WO2024093927A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2024093927A1
WO2024093927A1 PCT/CN2023/127811 CN2023127811W WO2024093927A1 WO 2024093927 A1 WO2024093927 A1 WO 2024093927A1 CN 2023127811 W CN2023127811 W CN 2023127811W WO 2024093927 A1 WO2024093927 A1 WO 2024093927A1
Authority
WO
WIPO (PCT)
Prior art keywords
cpac
terminal device
configuration
scg failure
information
Prior art date
Application number
PCT/CN2023/127811
Other languages
English (en)
French (fr)
Inventor
王凡凡
耿婷婷
胡星星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093927A1 publication Critical patent/WO2024093927A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data

Definitions

  • the present application relates to the field of communication technology, and specifically to an information transmission method and device.
  • the terminal device reports the SCG failure information to the master node (MN). Based on the received SCG failure information, the MN decides to instruct the UE to retain, change or release the secondary node (SN).
  • the SCG failure information records the problem information of the SCG failure.
  • the MN sends the SCG failure information to the possible problem nodes (such as the source SN or the candidate SN) that may cause the SCG failure according to the SN configuration and the SCG failure type.
  • the problem node can perform the final root cause analysis based on the SCG failure information and perform the mobility parameter optimization of the SN.
  • the current application scenarios for root cause analysis of SCG failure information are limited, and cannot meet the root cause analysis requirements of the increasing number of SCG failure scenarios appearing in the network.
  • the present application provides an information transmission method and device, which can accurately analyze the cause of SCG failure so as to optimize the mobility parameters related to SCG failure and reduce the probability of SCG failure.
  • the present application discloses an information transmission method, which can be applied to a master node, or can be applied to a module (e.g., a chip) in the master node, or can be applied to a logic module or software that can implement all or part of the functions of the master node.
  • the information transmission method includes: the master node obtains a conditional primary and secondary cell addition/change CPAC configuration set in a stored terminal device context; the CPAC configuration set includes one or more CPAC configurations associated with a secondary cell group SCG failure; the master node sends the CPAC configuration set to the secondary node.
  • the above-mentioned SCG failure is an SCG failure that occurs after the terminal device successfully executes the CPAC process and releases the CPAC configuration.
  • the master node may store the CPAC configuration set configured for the terminal device in the context of the terminal device.
  • the master node may send the CPAC configuration obtained from the context of the terminal device to the slave node as part of the SCG failure information.
  • the mobility parameters related to the SCG failure may then be appropriately adjusted, the CPAC configuration on the network side may be optimized, etc., to reduce the probability of SCG failure and improve the quality of dual-connection communications of the terminal device.
  • the above method also includes: the master node receives SCG failure information from the terminal device; the SCG failure information indicates SCG failure; the master node obtains the conditional primary and secondary cell addition/change CPAC configuration set in the local storage, including: the master node determines the CPAC configuration set in the local storage of the terminal device context based on the identifier of the terminal device.
  • the terminal device context storing the CPAC configuration set configured for the terminal device is associated and bound with the identifier of the terminal device.
  • the terminal device can notify the master node that an SCG failure has occurred by sending SCG failure information to the master node.
  • the master node After the master node receives the SCG failure information of the terminal device, it can retrieve the context of the terminal device based on the identifier of the terminal device, and then find the CPAC configuration set.
  • the master node can quickly find the CPAC configuration set based on the identifier of the terminal device, so as to quickly respond to the SCG failure and improve the efficiency of SCG failure cause analysis.
  • the above-mentioned CPAC configuration set includes a first CPAC configuration; the first CPAC configuration is obtained by the master node from a first message from a source slave node; the first message is a slave node change request message sent by the source slave node.
  • the master node can obtain and store the above-mentioned first CPAC configuration from the slave node change request message sent by the source slave node, so that after a subsequent SCG failure occurs, the first CPAC configuration can be retrieved in time to analyze the cause of the SCG failure.
  • the above CPAC configuration set includes a second CPAC configuration; the second CPAC configuration is a master node from Obtained in the second message of the source auxiliary node; the second message is a response message sent by the source auxiliary node based on the auxiliary node modification request of the main node before the main node sends the RRC configuration to the terminal device, and the RRC configuration is used to indicate the CPAC configuration of the terminal device.
  • the master node can actively request to change to the slave node configured for the terminal device.
  • the source slave node changes the CPAC configuration configured for the terminal device based on the request and sends it to the master node.
  • the master node obtains the changed CPAC configuration (i.e., the second CPAC configuration mentioned above) and stores it so that after a subsequent SCG failure occurs, the second CPAC configuration can be retrieved in time to analyze the cause of the SCG failure.
  • the above-mentioned CPAC configuration set includes a third CPAC configuration; the third CPAC configuration is obtained by the master node from a third message from the source slave node; the third message is a message initiated by the source slave node after the master node sends the RRC configuration to the terminal device requesting to change the CPAC configuration, and the RRC configuration is used to indicate the CPAC configuration of the terminal device.
  • the source slave node may also request to change the CPAC configuration configured for the terminal device, and send the changed CPAC configuration (i.e., the third CPAC configuration) to the master node.
  • the master node obtains and stores the third CPAC configuration so that after a subsequent SCG failure occurs, the third CPAC configuration can be retrieved in time for analyzing the cause of the SCG failure.
  • the above-mentioned SCG failure information includes first time information and/or second time information; the first time information indicates the time period between the terminal device receiving the command to add/change PA/PC to the primary and secondary cells and the terminal device detecting the SCG failure; the second time information indicates the time period between the terminal device receiving the command to add/change CPAC to the conditional primary and secondary cells and the terminal device detecting the SCG failure.
  • the SCG failure information sent by the terminal device to the master node also includes corresponding time information.
  • the method further includes: the primary node sending the first time information and/or the second time information to the secondary node, so that the secondary node can analyze the specific cause of the SCG failure based on the received time information.
  • the present application discloses an information transmission method, which can be applied to a secondary node, or can be applied to a module (e.g., a chip) in a secondary node, or can be applied to a logic module or software that can implement all or part of the functions of the secondary node.
  • the information transmission method includes: the secondary node receives a conditional primary and secondary cell addition/change CPAC configuration set from the primary node; the CPAC configuration set includes one or more CPAC configurations associated with a secondary cell group SCG failure; the secondary node adjusts mobility parameters based on the CPAC configuration set.
  • the above-mentioned SCG failure is an SCG failure that occurs after the terminal device successfully executes the CPAC process and releases the CPAC configuration.
  • the secondary node can obtain the CPAC configuration associated with the SCG failure from the primary node, so that the secondary node can accurately analyze the specific cause of the SCG failure based on the received CPAC configuration. For example, it can be analyzed based on the CPAC configuration whether the SCG failure is caused by unreasonable triggering conditions, etc., and then the mobility parameters can be appropriately adjusted, the CPAC configuration on the network side can be optimized, etc., to reduce the probability of SCG failure and improve the quality of dual-connection communication of the terminal device.
  • the above method also includes: the secondary node receives first time information and/or second time information from the primary node; the first time information indicates the time period between the terminal device receiving the command to add/change PAC to the primary and secondary cells and the terminal device detecting SCG failure; the second time information indicates the time period between the terminal device receiving the command to add/change CPAC to the conditional primary and secondary cells and the terminal device detecting SCG failure; the secondary node adjusts the mobility parameters based on the CPAC configuration set, including: the secondary node adjusts the mobility parameters based on the CPAC configuration set, and the first time information and/or the second time information.
  • the SCG failure information received by the secondary node from the primary node includes not only the CPAC configuration set but also the corresponding time information (applicable to the PA/PC and CPAC mixed scenario).
  • the secondary node can analyze the specific cause of the SCG failure based on the received CPAC configuration set and time information, so as to more accurately find the cause of the SCG failure, and then appropriately adjust the mobility parameters, optimize the CPAC configuration on the network side, etc., to reduce the probability of SCG failure and improve the quality of dual-connection communication of the terminal device.
  • the present application discloses an information transmission method, which can be applied to a terminal device, or can be applied to a module (e.g., a chip) in a terminal device, or can be applied to a logic module or software that can implement all or part of the functions of the terminal device.
  • a terminal device e.g., a chip
  • a logic module or software that can implement all or part of the functions of the terminal device.
  • the information transmission method includes: the terminal device UE determines that a secondary cell group SCG failure occurs; the terminal device sends SCG failure information to the master node; the SCG failure information includes first time information and/or second time information; the first time information indicates the time period between when the UE receives a command to add/change PA/PC to the primary and secondary cells and when the UE detects the SCG failure, and the second time information indicates the time period between when the terminal device receives a command to add/change CPAC to the conditional primary and secondary cells and when the terminal device detects the SCG failure; the SCG failure information is used to adjust mobility parameters.
  • the above SCG failure is that after the UE successfully executes the PA/PC process, it is configured with CPAC and triggers the execution SCG failure occurs before CPAC; or, SCG failure is when CPAC is configured and before CPAC is triggered, the PA/PC process is configured, and SCG failure occurs after the PA/PC process fails or succeeds.
  • the terminal device in the scenario where PA/PC and CPAC are mixed, can record the above-mentioned first time information and/or second time information, and send the time information to the network side after the SCG failure occurs. So that the network side can analyze the specific cause of the SCG failure based on the received time information. For example, it can be analyzed based on the time information whether the SCG failure is caused by the unreasonable time when the terminal device triggers the execution of PA/PC or triggers the execution of CPAC in the two processes in the scenario where PA/PC and CPAC are mixed.
  • the cause of the SCG failure can be analyzed more accurately and effectively, and then the mobility parameters can be appropriately adjusted, the PA/PC configuration or CPAC configuration on the network side can be optimized, etc., so as to reduce the probability of SCG failure and improve the quality of dual-connection communication of the terminal device.
  • the above-mentioned SCG failure information also includes a conditional primary and secondary cell addition/change CPAC configuration set; the CPAC configuration set includes one or more CPAC configurations associated with the SCG failure.
  • the terminal device may also send a CPAC configuration set to the network side.
  • the present application discloses an information transmission device, which is a master node, or a module (e.g., a chip) in the master node, or a logic module or software that can implement all or part of the master node functions.
  • the information transmission device includes a unit for executing the method described in any embodiment of the first aspect above.
  • the present application discloses an information transmission device, which is a secondary node, or a module (e.g., a chip) in the secondary node, or a logic module or software that can implement all or part of the functions of the secondary node.
  • the information transmission device includes a unit for executing the method described in any embodiment of the second aspect above.
  • the present application discloses an information transmission device, which is a terminal device, or a module (e.g., a chip) in the terminal device, or a logic module or software that can implement all or part of the functions of the terminal device.
  • the information transmission device includes a unit for executing the method described in any embodiment of the third aspect above.
  • the present application discloses an information transmission device, which includes a processor, a memory and a transceiver, the transceiver is used to receive information from other communication devices outside the information transmission device, and output information to other communication devices outside the information transmission device, the processor calls the computer program stored in the memory so that the information transmission device implements the method described in any embodiment of the first aspect above.
  • the present application discloses an information transmission device, which includes a processor, a memory and a transceiver.
  • the transceiver is used to receive information from other communication devices outside the information transmission device, and output information to other communication devices outside the information transmission device.
  • the processor calls a computer program stored in the memory so that the information transmission device implements the method described in any embodiment of the second aspect above.
  • the present application discloses an information transmission device, which includes a processor, a memory and a transceiver, the transceiver is used to receive information from other communication devices outside the information transmission device, and output information to other communication devices outside the information transmission device, the processor calls the computer program stored in the memory so that the information transmission device implements the method described in any embodiment of the third aspect above.
  • the present application discloses a communication system, which includes a primary node and a secondary node, wherein the primary node is used to execute the method described in any embodiment of the first aspect above, and the secondary node is used to execute the method described in any embodiment of the second aspect above.
  • the communication system further includes a terminal device, and the terminal device is used to execute the method described in any implementation manner of the third aspect above.
  • the present application discloses a computer-readable storage medium, on which a computer program or computer instructions are stored.
  • the computer program or computer instructions are executed by a processor, the information transmission method as described in any embodiment disclosed in the above aspects is implemented.
  • the present application discloses a chip, including a processor for executing a program stored in a memory.
  • the program executes the information transmission method described in any embodiment disclosed in the above aspects.
  • the memory is located outside the chip.
  • the present application discloses a computer program product, which includes a computer program code.
  • the computer program code is executed by a processor, the information transmission method described in any embodiment disclosed in the above aspects is executed.
  • FIG1 is a schematic diagram of a network architecture provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of an NR protocol stack provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of an architecture diagram of a control plane in an MR-DC scenario provided in an embodiment of the present application
  • FIG3A is a schematic diagram showing a flow chart of an information transmission method provided in an embodiment of the present application.
  • 9 to 12 are schematic diagrams showing the structure of an information transmission device provided in an embodiment of the present application.
  • multiple refers to two or more.
  • “and/or” is used to describe the association relationship of associated objects, indicating three relationships that can exist independently.
  • a and/or B can represent: A exists alone, B exists alone, or A and B exist at the same time.
  • the description methods such as "at least one (or at least one) of a1, a2, ... and an" used in the embodiments of the present application include the situation where any one of a1, a2, ... and an exists alone, and also include any combination of any multiple of a1, a2, ...
  • A/B can represent A or B.
  • the network architecture 100 includes a terminal device 110, a network device 120, a network device 130 and a core network device 140.
  • the terminal device 110 can communicate with the network device 120 and the network device 130.
  • the network device 120 and the network device 130 are radio access network (RAN) devices.
  • the terminal device 110 accesses the core network device 140 through the network device 120 and the network device 130.
  • RAN radio access network
  • terminal device 110 can also be called user equipment (UE), subscriber station (STA), mobile station (MS), mobile terminal (MT), etc., which is a device that provides data connectivity to users.
  • the terminal device can have wireless transceiver functions.
  • the terminal device can be a handheld terminal, a very small aperture terminal (VSAT), a laptop computer, a customer premises equipment (CPE) laptop computer, a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a handheld device (handheld), a laptop computer (laptop computer), a cordless phone (cordless phone), a wireless local loop (WLL) station, a machine type communication (MTC) terminal, a wearable device
  • the terminal device may be a wireless device (such as a smart watch, a smart bracelet, a pedometer, etc.), a vehicle-mounted device (such as a car, a bicycle, an electric car, an airplane, a ship, a train, a high-speed train, etc.), a virtual reality (VR) device, an augmented reality (AR) device, a wireless terminal in industrial control, a smart home device (such as a
  • the above-mentioned network device can be a device that provides wireless access for the terminal device, for example, it can be a base station or other RAN device.
  • the network device can be a next generation NodeB (gNB), a transmission reception point (TRP), an evolved NodeB (eNB), a radio network controller (RNC), a NodeB (NB), a base station controller (BSC), a base transceiver station (BTS), a home base station (e.g., home evolved NodeB, or home NodeB, HNB), a baseband unit (BBU), a WiFi access point (AP) or an integrated access and backhaul (IAB) device in a new radio (NR) system.
  • gNB next generation NodeB
  • TRP transmission reception point
  • eNB evolved NodeB
  • RNC radio network controller
  • NB NodeB
  • BSC base station controller
  • BTS base transceiver station
  • a home base station e.g., home evolved NodeB
  • the above-mentioned network device may be a RAN device including a centralized unit (CU), a distributed unit (DU), or a CU and a DU.
  • the functions of some protocol layers in the network device including the CU and the DU are centrally controlled by the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the DU is centrally controlled by the CU.
  • Figure 2 exemplifies a schematic diagram of an NR protocol stack.
  • the CU is deployed with a radio resource control (RRC) layer and a service data adaptation protocol.
  • the DU is equipped with the radio link control (RLC) layer, the media access control (MAC) layer, and the physical layer (PHY). Therefore, the CU has the processing capabilities of the RRC layer, the SDAP layer, and the PDCP layer.
  • the DU has the processing capabilities of the RLC layer, the MAC layer, and the PHY layer.
  • the functions of the CU can be implemented by one entity or by different entities. As shown in (b) of Figure 2, the functions of the CU can be further divided. For example, the control plane (CP) and the user plane (UP) in the CU can be separated to obtain the control plane (CU-CP) of the CU and the user plane (CU-UP) of the CU.
  • the CU-CP and the CU-UP can be implemented by different functional entities, and the CU-CP and the CU-UP can be coupled with the DU to jointly complete the functions of the access network device.
  • CU-CP is responsible for control plane functions, mainly responsible for RRC and PDCP-C functions.
  • PDCP-C is mainly responsible for encryption and decryption, integrity protection, data transmission, etc. of control plane data.
  • CU-UP is responsible for user plane functions, mainly responsible for SDAP and PDCP-U functions.
  • SDAP is mainly responsible for processing core network data and mapping data flows to bearers.
  • PDCP-U is mainly responsible for encryption and decryption, integrity protection, header compression, sequence number maintenance, data transmission, etc. of the data plane.
  • CU-CP and CU-UP can be connected through the E1 interface.
  • CU-CP can be connected to the core network equipment through the next generation (NG) interface.
  • DU and CU-CP can be connected through the F1-C interface.
  • DU and CU-UP can be connected through the F1-U interface.
  • Another possible implementation is that PDCP-C is also in CU-UP.
  • CU-CP can be divided into CU-CP1 and CU-CP2, wherein CU-CP1 includes various radio resource management functions, and CU-CP2 only includes PDCP-C functions (i.e., basic functions of control plane signaling at the PDCP layer).
  • PDCP-C functions i.e., basic functions of control plane signaling at the PDCP layer.
  • the core network device may be, for example, a mobility management entity (MME) and/or a serving gateway (S-GW) in the core network of the fourth generation (4th-generation, 4G) communication system, i.e., an evolved packet core (EPC); or, may be one or more of an access and mobility management function (AMF) network element, a session management function (SMF) network element, a user plane function (UPF) network element, etc. in a 5G core (5G core, 5GC).
  • MME mobility management entity
  • S-GW serving gateway
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the terminal device 110 can be connected to the network device 120 and the network device 130 through a Uu interface.
  • the network device 120 and the network device 130 can be connected through an Xn interface.
  • the network device 120 and the core network device 140 can be connected through an NG interface.
  • the network device 130 and the core network device 140 can also be connected through an NG interface.
  • network architecture 100 shown in Figure 1 is not limited to including only the terminal devices, network devices and core network shown in the figure, but may also include other terminal devices, network devices and core network devices not shown in the figure, which will not be listed one by one in this application.
  • the network architecture 100 can be applied to a long term evolution (LTE) system, a NR system, and a communication system evolved after 5G such as the sixth generation (6G).
  • LTE long term evolution
  • NR NR
  • 6G sixth generation
  • the network architecture 100 can be applied to a variety of communication scenarios such as a non-terrestrial network (NTN) system and a narrow band-internet of things (NB-IoT) system.
  • NTN non-terrestrial network
  • NB-IoT narrow band-internet of things
  • MR-DC Multi-radio dual connectivity
  • a terminal device can communicate with multiple network devices, i.e. dual-connectivity (DC), also known as MR-DC.
  • DC dual-connectivity
  • the terminal device 110 can communicate with the network device 120 and the network device 130. That is, the connection between the terminal device 110 and the network device 120 and the network device 130 shown in FIG1 is a multi-mode dual connection.
  • the multiple network devices communicating with the terminal device may be network devices belonging to the same radio access technology (RAT).
  • RAT radio access technology
  • network device 120 and network device 130 are both LTE network devices such as eNB, or are both NR network devices such as gNB.
  • the multiple network devices may be network devices of different RATs, and exemplary, network device 120 is an eNB, and network device 130 is a gNB.
  • the network side can use the resources of the multiple network devices to provide communication services for the terminal device, thereby providing high-speed transmission for the terminal device.
  • the network device that has control plane signaling interaction with the core network is called a master node (MN), and other network devices are called secondary nodes (SN).
  • MN and/or SN can have a user plane connection with the core network.
  • Figure 3 exemplifies the architecture diagram of the control plane in the MR-DC scenario.
  • the terminal device 310 is connected to MN 320 and SN 330 respectively through the Uu interface.
  • MN 320 is connected to the core network device 340 through the NG-C interface.
  • the "C" in the NG-C interface means control, that is, the NG-C interface is a control plane interface.
  • MN 320 and SN 330 are connected through the Xn-C interface.
  • the Xn-C interface is a control plane. Interface.
  • the Xn-C interface supports the following functions: Xn interface management; terminal device mobility management, including context transfer and RAN paging; and dual connectivity.
  • the terminal device 310 may be, for example, the terminal device 110 shown in FIG. 1 above
  • the MN 320 may be, for example, the network device 120 shown in FIG. 1 above
  • the SN may be, for example, the network device 130 shown in FIG. 1 .
  • MR-DC includes various types of DC, such as Evolved Universal Terrestrial Radio Access and New Radio Dual Connectivity (E-UTRA New Radio Dual Connectivity, EN-DC), Next Generation Radio Access Network (NG Radio Access Network, NG-RAN) and Evolved Universal Terrestrial Radio Access-New Radio (E-UTRA-NR) Dual Connectivity (NG-RAN E-UTRA-NR Dual Connectivity, NGEN-DC), NR and E-UTRA Dual Connectivity (NR-E-UTRA Dual Connectivity, NE-DC) and NR Dual Connectivity (New Radio-Dual Connectivity, NR-DC).
  • E-UTRA New Radio Dual Connectivity EN-DC
  • NG Radio Access Network Next Generation Radio Access Network
  • E-UTRA-NR Evolved Universal Terrestrial Radio Access-New Radio
  • Dual Connectivity NG-RAN E-UTRA-NR Dual Connectivity, NGEN-DC
  • NR and E-UTRA Dual Connectivity NR-E-UTRA Dual Connectivity, NE-DC
  • NR Dual Connectivity New
  • MN is an LTE network device connected to EPC; SN is an NR network device.
  • EN-DC is sometimes also called non-standalone architecture (NSA).
  • MN is the LTE network device NG-eNB connected to the 5G core network 5GC, and SN is the NR network device.
  • MN is the NR network device connected to 5GC
  • SN is the LTE network device.
  • MN is the NR network device connected to 5GC
  • SN is the NR network device.
  • the user plane of the SN may be connected to the core network to which the MN is connected.
  • the core network may directly send data to the terminal device through the SN.
  • the primary cell refers to the cell deployed at the primary frequency point, and the terminal device initiates the initial connection establishment process, initiates the connection reconstruction process, or indicates as the primary cell during the switching process.
  • the primary secondary cell refers to the cell where the terminal device initiates the random access process in the SN, or refers to the cell where the terminal device skips the random access process to initiate data transmission during the SN change process, or refers to the cell of the SN that initiates random access during the synchronization reconfiguration process.
  • a terminal device can receive services from multiple cells at the same time under one network device.
  • the service cell group (including one or more cells) provided by the MN for the terminal device can be called the master cell group (MCG).
  • the service cell group (including one or more cells) provided by the SN for the terminal device is called the secondary cell group (SCG). If the MCG includes only one cell, the cell is the primary cell PCell of the terminal device. If the SCG includes only one cell, the cell is the primary and secondary cell PSCell of the terminal device. In order to normalize various terms in NR, PCell and PSCell are collectively referred to as special cells (SpCell). If the MCG or SCG includes multiple cells, the cells other than the SpCell are called secondary cells (SCell).
  • SpCell special cells
  • the secondary cell is a cell working on a secondary carrier. Once the RRC connection is established, the secondary cell can be configured to provide additional wireless resources.
  • the SCell and SpCell in each cell group can perform carrier aggregation (CA) to jointly provide transmission resources for the terminal device.
  • CA carrier aggregation
  • both MN and SN have RRC entities and can generate RRC messages.
  • RRC messages can be directly transmitted between SN and terminal devices via signaling radio bearer 3 (SRB3).
  • SRB3 signaling radio bearer 3
  • RRC messages transmitted between SN and terminal devices can be forwarded via MN.
  • the embodiment of the present application is described by taking dual connection as an example, and can be extended to a multi-connection scenario in a specific implementation.
  • a multi-connection scenario there may be one MCG and more than two SCGs, or there may be multiple MCGs and multiple SCGs, which is not limited in the embodiment of the present application.
  • the network side triggers the addition of PSCell.
  • the addition of PSCell is triggered by MN.
  • the network side triggers the change of PSCell (that is, the network side instructs the terminal device to switch from one PSCell to another PSCell).
  • the PSCell change can be triggered by MN or SN.
  • the network side can determine that the signal quality of one PSCell has deteriorated and the signal quality of another PSCell has improved based on the measurement results reported by the terminal device, and notify the terminal device to change the PScell.
  • the PSCell change can be a switch from a cell of one SN to a cell of another SN, or a switch from a cell of one SN to another cell of the SN.
  • CPAC applies CHO technology to the addition or change of PSCell. It can be seen that there are two mechanisms for the network side to configure terminal equipment to add or change PSCell. One is the normal PSCell addition or change (i.e. the above-mentioned PA/PC), and the other is the conditional PSCell addition or change (i.e. the above-mentioned CPAC).
  • a target PSCell may be specified by the network side, and after the terminal device receives the configuration from the network side, it immediately executes the PSCell addition or change process between the terminal device and the target PSCell.
  • the above CPAC includes the addition of conditional PSCells (CPA) and the change of conditional PSCells. (conditional PSCell change, CPC).
  • CPA conditional PSCells
  • CPC conditional PSCell change
  • the network side can prepare one or more candidate PSCells in advance, and then send CPA configuration or CPC configuration to the terminal device, which can be collectively referred to as CPAC configuration.
  • the CPAC configuration includes the SCG configuration of the one or more candidate PSCells and the corresponding trigger conditions.
  • the terminal device After the terminal device receives the CPAC configuration, when one or more candidate PSCells meet the corresponding trigger conditions, the terminal device can determine one of the candidate PSCells as the target PSCell and execute the access process with the target PSCell, which can be called the CPA or CPC process of the candidate PSCell.
  • the CPA of the terminal device is triggered by the MN.
  • the MN can send an SN addition request to one or more candidate SNs. If the candidate SN allows access, wireless resources are reserved for the terminal device and an Acknowledge (ACK) message is fed back to the MN.
  • the MN sends a message including the CPA configuration to the terminal device.
  • the message contains the wireless air interface configuration and trigger conditions of all candidate SNs.
  • the terminal device feeds back an RRC reconfiguration completion message to the MN to indicate that the CPA configuration is successfully received.
  • the terminal device After the terminal device receives the message including the CPA configuration, it first continues to determine whether the target PSCell meets the trigger condition.
  • the terminal device detects that a candidate PSCell meets the corresponding trigger condition, the terminal device feeds back an RRC reconfiguration completion message to the MN to indicate the selected candidate PSCell to the MN.
  • the MN feeds back an RRC reconfiguration completion message to the SN corresponding to the selected candidate PSCell.
  • the MN sends an SN release message to other candidate SNs to inform these SNs to release reserved resources and cached data.
  • the terminal device performs random access to the selected candidate PSCell.
  • the CPC of the terminal device can be triggered by the MN or the source SN. Take the CPC triggered by the source SN as an example. If it is a CPC triggered by the source auxiliary node, the source SN sends an SN change request to the MN, indicating one or more candidate PSCells and their triggering conditions. The MN sends an SN add request to the candidate SN corresponding to the one or more candidate PSCells. If the candidate SN allows access, it reserves wireless resources for the terminal device and feeds back an ACK message to the MN. The MN sends a message including the CPC configuration to the terminal device.
  • the message contains the SCG configuration and corresponding triggering conditions of the one or more candidate PSCells.
  • the terminal device feeds back an RRC reconfiguration completion message to the MN to indicate successful reception of the CPC configuration.
  • the terminal device After the terminal device receives the message including the CPC configuration, it continues to determine whether the target PSCell meets the triggering conditions.
  • the terminal device detects that a candidate PSCell meets the corresponding triggering conditions, the terminal device feeds back an RRC reconfiguration completion message to the MN, indicating the selected candidate PSCell to the MN.
  • the MN feeds back an RRC reconfiguration completion message to the SN corresponding to the selected candidate PSCell.
  • the MN sends an SN release message to the source SN to inform the source SN to stop data transmission with the terminal device and perform data transfer between the SNs corresponding to the selected candidate PSCell.
  • the MN sends an SN release message to other candidate SNs to inform them to release reserved resources and cached data.
  • the terminal device performs random access to the selected candidate PSCell.
  • triggering CPA execution refers to the operation of triggering the conditional PSCell addition after the terminal device determines that a candidate PSCell meets the triggering conditions.
  • Triggering the CPA process refers to the operation of MN triggering the entire CPA process.
  • the above-mentioned change of PSCell (PC) is triggered by MN or SN, or the above-mentioned CPC is triggered by MN or SN means that the entire process of implementing PC or CPC is triggered by MN or SN.
  • the terminal device determines that a candidate PSCell meets the triggering conditions, it will trigger CPC execution.
  • the CPC triggering at this time is different from the triggering of the aforementioned CPC process.
  • triggering CPC execution refers to the operation of triggering the conditional PSCell change after the terminal device determines that a candidate PSCell meets the triggering conditions.
  • Triggering the CPC process (or CPC process triggering) refers to the operation of MN or SN triggering the entire CPC process.
  • triggering CPAC execution refers to the operation of triggering the conditional PSCell addition/change after the terminal device determines that a candidate PSCell meets the triggering condition.
  • Triggering the CPAC process refers to the operation of the MN or SN triggering the entire CPAC process.
  • SCG failure scenarios may include the following: SCG radio link failure (RLF), SCG beam failure during SCG deactivation, SN addition/change failure, SCG configuration failure, CPAC configuration failure, SCG RRC integrity check failure, continuous uplink listen before talk (LBT) failure on PSCell, backhaul RLF indication received from SCG in access and backhaul integrated mobile communications, and CPA/CPC execution failure.
  • RLF radio link failure
  • SCG beam failure during SCG deactivation SN addition/change failure
  • SCG configuration failure CPAC configuration failure
  • SCG RRC integrity check failure continuous uplink listen before talk (LBT) failure on PSCell
  • LBT continuous uplink listen before talk
  • backhaul RLF indication received from SCG in access and backhaul integrated mobile communications and CPA/CPC execution failure.
  • the terminal device After an SCG failure occurs, if the transmission of the master cell group MCG is not suspended, the terminal device reports SCG failure information to the MN.
  • the MN instructs the terminal device to retain, change or release the SN based on the received SCG failure information.
  • the SCG failure information records the relevant information of the SCG failure. If the MN can perform initial analysis and the relevant node that caused the PSCell change/addition failure is the SN, For example, it can be the source SN or the target SN, then the MN forwards the SCG failure information together with the analysis results to the relevant SN. Otherwise, the MN forwards the SCG failure information to the last served SN.
  • the last served SN refers to the service SN where the RLF occurs. If the SCG failure is an SN addition/change failure, then the last served SN refers to the source SN. In one possible implementation, after receiving the SCG failure information, the last served SN can use the SCG failure transfer process response to notify the MN that it is not the problem SN that caused the SCG failure.
  • the problem node refers to the primary node that causes the SCG failure or refers to the secondary node that causes the SCG failure (referred to as the problem SN for short).
  • the problem SN can be, for example, a source SN, a target SN, or a service SN where RLF occurs.
  • the problem node can analyze the cause of the SCG failure based on the SCG failure information and perform SN-related mobility parameter optimization.
  • the SCG failure information may include one or more of the following: SCG failure type, available SCG measurement results, source primary and secondary cell information of the last PSCell change, and failed primary and secondary cell information.
  • the failed primary and secondary cell information may be the primary and secondary cell information where the SCG failure is detected, or may be the target primary and secondary cell information of the PSCell change or addition failure.
  • the SN mobility information element includes information related to the primary and secondary cell change (PSCell change), such as the target PSCell identification information and/or the configuration information of the target PSCell.
  • PSCell change the primary and secondary cell change
  • the SN change request (SN change required) message sent by the source SN to the MN may include an SN mobility information element.
  • the MN sends a message containing an SCG failure information report (SCG failure information Report) to the SN.
  • SCG failure information Report an SCG failure information report
  • the SN receives the message, it can be informed that the PSCell change has failed. If the PSCell change process is triggered by the source SN, the SCG failure information Report may include the SN mobility information element.
  • SCG failure information can be used to effectively analyze the cause of SCG failure.
  • the existing SCG failure information only records the relevant information in the PA/PC process (such as PA configuration or PC configuration, etc.), and does not record the relevant information in the CPAC process (such as CPAC configuration, or the time when the terminal device receives the CPAC configuration, etc.).
  • the terminal device will release the CPAC configuration. If SCG failure occurs after the terminal device releases the CPC configuration, the UE will not be able to carry the CPAC configuration information in the SCG failure information and report it to the network side.
  • the present application provides an information transmission method and device that can accurately analyze the cause of SCG failure and reduce the probability of SCG failure.
  • FIG3A is a flowchart of an information transmission method provided in an embodiment of the present application.
  • the method includes but is not limited to the following steps:
  • the master node obtains a conditional primary and secondary cell addition/change CPAC configuration set in a stored terminal device context; the CPAC configuration set includes one or more CPAC configurations associated with a secondary cell group SCG failure.
  • S302 The primary node sends the CPAC configuration set to the secondary node.
  • the master node can save the CPAC configuration set configured for the above-mentioned terminal device in the context corresponding to the terminal device. So that after the terminal device detects that an SCG failure has occurred and sends SCG failure information to the master node to inform the master node that an SCG failure has occurred, the master node can obtain the corresponding CPAC configuration set in the context of the terminal device stored locally. And send the CPAC configuration set to the problem SN, so that the problem SN can more accurately analyze the cause of the SCG failure based on the CPAC configuration set, and then better implement SN mobility robustness optimization and reduce the probability of SCG failure.
  • the specific implementation of this method can be exemplified by referring to the description in Figures 6 to 8 below, which will not be described in detail here.
  • the terminal device can obtain the first time information and/or the second time information.
  • the first time information indicates the time period between when the terminal device receives the command to add/change PA/PC to the primary and secondary cells and when the terminal device detects the SCG failure.
  • the second time information indicates the time period between when the terminal device receives the command to add/change CPAC to the conditional primary and secondary cells and when the terminal device detects the SCG failure.
  • the first time information and/or the second time information is sent to the master node as part of the SCG failure information.
  • the master node can also send the first time information and/or the second time information to the problem SN. So that the master node or the problem SN can more accurately analyze the cause of the SCG failure based on the first time information and/or the second time information, thereby optimizing the mobility robustness, reducing the probability of SCG failure, and improving the quality of dual-connection communication of the terminal device.
  • the specific implementation of this method can be exemplified by referring to the corresponding descriptions in the following Figures 6 to 8, which will not be described in detail here.
  • the specific implementation of this embodiment can be referred to the descriptions in the following Figures 4 and 5, which will not be described in detail here.
  • the SCG failure in the PA/PC and CPAC hybrid scenario is: the terminal device receives the CPC configuration after successfully executing the PA/PC process, and the SCG failure occurs before the CPC is triggered.
  • the SCG failure in the PA/PC and CPAC hybrid scenario is: after the terminal device receives the CPA configuration and before the CPA is triggered, it receives the PA indication from the network side and executes PA but fails or successfully executes PA, which causes the SCG failure; or, after the terminal device receives the CPC configuration and before the CPC is triggered, it receives the PC indication from the network side and executes PC but fails or successfully executes PC, which causes the SCG failure.
  • the following describes the information transmission method provided by the embodiments of the present application in these two cases.
  • the method embodiment provided by the present application is described by taking the terminal device and the network device as the execution subject as an example, wherein the network device includes the MN or the candidate SN.
  • the execution subject of the communication method can also be a device for the terminal device or the network device, such as a chip.
  • FIG4 shows a flow chart of the information transmission method provided by the embodiment of the present application in the first case.
  • the information transmission method provided by the embodiment of the present application includes but is not limited to the following steps:
  • MN or SN triggers the PA/PC process.
  • the PA process refers to the PSCell Addition process
  • the PC process refers to the PSCell Change process.
  • the PSCell Addition process is triggered when the terminal device is not configured with an SN
  • the PSCell Change process is triggered when the terminal device is already configured with an SN.
  • the PA process is triggered by the MN.
  • the MN can send an SN addition request to the candidate SN (i.e., the first SN).
  • the first SN allows access, reserves wireless resources for the terminal device, and sends an ACK message to the MN.
  • the PC process can be triggered by the MN or the SN. If the PSCell change process is triggered by the MN, the MN can send an SN add request to the candidate SN (for example, the first SN in Figure 4), and the candidate SN allows access and sends an ACK message to the MN. If the PSCell change process is triggered by an SN (not shown in Figure 4), the SN can send an SN change request to the MN. A candidate PSCell is indicated in the request. Based on the request, the MN sends an SN add request to the candidate SN corresponding to the candidate PSCell (for example, the first SN in Figure 4). The candidate SN allows access, reserves wireless resources for the terminal device, and sends an ACK message to the MN.
  • the candidate SN allows access, reserves wireless resources for the terminal device, and sends an ACK message to the MN.
  • S402. MN sends an RRC reconfiguration message to the terminal device.
  • the MN sends an SN addition request to a candidate SN (e.g., the first SN).
  • a candidate SN e.g., the first SN
  • the MN After the MN receives the ACK message sent by the first SN, it can send an RRC reconfiguration message to the terminal device.
  • the RRC reconfiguration message includes the SCG configuration of the target PSCell, which is used to instruct the terminal device to add the target PSCell or change to the target PSCell, and the target PSCell is the cell prepared by the first SN for the terminal device.
  • the terminal device records the time when the RRC reconfiguration is received.
  • time 1 the time when the terminal device receives the RRC reconfiguration message in the PA/PC process (referred to as time 1) can assist in analyzing the cause of the failure when an SCG failure occurs.
  • the terminal device sends an RRC reconfiguration completion message to the MN, and the MN sends the RRC reconfiguration completion message to the first SN.
  • the terminal device may feed back an RRC reconfiguration completion message to the MN to indicate that the configuration has been successfully received.
  • the MN may also feed back an RRC reconfiguration completion message to the first SN.
  • the terminal device successfully adds or changes the PSCell.
  • the terminal device after receiving the RRC reconfiguration message, the terminal device immediately performs random access to the target PSCell based on the SCG configuration of the target PSCell in the message.
  • Successful random access means successful addition or change of the PSCell.
  • the CPAC process is triggered.
  • the CPAC process is a CPA process or a CPC process.
  • the CPAC process triggered when the terminal device is not configured with an SN refers to the CPA process
  • the CPAC process triggered when the terminal device is already configured with an SN refers to the CPC process.
  • the SN configured for the terminal device is the first SN. Therefore, the CPAC process triggered at this time is the CPC process. In addition, the CPC process can be triggered by the MN or the first SN.
  • S407 The MN sends an SN adding request to one or more candidate SNs.
  • the one or more candidate SNs include the second SN in FIG. 4 .
  • the MN may send an SN add request to one or more candidate SNs corresponding to one or more candidate PSCells.
  • the CPC process is triggered by the SN of the terminal device (the first SN in FIG. 4 )
  • the SN may send an SN change request to the MN.
  • the request indicates one or more candidate PSCells and their triggering conditions.
  • the The request may also indicate the SCG measurement configuration of the CPC.
  • the MN may send an SN adding request to one or more candidate SNs corresponding to one or more candidate PSCells.
  • the one or more candidate SNs send an ACK message to the MN.
  • the one or more candidate SNs After the one or more candidate SNs receive the SN adding request from the MN, assuming that the one or more candidate SNs allow the terminal device to access, the one or more candidate SNs reserve wireless resources for the terminal device and feed back an ACK message to the MN.
  • S409 The MN sends a CPAC configuration message to the terminal device.
  • the MN After receiving the ACK message sent by the above one or more candidate SNs, the MN sends a CPAC configuration message to the terminal device.
  • the CPAC configuration message is a CPA configuration message or a CPC configuration message.
  • CPAC configuration refers to the CPA configuration.
  • CPAC configuration refers to the CPC configuration. Since the above trigger is the CPC process, the CPC configuration message sent by the above MN to the terminal device includes the CPC configuration.
  • the CPC configuration includes the SCG configuration of the above one or more candidate PSCells and their triggering conditions.
  • the CPC configuration can also include the SCG measurement configuration of the CPC.
  • the terminal device records the time when the CPAC configuration is received.
  • recording the time when the terminal device receives the CPAC configuration message in the CPAC process (referred to as time 2) can assist in analyzing the cause of the failure in the event of an SCG failure.
  • the terminal device detects that the SCG fails.
  • the terminal device after the terminal device receives the CPAC configuration message, if it detects that a candidate PSCell satisfies the corresponding trigger condition, CPAC is triggered. However, if the terminal device detects that the SCG fails before the CPAC is triggered, the terminal device can record the time when the SCG failure is detected (referred to as time 3).
  • the SCG failure can be an SCG RLF, or it can be an SCG failure in any of the SCG failure scenarios described above, and the embodiments of the present application do not limit this.
  • the terminal device sends SCG failure information to the MN.
  • the above terminal device After the above terminal device detects the SCG failure, it can send SCG failure information to the MN.
  • the SCG failure information also includes first time information and/or second time information.
  • the first time information indicates the time period between when the terminal device receives the PA/PC command and when the terminal device detects that the SCG failure has occurred (referred to as the first time period).
  • the second time information indicates the time period between when the terminal device receives the CPAC command and when the terminal device detects that the SCG failure has occurred (referred to as the second time period).
  • the time when the terminal device receives the PA/PC command refers to the time when the terminal device receives the RRC reconfiguration message in S403 above (i.e., the above time 1).
  • the RRC reconfiguration message is the PA/PC command.
  • the time when the terminal device receives the CPAC command refers to the time when the terminal device receives the CPAC configuration message in S409 above (i.e., the above time 2).
  • the CPAC configuration message is the CPAC command.
  • the two times have been recorded by the terminal device.
  • the first time period and the second time period can be calculated based on the two times and the time when the SCG failure is detected recorded in S410 above (i.e., the above time 3).
  • the first time information sent to the MN may include the time 1 and the time 3. After receiving the two times, the MN may calculate the first time period.
  • the second time information sent to the MN may include the time 2 and the time 3. After receiving the information of the two times, the MN may calculate the second time period.
  • the first time information sent to the MN may include the first time period.
  • the MN after the MN receives the first time information, it can obtain the first time period without further calculation.
  • the second time information sent to the MN may include the second time period.
  • the MN after the MN receives the second time information, it can obtain the second time period without further calculation.
  • the SCG failure information sent by the terminal device to the MN may also include the CPAC configuration sent by the MN to the terminal device.
  • the MN performs a preliminary analysis after receiving the SCG failure information.
  • the MN determines whether to forward the SCG failure information and to which problem SN the SCG failure information is forwarded based on the SCG failure type and the triggering node (the MN and/or SN that triggers the corresponding process in S401 and/or S406) analyzed in the SCG failure information.
  • the problem SN may be a source SN, or may be a target SN.
  • the target SN may be an SN where the SCG failure occurs, or may be a candidate SN. If it is determined to send the SCG failure information to the problem SN, the MN may send part or all of the SCG failure information to the problem SN.
  • the MN may send the first time information and/or the second time information to the problem SN.
  • the problem SN can analyze the specific cause of the SCG failure based on the received time information. For example, based on the time information, it can be analyzed whether the SCG failure is caused by the unreasonable time for the terminal device to trigger the execution of PA/PC or trigger the execution of CPAC in the two processes in the scenario where PA/PC and CPAC are mixed, and the mobility parameters can be appropriately adjusted.
  • the radio link monitoring (RLM) parameters of the MCG, the beam failure detection (BFD) parameters, the random access related parameters (such as the maximum number of random access message transmissions, the maximum number of consecutive LBT failures), or the RLC retransmission maximum value can be adjusted. Parameters such as the maximum number of times or interval time are optimized. Then the PA/PC configuration or CPAC configuration on the network side is optimized to reduce the probability of SCG failure and improve the quality of dual-connection communication of terminal devices.
  • FIG5 shows a flow chart of the information transmission method provided by the embodiment of the present application in the second case.
  • the information transmission method provided by the embodiment of the present application includes but is not limited to the following steps:
  • the CPAC process is the CPA process or the CPC process.
  • the CPA process is triggered by the MN.
  • the CPC process may be triggered by the MN or the SN.
  • the CPAC process in FIG5 may be a CPC process or a CPA process.
  • the figure does not clearly indicate that the terminal device is configured with an SN (ie, source SN).
  • S502 The MN sends an SN adding request to one or more candidate SNs.
  • the one or more candidate SNs include the second SN in FIG. 5 .
  • the MN may send an SN adding request to one or more candidate SNs corresponding to one or more candidate PSCells.
  • the above-mentioned CPAC process is a CPC process, it is triggered by MN or SN. If the CPC process is triggered by MN, MN can send an SN addition request to one or more candidate SNs corresponding to one or more candidate PSCells. If the CPC process is triggered by the SN of the terminal device (for example, the first SN in Figure 5), the SN sends an SN change request to the MN. One or more candidate PSCells and their triggering conditions are indicated in the request. Optionally, the SCG measurement configuration of the CPC can also be indicated in the request. Then, MN sends an SN addition request to the one or more candidate SNs.
  • MN sends an SN addition request to the one or more candidate SNs.
  • S503 The one or more candidate SNs send an ACK message to the MN.
  • the one or more candidate SNs After the one or more candidate SNs receive the SN adding request from the MN, assuming that the one or more candidate SNs allow the terminal device to access, the one or more candidate SNs reserve wireless resources for the terminal device and feed back an ACK message to the MN.
  • S504 The MN sends a CPAC configuration message to the terminal device.
  • the MN sends a CPA configuration message to the terminal device, which includes a CPA configuration.
  • the CPA configuration includes the SCG configuration of the one or more candidate PSCells and their triggering conditions.
  • the CPA configuration may also include the SCG measurement configuration of the CPA.
  • the MN sends a CPC configuration message to the terminal device, which includes a CPC configuration.
  • the CPC configuration includes the SCG configuration of the one or more candidate PSCells and their triggering conditions.
  • the CPC configuration may also include the CPC's SCG measurement configuration.
  • the terminal device records the time when the CPAC configuration is received.
  • recording the time when the terminal device receives the CPAC configuration message in the CPAC process (referred to as time 4) can assist in analyzing the cause of the failure in the event of an SCG failure.
  • S506 MN or SN triggers the PA/PC process.
  • the PA process is triggered by MN.
  • the MN or the SN may trigger the PC process.
  • the MN sends an RRC reconfiguration message to the terminal device, instructing the terminal device to perform PA/PC on the target PSCell.
  • the terminal device records the time when the RRC reconfiguration message is received.
  • recording the time when the terminal device receives the RRC reconfiguration message in the PA/PC process (referred to as time 5) can assist in analyzing the cause of the failure in the event of an SCG failure.
  • S509 The terminal device detects that the SCG fails.
  • the terminal device after receiving the RRC reconfiguration message sent by the MN, the terminal device detects that an SCG failure has occurred.
  • the SCG failure may be a failure to execute the PA/PC process.
  • the SCG failure may be a failure to add or change a PSCell in the PA/PC process.
  • the SCG failure may be an SCG RLF that occurs within a preset time period after the PA/PC process is successfully executed. For example, after the terminal device accesses the target PSCell, a timer may be started, the timer timing duration is the preset time period, and RLF occurs before the timer expires. It is understandable that the preset time period may be set according to actual conditions, and the embodiments of the present application do not impose any restrictions.
  • the RLF may be an RLF between the terminal device and the above-mentioned first SN.
  • the SCG failure may be, for example, an SCG failure in any of the SCG failure scenarios described above, and the embodiments of the present application do not impose any restrictions on this.
  • the terminal device After the terminal device detects the SCG failure, it may record the time when the SCG failure is detected (referred to as time 6 for short).
  • the terminal device sends SCG failure information to the MN.
  • the above terminal device After the above terminal device detects the SCG failure, it can send SCG failure information to the MN.
  • the SCG failure information includes the first time information and/or the second time information.
  • the definition of the time information can refer to the corresponding description in S412 above.
  • the time when the terminal device receives the PA/PC command refers to the time when the terminal device receives the RRC reconfiguration message in S507 above (i.e., the above time 5).
  • the time when the terminal device receives the CPAC command refers to the time when the terminal device receives the CPAC configuration message in S504 above (i.e., the above time 4).
  • the two times have been recorded by the terminal device. Based on the two times and the time when the SCG failure is detected recorded in S508 above (i.e., the above time 6), the above-mentioned first time period and second time period can be calculated.
  • the first time information sent to the MN may include the time 5 and the time 6. After receiving the two times, the MN may calculate the first time period.
  • the second time information sent to the MN may include the time 4 and the time 6. After receiving the information of the two times, the MN may calculate the second time period.
  • the first time information sent to the MN may include the first time period.
  • the MN after receiving the first time information, the MN can obtain the first time period without further calculation.
  • the second time information sent to the MN may include the second time period.
  • the MN after receiving the second time information, the MN can obtain the second time period without further calculation.
  • the SCG failure information sent by the terminal device to the MN may also include the CPAC configuration sent by the MN to the terminal device.
  • the SCG failure information sent by the MN to the problem SN may also include the CPAC configuration in the above CPAC process.
  • the CPAC configuration may be the CPAC configuration received from the MN obtained locally by the above terminal device after detecting the SCG failure.
  • the terminal device does not delete the CPAC configuration received from the MN, and thus, the CPAC configuration can be sent to the MN as part of the SCG failure information. Therefore, after the MN receives the SCG failure information, when sending the SCG failure information to the problem SN, the CPAC configuration can also be sent to the problem SN. This allows the problem SN to more effectively analyze the cause of the SCG failure in combination with the CPAC configuration.
  • the terminal device after the terminal device successfully executes the CPAC process, it detects an SCG failure.
  • the terminal device deletes the CPAC configuration received from the MN, and therefore cannot report the CPAC configuration to the MN.
  • the MN retrieves the CPAC configuration saved locally.
  • the CPAC configuration in the MN may be associated with the identifier of the above-mentioned terminal device and stored in the context of the terminal device.
  • the CPAC configuration can be found based on the identifier of the terminal device.
  • the CPAC configuration when sending the SCG failure information to the problem SN, the CPAC configuration can also be sent to the problem SN.
  • the relevant description of the MN storing and searching for the CPAC configuration locally can be found in the corresponding description in S610 of Figure 6 below, which will not be described in detail here.
  • the MN may send the CPAC configuration to the terminal device multiple times.
  • the CPAC configuration included in the SCG failure information sent by the terminal device to the MN may include multiple CPAC configurations received from the MN.
  • the CPAC configuration stored locally in the MN in association with the identifier of the terminal device may include multiple CPAC configurations issued to the terminal device.
  • the CPAC configuration sent by the MN to the above-mentioned problem SN may also be multiple CPAC configurations issued to the terminal device.
  • the specific update process can be exemplified by referring to the corresponding description in FIG. 7 or FIG.
  • the time of the received CPAC configuration recorded in FIG. 4 or FIG. 5 above may be the time when the terminal device received the CPAC configuration for the last time in the CPAC process, or it may be the time when the terminal device received the CPAC configuration for the first time.
  • the above-mentioned terminal device will release the CPAC configuration received from the MN after successfully executing the CPAC process. That is, the terminal device deletes the CPAC configuration locally after successfully executing the CPAC process.
  • the SCG failure information sent by the terminal device to the MN cannot include the CPAC configuration, which makes it impossible for the network side to accurately analyze the cause of the SCG failure.
  • an embodiment of the present application provides a corresponding information transmission method to solve this problem. Referring to Figures 6-8 for examples, the information transmission method provided in the embodiment of the present application includes but is not limited to the following steps:
  • S602 The MN sends an SN adding request to one or more candidate SNs.
  • S603 The one or more candidate SNs send an ACK message to the MN.
  • S604 The MN sends a CPAC configuration message to the terminal device.
  • S601 to S604 above can refer to the description of S501 to S504 above, which will not be repeated here.
  • the terminal device sends an RRC reconfiguration completion message.
  • the terminal device After receiving the CPAC configuration, the terminal device can feed back an RRC reconfiguration completion message to the MN to indicate successful reception of the CPAC configuration.
  • the above CPAC process is a CPC process, and the CPC process is triggered by an SN (e.g., the first SN in FIG6 ), then the MN receives the RRC reconfiguration completion message of the terminal device and can also send the message to the SN.
  • the terminal device selects a target PSCell based on the CPAC configuration.
  • the CPAC configuration includes the SCG configuration of the above one or more candidate PSCells and their triggering conditions. After receiving the above CPAC configuration message, the terminal device will not add any candidate PSCell immediately. Instead, it will continue to determine whether there is a target PSCell that meets the triggering conditions. When the terminal device detects that a candidate PSCell meets the corresponding triggering conditions, the PSCell that meets the corresponding triggering conditions is selected as the target PSCell.
  • S607 The terminal device performs random access to the target PSCell.
  • the terminal device After the terminal device determines the selected target PSCell, it feeds back an RRC reconfiguration completion message to the MN, indicating the selected target PSCell to the MN.
  • the MN feeds back an RRC reconfiguration completion message to the SN corresponding to the selected target PSCell. Then, the terminal device can perform random access to the selected target PSCell (e.g., the second SN in FIG6 ).
  • S609 The terminal device detects that the SCG fails.
  • the terminal device After releasing the CPAC configuration, the terminal device detects that an SCG failure has occurred.
  • the SCG failure may be, for example, an SCG failure in any of the aforementioned SCG failure scenarios, which is not limited in the present embodiment.
  • the terminal device sends SCG failure information to the MN.
  • the above terminal device After the above terminal device detects the SCG failure, it can send SCG failure information to the MN.
  • the MN locally obtains the CPAC configuration associated with the SCG failure.
  • the CPAC configuration sent to the terminal device is generated by the MN.
  • the MN can save the CPAC configuration locally.
  • the source SN sends an SN change request to the MN.
  • the change request includes a CPC configuration, for example, the SCG configuration of one or more candidate PSCells and their triggering conditions.
  • it also includes information such as the SCG measurement configuration of the CPC.
  • the MN can obtain the CPC configuration in the request and save it to the local memory.
  • the CPC configuration can be saved in the context of the above-mentioned terminal device stored in the MN.
  • the identifier of the terminal device and the context of the terminal device are a one-to-one binding relationship. Therefore, the context of the terminal device can be found through the identifier of the terminal device.
  • the CPC configuration can be saved in any storage space of the MN, and the CPC configuration and the identifier of the corresponding terminal device are stored in association. So that the CPC configuration can be found through the identifier of the terminal device.
  • the identifier of the terminal device can be a cell radio network temporary identifier (cell radio network temporary identifier, C-RNTI) of the terminal device. Alternatively, it may be other information that can uniquely identify the terminal device, such as the MAC address or IP address of the terminal device, etc., which is not limited in the embodiments of the present application.
  • the SN change request sent by the source SN to the MN includes an SN mobility information cell, and the CPC configuration may be included in the cell.
  • the CPC configuration is indicated by the SN mobility information.
  • S612 The MN sends a CPAC configuration set to the problem SN.
  • the MN can analyze the SCG failure type and the triggering node (the MN or SN that triggers the CPAC process in S601) in the SCG failure information to determine whether to forward the SCG failure information and to which problem SN the SCG failure information is forwarded.
  • the problem SN can be a source SN, or a target SN.
  • the target SN can be the SN where the SCG failure occurs, or a candidate SN. If it is determined to send the SCG failure information to the problem SN, the MN can send part or all of the SCG failure information to the problem SN. In a possible implementation, the MN can send the above-mentioned CPAC configuration obtained locally together with the problem SN.
  • the problem SN can analyze the specific cause of the SCG failure based on the received CPAC configuration. For example, it can be analyzed based on the CPAC configuration whether the SCG failure is caused by unreasonable triggering conditions, and then the mobility parameters can be appropriately adjusted. For example, the T316 timeout threshold of the MN for the terminal device, the wireless link monitoring parameters of the MCG, the beam failure detection parameters, the random access related parameters (such as the maximum number of transmissions of random access messages, the maximum number of consecutive LBT failures), or the maximum number of RLC retransmissions or interval time and other parameters can be adjusted. Then optimize the CPAC configuration on the network side to reduce the probability of SCG failure and improve the quality of dual-connection communication of terminal devices.
  • FIG. 7 adds steps S603A and S603B compared to FIG. 6 .
  • S601 to S602 in FIG. 7 can refer to the description of S601 to S602 in FIG. 6 above.
  • the CPAC process in S601 above is a CPC process, and the CPC process is triggered by the source SN (the first SN in FIG. 6).
  • the source SN can send an SN change request to the MN.
  • the CPAC configuration (referred to as the CPAC configuration before the update, i.e., the initial CPAC configuration) is indicated in the request.
  • the CPAC configuration before the update includes the SCG configuration of one or more candidate PSCells and their triggering conditions.
  • it also includes the SCG measurement configuration of the CPC.
  • the MN after the MN sends an SN addition request to one or more candidate SNs corresponding to one or more candidate PSCells, not all candidate SNs that receive the request are allowed to be added.
  • the MN receives ACK messages from some of the candidate SNs that are allowed to be added. That is, in S603 of FIG. 7, only some of the candidate SNs that are allowed to be added send ACK messages to the MN.
  • the MN can determine the candidate PSCells that are allowed to be added from these received ACK messages.
  • the MN can send an SN modification request to the source SN, and indicate the candidate PSCells that are allowed to be added in the request.
  • the source SN updates the CPAC configuration based on the request.
  • the updated CPAC configuration (referred to as the first updated CPAC configuration) includes the SCG configuration and triggering conditions of the candidate PSCell that is allowed to be added. Optionally, it also includes the corresponding SCG measurement configuration.
  • the source SN sends the first updated CPAC configuration to the MN through a response message (such as an ACK message), as can be seen in S603B in Figure 7.
  • the response message sent by the source SN to the MN includes an SN mobility information information element, and the first updated CPAC configuration may be included in the information element.
  • the first updated CPAC configuration is indicated by the SN mobility information.
  • MN After MN receives the first updated CPAC configuration, it can store the first updated CPAC configuration locally in association with the identifier of the terminal device. For example, it can be stored in the context of the terminal device.
  • MN since MN has obtained and saved the CPAC configuration before the update from the SN change request sent by the source SN, after MN obtains the first updated CPAC configuration, it can replace the CPAC configuration before the update with the first updated CPAC configuration and store it locally.
  • MN after receiving the above-mentioned first updated CPAC configuration, MN sends the first updated CPAC configuration to the terminal device. That is, in S604 of Figure 7, the CPAC configuration included in the CPAC configuration message sent by MN to the terminal device is the first updated CPAC configuration. In this case, in S611 of Figure 7, the CPAC configuration associated with the SCG failure obtained locally by MN may be the first updated CPAC configuration. Alternatively, the CPAC configuration obtained by MN may include the CPAC configuration before the update and the first updated CPAC configuration, that is, a CPAC configuration set is obtained. Then, in S612 of Figure 7, the CPAC configuration sent to the problem SN may be the first updated CPAC configuration or may be the CPAC configuration set. In addition to the further description here, the specific process and implementation of the other steps in Figure 7 can refer to the description related to the corresponding steps in Figure 6 above, which will not be repeated here.
  • FIG. 8 adds steps S605A, S605B and S605C compared to FIG. 7 above.
  • S601 to S605 in FIG. 8 can refer to the description of S601 to S605 in FIG. 7 above.
  • the CPAC process in S601 above is a CPC process, and the CPC process is triggered by the source SN (the first SN above).
  • the source SN can send an SN change request to the MN.
  • the CPAC configuration (referred to as the CPAC configuration before the update, i.e., the initial CPAC configuration) is indicated in the request. The difference is that in FIG.
  • the source SN can actively request to update (modify) the CPAC configuration sent to the terminal device by sending an SN modification request message to the MN. See S605A in FIG. 8 for example.
  • the request message includes the CPAC configuration after the source SN actively updates (referred to as the second updated CPAC configuration).
  • the second updated CPAC configuration includes the updated SCG configuration of the candidate PSCell and its triggering condition.
  • a corresponding SCG measurement configuration may also be included.
  • the SN modification request message sent by the source SN to the MN includes an SN mobility information information element, and the second updated CPAC configuration may be included in the information element.
  • the second updated CPAC configuration is indicated by the SN mobility information.
  • the MN may associate the second updated CPAC configuration with the identifier of the terminal device and store it locally, for example, in the context information of the terminal device.
  • the MN has obtained and saved the CPAC configuration before the update (initial CPAC configuration) from the SN change request sent by the source SN in S601. Together with the second updated CPAC configuration saved this time, the MN has two CPAC configurations corresponding to the terminal device, that is, the CPAC configuration set.
  • the steps S603A and S603B are present in FIG8 , and the MN has obtained and saved the first updated CPAC configuration from the request response message of S603B. Together with the second updated CPAC configuration saved this time, the MN has two updated CPAC configurations corresponding to the terminal device.
  • the MN after receiving the above-mentioned second updated CPAC configuration, the MN sends the second updated CPAC configuration to the terminal device (see S605B in Figure 8). And, referring to S605C in Figure 8, after receiving the second updated CPAC configuration, the terminal device can feed back an RRC reconfiguration completion message to the MN to indicate that the second CPAC configuration has been successfully received. After the MN receives the RRC reconfiguration completion message of the terminal device, it can also send the message to the source SN. In this case, in S611 of Figure 8, the CPAC configuration associated with the SCG failure obtained locally by the MN can be a CPAC configuration set.
  • the CPAC configuration set includes the CPAC configuration before the update and Second update CPAC configuration. If the above steps S603A and S603B exist, the CPAC configuration set includes the first updated CPAC configuration and the second updated CPAC configuration. Then, in S612 of Figure 8, the CPAC configuration sent to the problem SN may be the CPAC configuration set.
  • the specific process and implementation of the other steps in Figure 8 may refer to the descriptions related to the corresponding steps in Figures 6 and 7 above, which will not be repeated here.
  • the CPAC configuration sent by the source SN to the MN is indicated by an SN mobility information element, for example, the SN mobility information element includes the CPAC configuration. Then, the CPAC configuration saved locally to the MN may be the SN mobility information indicating the CPAC configuration. Furthermore, the CPAC configuration sent by the MN to the problem SN for analyzing the cause of the SCG failure may also be the SN mobility information element indicating the CPAC configuration.
  • the sequence number state transfer message or SN release confirmation message sent by the source SN to the MN includes an SN mobility information cell set, and the SN mobility information cell set indicates multiple CPAC configurations issued by the MN for the UE.
  • the source SN sends the sequence number state transfer message to the MN.
  • the MN sends an SN release request to the source SN, and the source SN feeds back an SN release request confirmation message to the MN.
  • the above SN mobility information cell set includes a first updated CPAC configuration and a second updated CPAC configuration. If only the above steps S603A&S603B exist, the SN mobility information cell set includes a first updated CPAC configuration. If only the above steps S604A&S604B exist, the SN mobility information cell set includes an initial CPAC configuration and a second updated CPAC configuration. If the above steps S603A&S603B and S605A&S605B do not exist, the SN mobility information cell set includes an initial CPAC configuration.
  • the MN if the MN identifies the SCG failure type as "switching too early" or “switching to the wrong cell” based on the SCG failure information received from the terminal device, the MN includes the C-RNTI used in the source PSCell where the terminal device was located before the SCG failure in the message including the SCG failure information sent to the problem SN.
  • the "switching too early” can also be called “too early PSCell change”.
  • the "switching to the wrong cell” can also be called “triggering PSCell change to wrong PSCell”.
  • the SCG failure information sent by the above-mentioned MN to the problem SN and the above-mentioned CPAC configuration can be sent in the same message, or can be sent in different messages, and the embodiment of the present application does not impose any restrictions on this.
  • the master node can save the CPAC configuration set configured for the above-mentioned terminal device in the context corresponding to the terminal device. So that after the terminal device detects that an SCG failure has occurred and sends SCG failure information to the master node to inform the master node that an SCG failure has occurred, the master node can obtain the corresponding CPAC configuration set in the context of the terminal device stored locally. And send the CPAC configuration set to the problem SN so that the problem SN can more accurately analyze the cause of the SCG failure based on the CPAC configuration set. For example, it can be analyzed based on the CPAC configuration whether the SCG failure is caused by unreasonable triggering conditions, etc.
  • the terminal device can obtain the above-mentioned first time information and/or second time information.
  • the first time information and/or the second time information can be sent to the master node as part of the SCG failure information.
  • the master node can also send the first time information and/or the second time information to the problem SN. So that the master node or the problem SN can more accurately analyze the cause of the SCG failure based on the first time information and/or the second time information.
  • the mobility parameters related to the SCG failure can be optimized, thereby reducing the probability of SCG failure and improving the quality of dual-connection communication of the terminal device.
  • the functions performed by the master node in the above information transmission method can also be performed by a module (e.g., a chip) in the master node, or can be performed by a logic module or software that can implement all or part of the functions of the master node.
  • the functions performed by the slave node can also be performed by a module (e.g., a chip) in the slave node, or can be performed by a logic module or software that can implement all or part of the functions of the slave node.
  • the functions performed by the terminal device can also be performed by a module (e.g., a chip) in the terminal device, or can be performed by a logic module or software that can implement all or part of the functions of the terminal device.
  • each control unit or device includes a hardware structure and/or software module corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the present application.
  • the embodiment of the present application can divide the functional modules of the device according to the above method example.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the embodiment of the present application also provides a device for implementing any of the above methods, for example, a device is provided including units (or means) for implementing each step in any of the above methods.
  • Figure 9 is a schematic diagram of the structure of an information transmission device 900 provided in an embodiment of the present application.
  • the information transmission device 900 shown in Figure 9 can be the master node in any embodiment of the above-mentioned information transmission method, or can be a module (for example, a chip) in the master node, or can be a logic module or software that can implement all or part of the functions of the master node.
  • the information transmission device 900 is used to implement the operations implemented by the master node in any embodiment of the above-mentioned information transmission method.
  • the information transmission device 900 may include an acquisition unit 901 and a sending unit 902. Among them:
  • the acquisition unit 901 is used to obtain a conditional primary and secondary cell addition/change CPAC configuration set in a stored terminal device context; the CPAC configuration set includes one or more CPAC configurations associated with the failure of the secondary cell group SCG.
  • the sending unit 902 is used to send the CPAC configuration set to the secondary node.
  • the above-mentioned SCG failure is an SCG failure that occurs after the terminal device successfully executes the CPAC process and releases the CPAC configuration.
  • the information transmission device 900 further includes a receiving unit, configured to receive SCG failure information from a terminal device; the SCG failure information indicates SCG failure;
  • the acquisition unit 901 is specifically used for: the information transmission device 900 determines the CPAC configuration set in the local storage of the terminal device context based on the identification of the terminal device.
  • the above-mentioned CPAC configuration set includes a first CPAC configuration; the first CPAC configuration is obtained by the information transmission device 900 from a first message from a source auxiliary node; the first message is a auxiliary node change request message sent by the source auxiliary node.
  • the above-mentioned CPAC configuration set includes a second CPAC configuration; the second CPAC configuration is obtained by the information transmission device 900 from a second message from the source auxiliary node; the second message is a response message sent by the source auxiliary node based on the auxiliary node modification request of the information transmission device 900 before the information transmission device 900 sends the RRC configuration to the terminal device, and the RRC configuration is used to indicate the CPAC configuration of the terminal device.
  • the above-mentioned CPAC configuration set includes a third CPAC configuration; the third CPAC configuration is obtained by the information transmission device 900 from a third message from the source auxiliary node; the third message is a message initiated by the source auxiliary node after the information transmission device 900 sends the RRC configuration to the terminal device to request a change in the CPAC configuration, and the RRC configuration is used to indicate the CPAC configuration of the terminal device.
  • the above-mentioned SCG failure information includes first time information and/or second time information; the first time information indicates the time period between the terminal device receiving the command to add/change PA/PC to the primary and secondary cells and the terminal device detecting the SCG failure; the second time information indicates the time period between the terminal device receiving the command to add/change CPAC to the conditional primary and secondary cells and the terminal device detecting the SCG failure.
  • the sending unit 902 is further configured to: send the first time information and/or the second time information to the secondary node.
  • each unit in the information transmission device 900 shown in FIG. 9 can be found in the corresponding descriptions in the above-mentioned FIG. 3A to FIG. 8 and their possible implementations, and will not be repeated here.
  • Figure 10 is a schematic diagram of the structure of an information transmission device 1000 provided in an embodiment of the present application.
  • the information transmission device 1000 shown in Figure 10 may be an auxiliary node in any embodiment of the above-mentioned information transmission method, or may be a module (for example, a chip) in the auxiliary node, or may be a logic module or software that can implement all or part of the functions of the auxiliary node.
  • the information transmission device 1000 is used to implement the operations implemented by the auxiliary node in any embodiment of the above-mentioned information transmission method.
  • the information transmission device 1000 may include a receiving unit 1001 and an adjustment unit 1002. Wherein:
  • a receiving unit 1001 is configured to receive a conditional primary and secondary cell addition/change CPAC configuration set from a master node; the CPAC configuration set includes one or more CPAC configurations associated with a secondary cell group SCG failure;
  • the adjusting unit 1002 is configured to adjust the mobility parameters based on the CPAC configuration set.
  • the above-mentioned SCG failure is an SCG failure that occurs after the terminal device successfully executes the CPAC process and releases the CPAC configuration.
  • the above-mentioned receiving unit 1001 is further used to: receive the first time information and/or the second time information from the master node; the first time information indicates the time period between when the terminal device receives the command to add/change PAC to the primary and secondary cells and when the terminal device detects the SCG failure; the second time information indicates the time period between when the terminal device receives the command to add/change CPAC to the conditional primary and secondary cells and when the terminal device detects the SCG failure;
  • the adjustment unit 1002 is specifically configured to adjust the mobility parameter based on the CPAC configuration set and the first time information and/or the second time information. number.
  • Figure 11 is a schematic diagram of the structure of an information transmission device 1100 provided in an embodiment of the present application.
  • the information transmission device 1100 shown in Figure 11 can be a terminal device in any embodiment of the above-mentioned information transmission method, or can be a module (for example, a chip) in the terminal device, or can be a logic module or software that can implement all or part of the functions of the terminal device.
  • the information transmission device 1100 is used to implement the operations implemented by the terminal device in any embodiment of the above-mentioned information transmission method.
  • the information transmission device 1100 may include a processing unit 1101 and a sending unit 1102. Among them:
  • Processing unit 1101 configured to determine that a secondary cell group SCG failure occurs
  • Sending unit 1102 used to send SCG failure information to the master node;
  • the SCG failure information includes first time information and/or second time information;
  • the first time information indicates the time period from when the UE receives the command to add/change PA/PC to the primary and secondary cells to when the UE detects the SCG failure, and
  • the second time information indicates the time period from when the information transmission device receives the command to add/change CPAC to the conditional primary and secondary cells to when the information transmission device detects the SCG failure;
  • the SCG failure information is used to adjust mobility parameters.
  • the above-mentioned SCG failure is an SCG failure that occurs after the UE successfully executes the PA/PC process, but before the CPAC execution is triggered; or, the SCG failure is an SCG failure that occurs after the UE is configured with CPAC and before the CPAC execution is triggered, but the UE is configured to execute the PA/PC process, and after the PA/PC execution fails or succeeds.
  • the above-mentioned SCG failure information also includes a conditional primary and secondary cell addition/change CPAC configuration set; the CPAC configuration set includes one or more CPAC configurations associated with the SCG failure.
  • the information transmission device 1200 may include a processor 1201, a memory 1202, a transceiver 1203 and a bus 1204.
  • the memory 1202 may exist independently and may be connected to the processor 1201 via the bus 1204.
  • the memory 1202 may also be integrated with the processor 1201.
  • the bus 1204 is used to realize the connection between these components.
  • the transceiver 1203 may include a transmitter 12031, a receiver 12032 and an antenna 12033.
  • the transceiver 1203 may include a transmitter (i.e., an output interface) and a receiver (i.e., an input interface).
  • the transmitter may include a transmitter and an antenna
  • the receiver may include a receiver and an antenna.
  • the transceiver 1203 is used to cooperate with the processor 1201 to implement the receiving and sending operations of the master node in the above-mentioned embodiment.
  • the operations performed by the auxiliary node in the above-mentioned embodiment can be implemented.
  • the transceiver 1203 is used to cooperate with the processor 1201 to implement the receiving and sending operations of the auxiliary node in the above-mentioned embodiment.
  • the operations performed by the terminal device in the above-mentioned embodiment can be implemented.
  • the transceiver 1203 is used to cooperate with the processor 1201 to implement the receiving and sending operations of the terminal device in the above-mentioned embodiment.
  • the embodiment of the present application also provides a chip, which includes a processor and a memory.
  • the memory is used to store a computer program or computer instructions
  • the processor is used to execute the computer program or computer instructions stored in the memory, so that the chip performs the operations performed by the master node in the above-mentioned Figures 3A to 8 and their possible implementations.
  • the chip performs the operations performed by the auxiliary node in the above-mentioned Figures 3A to 8 and their possible implementations.
  • the chip performs the operations performed by the terminal device in the above-mentioned Figures 3A to 8 and their possible implementations.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program or computer instruction, which is executed by a processor to implement the method implemented by the master node in the above-mentioned Figures 3A to 8 and possible implementations thereof.
  • the computer program or computer instruction is executed by a processor to implement the method implemented by the auxiliary node in the above-mentioned Figures 3A to 8 and possible implementations thereof.
  • the computer program or computer instruction is executed by a processor to implement the method implemented by the terminal device in the above-mentioned Figures 3A to 8 and possible implementations thereof.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product is read and executed by a computer
  • the method implemented by the master node in the above-mentioned Figures 3A to 8 and their possible implementations will be executed.
  • the method implemented by the auxiliary node in the above-mentioned Figures 3A to 8 and their possible implementations will be executed.
  • the method implemented by the terminal device in the above-mentioned Figures 3A to 8 and their possible implementations will be executed.
  • the present application also provides a communication system, which includes a master node and a slave node.
  • the master node may be
  • the auxiliary node may be the auxiliary node described in Figures 3A to 8 and possible implementations thereof.
  • the communication system further includes a terminal device.
  • the terminal device may be the terminal device described in FIG. 3A to FIG. 8 and possible implementations thereof.
  • first, second, etc. are used to distinguish between identical or similar items with substantially the same effects and functions. It should be understood that there is no logical or temporal dependency between “first”, “second”, and “nth”, nor is there a limitation on the quantity and execution order. It should also be understood that although the following description uses the terms first, second, etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another.
  • the size of the serial number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • references to “one embodiment”, “an embodiment”, or “a possible implementation” throughout the specification mean that specific features, structures, or characteristics related to the embodiment or implementation are included in at least one embodiment of the present application. Therefore, the references to “in one embodiment” or “in an embodiment”, or “a possible implementation” throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the terminal device and/or the network device can perform some or all of the steps in the embodiment of the present application, and these steps or operations are only examples. In the embodiment of the present application, other operations or variations of various operations can also be performed. In addition, each step can be performed in a different order presented in the embodiment of the present application, and it is possible not to perform all the operations in the embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种信息传输方法及装置,该方法包括:主节点在已存储的终端设备上下文中获取条件主辅小区添加/变更CPAC配置集合;该CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置;该主节点向辅节点发送该CPAC配置集合。本申请实施例中,可以基于CPAC配置准确分析SCG失败的原因,从而优化与SCG失败相关的移动性参数,减少SCG失败的概率,提升终端设备进行双连接通信的质量。

Description

信息传输方法及装置
本申请要求在2022年11月3日提交中国国家知识产权局、申请号为202211371257.9的中国专利申请的优先权,发明名称为“信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及信息传输方法及装置。
背景技术
在辅小区组(secondary cell group,SCG)失败场景中,如果主小区组(master cell group,MCG)的传输没有挂起,终端设备上报SCG失败信息给主节点(master node,MN)。MN基于收到的SCG失败信息决定指示UE保留、变更或者释放辅节点(secondary node,SN)。另外,SCG失败信息记录了SCG失败的问题信息,MN根据SN配置和SCG失败类型将SCG失败信息发送给可能的导致SCG失败发生的问题节点(如源SN或者候选SN)。问题节点可以基于SCG失败信息进行最终的根因分析,及执行SN的移动性参数优化。但是,目前针对SCG失败信息进行根因分析的应用场景有限,无法满足网络中出现的越来越多的SCG失败场景的根因分析需求。
发明内容
本申请提供一种信息传输方法及装置,可以准确分析SCG失败的原因从而优化与SCG失败相关的移动性参数,减少SCG失败的概率。
第一方面,本申请公开了一种信息传输方法,该信息传输方法可以应用于主节点,或者可以应用于主节点中的模块(例如,芯片),或者可以应用于能实现全部或部分主节点功能的逻辑模块或软件。下面以应用于主节点为例进行描述。该信息传输方法包括:主节点在已存储的终端设备上下文中获取条件主辅小区添加/变更CPAC配置集合;CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置;主节点向辅节点发送CPAC配置集合。
作为一种可能的实施方式,上述SCG失败为终端设备成功执行CPAC流程并释放了CPAC配置之后发生的SCG失败。
本实施方式中,在CPAC应用场景下,主节点可以将为终端设备配置的CPAC配置集合存储在该终端设备的上下文中。在该终端设备检测到发生SCG失败并通知主节点后,主节点可以将从该终端设备的上下文中获得的CPAC配置作为SCG失败信息的一部分发送给辅节点。使得辅节点可以基于该接收到的CPAC配置准确分析SCG失败的具体原因。例如,可以基于该CPAC配置分析是否是因为触发条件不合理导致的SCG失败等等。进而可以适当地调整与该SCG失败相关的移动性参数,优化网络侧的CPAC配置等,以减少SCG失败的概率,提升终端设备进行双连接通信的质量。
作为一种可能的实施方式,上述方法还包括:主节点接收来自终端设备的SCG失败信息;SCG失败信息指示SCG失败;主节点在本地存储中获取条件主辅小区添加/变更CPAC配置集合,包括:主节点基于终端设备的标识在终端设备上下文本地存储中确定CPAC配置集合。
本实施方式中,上述存储了为终端设备配置的CPAC配置集合的终端设备上下文与该终端设备的标识关联绑定。在发生SCG失败后,终端设备可以通过向主节点发送SCG失败信息来通知主节点发生了SCG失败。主节点接收该终端设备的SCG失败信息后,可以基于该终端设备的标识检索到该终端设备的上下文,进而查找到该CPAC配置集合。本方案中通过将CPAC配置集合存储到终端设备的上下文中,可以使得主节点可以基于终端设备的标识快速查找到该CPAC配置集合,以便于快速对SCG失败做出响应,提高SCG失败原因分析的效率。
作为一种可能的实施方式,上述CPAC配置集合包括第一CPAC配置;第一CPAC配置为主节点从来自源辅节点的第一消息中获得的;第一消息是源辅节点发送的辅节点变更请求消息。
本实施方式中,主节点可以从源辅节点发送的辅节点变更请求消息中获得上述第一CPAC配置并存储,以便于后续发生SCG失败后可以及时调取该第一CPAC配置用于分析SCG失败的原因。
作为一种可能的实施方式,上述CPAC配置集合包括第二CPAC配置;第二CPAC配置为主节点从来自 源辅节点的第二消息中获得的;第二消息为主节点向终端设备发送RRC配置前,源辅节点基于主节点的辅节点修改请求发送的响应消息,RRC配置用于指示终端设备的CPAC配置。
本实施方式中,主节点可以主动请求变更为终端设备配置的辅节点。源辅节点基于该请求变更配置给该终端设备的CPAC配置后发送给主节点。主节点获得该变更后的CPAC配置(即上述第二CPAC配置)并存储,以便于后续发生SCG失败后可以及时调取该第二CPAC配置用于分析SCG失败的原因。
作为一种可能的实施方式,上述CPAC配置集合包括第三CPAC配置;第三CPAC配置为主节点从来自源辅节点的第三消息中获得的;第三消息为主节点向终端设备发送了RRC配置后的源辅节点发起的请求变更CPAC配置的消息,RRC配置用于指示终端设备的CPAC配置。
本实施方式中,在主节点向终端设备发送了RRC配置后,源辅节点还可以请求变更配置给该终端设备的CPAC配置,并把变更后的CPAC配置(即上述第三CPAC配置)发送给主节点。主节点获得该第三CPAC配置并存储,以便于后续发生SCG失败后可以及时调取该第三CPAC配置用于分析SCG失败的原因。
作为一种可能的实施方式,上述SCG失败信息包括第一时间信息和/或第二时间信息;第一时间信息指示终端设备接收到主辅小区添加/变更PA/PC的命令至终端设备检测到SCG失败之间的时间段;第二时间信息指示终端设备接收到条件主辅小区添加/变更CPAC的命令至终端设备检测到SCG失败之间的时间段。
本实施方式中,针对PA/PC和CPAC混合的场景下,终端设备向主节点发送的SCG失败信息还包括对应的时间信息。使得主节点或问题辅节点可以基于该接收到的时间信息准确分析SCG失败的具体原因。例如,可以基于该时间信息分析是否是因为PA/PC和CPAC混合的场景下,该两种流程中终端设备触发执行PA/PC或触发执行CPAC的时间不合理导致的SCG失败等等。进而可以适当地调整与该SCG失败相关的移动性参数,优化网络侧的PA/PC配置或CPAC配置等,以减少SCG失败的概率。
作为一种可能的实施方式,上述方法还包括:主节点向辅节点发送第一时间信息和/或第二时间信息,从而,辅节点可以基于该接收到的时间信息分析SCG失败的具体原因。
第二方面,本申请公开了一种信息传输方法,该信息传输方法可以应用于辅节点,或者可以应用于辅节点中的模块(例如,芯片),或者可以应用于能实现全部或部分辅节点功能的逻辑模块或软件。下面以应用于辅节点为例进行描述。该信息传输方法包括:辅节点接收来自主节点的条件主辅小区添加/变更CPAC配置集合;CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置;辅节点基于CPAC配置集合调整移动性参数。
作为一种可能的实施方式,上述SCG失败为终端设备成功执行CPAC流程并释放了CPAC配置之后发生的SCG失败。
本实施方式中,在CPAC应用场景下,发生SCG失败后,辅节点可以从主节点获得该SCG失败关联的CPAC配置,使得辅节点可以基于该接收到的CPAC配置准确分析SCG失败的具体原因。例如,可以基于该CPAC配置分析是否是因为触发条件不合理导致的SCG失败等等,进而可以适当地调整移动性参数,优化网络侧的CPAC配置等,以减少SCG失败的概率,提升终端设备进行双连接通信的质量。
作为一种可能的实施方式,上述方法还包括:辅节点接收来自主节点的第一时间信息和/或第二时间信息;第一时间信息指示终端设备接收到主辅小区添加/变更PAC的命令至终端设备检测到SCG失败之间的时间段;第二时间信息指示终端设备接收到条件主辅小区添加/变更CPAC的命令至终端设备检测到SCG失败之间的时间段;辅节点基于CPAC配置集合调整移动性参数,包括:辅节点基于CPAC配置集合,和第一时间信息和/或第二时间信息调整移动性参数。
本实施方式中,说的是辅节点从主节点接收到的SCG失败信息除了包括CPAC配置集合还包括对应的时间信息(适用在PA/PC和CPAC混合的场景)。使得辅节点可以基于该接收到的CPAC配置集合和时间信息分析SCG失败的具体原因,以便于更准确地找到SCG失败的原因,进而可以适当地调整移动性参数,优化网络侧的CPAC配置等,以减少SCG失败的概率,提升终端设备进行双连接通信的质量。
第三方面,本申请公开了一种信息传输方法,该信息传输方法可以应用于终端设备,或者可以应用于终端设备中的模块(例如,芯片),或者可以应用于能实现全部或部分终端设备功能的逻辑模块或软件。下面以应用于终端设备为例进行描述。该信息传输方法包括:终端设备UE确定发生辅小区组SCG失败;终端设备向主节点发送SCG失败信息;SCG失败信息包括第一时间信息和/或第二时间信息;第一时间信息指示UE接收到主辅小区添加/变更PA/PC的命令至UE检测到SCG失败之间的时间段,第二时间信息指示终端设备接收到条件主辅小区添加/变更CPAC的命令至终端设备检测到SCG失败之间的时间段;SCG失败信息用于调整移动性参数。
作为一种可能的实施方式,上述SCG失败为UE成功执行PA/PC流程后,被配置了CPAC并且触发执行 CPAC前发生的SCG失败;或者,SCG失败为被配置了CPAC并且触发执行CPAC前,被配置执行PA/PC流程,并且在执行PA/PC失败或者成功之后发生的SCG失败。
本实施方式中,在PA/PC和CPAC混合的场景下,终端设备可以记录下上述第一时间信息和/或第二时间信息,并在发生SCG失败后将该时间信息发送给网络侧。以使得网络侧可以基于该接收到的时间信息分析SCG失败的具体原因。例如,可以基于该时间信息分析是否是因为PA/PC和CPAC混合的场景下,该两种流程中终端设备触发执行PA/PC或触发执行CPAC的时间不合理导致的SCG失败等等。采用本方案,可以更准确有效地分析出SCG失败的原因,进而可以适当地调整移动性参数,优化网络侧的PA/PC配置或CPAC配置等,以减少SCG失败的概率,提升终端设备进行双连接通信的质量。
作为一种可能的实施方式,上述SCG失败信息还包括条件主辅小区添加/变更CPAC配置集合;CPAC配置集合包括与SCG失败关联的一个或多个CPAC配置。
本实施方式中,在发生SCG失败后,终端设备还可以将CPAC配置集合发送给网络侧。使得网络侧可以基于该接收到的CPAC配置分析SCG失败的具体原因。例如,可以基于该CPAC配置分析是否是因为触发条件不合理导致的SCG失败等等。进而可以适当地调整移动性参数,优化网络侧的CPAC配置等,以减少SCG失败的概率。
第四方面,本申请公开了一种信息传输装置,该信息传输装置为主节点,或者为该主节点中的模块(例如,芯片),或者为能实现全部或部分主节点功能的逻辑模块或软件。该信息传输装置包括用于执行上述第一方面任一实施方式所述的方法的单元。
第五方面,本申请公开了一种信息传输装置,该信息传输装置为辅节点,或者为该辅节点中的模块(例如,芯片),或者为能实现全部或部分辅节点功能的逻辑模块或软件。该信息传输装置包括用于执行上述第二方面任一实施方式所述的方法的单元。
第六方面,本申请公开了一种信息传输装置,该信息传输装置为终端设备,或者为该终端设备中的模块(例如,芯片),或者为能实现全部或部分终端设备功能的逻辑模块或软件。该信息传输装置包括用于执行上述第三方面任一实施方式所述的方法的单元。
第七方面,本申请公开了一种信息传输装置,该装置包括处理器、存储器和收发器,收发器用于接收来自信息传输装置之外的其它通信装置的信息,以及向信息传输装置之外的其它通信装置输出信息,处理器调用存储器中存储的计算机程序使得该信息传输装置实现如上述第一方面任一实施方式所述的方法。
第八方面,本申请公开了一种信息传输装置,该装置包括处理器、存储器和收发器,收发器用于接收来自信息传输装置之外的其它通信装置的信息,以及向信息传输装置之外的其它通信装置输出信息,处理器调用存储器中存储的计算机程序使得该信息传输装置实现如上述第二方面任一实施方式所述的方法。
第九方面,本申请公开了一种信息传输装置,该装置包括处理器、存储器和收发器,收发器用于接收来自信息传输装置之外的其它通信装置的信息,以及向信息传输装置之外的其它通信装置输出信息,处理器调用存储器中存储的计算机程序使得该信息传输装置实现如上述第三方面任一实施方式所述的方法。
第十方面,本申请公开了一种通信系统,该通信系统包括主节点、辅节点,其中,主节点用于执行上述第一方面任一实施方式所述的方法,辅节点用于执行上述第二方面任一实施方式所述的方法。
作为一种可能的实施方式,所述通信系统还包括终端设备,所述终端设备用于执行上述第三方面任一实施方式所述的方法。
第十一方面,本申请公开了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令被处理器运行时,实现如上述各方面公开的任一实施方式所述的信息传输方法。
第十二方面,本申请公开了一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被处理器执行时,使得芯片执行上述各方面公开的任一实施方式所述的信息传输方法。
作为一种可能的实施方式,存储器位于芯片之外。
第十三方面,本申请公开了一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被处理器运行时,使得上述各方面公开的任一实施方式所述的信息传输方法被执行。
上述第四方面至第十三方面提供的方案,用于实现或配合实现上述第一方面、第二方面或第三方面中对应提供的方法,因此可以与第一方面、第二方面或第三方面中对应的方法达到相同或相应的有益效果,此处不再进行赘述。
附图说明
图1所示为本申请实施例提供的网络架构示意图;
图2所示为本申请实施例提供的NR协议栈的示意图;
图3所示为本申请实施例提供的MR-DC场景下控制面的架构图示意图;
图3A所示为本申请实施例提供的一种信息传输方法的流程示意图;
图4-图8所示为本申请实施例提供的另一种信息传输方法的流程示意图;
图9-图12所示为本申请实施例提供的信息传输装置的结构示意图。
具体实施方式
本申请实施例中,“多个”是指两个或两个以上。本申请实施例中,“和/或”用于描述关联对象的关联关系,表示可以独立存在的三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,或同时存在A和B。本申请实施例中采用的诸如“a1、a2、……和an中的至少一项(或至少一个)”等的描述方式,包括了a1、a2、……和an中任意一个单独存在的情况,也包括了a1、a2、……和an中任意多个的任意组合情况,每种情况可以单独存在;例如,“a、b和c中的至少一项”的描述方式,包括了单独a、单独b、单独c、a和b组合、a和c组合、b和c组合,或abc三者组合的情况。本申请实施例中,A/B可以表示A或B。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,各个实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
下面结合附图对本申请实施例进行示例性介绍。
参见图1,示例性示出了本申请实施例适用的网络架构100。在该网络架构100中,包括终端设备110、网络设备120、网络设备130和核心网设备140。
终端设备110可以和网络设备120以及网络设备130通信。该网络设备120和网络设备130为无线接入网(radio access network,RAN)设备。终端设备110通过网络设备120和网络设备130接入核心网设备140。
上述终端设备(终端设备110)又可以称之为用户设备(user equipment,UE)、用户台(subscriber station,STA)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供数据连通性的设备。终端设备可以具备无线收发功能。示例性地,终端设备可以为手持终端、甚小口径终端(very small aperture terminal,VSAT)、笔记本电脑、客户终端设备(customer premise equipment,CPE)笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)、无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、可穿戴设备(如智能手表、智能手环、计步器等)、车载设备(如汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(如冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程医疗(telemedicine)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、飞行设备(如智能机器人、热气球、无人机、飞机等)或其他可以接入网络的设备。本申请对终端设备所采用的具体技术和具体设备形态不做限定。该终端设备可以具有一个或多个用户身份模块(subscriber identity module,SIM)卡。
上述网络设备(网络设备120或网络设备130)可以是为终端设备提供无线接入的设备,例如可以是基站或其他RAN设备。示例性地,该网络设备可以为新无线(new radio,NR)系统中的下一代节点B(next generation NodeB,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)或接入回传一体化(integrated access and backhaul,IAB)设备等。
另外,在一种网络结构中,上述网络设备可以为包括集中单元(centralized unit,CU)、或分布单元(distributed unit,DU)、或包括CU和DU的RAN设备。包括CU和DU的网络设备中的部分协议层的功能放在CU集中控制,剩下的部分或全部协议层的功能分布在DU中,由CU集中控制DU。为了便于理解,可以参见图2,示例性示出了一种NR协议栈的示意图。
如图2中的(a)所示,CU部署有无线资源控制(radio resource control,RRC)层、业务数据适应协议 (service data adaptation protocol,SDAP)层以及分组数据汇聚协议(packet data convergence protocol,PDCP)层。DU部署有无线链路控制(radio link control,RLC)层,媒体接入控制(media access control,MAC)层以及物理层(physical layer,PHY)。因此,CU具有RRC层、SDAP层和PDCP层的处理能力。DU具有RLC层、MAC层和PHY层的处理能力。
应理解,上述功能的切分仅为一个示例,不构成对CU和DU的限定。也就是说,CU和DU之间还可以有其他功能切分的方式,在此不作限定。
一种可能的实现中,CU的功能可以由一个实体来实现也可以由不同的实体实现。如图2中的(b)所示,可以对CU的功能进一步进行切分。例如,可以将CU中的控制面(control plane,CP)和用户面(user plane,UP)分离,得到CU的控制面(CU-CP)和CU的用户面(CU-UP)。示例性地,CU-CP和CU-UP可以由不同的功能实体来实现,CU-CP和CU-UP可以与DU相耦合,共同完成接入网设备的功能。
一种可能的方式中,CU-CP负责控制面功能,主要负责RRC和PDCP-C的功能。PDCP-C主要负责控制面数据的加解密、完整性保护、数据传输等。CU-UP负责用户面功能,主要负责SDAP和PDCP-U的功能。SDAP主要负责将核心网的数据进行处理并将数据流(flow)映射到承载。PDCP-U主要负责数据面的加解密、完整性保护、头压缩、序列号维护、数据传输等。CU-CP和CU-UP之间可以通过E1接口连接。CU-CP可以通过下一代(next generation,NG)接口和核心网设备连接。DU与CU-CP之间可以通过F1-C接口连接。DU与CU-UP之间可以通过F1-U接口连接。还有一种可能的实现是PDCP-C也在CU-UP。
一种可能的实时方式中,CU-CP可以分为CU-CP1和CU-CP2。其中CU-CP1包括各种无线资源管理功能,CU-CP2仅包括PDCP-C功能(即控制面信令在PDCP层的基本功能)。
上述核心网设备(核心网设备140)例如可以是第四代(4th-generation,4G)通信系统的核心网即演进型分组核心网(evolved packet core,EPC)中的移动管理实体(mobility management entity,MME)和/或服务网关(serving gateway,S-GW);或者,可以是5G核心网(5G core,5GC)中的接入和移动管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元等中的一个或多个。此处仅为示例,不够成对本申请实施例的限制。
一种可能的实现中,上述终端设备110与网络设备120,以及与网络设备130之间可以通过Uu接口连接。网络设备120与网络设备130之间可以通过Xn接口连接。网络设备120与核心网设备140之间可以通过NG接口连接。网络设备130与核心网设备140之间也可以通过NG接口连接。
需要说明的是,图1所示的网络架构100中不限于仅包括图中所示的终端设备、网络设备和核心网,还可以包括其它未在图中示出的终端设备、网络设备和核心网设备,具体本申请在此处不再一一列举。
上述网络架构100可以应用于长期演进(long term evolution,LTE)系统,也可以应用于NR系统,以及第六代(6th-generation,6G)等5G之后演进的通信系统。网络架构100可以应用于非陆地通信网络(non-terrestrial network,NTN)系统,窄带物联网系统(narrow band-internet of things,NB-IoT)等多种通信场景。
为了便于理解本申请提供的技术方案,下面先对本申请实施例的相关技术进行描述。
1、多模双连接(multi-radio dual connectivity,MR-DC)。
在无线网络中,一个终端设备可以和多个网络设备通信,即双连接(dual-connectivity,DC),也称为MR-DC。例如,上述图1所示的网络架构中,终端设备110可以与网络设备120以及网络设备130通信。即图1所示的终端设备110与网络设备120以及网络设备130之间的连接即为多模双连接。
与终端设备通信的多个网络设备可以是属于同一无线接入技术(radio access technology,RAT)的网络设备。示例性的,网络设备120以及网络设备130都是LTE网络设备例如eNB,或者都是NR网络设备例如gNB。或者,该多个网络设备可以是不同RAT的网络设备,示例性的,网络设备120是eNB,且网络设备130是gNB。
网络侧可以利用该多个网络设备的资源为该终端设备提供通信服务,从而为终端设备提供高速率传输。双连接场景中,与核心网有控制面信令交互的网络设备称为主节点(master node,MN),其他网络设备称为辅节点(secondary node,SN),此外,MN和/或SN可以与核心网有用户面连接。为了便于理解,可以参见图3,示例性示出了MR-DC场景下控制面的架构图。如图3所示,终端设备310通过Uu接口分别连接MN 320以及SN 330。MN 320通过NG-C接口与核心网设备340连接。该NG-C接口中的“C”表示控制的意思,即NG-C接口为控制面接口。MN 320和SN 330之间通过Xn-C接口连接。同样的,该Xn-C接口为控制面 接口。Xn-C接口支持以下功能:Xn接口管理;终端设备移动性管理,包括上下文传输和RAN寻呼;以及双连接。示例性地,该终端设备310例如可以是上述图1所示的终端设备110,该MN 320例如可以是上述图1所示的网络设备120,该SN例如可以是图1所示的网络设备130。
MR-DC包括各种类型的DC,例如包括演进的通用陆基无线接入与新无线双连接(E-UTRA New Radio Dual Connectivity,EN-DC),下一代无线接入网(NG Radio Access Network,NG-RAN)和演进的通用陆基无线接入-新无线(Evolved Universal Terrestrial Radio Access-New Radio,E-UTRA-NR)的双连接(NG-RAN E-UTRA-NR Dual Connectivity,NGEN-DC),NR和E-UTRA的双连接(NR-E-UTRA Dual Connectivity,NE-DC)和NR双连接(New Radio-Dual Connectivity,NR-DC)。其中:
EN-DC中,MN为连接到EPC的LTE网络设备;SN为NR网络设备。EN-DC有时也称为非独立组网结构(non-standalone architecture,NSA)。
NGEN-DC中,MN为连接到5G核心网5GC的LTE网络设备NG-eNB,SN为NR网络设备。
NE-DC中,MN为连接到5GC的NR网络设备,SN为LTE网络设备。
NR-DC中,MN为连接到5GC的NR网络设备,SN为NR网络设备。
一种可能的实现中,SN的用户面可以和MN连接的核心网有连接,例如,核心网可以直接通过SN给终端设备发送数据。
MR-DC的场景下,MN中存在一个主小区(primary cell,PCell),SN中存在一个主辅小区(primary secondary cell,PSCell)。主小区是指部署在主频点,且终端设备在小区发起初始连接建立过程、发起连接重建过程或者在切换过程中指示为主小区的小区。主辅小区是指终端设备在SN发起随机接入过程的小区,或者是指当终端设备在SN改变过程中跳过随机接入过程发起数据传输的小区,或者是指执行同步的重配过程中发起随机接入的SN的小区。
终端设备在一个网络设备下可以同时接收多个小区的服务。MN为终端设备提供的服务小区组(包括一个或多个小区)可以称为主小区组(master cell group,MCG)。SN为终端设备提供的服务小区组(包括一个或多个小区)称为辅小区组(secondary cell group,SCG)。若MCG仅包括一个小区,该小区为终端设备的主小区PCell。若SCG中仅包括一个小区,该小区为终端设备的主辅小区PSCell。NR中为了归一化各种名词,将PCell和PSCell统称为特别小区(special cell,SpCell)。若MCG或SCG中包括多个小区,除了SpCell的小区称为辅小区(secondary cell,SCell)。辅小区是工作在辅载波上的小区。一旦RRC连接建立,辅小区就可以被配置以提供额外的无线资源。在MCG或SCG中包括多个小区情况下,各个小区组中的SCell与SpCell可以进行载波聚合(carrier aggregation,CA),共同为终端设备提供传输资源。
另外,双连接场景中,MN和SN都具有RRC实体,都可以产生RRC消息。例如,如图3所示,SN和终端设备之间可以通过信令无线承载3(signaling radio bearer 3,SRB3)直接传输RRC消息。或者,SN和终端设备之间传输的RRC消息可以经由MN转发。
可以理解的是,本申请实施例以双连接为例进行描述,在具体实现中可以扩展到多连接的场景。在多连接场景中,可以有一个MCG和两个以上SCG,或者也有多个MCG和多个SCG,本申请实施例对此不作限定。
2、主辅小区的添加/变更(PSCell Addition/Change,PA/PC)。
在MR-DC中,网络侧会触发PSCell的添加。PSCell的添加是由MN触发的。另外,由于终端设备的移动性,网络侧会触发PSCell的变更(即网络侧指示终端设备,从一个PSCell切换到另外一个PSCell)。该PSCell变更可以是MN触发,也可以是SN触发。示例性地,网络侧可以基于终端设备上报的测量结果,确定一个PSCell的信号质量变差,而另外一个PSCell的信号质量变好的情况下,通知终端设备进行PScell变更。PSCell变更可以是从一个SN的小区切换到另外一个SN的小区,或者,可以是从一个SN的小区切换到该SN的另外一个小区。
3、条件主辅小区的添加/变更(conditional PSCell addition/change,CPAC)。
在MR-DC中,把条件切换(conditional handover,CHO)技术与PA/PC技术结合可以衍生出CPAC技术。具体的,CPAC是把CHO技术应用于PSCell的添加或变更中。由此可见,网络侧配置终端设备进行PSCell添加或变更的机制有两种。一种是普通PSCell添加或变更(即上述PA/PC),另一种是条件PSCell添加或变更(即上述CPAC)。
上述普通PSCell添加或变更,也可以简称为PSCell添加或变更。该机制中可以由网络侧指定一个目标PSCell,终端设备接收到网络侧的配置后,立即执行和目标PSCell之间的PSCell添加或变更流程。
上述CPAC包括条件主辅小区的添加(conditional PSCell addition,CPA)和条件主辅小区的变更 (conditional PSCell change,CPC)。该机制中,与CHO类似,网络侧可以提前准备一个或多个候选PSCell,然后,向终端设备发送CPA配置或CPC配置,可以统一称为CPAC配置。CPAC配置包括该一个或多个候选PSCell的SCG配置和对应的触发条件。终端设备接收到CPAC配置之后,当一个或多个候选PSCell满足对应的触发条件时,终端设备可以确定其中一个候选PSCell为目标PSCell,执行和该目标PSCell的接入流程,该流程可以称为候选PSCell的CPA或CPC流程。
下面分情况介绍CPA和CPC这两种实现过程。
1)CPA的实现过程。
终端设备没有配置SN,即没有源SN(source secondary node,S-SN)的情况下,该终端设备的CPA由MN触发。具体的,MN可以向一个或多个候选SN发送SN添加请求。若候选SN允许准入,则为终端设备预留好无线资源并反馈确认(Acknowledge,ACK)消息给MN。MN向终端设备发送包括CPA配置的消息。该消息包含了所有候选SN的无线空口配置和触发条件。终端设备反馈RRC重配置完成消息给MN,以指示成功接收CPA配置。但是,终端设备接收到该包括CPA配置的消息后,先持续判断有无目标PSCell满足触发条件,当终端设备检测到有候选PSCell满足了对应的触发条件,终端设备反馈RRC重配置完成消息给MN,向MN指示该选择的候选PSCell。MN向该选择的候选PSCell对应的SN反馈RRC重配置完成消息。MN向其他候选SN发送SN释放消息,以告知这些SN释放预留资源和缓存数据。终端设备向选择的候选PSCell执行随机接入。
2)CPC的实现过程。
若终端设备已配置了SN,该SN即为源SN,则该终端设备的CPC可以是MN触发,也可以是该源SN触发。以该源SN触发的CPC为例介绍。如果是源辅节触发的CPC,源SN向MN发送SN变更请求,指示一个或多个候选PSCell及其触发条件。MN向该一个或多个候选PSCell对应的候选SN发送SN添加请求。候选SN若允许准入,则为终端设备预留好无线资源并反馈ACK消息给MN。MN向终端设备发送包括CPC配置的消息。该消息包含了该一个或多个候选PSCell的SCG配置和对应的触发条件。终端设备反馈RRC重配置完成消息给MN,以指示成功接收CPC配置。终端设备接收到该包括CPC配置的消息后,持续判断有无目标PSCell满足触发条件,当终端设备检测到有候选PSCell满足了对应的触发条件,终端设备反馈RRC重配置完成消息给MN,向MN指示该选择的候选PSCell。MN向该选择的候选PSCell对应的SN反馈RRC重配置完成消息。MN向源SN发送SN释放消息以告知源SN停止与终端设备的数传,并与选择的候选PSCell对应的SN之间执行数据转移。MN向其他候选SN发送SN释放消息,以告知这些候选SN释放预留资源和缓存数据。终端设备向选择的候选PSCell执行随机接入。
可以理解的是,上述所说的PSCell的添加(PA)由MN触发,或上述所说的CPA由MN触发指的是:实现PA或CPA的整个流程是由MN触发。在实现CPA的流程中,当终端设备判断出有候选PSCell满足触发条件后,会触发CPA执行。此时的CPA触发与前述的CPA流程的触发不同。在后续描述中,触发CPA执行(或CPA触发)指的是终端设备在判断出有候选PSCell满足触发条件后触发条件PSCell添加的操作。触发CPA流程(或CPA流程触发)指的是MN触发整个CPA流程的操作。
同理,上述所说的PSCell的变更(PC)由MN或SN触发,或上述所说的CPC由MN或SN触发发指的是:实现PC或CPC的整个流程是由MN或SN触发。在实现CPC的流程中,当终端设备判断出有候选PSCell满足触发条件后,会触发CPC执行。此时的CPC触发与前述的CPC流程的触发不同。在后续描述中,触发CPC执行(或CPC触发)指的是终端设备在判断出有候选PSCell满足触发条件后触发条件PSCell变更的操作。触发CPC流程(或CPC流程触发)指的是MN或SN触发整个CPC流程的操作。
另外,在CPA和CPC统称为CPAC的情况下,在后续描述中,触发CPAC执行(或CPAC触发)指的是终端设备在判断出有候选PSCell满足触发条件后触发条件PSCell添加/变更的操作。触发CPAC流程(或CPAC流程触发)指的是MN或SN触发整个CPAC流程的操作。
4、SCG失败。
SCG失败的场景可以包括如下场景:SCG无线链路失败(radio link failure,RLF)、SCG去激活时的SCG波束失败、SN添加/变更失败、SCG配置失败、CPAC配置失败、SCG RRC完整性校验失败、PSCell上发生的连续上行先听后发(listen before talk,LBT)失败、接入回传一体化移动通信中接收到来自SCG的回传RLF指示、CPA/CPC执行失败。
在出现SCG失败后,如果主小区组MCG的传输没有挂起,终端设备上报SCG失败信息(SCG failure information)给MN。MN基于收到的SCG失败信息指示终端设备保留、变更或者释放SN。SCG失败信息中记录了SCG失败的相关信息。如果MN可以进行初始分析,并且导致PSCell变更/添加失败的相关节点是SN, 例如可以是源SN或者目标SN,则MN将SCG失败信息与分析结果一起转发给该相关SN。否则,MN将SCG失败信息转发给上一个服务的SN。示例性地,若该SCG失败为SCG RLF,则该上一个服务的SN指的是发生RLF的服务SN。若该SCG失败为SN添加/变更失败,则该上一个服务的SN指的是源SN。一种可能的实现中,该上一个服务的SN接收到SCG失败信息后,可以使用SCG失败转移流程响应,通知MN它不是导致SCG失败的问题SN。
在本申请实施例中,问题节点指的是导致SCG失败的主节点或指的是导致SCG失败的辅节点(简称为问题SN)。该问题SN例如可以是源SN、目标SN或发生RLF的服务SN。问题节点接收到上述SCG失败信息后,可以基于该SCG失败信息分析SCG失败的原因并执行SN相关的移动性参数优化。
SCG失败信息可以包括如下内容中的一项或多项:SCG失败类型、可用的SCG测量结果、上一次PSCell变更的源主辅小区信息和失败的主辅小区信息。该失败的主辅小区信息可以是检测到发生SCG失败的主辅小区信息,或者可以是PSCell变更或者添加失败的目标主辅小区的信息。
5、SN移动性信息(SN mobility information)信元。
SN mobility information信元包括主辅小区变更(PSCell change)相关的信息,例如包括目标PSCell标识信息,和/或目标PSCell的配置信息。
一种可能的实现中,当源SN发起PSCell change时,源SN向MN发送的SN变更请求(SN change required)消息可以包含SN mobility information信元。
一种可能的实现中,MN向SN发送包含SCG失败信息报告(SCG failure information Report)的消息,当SN收到该消息时,可以获知PSCell变更失败。如果是源SN触发的PSCell change流程,SCG failure information Report可以包括SN mobility information信元。
基于上述的描述,SCG失败信息可以用于有效分析SCG失败的原因。但是,现有SCG失败信息仅记录了PA/PC流程中的相关信息(例如PA配置或PC配置等),没有记录CPAC流程中的相关信息(例如CPAC配置,或终端设备接收到CPAC配置的时间等等)。并且在CPAC流程中,触发CPAC执行成功后,终端设备会释放CPAC配置。若在终端设备释放CPC配置后发生SCG失败,UE也无法在SCG失败信息中携带CPAC配置信息上报给网络侧。因此,在CPAC场景下发生SCG失败后,仅基于现有的SCG失败信息还无法更有效地分析SCG失败的原因。为此,本申请提供了一种信息传输方法及装置,可以准确分析SCG失败的原因,减少SCG失败的概率。
示例性参见图3A,为本申请实施例提供的一种信息传输方法的流程示意图。该方法包括但不限于如下步骤:
S301、主节点在已存储的终端设备上下文中获取条件主辅小区添加/变更CPAC配置集合;该CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置。
S302、该主节点向辅节点发送该CPAC配置集合。
在本申请中,在CPAC的应用场景下,主节点可以将为上述终端设备配置的CPAC配置集合保存在该终端设备对应的上下文(context)中。以便于在终端设备检测到发生SCG失败,并向主节点发送SCG失败信息以告知主节点发生SCG失败后,主节点可以在该本地存储的该终端设备的上下文中获取对应的CPAC配置集合。并将该CPAC配置集合发送给问题SN,以便于该问题SN可以基于该CPAC配置集合更准确地分析出该SCG失败的原因,进而可以更好地实现SN移动鲁棒性优化,减少SCG失败的概率。该方法的具体实现可以示例性参见后面图6至图8中的描述,此处暂不详述。
另一种可能的实施方式中,对于PA/PC与CPAC混合出现的场景,这个场景下该PA/PC流程与CPAC流程之间的触发可能互相影响导致发生SCG失败,所以要记录对应的时间信息以用于分析SCG失败的原因。因此,终端设备可以获取第一时间信息和/或第二时间信息。该第一时间信息指示该终端设备接收到主辅小区添加/变更PA/PC的命令至该终端设备检测到该SCG失败之间的时间段。该第二时间信息指示该终端设备接收到条件主辅小区添加/变更CPAC的命令至该终端设备检测到该SCG失败之间的时间段。然后,在终端设备检测到发生SCG失败后,将该第一时间信息和/或第二时间信息作为送SCG失败信息的一部分发送给主节点。可选的,主节点还可以将该第一时间信息和/或第二时间信息发送给问题SN。以便于主节点或问题SN可以基于该第一时间信息和/或第二时间信息更准确分析出该SCG失败的原因,进而可以优化移动鲁棒性,减少SCG失败的概率,提升终端设备进行双连接通信的质量。该方法的具体实现可以示例性参见后面图6至图8中对应的描述,此处暂不详述。该实施例的具体实现可以参考后面图4和图5中的描述,此处暂不详述。
以上所述的PA/PC与上述CPAC混合场景下出现的SCG失败包括如下两种情况:
第一种情况:该PA/PC与上述CPAC混合场景下的SCG失败为:终端设备成功执行PA/PC流程后接收到CPC配置,并在CPC触发之前发生的SCG失败。
第二种情况:该PA/PC与上述CPAC混合场景下的SCG失败为:终端设备接收到CPA配置后,并在CPA触发前,接收到来自网络侧的PA指示并执行PA失败或执行PA成功后发生的SCG失败;或者,终端设备接收到CPC配置后,并在CPC触发前,接收到来自网络侧的PC指示并执行PC失败或执行PC成功后发生的SCG失败。
下面分别介绍在这两种情况下本申请实施例提供的信息传输方法。本申请提供的方法实施例以终端设备与网络设备为执行主体为例进行说明,其中,网络设备包括MN或候选SN。可以理解,该通信方法执行主体也可以为用于终端设备或网络设备的装置,例如芯片。
示例性参见图4,示出了上述第一种情况下本申请实施例提供的信息传输方法的流程示意图。在图4中,本申请实施例提供的信息传输方法包括但不限于如下步骤:
S401、MN或SN触发PA/PC流程。
在本申请实施例中,该PA流程指PSCell的添加(PSCell Addition)流程,该PC流程指PSCell的变更(PSCell Change)流程。在终端设备未配置有SN的情况下触发PSCell添加流程,在终端设备已经配置有SN的情况下触发PSCell变更流程。
在具体实现中,若终端设备没有配置SN(即没有源SN),则由MN触发PA流程。具体的,MN可以向候选SN(即第一SN)发送SN添加请求。该第一SN允许准入,并为终端设备预留好无线资源以及向MN发送ACK消息。
另一种可能的实现中,若终端设备已经配置有SN,那么,可以是MN或该SN触发PC流程。若由MN触发该PSCell变更流程,则MN可以向候选SN(例如图4中的第一SN)发送SN添加请求,该候选SN允许准入并向MN发送ACK消息。若由SN(图4中未画出)触发该PSCell变更流程,则该SN可以向MN发送SN变更请求。在该请求中指示了一个候选PSCell。MN基于该请求向候选PSCell对应的候选SN(例如图4中的第一SN)发送SN添加请求。该候选SN允许准入,并为终端设备预留好无线资源以及向MN发送ACK消息。
S402、MN向终端设备发送RRC重配置消息。
如上S401中所述,在MN向候选SN(例如第一SN)发送SN添加请求。MN接收到第一SN发送的ACK消息后,可以向终端设备发送RRC重配置消息。该RRC重配置消息中包括目标PSCell的SCG配置,用于指示终端设备执行该目标PSCell的添加或者向该目标PSCell变更,该目标PSCell为该第一SN为终端设备准备的小区。
S403、终端设备记录接收到RRC重配置的时间。
具体地,由于PA/PC与CPAC混合出现,记录该PA/PC流程中终端设备接收到RRC重配置消息的时间(简称为时间1)可以在出现SCG失败的情况下协助分析失败的原因。
S404、终端设备向MN发送RRC重配置完成消息,MN向第一SN发送该RRC重配置完成消息。
上述终端设备接收到RRC重配置消息后,可以向MN反馈一个RRC重配置完成消息,以指示成功接收了配置。MN也可以向第一SN反馈一个RRC重配置完成消息。
S405、终端设备执行PSCell添加或变更成功。
在具体实现中,上述终端设备接收到RRC重配置消息后,基于该消息中的目标PSCell的SCG配置立即执行向该目标PSCell的随机接入。该随机接入成功即为执行PSCell添加或变更成功。
S406、MN或SN触发CPAC流程。
具体地,上述PA/PC流程执行成功之后又触发了CPAC流程。其中,CPAC流程为CPA流程或者CPC流程。在终端设备未配置有SN的情况下触发的CPAC流程指的是CPA流程,在终端设备已经配置有SN的情况下触发的CPAC流程指的是CPC流程。
由于上述已经执行PA/PC流程成功,则为该终端设备配置的SN为上述第一SN。因此,此时触发的CPAC流程为CPC流程。并且,该CPC流程可以是MN或该第一SN触发。
S407、MN向一个或多个候选SN发送SN添加请求。
其中,所述一个或多个候选SN包括图4中的第二SN。
在一个实现方式中,若由MN触发该CPC流程,则MN可以向一个或多个候选PSCell分别对应的一个或多个候选SN发送SN添加请求。在另一个实现中,若由终端设备的SN(图4中的第一SN)触发该CPC流程,则该SN可以向MN发送SN变更请求。在该请求中指示了一个或多个候选PSCell及其触发条件。可选的,该 请求中还可以指示CPC的SCG测量配置。进而,MN可以向一个或多个候选PSCell分别对应的一个或多个候选SN发送SN添加请求。
S408、上述一个或多个候选SN向MN发送ACK消息。
上述一个或多个候选SN接收到来自MN的SN添加请求后,假设该一个或多个候选SN允许终端设备接入,则该一个或多个候选SN为终端设备预留好无线资源并反馈ACK消息给MN。
S409、MN向终端设备发送CPAC配置消息。
MN接收到上述一个或多个候选SN发送的ACK消息后,向终端设备发送CPAC配置消息。
CPAC配置消息为CPA配置消息或者CPC配置消息。在CPA流程中,CPAC配置指的是CPA配置。在CPC流程中,CPAC配置指的是CPC配置。由于上述触发的是CPC流程,因此,上述MN向终端设备发送的CPC配置消息中包括CPC配置。该CPC配置中包括上述一个或多个候选PSCell的SCG配置及其触发条件。该CPC配置中还可以包括CPC的SCG测量配置。
S410、终端设备记录接收到CPAC配置的时间。
在本申请实施例中,由于PA/PC与CPAC混合出现,记录该CPAC流程中终端设备接收到CPAC配置消息的时间(简称为时间2)可以在出现SCG失败的情况下协助分析失败的原因。
S411、终端设备检测到SCG失败。
在具体实现中,终端设备接收到该包括上述CPAC配置消息后,若检测到有一个候选PSCell满足了对应的触发条件,则触发执行CPAC。但是,若在CPAC触发之前,终端设备检测到该SCG失败,则终端设备可以记录下该检测到上述SCG失败的时间(简称为时间3)。该SCG失败可以是SCG RLF,或者可以是前述介绍的SCG失败场景中任意场景下的SCG失败,本申请实施例对此不做限制。
S412、终端设备向MN发送SCG失败信息。
上述终端设备检测到SCG失败之后,可以向MN发送SCG失败信息。
在本申请实施例中,该SCG失败信息还包括第一时间信息和/或第二时间信息。该第一时间信息指示该终端设备接收到PA/PC的命令至该终端设备检测到发生SCG失败之间的时间段(简称为第一时间段)。该第二时间信息指示该终端设备接收到CPAC的命令至该终端设备检测到该SCG失败之间的时间段(简称为第二时间段)。该终端设备接收到PA/PC的命令的时间指的是上述S403中终端设备接收到RRC重配置消息的时间(即上述时间1)。该RRC重配置消息即为该PA/PC的命令。该终端设备接收到CPAC的命令的时间指的是上述S409中终端设备接收到CPAC配置消息的时间(即上述时间2)。该CPAC配置消息即为该CPAC的命令。该两个时间已经被终端设备记录下来。基于该两个时间以及上述S410中记录的检测到SCG失败的时间(即上述时间3)可以计算得到该第一时间段和该第二时间段。
示例性的,上述向MN发送的第一时间信息可以包括上述时间1和上述时间3。MN接收到该两个时间后,可以计算出上述第一时间段。
示例性的,上述向MN发送的第二时间信息可以包括上述时间2和上述时间3。MN接收到该两个时间的信息后,可以计算出上述第二时间段。
示例性的,上述向MN发送的第一时间信息可以包括上述第一时间段。这种实现方式中MN接收到第一时间信息后无需进一步计算即可获得第一时间段。
示例性的,上述向MN发送的第二时间信息可以包括上述第二时间段。这种实现方式中MN接收到第二时间信息后无需进一步计算即可获得第二时间段。
一种可能的实现方式中,上述终端设备向MN发送SCG失败信息还可以包括上述MN向终端设备发送的CPAC配置。
一种可能的实现方式中,上述MN接收到上述SCG失败信息后进行初步分析,该MN基于分析SCG失败信息中的SCG失败类型和触发节点(上述S401和/或S406中触发对应流程的MN和/或SN)确定是否转发该SCG失败信息以及向哪个问题SN转发该SCG失败信息。该问题SN可以是源SN,或者可以是目标SN。该目标SN可以是发生SCG失败的SN,或者也可以是候选SN。若确定向问题SN发送SCG失败信息,那么MN可以将该SCG失败信息的部分或全部发送给问题SN。一种可能的实现中,MN可以将上述第一时间信息和/或第二时间信息发送给问题SN。使得问题SN可以基于该接收到的时间信息分析SCG失败的具体原因。例如,可以基于该时间信息分析是否是因为PA/PC和CPAC混合的场景下该两种流程中终端设备触发执行PA/PC或触发执行CPAC的时间不合理导致的SCG失败等等,进而可以适当地调整移动性参数。例如,可以调整MCG的无线链路监控(radio link monitoring,RLM)参数,波束失败检测(beam failure detection,BFD)参数,随机接入相关参数(例如随机接入消息最大传输次数、LBT连续失败最大次数),或者RLC重传最 大次数或间隔时间等参数。进而优化网络侧的PA/PC配置或CPAC配置等,以减少SCG失败的概率,提升终端设备进行双连接通信的质量。
示例性参见图5,示出了上述第二种情况下本申请实施例提供的信息传输方法的流程示意图。在图5中,本申请实施例提供的信息传输方法包括但不限于如下步骤:
S501、MN或SN触发CPAC流程。
基于上述的描述可知,CPAC流程为CPA流程或者CPC流程。
在具体实现中,若终端设备没有配置SN,则由MN触发CPA流程。
另一种可能的实现中,若终端设备已经配置有SN,那么,可以是MN或该SN触发CPC流程。
图5中关于CPAC流程可以是CPC流程,也可以是CPA流程,图中未明确标示终端设备配置有SN(即源SN)。
S502、MN向一个或多个候选SN发送SN添加请求。
其中,所述一个或多个候选SN包括图5中的第二SN。
若上述CPAC流程为CPA流程,则由MN触发。MN可以向一个或多个候选PSCell对应的一个或多个候选SN发送SN添加请求。
若上述CPAC流程为CPC流程,则由MN或SN触发。若由MN触发该CPC流程,则MN可以向一个或多个候选PSCell对应的一个或多个候选SN发送SN添加请求。若由终端设备的SN(例如图5中的第一SN)触发该CPC流程,则SN向MN发送SN变更请求。在该请求中指示了一个或多个候选PSCell及其触发条件。可选的,该请求中还可以指示CPC的SCG测量配置。然后,MN向该一个或多个候选SN发送SN添加请求。
S503、上述一个或多个候选SN向MN发送ACK消息。
上述一个或多个候选SN接收到来自MN的SN添加请求后,假设该一个或多个候选SN允许终端设备接入,则该一个或多个候选SN为终端设备预留好无线资源并反馈ACK消息给MN。
S504、MN向终端设备发送CPAC配置消息。
在CPA流程中,上述MN向终端设备发送的是CPA配置消息,该消息中包括CPA配置。该CPA配置中包括上述一个或多个候选PSCell的SCG配置及其触发条件。该CPA配置中还可以包括CPA的SCG测量配置。
在CPC流程中,上述MN向终端设备发送的是CPC配置消息,该消息中包括CPC配置。该CPC配置中包括上述一个或多个候选PSCell的SCG配置及其触发条件。该CPC配置中还可以包括CPC的SCG测量配置。
S505、终端设备记录接收到CPAC配置的时间。
在本申请实施例中,由于PA/PC与CPAC混合出现,记录该CPAC流程中终端设备接收到CPAC配置消息的时间(简称为时间4)可以在出现SCG失败的情况下协助分析失败的原因。
S506、MN或SN触发PA/PC流程。
在具体实现中,与CPAC同理,若终端设备没有配置SN,则由MN触发PA流程。
另一种可能的实现中,若终端设备已经配置有SN,那么,可以是MN或该SN触发PC流程。
S507、MN向终端设备发送RRC重配置消息,指示终端设备向目标PSCell执行PA/PC。
上述S505至S506的具体描述参见上述S401至S402中对应的描述,此处不赘述。
S508、终端设备记录接收到RRC重配置消息的时间。
在本申请实施例中,由于PA/PC与CPAC混合出现,记录该PA/PC流程中终端设备接收到RRC重配置消息的时间(简称为时间5)可以在出现SCG失败的情况下协助分析失败的原因。
S509、终端设备检测到SCG失败。
在具体实现中,终端设备接收到MN发送的RRC重配置消息后,检测到发生了SCG失败。
一种可能的实现中,该SCG失败可以是执行PA/PC流程失败。示例性地,该SCG失败可以是在该PA/PC流程中PSCell的添加或变更失败。另一种可能的实现中,该SCG失败可以是执行该PA/PC流程成功之后的预设时长内发生的SCG RLF。例如,可以在终端设备接入目标PSCell后,启动定时器,该定时器定时的时长为该预设时长,在定时器超期前发生RLF。可以理解的是,该预设时长可以根据实际情况设定,本申请实施例不做限制。示例性地,该RLF可以是终端设备与上述第一SN之间的RLF。或者,该SCG失败例如可以是前述介绍的SCG失败场景中任意场景下的SCG失败,本申请实施例对此不做限制。
上述终端设备检测到上述SCG失败之后,可以记录下该检测到上述SCG失败的时间(简称为时间6)。
S510、终端设备向MN发送SCG失败信息。
上述终端设备检测到SCG失败之后,可以向MN发送SCG失败信息。
在本申请实施例中,该SCG失败信息包括第一时间信息和/或第二时间信息。该第一时间信息和第二时 间信息的定义可以参考上述S412中对应的描述。在本实施例中,该终端设备接收到PA/PC的命令的时间指的是上述S507中终端设备接收到RRC重配置消息的时间(即上述时间5)。该终端设备接收到CPAC的命令的时间指的是上述S504中终端设备接收到CPAC配置消息的时间(即上述时间4)。该两个时间已经被终端设备记录下来。基于该两个时间以及上述S508中记录的检测到SCG失败的时间(即上述时间6)可以计算得到上述第一时间段和第二时间段。
一种可能的实现方式中,上述向MN发送的第一时间信息可以包括上述时间5和上述时间6。MN接收到该两个时间后,可以计算出上述第一时间段。
一种可能的实现方式中,上述向MN发送的第二时间信息可以包括上述时间4和上述时间6。MN接收到该两个时间的信息后,可以计算出上述第二时间段。
一种可能的实现方式中,上述向MN发送的第一时间信息可以包括上述第一时间段。这种实现方式中MN接收到第一时间信息后无需进一步计算即可获得第一时间段。
一种可能的实现方式中,上述向MN发送的第二时间信息可以包括上述第二时间段。这种实现方式中MN接收到第二时间信息后无需进一步计算即可获得第二时间段。
一种可能的实施方式中,上述终端设备向MN发送SCG失败信息还可以包括上述MN向终端设备发送的CPAC配置。
本申请实施例的有益效果可以参考上述图4中关于有益效果的对应描述,此处不赘述。
一种可能的实施方式中,上述图4或图5所示的信息传输方法中,MN向问题SN发送的SCG失败信息中还可以包括上述CPAC流程中的CPAC配置。示例性地,一种实现中,该CPAC配置可以是上述终端设备检测到SCG失败后,在本地获取从MN接收到的CPAC配置。在该实现方式中,因为发生SCG失败时还未执行CPAC流程成功,因此终端设备没有删除从MN接收到的CPAC配置,从而,能够将该CPAC配置作为SCG失败信息的一部分发送给了MN。因此,MN接收到该SCG失败信息之后,在向问题SN发送SCG失败信息时,可以把该CPAC配置也一起发送给问题SN。使得问题SN可以结合该CPAC配置更有效地分析SCG失败的原因。
或者,示例性地,另一种实现中,终端设备执行CPAC流程成功后检测到了SCG失败,终端设备删除从MN接收到的CPAC配置,因此无法将CPAC配置上报给MN,此时MN检索到本地保存的该CPAC配置。该CPAC配置在MN中可以是与上述终端设备的标识关联并存储在终端设备的上下文中。在MN在接收到上述来自终端设备的SCG失败信息之后,可以基于该终端设备的标识查找到该CPAC配置。然后,在向问题SN发送SCG失败信息时,可以把该CPAC配置也一起发送给问题SN。示例性地,关于MN在本地存储和查找CPAC配置的相关描述可以参见下面图6的S610中对应的描述,此处暂不详述。
一种可能的实施方式中,上述图4或图5所示的CPAC流程中,MN可以多次向终端设备发送CPAC配置。这种情况下,上述终端设备向MN发送的SCG失败信息中包括的CPAC配置可以包括从MN收到的多个CPAC配置。或者,上述与终端设备的标识关联存储到MN本地的CPAC配置可以包括为终端设备下发的多个CPAC配置。那么,在发生SCG失败后,MN向上述问题SN发送的CPAC配置也可以是为终端设备下发的多个CPAC配置。该具体的更新流程可以示例性参见下面图7或图8中对应的描述,此处暂不详述。另外,这种情况下,上述图4或图5中记录的接收到的CPAC配置的时间,可以是CPAC流程中终端设备最后一次接收到的CPAC配置的时间,或者可以是终端设备第一次接收到的CPAC配置的时间。
上述结合图4和图5示例性介绍了PA/PC与CPAC混合出现的场景下本申请实施例提供的信息传输方法。下面介绍另一种信息传输方法,该信息传输方法可以与前述图4-图5所示实施例结合,或者单独执行,此外,图4-图5所示实施例已介绍的内容将不做赘述。
一般地,在CPAC流程中,上述终端设备成功执行了CPAC流程后便会释放掉从MN接收到的CPAC配置。即终端设备在执行CPAC流程成功后将CPAC配置从本地删除。这种情况下,若发生了SCG失败,由于终端设备已经释放了CPAC配置,那么,终端设备向MN发送的SCG失败信息中无法包括CPAC配置,从而,导致网络侧无法准确分析SCG失败的原因。为此,本申请实施例提供了解决该问题的对应的信息传输方法。示例性参见图6-图8,本申请实施例提供的信息传输方法包括但不限于如下步骤:
S601、MN或SN触发CPAC流程。
S602、MN向一个或多个候选SN发送SN添加请求。
S603、上述一个或多个候选SN向MN发送ACK消息。
S604、MN向终端设备发送CPAC配置消息。
上述S601至S604的描述可以参见上述S501至S504的描述,此处不赘述。
S605、终端设备发送RRC重配置完成消息。
终端设备接收到CPAC配置后,可以反馈RRC重配置完成消息给MN,以指示成功接收CPAC配置。若上述CPAC流程为CPC流程,并且该CPC流程由SN(例如图6中的第一SN)触发。那么,MN接收到终端设备的RRC重配置完成消息,还可以将该消息发送给该SN。
S606、终端设备基于CPAC配置选择目标PSCell。
该CPAC配置中包括上述一个或多个候选PSCell的SCG配置及其触发条件。终端设备接收到上述CPAC配置消息后,不会立刻添加任何一个候选PSCell。而是先持续判断有无目标PSCell满足触发条件。当终端设备检测到有一个候选PSCell满足了对应的触发条件,则选择该满足对应触发条件的PSCell为目标PSCell。
S607、终端设备向目标PSCell执行随机接入。
终端设备确定选择的目标PSCell后,反馈RRC重配置完成消息给MN,向MN指示该选择的目标PSCell。MN向该选择的目标PSCell对应的SN反馈RRC重配置完成消息。然后,终端设备可以向选择的目标PSCell(例如图6中的第二SN)执行随机接入。
S608、终端设备释放CPAC配置。
上述终端设备执行CPAC流程成功后,释放了对应的CPAC配置。
S609、终端设备检测到SCG失败。
终端设备在释放了上述CPAC配置之后,检测到发生了SCG失败。该SCG失败例如可以是前述介绍的SCG失败场景中任意场景下的SCG失败,本申请实施例对此不做限制。
S610、终端设备向MN发送SCG失败信息。
上述终端设备检测到SCG失败之后,可以向MN发送SCG失败信息。
S611、MN在本地获取与SCG失败关联的CPAC配置。
在具体实现中,若上述CPAC流程由MN触发,则上述向终端设备发送的CPAC配置是由该MN生成的。MN可以把该CPAC配置保存在本地。
具体地,若上述CPAC流程为CPC流程,并且该CPC流程为源SN(例如上述第一SN)触发,则该源SN向MN发送了SN变更请求。该变更请求中包括了CPC配置,例如包括一个或多个候选PSCell的SCG配置及其触发条件。可选的,还包括CPC的SCG测量配置等信息。那么,MN在接收到该变更请求后,可以获取该请求中的CPC配置并保存到本地存储器。示例性地,可以将该CPC配置保存在MN存储的上述终端设备的上下文中。在MN中,终端设备的标识和该终端设备的上下文是一一对应的绑定关系。因此,通过终端设备的标识可以查找到该终端设备的上下文。或者,可以将该CPC配置保存在MN的任意存储空间中,并且该CPC配置和对应的终端设备的标识关联存储。以便于通过该终端设备的标识可以查找到该CPC配置。示例性地,该终端设备的标识可以是终端设备的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)。或者,也可以是其它可以唯一标识该终端设备的信息,例如终端设备的MAC地址或IP地址等,本申请实施例对此不做限制。
一种可能的实现中,上述源SN向MN发送的SN变更请求中包括SN mobility information信元,CPC配置可以包括在该信元中。或者说,通过该SN mobility information指示该CPC配置。
S612、MN向问题SN发送CPAC配置集合。
在一个实现方式中,上述MN可以分析SCG失败信息中的SCG失败类型和触发节点(上述S601中触发CPAC流程的MN或SN)确定是否转发该SCG失败信息以及向哪个问题SN转发该SCG失败信息。该问题SN可以是源SN,或者可以是目标SN。该目标SN可是发生SCG失败的SN,或者可以是候选SN。若确定向问题SN发送SCG失败信息,那么MN可以将该SCG失败信息的部分或全部发送给问题SN。一种可能的实现中,MN可以将上述从本地获得的CPAC配置一起发送给问题SN。使得问题SN可以基于该接收到的CPAC配置分析SCG失败的具体原因。例如,可以基于该CPAC配置分析是否是因为触发条件不合理导致的SCG失败等等,进而可以适当地调整移动性参数。例如,可以调整MN对终端设备的T316超时门限,MCG的无线链路监控参数,波束失败检测参数,随机接入相关参数(例如随机接入消息最大传输次数、LBT连续失败最大次数),或者RLC重传最大次数或间隔时间等参数。进而优化网络侧的CPAC配置等,以减少SCG失败的概率,提升终端设备进行双连接通信的质量。
一种可能的实施方式中,示例性地参见图7,图7相比于上述图6增加了步骤S603A和S603B。具体的, 图7中的S601至S602可以参考上述图6中的S601至S602的描述。上述S601中的CPAC流程为CPC流程,并且是由源SN(图6中的第一SN)触发该CPC流程。源SN可以向MN发送SN变更请求。在该请求中指示了CPAC配置(简称更新前的CPAC配置,即初始CPAC配置)。该更新前的CPAC配置包括一个或多个候选PSCell的SCG配置及其触发条件。可选的,还包括CPC的SCG测量配置。不同的是,在图7中,MN向一个或多个候选PSCell分别对应的一个或多个候选SN发送了SN添加请求后,并不是所有收到请求的候选SN都允许被添加。这种情况下,MN收到部分允许被添加的候选SN的ACK消息。即在图7的S603中,只有部分允许被添加的候选SN向MN发送ACK消息。MN可以从这些接收到的ACK消息中确定允许被添加的候选PSCell。然后,MN可以向源SN发送SN修改请求,并在请求中指示了允许被添加的候选PSCell。可以示例性地参见图7中的S603A。源SN接收到该请求后,基于该请求更新了CPAC配置。更新后的CPAC配置(简称第一更新CPAC配置)包括的是该允许被添加的候选PSCell的SCG配置及其触发条件。可选的,还包括对应的SCG测量配置。然后,源SN通过响应消息(例如ACK消息)将第一更新CPAC配置发送给MN,可以参见图7中的S603B。
一种可能的实现中,上述源SN向MN发送的响应消息中包括SN mobility information信元,第一更新CPAC配置可以包括在该信元中。或者说,通过该SN mobility information指示该第一更新CPAC配置。
MN接收到上述第一更新CPAC配置后,可以将该第一更新CPAC配置与上述终端设备的标识关联存储到本地。例如,可以存储到该终端设备的上下文中。可选的,由于MN已经从上述源SN发送的SN变更请求获得了更新前的CPAC配置并保存,那么,MN获得第一更新CPAC配置后,可以将该第一更新CPAC配置替换更新前的CPAC配置存储到本地。
此外,MN接收到上述第一更新CPAC配置后,将该第一更新CPAC配置发送给终端设备。即图7的S604中,MN向终端设备发送的CPAC配置消息中包括的CPAC配置为该第一更新CPAC配置。这种情况下,图7的S611中,MN在本地获取的与SCG失败关联的CPAC配置可以是该第一更新CPAC配置。或者,MN获取的CPAC配置可以包括更新前的CPAC配置和第一更新CPAC配置,即获取的是一个CPAC配置集合。然后,图7的S612中,向问题SN发送的CPAC配置可以是该第一更新CPAC配置或者可以是该CPAC配置集合。除了此处进一步的描述之外,图7中其它的步骤的具体流程和实现可以参考上述图6中对应步骤相关的描述,此处不赘述。
另一种可能的实施方式中,示例性地参见图8,图8相比于上述图7增加了步骤S605A、S605B和S605C。具体的,图8中的S601至S605可以参考上述图7中的S601至S605的描述。同样的,上述S601中的CPAC流程为CPC流程,并且是由源SN(上述第一SN)触发该CPC流程。源SN可以向MN发送SN变更请求。在该请求中指示了CPAC配置(简称更新前的CPAC配置,即初始CPAC配置)。不同的是,在图8中,上述S605中终端设备发送RRC重配置完成消息之后,源SN可以通过向MN发送SN修改请求消息来主动请求更新(修改)发给终端设备的CPAC配置。可以示例性参见图8中的S605A。该请求消息中包括源SN主动更新后的CPAC配置(简称为第二更新CPAC配置)。同样的,该第二更新CPAC配置包括更新后的候选PSCell的SCG配置及其触发条件。可选的,还可以包括对应的SCG测量配置。
一种可能的实现中,上述源SN向MN发送的SN修改请求消息中包括SN mobility information信元,第二更新CPAC配置可以包括在该信元中。或者说,通过该SN mobility information指示该第二更新CPAC配置。
MN接收到上述第二更新CPAC配置后,可以将该第二更新CPAC配置与上述终端设备的标识关联存储到本地。例如,可以存储到该终端设备的上下文信息中。
一种可能的实现中,若上述图8中不存在上述S603A和S603B的步骤,MN已经从上述S601中源SN发送的SN变更请求获得了更新前的CPAC配置(初始CPAC配置)并保存。再加上此次保存的第二更新CPAC配置,MN中保存有两个该终端设备对应的CPAC配置,即CPAC配置集合。
一种可能的实现中,上述图8中存在上述S603A和S603B的步骤,则MN已经从S603B的请求响应消息中获得了上述第一更新CPAC配置并保存。再加上此次保存的第二更新CPAC配置,MN中保存有两个该终端设备对应的更新后的CPAC配置。
此外,MN接收到上述第二更新CPAC配置后,将该第二更新CPAC配置发送给终端设备(参见图8中的S605B)。并且,参见图8中的S605C,终端设备接收到第二更新CPAC配置后,可以反馈RRC重配置完成消息给MN,以指示成功接收了该第二CPAC配置。MN接收到终端设备的RRC重配置完成消息,还可以将该消息发送给该源SN。这种情况下,在图8的S611中,MN在本地获取的与SCG失败关联的CPAC配置可以是一个CPAC配置集合。若不存在上述S603A和S603B的步骤,该CPAC配置集合包括更新前的CPAC配置和 第二更新CPAC配置。若存在上述S603A和S603B的步骤,该CPAC配置集合包括第一更新CPAC配置和第二更新CPAC配置。然后,在图8的S612中,向问题SN发送的CPAC配置可以是该CPAC配置集合。除了此处进一步的描述之外,图8中其它的步骤的具体流程和实现可以参考上述图6以及图7中对应步骤相关的描述,此处不赘述。
一种可能的实施方式中,若上述源SN向MN发送的CPAC配置是通过SN mobility information信元来指示的,例如,该SN mobility information信元中包括该CPAC配置。那么,上述保存到MN本地的CPAC配置可以是指示该CPAC配置的SN mobility information。并且,上述MN向问题SN发送的用于分析SCG失败原因的CPAC配置也可以是指示该CPAC配置的SN mobility information信元。
一种可能的实现中,上述源SN向MN发送的序列号状态转移消息或者SN释放确认消息中包括SN mobility information信元集合,通过该SN mobility information信元集合指示通过MN为UE下发的多次CPAC配置。示例性地,在上述图6至图8中,在终端设备向目标PSCell随机接入成功(参见S607)后,该源SN向MN发送该序列号状态转移消息。示例性地,在上述图6至图8中,在终端设备向MN反馈指示选择的目标PSCell的RRC重配置完成消息之后,并在终端设备向目标PSCell随机接入(参见S607)之前,MN向源SN发送SN释放请求,源SN向MN反馈SN释放请求确认消息。
若存在上述S603A&S603B和S605A&S605B的步骤,则上述SN mobility information信元集合包括第一更新CPAC配置和第二更新CPAC配置。若仅存在上述S603A&S603B的步骤,该SN mobility information信元集合包括第一更新CPAC配置。若仅存在上述S604A&S604B的步骤,该SN mobility information信元集合包括初始CPAC配置和第二更新CPAC配置。若不存在上述S603A&S603B和S605A&S605B的步骤,SN mobility information信元集合包括初始CPAC配置。
一种可能的实现中,在上述图4至图8的实施方式中,如果MN基于从终端设备接收到的SCG失败信息中识别出SCG失败类型为“切换太早”或“切换到错误小区”,则MN在向问题SN发送的包括SCG失败信息的消息中包括SCG失败前终端设备所在的源PSCell中使用的C-RNTI。该“切换太早”又可以称为“过早PSCell变更(too early PSCell change)”。该“切换到错误小区”又可以称为“PSCell变更到错误小区(triggering PSCell change to wrong PSCell)”。
可以理解的是,上述MN向问题SN发送的SCG失败信息和上述CPAC配置可以是在同一个消息中发送,或者可以是在不同的消息中发送,本申请实施例对此不做限制。
综上所述,在CPAC的应用场景中,主节点可以将为上述终端设备配置的CPAC配置集合保存在该终端设备对应的上下文中。以便于在终端设备检测到发生SCG失败,并向主节点发送SCG失败信息以告知主节点发生SCG失败后,主节点可以在该本地存储的该终端设备的上下文中获取对应的CPAC配置集合。并将该CPAC配置集合发送给问题SN,以便于该问题SN可以基于该CPAC配置集合更准确地分析出该SCG失败的原因。例如,可以基于该CPAC配置分析是否是因为触发条件不合理导致的SCG失败等等。此外,本申请实施例在PA/PC与CPAC混合出现的场景中,终端设备可以获取上述第一时间信息和/或第二时间信息。在终端设备检测到发生SCG失败后,可以将该第一时间信息和/或第二时间信息作为送SCG失败信息的一部分发送给主节点。可选的,主节点还可以将该第一时间信息和/或第二时间信息发送给问题SN。以便于主节点或问题SN可以基于该第一时间信息和/或第二时间信息更准确分析出该SCG失败的原因。通过准确分析SCG失败的原因,可以优化与SCG失败相关的移动性参数,从而减少SCG失败的概率,提升终端设备进行双连接通信的质量。
应理解,上述信息传输方法中由主节点执行的功能也可以由主节点中的模块(例如,芯片)来执行,或者可以由能实现全部或部分主节点功能的逻辑模块或软件来执行。由辅节点执行的功能也可以由辅节点中的模块(例如,芯片)来执行,或者可以由能实现全部或部分辅节点功能的逻辑模块或软件来执行。由终端设备执行的功能也可以由终端设备中的模块(例如,芯片)来执行,或者可以由能实现全部或部分终端设备功能的逻辑模块或软件来执行。
上述主要对本申请实施例提供的信息传输方法进行了介绍。可以理解的是,各个控制单元或设备为了实现上述对应的功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本文中所公开的实施例描述的各示例的单元及步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中的各步骤的单元(或手段)。
例如,请参考图9,其为本申请实施例提供的一种信息传输装置900的结构示意图。图9所示的信息传输装置900可以是上述信息传输方法中任一实施例中的主节点,或者可以是该主节点中的模块(例如,芯片),或者可以是能实现全部或部分主节点功能的逻辑模块或软件。该信息传输装置900用于实现上述信息传输方法中任一实施例中的主节点实现的操作。该信息传输装置900可以包括获取单元901和发送单元902。其中:
获取单元901,用于在已存储的终端设备上下文中获取条件主辅小区添加/变更CPAC配置集合;CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置。
发送单元902,用于向辅节点发送CPAC配置集合。
作为一种可能的实施方式,上述SCG失败为终端设备成功执行CPAC流程并释放了CPAC配置之后发生的SCG失败。
作为一种可能的实施方式,上述信息传输装置900还包括接收单元,用于接收来自终端设备的SCG失败信息;SCG失败信息指示SCG失败;
上述获取单元901具体用于:信息传输装置900基于终端设备的标识在终端设备上下文本地存储中确定CPAC配置集合。
作为一种可能的实施方式,上述CPAC配置集合包括第一CPAC配置;第一CPAC配置为信息传输装置900从来自源辅节点的第一消息中获得的;第一消息是源辅节点发送的辅节点变更请求消息。
作为一种可能的实施方式,上述CPAC配置集合包括第二CPAC配置;第二CPAC配置为信息传输装置900从来自源辅节点的第二消息中获得的;第二消息为信息传输装置900向终端设备发送RRC配置前,源辅节点基于信息传输装置900的辅节点修改请求发送的响应消息,RRC配置用于指示终端设备的CPAC配置。
作为一种可能的实施方式,上述CPAC配置集合包括第三CPAC配置;第三CPAC配置为信息传输装置900从来自源辅节点的第三消息中获得的;第三消息为信息传输装置900向终端设备发送了RRC配置后的源辅节点发起的请求变更CPAC配置的消息,RRC配置用于指示终端设备的CPAC配置。
作为一种可能的实施方式,上述SCG失败信息包括第一时间信息和/或第二时间信息;第一时间信息指示终端设备接收到主辅小区添加/变更PA/PC的命令至终端设备检测到SCG失败之间的时间段;第二时间信息指示终端设备接收到条件主辅小区添加/变更CPAC的命令至终端设备检测到SCG失败之间的时间段。
作为一种可能的实施方式,上述发送单元902还用于:向辅节点发送第一时间信息和/或第二时间信息。
图9所示信息传输装置900中各个单元的具体操作以及有益效果可以参见上述图3A至图8及其可能的实施方式中对应的描述,此处不再赘述。
例如,请参考图10,其为本申请实施例提供的一种信息传输装置1000的结构示意图。图10所示的信息传输装置1000可以是上述信息传输方法中任一实施例中的辅节点,或者可以是该辅节点中的模块(例如,芯片),或者可以是能实现全部或部分辅节点功能的逻辑模块或软件。该信息传输装置1000用于实现上述信息传输方法中任一实施例中的辅节点实现的操作。该信息传输装置1000可以包括接收单元1001和调整单元1002。其中:
接收单元1001,用于接收来自主节点的条件主辅小区添加/变更CPAC配置集合;CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置;
调整单元1002,用于基于CPAC配置集合调整移动性参数。
作为一种可能的实施方式,上述SCG失败为终端设备成功执行CPAC流程并释放了CPAC配置之后发生的SCG失败。
作为一种可能的实施方式,上述接收单元1001还用于:接收来自主节点的第一时间信息和/或第二时间信息;第一时间信息指示终端设备接收到主辅小区添加/变更PAC的命令至终端设备检测到SCG失败之间的时间段;第二时间信息指示终端设备接收到条件主辅小区添加/变更CPAC的命令至终端设备检测到SCG失败之间的时间段;
上述调整单元1002具体用于:基于CPAC配置集合,和第一时间信息和/或第二时间信息调整移动性参 数。
图10所示信息传输装置1000中各个单元的具体操作以及有益效果可以参见上述图3A至图8及其可能的实施方式中对应的描述,此处不再赘述。
例如,请参考图11,其为本申请实施例提供的一种信息传输装置1100的结构示意图。图11所示的信息传输装置1100可以是上述信息传输方法中任一实施例中的终端设备,或者可以是该终端设备中的模块(例如,芯片),或者可以是能实现全部或部分终端设备功能的逻辑模块或软件。该信息传输装置1100用于实现上述信息传输方法中任一实施例中的终端设备实现的操作。该信息传输装置1100可以包括处理单元1101和发送单元1102。其中:
处理单元1101:用于确定发生辅小区组SCG失败;
发送单元1102:用于向主节点发送SCG失败信息;SCG失败信息包括第一时间信息和/或第二时间信息;第一时间信息指示UE接收到主辅小区添加/变更PA/PC的命令至UE检测到SCG失败之间的时间段,第二时间信息指示该信息传输装置接收到条件主辅小区添加/变更CPAC的命令至该信息传输装置检测到SCG失败之间的时间段;SCG失败信息用于调整移动性参数。
作为一种可能的实施方式,上述SCG失败为UE成功执行PA/PC流程后,被配置了CPAC并且触发执行CPAC前发生的SCG失败;或者,SCG失败为被配置了CPAC并且触发执行CPAC前,被配置执行PA/PC流程,并且在执行PA/PC失败或者成功之后发生的SCG失败。
作为一种可能的实施方式,上述SCG失败信息还包括条件主辅小区添加/变更CPAC配置集合;CPAC配置集合包括与SCG失败关联的一个或多个CPAC配置。
图11所示信息传输装置1100中各个单元的具体操作以及有益效果可以参见上述图3A至图8及其可能的实施方式中对应的描述,此处不再赘述。
本申请实施例还示例性提供了另一种信息传输装置的结构示意图,请参阅图12。如图12所示,该信息传输装置1200可以包括处理器1201、存储器1202、收发器1203和总线1204。存储器1202可以是独立存在的,可以通过总线1204与处理器1201相连接。存储器1202也可以和处理器1201集成在一起。其中,总线1204用于实现这些组件之间的连接。在一种情况下,如图12所示,收发器1203可以包括发射机12031、接收机12032和天线12033。在另一种情况下,收发器1203可以包括发射器(即输出接口)和接收器(即输入接口)。发射器可以包括发射机和天线,接收器可以包括接收机和天线。
存储器1202中存储的计算机程序指令被处理器1201执行时,可以实现上述实施例中主节点所执行的操作。收发器1203用于配合处理器1201实现上述实施例中主节点的接收和发送操作。或者,存储器1202中存储的计算机程序指令被处理器1201执行时,可以实现上述实施例中辅节点所执行的操作。收发器1203用于配合处理器1201实现上述实施例中辅节点的接收和发送操作。或者,存储器1202中存储的计算机程序指令被处理器1201执行时,可以实现上述实施例中终端设备所执行的操作。收发器1203用于配合处理器1201实现上述实施例中终端设备的接收和发送操作。
上述信息传输装置1200中各个单元实现的具体操作以及有益效果可以参见上述图3A至图8及其可能的实施方式中对应的描述,此处不再赘述。
本申请实施例还提供一种芯片,该芯片包括处理器和存储器。其中,该存储器用于存储计算机程序或计算机指令,该处理器用于执行该存储器中存储的计算机程序或计算机指令,使得该芯片执行上述图3A至图8及其可能的实施方式中主节点所执行的操作。或者,使得该芯片执行上述图3A至图8及其可能的实施方式中辅节点所执行的操作。或者,使得该芯片执行上述图3A至图8及其可能的实施方式中终端设备所执行的操作。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或计算机指令,该计算机程序或计算机指令被处理器执行以实现上述图3A至图8及其可能的实施方式中主节点所实现的方法。或者,该计算机程序或计算机指令被处理器执行以实现上述图3A至图8及其可能的实施方式中辅节点所实现的方法。或者,该计算机程序或计算机指令被处理器执行以实现上述图3A至图8及可能的实施方式中终端设备所实现的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品被计算机读取并执行时,上述图3A至图8及其可能的实施方式中主节点所实现的方法将被执行。或者,上述图3A至图8及其可能的实施方式中辅节点所实现的方法将被执行。或者,上述图3A至图8及其可能的实施方式中终端设备所实现的方法将被执行。
本申请实施例还提供一种通信系统,该通信系统包括主节点和辅节点。其中,该主节点可以是上述图 3A至图8及其可能的实施方式中所述的主节点。该辅节点可以是上述图3A至图8及其可能的实施方式中所述的辅节点。
作为一种可能的实施方式,上述通信系统还包括终端设备。该终端设备可以是上述图3A至图8及其可能的实施方式中所述的终端设备。
本申请中术语“第一”“第二”等字样用于对作用和功能基本相同的相同项或相似项进行区分,应理解,“第一”、“第二”、“第n”之间不具有逻辑或时序上的依赖关系,也不对数量和执行顺序进行限定。还应理解,尽管以下描述使用术语第一、第二等来描述各种元素,但这些元素不应受术语的限制。这些术语只是用于将一元素与另一元素区别分开。
还应理解,在本申请的各个实施例中,各个过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,术语“包括”(也称“includes”、“including”、“comprises”和/或“comprising”)当在本说明书中使用时指定存在所陈述的特征、整数、步骤、操作、元素、和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元素、部件、和/或其分组。
还应理解,说明书通篇中提到的“一个实施例”、“一实施例”、“一种可能的实现方式”意味着与实施例或实现方式有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”、“一种可能的实现方式”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,终端设备和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (18)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    主节点在已存储的终端设备上下文中获取条件主辅小区添加/变更CPAC配置集合;所述CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置;
    所述主节点向辅节点发送所述CPAC配置集合。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述主节点接收来自终端设备的SCG失败信息;所述SCG失败信息指示所述SCG失败;
    所述主节点获取条件主辅小区添加/变更CPAC配置集合,包括:
    所述主节点基于所述终端设备的标识在所述终端设备上下文中确定所述CPAC配置集合。
  3. 根据权利要求1或2所述的方法,其特征在于,所述CPAC配置集合包括第一CPAC配置;所述第一CPAC配置为所述主节点从来自源辅节点的第一消息中获得的;所述第一消息是所述源辅节点发送的辅节点变更请求消息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述CPAC配置集合包括第二CPAC配置;所述第二CPAC配置为所述主节点从来自源辅节点的第二消息中获得的;所述第二消息为所述主节点向终端设备发送RRC配置前,所述源辅节点基于所述主节点的辅节点修改请求发送的响应消息,所述RRC配置用于指示所述终端设备的CPAC配置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述CPAC配置集合包括第三CPAC配置;所述第三CPAC配置为所述主节点从来自源辅节点的第三消息中获得的;所述第三消息为所述主节点向终端设备发送了RRC配置后的所述源辅节点发起的请求变更CPAC配置的消息,所述RRC配置用于指示所述终端设备的CPAC配置。
  6. 根据权利要求2所述的方法,其特征在于,所述SCG失败信息包括第一时间信息和/或第二时间信息;
    所述第一时间信息指示所述终端设备接收到主辅小区添加/变更PA/PC的命令至所述终端设备检测到所述SCG失败之间的时间段;
    所述第二时间信息指示所述终端设备接收到条件主辅小区添加/变更CPAC的命令至所述终端设备检测到所述SCG失败之间的时间段。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述主节点向所述辅节点发送所述第一时间信息和/或第二时间信息。
  8. 一种信息传输方法,其特征在于,所述方法包括:
    辅节点接收来自主节点的条件主辅小区添加/变更CPAC配置集合;所述CPAC配置集合包括与辅小区组SCG失败关联的一个或多个CPAC配置;
    所述辅节点基于所述CPAC配置集合调整移动性参数。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述辅节点接收来自主节点的第一时间信息和/或第二时间信息;所述第一时间信息指示终端设备接收到主辅小区添加/变更PAC的命令至所述终端设备检测到所述SCG失败之间的时间段;所述第二时间信息指示所述终端设备接收到条件主辅小区添加/变更CPAC的命令至所述终端设备检测到所述SCG失败之间的时间段;
    所述辅节点基于所述CPAC配置集合调整移动性参数,包括:
    所述辅节点基于所述CPAC配置集合,和所述第一时间信息和/或第二时间信息调整移动性参数。
  10. 根据权利要求1-6和8任一项所述的方法,其特征在于,所述SCG失败为终端设备成功执行CPAC流程并释放了所述CPAC配置之后发生的SCG失败。
  11. 一种信息传输方法,其特征在于,所述方法包括:
    终端设备确定发生辅小区组SCG失败;
    所述终端设备向主节点发送SCG失败信息;所述SCG失败信息包括第一时间信息和/或第二时间信息;所述第一时间信息指示所述UE接收到主辅小区添加/变更PA/PC的命令至所述UE检测到所述SCG失败之间的时间段,所述第二时间信息指示所述终端设备接收到条件主辅小区添加/变更CPAC的命令至所述终端设备检测到所述SCG失败之间的时间段;
    所述SCG失败信息用于调整移动性参数。
  12. 根据权利要求11所述的方法,其特征在于,所述SCG失败信息还包括条件主辅小区添加/变更CPAC配置集合;所述CPAC配置集合包括与所述SCG失败关联的一个或多个CPAC配置。
  13. 根据权利要求6-9和11-12任一项所述的方法,其特征在于,所述SCG失败为所述UE成功执行PA/PC流程后,被配置了CPAC并且触发执行CPAC前发生的SCG失败;
    或者,所述SCG失败为被配置了CPAC并且触发执行CPAC前,被配置执行PA/PC流程,并且在执行所述PA/PC失败或者成功之后发生的SCG失败。
  14. 一种信息传输装置,其特征在于,包括用于执行如权利要求1-7任一项所述的方法的单元;或者包括用于执行如权利要求8-10任一项所述的方法的单元;或者包括用于执行如权利要求11-13任一项所述的方法的单元。
  15. 一种信息传输装置,其特征在于,包括处理器、存储器和收发器;所述收发器用于接收来自所述信息传输装置之外的其它通信装置的信息,以及向所述信息传输装置之外的其它通信装置输出信息;所述处理器调用所述存储器中存储的计算机程序,使得所述信息传输装置实现如权利要求1-7任一项所述的方法;
    或者,所述处理器调用所述存储器中存储的计算机程序,使得所述信息传输装置实现如权利要求8-10任一项所述的方法;
    或者,所述处理器调用所述存储器中存储的计算机程序,使得所述信息传输装置实现如权利要求11-13任一项所述的方法。
  16. 一种通信系统,其特征在于,所述通信系统包括主节点、辅节点和终端设备,其中,所述主节点用于执行如权利要求1-7任一项所述的方法,所述辅节点用于执行如权利要求8-10任一项所述的方法,所述终端设备用于执行如权利要求11-13任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被处理器运行时,实现如权利要求1-13任一项所述的方法。
  18. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被处理器运行时,实现如权利要求1-13任一项所述的方法。
PCT/CN2023/127811 2022-11-03 2023-10-30 信息传输方法及装置 WO2024093927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211371257.9 2022-11-03
CN202211371257.9A CN117998475A (zh) 2022-11-03 2022-11-03 信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024093927A1 true WO2024093927A1 (zh) 2024-05-10

Family

ID=90894080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127811 WO2024093927A1 (zh) 2022-11-03 2023-10-30 信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN117998475A (zh)
WO (1) WO2024093927A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351968A1 (en) * 2019-02-11 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Master cell group failure handling by a master node
CN113259974A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 用于配置主辅小区的方法和装置
CN114845320A (zh) * 2021-02-02 2022-08-02 中国电信股份有限公司 条件主辅小区改变失败的处理方法、处理系统和基站系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351968A1 (en) * 2019-02-11 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Master cell group failure handling by a master node
CN113259974A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 用于配置主辅小区的方法和装置
CN114845320A (zh) * 2021-02-02 2022-08-02 中国电信股份有限公司 条件主辅小区改变失败的处理方法、处理系统和基站系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LENOVO: "SON enhancements for CPAC", 3GPP DRAFT; R3-225474, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20221010 - 20221018, 28 September 2022 (2022-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052265611 *
SAMSUNG: "SON enhancements for CPAC and MCG failure recovery", 3GPP DRAFT; R3-225385, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. 20221010 - 20221018, 28 September 2022 (2022-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052265522 *

Also Published As

Publication number Publication date
CN117998475A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
EP3611995B1 (en) Communication method, communication device and communication system therefor
US11076334B2 (en) Data forwarding method, device, and communications system
EP4106400A1 (en) Switchover method and communication apparatus
US10979942B2 (en) Data transmission method, network device, and terminal device
EP3624530A1 (en) Information processing method and related apparatus
US20200112885A1 (en) Handover control method and apparatus
US20220070748A1 (en) Data transmission method and related device
US20210289414A1 (en) Information transmission method and apparatus
US20230009565A1 (en) Communication method and apparatus applied to multi-link device in wireless local area network
US20220225203A1 (en) Communication Method and Communications Apparatus
US20210251032A1 (en) Communication method, apparatus, and system
EP3454604B1 (en) Transmission method, base station and terminal
US20230012998A1 (en) Communication method, access network device, terminal device, and core network device
WO2017177950A1 (zh) 连接的建立方法、装置及系统
CN111757348A (zh) 一种通信方法及装置
KR102459063B1 (ko) 전송 장치 및 전송 장치에서 통신을 처리하기 위해 수행되는 방법
WO2021032007A1 (zh) 链路失败报告传输的方法和装置
US10827403B2 (en) Data transmission method, user equipment, base station, and system
WO2024093927A1 (zh) 信息传输方法及装置
US20220361273A1 (en) Managing sidelink and non-sidelink information
KR20190116906A (ko) 세컨더리 기지국의 데이터 사용량을 제어하는 방법 및 그 장치
WO2024031491A1 (zh) 随机接入报告方法、装置及存储介质
WO2024051698A1 (zh) 一种通信方法及装置
US20240137786A1 (en) Multi-connectivity communication method and apparatus
US11638184B2 (en) Method and apparatus for secondary base station change in mobile wireless communication system