WO2024114043A1 - 差速驱动装置及机器人 - Google Patents

差速驱动装置及机器人 Download PDF

Info

Publication number
WO2024114043A1
WO2024114043A1 PCT/CN2023/118571 CN2023118571W WO2024114043A1 WO 2024114043 A1 WO2024114043 A1 WO 2024114043A1 CN 2023118571 W CN2023118571 W CN 2023118571W WO 2024114043 A1 WO2024114043 A1 WO 2024114043A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential drive
transmission shaft
bracket
guide channel
linear guide
Prior art date
Application number
PCT/CN2023/118571
Other languages
English (en)
French (fr)
Inventor
赵家轩
陈文�
Original Assignee
杭州海康机器人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康机器人股份有限公司 filed Critical 杭州海康机器人股份有限公司
Publication of WO2024114043A1 publication Critical patent/WO2024114043A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/14Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only
    • B60G11/16Resilient suspensions characterised by arrangement, location or kind of springs having helical, spiral or coil springs only characterised by means specially adapted for attaching the spring to axle or sprung part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/04Component parts or accessories

Definitions

  • the present disclosure relates to the technical field of transport vehicles, and in particular to a differential drive device and a robot.
  • a robot refers to a transport vehicle that is equipped with an automatic guidance device such as an electromagnetic or optical device and can travel along a specified guidance path.
  • the elastic suspension assembly of the robot may include multiple springs, a transmission shaft, and a connecting plate.
  • the transmission shaft is rotatably arranged on the connecting plate and connected to the differential drive assembly.
  • the differential drive assembly can drive the transmission shaft to rotate relative to the connecting plate.
  • Multiple springs are distributed around the transmission shaft and fixed to the connecting plate. The multiple springs play a role in shock absorption and also ensure that the automatic guided transport vehicle will not deviate sideways. However, this will cause the elastic suspension assembly to occupy a larger space.
  • the purpose of the embodiments of the present disclosure is to provide a differential drive device and a robot, which are used to solve the problem that the elastic suspension component occupies a large space.
  • the differential drive device includes an elastic suspension component and a differential drive component.
  • the elastic suspension component includes: a first bracket, a linear rotation mechanism, a transmission shaft and an elastic member.
  • the linear rotation mechanism is fixedly connected to the first bracket and has a linear guide channel.
  • the transmission shaft has a first part and a second part distributed along its own axial direction; the axial direction of the transmission shaft is the same as the extension direction of the linear guide channel; the first part is inserted into the linear guide channel of the linear rotation mechanism, and the first part can rotate around its own axis in the linear guide channel and can move along the extension direction of the linear guide channel; the differential drive component is located on the side of the first part away from the second part and is connected to the first part, and the transmission shaft can move under the drive of the differential drive component.
  • the elastic member is located on one side of the first part, is rotationally connected to the second part, and undergoes elastic deformation or elastic recovery as the first part moves along the extension direction of the linear guide channel.
  • the differential drive assembly When the differential drive assembly travels on a concave or convex surface, the differential drive assembly (such as a walking wheel) will shake up and down, and the differential drive assembly will drive the transmission shaft along the linear guide channel of the linear rotation mechanism. Its axis moves back and forth. Then, as the first part of the transmission shaft moves along the extension direction of the linear guide channel, the elastic member undergoes elastic deformation or elastic recovery, so that the differential drive assembly can make an elastic member play the role of shock absorbing the frame along the axis direction of the transmission shaft, allowing the frame to move more smoothly. Since the expansion and contraction direction of the elastic member is roughly the same as the axial direction of the transmission shaft, the side deviation of the frame can be avoided.
  • the differential drive device of this embodiment reduces the number of elastic members, thereby reducing the space of the elastic suspension assembly; at the same time, it can also avoid the side deviation of the frame.
  • the transmission shaft is inserted into the linear guide channel of the linear rotation mechanism, and can perform linear motion along the extension direction of the linear guide channel, and can also perform rotational motion in the linear guide channel.
  • the first bracket includes a first connecting plate and a pressure cover; the linear rotating mechanism passes through the first connecting plate and is fixedly connected to the first connecting plate; the pressure cover abuts against the end of the elastic member away from the transmission shaft and is fixed on the first connecting plate.
  • the elastic suspension assembly also includes a rotating mechanism and a magnetic member;
  • the rotating mechanism includes a first sliding part and a second sliding part that rotate synchronously; the first sliding part and the second sliding part can move relative to each other along the axial direction of the linear guide channel;
  • the transmission shaft also has a third part located between the first part and the second part, and the first sliding part is fixedly connected to the third part;
  • the first bracket is rotatably connected to the second sliding part, and also hinders the axial movement of the second sliding part along the linear guide channel;
  • the magnetic member is arranged on the second sliding part.
  • the first sliding part is a gear
  • the second sliding part is a gear ring
  • the gear ring is coaxially sleeved on the gear in a matching manner.
  • the diameters of the first portion, the third portion and the second portion decrease sequentially.
  • the elastic suspension assembly further includes a connecting pin;
  • the transmission shaft further includes a fourth portion, and is located on a side of the first portion away from the second portion; the fourth portion is rotationally connected to the connecting pin, and the connecting pin is fixedly connected to the differential drive assembly.
  • the elastic suspension assembly further includes a second bracket, which is fixedly connected to the connecting pin; the second bracket has an installation channel, and the linear rotation mechanism is located in the installation channel and has a gap with the installation channel.
  • the differential drive assembly includes a transmission, a drive mechanism and a running wheel; the drive mechanism is fixedly connected to the transmission, and the output shaft of the drive mechanism is connected to the input shaft of the transmission; the running wheel is coaxially connected to the output shaft of the transmission; and the transmission is fixedly connected to the second bracket.
  • the elastic suspension assembly further includes a first blocking member and a second blocking member, wherein the first blocking member is disposed on the first bracket, and the second blocking member is fixedly disposed on the second bracket; wherein, when the first blocking member is in contact with the second blocking member, the rotation of the transmission shaft is hindered.
  • the elastic suspension assembly further includes a slewing bearing, and the elastic member is rotatably connected to the second part via the slewing bearing.
  • a robot comprising: a differential drive device and a frame as described in any of the above embodiments, wherein the frame is fixedly connected to an elastic suspension assembly of the differential drive device.
  • FIG1 is a structural diagram of a differential drive device according to some embodiments.
  • Fig. 2 is a cross-sectional view along line C-D in Fig. 1;
  • Fig. 3 is a cross-sectional view of the elastic suspension assembly along line A-B in Fig. 1;
  • FIG. 4 is a block diagram of a robot according to some embodiments.
  • the term “including” is to be interpreted as an open, inclusive meaning, that is, “including, but not limited to”.
  • the terms “one embodiment”, “some embodiments”, “exemplary embodiments”, “examples” or “some examples” and the like are intended to indicate that specific features, structures, materials or characteristics associated with the embodiment or example are included in at least one embodiment or example of the present disclosure.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics may be included in any one or more embodiments or examples in any appropriate manner.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments, unless otherwise specified, “plurality” means two or more.
  • connection and its derivative expressions may be used.
  • the term “connected” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the embodiments disclosed herein are not necessarily limited to the contents of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°;
  • perpendicular includes absolute perpendicularity and approximate perpendicularity, wherein the acceptable deviation range of approximate perpendicularity can also be, for example, a deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the acceptable deviation range of approximate equality can be, for example, the difference between the two equalities is less than or equal to 5% of either one.
  • the embodiment of the present disclosure provides a differential drive device.
  • the differential drive device can support the main body component to drive the main body component to move. In the direction of gravity, the main body component can be arranged above the differential drive device.
  • the differential drive assembly can be applied to a robot (for example, a transport robot), and the transport robot can be a transport vehicle. In this case, the differential drive assembly can support the vehicle of the transport vehicle. shelf.
  • the differential drive device may include an elastic suspension assembly 10 and a differential drive assembly 20.
  • the differential drive assembly 20 has a transmission 210, a running wheel 220, and a driving mechanism 230.
  • the running wheel 220 may have one or more, for example, a running wheel 220 on the left and a running wheel 220 on the right.
  • the differential drive assembly 20 may be configured to respectively drive the running wheel 220 on the left and the running wheel 220 on the right.
  • the movement speeds of the running wheel 220 on the left and the running wheel 220 on the right may be different.
  • the elastic suspension assembly 10 may be disposed between the main body and the differential drive assembly 20, and may be fixedly connected to the main body to suppress the vibration caused by the differential drive assembly 20, thereby reducing the vibration intensity transmitted to the main body by the differential drive assembly 20. For example, when the transport vehicle travels on an uneven ground, the running wheels 220 in the differential drive assembly 20 vibrate in the weight direction, and the elastic suspension assembly 10 absorbs the vibration, so that the vibration of the main body is small.
  • the elastic suspension assembly 10 may include a first bracket 110 , a linear rotation mechanism 180 , a transmission shaft 160 and an elastic member 120 .
  • the first bracket 110 may be fixedly connected to the above-mentioned main body component.
  • the linear rotation mechanism 180 is fixedly connected to the first bracket 110.
  • the linear rotation mechanism 180 has a linear guide channel.
  • the linear rotation mechanism 180 can be a linear bearing, and the linear guide channel can be the inner hole of the linear bearing.
  • the linear rotation mechanism 180 can be an oil-free bushing, and the linear guide channel can be the inner hole of the oil-free bushing.
  • the linear rotation mechanism 180 can be a micro-guide assembly, and the linear guide channel can be the inner hole of the micro-guide assembly.
  • the extension direction of the linear guide channel is the guide direction of the linear rotation mechanism 180.
  • the transmission shaft 160 is inserted into the linear guide channel of the linear rotation mechanism 180, and can perform linear motion along the extension direction of the linear guide channel, and can also perform rotational motion in the linear guide channel.
  • the transmission shaft 160 has a first portion 161 and a second portion 162 distributed along its own axial direction. This means that along the axial direction of the transmission shaft 160, the first portion 161 and the second portion 162 have a facing area.
  • the first portion 161 and the second portion 162 can be coaxially arranged.
  • the first portion 161 and the second portion 162 can also be arranged in different axes (that is, the axes of the two do not overlap); in this case, the axial direction of the first portion 161 can be used as the axial direction of the transmission shaft 160.
  • the axial direction of the transmission shaft 160 and the extension of the linear guide channel The first part 161 is inserted into the linear guide channel of the linear rotation mechanism 180 (for example, the first part 161 is inserted into the inner hole of the linear bearing), and the first part 161 can rotate around its own axis in the linear guide channel and can move along the extension direction of the linear guide channel.
  • the differential drive assembly 20 is located on the side of the first part 161 away from the second part 162 (i.e., below the transmission shaft 160), and is connected to the first part 161.
  • the transmission shaft 160 can move (including linear motion and/or rotational motion) driven by the differential drive assembly 20. It can be understood that the first part 161 and the second part 162 are fixedly connected, for example, the two can be formed integrally; based on this, when the first part 161 is driven by the differential drive assembly 20 to move, the transmission shaft 160 including the first part 161 and the second part 162 is also moving as a whole.
  • the elastic member 120 is rotatably connected to the second portion 162.
  • the elastic member 120 may undergo elastic deformation or elastic recovery; when the second portion 162 rotates around its own axis driven by the differential drive assembly 20, the elastic member 120 may not rotate, thus preventing the elastic member 120 from undergoing torsional deformation.
  • the elastic suspension assembly 10 further includes a slewing bearing 140, and the elastic member 120 is rotatably connected to the second portion 162 through the slewing bearing 140.
  • the slewing bearing 140 may be a plane bearing, and the elastic member 120 and the second portion 162 are respectively connected to the two surfaces of the plane bearing.
  • the slewing bearing 140 may be a ball bearing, and the elastic member 120 and the second portion 162 may be respectively connected to the inner ring and the outer ring of the ball bearing.
  • the slewing bearing 140 may also be a spherical roller bearing, and the elastic member 120 and the second portion 162 may be respectively connected to the inner ring and the outer ring of the spherical roller bearing.
  • the slewing bearing 140 may also be a double-row angular contact ball bearing, and the elastic member 120 and the second portion 162 may be respectively connected to the inner ring and the outer ring of the spherical roller bearing.
  • the slewing bearing 140 may enable the transmission shaft 160 to rotate relative to the elastic member 120.
  • the elastic suspension assembly 10 further includes a bearing seat F, which is rotatably connected to the second portion 162 via a slewing bearing 140, and the elastic member 120 is fixedly connected to the bearing seat F.
  • the bearing seat F and the second portion 162 are respectively connected to two surfaces of a plane bearing.
  • the bearing seat F and the second portion 162 can be respectively connected to the inner ring and the outer ring of a ball bearing.
  • the elastic member 120 may be a spring.
  • One end of the spring is coaxially and rotatably disposed on the second portion 162 of the transmission shaft 160, and the other end abuts against the first bracket 110 or the main body component described above. catch.
  • the elastic member 120 undergoes elastic deformation or elastic recovery as the first portion 161 moves along the extension direction of the linear guide channel.
  • the differential drive assembly 20 drives the first portion 161 to move upward, and the first portion 161 drives the second portion 162 to move upward as well, and then the second portion 162 squeezes the elastic member 120 due to the upward movement, so that the elastic member 120 is compressed;
  • the differential drive assembly 20 drives the first portion 161 to move downward, and the first portion 161 drives the second portion 162 to move downward as well, and then the second portion 162 separates from the elastic member 120 due to the downward movement, so that the elasticity of the elastic member 120 is restored.
  • the expansion and contraction direction of the elastic member 120 coincides with the axial direction of the transmission shaft 160.
  • the elastic member 120 and the transmission shaft 160 are coaxially arranged.
  • the differential drive assembly 20 When the differential drive assembly 20 travels on the concave and convex surface, the differential drive assembly 20 (such as the walking wheel 220) will shake up and down, and the differential drive assembly 20 will drive the transmission shaft 160 to reciprocate along its axial direction in the linear guide channel of the linear rotation mechanism 180 (such as the up and down movement in Figure 2). Then, as the first part 161 of the transmission shaft 160 moves along the extension direction of the linear guide channel, the elastic member 120 will undergo elastic deformation or elastic recovery, so that the differential drive assembly 20 can make one elastic member 120 play the role of shock absorbing the frame in the axial direction of the transmission shaft 160, so that the frame can also move more smoothly.
  • the differential drive device of this embodiment can achieve the function of shock absorbing the frame by using only one elastic member 120, so the differential drive device of this embodiment reduces the number of elastic members 120 compared with the background technology, thereby reducing the space of the elastic suspension assembly 10; at the same time, it can also avoid the side deviation of the frame.
  • the differential drive assembly 20 (for example, the two running wheels 220) rotates about the axis of the second portion 162 of the transmission shaft 160
  • the differential drive assembly 20 can drive the transmission shaft 160 to rotate. Since one end of the elastic member 120 is rotatably connected to the second portion 162 of the transmission shaft, the transmission shaft can rotate relative to the elastic member 120. Since the other end of the elastic member 120 is fixedly connected to the first bracket 110, the transmission shaft 160 can rotate relative to the first bracket 110.
  • the first bracket 110 is fixedly connected to the frame, so that the direction of the differential drive assembly 20 (for example, the two running wheels 220) can change relative to the first bracket 110 (or the frame).
  • the linear rotation mechanism 180 Since the transmission shaft 160 rotates in the linear guide channel of the linear rotation mechanism 180, the linear rotation mechanism 180 is fixedly connected to the first bracket 110, and the first bracket 110 is fixedly connected to the frame. Then the differential drive assembly 20 (for example, the two running wheels 220) rotates about the axis of the second portion 162 of the transmission shaft. The axis of the differential drive assembly 162 rotates relative to the frame. After the differential drive assembly 20 stops rotating, the position of the differential drive assembly 20 (e.g., the two running wheels 220) changes compared to before the rotation. At this time, when the differential drive assembly 20 (e.g., the two running wheels 220) moves in a straight line, the running direction of the frame is changed.
  • the differential drive assembly 20 e.g., the two running wheels 220
  • the elastic member 120 is rotatably connected with the second portion 162
  • the rotatable relationship between the two can be used to prevent the transmission shaft 160 from driving the end of the elastic member 120 close to the transmission shaft 160 to rotate, thereby preventing the end of the elastic member 120 rotatably connected to the second portion 162 (i.e., the end close to the transmission shaft 160) from rotating and the other end (i.e., the end away from the transmission shaft 160) from rotating, causing the elastic member 120 to be twisted and deformed, thereby damaging the elastic member 120.
  • the first bracket 110 may include a first connecting plate 111.
  • the linear rotation mechanism 180 passes through the first connecting plate 111 (e.g., the first through hole of the first connecting plate 111) and is fixedly connected to the first connecting plate 111 (e.g., the first through hole of the first connecting plate 111).
  • the frame is fixedly connected to the first connecting plate 111, and the frame abuts or is fixed to a side of the elastic member 120 away from the second portion 162.
  • the first bracket 110 may also include a pressure cap 112; the pressure cap 112 abuts or is fixed to a side of the elastic member 120 away from the second portion 162, and the pressure cap 112 is fixed to the first connecting plate 111.
  • the frame is fixedly connected to the first connecting plate 111 or the pressure cap 112, so that the elastic member 120 is limited between the pressure cap 112 and the first connecting plate 111.
  • the elastic member 120 is compressed by the stopper of the frame or the pressure cap 112, thereby reducing the vibration of the frame.
  • the elastic suspension assembly 10 also includes a rotating mechanism 150 and a magnetic part.
  • the transport vehicle may also be equipped with a measuring device and a vehicle control device.
  • the measuring device may be an angle sensor, a speed sensor, etc., which is used to measure the rotation amount of the magnetic part (such as the rotation speed and the rotation angle).
  • the vehicle control device can obtain the measurement data of the measuring device and control the running direction of the transport vehicle based on the obtained measurement data.
  • the rotary mechanism 150 includes a first sliding portion 151 and a second sliding portion 152 that rotate synchronously.
  • the first sliding portion 151 is fixedly connected to the transmission shaft 160.
  • the magnetic member is arranged on the second sliding portion 152. In this way, when the transmission shaft 160 rotates around its own axis, the transmission shaft 160, the first sliding portion 151 and the second sliding portion 152 rotate synchronously, so that the magnetic member on the second sliding portion 152 also rotates accordingly.
  • the rotation amount of the magnetic member (such as the rotation speed and the rotation angle) can be measured by a measuring device such as an angle sensor, and the rotation amount of the magnetic member (such as the rotation speed and the rotation angle) can be considered to be
  • the rotation amount (e.g., rotation speed and rotation angle) of the second sliding part 152 can be obtained by the vehicle control device, so that the vehicle control device can obtain the rotation amount (e.g., rotation angle and rotation speed) of the second sliding part 152 measured by the measuring device.
  • the vehicle control device can also obtain the rotation amount (e.g., rotation angle and rotation speed) of the transmission shaft 160, and then control the running direction of the transport vehicle based on the rotation amount of the transmission shaft 160.
  • the transmission shaft 160 further includes a third portion 163 located between the first portion 161 and the second portion 162.
  • the first portion 161, the second portion 162, and the third portion 163 may be fixedly connected, for example, the three may be integrally formed. In addition, the three may be coaxially arranged.
  • the first sliding portion 151 is fixedly connected to the third portion 163.
  • the first sliding part 151 and the second sliding part 152 can be coaxially arranged.
  • the first sliding part 151 and the second sliding part 152 can rotate synchronously with the axis of the transmission shaft 160.
  • the first sliding part 151 is a gear
  • the second sliding part 152 is a ring gear.
  • the gear can be coaxially fixed to the third part 163 by a flat key.
  • the coaxial sleeve of the ring gear is matched with the gear, wherein the matching means that any tooth of the ring gear can be located between two adjacent teeth of the gear. In this way, the ring gear and the gear can move relative to each other in the direction of their axis, and due to the interaction between the teeth of the gear and the ring gear, the gear and the ring gear can be ensured to rotate synchronously.
  • first sliding part 151 and the second sliding part 152 can be arranged with different axes.
  • first sliding part 151 can rotate with the axis of the transmission shaft 160, and the axis of the second sliding part 152 is parallel to the first sliding part 151.
  • first sliding part 151 is a gear (referred to as the first gear)
  • second sliding part 152 is also a gear (referred to as the second gear).
  • the first gear can be coaxially fixed to the third part 163 by a flat key, and the second gear is meshed with the first gear. That is, the rotation of the first gear will drive the second gear to rotate.
  • the first bracket 110 is rotatably connected to the second sliding portion 152.
  • the second sliding portion 152 e.g., the ring gear
  • the first connecting plate 111 is rotatably connected to the first connecting plate 111.
  • the second sliding portion 152 e.g., the ring gear
  • the second sliding portion 152 can rotate relative to the first connecting plate 111, and when the second sliding portion 152 (e.g., the ring gear) rotates, the first connecting plate 111 will not be driven to rotate.
  • first sliding portion 151 and the second sliding portion 152 can slide relative to each other along the axial direction of the linear guide channel; that is, the first sliding portion 151 can be moved relative to the second sliding portion 152 as shown in FIG. Since the transmission shaft 160 is fixedly connected to the first sliding part 151, when the transmission shaft 160 moves along its axial direction (moves in the up and down direction as shown in FIG. 2 ), the transmission shaft 160 will drive the first sliding part 151 to move synchronously along the axial direction of the transmission shaft 160 (moves in the up and down direction as shown in FIG. 2 ).
  • the second gear when the second sliding portion 152 is a second gear, the second gear can be rotatably connected to the first bracket via a bearing and a fixed shaft, that is, the second gear is rotatably connected to the fixed shaft via a bearing, and the fixed shaft is fixed on the first bracket 110 (e.g., the first connecting plate 111).
  • the first bracket 110 also hinders the axial sliding of the second sliding part 152 along the linear guide channel, so that the first sliding part 151 can move axially along the transmission shaft 160 relative to the second sliding part 152, so that the second sliding part 152 will not move axially in the transmission shaft 160, thereby realizing the axial relative sliding of the first sliding part 151 and the second sliding part 152 along the linear guide channel.
  • the second sliding portion 152 and the first connecting plate 111 can be fixedly connected to the outer ring and the inner ring of the deep groove ball bearing respectively; the second sliding portion 152 and the first connecting plate 111 can be rotatably connected through the deep groove ball bearing; and the second sliding portion 152 can be restricted from moving along the axis of the transmission shaft 160.
  • a bearing mounting seat is provided between the deep groove ball bearing and the first connecting plate 111, that is, the bearing mounting seat is fixedly connected to the first connecting plate 111, and is also fixedly connected to the deep groove ball bearing (for example, the outer ring).
  • the diameters of the first portion 161, the third portion 163, and the second portion 162 are successively reduced, so that the transmission shaft 160 can form a stepped shaft with a diameter increasing from top to bottom as shown in FIG. 2.
  • the size of the slewing bearing 140 provided on the second portion 162 and the first sliding portion 151 (such as a gear) provided on the third portion 163 is also small, thereby also reducing the size of the parts that cooperate with the slewing bearing 140 and the first sliding portion 151, such as the size of the bearing seat F and the second sliding portion 152, which is conducive to reducing the space of the elastic suspension assembly 10.
  • the diameters of the first portion 161, the third portion 163, and the second portion 162 are successively reduced, which is also conducive to reducing the weight of the transmission shaft 160.
  • the elastic suspension assembly 10 further includes a connecting pin 170 .
  • the transmission shaft 160 further includes a fourth portion 164 , which is located on a side of the first portion 161 away from the second portion 162 ; the fourth portion 164 is rotatably connected to the connecting pin 170 .
  • the fourth portion 164 has a third through hole, and the axis of the third through hole can be arranged to intersect (e.g., be perpendicular to) the axis of the first portion 161.
  • the connecting pin 170 can be rotatably arranged in the third through hole; for example, the diameter of the rotating pin is smaller than the diameter of the third through hole; for example, a bearing (e.g., a deep groove ball bearing) is arranged between the connecting pin 170 and the third through hole; for example, a bearing is arranged between the connecting pin and the third through hole.
  • a bushing is provided.
  • the connecting pin 170 is fixedly connected to the differential drive assembly 20.
  • the differential drive assembly 20 can swing accordingly (e.g., swing downward or swing upward) according to the condition of the road surface (e.g., concave or convex), so that the differential drive assembly 20 drives the connecting pin 170 to rotate relative to the fourth portion 164 about the axis of the connecting pin 170, so that the differential drive assembly 20 can swing relative to the elastic suspension assembly 10, and the differential drive assembly 20 can shake relative to the frame, thereby reducing the shaking of the frame.
  • the elastic suspension assembly 10 further includes a second bracket 130.
  • the second bracket 130 is fixedly connected to the connecting pin 170.
  • the second bracket 130 has an installation channel, and the linear rotation mechanism 180 is located in the installation channel and has a gap with the installation channel. Since the second bracket 130, the differential drive assembly 20 and the connecting pin 170 are fixedly connected, the gap allows the second bracket 130 to swing relative to the linear rotation mechanism 180 (for example, swing downward, swing upward).
  • the second bracket 130 may include a second connecting plate 131 and a vertical plate 132.
  • the second connecting plate 131 and the vertical plate 132 are fixedly connected, and the vertical plate 132 and the connecting pin 170 are fixedly connected.
  • the vertical plate 132 has a second through hole, and the connecting pin 170 is fixedly inserted in the second through hole.
  • the connecting pin 170 is interference fit with the second through hole; for another example, the connecting pin 170 is inserted in the second through hole and fixed by a screw or a key.
  • the second through hole is coaxially arranged with the third through hole.
  • the number of vertical plates 132 can be one or two.
  • the second connecting plate 131 has a fourth through hole (i.e., the above-mentioned mounting channel), and the axis of the fourth through hole coincides with the axis of the first part 161 of the transmission shaft 160. There is a clearance fit between the linear rotation mechanism 180 and the fourth through hole. In some examples, the second connecting plate 131 is located above the connecting pin 170.
  • the elastic suspension assembly 10 further includes a blocking mechanism 190, which is configured to prevent the transmission shaft 160 from rotating.
  • the blocking mechanism 190 includes a first blocking member 191 and a second blocking member 192, wherein the first blocking member 191 is disposed on the first bracket 110, and the second blocking member 192 is fixedly disposed on the second bracket 130; wherein, when the first blocking member 191 is in contact with the second blocking member 192, the transmission shaft 160 is prevented from rotating further; thereby, the transmission shaft 160 does not rotate 360°.
  • the differential drive assembly 20 includes a transmission 210 (the number of the transmission 210 is multiple, for example, two, and for example, at least three), a drive mechanism 230, and a running wheel 220 (the number of the running wheel 220 is multiple, for example, two, and for example, at least three); the drive mechanism 230 is fixedly connected to the transmission 210. Then, the output shaft of the driving mechanism 230 is connected to the input shaft of the transmission 210 ; the walking wheel 220 is coaxially connected to the output shaft of the transmission 210 ; and the transmission 210 is fixedly connected to the second bracket 130 .
  • the output shaft of the drive mechanism 230 drives the input shaft of the transmission 210 to rotate, and the output shaft of the transmission 210 drives the running wheel 220 to roll.
  • the rotation speed of the drive mechanism 230 is constant, and the rotation ratio of the input shaft and the output shaft of the transmission 210 is changed by controlling the transmission 210, thereby changing the rotation speed of the running wheel 220.
  • the rotation ratio of the input shaft and the output shaft of the transmission 210 is constant, and the rotation speed of the running wheel 220 is changed by changing the rotation speed of the drive mechanism 230.
  • the drive mechanism 230 can be a motor, and the motor can be, for example, a forward and reverse motor, a servo motor, a variable speed motor, etc.
  • the transmission 210 is fixedly connected to the second connecting plate 131 .
  • the number of the driving mechanism 230, the transmission 210 and the running wheel 220 can all be two, the two running wheels 220 are symmetrically arranged, and the running wheel 220 is coaxially fixedly connected to the output shaft of the transmission 210; the input shafts of the two transmissions 210 are respectively connected to the shaft ends of the two driving mechanisms 230.
  • the rotation ratio of the input shaft and the output shaft of the transmission 210 is constant, and the rotation speeds of the two driving mechanisms 230 are controlled to be the same, so that the rolling speeds of the two running wheels 220 are the same, and the two running wheels 220 are in linear motion (for example, forward or backward); the rotation speeds of the two driving mechanisms 230 are controlled to be different, so that the rolling speeds of the two running wheels 220 are different, and at this time, the two running wheels 220 turn (for example, turn left, turn right, etc.).
  • the differential drive assembly 20 turns. Due to the connection relationship between the transmission 210, the connecting pin 170 and the transmission shaft 160, the differential drive assembly 20 drives the transmission shaft 160 to rotate around its axis, so that the frame moves along the rotation direction of the differential drive assembly 20.
  • an embodiment of the present disclosure further provides a robot.
  • the robot may be an automated guided vehicle (AGV) or an autonomous mobile robot (AMR).
  • the robot may include the differential drive device Q and a frame P in the above-mentioned embodiment.
  • the frame P is fixedly connected to the elastic suspension assembly of the differential drive device Q.
  • the frame P is fixedly connected to the first bracket.
  • the frame P is fixedly connected to the first connecting plate.
  • the frame P is fixedly connected to the gland.
  • the elastic suspension assembly is fixedly connected to the frame P.
  • the robot may also include a control device.
  • the control device e.g., a controller
  • controls the differential drive assembly e.g., controls the drive mechanism and the transmission in the differential drive assembly).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Motor Power Transmission Devices (AREA)

Abstract

一种差速驱动装置及机器人。差速驱动装置包括弹性悬挂组件(10)和差速驱动组件(20)。弹性悬挂组件(10)包括第一支架(110)、直线旋转机构(180)、传动轴(160)和弹性件(120)。直线旋转机构(180)与第一支架(110)固定连接,并具有直线导向通道。传动轴(160)具有沿自身轴向分布的第一部分(161)和第二部分(162);传动轴(160)的轴向与直线导向通道的延伸方向相同;第一部分(161)插接在直线旋转机构(180)的直线导向通道中,第一部分(161)在直线导向通道中可绕自身轴线旋转,并可沿直线导向通道的延伸方向移动;差速驱动组件(20)与第一部分(161)连接,传动轴(160)可在差速驱动组件(20)的带动下运动。弹性件(120)位于第一部分(161)的一侧,与第二部分(162)转动连接,并随着第一部分(161)沿直线导向通道的延伸方向移动而发生弹性形变或弹性恢复。

Description

差速驱动装置及机器人
本公开要求于2022年12月2日提交中国专利局、申请号为202223255001.X发明名称为“差速驱动装置及机器人”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及运输车辆技术领域,尤其涉及一种差速驱动装置及机器人。
背景技术
机器人,是指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶的运输车。机器人的弹性悬挂组件可以包括多根弹簧、传动轴、连接板,传动轴转动设置在连接板上,并与差速驱动组件连接。使得差速驱动组件可以带动传动轴相对连接板进行转动。多根弹簧分布在传动轴的周向,并固定在连接板上。其中多根弹簧起到减震的作用,同时还保证自动导引运输车不会侧偏。但是这样会导致弹性悬挂组件所占用空间较大。
发明内容
本公开的实施例的目的在于提供一种差速驱动装置及机器人,用于解决弹性悬挂组件所占用空间较大的问题。
为达到上述目的,本公开的实施例提供了如下技术方案:
一方面,提供一种差速驱动装置。差速驱动装置包括弹性悬挂组件和差速驱动组件。弹性悬挂组件包括:第一支架、直线旋转机构、传动轴和弹性件。直线旋转机构与第一支架固定连接,并具有直线导向通道。传动轴具有沿自身轴向分布的第一部分和第二部分;传动轴的轴向与直线导向通道的延伸方向相同;第一部分插接在直线旋转机构的直线导向通道中,第一部分在直线导向通道中可绕自身轴线旋转,并可沿直线导向通道的延伸方向移动;差速驱动组件位于第一部分远离第二部分的一侧,并与第一部分连接,传动轴可在差速驱动组件的带动下运动。弹性件位于第一部分的一侧,与第二部分转动连接,并随着第一部分沿直线导向通道的延伸方向移动而发生弹性形变或弹性恢复。
差速驱动组件在凹凸面行走时,导致差速驱动组件(例如行走轮)会上下晃动,差速驱动组件会带动传动轴在直线旋转机构的直线导向通道中沿着 其轴线方向往复移动。那么随着传动轴的第一部分沿直线导向通道的延伸方向移动,而导致弹性件发生弹性形变或弹性恢复,从而差速驱动组件可以在沿传动轴的轴线方向上,使得一个弹性件起到减震车架的作用,让车架也较为平稳的运动。由于弹性件的伸缩方向与传动轴的轴向方向大致相同,还能避免车架侧偏等情况。故本实施例的差速驱动装置相比背景技术而言,减少了弹性件的数量,从而达到减小弹性悬挂组件的空间;同时还能避免车架侧偏。其中,传动轴插接在直线旋转机构的直线导向通道中,既可以沿直线导向通道的延伸方向做直线运动,还可以在直线导向通道中做旋转运动。
可选地,第一支架包括第一连接板和压盖;直线旋转机构贯穿第一连接板,并与第一连接板固定连接;压盖与弹性件远离传动轴的端部抵接,并固定在第一连接板上。
可选地,弹性悬挂组件还包括回转机构和磁性件;回转机构包括同步转动的第一滑动部和第二滑动部;第一滑动部和第二滑动部可沿直线导向通道的轴向相对移动;传动轴还具有位于第一部分和第二部分之间的第三部分,第一滑动部与第三部分固定连接;第一支架与第二滑动部转动连接,还阻碍第二滑动部沿直线导向通道的轴向移动;磁性件设置在第二滑动部上。
可选地,第一滑动部为齿轮,第二滑动部为齿圈,齿圈相适配的同轴套在齿轮上。
可选地,第一部分、第三部分和第二部分的直径依次减小。
可选地,弹性悬挂组件还包括连接销;传动轴还具有第四部分,并位于第一部分远离第二部分的一侧;第四部分与连接销转动连接,连接销与差速驱动组件固定连接。
可选地,弹性悬挂组件还包括第二支架,第二支架与连接销固定连接;第二支架具有安装通道,直线旋转机构位于安装通道中,并与安装通道之间存在间隙。差速驱动组件包括变速器、驱动机构和行走轮;驱动机构与变速器固定连接,驱动机构的输出轴与变速器的输入轴连接;行走轮与变速器的输出轴同轴连接;变速器与第二支架固定连接。
可选地,弹性悬挂组件还包括第一阻挡件和第二阻挡件,第一阻挡件设置在第一支架上,第二阻挡件固定设置在第二支架上;其中,在第一阻挡件与第二阻挡件接触的情况下,阻碍传动轴的旋转。
可选地,弹性悬挂组件还包括回转支承,弹性件通过回转支承与第二部分转动连接。
另一方面,提供一种机器人。机器人包括:如上述任一实施例的差速驱动装置和车架。车架与差速驱动装置的弹性悬挂组件固定连接。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的差速驱动装置的结构图;
图2为图1中沿C-D线的剖视图;
图3为图1中沿A-B线关于弹性悬挂组件的剖视图;
图4为根据一些实施例的机器人的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开 实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本公开的实施例提供一种差速驱动装置。差速驱动装置可以支撑主体部件,用于带动主体部件运动。沿重力方向,主体部件可以设置于差速驱动装置的上方。例如,差速驱动组件可以应用于机器人(例如,运输机器人)中,运输机器人可以是运输车,这种情况下,差速驱动组件可以支撑运输车的车 架。
关于差速驱动装置的图示可参见图1、图2和图3。该差速驱动装置可以包括弹性悬挂组件10和差速驱动组件20。
差速驱动组件20具有变速器210、行走轮220以及驱动机构230,行走轮220可以有一个或多个,例如包括左侧的行走轮220和右侧的行走轮220,差速驱动组件20可以被配置为分别驱动左侧的行走轮220和右侧的行走轮220。左侧的行走轮220和右侧的行走轮220的运动速度可以不同。
变速器210和驱动机构230的描述可参见后续实施例,这里暂不详述。
弹性悬挂组件10可以设置在主体部件和差速驱动组件20之间,且可以与主体部件固定连接,用于抑制差速驱动组件20带来的震动,从而减小由差速驱动组件20传递到主体部件的震动强度。例如,在运输车行驶在凹凸不平的地面时,差速驱动组件20中的行走轮220在重量方向上震动,弹性悬挂组件10吸收该震动,使得主体部分的受到的震动较小。
首先,对弹性悬挂组件10的结构进行说明。
示例性地,弹性悬挂组件10可以包括第一支架110、直线旋转机构180、传动轴160和弹性件120。
其中,第一支架110可以与上文中的主体部件固定连接。
直线旋转机构180与第一支架110固定连接。直线旋转机构180具有直线导向通道。例如该直线旋转机构180可以是直线轴承,那么该直线导向通道可以是直线轴承的内孔。又例如该直线旋转机构180可以是无油衬套,那么该直线导向通道可以是无油衬套的内孔。又例如该直线旋转机构180可以是微型导向组件,那么该直线导向通道可以是微型导向组件的内孔。直线导向通道的延伸方向即直线旋转机构180的导向方向。
传动轴160插接在直线旋转机构180的直线导向通道中,既可以沿直线导向通道的延伸方向做直线运动,还可以在直线导向通道中做旋转运动。
具体地,传动轴160具有沿自身轴向分布的第一部分161和第二部分162。意指,沿传动轴160轴向,第一部分161和第二部分162具有正对区域。例如,第一部分161和第二部分162可以同轴设置。又例如,第一部分161和第二部分162也可以异轴设置(即二者的轴线不重合);此时,第一部分161的轴向可作为传动轴160的轴向。传动轴160的轴向与直线导向通道的延伸 方向(例如图2中示出的上下方向,或者重力方向)相同。第一部分161插接在直线旋转机构180的直线导向通道中(例如第一部分161插接在直线轴承的内孔中),第一部分161在直线导向通道中可绕自身轴线旋转,并可沿直线导向通道的延伸方向移动。
差速驱动组件20位于第一部分161远离第二部分162的一侧(即传动轴160的下方),并与第一部分161连接。传动轴160可在差速驱动组件20的带动下运动(包括进行直线运动和/或旋转运动)。可以理解的是,第一部分161和第二部分162固定连接,例如二者可以一体地形成;基于此,第一部分161由差速驱动组件20带动而运动时,包括第一部分161和第二部分162的传动轴160整体也在运动。
弹性件120与第二部分162转动连接。当第二部分162在差速驱动组件20的带动下沿直线导向通道的延伸方向往复移动时,弹性件120可以发生弹性形变或弹性恢复;当第二部分162在差速驱动组件20的带动下绕自身轴线转动时,弹性件120可以不发生转动,这样能够避免弹性件120发生扭转形变。
示例性地,弹性悬挂组件10还包括回转支承140,弹性件120通过回转支承140与第二部分162转动连接。示例性地,回转支承140可以为平面轴承,弹性件120和第二部分162分别与平面轴承的两个面连接。又示例性地,回转支承140可以为滚珠轴承,弹性件120和第二部分162可以分别连接在滚珠轴承的内圈和外圈。又示例性地,回转支承140还可以为调心滚子轴承,弹性件120和第二部分162可以分别连接在调心滚子轴承的内圈和外圈。又示例性地,回转支承140还可以为双列角接触球轴承,弹性件120和第二部分162可以分别连接在调心滚子轴承的内圈和外圈。回转支承140可以使得传动轴160能够相对于弹性件120转动。
在一些示例中,弹性悬挂组件10还包括轴承座F,轴承座F通过回转支承140与第二部分162转动连接,弹性件120与轴承座F固定连接。例如,轴承座F和第二部分162分别与平面轴承的两个面连接。又例如,轴承座F和第二部分162可以分别连接在滚珠轴承的内圈和外圈。
示例性地,弹性件120可以是弹簧。该弹簧的一端同轴并转动设置在传动轴160的第二部分162上,另一端与第一支架110或上文中的主体部件抵 接。
弹性件120随着第一部分161沿直线导向通道的延伸方向移动而发生弹性形变或弹性恢复。例如,随着差速驱动组件20向上运动,差速驱动组件20会带动第一部分161向上运动,第一部分161带动第二部分162也向上运动,然后第二部分162由于向上运动而挤压弹性件120,使得弹性件120被压缩;随着差速驱动组件20向下运动,差速驱动组件20会带动第一部分161向下运动,第一部分161带动第二部分162也向下运动,然后第二部分162由于向下运动而与弹性件120分开,使得弹性件120的弹性恢复。
示例性地,弹性件120的伸缩方向与传动轴160的轴线方向重合。在一些示例中,弹性件120与传动轴160同轴设置。
差速驱动组件20在凹凸面行走时,导致差速驱动组件20(例如行走轮220)会上下晃动,差速驱动组件20会带动传动轴160在直线旋转机构180的直线导向通道中沿着其轴线方向往复移动(如图2中的上下方向移动)。那么随着传动轴160的第一部分161沿直线导向通道的延伸方向移动,而导致弹性件120发生弹性形变或弹性恢复,从而差速驱动组件20可以在沿传动轴160的轴线方向上,使得一个弹性件120起到减震车架的作用,让车架也较为平稳的运动。由于弹性件120的伸缩方向与传动轴160的轴向方向大致相同,还能避免车架侧偏等情况。可见,本实施例的差速驱动装置仅使用一个弹性件120即可实现减震车架的作用,故本实施例的差速驱动装置相比背景技术而言,减少了弹性件120的数量,从而达到减小弹性悬挂组件10的空间;同时还能避免车架侧偏。
此外,在差速驱动组件20(例如两个行走轮220)以传动轴160的第二部分162的轴线进行旋转时,差速驱动组件20可以带动传动轴160进行旋转,由于弹性件120的一端与传动轴的第二部分162转动连接,因此,传动轴可相对于弹性件120转动,又由于弹性件120的另外一端与第一支架110固定连接,因此,传动轴160可相对于第一支架110转动,第一支架110与车架固定连接,使得差速驱动组件20(例如两个行走轮220)的方向可相对于第一支架110(或车架)发生改变。由于传动轴160在直线旋转机构180的直线导向通道中旋转,直线旋转机构180与第一支架110固定连接,第一支架110与车架固定连接。那么差速驱动组件20(例如两个行走轮220)以第二部分 162的轴线相对于车架进行旋转,那么在差速驱动组件20旋转停止后,相对于旋转之前相比,差速驱动组件20(例如两个行走轮220)的位置发生的改变,此时差速驱动组件20(例如两个行走轮220)沿直线运动时,从而改变了车架的运行方向。在该过程中,由于弹性件120与第二部分162转动连接,那么在传动轴160进行转动时,利用二者可转动的关系,可以避免传动轴160带动弹性件120靠近传动轴160的一端进行转动,从而防止弹性件120与第二部分162转动连接的一端(即靠近传动轴160的一端)转动,另一端(即远离传动轴160的一端)不转动,使得弹性件120发生扭曲变形,而损毁弹性件120。
示例性地,第一支架110可以包括第一连接板111。直线旋转机构180贯穿第一连接板111(例如第一连接板111的第一通孔),并与第一连接板111(例如第一连接板111的第一通孔)固定连接。在一些示例中,车架与第一连接板111固定连接,车架与弹性件120远离第二部分162的一侧抵接或固定。在另一些示例中,第一支架110还可以包括压盖112;压盖112与弹性件120远离第二部分162的一侧抵接或固定,压盖112固定在第一连接板111上。车架与第一连接板111或压盖112固定连接,这样一来,将弹性件120限位在压盖112和第一连接板111之间。当传动轴在直线旋转机构180带动下向上运动时,由车架或压盖112的止挡,使得弹性件120压缩,从而减小车架的震动。
在一些实施例中,弹性悬挂组件10还包括回转机构150和磁性件,运输车中还可以搭载有测量设备和车辆控制设备,测量设备可以是角度传感器、速度传感器等,用于测量磁性件的转动量(例如转动速度和转动角度),车辆控制设备可以获取测量设备的测量数据,并基于所获得的测量数据控制运输车的运行方向。
具体的,回转机构150包括同步转动的第一滑动部151和第二滑动部152。第一滑动部151与传动轴160固定连接。磁性件设置在第二滑动部152上。这样一来,传动轴160在绕自身轴线转动时,传动轴160、第一滑动部151和第二滑动部152三者同步转动,使得第二滑动部152上的磁性件也随之转动。那么可以通过例如角度传感器等测量设备测量出磁性件的转动量(例如转动速度和转动角度),磁性件的转动量(例如转动速度和转动角度)可以认为是 第二滑动部152的转动量(例如转动速度和转动角度),从而车辆控制设备可以获得测量设备测量出的第二滑动部152的转动量(例如转动角度和转动速度)。由于传动轴160、第一滑动部151和第二滑动部152三者同步转动,即第二滑动部152的转动量(例如转动角度和转动速度)可以表达为传动轴160的转动量(例如转动角度和转动速度),这样车辆控制设备也就能够获得传动轴160的转动量(例如转动角度和转动速度),进而基于传动轴160的转动量控制运输车的运行方向。
示例性地,传动轴160还具有位于第一部分161和第二部分162之间的第三部分163。第一部分161、第二部分162和第三部分163可以固定连接,例如三者一体地形成。此外,三者可以同轴设置。第一滑动部151与第三部分163固定连接。
示例性地,第一滑动部151和第二滑动部152可以同轴设置。第一滑动部151和第二滑动部152能以传动轴160的轴线进行同步旋转。例如,第一滑动部151为齿轮,第二滑动部152为齿圈。齿轮可以通过平键同轴固定在第三部分163上。齿圈相适配的同轴套在齿轮上,其中相适配意指,齿圈的任一齿可以位于齿轮的两个相邻齿之间。这样使得齿圈和齿轮可以在其轴线方向上相对移动,并且由于齿轮和齿圈的齿相互作用,从而保证齿轮和齿圈同步转动。
又示例性地,第一滑动部151和第二滑动部152可以异轴设置。例如,第一滑动部151能以传动轴160的轴线进行旋转,第二滑动部152的轴线与第一滑动部151平行。例如,第一滑动部151为齿轮(记为第一齿轮),第二滑动部152同样为齿轮(记为第二齿轮)。第一齿轮可以通过平键同轴固定在第三部分163上,第二齿轮与第一齿轮啮合设置。即第一齿轮转动会带动第二齿轮转动。
示例性地,第一支架110与第二滑动部152转动连接。例如,第二滑动部152(例如齿圈)与第一连接板111转动连接。这样一来,第二滑动部152(例如齿圈)可以相对于第一连接板111转动,在第二滑动部152(例如齿圈)转动的时候,不会带动第一连接板111进行转动。
此外,第一滑动部151和第二滑动部152可沿直线导向通道的轴向相对滑动;意指,第一滑动部151相对于第二滑动部152可以如图2中所示的上 下方向进行移动。由于传动轴160与第一滑动部151固定连接,那么传动轴160沿其轴向移动(如图2中所示的上下方向移动)时,传动轴160会带动第一滑动部151沿传动轴160的轴向同步移动(如图2中所示的上下方向移动)。
在一些示例中,第二滑动部152为第二齿轮的情况下,第二齿轮可以通过轴承以及固定轴与第一支架转动连接,即第二齿轮通过轴承与固定轴转动连接,固定轴固定在第一支架110(例如第一连接板111)上。
第一支架110还阻碍第二滑动部152沿直线导向通道的轴向滑动,从而第一滑动部151可相对于第二滑动部152沿传动轴160的轴向移动,使得第二滑动部152在传动轴160的轴向上不会发生移动,实现第一滑动部151和第二滑动部152沿直线导向通道的轴向相对滑动。
示例性地,第二滑动部152和第一连接板111可以分别与深沟球轴承的外圈和内圈固定连接;通过该深沟球轴承可以使得第二滑动部152和第一连接板111转动连接;还能限制第二滑动部152沿传动轴160的轴线进行移动。例如,深沟球轴承与第一连接板111之间设置有轴承安装座,即轴承安装座与第一连接板111固定连接,并与深沟球轴承(例如外圈)也固定连接。
在一些实施例中,第一部分161、第三部分163和第二部分162的直径依次减小,使得传动轴160可以形成一个如图2中示出从上到下直径依次增大的阶梯轴。这样一来,设置在第二部分162上的回转支承140和第三部分163上的第一滑动部151(例如齿轮)的尺寸也较小,从而也减小了与回转支承140和第一滑动部151配合的零件的尺寸,例如轴承座F和第二滑动部152这两个零件的尺寸,进而有利于减小弹性悬挂组件10的空间。此外,第一部分161、第三部分163和第二部分162的直径依次减小,这样还有利于减轻传动轴160的重量。
在一些实施例中,弹性悬挂组件10还包括连接销170。传动轴160还具有第四部分164,并位于第一部分161远离第二部分162的一侧;第四部分164与连接销170转动连接。
在一些示例中,第四部分164具有第三通孔,该第三通孔的轴线可以与第一部分161的轴线交叉(例如垂直)设置。连接销170可以转动设置在第三通孔中;例如转动销的直径小于第三通孔的直径;又例如连接销170与第三通孔之间设置有轴承(例如深沟球轴承);又例如连接销与第三通孔之间设 置有衬套。
连接销170与差速驱动组件20固定连接。那么差速驱动组件20在凹凸面上移动时,差速驱动组件20可以根据路面(例如凹面、凸面)的情况进行相应的摆动(例如向下摆动,向上摆动),使得差速驱动组件20带动连接销170以连接销170的轴线相对于第四部分164进行转动,从而差速驱动组件20可以相对于弹性悬挂组件10进行摆动,那么差速驱动组件20可相对于车架进行晃动,进而减少了车架的晃动。
弹性悬挂组件10还包括第二支架130。第二支架130与连接销170固定连接。第二支架130具有安装通道,直线旋转机构180位于安装通道中,并与安装通道之间存在间隙。由于第二支架130、差速驱动组件20和连接销170三者固定连接,该间隙可以使得第二支架130可以相对于直线旋转机构180摆动(例如向下摆动,向上摆动)。
示例性地,第二支架130可以包括第二连接板131和竖板132。第二连接板131和竖板132固定连接,竖板132和连接销170固定连接。在一些示例中,竖板132具有第二通孔,连接销170固定插接在第二通孔中。例如连接销170与第二通孔过盈配合;又例如,连接销170插接在第二通孔中,并通过螺钉或键实现固定。在另一些示例中,第二通孔与第三通孔同轴设置。在另一些示例中,竖板132的数量可以是一块,还可以是两块。在一些示例中,第二连接板131具有第四通孔(即上述安装通道),第四通孔的轴线与传动轴160的第一部分161的轴线重合。直线旋转机构180与第四通孔之间为间隙配合。在一些示例中,第二连接板131位于连接销170的上方。
弹性悬挂组件10还包括阻挡机构190,阻挡机构被配置为阻碍传动轴160旋转。阻挡机构190包括第一阻挡件191和第二阻挡件192,第一阻挡件191设置在第一支架110上,第二阻挡件192固定设置在第二支架130上;其中,在第一阻挡件191与第二阻挡件192接触的情况下,阻碍传动轴160的继续旋转;从而使得传动轴160不会发生360°的旋转。
接下来,对差速驱动组件20的结构进行说明。
示例性的,差速驱动组件20包括变速器210(变速器210的数量为多个,例如两个、又例如至少三个)、驱动机构230和行走轮220(行走轮220的数量为多个,例如两个、又例如至少三个);驱动机构230与变速器210固定连 接,驱动机构230的输出轴与变速器210的输入轴连接;行走轮220与变速器210的输出轴同轴连接;变速器210与第二支架130固定连接。
驱动机构230进入工作状态使得其输出轴进行转动时,驱动机构230的输出轴带动变速器210的输入轴转动,变速器210的输出轴带动行走轮220滚动。在一些示例中,驱动机构230的转速恒定,通过控制变速器210,改变变速器210的输入轴和输出轴的转动比,从而改变行走轮220的转速。在另一些示例中,变速器210的输入轴和输出轴的转动比恒定,通过改变驱动机构230的转速,从而改变行走轮220的转速。其中,驱动机构230可以是电机,该电机例如可以是正反转电机、伺服电机、变速电机等。
示例性地,变速器210与第二连接板131固定连接。
示例性地,驱动机构230、变速器210和行走轮220的数量均可以两个,两个行走轮220对称设置,行走轮220与变速器210的输出轴同轴固定连接;两个变速器210的输入轴分别与两个驱动机构230的轴端连接。
在一些示例中,变速器210的输入轴和输出轴的转动比恒定,控制两个驱动机构230的转速相同,使得两个行走轮220的滚动速度一样,则两个行走轮220是直线运动(例如前进或后退);控制两个驱动机构230的转速不同,使得两个行走轮220的滚动速度不同,此时两个行走轮220进行转向(例如左转、右转等)。其中,在行走轮220发生转向(该转向是沿传动轴160的轴线进行转动)时,使得差速驱动组件20发生转向。由于变速器210、连接销170和传动轴160的连接关系,使得差速驱动组件20驱动传动轴160绕其轴线进行旋转,从而车架沿着差速驱动组件20的转动方向进行移动。
参见图4,本公开的实施例还提供一种机器人。该机器人可以是自动导引车(Automated Guided Vehicle,AGV)或自主移动机器人(AutonomousMobile Robot,AMR)。机器人可以包括上述实施例中的差速驱动装置Q和车架P。车架P与差速驱动装置Q的弹性悬挂组件固定连接。示例性地,车架P与第一支架固定连接。例如车架P与第一连接板固定连接。又例如车架P与压盖固定连接。从而使得弹性悬挂组件与车架P固定连接。机器人还可以包括控制装置。控制装置(例如控制器)控制差速驱动组件(例如控制差速驱动组件中的驱动机构和变速器)。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种差速驱动装置,其特征在于,包括:弹性悬挂组件和差速驱动组件;
    所述弹性悬挂组件包括:
    第一支架;
    直线旋转机构,与所述第一支架固定连接,并具有直线导向通道;
    传动轴,具有沿自身轴向分布的第一部分和第二部分;所述传动轴的轴向与所述直线导向通道的延伸方向相同;所述第一部分插接在所述直线旋转机构的所述直线导向通道中,所述第一部分在所述直线导向通道中可绕自身轴线旋转,并可沿所述直线导向通道的延伸方向移动;所述差速驱动组件位于所述第一部分远离所述第二部分的一侧,并与所述第一部分连接,所述传动轴可在所述差速驱动组件的带动下运动;
    弹性件,与所述第二部分转动连接,并随着所述第一部分沿所述直线导向通道的延伸方向移动而发生弹性形变或弹性恢复。
  2. 根据权利要求1所述的差速驱动装置,其特征在于,
    所述第一支架包括第一连接板和压盖;所述直线旋转机构贯穿所述第一连接板,并与所述第一连接板固定连接;所述压盖与所述弹性件远离所述传动轴的端部抵接,并固定在所述第一连接板上。
  3. 根据权利要求1所述的差速驱动装置,其特征在于,
    所述弹性悬挂组件还包括回转机构和磁性件;所述回转机构包括同步转动的第一滑动部和第二滑动部;所述第一滑动部和所述第二滑动部可沿所述直线导向通道的轴向相对移动;所述传动轴还具有位于所述第一部分和所述第二部分之间的第三部分,所述第一滑动部与所述第三部分固定连接;所述第一支架与所述第二滑动部转动连接,还阻碍所述第二滑动部沿所述直线导向通道的轴向移动;所述磁性件设置在所述第二滑动部上。
  4. 根据权利要求3所述的差速驱动装置,其特征在于,
    所述第一滑动部为齿轮,所述第二滑动部为齿圈,所述齿圈相适配的同轴套在所述齿轮上。
  5. 根据权利要求3所述的差速驱动装置,其特征在于,
    所述第一部分、所述第三部分和所述第二部分的直径依次减小。
  6. 根据权利要求1所述的差速驱动装置,其特征在于,
    所述弹性悬挂组件还包括连接销;所述传动轴还具有第四部分,并位于第一部分远离所述第二部分的一侧;所述第四部分与所述连接销转动连接,所述连接销与所述差速驱动组件固定连接。
  7. 根据权利要求6所述的差速驱动装置,其特征在于,
    所述弹性悬挂组件还包括第二支架,所述第二支架与所述连接销固定连接;所述第二支架具有安装通道,所述直线旋转机构位于所述安装通道中,并与所述安装通道之间存在间隙;
    所述差速驱动组件包括变速器、驱动机构和行走轮;所述驱动机构与所述变速器固定连接,所述驱动机构的输出轴与所述变速器的输入轴连接;所述行走轮与所述变速器的输出轴同轴连接;所述变速器与所述第二支架固定连接。
  8. 根据权利要求7所述的差速驱动装置,其特征在于,
    所述弹性悬挂组件还包括第一阻挡件和第二阻挡件,所述第一阻挡件设置在所述第一支架上,所述第二阻挡件固定设置在所述第二支架上;其中,在所述第一阻挡件与所述第二阻挡件接触的情况下,阻碍所述传动轴的旋转。
  9. 根据权利要求1所述的差速驱动装置,其特征在于,
    所述弹性悬挂组件还包括回转支承,所述弹性件通过所述回转支承与所述第二部分转动连接。
  10. 一种机器人,其特征在于,包括:
    权利要求1~9中的任一项所述的差速驱动装置;
    车架,与所述差速驱动装置的弹性悬挂组件固定连接。
PCT/CN2023/118571 2022-12-02 2023-09-13 差速驱动装置及机器人 WO2024114043A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223255001.XU CN218805048U (zh) 2022-12-02 2022-12-02 差速驱动装置及机器人
CN202223255001.X 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024114043A1 true WO2024114043A1 (zh) 2024-06-06

Family

ID=87274929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118571 WO2024114043A1 (zh) 2022-12-02 2023-09-13 差速驱动装置及机器人

Country Status (2)

Country Link
CN (1) CN218805048U (zh)
WO (1) WO2024114043A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218805048U (zh) * 2022-12-02 2023-04-07 杭州海康机器人股份有限公司 差速驱动装置及机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108583274A (zh) * 2018-03-22 2018-09-28 苏州极客嘉智能科技有限公司 一种多角度移动功能的agv差速驱动机构
CN211000933U (zh) * 2019-10-15 2020-07-14 上海烁逸电子科技有限公司 一种差速全向agv小车
US20210379952A1 (en) * 2019-12-06 2021-12-09 Yanshan University Rigid-flexible coupling multi-degree-of-freedom walking position-adjusting leg unit and hybrid robot platform thereof
CN114835056A (zh) * 2022-03-21 2022-08-02 天津工程机械研究院有限公司 一种重载agv用差速驱动单元的工作方法
CN217415444U (zh) * 2022-05-31 2022-09-13 济南奥图自动化股份有限公司 差速转向的重载转运车
CN218805048U (zh) * 2022-12-02 2023-04-07 杭州海康机器人股份有限公司 差速驱动装置及机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108583274A (zh) * 2018-03-22 2018-09-28 苏州极客嘉智能科技有限公司 一种多角度移动功能的agv差速驱动机构
CN211000933U (zh) * 2019-10-15 2020-07-14 上海烁逸电子科技有限公司 一种差速全向agv小车
US20210379952A1 (en) * 2019-12-06 2021-12-09 Yanshan University Rigid-flexible coupling multi-degree-of-freedom walking position-adjusting leg unit and hybrid robot platform thereof
CN114835056A (zh) * 2022-03-21 2022-08-02 天津工程机械研究院有限公司 一种重载agv用差速驱动单元的工作方法
CN217415444U (zh) * 2022-05-31 2022-09-13 济南奥图自动化股份有限公司 差速转向的重载转运车
CN218805048U (zh) * 2022-12-02 2023-04-07 杭州海康机器人股份有限公司 差速驱动装置及机器人

Also Published As

Publication number Publication date
CN218805048U (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024114043A1 (zh) 差速驱动装置及机器人
EP1125827B1 (en) Omnidirectional vehicle and method of controlling the same
CN106863348B (zh) 一种机器人用的变刚度关节及其刚度调节方法
CN103906947A (zh) 平行连杆机构、等速万向节和连杆动作装置
CN210337581U (zh) 一种移动装置
CN109048869A (zh) 腕体传动结构及六轴机器人
CN111350902B (zh) 一种驱动轮带转向的管道机器人
US7988158B2 (en) Driving device for adjusting an orientation of a vehicle wheel
CN204344842U (zh) 一种往复直线运动件的驱动结构
CN208914100U (zh) 腕体传动结构及六轴机器人
CN113618774B (zh) 一种基于凸轮机构的变刚度传动关节及切换控制方法
JPH06500159A (ja) 等速自在継手
CN103144691B (zh) 六自由度滚动机构
CN213703477U (zh) 一种机器人手腕构造及机器人
CN110549809B (zh) 一种基于模糊pid控制器的臂式悬架及其主动位移控制方法
CN107630998A (zh) 变螺距弹性光杠传动装置
CN110248773B (zh) 静态转矩调节装置、包括该装置的工业机器人和用于调节静态转矩的方法
CN207842566U (zh) Agv悬挂机构
US7694601B2 (en) Gear device and electric power steering apparatus
CN219134350U (zh) 一种爬壁机器人行走轮组限位结构
CN110203279B (zh) 一种纯滚动转向轮装置
CN112123367B (zh) 一种机器人手腕构造及机器人
CN115946789B (zh) 一种轮式磁吸附爬壁机器人
CN220199040U (zh) 一种适用于重载agv的差速驱动装置
JP6111215B2 (ja) 無段変速機