信息发送给第一接入网设备。
S430a,第一集中式单元向第一分布式单元发送该数据和该时间信息。
S430b,第一集中式单元向第二分布式单元发送该数据和该时间信息。
示例性地,第一集中式单元确定时间信息之后,将该时间信息以及与该时间信息对应的数据发送给第一分布式单元,以及将该时间信息以及与该时间信息对应的数据发送给第二分布式单元。
可以理解的是,第一集中式单元、第一分布式单元和第二分布式单元可以属于同一个接入网设备,也可以属于不同的接入网设备。例如,第一集中式单元和第一分布式单元属于第一接入网设备,第二分布式单元属于第二接入网设备;又例如,第一集中式单元、第一分布式单元和第二分布式单元均属于第一接入网设备。应理解,上述示例中的第一接入网设备和第二接入网设备指的是不同的接入网设备。
在第一分布式单元和第二分布式单元属于第一接入网设备,第二分布式单元属于第二接入网设备的情况下,第一集中式单元可以通过其他节点将数据和时间信息转发至第二分布式单元,例如,第一集中式单元将数据和时间信息发送至第二集中式单元,然后再由第二集中式单元将该数据和时间信息转发至第二分布式单元,其中第二集中式单元属于第二接入网设备,即第二集中式单元与第二分布式单元对应。并且,在这种场景下,第一接入网设备和第二接入网设备可以在S410之前执行协作传输的协商流程,具体过程如S440所示。下面结合S440中的各个步骤对该协商流程进行示例性说明。
S441,终端设备向第一集中式单元发送测量结果。对应地,第一集中式单元接收来自终端设备的该测量结果。
示例性地,终端设备对当前服务小区的参考信号和/或相邻小区的参考信号进行测量得到测量结果,并将测量结果发送给第一集中式单元。可以理解的是,第一集中式单元属于终端设备当前服务小区所对应的网络设备(即第一接入网设备)。
第一集中式单元接收来自终端设备的测量结果之后,根据测量结果(可选地,还可能包括其他信息),确定进行协作传输的站点。
例如,第一集中式单元根据一以下一项或多项确定第二集中式单元(或者说确定第二集中式单元所在的接入网设备)为进行协作传输的站点:
第二集中式单元的信号的测量结果;
第二集中式单元与第一集中式单元之间的传输时延;
第二集中式单元与第一集中式单元之间的距离。
具体例如,在第二集中式单元(或者说第二集中式单元所在的接入网设备)的测量结果满足以下一项或多项的情况下,第一集中式单元选择该第二集中式单元进行协作传输:
(1)信号强度大于阈值#3;
(2)信号强度在所有测量结果中最大;
(3)与第一集中式单元之间的传输时延小于阈值#4;
(4)与第一集中式单元之间的传输时延在所有测量结果中最低;
(5)距离第一集中式单元或终端设备之间的距离小于阈值#5。
可以理解的是,第一集中式单元可以确定一个,也可以确定多个进行协作传输的站点,本申请不作限定。
S442,第一集中式单元向第二集中式单元发送协作请求消息。对应地,第二集中式单元接收来自第一集中式单元的该协作请求消息。
示例性地,在确定与第二集中式单元进行协作传输之后,第一集中式单元向第二集中式单元发送协作传输请求消息。可选地,该协作传输请求消息包括请求向终端设备进行同步传输的信息。
可以理解的是,第一集中式单元可能向多个适合进行协作传输的站点发送上述协作请求信息,即第一集中式单元可以向两个或两个以上站点请求进行协作传输,本申请不作限定。
可选地,第一集中式单元还可以根据用于第一分布式单元和终端设备进行通信的第一配置信息,向第二集中式单元发送用于第二分布式单元与终端设备进行通信的第二配置信息。该第二配置信息与 第一配置信息相同,或者,该第二配置信息是根据第一配置信息确定的信息。
可以理解的是,第一集中式单元向第二集中式单元发送该第二配置信息,是为了让第一分布式单元与终端设备进行通信的配置与第二分布式单元与终端设备进行通信的配置一致,也就是说,通过向第二集中式单元发送该第二配置信息,第一分布式单元和第二分布式单元能够采用相同的配置信息和/或调度控制信息向终端设备发送协作传输的数据。具体示例可参考S450a和S450b部分的描述,这里不作详细说明。
示例性地,该第一配置信息包括以下信息中的一项或多项:该第一分布式单元的物理层信道配置信息、该第一分布式单元的介质接入控制层配置信息、该第一分布式单元的无线链路控制层配置信息、该第一集中式单元的分组数据汇聚层配置信息。例如,该第一配置信息包括以下信息中的一项或多项:该终端设备的身份标识信息,例如小区无线网络临时标识(cell radio network temporary identifier,C-RNTI),第一接入网设备与该终端设备通信的时频资源信息,第一接入网设备为该终端设备分配的无线承载(radio bearer,RB)信息,第一接入网设备的系统帧同步信息、上下行时隙配比信息,第一接入网设备使用的混合自动重传请求进程数和/或混合自动重传请求进程号。应理解,在第一接入网设备包括了第一集中式单元和第一分布式单元的情况中,第一集中式单元与终端设备的通信配置信息以及第一分布式单元与终端设备的通信配置信息,也可以描述为第一接入网设备与终端设备的通信配置信息。
可选地,第一配置信息还可以包括其他类型的信息,例如,该第一配置信息包括第一接入网设备对该终端设备调度的控制信息,例如调度优先级,比例公平(Proportion Fair)调度信息,其中比例公平调度信息为第一接入网设备的调度算法输入参数,用于第一接入网设备以较公平的方式调度不同的终端设备。
类似地,该第二配置信息包括以下信息中的一项或多项:该第二分布式单元的物理层信道配置信息、该第二分布式单元的介质接入控制层配置信息、该第二分布式单元的无线链路控制层配置信息、该第二集中式单元的分组数据汇聚层配置信息、终端设备的标识信息等等,具体可参考上述针对第一配置信息的描述,这里不再赘述。
S443,第二集中式单元向第一集中式单元发送协作响应消息。对应地,第一集中式单元接收来自第二集中式单元的该协作响应消息。
示例性地,第二集中式单元接收来自第一集中式单元的协作请求消息之后,判断第二接入网设备是否支持与第一接入网设备进行协作传输。在支持的情况下,第二集中式单元向第一集中式单元发送协作响应消息,该响应消息包括指示接受向该终端设备进行同步传输的请求的信息(或者是指示同意进行协作传输的信息),否则第二集中式单元向第一集中式单元发送协作响应消息以拒绝进行协作传输。
可以理解的是,第一集中式单元与第二分布式单元可重复执行S442-S443的过程,用于协商进行协作传输的配置信息,或者,在后续协作传输开始后,第一集中式单元与第二集中式单元仍可通过S442-S443的流程交互一些信息,例如在S442中列举的多种信息中有变化或有修改,或者对该终端设备调度的控制信息发生了变化的情况下,第一集中式单元和第二集中式单元可以通过上述协商流程进行信息/配置同步。
可以理解的是,第一集中式单元可以选择所有指示允许进行协作传输的站点进行协作传输,也可以在指示允许进行协作传输的站点中选择一个或多个站点进行协作传输,本申请不作限定。
下面对第一集中式单元向第一分布式单元发送数据和时间信息,以及向第二分布式单元发送数据和时间信息的具体方式作示例性说明。
在一种实现方式中,第一集中式单元可以将该时间信息携带在分组数据汇聚协议包头中。在这种实现方式中,第一集中式单元在分组数据汇聚协议层对该数据进行加密得到加密的数据,然后,将时间信息添加到承载该加密的数据的数据包的分组数据汇聚协议包头中,然后复制该添加了时间信息的数据包,并分别向第一分布式单元和第二分布式单元发送该数据包,该数据包的分组数据汇聚协议包头携带了该时间信息。可以理解的是,在这种实现方式中,该时间信息可以是新增的信元,也可以是现有的信元。例如,该时间信息可以是分组数据汇聚协议序列号,如PDCP SN,在这种情况下,可以预先在第一分布式单元和第二分布式单元配置不同分组数据汇聚协议序列号和不同时间的对应关系, 以便第一分布式单元和第二分布式单元可以通过分组数据汇聚协议序列号确定发送/处理该数据的时间。
在另一种实现方式中,第一集中式单元可以将该时间信息携带在承载该数据的隧道的包头中,例如,第一集中式单元可以将该时间信息携带在承载该数据的通用无线分组业务用户面隧道协议(general packet radio service tunnelling protocol for the user plane,GTP-U)的协议数据单元(protocol data unit,PDU)包头中。在这种实现方式中,第一集中式单元先对该数据进行复制,并将复制得到的两份数据分别使用隧道协议(例如GTP-U协议)进行处理,然后通过隧道分别向第一分布式单元和第二分布式单元发送该数据,该隧道的包头中包括该时间信息。
第一集中式单元可以为每个进行协作传输的数据生成时间信息,在这种情况下,第一分布式单元或第二分布式单元接收到来自第一集中式单元的数据之后,根据该数据对应的时间信息对该数据进行处理或发送该数据,即第一分布式单元和第二分布式单元根据数据对应的时间信息,同步发送该数据。可以理解的是,在没有特别说明的情况下,本申请实施例涉及的数据均指的是进行协作传输的数据,后续不再重复说明。
或者,在另一种实现方式中,第一集中式单元可以为首个进行协作传输的数据生成时间信息,也就是说,第一集中式单元可以不为后续连续发送的数据生成时间信息,在这种情况下,第一分布式单元或第二分布式单元根据时间信息同步发送首个进行协作传输,后续可以按序处理/发送其余数据。
或者,在又一种实现方式中,第一集中式单元可以按照一定的周期,为部分数据生成时间信息。例如,第一集中式单元按照一定的时间周期生成时间信息,具体例如,第一集中式单元每隔10ms为下一个(或多个)待传输的数据生成时间信息;又例如,第一集中式单元按照一定的数量周期生成时间信息,具体例如,第一集中式单元每传输10个数据为下一个(或多个)待传输的数据生成时间信息。在这种情况下,第一分布式单元和第二分布式单元接收到来自第一集中式单元的数据之后,如果还接收到了与该数据对应的时间信息,则第一分布式单元和第二分布式单元根据该时间信息同步发送该数据,然后按序处理/或发送其余数据包,直到再次接收到携带了时间信息的数据,然后重复上述过程。
或者,在又一种实现方式中,第一集中式单元可以在某种事件触发下,为待传输的数据生成时间信息,即当满足一定的触发条件时,第一集中式单元为待传输的数据生成时间信息。例如,在第一集中式单元接收到来自终端设备的用于指示协作传输未同步的反馈信息的情况下,第一集中式单元为下一个(或多个)待传输的数据生成时间信息;又例如,在第一集中式单元的下行传输中断之后,重新恢复了下行传输的情况下,第一集中式单元为下一个(或多个)待传输的数据生成时间信息。
或者,在又一种实现方式中,第一集中式单元为特定业务类型对应的一簇数据生成一个时间信息。例如,在某种特定的业务类型中,核心网设备(例如用户面功能网元将间歇性或周期性向第一集中式单元发送一簇数据,则第一集中式单元可以为该一簇数据生成一个时间信息,第一分布式单元和第二分布式单元可以按照该时间信息按序对该一簇数据进行处理。
S450a,第一分布式单元根据时间信息向终端设备发送数据。
S450b,第二分布式单元根据时间信息向终端设备发送数据。
示例性地,第一分布式单元和第二分布式单元接收到来自第一集中式单元的数据和时间信息之后,分别根据该时间信息向终端设备发送数据。下面以第一分布式单元为例进行示例性说明。
例如,第一分布式单元接收来自第一集中式单元的数据和时间信息,该时间信息用于指示在无线链路控制层对该数据进行处理的时间,则第一分布式单元根据该时间信息指示的时间,在无线链路控制层对该数据进行处理,然后经过其他层的处理之后,将该数据发送给终端设备。
又例如,第一分布式单元接收来自第一集中式单元的数据和时间信息,该时间信息用于指示在介质接入控制层对该数据进行处理的时间,则第一分布式单元根据该时间信息指示的时间,在介质接入控制层对该数据进行处理,然后经过其他层的处理之后,将该数据发送给终端设备。
需要说明的是,对于上述两种示例,如果第一分布式单元和第二分布式单元属于不同的接入网设备,例如,第一分布式单元属于第一接入网设备,第二分布式单元属于第二接入网设备,则在协作传输之前,第一接入网设备和第二接入网设备可以协商用于与终端设备进行通信的配置信息,例如,第一接入网设备和第二接入网设备复用S442-S443的流程,协商该配置信息,该配置信息包括物理层信道配置信息、介质接入控制配置信息,无线链路控制配置信息、分组数据汇聚协议配置信息等。在这种情况下,如果时间信息指示的是在无线链路控制层(或者是介质访问控制层)对该数据进行处理的 时间,第一分布式单元和第二分布式单元可以根据该时间信息同步在无线链路控制层对该数据进行处理,而由于第一接入网设备和第二接入网设备预先协商了相同的配置信息,因此,第一分布式单元和第二分布式单元对该数据进行处理的时长可以近似相等,从而可以使得第一分布式单元和第二分布式单元同步向终端设备发送该数据。
又例如,第一分布式单元接收来自第一集中式单元的数据和时间信息,该时间信息用于指示在物理层发送该数据的时间,则第一分布式单元根据该时间信息指示的时间,向终端设备发送该数据。
可以理解的是,第一分布式单元可以向终端设备发送该时间信息,也可以不向终端设备发送该时间信息。例如,在时间信息承载于数据的分组数据汇聚协议包头的情况下,第一分布式单元可以从承载该数据的数据包的分组数据汇聚协议包头中删除该时间信息之后,再向终端设备发送该数据包。又例如,在时间信息携带在数据的GTP-U协议包头的情况下,第一分布式单元可以从承载该数据的GTP-U隧道的GTP-U包头中删除该时间信息之后,再向终端设备发送该数据包。应理解,本申请中,并不限定时间信息承载于哪一层协议数据包中,可以是除分组数据汇聚协议或GTP-U协议之外的协议,也可以是一些层间交互指示,例如是分组数据汇聚协议给无线链路控制层(或者是介质访问控制层,或者是物理层)的跨层指示信息,该跨层指示信息应在发送给终端设备之前删除,无需发送给终端设备。
可选地,第一分布式单元和/或第二分布式单元在向终端设备发送数据之前,还可以对该数据的发送时间(或者是时间信息所指示的时间)进行调整,以减小终端设备接收来自第一分布式单元的数据的时间与终端设备接收来自第二分布式单元的数据的时间之间的误差,即尽可能让终端设备同时接收到来自第一分布式单元的数据和来自第二分布式单元的数据。例如,在一些通信场景中,若第一分布式单元与终端设备的距离,和第二分布式单元与终端设备的距离相差较大,即使第一分布式单元和第二分布式单元同步向终端设备发送了数据,但终端设备接收来自第一分布式单元的数据的时间,与终端设备接收来自第二分布式单元的数据的时间之间的差异可能较大,从而造成协作传输的效率和可靠性降低。在一种可能的实现方式中,终端设备测量第一分布式单元的下行信号达到终端设备的时间与第二分布式单元的下行信号到达终端设备的时间的时间差,即终端设备测量第一分布式单元和终端设备之间的传输时延,与第二分布式单元和终端设备之间的传输时延之间的时间差,然后终端设备将该时间差发送给第一分布式单元,第一分布式单元根据该时间差,对向终端设备发送该数据的时间(或者是时间信息所指示的时间)进行调整。示例性地,终端设备通过测量确定时间差为d,即在同步发送的情况下,第一分布式单元的信号比第二分布式单元的信号早了d时段被终端设备接收,终端设备将该时间差d告知第一分布式单元,第一分布式单元根据时间差d调整数据的发送时间。例如,时间信息指示第一分布式单元在T时刻向终端设备发送数据,则第一分布式单元根据该时间信息和该时间差,在T+d时刻向终端设备发送该数据,应理解,在这种调整方式中,终端设备可以不向第二分布式单元发送上述时间差,即第二分布式单元可以不对数据的发送时间进行调整。通过上述方案,第一分布式单元和第二分布式单元发送的数据可在十分接近的时刻抵达终端设备的接收端,从而可以提升协作传输的效率和可靠性,降低干扰。
可选地,在一些可能的实施方式中,第一分布式单元和/或第二分布式单元接收的来自第一集中式单元的时间信息,可以指示第一分布式单元和/或第二分布式单元在介质接入控制层完成处理的最晚时间,例如在上述时间信息指示的时间之前,第一分布式单元和/或第二分布式单元完成在介质接入控制层对该数据的处理,并将时间信息对应的数据储存下来,当第一分布式单元和/或第二分布式单元收到来自终端设备的指示信息后(例如终端设备指示的第一分布式单元和第二分布式单元的下行信号到达终端设备的时间差,或,终端设备指示的用于网络设备做下行调度参考的信道状态信息),第一分布式单元和/或第二分布式单元将储存的数据发送给终端设备。
可选地,在第一分布式单元或第二分布式单元检测到来自第一集中式单元的数据存在丢包的情况下,可以采用以下任意一种方式进行处理(以下以第二分布式单元为例进行说明):
方式1:第二分布式单元通知第一集中式单元重传丢失的数据。例如,第二分布式单元通过下行数据传输状态(downlink data delivery status,DDDS)通知第一集中式单元,请求重传丢失的数据。
方式2:在第二分布式单元属于第二接入网设备,第一集中式单元和第一分布式单元属于第一接入网设备的情况下,第二分布式单元通知第一集中式单元取消协作传输。在这种实现方式中,第二分布式单元在丢失数据对应的发送时段内不发送信号。第一分布式单元接收到来自第二分布式单元的通知 消息后,可进行独立的下行数据传输。
方式3:第二分布式单元通过物理层或介质接入控制层信令,通知终端设备停止接收时隙x~时隙y之间的数据(其中时隙x~时隙y为丢包对应的发送时隙)。可选地,第二分布式单元将丢失的数据的序列号(例如SN1,SN3,SN5)告知终端设备,终端设备在根据第二分布式单元的指示确定丢失的数据之后,可以在这些数据对应的时隙(即时隙x~时隙y)不再接收信号,以节省资源。若在时隙x~时隙y期间,终端设备有可用的上行时隙,则可将丢包情况通知第一分布式单元,第一分布式单元在根据终端设备的指示确定丢失的数据之后,可以不再向终端设备发送这些数据,以节省资源。
可以理解的是,上述丢包处理方式适用于某些协作方式中,终端设备需要接收到完整的来自多个网络设备的信号才能正确解码数据的情况。通过方式1,第二分布式单元可向第一集中式单元请求重发丢包的数据,适用于检测到丢包的时刻距离发送给终端设备的时刻较长时,还有时间能够将丢失的数据包恢复,完成协作传输。通过方式2和方式3,能够让第一分布式单元避免无谓的传输和/或让终端设备避免无谓的接收,节省整体通信系统的功耗,方式2和方式3适用于检测到丢包的时刻距离发送给终端设备的时刻较短时的场景。
对应地,终端设备接收来自第一分布式单元的数据,以及来自第二分布式单元的数据。
可选地,若终端设备未正确解码来自第一分布式单元的数据,终端设备向第一分布式单元发送第一反馈消息(例如NACK消息),该第一反馈消息用于指示终端设备未成功接收该数据。若终端设备能够正确解码来自第一分布式单元的数据,则终端设备向第一分布式单元发送第二反馈消息(例如ACK消息),该第二反馈消息用于指示数据接收成功。类似地,若终端设备未正确解码来自第二分布式单元的数据,终端设备向第二分布式单元发送第一反馈消息;若终端设备能够正确解码来自第二分布式单元的数据,则终端设备向第二分布式单元发送第二反馈消息。
对于第一分布式单元或第二分布式单元,在未成功接收到第二反馈消息的情况下,则对该数据进行重传。下面以第一分布式单元为例进行说明。
在一种实现方式中,在第一分布式单元接收到来自终端设备的第一反馈信息的情况下,第一分布式单元确定该数据发送失败,则第一分布式单元对该数据进行重传。
在另一种实现方式中,在第一分布式单元没有接收到来自终端设备的第二反馈信息的情况下,第一分布式单元确定该数据发送失败,例如,第一分布式单元在预设时间内没有接收到来自终端设备的第二反馈信息,则确定该数据发送失败。在这种情况下,第一分布式单元对该数据进行重传。
因此,在上述方案中,终端设备可以向第一分布式单元和第二分布式单元发送反馈消息以指示数据是否接收成功,而第一分布式单元和第二分布式单元可以根据终端设备是否进行了反馈,以及终端设备反馈的信息所指示的内容,确定数据发送成功还是发送失败。在数据发送失败的情况下,第一分布式单元和第二分布式单元可以对该发送失败的数据进行重传,从而提高数据传输的可靠性。相比而言,在图3所示的MBSFN技术中是没有上行过程的,即终端设备通过无法反馈数据是否接收成功,因此进行协作传输的站点也就无法根据终端设备的反馈对传输失败的数据进行重传,因此该技术不能满足一些可靠性要求较高的业务。
可选地,在第一分布式单元确定数据发送失败的情况下,第一分布式单元可以向第二分布式单元发送指示该数据发送失败的信息,该信息用于第二分布式单元和第一分布式单元重新同步传输该发送失败的数据,该指示该数据发送失败的信息例如可以是该数据的序列号。可以理解的是,在第一分布式单元和第二分布式单元属于同一个接入网设备的情况下,第一分布式单元可以直接向第二分布式单元发送指示该信息,第一分布式单元也可以通过第一集中式单元向第二分布式单元发送指示信息;在第一分布式单元和第二分布式单元属于不同接入网设备的情况下,第一分布式单元可以通过第一分布式单元对应的集中式单元以及第二分布式单元对应的集中式单元向第二分布式单元发送该信息。例如,第一分布式单元和第二集中式单元属于第一接入网设备,第二分布式单元和第二集中式单元属于第二接入网设备,在这种情况下,第一分布式单元将指示该数据发送失败的信息发送给第一集中式单元,然后第一集中式单元确定第二接入网设备是与第一接入网设备进行协作传输的站点,因此第一集中式单元将该信息发送给第二接入网设备中的第二集中式单元,然后第二集中式单元将该信息发送给第二分布式单元。第二分布式单元接收到来自第一分布式单元的指示该数据发送失败的信息之后,对该数据进行重传,即与第一分布式单元进行协作传输。应理解,在这种方式中,第二分布式单元应将已传 输的一些数据储存下来,在收到来自第一分布式单元用于指示对某数据进行重传的信息的情况下,第二分布式单元对该数据进行重传。第二分布式单元可对每个数据(包)设置一个定时器,对该数据(包)进行初传后,启动该定时器,当该定时器到期之前,第二分布式单元均储存该数据(包);当该定时器到期时,第二分布式单元将该数据(包)从存储中清空。应理解,第一分布式单元也采用类似的方式,在第二分布式单元向第一分布式单元指示需要重传某数据(包)的情况下,第一分布式单元从存储中读取该数据,并进行重传。
可选地,第一分布式单元可以周期性与第二分布式单元交互缓存的数据的信息。例如,第一分布式单元每隔100ms,将缓存的数据的序列号发送给第二分布式单元,第二分布式单元接收来自第一分布式单元的该缓存的数据的序列号之后,判断第一分布式单元缓存的数据与自身缓存的数据是否一致,如果不一致,则第二分布式单元对自身缓存的数据更新为与第一分布式单元缓存的数据一致。通过该方案,使得第一分布式单元和第二分布式单元对齐协作传输的数据。例如,终端设备接收来自第一分布式单元的数据,以及来自第二分布式单元的数据之后,如果数据解码均成功,终端设备分别向第一分布式单元和第二分布式单元发送第二反馈消息。如果第一分布式单元正确接收了该第二反馈消息,但第二分布式单元将该第二反馈消息误检为第一反馈消息,或者第二分布式单元没有收到该第二反馈消息,则第二分布式单元可能会对该数据进行重传,从而导致第一分布式单元和第二分布式单元后续协作传输的数据无法对齐,而通过上述方案,可以周期性对齐第一分布式单元和第二分布式单元缓存的数据,避免因协作传输的数据没有对齐所带来的问题。
可选地,第一分布式单元可以在满足某种触发条件下,与第二分布式单元交互缓存的数据的信息。例如,在第一分布式单元接收到来自终端设备的第一反馈消息的情况下,或者第一分布式单元连续多次接收到来自终端设备的第一反馈消息的情况下,第一分布式单元将缓存的数据的序列号发送给第二分布式单元,第二分布式单元接收来自第一分布式单元的该缓存的数据的序列号之后,判断第一分布式单元缓存的数据与自身缓存的数据是否一致,如果不一致,则第二分布式单元对自身缓存的数据更新为与第一分布式单元缓存的数据一致。通过该方案,使得第一分布式单元和第二分布式单元对齐协作传输的数据。
下面介绍一种第一分布式单元对该数据进行重传的一种具体的实现方式。
在一种实现方式中,在第一分布式单元确定数据发送失败的情况下,第一分布式单元在混合自动重传进程号对应的发送该数据的时刻的下一个可用的时刻对所述数据进行重传。
例如,时间信息与下行传输所使用的混合自动重传进程号存在对应关系。以时间信息为分组数据汇聚协议序列号为例,可以预先配置分组数据汇聚协议序列号与混合自动重传进程号之间的对应关系:假设第一分布式单元和第二分布式单元协商使用8个混合自动重传进程号与终端设备进行通信,该8个混合自动重传进程号分别为0~7,分组数据汇聚协议序列号=0,8,16,24等的数据使用混合自动重传进程号0对应的混合自动重传进程进行数据传输,分组数据汇聚协议序列号=1,9,17,25等的数据使用混合自动重传进程号1对应的混合自动重传进程进行数据传输,以此类推。或者,以时间信息指示某个时隙为例,可以预先配置不同时隙与混合自动重传进程号之间的对应关系:混合自动重传进程号0对应的混合自动重传进程在slot0,slot8,slot16进行传输,混合自动重传进程号1对应的混合自动重传进程在slot1,slot9,slot17进行传输,以此类推。应理解,slot编号在累加到预设的最大值后会进行置零后重新计数,但上述对应关系可以延续,例如在一个无线帧对应10个slot的场景中,可以将无线帧0的10个slot记作slot0~slot9,可以将无线帧1的10个slot记作slot10~slot19,无线帧2的10个slot记作slot20~slot29,依次类推。
在初次传输时,可以按照上述对应关系,选择混合自动重传进程号进行下行传输。
当需要进行重传时,可以采用与初传相同的混合自动重传进程号对应的下一个可用时刻对该数据进行重传。例如,在上述示例中,分组数据汇聚协议序列号=0,8,16,24等的数据使用混合自动重传进程号0对应的混合自动重传进程进行数据传输,当分组数据汇聚协议序列号为8的数据需要进行重传时,可以在原来分组数据汇聚协议序列号为16的数据所对应的时刻,对该分组数据汇聚协议序列号为8的数据进行重传。在这种实现方式中,该混合自动重传进程号对应的其他未传数据包下行处理/发送的时刻受该次重传影响,对应向后延迟,即分组数据汇聚协议序列号为16的数据在原来分组数据汇聚协议序列号为24的数据所对应的发送时刻,进行传输,其余数据也类似顺延。
可以理解的是,上述有关发送时间的调整以及重传相关的方案也可以适用于后续方法600、方法800、方法1000中,为了简洁,后续不再重复说明。
通过上述方案,可以使得第一分布式单元和第二分布式单元同步向终端设备传输数据,从而提高数据传输的可靠性。并且,在数据接收失败的情况下,终端设备还可以向第一分布式单元或第二分布式单元进行反馈,以便第一分布式单元或第二分布式单元可以对传输失败的数据进行协作重传,降低数据的丢包率,提高用户体验。
可以理解的是,上述方案可以应用于各种通信系统中,如5G通信系统或未来6G通信系统中。以5G系统为例,本申请实施例中的用户面功能网元可以对应于5G中的UPF,接入网设备可对应于5G中的gNB,集中式单元可对应于gNB中的CU,分布式单元可对应于gNB中的DU,混合自动重传进程号可对应于5G中的HARQ进程号,分组数据汇聚协议可对应于5G中的PDCP,无线链路控制协议可对应于5G中的RLC,介质接入控制协议可对应于5G中的MAC,物理层可对应于5G中的PHY。
下面以5G系统为基础,结合图5,介绍上述方法400的一种可能的示例。
在图5中,gNB-CU#1和gNB-DU#1属于gNB#1,gNB-CU#2和gNB-DU#2属于gNB#2,gNB#1和gNB#2是用于向UE进行协作传输的站点。假设gNB-CU#1从UPF接收到2个数据包,分别将这2个数据包记为Packet#1和Packet#2。gNB-CU#1为Packet#1生成时间信息Timestamp#1,为Packet#2生成时间信息Timestamp#2,并将Timestamp#1添加到Packet#1的PDCP包头,将Timestamp#2添加到Packet#2的PDCP包头,其中Timestamp#1用于指示在slot#2发送Packet#1,Timestamp#2用于指示在slot#4发送Packet#2。gNB-CU#1对Packet#1和Packet#2复制之后,将Packet#1和Packet#2发送至gNB-DU#1,以及通过gNB-CU#2将该Packet#1和Packet#2发送给gNB-DU#2,应理解,在一些网络部署方式中,gNB-CU#1可将该Packet#1和Packet#2直接发送给gNB-DU#2,也可将该Packet#1和Packet#2通过核心网节点转发至gNB-DU#2。gNB-DU#1和gNB-DU#2根据Timestamp#1,在slot#2向UE发送Packet#1,根据Timestamp#2,在slot#4向UE发送Packet#2。
图6示出了本申请实施例提供的方法600的示例性流程图。在方法600中,由用户面功能网元确定数据对应的时间信息,并将数据以及该时间信息发送给第一集中式单元和第二集中式单元,第一集中式单元和第二集中式单元分别将该数据和该时间信息发送给对该数据进行协作传输的第一分布式单元和第二分布式单元,第一分布式单元和第二分布式单元根据该时间信息,同步向终端设备发送该数据。
下面结合图6中的各个步骤对方法600作示例性说明。
S610,用户面功能网元确定用于第一分布式单元和第二分布式单元同步传输数据的时间信息。
示例性地,用户面功能网元在发送下行数据之前,为该数据确定时间信息,该时间信息用于第一分布式单元和第二分布式单元同步传输该数据。关于第一分布式单元、第二分布式单元和时间信息的详细描述可参考方法400中的S420部分,这里不作详细说明。
示例性地,该时间信息用于指示以下一项或多项:在分组数据汇聚协议层对该数据进行处理的时间,在无线链路控制层对该数据进行处理的时间,在介质接入控制层对该数据进行处理的时间,在物理层发送该数据的时间。
可以理解的是,在分组数据汇聚协议层对该数据进行处理的时间,可以指的是开始在分组数据汇聚协议层对该数据进行处理的时刻,也可以指的是结束在分组数据汇聚协议层对该数据进行处理的时刻,还可以指的是在分组数据汇聚协议层对该数据进行处理的时间段。关于其他示例的描述可参考方法400中的S420部分,这里不再赘述。
用户面功能网元可以根据以下信息中的一项或多项确定该时间信息:第一分布式单元缓存的数据的信息、第二分布式单元缓存的数据的信息、第一集中式单元和第一分布式单元之间的传输时延、第二集中式单元和第二分布式单元之间的传输时延、第一集中式单元和/或第一分布式单元对数据进行处理的时长、第二集中式单元和/或第二分布式单元对数据进行处理的时长、用户面功能网元对数据进行复制处理的时长、用户面功能网元和第一集中式单元的传输时延、用户面功能网元和第二集中式单元之间的传输时延。用户面功能网元获得上述一项或多项信息的具体方式与方法400的S420中第一集中式单元获取用于确定时间信息的信息的方式类似,区别在于执行主体及消息的收发节点的不同,为了简洁,这里不再赘述。
S620,用户面功能网元向第一集中式单元发送该数据和该时间信息,以及向第二集中式单元发送该数据和该时间信息。对应地,第一集中式单元和第二集中式单元接收来自用户面功能网元的该数据和该时间信息。
可以理解的是,在本实施例中,第一集中式单元和第一分布式单元属于第一接入网设备,第二集中式单元和第二分布式单元属于第二接入网设备。因此在S610之前,第一接入网设备和第二接入网设备可以执行协作传输的协商流程,具体可参考方法400中的S440,这里不再赘述。还可以理解的是,在通过协商流程确定好进行协作传输的站点之后,应将多个进行协作的站点的身份信息/地址信息告知用户面功能网元,以便该用户面功能网元能够将复制后的数据发送至对应的多个站点。
用户面功能网元确定数据对应的时间信息后,向第一集中式单元发送该数据和该时间信息,以及向第二集中式单元发送该数据和该时间信息。
在一种实现方式中,用户面功能网元可以将该时间信息携带在承载该数据的隧道的包头中。具体可参考方法400中的S430部分,区别在于,在S430中,是由第一集中式单元将数据和时间信息发送给第一分布式单元,以及将数据和时间信息发送给第二分布式单元,而在S620中,是由用户面功能网元将数据和时间信息发送给第一集中式单元,以及将数据和时间信息发送给第二集中式单元。为了简洁,这里不再赘述。
可以理解的是,上述实施例是以用户面功能网元将数据和时间信息直接发送至第一集中式单元,以及第二集中式单元为例进行说明的,但可以理解的是,用户面功能网元也可以先将数据和时间信息发送给第一集中式单元,然后由第一集中式单元将该数据和时间信息发送给第二集中式单元,本申请对此不作限定。
S630a,第一集中式单元向第一分布式单元发送该数据和时间信息。
S630b,第二集中式单元向第二分布式单元发送该数据和时间信息。
示例性地,第一集中式单元接收来自用户面功能网元的该数据和该时间信息之后,将该数据和/或该时间信息发送给第一分布式单元。类似地,第二集中式单元接收来自用户面功能网元的该数据和该时间信息之后,将该数据和/或该时间信息发送给第二分布式单元。应理解,若上述时间信息指示的是在分组数据汇聚协议层对该数据进行处理的时间,则第一集中式单元可以不将该时间信息发送给第一分布式单元,第二集中式单元也可以不将该时间信息发送给第二分布式单元,在这种情况下,第一分布式单元在接收到来自第一集中式单元的数据之后,便在分组数据汇聚协议层对该数据进行处理,类似地,第二分布式单元在接收到来自第二集中式单元的数据之后,便在分组数据汇聚协议层对该数据进行处理。下述S640a-S640b步骤以第一集中式单元将该时间信息发送给第一分布式单元,以及第二集中式单元将该时间信息发送给第二分布式单元的情况为例进行描述。
可选地,若协作传输的数据需要在第一集中式单元和第二集中式单元进行加密和/或完整性保护等安全相关的操作,第一集中式单元和第二集中式单元需使用相同的安全参数(例如秘钥,加密算法等)对该数据进行加密等安全性处理。第一集中式单元和第二集中式单元可以在协作传输的协商流程来协商确定相同的安全参数。第一集中式单元和第二集中式单元通过采用相同的安全参数对该数据进行处理,从而可以保障加密之后的数据是一致的,防止因终端设备接收到的数据不一致而导致协作传输失败的情况。应理解,该步骤不仅限于本实施例,也适用于本申请其他方案中,即该方案可以适用于由不同的网络设备对数据进行安全相关操作的场景。
S640a,第一分布式单元根据时间信息向终端设备发送数据。
S640b,第二分布式单元根据时间信息向终端设备发送数据。
S640a-S640b与方法400中的S450a-S450b类似,为了简洁,这里不再赘述。
通过上述方案,可以使得第一分布式单元和第二分布式单元同步向终端设备传输数据,从而提高数据传输的可靠性。此外,在该方案中,由于用户面功能网元直接将数据复制后分发给多个进行协作传输的站点,无需等待一个站点对数据处理后转发至别的站点,可以降低整体的通信时延。
可以理解的是,上述方案可以应用于各种通信系统中,如5G通信系统或未来6G通信系统中。下面以5G系统为基础,结合图7,介绍上述方法600的一种可能的示例。
在图7中,gNB-CU#1和gNB-DU#1属于gNB#1,gNB-CU#2和gNB-DU#2属于gNB#2,gNB#1和gNB#2是用于向UE进行协作传输的站点。
假设Packet#1和Packet#2为待传输的下行数据,UPF为Packet#1生成时间信息Timestamp#1,为Packet#2生成时间信息Timestamp#2,并将Timestamp#1添加到Packet#1的GTP-U包头,将Timestamp#2添加到Packet#2的GTP-U包头,其中Timestamp#1用于指示在slot#2发送Packet#1,Timestamp#2用于指示在slot#4发送Packet#2。UPF对添加了Timestamp#1的Packet#1进行复制之后,将添加了Timestamp#1的Packet#1分别发送至gNB-CU#1和gNB-CU#2。类似地,UPF对添加了Timestamp#2的Packet#2进行复制之后,将添加了Timestamp#2的Packet#2分别发送至gNB-CU#1和gNB-CU#2。
gNB-CU#1将添加了Timestamp#1的Packet#1以及添加了Timestamp#2的Packet#2发送给gNB-DU#1,gNB-DU#1删除Packet#1中的Timestamp#1,并根据Timestamp#1在slot#2将Packet#1发送给UE;以及删除Packet#2中的Timestamp#2,并根据Timestamp#2在slot#4将Packet#2发送给UE。应理解,在一种可能的实现方式中,对来自UPF的含有Timestamp#1的Packet#1,gNB-CU#1并非直接转发给gNB-DU#1,而是进行额外的数据处理过程,例如将Timestamp#1从GTP-U的包头中读取出来,添加到PDCP包头中发送给gNB-DU#1。本申请并不限定时间信息承载在哪一层协议的数据包中,时间信息的指示也可通过跨层指示来完成。
类似地,gNB-CU#2将添加了Timestamp#1的Packet#1以及添加了Timestamp#2的Packet#2发送给gNB-DU#2,gNB-DU#2删除Packet#1中的Timestamp#1,并根据Timestamp#1在slot#2将Packet#1发送给UE;以及删除Packet#2中的Timestamp#2,并根据Timestamp#2在slot#4将Packet#2发送给UE。应理解,在一种可能的实现方式中,对来自UPF含有Timestamp#1的Packet#1,gNB-CU#2并非直接转发给gNB-DU#2,而是进行额外的数据处理过程,例如将Timestamp#1从GTP-U的包头中读取出来,添加到PDCP包头中发送给gNB-DU#2。本申请并不限定时间信息承载在哪一层协议的数据包中,时间信息的指示也可通过跨层指示来完成。
图8示出了本申请实施例提供的方法800的示例性流程图。在方法800中,用户面功能网元将数据发送给第一集中式单元和第二集中式单元,然后由第一集中式单元确定该数据对应的时间信息,并将该时间信息发送给第二集中式单元。第一集中式单元和第二集中式单元分别将该数据和该时间信息发送给对该数据进行协作传输的第一分布式单元和第二分布式单元,第一分布式单元和第二分布式单元根据该时间信息,同步向终端设备发送该数据。
下面结合图8中的各个步骤对方法800作示例性说明。
S810,用户面功能网元分别向第一集中式单元和第二集中式单元发送数据。对应地,第一集中式单元和第二集中式单元分别接收来自用户面功能网元的数据。
可以理解的是,在本实施例中,第一集中式单元和第一分布式单元属于第一接入网设备,第二集中式单元和第二分布式单元属于第二接入网设备。因此在S810之前,第一接入网设备和第二接入网设备可以执行协作传输的协商流程,具体可参考方法400中的S440,这里不再赘述。还可以理解的是,在通过协商流程确定好进行协作传输的站点之后,应将多个进行协作的站点的身份信息/地址信息告知用户面功能网元,以便该用户面功能网元能够将复制后的数据发送至对应的多个站点。
示例性地,用户面功能网元对数据进行复制,然后分别向第一集中式单元和第二集中式单元发送该数据。
S820,第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息。
S820与方法400中的S420类似,这里不再赘述。
但可以理解的是,第一集中式单元可以在接收到来自用户面功能网元的数据之后,确定该时间信息,也可以在接收到来自用户面功能网元的该数据之前,预先确定该时间信息。通过预先确定时间信息,可以降低时延。
S830,第一集中式单元向第二集中式单元发送时间信息和指示该数据的信息。
示例性地,如果第一集中式单元是在接收到数据之前预先确定了时间信息,则第一集中式单元在接收到来自用户面功能网元的数据之后,向第二集中式单元发送该时间信息以及指示该数据的信息,例如该数据的序列号;如果第一集中式单元是在接收到来自用户面功能网元的数据之后,确定了该时间信息,则第一集中式单元确定该数据对应的时间信息之后,向第二集中式单元发送该时间信息,以及指示该数据的信息。可以理解的是,如果采用数据的序列号来表示数据对应的时间信息,则S830只需要发送序列号即可。
可以理解的是,S820也可以由第二集中式单元来执行,在这种情况下,由第二集中式单元将时间信息和指示该数据的信息发送给第一集中式单元。第一集中式单元和第二集中式单元可以提前协商确定由谁来确定并提供时间信息,例如,第一集中式单元和第二集中式单元可以在同步传输的协商流程确定由谁来确定并提供时间信息。或者,可以默认由发起协作传输请求的站点(即第一集中式单元)来确定并提供时间信息。
S840a,第一集中式单元向第一分布式单元发送该数据和该时间信息。
S840a与方法400中的S430a类似,这里不再赘述。
S840b,第二集中式单元向第二分布式单元发送该数据和该时间信息。
示例性地,第二集中式单元接收来自第一集中式单元的时间信息以及指示该数据的信息之后,根据该指示该数据的信息,确定该数据,并将该数据以及该时间信息发送给第二分布式单元。具体发送过程与方法400中的S430b类似,这里不再赘述。
可选地,若协作传输的数据需要在第一集中式单元和第二集中式单元进行加密和/或完整性保护等安全相关的操作,第一集中式单元和第二集中式单元需使用相同的安全参数(例如秘钥,加密算法等)对该数据进行加密等安全性处理。详细示例可参考方法600中的S630b部分,这里不再赘述。
S850a,第一分布式单元根据时间信息向终端设备发送数据。
S850b,第二分布式单元根据时间信息向终端设备发送数据。
S850a-S850b与方法400中的S450a-S450b类似,为了简洁,这里不再赘述。
通过上述方案,可以使得第一分布式单元和第二分布式单元同步向终端设备传输数据,从而提高数据传输的可靠性。此外,在该方案中,由于用户面功能网元直接将数据复制后分发给多个进行协作传输的站点,无需等待一个站点对数据处理后转发至别的站点,且时间信息可能可以提前由第一集中式单元规划好,发送给第二集中式单元,并且可以减小时延。
可以理解的是,上述方案可以应用于各种通信系统中,如5G通信系统或未来6G通信系统中。下面以5G系统为基础,结合图9,介绍上述方法800的一种可能的示例。
在图9中,gNB-CU#1和gNB-DU#1属于gNB#1,gNB-CU#2和gNB-DU#2属于gNB#2,gNB#1和gNB#2是用于向UE进行协作传输的站点。
UPF对待传输的数据Packet#1和Packet#2进行复制之后,将Packet#1和Packet#2发送给gNB-CU#1,以及将Packet#1和Packet#2发送给gNB-CU#2。gNB-CU#1生成与Packet#1应的时间信息Timestamp#1,并将Timestamp#1以及Packet#1对应的SN#1发送给gNB-CU#2;类似地,gNB-CU#1生成与Packet#2的时间信息Timestamp#2并将Timestamp#2及Packet#2应的SN#2送给gNB-CU#2。其中Timestamp#1用于指示在slot#2发送Packet#1,Timestamp#2用于指示在slot#4发送Packet#2。
gNB-CU#1将Timestamp#1添加到Packet#1的PDCP包头,将Timestamp#2添加到Packet#2的PDCP包头,并将添加了Timestamp#1的Packet#1和添加了Timestamp#2的Packet#2发送给gNB-DU#1。gNB-DU#1删除Packet#1中的Timestamp#1,并根据Timestamp#1在slot#2将Packet#1发送给UE;以及删除Packet#2中的Timestamp#2,并根据Timestamp#2在slot#4将Packet#2发送给UE。
gNB-CU#2接收到来自gNB-CU#1的Timestamp#1和SN#1之后,根据SN#1确定对应的Packet#1,然后将Timestamp#1添加到Packet#1的PDCP包头,并将添加了Timestamp#1的Packet#1发送给gNB-DU#1;类似地,gNB-CU#2接收到来自gNB-CU#1的Timestamp#2和SN#2之后,根据SN#2确定对应的Packet#2,然后将Timestamp#2添加到Packet#2的PDCP包头,并将添加了Timestamp#2的Packet#2发送给gNB-DU#2。gNB-DU#2删除Packet#1中的Timestamp#1,并根据Timestamp#1在slot#2将Packet#1发送给UE;以及删除Packet#2中的Timestamp#2,并根据Timestamp#2在slot#4将Packet#2发送给UE。
图10示出了本申请实施例提供的方法1000的示意性流程图。在方法1000中,第一分布式单元和/或第二分布式单元将缓存的数据的信息发送给终端设备,终端设备根据接收到的缓存的数据的信息,确定待传输的数据,并将该待传输的数据指示给用于对该数据进行协作传输的第一分布式单元和第二分布式单元。第一分布式单元和第二分布式单元根据终端设备的指示,同步向终端设备发送该数据。
下面结合图10中的各个步骤对方法1000作示例性说明。
S1010,第一分布式单元向终端设备发送缓存的数据的信息。对应地,终端设备接收来自第一分布 式单元的该缓存的数据的信息。
示例性地,在S1010之前,第一分布式单元接收来自第一集中式单元的数据,并将该数据缓存在本地。第一分布式单元在进行下行数据协作传输之前,向终端设备发送缓存的下行数据的信息,该缓存的下行数据的信息包括以下任意一项或多项:第一分布式单元缓存的数据的序列号、第一分布式单元缓存的数据的大小(例如字节数)。该缓存的下行数据的信息可以承载在无线资源控制(radio resource control,RRC)消息中,或介质访问层控制元素(media access control control element,MAC CE)中,或下行控制信息downlink control information,DCI)中,或其他形式的消息中,本申请对此不作限定。或者,第一分布式单元也可以将缓存的数据的信息作为填充信息附加在每一个下行数据包中,本申请不作限定。
可选地,第一分布式单元还可以向终端设备发送第二分布式单元的标识信息,该第二分布式单元用于与第一分布式单元向该终端设备进行同步传输。对应地,终端设备接收来自第一分布式单元的该第二分布式单元的标识信息,终端设备可以根据该标识信息确定第二分布式单元是与第一分布式单元进行同步传输的分布式单元。
可选地,S1020,第二分布式单元向终端设备发送缓存的下行数据的信息。对应地,终端设备接收来自第二分布式单元的该缓存的下行数据的信息。
S1020与S1010类似,区别在于S1020由第二分布式单元执行,这里不再赘述。
可以理解的是,可以由进行协作传输的多个站点中的任意一个站点(如本申请实施例中的第一分布式单元)向终端设备发送下行数据缓存信息,也可以由进行协作传输的多个站点中的一个或多个站点(如本申请实施例中的第一分布式单元和第二分布式单元)向终端设备发送下行数据缓存信息,本申请对此不作限定。
还可以理解的是,如果终端设备接收到来自多个站点发送的下行数据缓存信息,终端设备可以判断是否能够进行同步传输。例如,终端设备接收到来自第一分布式单元缓存的数据的信息,以及来自第二分布式单元的缓存的数据的信息。在根据第一分布式单元缓存的数据与第二分布式单元缓存的数据确定能够同步传输的情况下,终端设备执行S1030,具体地,终端设备确定指示信息,具体示例可参考S1030部分的描述,这里不作赘述。
示例性地,在确定第一分布式单元缓存的数据和第二分布式单元缓存的数据之间存在相同的数据的情况下,终端设备确定能够进行同步传输。例如,第一终端设备接收第一分布式单元的缓存的序列号(记为第一序列号),以及接收第二分布式单元的缓存的数据的序列号(记为第二序列号),在第一序列号与第二序列号存在相同的序列号的情况下,或者说,在第一序列号和第二序列号存在交集的情况下,终端设备确定第一分布式单元缓存的数据和第二分布式单元缓存的数据之间存在相同的数据。或者,在确定第一分布式单元缓存的数据的数量和第二分布式单元缓存的数据的数量相同的情况下,或者在确定第一分布式单元缓存的数据的数量和第二分布式单元缓存的数据的数量之间的差值小于或等于设定的阈值的情况下,终端设备确定能够进行同步传输。或者,在确定第一分布式单元缓存的数据的大小和第二分布式单元缓存的数据的大小相同的情况下,或者在确定第一分布式单元缓存的数据的大小和第二分布式单元缓存的数据的大小之间的差值小于或等于设定的阈值的情况下,终端设备确定能够进行同步传输。
在根据第一分布式单元缓存的数据与第二分布式单元缓存的数据确定不能够进行同步传输的情况下,终端设备向第一分布式单元和/或第二分布式单元发送通知消息,该通知消息用于通知第一分布式单元的数据与第二分布式单元的数据不能同步传输。
示例性地,在确定第一分布式单元缓存的数据和第二分布式单元缓存的数据之间不存在相同的数据的情况下,终端设备确定不能够进行同步传输。例如,第一终端设备接收第一分布式单元的缓存的序列号(记为第一序列号),以及接收第二分布式单元的缓存的数据的序列号(记为第二序列号),在第一序列号与第二序列号不存在相同的序列号的情况下,或者说,在第一序列号和第二序列号不存在交集的情况下,终端设备确定第一分布式单元缓存的数据和第二分布式单元缓存的数据不能够进行同步传输。或者,在确定第一分布式单元缓存的数据的数量和第二分布式单元缓存的数据的数量不相同的情况下,或者在确定第一分布式单元缓存的数据的数量和第二分布式单元缓存的数据的数量之间的差值大于或等于设定的阈值的情况下,终端设备确定不能够进行同步传输。或者,在确定第一分布 式单元缓存的数据的大小和第二分布式单元缓存的数据的大小不相同的情况下,或者在确定第一分布式单元缓存的数据的大小和第二分布式单元缓存的数据的大小之间的差值大于或等于设定的阈值的情况下,终端设备确定不能够进行同步传输。
第一分布式单元和第二分布式单元接收到来自终端设备的通知消息之后,根据该通知消息同步缓存的下行数据,或者由第一分布式单元进行独立传输。
S1030,终端设备分别向第一分布式单元和第二分布式单元发送指示信息。对应地,第一分布式单元和第二分布式单元分别接收来自终端设备的该指示信息。
示例性地,终端设备接收来自第一分布式单元的缓存的数据的信息之后,根据该第一分布式单元缓存的数据的信息,确定指示信息,该指示信息用于指示第一分布式单元和第二分布式单元向终端设备同步传输的数据的信息。例如,该指示信息可以是以下信息中的至少一项:下一个或多个待接收的数据的序列号,下一个或多个待接收数据的无线链路控制层协议处理窗口,下一个或多个待接收的数据的大小。其中,无线链路控制层协议处理窗口可以指的是待发送的无线链路控制层协议业务数据单元(例如是5G中的RLCSDU)的序列号范围,处于该范围内的无线链路控制层协议业务数据单元才会被发送。
如果终端设备接收到了来自第一分布式单元的缓存的数据的信息,以及来自第二分布式单元的缓存的数据的信息,并且根据第一分布式单元缓存的数据与第二分布式单元缓存的数据确定能够同步传输的情况下,终端设备确定该指示信息。例如,第一分布式单元缓存的数据的序列号为1、2、3、4,第二分布式单元缓存的数据的序列号为1、3、4、5,则终端设备可以确定第一分布式单元的缓存的数据和第二分布式单元的缓存的数据存在相同的数据,即序列号为1、3、4的数据,在这种情况下,终端设备确定的指示信息所指示的数据应当为序列号为1、3、4的数据中的一个或多个。
然后,终端设备分别向第一分布式单元和第二分布式单元发送该指示信息。可以理解的是,如果终端设备仅接收到了来自第一分布式单元的缓存的数据的信息(即终端设备没有接收到来自第二分布式单元的缓存的数据的信息),则终端设备可以根据来自第一分布式单元的第二分布式单元的标识信息,确定第二分布式单元是与第一分布式单元进行协作传输的分布式单元,从而可以向该第二分布式单元发送该指示信息。可选地,终端设备还可以向第一分布式单元和第二分布式单元发送时间信息,该时间信息用于指示在物理层发送该指示信息所指示的数据的时间。
S1040a,第一分布式单元根据指示信息向终端设备发送数据。
示例性地,第一分布式单元接收来自终端设备的指示信息之后,根据该指示信息确定待传输的数据,然后向终端设备发送该数据。
可选地,如果第一分布式单元还接收到来自终端设备的时间信息,则第一分布式单元在该时间信息所指示的时间,向终端设备发送该数据。
S1040b,第二分布式单元根据指示信息向终端设备发送数据。
S1040b与S1040a类似,区别在于S1040b由第二分布式单元执行,S1040a由第一分布式单元执行,这里不再赘述。
通过上述方案,可以使得第一分布式单元和第二分布式单元同步向终端设备传输数据,从而提高数据传输的可靠性。
可以理解的是,上述方案可以应用于各种通信系统中,如5G通信系统或未来6G通信系统中。下面以5G系统为基础,结合图11,介绍上述方法1000的一种可能的示例。
在图11中,gNB-CU#1和gNB-DU#1属于gNB#1,gNB-CU#2和gNB-DU#2属于gNB#2,gNB#1和gNB#2是用于向UE进行协作传输的站点。
gNB-DU#1通过gNB-CU#1获取来自UPF的下行数据(记为Packet#1和Packet#2),并将其在本地缓存。类似地,gNB-DU#2通过gNB-CU#2获取来自UPF的下行数据(即Packet#1和Packet#2),并将其在本地缓存。gNB-DU#1将自身缓存的数据的信息发送给UE,gNB-DU#2也将自身缓存的数据的信息发送给UE。在gNB-DU#1和gNB-DU#2缓存的数据一致的情况下,UE根据gNB-DU#1(也可以是gNB-DU#2)缓存的数据的信息确定待传输的数据,并将待传输的数据的序列号(记为SN#2)发送给gNB-DU#1和gNB-DU#2。gNB-DU#1和gNB-DU#2接收到SN#2之后,根据SN#2将与SN#2对应的Packet#2发送给UE。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,该装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图12是本申请实施例提供的通信装置10的示意性框图。该装置10包括收发模块11和处理模块12。收发模块11可以实现相应的通信功能,处理模块12用于进行数据处理,或者说该收发模块11用于执行接收和发送相关的操作,该处理模块12用于执行除了接收和发送以外的其他操作。收发模块11还可以称为通信接口或通信单元。
可选地,该装置10还可以包括存储模块13,该存储模块13可以用于存储指令和/或数据,处理模块12可以读取存储模块中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
在第一种设计中,该装置10可对应于上文方法实施例中的第一集中式单元,或者是第一集中式单元的组成部件(如芯片)。
该装置10可实现对应于上文方法实施例中的第一集中式单元执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中第一集中式单元的收发相关的操作,处理模块12可用于执行上文方法实施例中第一集中式单元的处理相关的操作。
在一种可能的实现方式,收发模块11,用于接收来自用户面功能网元的数据;处理模块12,用于确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息;收发模块11,还用于向该第一分布式单元发送该数据和该时间信息,以及向该第二分布式单元发送该数据和该时间信息。
在另一种可能的实现方式,收发模块11,用于接收来自用户面功能网元的数据;处理模块12,用于确定用于第一分布式单元和第二分布式单元同步传输该数据的时间信息;收发模块11,还用于向第一分布式单元发送该数据和该时间信息,以及向第二集中式单元发送指示该数据的信息和该时间信息,该第二集中式单元与第二分布式单元对应。
在又一种可能的实现方式中,收发模块11,用于接收来自用户面功能网元的数据,以及与该数据对应的时间信息;收发模块11,还用于向第一分布式单元发送该数据和该时间信息,该时间信息用于该第一分布式单元和第二分布式单元同步传输该数据。
在第二种设计中,该装置10可对应于上文方法实施例中的第二集中式单元,或者是第二集中式单元的组成部件(如芯片)。
该装置10可实现对应于上文方法实施例中的第二集中式单元执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中第二集中式单元的收发相关的操作,处理模块12可用于执行上文方法实施例中第二集中式单元的处理相关的操作。
在一种可能的实现方式,收发模块11,用于接收来自用户面功能网元的数据;收发模块11,还用于接收来自第一集中式单元的用于第一分布式单元和第二分布式单元同步传输该数据的时间信息,该第一分布式单元与该第一集中式单元对应;收发模块11,还用于向该第二分布式单元发送该数据和该时间信息。
第三种设计中,该装置10可对应于上文方法实施例中的第一分布式单元或第二分布式单元,或者是第一分布式单元或第二分布式单元的组成部件(如芯片)。
该装置10可实现对应于上文方法实施例中的第一分布式单元或第二分布式单元执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中的第一分布式单元或第二分布式单元的收发相关的操作,处理模块12可用于执行上文方法实施例中第一分布式单元或第二分布式单元的处理相关的操作。
在一种可能的实现方式,收发模块11,用于接收来自第一集中式单元的数据,以及用于该第一分布式单元和第二分布式单元同步传输该数据的时间信息;处理模块12,用于根据该时间信息向终端设备发送该数据。
在另一种可能的实现方式,收发模块11,用于接收来自终端设备的指示信息,该指示信息用于指示该第一分布式单元和第二分布式单元向该终端设备同步传输的数据的信息;处理模块12,用于根据该指示信息向该终端设备发送该数据。
第四种设计中,该装置10可对应于上文方法实施例中的终端设备,或者是终端设备的组成部件(如 芯片)。
该装置10可实现对应于上文方法实施例中的终端设备执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中的终端设备的收发相关的操作,处理模块12可用于执行上文方法实施例中终端设备的处理相关的操作。
在一种可能的实现方式,收发模块11,用于接收来自第一分布式单元的缓存的数据的信息;收发模块11,还用于分别向该第一分布式单元和第二分布式单元发送指示信息,该指示信息是根据该缓存的数据的信息确定的,该指示信息用于指示该第一分布式单元和第二分布式单元向该终端设备同步传输的数据的信息。
第五种设计中,该装置10可对应于上文方法实施例中的用户面功能网元,或者是用户面功能网元的组成部件(如芯片)。
该装置10可实现对应于上文方法实施例中的用户面功能网元执行的步骤或者流程,其中,收发模块11可用于执行上文方法实施例中的用户面功能网元的收发相关的操作,处理模块12可用于执行上文方法实施例中用户面功能网元的处理相关的操作。
在一种可能的实现方式,处理模块12,用于确定用于第一分布式单元和第二分布式单元同步传输数据的时间信息;收发模块11,用于向第一集中式单元发送该数据和该时间信息,该第一集中式单元与第一分布式单元对应。
应理解,各模块执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置10以功能模块的形式体现。这里的术语“模块”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置10可以具体为上述实施例中的第一集中式单元,可以用于执行上述各方法实施例中与第一集中式单元对应的各个流程和/或步骤;或者,装置10可以具体为上述实施例中的第二集中式单元,可以用于执行上述各方法实施例中与第二集中式单元对应的各个流程和/或步骤;或者,装置10可以具体为上述实施例中的第一分布式单元或第二分布式单元,可以用于执行上述各方法实施例中与第一分布式单元或第二分布式单元对应的各个流程和/或步骤;或者,装置10可以具体为上述实施例中的终端设备,可以用于执行上述各方法实施例中与终端设备对应的各个流程和/或步骤;或者,装置10可以具体为上述实施例中的用户面功能网元,可以用于执行上述各方法实施例中与用户面功能网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置10具有实现上述方法中的设备(如第一集中式单元,或第二集中式单元,或第一分布式单元或第二分布式单元,或终端设备,或用户面功能网元)所执行的相应步骤的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块;例如收发模块可以由收发机替代(例如,收发模块中的发送单元可以由发送机替代,收发模块中的接收单元可以由接收机替代),其它单元,如处理模块等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发模块11还可以是收发电路(例如可以包括接收电路和发送电路),处理模块可以是处理电路。
图13是本申请实施例提供另一种通信装置20的示意图。该装置20包括处理器21,处理器21用于执行存储器22存储的计算机程序或指令,或读取存储器22存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器21为一个或多个。
可选地,如图13所示,该装置20还包括存储器22,存储器22用于存储计算机程序或指令和/或数据。该存储器22可以与处理器21集成在一起,或者也可以分离设置。可选地,存储器22为一个或多个。
可选地,如图13所示,该装置20还包括收发器23,收发器23用于信号的接收和/或发送。例如,处理器21用于控制收发器23进行信号的接收和/或发送。
作为一种方案,该装置20用于实现上文各个方法实施例中由第一集中式单元执行的操作。
作为另一种方案,该装置20用于实现上文各个方法实施例中由第二集中式单元执行的操作。
作为另一种方案,该装置20用于实现上文各个方法实施例中由第一分布式单元或第二分布式单元执行的操作。
作为另一种方案,该装置20用于实现上文各个方法实施例中由终端设备执行的操作。
作为另一种方案,该装置20用于实现上文各个方法实施例中由用户面功能网元执行的操作。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14是本申请实施例提供一种芯片系统30的示意图。该芯片系统30(或者也可以称为处理系统)包括逻辑电路31以及输入/输出接口(input/output interface)32。
其中,逻辑电路31可以为芯片系统30中的处理电路。逻辑电路31可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统30可以实现本申请各实施例的方法和功能。输入/输出接口32,可以为芯片系统30中的输入输出电路,将芯片系统30处理好的信息输出,或将待处理的数据或信令信息输入芯片系统30进行处理。
作为一种方案,该芯片系统30用于实现上文各个方法实施例中由第一集中式单元执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由第一集中式单元执行的处理相关的操作,如,图4、图6、图8、图10所示实施例中的第一集中式单元执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由第一集中式单元执行的发送和/或接收相关的操作,如,图4、图6、图8、图10所示实施例中的第一集中式单元执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统30用于实现上文各个方法实施例中由第二集中式单元执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由第二集中式单元执行的处理相关的操作,如,图4、图6、图8、图10所示实施例中的第二集中式单元执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由第二集中式单元执行的发送和/或接收相关的操作,如,图4、图6、图8、图10所示实施例中的第二集中式单元执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统30用于实现上文各个方法实施例中由第一分布式单元或第二分布式单元执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由第一分布式单元或第二分布式单元执行的处理相关的操作,如,图4、图6、图8、图10所示实施例中的第一分布式单元或第二分布式单元执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由第一分布式单元或第二分布式单元执行的发送和/或接收相关的操作,如,图4、图6、图8、图10所示实施例中的第一分布式单元或第二分布式单元执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统30用于实现上文各个方法实施例中由终端设备执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由终端设备执行的处理相关的操作,如,图4、图6、图8、图10所示实施例中的终端设备执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由终端设备执行的发送和/或接收相关的操作,如,图4、图6、图8、图10所示实施例中的终端设备执行的发送和/或接收相关的操作。
作为另一种方案,该芯片系统30用于实现上文各个方法实施例中由用户面功能网元执行的操作。
例如,逻辑电路31用于实现上文方法实施例中由用户面功能网元执行的处理相关的操作,如,图4、图6、图8、图10所示实施例中的用户面功能网元执行的处理相关的操作;输入/输出接口32用于实现上文方法实施例中由用户面功能网元执行的发送和/或接收相关的操作,如,图4、图6、图8、图10所示实施例中的用户面功能网元执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一集中式单元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第二集中式单元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一分布式单元或第二分布式单元执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由设备(如第一集中式单元,又如第二集中式单元,又如第一分布式单元或第二分布式单元,又如终端设备,又如用户面功能网元)执行的方法。
本申请实施例还提供了一种通信系统,包括前述的第一集中式单元、第一分布式单元和第二分布式单元;可选地,还包括前述第二集中式单元、终端设备、用户面功能网元中的一个或多个。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种数据传输的方法,其特征在于,包括:
    第一集中式单元接收来自用户面功能网元的数据;
    所述第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输所述数据的时间信息;
    所述第一集中式单元向所述第一分布式单元发送所述数据和所述时间信息,以及向所述第二分布式单元发送所述数据和所述时间信息。
  2. 一种数据传输的方法,其特征在于,包括:
    第一集中式单元接收来自用户面功能网元的数据;
    所述第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输所述数据的时间信息;
    所述第一集中式单元向第一分布式单元发送所述数据和所述时间信息;
    所述第一集中式单元向第二集中式单元发送指示所述数据的信息和所述时间信息,所述第二集中式单元与第二分布式单元对应。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一集中式单元确定用于第一分布式单元和第二分布式单元同步传输所述数据的时间信息,包括:
    所述第一集中式单元根据以下信息中的一项或多项确定所述时间信息:
    所述第一分布式单元缓存的数据的大小、所述第二分布式单元缓存的数据的大小、所述第一集中式单元和所述第一分布式单元之间的传输时延、所述第一集中式单元和所述第二分布式单元之间的传输时延、所述第一分布式单元对所述数据进行处理的时长、所述第二分布式单元对所述数据进行处理的时长、所述第一分布式单元和终端设备之间的传输时延、所述第二分布式单元和所述终端设备之间的传输时延、来自所述第一分布式单元和/或所述第二分布式单元的指示信息,所述指示信息用于调整所述时间信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一集中式单元根据用于所述第一分布式单元和所述终端设备进行通信的第一配置信息,向第二集中式单元发送用于所述第二分布式单元与所述终端设备进行通信的第二配置信息,所述第二集中式单元与所述第二分布式单元对应。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一配置信息包括以下信息中的一项或多项:所述第一分布式单元的物理层信道配置信息、所述第一分布式单元的介质接入控制层配置信息、所述第一分布式单元的无线链路控制层配置信息、所述第一集中式单元的分组数据汇聚层配置信息;
    所述第二配置信息包括以下信息中的一项或多项:所述第二分布式单元的物理层信道配置信息、所述第二分布式单元的介质接入控制层配置信息、所述第二分布式单元的无线链路控制层配置信息、所述第二集中式单元的分组数据汇聚层配置信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一集中式单元向第二集中式单元发送请求向终端设备进行同步传输的信息,所述第二集中式单元与所述第二分布式单元对应;
    所述第一集中式单元接收来自所述第二集中式单元的指示接受向所述终端设备进行同步传输的请求的信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一集中式单元接收来自用户面功能网元的数据之前,所述第一集中式单元根据以下一项或多项确定所述第二集中式单元:
    所述第二集中式单元的信号的测量结果;
    所述第一集中式单元与所述第二集中式单元之间的传输时延;
    所述第一集中式单元和所述第二集中式单元之间的距离。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述时间信息用于指示以下一项或多项:
    在分组数据汇聚层对所述数据进行处理的时间;
    在无线链路控制层对所述数据进行处理的时间;
    在介质接入控制层对所述数据进行处理的时间;
    向所述终端设备发送所述数据的时间。
  9. 一种数据传输的方法,其特征在于,包括:
    终端设备接收来自第一分布式单元的缓存的数据的信息;
    所述终端设备分别向所述第一分布式单元和第二分布式单元发送指示信息,所述指示信息是根据所述缓存的数据的信息确定的,所述指示信息用于指示所述第一分布式单元和第二分布式单元向所述终端设备同步传输的数据。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述第二分布式单元的缓存的数据的信息;
    在根据所述第一分布式单元的缓存的数据与所述第二分布式单元缓存的数据确定能够进行同步传输的情况下,所述终端设备确定所述指示信息。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第一分布式单元的缓存的数据与所述第二分布式单元缓存的数据确定能够进行同步传输,包括:
    确定所述第一分布式单元的缓存的数据和所述第二分布式单元缓存的数据之间存在相同的数据;或者
    确定所述第一分布式单元的缓存的数据的数量和所述第二分布式单元缓存的数据的数量相同;或者
    确定所述第一分布式单元的缓存的数据的大小和所述第二分布式单元缓存的数据的大小相同。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述第二分布式单元的缓存的数据的信息;
    在根据所述第一分布式单元的缓存的数据与所述第二分布式单元缓存的数据确定不能够进行同步传输的情况下,向所述第一分布式单元和/或所述第二分布式单元发送通知消息,所述通知消息用于通知所述第一分布式单元的缓存的数据与所述第二分布式单元缓存的数据不能同步传输。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述缓存的数据的信息包括以下一项或多项:
    所述缓存的数据的序列号、所述缓存的数据的数量、所述缓存的数据的大小。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,在所述终端设备接收来自第一分布式单元的缓存的数据的信息之前,所述方法还包括:
    终端设备接收来自第一分布式单元的所述第二分布式单元的标识信息,所述第二分布式单元用于与所述第一分布式单元向所述终端设备进行同步传输。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述指示信息用于指示以下一项或多项:
    所述同步传输的数据的序列号;
    所述同步传输的数据的大小;
    所述同步传输的数据在无线链路控制层的处理窗口。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备分别向所述第一分布式单元和所述第二分布式发送时间信息,所述时间信息用于指示向所述终端设备同步传输数据的时间。
  17. 一种数据传输的方法,其特征在于,包括:
    第一分布式单元接收来自第一集中式单元的数据,以及用于所述第一分布式单元和第二分布式单元同步传输所述数据的时间信息;
    所述第一分布式单元根据所述时间信息向终端设备发送所述数据。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    在所述第一分布式单元确定所述数据发送失败的情况下,所述第一分布式单元对所述数据进行重传。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第一分布式单元向第二分布式单元发送指示所述数据发送失败的信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述在所述第一分布式单元确定所述数据发送失败的情况下,所述第一分布式单元对所述数据进行重传,包括:
    在所述第一分布式单元确定所述数据发送失败的情况下,所述第一分布式单元在混合自动重传进程号对应的发送所述数据的时刻的下一个可用的时刻对所述数据进行重传。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第一分布式单元确定所述数据发送失败,包括:
    所述第一分布式单元接收到来自所述终端设备的第一反馈消息,所述第一反馈消息用于指示所述终端设备未成功接收所述数据;或者,
    所述第一分布式单元没有接收到来自所述终端设备的第二反馈消息,所述第二反馈消息用于指示所述终端设备成功接收所述数据。
  22. 根据权利要求17至21中任一项所述的方法,其特征在于,所述时间信息用于指示以下一项或多项:
    在分组数据汇聚层对所述数据进行处理的时间;
    在无线链路控制层对所述数据进行处理的时间;
    在介质接入控制层对所述数据进行处理的时间;
    向终端设备发送所述数据的时间。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一分布式单元向所述第一集中式单元发送缓存的数据的信息,所述缓存的数据的信息用于确定所述时间信息。
  24. 一种通信装置,其特征在于,所述装置包括一个或多个功能模块,所述一个或多个功能模块:用于执行如权利要求1至8中任一项所述的方法,或者用于执行如权利要求9至15中任一项所述的方法,或者用于执行如权利要求16至22中任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至8中任一项所述的方法,或者以使得所述装置执行如权利要求9至16中任一项所述的方法,或者以使得所述装置执行如权利要求17至23中任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至8中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求9至16中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求17至23中任一项所述的方法的指令。
  27. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质存储有计算机程序;所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或者使得所述计算机执行如权利要求9至16中任一项所述的方法,或者使得所述计算机执行如权利要求17至23中任一项所述的方法。
PCT/CN2023/102100 2022-06-30 2023-06-25 数据传输的方法和装置 WO2024001950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210771939.2 2022-06-30
CN202210771939.2A CN117377051A (zh) 2022-06-30 2022-06-30 数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2024001950A1 true WO2024001950A1 (zh) 2024-01-04

Family

ID=89383229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102100 WO2024001950A1 (zh) 2022-06-30 2023-06-25 数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN117377051A (zh)
WO (1) WO2024001950A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209855A1 (en) * 2016-06-02 2017-12-07 Qualcomm Incorporated Location encoding for synchronization signal to convey additional information
CN111263441A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 一种通信方法和装置
CN111294982A (zh) * 2018-12-10 2020-06-16 华为技术有限公司 通信方法和通信装置
CN111491370A (zh) * 2019-01-29 2020-08-04 华为技术有限公司 一种通信方法、网元、系统及存储介质
CN112565324A (zh) * 2019-09-26 2021-03-26 华为技术有限公司 非接入层消息传输的方法、装置和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209855A1 (en) * 2016-06-02 2017-12-07 Qualcomm Incorporated Location encoding for synchronization signal to convey additional information
CN111263441A (zh) * 2018-11-30 2020-06-09 华为技术有限公司 一种通信方法和装置
CN111294982A (zh) * 2018-12-10 2020-06-16 华为技术有限公司 通信方法和通信装置
CN111491370A (zh) * 2019-01-29 2020-08-04 华为技术有限公司 一种通信方法、网元、系统及存储介质
CN112565324A (zh) * 2019-09-26 2021-03-26 华为技术有限公司 非接入层消息传输的方法、装置和系统

Also Published As

Publication number Publication date
CN117377051A (zh) 2024-01-09

Similar Documents

Publication Publication Date Title
JP7426479B2 (ja) Harqプロセスごとにフィードバックを有効化/無効化するharqコードブック構築
CN109392028B (zh) 数据传输的方法以及设备
WO2020088472A1 (zh) 通信方法及装置
EP2820777A1 (en) Cooperative relaying and network coding in a cellular communications system
WO2016127666A1 (zh) 一种rlc数据包分流方法及基站
CN115052260A (zh) 通信方法和通信装置
WO2017201743A1 (zh) 传输方法、基站和终端
KR20220042176A (ko) 통신 방식, slrb 구축 방식 및 통신 장치
WO2021134728A1 (zh) 一种上下文管理方法及装置
WO2020114391A1 (zh) 通信方法及装置
EP3534626B1 (en) Processing method in data replication and related device
WO2021056155A1 (zh) 一种反馈资源配置方法及通信方法、装置、通信设备
WO2024103798A1 (zh) 无线通信的方法及装置
US20230254749A1 (en) Multicast service transmission method and apparatus, and communications device
WO2024001950A1 (zh) 数据传输的方法和装置
WO2021163832A1 (zh) 数据传输的方法和装置
WO2021143997A1 (en) First client device for sidelink communication
WO2022204999A1 (zh) 存活时间的处理方法和终端设备
WO2014000611A1 (zh) 传输数据的方法和装置
WO2022021235A1 (zh) 一种mbs业务的传输方法及装置、通信设备
WO2024114232A1 (zh) 通信方法、装置及系统
US20240146462A1 (en) Relay-assisted retransmission
WO2022006888A1 (zh) 一种mbs业务的接收方法及装置、终端设备
WO2023065636A1 (zh) 通信方法、设备和存储介质
WO2024093927A1 (zh) 信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830128

Country of ref document: EP

Kind code of ref document: A1