WO2024114155A1 - 显示面板及其制备方法、显示装置 - Google Patents

显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2024114155A1
WO2024114155A1 PCT/CN2023/125360 CN2023125360W WO2024114155A1 WO 2024114155 A1 WO2024114155 A1 WO 2024114155A1 CN 2023125360 W CN2023125360 W CN 2023125360W WO 2024114155 A1 WO2024114155 A1 WO 2024114155A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
light emitting
display panel
layer
Prior art date
Application number
PCT/CN2023/125360
Other languages
English (en)
French (fr)
Inventor
袁长龙
朱莉
张振华
吴桐
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024114155A1 publication Critical patent/WO2024114155A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a method for preparing the same, and a display device.
  • OLED organic light emitting diodes
  • a display panel in one aspect, includes a substrate, an anode layer, a cathode layer, a light-emitting portion, and a photoelectric conversion portion.
  • the anode layer is disposed on one side of the substrate; the anode layer includes a first electrode and a second electrode.
  • the cathode layer is disposed on a side of the anode layer away from the substrate; the cathode layer includes a third electrode and a fourth electrode, the third electrode is disposed opposite to the first electrode, and the fourth electrode is disposed opposite to the second electrode; along a direction perpendicular to the substrate, the thickness of the third electrode is greater than the thickness of the fourth electrode.
  • the light-emitting portion is disposed between the first electrode and the third electrode.
  • the photoelectric conversion portion is disposed between the second electrode and the fourth electrode.
  • the cathode layer includes a first sublayer and a second sublayer, and the first sublayer is located on a side of the second sublayer close to the substrate.
  • the third electrode includes a first subelectrode and a second subelectrode stacked, the first subelectrode is located in the first sublayer, and the second subelectrode is located in the second sublayer; the fourth electrode is located in the first sublayer.
  • the display panel further includes a first peeling portion, which is disposed on a side of the fourth electrode away from the substrate; and the adhesion between the first peeling portion and the second sublayer is smaller than the adhesion between the first sublayer and the second sublayer.
  • the cathode layer further includes an auxiliary cathode, the auxiliary cathode being electrically connected to the third electrode, the fourth electrode and a common voltage terminal. In a direction perpendicular to the substrate, the thickness of the auxiliary cathode is greater than the thickness of the third electrode.
  • the cathode layer includes a first sublayer, a second sublayer, and a third sublayer.
  • the first sublayer is located on a side of the second sublayer close to the substrate, and the third sublayer is located on a side of the second sublayer away from the substrate.
  • the auxiliary cathode includes a first conductive pattern, a second conductive pattern, and a third conductive pattern stacked, the first conductive pattern is located on the first sublayer, the second conductive pattern is located on the second sublayer, and the third conductive pattern is located on the third sublayer.
  • the display panel further comprises a second peeling portion, the second peeling portion is disposed on a side of the third electrode away from the substrate, and the adhesion between the second peeling portion and the third sub-layer is smaller than the adhesion between the second sub-layer and the third sub-layer.
  • the display panel includes a first peeling portion, the first peeling portion partially overlaps with the second peeling portion, and in the overlapping portion, the second peeling portion is located on a side of the first peeling portion away from the substrate.
  • the display panel includes a first peeling portion, the first peeling portion includes a first sub-portion and a second sub-portion stacked together, the first sub-portion is located on a side of the second sub-portion close to the substrate, and the second sub-portion is made of the same material and is arranged on the same layer as the second peeling portion.
  • the display panel includes a first peeling portion, and a maximum area of an orthographic projection of the first peeling portion on the substrate is smaller than a maximum area of an orthographic projection of the second peeling portion on the substrate.
  • the display panel includes a first peeling portion.
  • the display panel also includes a pixel defining layer, which is disposed on a side of the anode layer away from the substrate; the pixel defining layer is provided with a pixel opening and a photosensitive opening.
  • the first peeling portion covers the bottom of the photosensitive opening and extends to the surface of the pixel defining layer away from the substrate.
  • the second peeling portion covers the bottom of the pixel opening and extends to the surface of the pixel defining layer away from the substrate.
  • the portion of the first peeling portion extending to the surface of the pixel defining layer away from the substrate is the first portion
  • the portion of the second peeling portion extending to the surface of the pixel defining layer away from the substrate is the second portion.
  • the average distance between the boundary of the first portion and the photosensitive opening is smaller than the average distance between the boundary of the second portion and the pixel opening.
  • the display panel further includes a functional layer, the functional layer including a light-emitting functional portion and an optoelectronic functional portion, the light-emitting functional portion is disposed between the first electrode and the third electrode, and the optoelectronic functional portion is disposed between the second electrode and the fourth electrode.
  • the overlapping portion of the first electrode, the light emitting portion and the third electrode forms a light emitting device;
  • the plurality of light emitting devices include a plurality of red light emitting devices, a plurality of blue light emitting devices, a plurality of first green light emitting devices and a plurality of second green light emitting devices.
  • the plurality of red light emitting devices and the plurality of blue light emitting devices are arranged in arrays of multiple rows and columns, Each row includes a plurality of red light emitting devices and a plurality of blue light emitting devices arranged alternately along a first direction, and each column includes a plurality of red light emitting devices and a plurality of blue light emitting devices arranged alternately along a second direction.
  • the plurality of first green light-emitting devices and the plurality of second green light-emitting devices are arrayed into multiple rows and columns, each row includes a plurality of first green light-emitting devices and a plurality of second green light-emitting devices staggered along a first direction, each column includes a plurality of first green light-emitting devices and a plurality of second green light-emitting devices staggered along a second direction, and the first green light-emitting devices and the second green light-emitting devices are respectively located between red light-emitting devices and blue light-emitting devices in two different adjacent rows and columns.
  • the distance between the luminescence centers of any adjacent red light-emitting devices and the luminescence centers of the blue light-emitting devices is approximately equal; in the second direction, the distance between the luminescence centers of any adjacent red light-emitting devices and the luminescence centers of the blue light-emitting devices is approximately equal.
  • the overlapping portion of the second electrode, the photoelectric conversion unit, and the fourth electrode forms a photosensitive device.
  • the photosensitive device is disposed between a red light-emitting device and a blue light-emitting device adjacent to each other along the first direction. And/or, the photosensitive device is disposed between a red light-emitting device and a blue light-emitting device adjacent to each other along the second direction.
  • the plurality of red light-emitting devices and the plurality of blue light-emitting devices are divided into a plurality of light-emitting device groups, the light-emitting device groups including a red light-emitting device and a blue light-emitting device adjacent to each other in the second direction.
  • the plurality of light-emitting device groups include a first subgroup and a second subgroup, the first subgroup and the second subgroup are alternately arranged in the first direction.
  • the distance between the light-emitting center of the red light-emitting device and the light-emitting center of the blue light-emitting device in the first subgroup is smaller than the distance between the light-emitting center of the red light-emitting device and the light-emitting center of the blue light-emitting device in the second subgroup.
  • the overlapping portion of the second electrode, the photoelectric conversion unit, and the fourth electrode forms a photosensitive device.
  • the photosensitive device is disposed between a red light-emitting device and a blue light-emitting device in the second subgroup, and between two first subgroups adjacent along the second direction. And/or, the photosensitive device is disposed between a red light-emitting device and a blue light-emitting device adjacent along the first direction.
  • a minimum distance between a boundary of the photosensitive device and a boundary of the red light-emitting device and a minimum distance between a boundary of the photosensitive device and a boundary of the blue light-emitting device are substantially equal.
  • a plurality of photosensitive devices are disposed between the red light-emitting devices and the blue light-emitting devices arranged in two adjacent rows and two columns, and the second electrodes of the plurality of photosensitive devices are electrically connected.
  • the line connecting the light emission centers of the red light emitting device and the blue light emitting device on opposite sides of the photosensitive device is the first connecting line.
  • the length of the portion where the first connecting line overlaps with the photosensitive device is the minimum size of the photosensitive device in a set direction.
  • the set direction overlaps with the photosensitive device.
  • the first connecting lines are substantially parallel.
  • a display device comprising: a display panel as described in any one of the above embodiments.
  • the method for manufacturing a display panel includes: forming an anode layer on a substrate; the anode layer includes a first electrode and a second electrode. A light-emitting portion is formed on the first electrode and a photoelectric conversion portion is formed on the second electrode. A cathode layer is formed on a side of the light-emitting portion and the photoelectric conversion portion away from the substrate; the cathode layer includes a third electrode and a fourth electrode, the third electrode is arranged opposite to the first electrode, and the second electrode is arranged opposite to the fourth electrode; along a direction perpendicular to the substrate, the thickness of the third electrode is greater than the thickness of the fourth electrode.
  • the cathode layer is formed on the side of the light-emitting part and the photoelectric conversion part away from the substrate, comprising: forming a first electrode film; the first electrode film is the first sublayer of the cathode layer. Forming a first peeling portion; the first peeling portion is arranged on the side of the fourth electrode away from the substrate. Forming a second electrode film; the adhesion between the first peeling portion and the first electrode film is less than the adhesion between the first electrode film and the second electrode film. Peeling off the portion of the second electrode film overlapping the first peeling portion; the remaining portion of the second electrode film is the second sublayer of the cathode layer.
  • the cathode layer further includes an auxiliary cathode, and after peeling off the portion where the second electrode film overlaps with the first peeling portion, forming the cathode layer on the side of the light-emitting portion and the photoelectric conversion portion away from the substrate further includes: forming a second peeling portion; the second peeling portion is disposed on the side of the third electrode away from the substrate. Forming a third electrode film; the adhesion between the first peeling portion and the third electrode film, and the adhesion between the second peeling portion and the third electrode film, are both smaller than the adhesion between the third electrode film and the second electrode film. Peeling off the portion where the third electrode film overlaps with the second peeling portion and the first peeling portion; the portion of the third electrode film that remains is the third sublayer of the cathode layer.
  • FIG1 is a structural diagram of a display device according to some embodiments.
  • FIG2 is a cross-sectional view of a display device according to some embodiments.
  • FIG3 is an exploded view of a display device according to some embodiments.
  • Fig. 4 is a cross-sectional view taken along A-A' in Fig. 3;
  • FIG5 is another cross-sectional view along the line A-A' in FIG3;
  • FIG6 is a partial enlarged view of point A in FIG4 ;
  • FIG7 is a top view of a light emitting device and a light sensing device according to some embodiments.
  • FIG8 is another top view of a light emitting device and a light sensing device according to some embodiments.
  • FIG9 is another top view of a light emitting device and a light sensing device according to some embodiments.
  • FIG10 is another top view of a light emitting device and a light sensing device according to some embodiments.
  • FIG11 is another top view of a light emitting device and a light sensing device according to some embodiments.
  • FIG. 12 is another top view of a light emitting device and a light sensing device according to some embodiments.
  • Fig. 13 is a cross-sectional view taken along B-B' in Fig. 9;
  • FIG. 14 and 15 are flow charts of methods of manufacturing a display panel according to some embodiments.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • coupled indicates, for example, that two or more components are in direct physical or electrical contact.
  • coupled or communicatively coupled may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that” or “if [a stated condition or event] is detected” are optionally interpreted to mean “upon determining that” or “in response to determining that” or “upon detecting [a stated condition or event]” or “in response to detecting [a stated condition or event],” depending on the context.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of the layers and the area of the regions are exaggerated for clarity. Therefore, variations in shape relative to the drawings due to, for example, manufacturing techniques and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be interpreted as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing. For example, an etched region shown as a rectangle will typically have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shape of the regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • a display device 1000 which may be any device that displays images, whether in motion (eg, video) or fixed (eg, still images), and whether text or images.
  • the display device 1000 can be any product or component with a display function, such as a television, a laptop computer, a tablet computer, a mobile phone, a personal digital assistant (PDA), a navigator, a wearable device, a virtual reality (VR) device, etc.
  • a display function such as a television, a laptop computer, a tablet computer, a mobile phone, a personal digital assistant (PDA), a navigator, a wearable device, a virtual reality (VR) device, etc.
  • PDA personal digital assistant
  • VR virtual reality
  • a display device 1000 includes a display panel 100 .
  • the display device 1000 may further include a housing 200 , a cover plate 300 , a circuit board 400 , a photosensitive device 500 , and other electronic accessories.
  • the longitudinal section of the housing 200 may be, for example, U-shaped.
  • the display panel 100 and the circuit board 400 are disposed in the housing 200 , and the cover plate 300 is disposed at the opening of the housing 200 .
  • the circuit board 400 may be bound to the display panel 100 at an end of the display panel 100 and bent to the back side of the display panel 100 , which is beneficial to the narrow frame design of the display device 1000 .
  • the photosensitive device 500 can be integrated into the display panel 100 to achieve a full-screen design.
  • the photosensitive device 500 includes at least one of an infrared sensor, a proximity sensor, an eye tracking module, and a face recognition module.
  • the display panel 100 There are many types of the display panel 100 , which can be selected according to actual needs.
  • the display panel 100 may be an organic light emitting diode (OLED) display panel, a quantum dot light emitting diode (QLED) display panel, etc., which is not specifically limited in the embodiments of the present disclosure.
  • OLED organic light emitting diode
  • QLED quantum dot light emitting diode
  • the display panel 100 includes a display substrate 10 and an encapsulation layer 20 for encapsulating the display substrate 10 .
  • the display substrate 10 has a light-emitting side and a non-light-emitting side that are arranged opposite to each other, and the encapsulation layer 20 is arranged on the light-emitting side of the display substrate 10 , that is, the upper side in FIG. 4 .
  • the encapsulation layer 20 may be an encapsulation film or an encapsulation substrate.
  • FIG4 illustrates an example in which the encapsulation layer 20 is an encapsulation film.
  • the substrate 10 includes a substrate 11 , an anode layer 12 , a cathode layer 13 , a light emitting portion 14 , and a photoelectric conversion portion 15 .
  • the substrate 11 There are many types of the substrate 11, which can be selected according to actual needs.
  • the substrate 11 may be a rigid substrate.
  • the rigid substrate may be a glass substrate or a polymethyl methacrylate (PMMA) substrate.
  • PMMA polymethyl methacrylate
  • the substrate 11 may be a flexible substrate.
  • the flexible substrate may be a polyethylene terephthalate (PET) substrate, a polyethylene naphthalate (PEN) substrate, or a polyimide (PI) substrate.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • the anode layer 12 is disposed on one side of the substrate 11 (eg, the upper side in FIG. 4 ), and the anode layer 12 includes a first electrode 121 and a second electrode 122 .
  • the cathode layer 13 is disposed on the side of the anode layer 12 away from the substrate 11 .
  • the cathode layer 13 includes a third electrode 131 and a fourth electrode 132 .
  • the third electrode 131 is disposed opposite to the first electrode 121
  • the fourth electrode 132 is disposed opposite to the second electrode 122 .
  • the light emitting portion 14 is disposed between the first electrode 121 and the third electrode 131. At this time, the overlapping portion of the first electrode 121, the light emitting portion 14 and the third electrode 131 forms the light emitting device 30.
  • the first electrode 121 is the anode of the light emitting device 30, and the third electrode 131 is the cathode of the light emitting device 30.
  • the photoelectric conversion unit 15 is disposed between the second electrode 122 and the fourth electrode 132. At this time, the overlapping portion of the second electrode 122, the photoelectric conversion unit 15 and the fourth electrode 132 forms the photosensitive device 500.
  • the second electrode 122 is the anode of the photosensitive device 500
  • the fourth electrode 132 is the cathode of the photosensitive device 500.
  • the display substrate 10 further includes a pixel defining layer 16 .
  • the pixel defining layer 16 is disposed on a side of the anode layer 12 away from the substrate 11 .
  • the pixel defining layer 16 is provided with a pixel opening 161 and a photosensitive opening 162 .
  • One light emitting device 30 is located in one pixel opening 161
  • one photosensitive device 500 is located in one photosensitive opening 162 .
  • the thickness of the third electrode 131 is greater than the thickness of the fourth electrode 132 . That is, the thickness of the cathode of the light emitting device 30 is greater than the thickness of the cathode of the photosensitive device 500 .
  • the thickness of the third electrode 131 can be designed to be thicker, so that the third electrode 131 has a semi-transmissive and semi-reflective characteristic. In this way, a microcavity can be formed between the cathode and the anode of the light-emitting device 30, thereby improving the light-emitting efficiency of the light-emitting device 30.
  • the thickness of the fourth electrode 132 can be designed to be thinner, so as to improve the light transmittance of the fourth electrode 132. In this way, the light transmittance of the cathode of the photosensitive device 500 is higher, which can increase the light-sensing amount of the photosensitive device 500 and improve the light-sensing sensitivity of the photosensitive device 500.
  • the cathode layer 13 includes a first sublayer 1310 and a second sublayer 1320 , and the first sublayer 1310 is located on a side of the second sublayer 1320 close to the substrate 11 .
  • the third electrode 131 includes a first sub-electrode 1311 and a second sub-electrode 1312 stacked, the first sub-electrode 1311 is located in the first sub-layer 1310 , and the second sub-electrode 1312 is located in the second sub-layer 1320 .
  • the fourth electrode 132 is located in the first sub-layer 1310 .
  • the first sub-electrode 1311 of the third electrode 131 and the fourth electrode 132 can be made of the same material and prepared in the same process step, thereby reducing production costs.
  • the thickness of the first sublayer 1310 may be, for example, in the range of 2 nm to 8 nm.
  • the thickness of the first sublayer 1310 is any one of 2 nm, 4 nm, 5 nm, 7 nm and 8 nm.
  • the thickness of the second sublayer 1320 may be, for example, in the range of 2 nm to 8 nm.
  • the thickness of the second sublayer 1320 is any one of 2 nm, 4 nm, 5 nm, 7 nm and 8 nm.
  • the display panel 100 also includes a first peeling portion 17, which is arranged on the side of the fourth electrode 132 away from the substrate 11, and the adhesion between the first peeling portion 17 and the second sublayer 1320 is smaller than the adhesion between the first sublayer 1310 and the second sublayer 1320.
  • the first stripping portion 17 may be formed after forming the first sub-layer 1310 and before forming the second sub-layer 1320.
  • the process of forming the second sub-layer 1320 does not require the use of a fine mask, and the portion where the second sub-layer 1320 overlaps with the first stripping portion 17 may be directly stripped, so that the second sub-layer 1320 does not exist on the side of the fourth electrode 132 away from the substrate 11, thereby reducing the process difficulty of forming the third electrode 131 and the fourth electrode 132.
  • the thickness of the first peeling portion 17 may be, for example, in the range of 1 nm to 10 nm.
  • the thickness of the first peeling portion 17 is any one of 1 nm, 2 nm, 4 nm, 5 nm, 7 nm, 8 nm and 10 nm.
  • the material of the first stripping part 17 includes a light-transmitting material, and the transmittance of the light-transmitting material can be greater than or equal to 80%.
  • the material of the first stripping part 17 includes at least one of 8-hydroxyquinoline lithium, N,N-biphenyl-N,N-di(9-phenyl-9H-carbazole-3-yl)diphenyl-4,4'-diamine, N(biphenyl-4-yl)9,9-dimethyl-N-(4(9-phenyl-9H-carbazole-3-yl)phenyl)-9H-fluorene-2-amine and 2-(4-(9,10-di(naphthalene-2-yl)anthracene-2-yl)phenyl)-1-phenyl-1H-benzo-[D]imidazole.
  • the photosensitive device 500 should completely cover the area where the photosensitive opening 162 is located, so that the photosensitive device 500 can sense external ambient light in the area where the photosensitive opening 162 is located, thereby increasing the photosensitive area of the photosensitive device 500 .
  • the first stripping portion 17 covers the bottom of the photosensitive opening 162 and extends to the surface of the pixel defining layer 16 away from the substrate 11, so as to avoid the first stripping portion 17 being unable to completely cover the bottom of the photosensitive opening 162 due to process deviation.
  • the first stripping portion 17 can completely cover the bottom of the photosensitive opening 162, and avoid the second sublayer 1320 being partially retained at the bottom of the pixel opening 161, so that the light transmittance of the cathode layer 13 of the photosensitive device 500 in the entire area where the photosensitive opening 162 is located is relatively high, thereby increasing the light sensing amount of the photosensitive device 500 and improving the photosensitivity of the photosensitive device 500.
  • the cathode layer 13 further includes an auxiliary cathode 133 , and the auxiliary cathode 133 is electrically connected to the third electrode 131 , the fourth electrode 132 , and the common voltage terminal.
  • auxiliary cathode 133 the third electrode 131 and the fourth electrode 132 form a continuous whole-layer structure.
  • the thickness of the auxiliary cathode 133 is greater than the thickness of the third electrode 131 . That is, the thickness of the auxiliary cathode 133 is greater than the thickness of the cathode of the light emitting device 30 and greater than the thickness of the cathode of the photosensitive device 500 .
  • the thickness of the auxiliary cathode 133 can be designed to be thicker, so as to reduce the resistance of the auxiliary cathode 133. In this way, the voltage drop of the power supply voltage signal transmitted from the common voltage terminal to the third electrode 131 and the fourth electrode 132 through the auxiliary cathode 133 is lower, thereby improving the brightness uniformity and reducing energy consumption.
  • the cathode layer 13 further includes a third sublayer 1330 .
  • the third sublayer 1330 is located on a side of the second sublayer 1320 away from the substrate 11 .
  • the auxiliary cathode 133 includes a stacked first conductive pattern 1331 , a second conductive pattern 1332 and a third conductive pattern 1333 , the first conductive pattern 1331 being located at the first sublayer 1310 , the second conductive pattern 1332 being located at the second sublayer 1320 , and the third conductive pattern 1333 being located at the third sublayer 1330 .
  • the first conductive pattern 1331 of the auxiliary cathode 133 is connected to the first conductive pattern 1331 of the third electrode 131.
  • the first sub-electrode 1311 and the fourth electrode 132 can be made of the same material and prepared in the same process step;
  • the second conductive pattern 1332 of the auxiliary cathode 133 and the second sub-electrode 1312 of the third electrode 131 can be made of the same material and prepared in the same process step, thereby reducing production costs.
  • the thickness of the third sublayer 1330 may range from 1 nm to 10 nm, for example.
  • the thickness of the third sublayer 1330 is any one of 1 nm, 2 nm, 4 nm, 5 nm, 7 nm, 8 nm and 10 nm.
  • the display panel 100 also includes a second peeling portion 18, which is arranged on the side of the third electrode 131 away from the substrate 11, and the adhesion between the second peeling portion 18 and the third sublayer 1330 is smaller than the adhesion between the second sublayer 1320 and the third sublayer 1330.
  • the second stripping portion 18 may be formed first after forming the second sub-layer 1320 and before forming the third sub-layer 1330.
  • the process of forming the third sub-layer 1330 does not need to use a fine mask, and the portion of the third sub-layer 1330 overlapping with the first stripping portion 17 and the second stripping portion 18 may be directly stripped, so that the third sub-layer 1330 does not exist on the side of the third electrode 131 and the fourth electrode 132 away from the substrate 11, thereby reducing the process difficulty of forming the third electrode 131, the fourth electrode 132 and the auxiliary cathode 133.
  • the thickness of the second peeling portion 18 may be, for example, in the range of 1 nm to 10 nm.
  • the thickness of the second peeling portion 18 is any one of 1 nm, 2 nm, 4 nm, 5 nm, 7 nm, 8 nm and 10 nm.
  • the material of the second stripping part 18 includes a light-transmitting material, and the transmittance of the light-transmitting material can be greater than or equal to 80%.
  • the material of the second stripping part 18 includes at least one of 8-hydroxyquinoline lithium, N,N-biphenyl-N,N-di(9-phenyl-9H-carbazole-3-yl)diphenyl-4,4'-diamine, N(biphenyl-4-yl)9,9-dimethyl-N-(4(9-phenyl-9H-carbazole-3-yl)phenyl)-9H-fluorene-2-amine and 2-(4-(9,10-di(naphthalene-2-yl)anthracene-2-yl)phenyl)-1-phenyl-1H-benzo-[D]imidazole.
  • the light emitting device 30 should completely cover the area where the pixel opening 161 is located, so that the light emitting device 30 can emit light in the area where the pixel opening 161 is located, thereby improving the light emitting efficiency.
  • the second peeling portion 18 covers the bottom of the pixel opening 161 and extends to the surface of the pixel defining layer 16 away from the substrate 11, so as to avoid the second peeling portion 18 being unable to completely cover the bottom of the pixel opening 161 due to process deviation.
  • the second peeling portion 18 can completely cover the bottom of the pixel opening 161, and avoid the third sub-layer 1330 being partially retained at the bottom of the pixel opening 161, so that the cathode layer 13 of the light-emitting device 30 in the area where the entire pixel opening 161 is located has a semi-transmissive and semi-reflective characteristic, thereby improving the light-emitting efficiency of the light-emitting device 30.
  • the portion of the first peeling portion 17 extending to the surface of the pixel defining layer 16 away from the substrate 11 is the first portion
  • the second peeling portion 18 extending to the surface of the pixel defining layer 16 away from the substrate 11 is the second portion.
  • the average distance between the boundary of the first part and the photosensitive opening 162 is smaller than the average distance between the boundary of the second part and the pixel opening 161 .
  • the average distance between the boundary of the second portion and the pixel opening 161 can be designed to be far away, so as to avoid the second stripping portion 18 being unable to completely cover the side wall of the pixel opening 161 due to process deviation.
  • the second stripping portion 18 can safely cover the side wall of the pixel opening 161, thereby preventing the third sub-layer 1330 from being partially retained on the side wall of the pixel opening 161, so that the thickness of the cathode layer 13 of the side wall of the pixel opening 161 is relatively thin, which is conducive to the design of a large viewing angle light output of the display device 1000.
  • the average distance between the boundary of the first part and the photosensitive opening 162 can be designed to be closer to reduce the area of the fourth electrode 132 and increase the proportion of the auxiliary cathode 133 in the cathode layer 13, thereby reducing the voltage drop, improving the brightness uniformity and reducing energy consumption.
  • the average distance between the boundary of the first portion and the photosensitive opening 162 is greater than or equal to 2 ⁇ m, and the average distance between the boundary of the second portion and the pixel opening 161 is less than 2 ⁇ m.
  • the maximum area of the orthographic projection of the first peeling portion 17 on the substrate 11 is smaller than the maximum area of the orthographic projection of the second peeling portion 18 on the substrate 11 .
  • the light emitting device 30 includes a plurality of red light emitting devices 310 , a plurality of blue light emitting devices 320 , a plurality of first green light emitting devices 330 , and a plurality of second green light emitting devices 340 .
  • the light-emitting area of the blue light-emitting device 320 is larger than the light-emitting area of the red light-emitting device 310; the light-emitting area of the red light-emitting device 310 is larger than the light-emitting area of the first green light-emitting device 330; the light-emitting area of the first green light-emitting device 330 is roughly equal to the light-emitting area of the second green light-emitting device 340.
  • the area of the orthographic projection of the second peeling portion 18 located on the side of the third electrode 131 of the blue light-emitting device 320 away from the substrate 11 on the substrate 11 is the maximum area of the orthographic projection of the second peeling portion 18 on the substrate 11. That is, the area of the orthographic projection of the first peeling portion 17 on the substrate 11 is smaller than the area of the orthographic projection of the second peeling portion 18 located on the side of the third electrode 131 of the blue light-emitting device 320 away from the substrate 11 on the substrate 11.
  • the first peeling portion 17 and the second peeling portion 18 partially overlap, and in the overlapping portion, the second peeling portion 18 is located on a side of the first peeling portion 17 away from the substrate 11 .
  • first peeling portion 17 and the second peeling portion 18 are formed in different process steps, respectively, and details can be referred to below.
  • the first peeling portion 17 includes a first sub-portion 171 and a second sub-portion 172 stacked together, wherein the first sub-portion 171 is located on a side of the second sub-portion 172 close to the substrate 11, and the first sub-portion 171 is located on a side of the second sub-portion 172 close to the substrate 11.
  • the second sub-portion 172 is made of the same material as the second peeling portion 18 and is disposed on the same layer.
  • the second sub-section 172 of the first peeling section 17 can be made of the same material as the second peeling section 18 and prepared in the same process step, thereby reducing production costs.
  • the first peeling section 17 is thicker, which is conducive to the peeling of the third sub-layer 1330 from the first peeling section 17.
  • the display panel 100 may further include a functional layer, the functional layer including a light-emitting functional portion and a photoelectric functional portion, the light-emitting functional portion is disposed between the first electrode 121 and the third electrode 161 , and the photoelectric functional portion is disposed between the second electrode 122 and the fourth electrode 162 .
  • the functional layer may include at least one of an electron transport layer (Election Transporting Layer, abbreviated as: ETL), an electron injection layer (Election Injection Layer, abbreviated as: EIL), a hole transport layer (Hole Transporting Layer, abbreviated as: HTL) and a hole injection layer (Hole Injection Layer, abbreviated as: HIL).
  • ETL electron transport layer
  • EIL electron injection layer
  • HTL hole transport layer
  • HIL Hole Injection Layer
  • the functional layers sequentially include a hole injection layer, a hole transport layer, an electron transport layer and an electron injection layer, and the light-emitting portion 14 and the photoelectric conversion portion 15 are located between the hole transport layer and the electron transport layer.
  • the light-emitting functional part of the light-emitting device 30 and the photoelectric functional part of the photosensitive device 500 can be made of the same material and prepared in the same process steps, thereby reducing production costs.
  • the plurality of light emitting devices 30 include a plurality of red light emitting devices 310 , a plurality of blue light emitting devices 320 , a plurality of first green light emitting devices 330 , and a plurality of second green light emitting devices 340 .
  • a plurality of red light emitting devices 310 and a plurality of blue light emitting devices 320 are arranged in an array of multiple rows and columns, each row includes a plurality of red light emitting devices 310 and a plurality of blue light emitting devices 320 staggered along a first direction X, and each column includes a plurality of red light emitting devices 310 and a plurality of blue light emitting devices 320 staggered along a second direction Y.
  • a plurality of first green light emitting devices 330 and a plurality of second green light emitting devices 340 are arranged in an array of multiple rows and columns, each row includes a plurality of first green light emitting devices 330 and a plurality of second green light emitting devices 340 staggered along a first direction X, each column includes a plurality of first green light emitting devices 330 and a plurality of second green light emitting devices 340 staggered along a second direction Y, and the first green light emitting devices 330 and the second green light emitting devices 340 are respectively located between red light emitting devices 310 and blue light emitting devices 320 in two different adjacent rows and columns.
  • the display effect of the display panel 100 can be effectively improved, the display fineness can be increased, and the edge jaggedness and display graininess can be reduced.
  • the distances between the emission centers of any adjacent red light emitting devices 310 and the emission centers of the blue light emitting devices 320 are substantially equal.
  • the distances between the emission centers of any adjacent red light emitting devices 310 and the emission centers of the blue light emitting devices 320 are substantially equal.
  • the photosensitive device 500 may be disposed between a red light emitting device 310 and a blue light emitting device 320 that are adjacent to each other along the first direction X.
  • the photosensitive device 500 may be disposed between a red light emitting device 310 and a blue light emitting device 320 that are adjacent to each other along the second direction Y. As shown in FIG. 8 , the photosensitive device 500 may be disposed between a red light emitting device 310 and a blue light emitting device 320 that are adjacent to each other along the second direction Y. As shown in FIG. 8 , the photosensitive device 500 may be disposed between a red light emitting device 310 and a blue light emitting device 320 that are adjacent to each other along the second direction Y. As shown in FIG.
  • the photosensitive device 500 may be disposed between a red light emitting device 310 and a blue light emitting device 320 adjacent to each other in the first direction X, and between a red light emitting device 310 and a blue light emitting device 320 adjacent to each other in the second direction Y.
  • a plurality of photosensitive devices 500 are arranged between the two adjacent rows and two columns of red light emitting devices 310 and blue light emitting devices 320.
  • the second electrodes 122 of the plurality of photosensitive devices 500 can be electrically connected.
  • the plurality of photosensitive devices 500 can be used as a photosensitive unit to increase the amount of signals sensed by the photosensitive circuit 50 mentioned below and improve the photosensitivity.
  • the display panel 100 further includes a pixel driving circuit 40 and a photosensitive circuit 50, and both the pixel driving circuit 40 and the photosensitive circuit 50 include a thin film transistor 60.
  • the thin film transistor 60 includes a semiconductor channel 61, a source 62, a drain 63 and a gate 64, and the source 62 and the drain 63 are in contact with the semiconductor channel 61, respectively.
  • source 62 and the drain 63 are interchangeable, that is, 62 in FIG. 4 represents the drain, and 63 in FIG. 4 represents the source.
  • the anode (first electrode 121) of the light emitting device 30 is electrically connected to the source 62 or drain 63 of a thin film transistor 60 of the pixel driving circuit 40.
  • the anode (second electrode 122) of the photosensitive device 500 is electrically connected to the source 62 or drain 63 of a thin film transistor 60 of the pixel driving circuit 40.
  • FIG4 takes the case where the first electrode 121 is electrically connected to the drain 63 of a thin film transistor 60 of the pixel driving circuit 40, and the second electrode 122 is electrically connected to the drain 63 of a thin film transistor 60 of the photosensitive circuit 50 as an example for illustration.
  • the second electrodes 122 of the plurality of photosensitive devices 500 are electrically connected, that is, the second electrodes 122 of the plurality of photosensitive devices 500 are electrically connected to the same photosensitive circuit 50.
  • the second electrodes 122 of the plurality of photosensitive devices 500 are electrically connected to the source 62 of a thin film transistor 60 of the photosensitive circuit 50.
  • a plurality of red light emitters 310 and a plurality of blue light emitting devices 320 are divided into a plurality of light emitting device groups 350 , and the light emitting device group 350 includes a red light emitting device 310 and a blue light emitting device 320 adjacent to each other in the second direction Y.
  • the plurality of light emitting device groups 350 include a first subgroup 351 and a second subgroup 352, and the first subgroup 351 and the second subgroup 352 are alternately arranged in the first direction X.
  • a distance between a light emitting center of the red light emitting device 310 and a light emitting center of the blue light emitting device 320 in the first subgroup 351 is smaller than a distance between a light emitting center of the red light emitting device 310 and a light emitting center of the blue light emitting device 320 in the second subgroup 352.
  • the photosensitive device 500 is disposed between a red light emitting device 310 and a blue light emitting device 320 that are adjacent to each other along the first direction X.
  • the photosensitive device 500 is disposed between a red light emitting device 310 and a blue light emitting device 320 in the second subgroup 352 , and between two adjacent first subgroups 351 along the second direction Y. As shown in FIG. 11 , the photosensitive device 500 is disposed between a red light emitting device 310 and a blue light emitting device 320 in the second subgroup 352 , and between two adjacent first subgroups 351 along the second direction Y. As shown in FIG.
  • the above-mentioned photosensitive device 500 is arranged between a red light-emitting device 310 and a blue light-emitting device 320 adjacent to each other along the first direction X, between a red light-emitting device 310 and a blue light-emitting device 320 in the second subgroup 352, and between two first subgroups 351 adjacent to each other along the second direction Y.
  • a plurality of photosensitive devices 500 are disposed between the adjacent two rows and two columns of red light emitting devices 310 and blue light emitting devices 320.
  • the second electrodes 122 of the plurality of photosensitive devices 500 may be electrically connected.
  • the second electrodes 122 of the plurality of photosensitive devices 500 are electrically connected, that is, the second electrodes 122 of the plurality of photosensitive devices 500 are electrically connected to the same photosensitive circuit 50.
  • the second electrodes 122 of the plurality of photosensitive devices 500 are electrically connected to the source 62 of a thin film transistor 60 of the photosensitive circuit 50.
  • the minimum distance between the boundary of the photosensitive device 500 and the boundary of the red light-emitting device 310 and the minimum distance between the boundary of the photosensitive device 500 and the boundary of the blue light-emitting device 320 are approximately equal, so as to facilitate the preparation of the fine mask required in the process of forming the photosensitive device 500 .
  • a line connecting the light emitting centers of the red light emitting device 310 and the blue light emitting device 320 on opposite sides of the photosensitive device 500 is a first connecting line L1 .
  • the length of the portion where the first connecting line L1 overlaps the photosensitive device 500 is the minimum size of the photosensitive device 500 in a set direction, and the set direction is substantially parallel to the first connecting line L1. In this way, the photosensitive area of the photosensitive device 500 can be increased, thereby increasing the amount of light sensed by the photosensitive device 500 and improving the photosensitivity of the photosensitive device 500.
  • the orthographic projection of the photosensitive device 500 on the substrate 11 is in the shape of a pillow that is narrow in the middle and wide on both sides, and the center line of the pillow is located on the first connection line L1 .
  • the orthographic projection of the photosensitive device 500 on the substrate 11 is a four-pointed star, and one of the two shortest diagonals of the four-pointed star is located on the first connecting line L1 .
  • orthographic projection of the photosensitive device 500 on the substrate 11 may also be other shapes, which are not specifically limited in the embodiments of the present disclosure.
  • Some embodiments of the present disclosure further provide a method for preparing a display panel, referring to FIG. 14 , which includes S100 to S300 .
  • the anode film can be formed by sputtering or evaporation process first; then, a photoresist pattern is formed on the upper surface of the stacked structure 110 by coating, exposure and development process, and based on the photoresist pattern, the anode film is etched by etching process to form the anode layer 12. Finally, the photoresist pattern is peeled off.
  • the anode layer 12 includes a first electrode 121 and a second electrode 122 .
  • the structures of the first electrode 121 and the second electrode 122 can be referred to above, and will not be described in detail in the embodiment of the present disclosure.
  • an evaporation process can be used, and a fine mask can be used to form the light emitting portion 14 and the photoelectric conversion portion 15.
  • a fine mask can be used to form the light emitting portion 14 and the photoelectric conversion portion 15.
  • FIG4 the structures of the light emitting portion 14 and the photoelectric conversion portion 15 can be referred to above, and the embodiments of the present disclosure will not be described in detail here.
  • the cathode layer 13 includes a third electrode 131 and a fourth electrode 132.
  • the third electrode 131 is disposed opposite to the first electrode 121, and the second electrode 122 is disposed opposite to the fourth electrode 132.
  • the thickness of the third electrode 131 is greater than the thickness of the fourth electrode 132.
  • S 300 includes S310 to S340.
  • the first electrode film may be formed by sputtering or evaporation process, wherein the first electrode film is the first sublayer 1310 of the cathode layer 13 mentioned above.
  • an evaporation process may be used, and a fine mask may be used to form the first peeling portion 17 .
  • the first peeling portion 17 is disposed on a side of the fourth electrode 132 away from the substrate 11 .
  • the second electrode film can be formed by sputtering or evaporation process.
  • the adhesion between the first peeling part 17 and the first electrode film is smaller than the adhesion between the first electrode film and the second electrode film, so that the overlapped part of the second electrode film and the first peeling part 17 can be peeled off in S340.
  • the portion of the second electrode film that is retained is the second sublayer 1320 of the cathode layer 13 .
  • the cathode layer 13 further includes an auxiliary cathode 133, and the thickness of the auxiliary cathode 133 is greater than the thickness of the third electrode 131.
  • S300 further includes S350-S370.
  • an evaporation process may be used, and a fine mask may be used to form the second peeling portion 18.
  • the second peeling portion 18 is disposed on a side of the third electrode 131 away from the substrate 11.
  • the third electrode film may be formed by sputtering or evaporation process.
  • the adhesion between the first peeling part 17 and the third electrode film, and the adhesion between the second peeling part and the third electrode film, are both smaller than the adhesion between the third electrode film and the second electrode film, so that the overlapped part of the third electrode film, the second peeling part 18 and the first peeling part 17 can be peeled off in S370.
  • the portion of the third electrode film that is retained is the third sublayer 1330 of the cathode layer 13 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(100),包括衬底(11)、阳极层(12)、阴极层(13)、发光部(14)和光电转换部(15)。阳极层(12)设置于衬底(11)的一侧;阳极层(12)包括第一电极(121)和第二电极(122)。阴极层(13)设置于阳极层(12)远离衬底(11)的一侧;阴极层(13)包括第三电极(131)和第四电极(132),第三电极(131)与第一电极(121)相对设置,第四电极(132)与第二电极(122)相对设置;沿垂直于衬底(11)的方向,第三电极(131)的厚度大于第四电极(132)的厚度。发光部(14)设置于第一电极(121)和第三电极(131)之间。光电转换部(15)设置于第二电极(122)和第四电极(132)之间。

Description

显示面板及其制备方法、显示装置
本申请要求于2022年11月29日提交的、申请号为202211510549.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及其制备方法、显示装置。
背景技术
随着显示技术的飞速发展,显示装置已经逐渐遍及在人们的生活中。其中,有机发光二极管(Organic Light Emitting Diode,简称:OLED)由于具有自发光、低功耗、宽视角、响应速度快、高对比度以及柔性显示等优点,因而被广泛的应用于手机、电视、笔记本电脑等智能产品中。
发明内容
一方面,提供一种显示面板。所述显示面板包括衬底、阳极层、阴极层、发光部和光电转换部。所述阳极层设置于所述衬底的一侧;所述阳极层包括第一电极和第二电极。所述阴极层设置于所述阳极层远离所述衬底的一侧;所述阴极层包括第三电极和第四电极,所述第三电极与所述第一电极相对设置,所述第四电极与所述第二电极相对设置;沿垂直于所述衬底的方向,所述第三电极的厚度大于所述第四电极的厚度。所述发光部设置于所述第一电极和所述第三电极之间。所述光电转换部设置于所述第二电极和所述第四电极之间。
在一些实施例中,沿垂直于所述衬底的方向,所述阴极层包括第一子层和第二子层,所述第一子层位于所述第二子层靠近所述衬底的一侧。沿垂直于所述衬底的方向,所述第三电极包括叠置的第一子电极和第二子电极,所述第一子电极位于所述第一子层,所述第二子电极位于所述第二子层;所述第四电极位于所述第一子层。
在一些实施例中,所述显示面板还包括第一剥离部,所述第一剥离部设置于所述第四电极远离所述衬底的一侧;所述第一剥离部与所述第二子层之间的粘性,小于所述第一子层和所述第二子层之间的粘性。
在一些实施例中,所述阴极层还包括辅助阴极,所述辅助阴极与所述第三电极、所述第四电极以及公共电压端电连接。沿垂直于所述衬底的方向,所述辅助阴极的厚度大于所述第三电极的厚度。
在一些实施例中,所述阴极层包括第一子层、第二子层和第三子层,所 述第一子层位于所述第二子层靠近所述衬底的一侧,所述第三子层位于所述第二子层远离所述衬底的一侧。沿垂直于所述衬底的方向,所述辅助阴极包括叠置的第一导电图案、第二导电图案和第三导电图案,所述第一导电图案位于所述第一子层,所述第二导电图案位于所述第二子层,所述第三导电图案位于所述第三子层。
在一些实施例中,所述显示面板还包括第二剥离部,所述第二剥离部设置于所述第三电极远离所述衬底的一侧。所述第二剥离部与所述第三子层之间的粘性,小于所述第二子层和所述第三子层之间的粘性。
在一些实施例中,所述显示面板包括第一剥离部,所述第一剥离部与所述第二剥离部之间部分交叠,且交叠的部分中,所述第二剥离部位于所述第一剥离部远离所述衬底的一侧。
在一些实施例中,所述显示面板包括第一剥离部,所述第一剥离部包括叠置的第一子部和第二子部,所述第一子部位于所述第二子部靠近所述衬底的一侧,且所述第二子部与所述第二剥离部的材料相同且同层设置。
在一些实施例中,所述显示面板包括第一剥离部,所述第一剥离部在所述衬底上的正投影的最大面积,小于所述第二剥离部在所述衬底上的正投影的最大面积。
在一些实施例中,所述显示面板包括第一剥离部。所述显示面板还包括像素界定层,所述像素界定层设置于所述阳极层远离所述衬底的一侧;所述像素界定层设有像素开口和感光开口。所述第一剥离部覆盖所述感光开口的底部,且延伸至所述像素界定层远离所述衬底的表面。所述第二剥离部覆盖所述像素开口的底部,且延伸至所述像素界定层远离所述衬底的表面。
其中,所述第一剥离部延伸至所述像素界定层远离所述衬底的表面的部分为第一部分,所述第二剥离部延伸至所述像素界定层远离所述衬底的表面的部分为第二部分。所述第一部分的边界与所述感光开口的平均距离,小于所述第二部分的边界与所述像素开口的平均距离。
在一些实施例中,所述显示面板还包括功能层,所述功能层包括发光功能部和光电功能部,所述发光功能部设置于所述第一电极和所述第三电极之间,所述光电功能部设置于所述第二电极和所述第四电极之间。
在一些实施例中,所述第一电极、所述发光部和所述第三电极重叠的部分形成发光器件;多个所述发光器件包括多个红色发光器件、多个蓝色发光器件、多个第一绿色发光器件和多个第二绿色发光器件。
所述多个红色发光器件和所述多个蓝色发光器件阵列排布为多行多列, 每行包括沿第一方向交错排列的多个红色发光器件和多个蓝色发光器件,每列包括沿第二方向交错排列的多个红色发光器件和多个蓝色发光器件。
所述多个第一绿色发光器件和所述多个第二绿色发光器件阵列排布为多行多列,每行包括沿第一方向交错排列的多个第一绿色发光器件和多个第二绿色发光器件,每列包括沿第二方向交错排列的多个第一绿色发光器件和多个第二绿色发光器件,且所述第一绿色发光器件和所述第二绿色发光器件分别位于不同的相邻排布的两行两列的红色发光器件和蓝色发光器件之间。
在一些实施例中,在第一方向上,任意相邻的红色发光器件的发光中心和蓝色发光器件的发光中心之间的距离大致相等;在第二方向上,任意相邻的红色发光器件的发光中心和蓝色发光器件的发光中心之间的距离大致相等。
在一些实施例中,所述第二电极、所述光电转换部和所述第四电极重叠的部分形成感光器件。所述感光器件设置于沿所述第一方向上相邻的一个红色发光器件和一个蓝色发光器件之间。和/或,所述感光器件设置于沿所述第二方向上相邻的一个红色发光器件和一个蓝色发光器件之间。
在一些实施例中,所述多个红色发光器件和多个蓝色发光器件划分为多个发光器件组,所述发光器件组包括在所述第二方向上相邻的一个红色发光器件和一个蓝色发光器件。所述多个发光器件组包括第一子组和第二子组,所述第一子组和所述第二子组在所述第一方向上交替排列。其中,所述第一子组中的红色发光器件的发光中心和蓝色发光器件的发光中心的距离,小于所述第二子组中的红色发光器件的发光中心和蓝色发光器件的发光中心的距离。
在一些实施例中,所述第二电极、所述光电转换部和所述第四电极重叠的部分形成感光器件。所述感光器件设置于所述第二子组中的一个红色发光器件和一个蓝色发光器件之间,以及沿所述第二方向上相邻的两个第一子组之间。和/或,所述感光器件设置于沿所述第一方向上相邻的一个红色发光器件和一个蓝色发光器件之间。
在一些实施例中,所述感光器件的边界与所述红色发光器件的边界的最小距离以及与所述蓝色发光器件的边界的最小距离大致相等。
在一些实施例中,相邻排布的两行两列的红色发光器件和蓝色发光器件之间设置有多个感光器件,所述多个感光器件的第二电极电连接。
在一些实施例中,所述感光器件相对的两侧的红色发光器件和蓝色发光器件的发光中心的连线为第一连接线。所述第一连接线与所述感光器件交叠的部分的长度,为所述感光器件在设定方向上的最小尺寸,所述设定方向与 所述第一连接线大致平行。
另一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示面板。
又一方面,提供一种显示面板的制备方法。所述显示面板的制备方法包括:在衬底上形成阳极层;所述阳极层包括第一电极和第二电极。在所述第一电极上形成发光部以及在所述第二电极上形成光电转换部。在所述发光部和所述光电转换部远离所述衬底的一侧形成阴极层;所述阴极层包括第三电极和第四电极,所述第三电极与所述第一电极相对设置,所述第二电极与所述第四电极相对设置;沿垂直于所述衬底的方向,所述第三电极的厚度大于所述第四电极的厚度。
在一些实施例中,所述在所述发光部和所述光电转换部远离所述衬底的一侧形成阴极层,包括:形成第一电极薄膜;所述第一电极薄膜为所述阴极层的第一子层。形成第一剥离部;所述第一剥离部设置于所述第四电极远离所述衬底的一侧。形成第二电极薄膜;所述第一剥离部与所述第一电极薄膜之间的粘性,小于所述第一电极薄膜和所述第二电极薄膜之间的粘性。将所述第二电极薄膜与所述第一剥离部交叠的部分剥离;所述第二电极薄膜保留的部分为所述阴极层的第二子层。
在一些实施例中,所述阴极层还包括辅助阴极,在所述将所述第二电极薄膜与所述第一剥离部交叠的部分剥离之后,所述在所述发光部和所述光电转换部远离所述衬底的一侧形成阴极层,还包括:形成第二剥离部;所述第二剥离部设置于所述第三电极远离所述衬底的一侧。形成第三电极薄膜;所述第一剥离部与所述第三电极薄膜之间的粘性,以及所述第二剥离部与所述第三电极薄膜之间的粘性,均小于所述第三电极薄膜和所述第二电极薄膜之间的粘性。将所述第三电极薄膜与所述第二剥离部以及所述第一剥离部交叠的部分剥离;所述第三电极薄膜保留的部分为所述阴极层的第三子层。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的显示装置的结构图;
图2为根据一些实施例的显示装置的剖视图;
图3为根据一些实施例的显示装置的爆炸图;
图4为图3中沿A-A'的一种剖视图;
图5为图3中沿A-A'的另一种剖视图;
图6为图4中A处的局部放大图;
图7为根据一些实施例的发光器件和感光器件的一种俯视图;
图8为根据一些实施例的发光器件和感光器件的另一种俯视图;
图9为根据一些实施例的发光器件和感光器件的再一种俯视图;
图10为根据一些实施例的发光器件和感光器件的又一种俯视图;
图11为根据一些实施例的发光器件和感光器件的又一种俯视图;
图12为根据一些实施例的发光器件和感光器件的又一种俯视图;
图13为图9中沿B-B'的一种剖视图;
图14和图15为根据一些实施例的显示面板的制备方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语 “连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层的厚度和区域的面积。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
参阅图1,本公开的一些实施例提供了一种显示装置1000,显示装置1000可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。
示例性地,该显示装置1000可以为电视机、笔记本电脑、平板电脑、手机、个人数字助理(Personal Digital Assistant;简称:PDA)、导航仪、可穿戴设备、虚拟现实(Virtual Reality;简称:VR)设备等任何具有显示功能的产品或者部件。
在一些实施例中,参阅图1,显示装置1000包括显示面板100。
示例性地,如图1和图2所示,上述显示装置1000还可以包括壳体200、盖板300、电路板400和感光器件500以及其他电子配件。
如图2所示,壳体200的纵截面例如可以呈U型,显示面板100和电路板400设置于壳体200内,盖板300设置于壳体200的开口处。
如图2和图3所示,电路板400可以在显示面板100的端部与显示面板100绑定,并弯折至显示面板100的背侧,这样有利于显示装置1000的窄边框设计。
如图1和图3所示,感光器件500例如可以集成于显示面板100内,以实现全面屏的设计。其中,感光器件500包括红外传感器、近距离传感器、眼球追踪模组和人脸识别模组中的至少一者。
上述显示面板100的类型包括多种,可以根据实际需要选择设置。
示例性地,上述显示面板100可以为:有机发光二极管(Organic Light Emitting Diode,简称:OLED)显示面板、量子点发光二极管(Quantum Dot Light Emitting Diode,简称:QLED)显示面板等,本公开实施例在此不做具体限定。
下面以上述显示面板100为OLED显示面板为例,对本公开的一些实施 例进行示意性说明。
在一些实施例中,参阅图4,显示面板100包括显示基板10和用于封装显示基板10的封装层20。
其中,如图4所示,显示基板10具有相对设置的出光侧和非出光侧,封装层20设置于显示基板10的出光侧,即图4中的上侧。
需要说明的是,封装层20可以为封装薄膜,也可以为封装基板。图4中以封装层20为封装薄膜为例进行示意。
在一些实施例中,参阅图4,显示基板10包括衬底11、阳极层12、阴极层13、发光部14和光电转换部15。
上述衬底11的类型包括多种,可以根据实际需要选择设置。
示例性地,衬底11可以为刚性衬底。例如,该刚性衬底可以为玻璃衬底或聚甲基丙烯酸甲酯(Polymethyl Methacrylate,简称:PMMA)衬底等。
示例性地,衬底11可以为柔性衬底。例如,该柔性衬底可以为聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,简称:PET)衬底、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate Two Formic Acid Glycol Ester,简称:PEN)衬底或聚酰亚胺(Polyimide,简称:PI)衬底等。
如图4所示,阳极层12设置于衬底11的一侧(例如图4中的上侧),且阳极层12包括第一电极121和第二电极122。
如图4所示,阴极层13设置于阳极层12远离衬底11的一侧。阴极层13包括第三电极131和第四电极132,第三电极131与第一电极121相对设置,第四电极132与第二电极122相对设置。
如图4所示,发光部14设置于第一电极121和第三电极131之间。此时,第一电极121、发光部14和第三电极131重叠的部分形成发光器件30。第一电极121为发光器件30的阳极,第三电极131为发光器件30的阴极。
如图4所示,光电转换部15设置于第二电极122和第四电极132之间。此时,第二电极122、光电转换部15和第四电极132重叠的部分形成感光器件500。第二电极122为感光器件500的阳极,第四电极132为感光器件500的阴极。
其中,如图4所示,上述显示基板10还包括像素界定层16,像素界定层16设置于阳极层12远离衬底11的一侧。
如图4所示,像素界定层16设有像素开口161和感光开口162,一个发光器件30位于一个像素开口161内,一个感光器件500位于一个感光开口162内。
目前,在不降低发光器件的发光效率的情况下,如何提高感光器件的感光量是目前需要解决的问题。
基于此,在本公开实施例中,沿垂直于衬底11的方向,第三电极131的厚度大于第四电极132的厚度。即发光器件30的阴极的厚度,大于感光器件500的阴极的厚度。
以这种方式设置,第三电极131的厚度可以设计的较厚,以使第三电极131具有半透半反的特性。这样的话,发光器件30的阴极和阳极之间可以形成微腔,从而提高发光器件30的发光效率。同时,第四电极132的厚度可以设计的较薄,以提高第四电极132的透光率。这样的话,感光器件500的阴极的透光率较高,可以增大感光器件500的感光量,提高感光器件500的感光灵敏度。
示例性地,参阅图4,沿垂直于衬底11的方向,阴极层13包括第一子层1310和第二子层1320,第一子层1310位于第二子层1320靠近衬底11的一侧。
在此基础上,沿垂直于衬底11的方向,第三电极131包括叠置的第一子电极1311和第二子电极1312,第一子电极1311位于第一子层1310,第二子电极1312位于第二子层1320。第四电极132位于第一子层1310。
在这种情况下,第三电极131的第一子电极1311与第四电极132可以采用相同的材料,并在同一工艺步骤中制备,从而降低生产成本。
上述第一子层1310的厚度的范围例如可以为2nm~8nm。示例性地,第一子层1310的厚度为2nm、4nm、5nm、7nm和8nm中的任一者。
上述第二子层1320的厚度的范围例如可以为2nm~8nm。示例性地,第二子层1320的厚度为2nm、4nm、5nm、7nm和8nm中的任一者。
此外,如图4所示,显示面板100还包括第一剥离部17,第一剥离部17设置于第四电极132远离衬底11的一侧,且第一剥离部17与第二子层1320之间的粘性,小于第一子层1310和第二子层1320之间的粘性。
在这种情况下,在形成第一子层1310后和形成第二子层1320之前,可以先形成第一剥离部17。这样的话,形成第二子层1320的工艺过程,无需使用精细掩膜版,第二子层1320与第一剥离部17交叠的部分,可以直接剥离,使得第四电极132远离衬底11的一侧不存在第二子层1320,从而降低形成第三电极131和第四电极132的工艺难度。
上述第一剥离部17的厚度的范围例如可以为1nm~10nm。示例性地,第一剥离部17的厚度为1nm、2nm、4nm、5nm、7nm、8nm和10nm中的任一 者。
需要说明的是,第一剥离部17的材料包括透光材料,透光材料的透过率例如可以大于或等于80%。示例性地,第一剥离部17的材料包括8-羟基喹啉锂、N,N-联苯-N,N-二(9-苯基-9H-咔唑-3-基)二苯基-4,4’-二胺、N(联苯-4-基)9,9-二甲基-N-(4(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并-[D]咪唑中的至少一种。
应理解,感光器件500应完全覆盖感光开口162所在的区域,以使得感光器件500在感光开口162所在的区域均可以感测外部环境光,增大感光器件500的感光面积。
在此基础上,参阅图4,上述第一剥离部17覆盖感光开口162的底部,且延伸至像素界定层16远离衬底11的表面,以避免由于工艺的偏差而导致第一剥离部17无法完全覆盖感光开口162的底部。这样的话,第一剥离部17可以完全覆盖感光开口162的底部,避免第二子层1320部分保留在像素开口161的底部,使得感光器件500在整个感光开口162所在的区域的阴极层13的透光率均较高,从而增大感光器件500感光量,提高感光器件500的感光灵敏度。
在一些实施例中,参阅图4,阴极层13还包括辅助阴极133,辅助阴极133与第三电极131、第四电极132以及公共电压端电连接。
需要说明的是,辅助阴极133、第三电极131和第四电极132形成连续的整层结构。
沿垂直于衬底11的方向,辅助阴极133的厚度大于第三电极131的厚度。即辅助阴极133的厚度,大于发光器件30的阴极的厚度,且大于感光器件500的阴极的厚度。
以这种方式设置,辅助阴极133的厚度可以设计的较厚,以使辅助阴极133的电阻降低。这样的话,从公共电压端通过辅助阴极133传输至第三电极131和第四电极132的电源电压信号的压降较低,提升亮度均一性,降低能耗。
示例性地,参阅图4,阴极层13还包括第三子层1330,第三子层1330位于第二子层1320远离衬底11的一侧。
在此基础上,沿垂直于衬底11的方向,辅助阴极133包括叠置的第一导电图案1331、第二导电图案1332和第三导电图案1333,第一导电图案1331位于第一子层1310,第二导电图案1332位于第二子层1320,第三导电图案1333位于第三子层1330。
在这种情况下,辅助阴极133的第一导电图案1331与第三电极131的第 一子电极1311和第四电极132可以采用相同的材料,并在同一工艺步骤中制备;辅助阴极133的第二导电图案1332与第三电极131的第二子电极1312可以采用相同的材料,并在同一工艺步骤中制备,从而降低生产成本。
上述第三子层1330的厚度的范围例如可以为1nm~10nm。示例性地,第三子层1330的厚度为1nm、2nm、4nm、5nm、7nm、8nm和10nm中的任一者。
此外,如图4所示,显示面板100还包括第二剥离部18,第二剥离部18设置于第三电极131远离衬底11的一侧,且第二剥离部18与第三子层1330之间的粘性,小于第二子层1320和第三子层1330之间的粘性。
在这种情况下,在形成第二子层1320后和形成第三子层1330之前,可以先形成第二剥离部18。这样的话,形成第三子层1330的工艺过程,无需使用精细掩膜版,第三子层1330与第一剥离部17和第二剥离部18交叠的部分,可以直接剥离,使得第三电极131和第四电极132远离衬底11的一侧不存在第三子层1330,从而降低形成第三电极131、第四电极132和辅助阴极133的工艺难度。
上述第二剥离部18的厚度的范围例如可以为1nm~10nm。示例性地,第二剥离部18的厚度为1nm、2nm、4nm、5nm、7nm、8nm和10nm中的任一者。
需要说明的是,第二剥离部18的材料包括透光材料,透光材料的透过率例如可以大于或等于80%。示例性地,第二剥离部18的材料包括8-羟基喹啉锂、N,N-联苯-N,N-二(9-苯基-9H-咔唑-3-基)二苯基-4,4’-二胺、N(联苯-4-基)9,9-二甲基-N-(4(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯并-[D]咪唑中的至少一种。
应理解,发光器件30应完全覆盖像素开口161所在的区域,以使得发光器件30在像素开口161所在的区域均可以发光,提高发光效率。
在此基础上,参阅图4,上述第二剥离部18覆盖像素开口161的底部,且延伸至像素界定层16远离衬底11的表面,以避免由于工艺的偏差而导致第二剥离部18无法完全覆盖像素开口161的底部。这样的话,第二剥离部18可以完全覆盖像素开口161的底部,避免第三子层1330部分保留在像素开口161的底部,使得发光器件30在整个像素开口161所在的区域的阴极层13具有半透半反特性,从而提高发光器件30的发光效率。
此外,参阅图4,第一剥离部17延伸至像素界定层16远离衬底11的表面的部分为第一部分,第二剥离部18延伸至像素界定层16远离衬底11的表 面的部分为第二部分。第一部分的边界与感光开口162的平均距离,小于第二部分的边界与像素开口161的平均距离。
以这种方式设置,第二部分的边界与像素开口161的平均距离可以设计的较远,以避免由于工艺的偏差而导致第二剥离部18无法完全覆盖像素开口161的侧壁。这样的话,第二剥离部18可以无安全覆盖像素开口161的侧壁,从而避免第三子层1330部分保留在像素开口161的侧壁,使得像素开口161的侧壁的阴极层13的厚度较薄,有利于显示装置1000的大视角出光量的设计。
同时,第一部分的边界与感光开口162的平均距离可设计的较近,以缩减第四电极132的面积,提升辅助阴极133在阴极层13的占比,从而减小压降,提升亮度均一性,降低能耗。
示例性地,如图4所示,第一部分的边界与感光开口162的平均距离大于或等于2μm,第二部分的边界与像素开口161的平均距离小于2μm。
在一些实施例中,参阅图7,第一剥离部17在衬底11上的正投影的最大面积,小于第二剥离部18在衬底11上的正投影的最大面积。
示例性地,参阅图7,发光器件30包括多个红色发光器件310、多个蓝色发光器件320、多个第一绿色发光器件330和多个第二绿色发光器件340。
其中,蓝色发光器件320的发光面积,大于红色发光器件310的发光面积;红色发光器件310的发光面积,大于第一绿色发光器件330的发光面积;第一绿色发光器件330的发光面积,大致等于第二绿色发光器件340的发光面积。
此时,位于蓝色发光器件320的第三电极131远离衬底11的一侧的第二剥离部18,在衬底11上的正投影的面积即为第二剥离部18在衬底11上的正投影的最大面积。即,第一剥离部17在衬底11上的正投影的面积,小于位于蓝色发光器件320的第三电极131远离衬底11的一侧的第二剥离部18在衬底11上的正投影的面积。
在一些实施例中,如图4和图6所示,第一剥离部17与第二剥离部18之间部分交叠,且交叠的部分中,第二剥离部18位于第一剥离部17远离衬底11的一侧。
此时,第一剥离部17和第二剥离部18分别在不同的工艺步骤中形成,具体可以参考下文。
在另一些实施例中,如图5所示,第一剥离部17包括叠置的第一子部171和第二子部172,第一子部171位于第二子部172靠近衬底11的一侧,且第 二子部172与第二剥离部18的材料相同且同层设置。
此时,第一剥离部17的第二子部172可以与第二剥离部18可以采用相同的材料,并在同一工艺步骤中制备,从而降低生产成本,具体可以参考下文。同时,第一剥离部17的厚度较厚,有利于第三子层1330与第一剥离部17的剥离。
在一些实施例中,参阅图4,上述显示面板100还可以包括功能层,功能层包括发光功能部和光电功能部,发光功能部设置于第一电极121和第三电极161之间,光电功能部设置于第二电极122和第四电极162之间。
其中,功能层可以包括电子传输层(Election Transporting Layer,简称:ETL)、电子注入层(Election Injection Layer,简称:EIL)、空穴传输层(Hole Transporting Layer,简称:HTL)和空穴注入层(Hole Injection Layer,简称:HIL)中的至少一个。
例如,沿垂直于衬底11且远离衬底11的方向,功能层依次包括空穴注入层、空穴传输层、电子传输层和电子注入层,发光部14和光电转换部15位于空穴传输层和电子传输层之间。
由上述可知,发光器件30的发光功能部和感光器件500的光电功能部可以采用相同的材料,并在同一工艺步骤中制备,从而降低生产成本。
可以理解的是,上述发光器件30的排类方式并不唯一。
在一些实施例中,参阅图7,多个发光器件30包括多个红色发光器件310、多个蓝色发光器件320、多个第一绿色发光器件330和多个第二绿色发光器件340。
如图7所示,多个红色发光器件310和多个蓝色发光器件320阵列排布为多行多列,每行包括沿第一方向X交错排列的多个红色发光器件310和多个蓝色发光器件320,每列包括沿第二方向Y交错排列的多个红色发光器件310和多个蓝色发光器件320。
如图7所示,多个第一绿色发光器件330和多个第二绿色发光器件340阵列排布为多行多列,每行包括沿第一方向X交错排列的多个第一绿色发光器件330和多个第二绿色发光器件340,每列包括沿第二方向Y交错排列的多个第一绿色发光器件330和多个第二绿色发光器件340,且第一绿色发光器件330和第二绿色发光器件340分别位于不同的相邻排布的两行两列的红色发光器件310和蓝色发光器件320之间。
以这种方式排列,可以有效改善显示面板100显示效果,提高显示细腻度,降低边缘锯齿感和显示颗粒感。
在一些示例中,参阅图7,在第一方向X上,任意相邻的红色发光器件310的发光中心和蓝色发光器件320的发光中心之间的距离大致相等。在第二方向Y上,任意相邻的红色发光器件310的发光中心和蓝色发光器件320的发光中心之间的距离大致相等。
如图7所示,上述感光器件500可以设置于沿第一方向X上相邻的一个红色发光器件310和一个蓝色发光器件320之间。
如图8所示,上述感光器件500可以设置于沿第二方向Y上相邻的一个红色发光器件310和一个蓝色发光器件320之间。
如图9所示,上述感光器件500可以设置于沿第一方向X上相邻的一个红色发光器件310和一个蓝色发光器件320之间、以及沿第二方向Y上相邻的一个红色发光器件310和一个蓝色发光器件320之间。
此时,参阅图9和图13,相邻排布的两行两列的红色发光器件310和蓝色发光器件320之间设置有多个感光器件500。在此基础上,多个感光器件500的第二电极122可以电连接。这样多个感光器件500可以作为一个感光单元,以增大下面提到的感光电路50感测到的信号量,提高感光灵敏度。
其中,参阅图4,显示面板100还包括像素驱动电路40和感光电路50,像素驱动电路40和感光电路50均包括薄膜晶体管60。薄膜晶体管60包括半导体沟道61、源极62、漏极63和栅极64,源极62和漏极63分别与半导体沟道61接触。
需要说明的是,上述源极62和漏极63可以互换,即图4中的62表示漏极,图4中的63表示源极。
如图4所示,发光器件30的阳极(第一电极121)和像素驱动电路40的一个薄膜晶体管60的源极62或漏极63电连接。感光器件500的阳极(第二电极122)和像素驱动电路40的一个薄膜晶体管60的源极62或漏极63电连接。图4中以第一电极121与像素驱动电路40的一个薄膜晶体管60的漏极63电连接,以及第二电极122与感光电路50的一个薄膜晶体管60的漏极63电连接为例进行示意。
其中,上述多个感光器件500的第二电极122电连接,即多个感光器件500的第二电极122与同一个感光电路50电连接。例如,多个感光器件500的第二电极122与感光电路50的一个薄膜晶体管60的源极62电连接。
在另一些示例中,参阅图10,多个红色发光器310和多个蓝色发光器件320划分为多个发光器件组350,发光器件组350包括在第二方向Y上相邻的一个红色发光器件310和一个蓝色发光器件320。
其中,多个发光器件组350包括第一子组351和第二子组352,第一子组351和第二子组352在第一方向X上交替排列。并且,第一子组351中的红色发光器件310的发光中心和蓝色发光器件320的发光中心的距离,小于第二子组352中的红色发光器件310的发光中心和蓝色发光器件320的发光中心的距离。
如图10所示,感光器件500设置于沿第一方向X上相邻的一个红色发光器件310和一个蓝色发光器件320之间。
如图11所示,上述感光器件500设置于第二子组352中的一个红色发光器件310和一个蓝色发光器件320之间,以及沿第二方向Y上相邻的两个第一子组351之间。
如图12所示,上述感光器件500设置于沿第一方向X上相邻的一个红色发光器件310和一个蓝色发光器件320之间、第二子组352中的一个红色发光器件310和一个蓝色发光器件320之间、以及沿第二方向Y上相邻的两个第一子组351之间。
此时,参阅图12和图13,相邻排布的两行两列的红色发光器件310和蓝色发光器件320之间设置有多个感光器件500。在此基础上,多个感光器件500的第二电极122可以电连接。
其中,多个感光器件500的第二电极122电连接,即多个感光器件500的第二电极122与同一个感光电路50电连接。例如,多个感光器件500的第二电极122与感光电路50的一个薄膜晶体管60的源极62电连接。
在一些实施例中,参阅图7,感光器件500的边界与红色发光器件310的边界的最小距离以及与蓝色发光器件320的边界的最小距离大致相等,以便于形成感光器件500的过程中所需要的精细掩膜版的制备。
在一些实施例中,如图7和图8所示,感光器件500相对的两侧的红色发光器件310和蓝色发光器件320的发光中心的连线为第一连接线L1。
其中,第一连接线L1与感光器件500交叠的部分的长度,为感光器件500在设定方向上的最小尺寸,设定方向与第一连接线L1大致平行。以这种方式设置,可以增大感光器件500的感光面积,从而增大感光器件500的感光量,提高感光器件500的感光灵敏度。
示例性地,如图8所示,感光器件500在衬底11上的正投影为中间窄两边宽的枕头形状,枕头的中心线位于第一连接线L1上。
示例性地,如图7所示,感光器件500在衬底11上的正投影为四角星,四角星最短的两条对角线中的一条位于第一连接线L1上。
需要说明的是,感光器件500在衬底11上的正投影还可以为其他形状,本公开实施例在此不做具体限定。
本公开的一些实施例还提供了一种显示面板的制备方法,参阅图14,包括S100~S300。
S100:在衬底11上形成阳极层12。
上述步骤中,可以先采用溅射或蒸镀工艺形成阳极薄膜;然后,通过涂布、曝光、显影工艺在堆叠结构110的上表面形成光阻图案,并基于光阻图案,刻蚀工艺刻蚀阳极薄膜形成阳极层12。最后,将光阻图案剥离。
其中,如图4所示,阳极层12包括第一电极121和第二电极122,第一电极121和第二电极122的结构可以参考上文,本公开实施例在此不做赘述。
S200:在第一电极121上形成发光部14以及在第二电极122上形成光电转换部15。
上述步骤中,可以采用蒸镀工艺,并利用精细掩膜版分别形成发光部14和光电转换部15。其中,如图4所示,发光部14和光电转换部15的结构可以参考上文,本公开实施例在此不做赘述。
S300:在发光部14和光电转换部15远离衬底11的一侧形成阴极层13。
上述步骤中,如图4所示,阴极层13包括第三电极131和第四电极132,第三电极131与第一电极121相对设置,第二电极122与第四电极132相对设置。沿垂直于衬底11的方向,第三电极131的厚度大于第四电极132的厚度。
在一些实施例中,参阅图15,S 300包括S310~S340。
S310:形成第一电极薄膜。
上述步骤中,可以采用溅射或蒸镀工艺形成第一电极薄膜。其中,第一电极薄膜为上文提到的阴极层13的第一子层1310。
S320:形成第一剥离部17。
上述步骤中,可以采用蒸镀工艺,并利用精细掩膜版形成第一剥离部17。其中,第一剥离部17设置于第四电极132远离衬底11的一侧。
S330:形成第二电极薄膜。
上述步骤中,可以采用溅射或蒸镀工艺形成第二电极薄膜。其中,第一剥离部17与第一电极薄膜之间的粘性,小于第一电极薄膜和第二电极薄膜之间的粘性,以便于S340中将第二电极薄膜与第一剥离部17交叠的部分剥离。
S340:将第二电极薄膜与第一剥离部17交叠的部分剥离。
上述步骤中,第二电极薄膜保留的部分为阴极层13的第二子层1320。
在一些实施例中,参阅图4,阴极层13还包括辅助阴极133,辅助阴极133的厚度大于第三电极131的厚度。此时,在S340之后,如图15所示,S300还包括S350~S370。
S350:形成第二剥离部18。
上述步骤中,可以采用蒸镀工艺,并利用精细掩膜版形成第二剥离部18。将第二剥离部18设置于第三电极131远离衬底11的一侧。
S360:形成第三电极薄膜。
上述步骤中,可以采用溅射或蒸镀工艺形成第三电极薄膜。其中,第一剥离部17与第三电极薄膜之间的粘性,以及第二剥离部与第三电极薄膜之间的粘性,均小于第三电极薄膜和第二电极薄膜之间的粘性,以便于S370中将第三电极薄膜与第二剥离部18以及第一剥离部17交叠的部分剥离。
S370:将第三电极薄膜与第二剥离部18以及第一剥离部17交叠的部分剥离。
上述步骤中,第三电极薄膜保留的部分为阴极层13的第三子层1330。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种显示面板,包括:
    衬底;
    阳极层,设置于所述衬底的一侧;所述阳极层包括第一电极和第二电极;
    阴极层,设置于所述阳极层远离所述衬底的一侧;所述阴极层包括第三电极和第四电极,所述第三电极与所述第一电极相对设置,所述第四电极与所述第二电极相对设置;沿垂直于所述衬底的方向,所述第三电极的厚度大于所述第四电极的厚度;
    发光部,设置于所述第一电极和所述第三电极之间;
    光电转换部,设置于所述第二电极和所述第四电极之间。
  2. 根据权利要求1所述的显示面板,其中,沿垂直于所述衬底的方向,所述阴极层包括第一子层和第二子层,所述第一子层位于所述第二子层靠近所述衬底的一侧;
    沿垂直于所述衬底的方向,所述第三电极包括叠置的第一子电极和第二子电极,所述第一子电极位于所述第一子层,所述第二子电极位于所述第二子层;所述第四电极位于所述第一子层。
  3. 根据权利要求2所述的显示面板,还包括:
    第一剥离部,设置于所述第四电极远离所述衬底的一侧;所述第一剥离部与所述第二子层之间的粘性,小于所述第一子层和所述第二子层之间的粘性。
  4. 根据权利要求1~3中任一项所述的显示面板,其中,所述阴极层还包括辅助阴极,所述辅助阴极与所述第三电极、所述第四电极以及公共电压端电连接;沿垂直于所述衬底的方向,所述辅助阴极的厚度大于所述第三电极的厚度。
  5. 根据权利要求4所述的显示面板,其中,所述阴极层包括第一子层、第二子层和第三子层,所述第一子层位于所述第二子层靠近所述衬底的一侧,所述第三子层位于所述第二子层远离所述衬底的一侧;
    沿垂直于所述衬底的方向,所述辅助阴极包括叠置的第一导电图案、第二导电图案和第三导电图案,所述第一导电图案位于所述第一子层,所述第二导电图案位于所述第二子层,所述第三导电图案位于所述第三子层。
  6. 根据权利要求5所述的显示面板,还包括:
    第二剥离部,设置于所述第三电极远离所述衬底的一侧;所述第二剥离部与所述第三子层之间的粘性,小于所述第二子层和所述第三子层之间的粘性。
  7. 根据权利要求6所述的显示面板,其中,所述显示面板包括第一剥离部,所述第一剥离部与所述第二剥离部之间部分交叠,且交叠的部分中,所述第二剥离部位于所述第一剥离部远离所述衬底的一侧。
  8. 根据权利要求6所述的显示面板,其中,所述显示面板包括第一剥离部,所述第一剥离部包括叠置的第一子部和第二子部,所述第一子部位于所述第二子部靠近所述衬底的一侧,且所述第二子部与所述第二剥离部的材料相同且同层设置。
  9. 根据权利要求6~8中任一项所述的显示面板,其中,所述显示面板包括第一剥离部,所述第一剥离部在所述衬底上的正投影的最大面积,小于所述第二剥离部在所述衬底上的正投影的最大面积。
  10. 根据权利要求6~9中任一项所述的显示面板,其中,所述显示面板包括第一剥离部,所述显示面板还包括:
    像素界定层,设置于所述阳极层远离所述衬底的一侧;所述像素界定层设有像素开口和感光开口;
    所述第一剥离部覆盖所述感光开口的底部,且延伸至所述像素界定层远离所述衬底的表面;所述第二剥离部覆盖所述像素开口的底部,且延伸至所述像素界定层远离所述衬底的表面;
    其中,所述第一剥离部延伸至所述像素界定层远离所述衬底的表面的部分为第一部分,所述第二剥离部延伸至所述像素界定层远离所述衬底的表面的部分为第二部分;所述第一部分的边界与所述感光开口的平均距离,小于所述第二部分的边界与所述像素开口的平均距离。
  11. 根据权利要求1~10中任一项所述的显示面板,还包括:
    功能层,包括发光功能部和光电功能部,所述发光功能部设置于所述第一电极和所述第三电极之间,所述光电功能部设置于所述第二电极和所述第四电极之间。
  12. 根据权利要求1~11中任一项所述的显示面板,其中,所述第一电极、所述发光部和所述第三电极重叠的部分形成发光器件;多个所述发光器件包括多个红色发光器件、多个蓝色发光器件、多个第一绿色发光器件和多个第二绿色发光器件;
    所述多个红色发光器件和所述多个蓝色发光器件阵列排布为多行多列,每行包括沿第一方向交错排列的多个红色发光器件和多个蓝色发光器件,每列包括沿第二方向交错排列的多个红色发光器件和多个蓝色发光器件;
    所述多个第一绿色发光器件和所述多个第二绿色发光器件阵列排布为多 行多列,每行包括沿第一方向交错排列的多个第一绿色发光器件和多个第二绿色发光器件,每列包括沿第二方向交错排列的多个第一绿色发光器件和多个第二绿色发光器件,且所述第一绿色发光器件和所述第二绿色发光器件分别位于不同的相邻排布的两行两列的红色发光器件和蓝色发光器件之间。
  13. 根据权利要求12所述的显示面板,其中,在第一方向上,任意相邻的红色发光器件的发光中心和蓝色发光器件的发光中心之间的距离大致相等;在第二方向上,任意相邻的红色发光器件的发光中心和蓝色发光器件的发光中心之间的距离大致相等。
  14. 根据权利要求13所述的显示面板,其中,所述第二电极、所述光电转换部和所述第四电极重叠的部分形成感光器件;
    所述感光器件设置于沿所述第一方向上相邻的一个红色发光器件和一个蓝色发光器件之间;和/或,所述感光器件设置于沿所述第二方向上相邻的一个红色发光器件和一个蓝色发光器件之间。
  15. 根据权利要求12所述的显示面板,其中,所述多个红色发光器件和多个蓝色发光器件划分为多个发光器件组,所述发光器件组包括在所述第二方向上相邻的一个红色发光器件和一个蓝色发光器件;
    所述多个发光器件组包括第一子组和第二子组,所述第一子组和所述第二子组在所述第一方向上交替排列;其中,所述第一子组中的红色发光器件的发光中心和蓝色发光器件的发光中心的距离,小于所述第二子组中的红色发光器件的发光中心和蓝色发光器件的发光中心的距离。
  16. 根据权利要求15所述的显示面板,其中,所述第二电极、所述光电转换部和所述第四电极重叠的部分形成感光器件;
    所述感光器件设置于所述第二子组中的一个红色发光器件和一个蓝色发光器件之间,以及沿所述第二方向上相邻的两个第一子组之间;和/或,所述感光器件设置于沿所述第一方向上相邻的一个红色发光器件和一个蓝色发光器件之间。
  17. 根据权利要求14或16所述的显示面板,其中,所述感光器件的边界与所述红色发光器件的边界的最小距离以及与所述蓝色发光器件的边界的最小距离大致相等。
  18. 根据权利要求14、16或17所述的显示面板,其中,相邻排布的两行两列的红色发光器件和蓝色发光器件之间设置有多个感光器件,所述多个感光器件的第二电极电连接。
  19. 根据权利要求14、16~18中任一项所述的显示面板,其中,所述感 光器件相对的两侧的红色发光器件和蓝色发光器件的发光中心的连线为第一连接线;
    所述第一连接线与所述感光器件交叠的部分的长度,为所述感光器件在设定方向上的最小尺寸,所述设定方向与所述第一连接线大致平行。
  20. 一种显示装置,包括如权利要求1~19中任一项所述的显示面板。
  21. 一种显示面板的制备方法,包括:
    在衬底上形成阳极层;所述阳极层包括第一电极和第二电极;
    在所述第一电极上形成发光部以及在所述第二电极上形成光电转换部;
    在所述发光部和所述光电转换部远离所述衬底的一侧形成阴极层;所述阴极层包括第三电极和第四电极,所述第三电极与所述第一电极相对设置,所述第二电极与所述第四电极相对设置;沿垂直于所述衬底的方向,所述第三电极的厚度大于所述第四电极的厚度。
  22. 根据权利要求21所述的显示面板的制备方法,其中,所述在所述发光部和所述光电转换部远离所述衬底的一侧形成阴极层,包括:
    形成第一电极薄膜;所述第一电极薄膜为所述阴极层的第一子层;
    形成第一剥离部;所述第一剥离部设置于所述第四电极远离所述衬底的一侧;
    形成第二电极薄膜;所述第一剥离部与所述第一电极薄膜之间的粘性,小于所述第一电极薄膜和所述第二电极薄膜之间的粘性;
    将所述第二电极薄膜与所述第一剥离部交叠的部分剥离;所述第二电极薄膜保留的部分为所述阴极层的第二子层。
  23. 根据权利要求22所述的显示面板的制备方法,其中,所述阴极层还包括辅助阴极,在所述将所述第二电极薄膜与所述第一剥离部交叠的部分剥离之后,所述在所述发光部和所述光电转换部远离所述衬底的一侧形成阴极层,还包括:
    形成第二剥离部;所述第二剥离部设置于所述第三电极远离所述衬底的一侧;
    形成第三电极薄膜;所述第一剥离部与所述第三电极薄膜之间的粘性,以及所述第二剥离部与所述第三电极薄膜之间的粘性,均小于所述第三电极薄膜和所述第二电极薄膜之间的粘性;
    将所述第三电极薄膜与所述第二剥离部以及所述第一剥离部交叠的部分剥离;所述第三电极薄膜保留的部分为所述阴极层的第三子层。
PCT/CN2023/125360 2022-11-29 2023-10-19 显示面板及其制备方法、显示装置 WO2024114155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211510549.6 2022-11-29
CN202211510549.6A CN115768213A (zh) 2022-11-29 2022-11-29 显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2024114155A1 true WO2024114155A1 (zh) 2024-06-06

Family

ID=85340150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125360 WO2024114155A1 (zh) 2022-11-29 2023-10-19 显示面板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN115768213A (zh)
WO (1) WO2024114155A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115768213A (zh) * 2022-11-29 2023-03-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082333A (ko) * 2006-02-16 2007-08-21 삼성에스디아이 주식회사 전자 방출 표시 디바이스
US20080197772A1 (en) * 2007-02-16 2008-08-21 Mun-Ho Nam Display apparatus and method of fabricating the same
CN110729337A (zh) * 2019-11-15 2020-01-24 京东方科技集团股份有限公司 显示基板及其制作方法、电子装置
CN210668426U (zh) * 2019-09-29 2020-06-02 上海和辉光电有限公司 显示面板及显示装置
CN113471384A (zh) * 2021-06-29 2021-10-01 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN113629208A (zh) * 2021-07-20 2021-11-09 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN115768213A (zh) * 2022-11-29 2023-03-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070082333A (ko) * 2006-02-16 2007-08-21 삼성에스디아이 주식회사 전자 방출 표시 디바이스
US20080197772A1 (en) * 2007-02-16 2008-08-21 Mun-Ho Nam Display apparatus and method of fabricating the same
CN210668426U (zh) * 2019-09-29 2020-06-02 上海和辉光电有限公司 显示面板及显示装置
CN110729337A (zh) * 2019-11-15 2020-01-24 京东方科技集团股份有限公司 显示基板及其制作方法、电子装置
CN113471384A (zh) * 2021-06-29 2021-10-01 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN113629208A (zh) * 2021-07-20 2021-11-09 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN115768213A (zh) * 2022-11-29 2023-03-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN115768213A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2022068383A1 (zh) 显示面板及显示装置
WO2024114155A1 (zh) 显示面板及其制备方法、显示装置
US11502133B2 (en) Display panel, manufacturing method thereof, and display device
US11132085B2 (en) Pressure-sensing touch control display substrate, pressure-sensing touch control display apparatus, method of driving pressure-sensing touch control display apparatus, and method of fabricating pressure-sensing touch control display apparatus
WO2021169607A1 (zh) 显示面板、显示装置和显示面板的制造方法
CN113078180B (zh) 显示面板与显示装置
WO2021239127A1 (zh) 柔性显示面板及其制备方法和显示装置
US11563068B2 (en) Substantially transparent display substrate, substantially transparent display apparatus, and method of fabricating substantially transparent display substrate
CN113206139B (zh) 显示面板及其制作方法、显示装置
WO2021175312A1 (zh) 显示基板及其制备方法、显示装置
US20230252922A1 (en) Display module, crack detection method, and display apparatus
WO2021103177A1 (zh) 有机发光二极管显示基板及其制备方法、显示装置
CN115425053A (zh) 显示基板及显示装置
US20240215402A1 (en) Display substrate, manufacturing method, and display device
CN113228333A (zh) 显示装置和用于制造显示装置的方法
CN109920835B (zh) 显示基板及制造方法和亮度补偿方法、显示装置
US20230345766A1 (en) Display device and electronic device including the same
WO2022088992A1 (zh) 显示基板及其制备方法、显示装置
CN114023906B (zh) 显示面板、显示装置、待切割基板的制作方法
US20220158129A1 (en) Display device
CN214625093U (zh) 发光器件和显示装置
US20240237493A1 (en) Display device and manufacturing method
WO2024130545A1 (zh) 显示面板及其显示装置
US20230128398A1 (en) Display device and manufacturing method thereof
US20240196660A1 (en) Display panel and manufacturing method of the same