WO2024113171A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024113171A1
WO2024113171A1 PCT/CN2022/135092 CN2022135092W WO2024113171A1 WO 2024113171 A1 WO2024113171 A1 WO 2024113171A1 CN 2022135092 W CN2022135092 W CN 2022135092W WO 2024113171 A1 WO2024113171 A1 WO 2024113171A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting layer
emitting
standing wave
electrode
Prior art date
Application number
PCT/CN2022/135092
Other languages
English (en)
French (fr)
Inventor
王琳琳
周丹丹
许程
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/135092 priority Critical patent/WO2024113171A1/zh
Priority to CN202280004742.4A priority patent/CN118414886A/zh
Publication of WO2024113171A1 publication Critical patent/WO2024113171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a display device.
  • OLEDs Organic light-emitting diodes
  • QDs quantum dots
  • embodiments of the present disclosure provide a display panel and a display device.
  • a display panel which includes a plurality of light-emitting devices arranged in an array, each of the plurality of light-emitting devices including: a first electrode; a first light-emitting layer located on the first electrode; a second light-emitting layer located on a side of the first light-emitting layer away from the first electrode; a third light-emitting layer located on a side of the second light-emitting layer away from the first electrode; a fourth light-emitting layer located on a side of the third light-emitting layer away from the first electrode; a fifth light-emitting layer located on a side of the fourth light-emitting layer away from the first electrode; and a second electrode located on a side of the fifth light-emitting layer away from the first electrode, wherein a microcavity is formed between the first electrode and the second electrode, four light-emitting layers among the first light-emitting layer, the second light-emitting layer, the third light-e
  • the light of the first wavelength emitted by the four light emitting layers forms a first standing wave in the light emitting device
  • the light of the second wavelength emitted by the remaining light emitting layers forms a second standing wave in the light emitting device.
  • a first distance between a first surface of the first electrode close to the first light-emitting layer and a surface of the first light-emitting layer away from the first electrode is less than
  • the second light emitting layer, the third light emitting layer, the fourth light emitting layer, and the fifth light emitting layer emit blue light
  • the first light emitting layer emits green light
  • the second light-emitting layer is located at the second anti-node of the first standing wave
  • the third light-emitting layer is located at the third anti-node of the first standing wave
  • the fourth light-emitting layer is located at the fourth anti-node of the first standing wave
  • the fifth light-emitting layer is located at the fifth anti-node of the first standing wave
  • the first light-emitting layer is located at the first anti-node of the second standing wave.
  • the first light emitting layer, the third light emitting layer, the fourth light emitting layer, and the fifth light emitting layer emit blue light
  • the second light emitting layer emits green light
  • the first light-emitting layer is located at a first anti-node of the first standing wave
  • the third light-emitting layer is located at a third anti-node of the first standing wave
  • the fourth light-emitting layer is located at a fourth anti-node of the first standing wave
  • the fifth light-emitting layer is located at a fifth anti-node of the first standing wave
  • the second light-emitting layer is located at a second anti-node of the second standing wave.
  • the first light emitting layer, the second light emitting layer, the third light emitting layer, and the fifth light emitting layer emit blue light
  • the fourth light emitting layer emits green light
  • the first light-emitting layer is located at a first anti-node of the first standing wave
  • the second light-emitting layer is located at a second anti-node of the first standing wave
  • the third light-emitting layer is located at a third anti-node of the first standing wave
  • the fifth light-emitting layer is located at a fifth anti-node of the first standing wave
  • the fourth light-emitting layer is located at a third anti-node of the second standing wave.
  • the first light emitting layer, the second light emitting layer, the third light emitting layer, and the fourth light emitting layer emit blue light
  • the fifth light emitting layer emits green light
  • the first light-emitting layer is located at a first anti-node of the first standing wave
  • the second light-emitting layer is located at a second anti-node of the first standing wave
  • the third light-emitting layer is located at a third anti-node of the first standing wave
  • the fourth light-emitting layer is located at a fourth anti-node of the first standing wave
  • the fifth light-emitting layer is located at a fourth anti-node of the second standing wave.
  • the second distance between the first electrode and the second electrode is equal to 5 times the distance between two adjacent anti-nodes of the first standing wave or 4 times the distance between two adjacent anti-nodes of the second standing wave.
  • a first distance between a first surface of the first electrode close to the first light-emitting layer and a surface of the first light-emitting layer away from the first electrode is greater than
  • the second light emitting layer, the third light emitting layer, the fourth light emitting layer, and the fifth light emitting layer emit blue light
  • the first light emitting layer emits green light
  • the second light-emitting layer is located at the third anti-node of the first standing wave
  • the third light-emitting layer is located at the fourth anti-node of the first standing wave
  • the fourth light-emitting layer is located at the fifth anti-node of the first standing wave
  • the fifth light-emitting layer is located at the sixth anti-node of the first standing wave
  • the first light-emitting layer is located at the second anti-node of the second standing wave.
  • the second distance between the first electrode and the second electrode is equal to 6 times the distance between two adjacent anti-nodes of the first standing wave or 5 times the distance between two adjacent anti-nodes of the second standing wave.
  • the thickness of each of the four light-emitting layers emitting light of the first wavelength among the first light-emitting layer, the second light-emitting layer, the third light-emitting layer, the fourth light-emitting layer and the fifth light-emitting layer is And the thickness of the light-emitting layer emitting the light of the second wavelength among the first light-emitting layer, the second light-emitting layer, the third light-emitting layer, the fourth light-emitting layer and the fifth light-emitting layer is
  • each of the plurality of light-emitting devices further includes a first charge generation layer between the first light-emitting layer and the second light-emitting layer, a second charge generation layer between the second light-emitting layer and the third light-emitting layer, a third charge generation layer between the third light-emitting layer and the fourth light-emitting layer, and a fourth charge generation layer between the fourth light-emitting layer and the fifth light-emitting layer.
  • At least one of the light-emitting layers in the plurality of light-emitting devices includes one or two of a hole injection layer and a hole transport layer located on a side close to the first electrode, and one or two of an electron transport layer and an electron injection layer away from the first electrode.
  • the display panel further includes a wavelength conversion layer located on a side of the second electrode away from the first electrode, wherein a material of the wavelength conversion layer includes quantum dots.
  • a display device comprising the display panel as described above.
  • FIG1A schematically shows a plan view of a display panel according to an embodiment of the present disclosure
  • FIG1B schematically shows a cross-sectional view taken along line A-A′ of the light emitting device shown in FIG1A according to an embodiment of the present disclosure
  • FIG1C schematically shows the relationship between the cavity length thickness and the emission spectrum of the light emitting device according to an embodiment of the present disclosure
  • FIG1D schematically shows a schematic diagram of a standing wave and an anti-node according to an embodiment of the present disclosure
  • FIG. 1E schematically shows a light emission spectrum of a light emitting device according to an embodiment of the present disclosure when the first light emitting layer emits green light;
  • FIG2A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure
  • FIG2B schematically shows a light emission spectrum of the second light emitting layer of the light emitting device according to an embodiment of the present disclosure when emitting green light;
  • FIG3A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure
  • FIG3B schematically shows a spectrum of emitted light when the fourth light-emitting layer of the light-emitting device according to an embodiment of the present disclosure emits green light;
  • FIG4A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure
  • FIG4B schematically shows a spectrum of emitted light when the fifth light-emitting layer of the light-emitting device according to an embodiment of the present disclosure emits green light;
  • FIG5A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure
  • FIG. 5B schematically shows that the second distance of the light emitting device according to an embodiment of the present disclosure is greater than Emission spectrum diagram.
  • first, second, etc. can be used here to describe different elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element.
  • first element can be named as the second element, and similarly, the second element can be named as the first element.
  • second element can be named as the first element.
  • the term "and/or" as used herein includes any combination and all combinations of one or more related listed items.
  • the expression “located in the same layer” generally means that the first component and the second component can use the same material and can be formed by the same patterning process.
  • the expression “A and B are connected as one” means that component A and component B are formed as one, that is, they generally include the same material and form a structurally continuous integral component.
  • the expressions “vertical”, “vertically connected” or similar expressions include not only the case of 90 degrees, that is, the completely vertical case, but also the case where the difference from 90 degrees is within a certain error range, for example, the case where the difference from 90 degrees is within the process error range.
  • QD-OLED has the advantages of high color gamut, high color purity, no viewing angle dependence, and potential application advantages, such as application in large/high color gamut products, or application in medium-sized UHD (Ultra High Definition) high-value products.
  • UHD Ultra High Definition
  • the inventors of the present disclosure have found that the combination of QD-OLED and EL (Emitting Layer) microcavity structure can further improve the luminous efficiency and color purity.
  • the introduction of QD can solve the problem of viewing angle dependence, and the use of a suitable integration solution can also ensure the optimization of optical effects.
  • the red and green pixels on the color conversion layer composed of quantum dot materials do not have a strong optical modulation effect. After absorbing the blue light OLED to emit light, only the light color is converted, and its viewing angle characteristics still conform to the traditional Lambertian distribution.
  • blue light OLEDs use a structure with a strong optical resonator effect.
  • the blue light OLED has an emission spectrum with a narrow half-wave width, so as to improve the emission intensity of blue light (the higher the emission intensity of blue pixels, the lower the power consumption of light-emitting devices) and color purity; at the same time, the higher the emission intensity of blue light and the concentration in a specific red/green quantum dot excitation wavelength range can improve the emission intensity of red/green pixels, and the higher emission intensity of red/green pixels can also reduce the power consumption of light-emitting devices. Therefore, this structure with a strong optical resonator effect is necessary in the process of reducing the power consumption of light-emitting devices. In order to obtain higher brightness red and green light, the blue light used for excitation must have high brightness, and the compatibility of blue light devices and QD devices is very important. Therefore, studying the structure of light-emitting devices for reducing power consumption is a top priority.
  • an embodiment of the present disclosure provides a light-emitting device with five stacked layers inside.
  • the power consumption color gamut it can be obtained that when the number of stacked layers of the light-emitting layer in the light-emitting device is five, the power consumption of the light-emitting device is relatively low. Reduced power consumption also helps to extend the lifespan.
  • FIG1A schematically shows a plan view of a display panel according to an embodiment of the present disclosure
  • FIG1B schematically shows a cross-sectional view taken along line A-A' of the light emitting device shown in FIG1A according to an embodiment of the present disclosure.
  • a display panel includes a plurality of light-emitting devices arranged in an array, wherein the light-emitting device 10 includes: a first electrode 111; a first light-emitting layer 121, located on the first electrode 111; a second light-emitting layer 122, located on a side of the first light-emitting layer 121 away from the first electrode 111; a third light-emitting layer 123, located on a side of the second light-emitting layer 122 away from the first electrode 111; a fourth light-emitting layer 124, located on a side of the third light-emitting layer 123 away from the first electrode 111; a fifth light-emitting layer 125, located on a side of the fourth light-emitting layer 124 away from the first electrode 111; and a second electrode 112, located on a side of the fifth light-emitting layer 125 away from the first electrode 111, wherein a microca
  • the optical layer 124 and the fifth light-emitting layer 125 emit light of a first wavelength
  • the power consumption of the light-emitting device is associated with the number of stacked layers of the light-emitting layer in the light-emitting device, and selecting a suitable number of stacked layers helps to reduce the power consumption of the light-emitting device.
  • the power consumption color gamut when the number of stacked layers of the light-emitting layer in the light-emitting device is five layers, the power consumption of the light-emitting device is low. Therefore, in an embodiment of the present disclosure, five light-emitting layers 121, 122, 123, 124, and 125 stacked in sequence are arranged in each light-emitting device 10, thereby helping to reduce the power consumption of the light-emitting device 10.
  • the light of the first wavelength emitted by the light-emitting device 10 can be converted into light of the second wavelength, and the converted second wavelength light and the second wavelength light emitted by the light-emitting device 10 are superimposed as the final second wavelength light.
  • the second wavelength of light emitted by the light-emitting device 10 itself can also be used as a supplementary light source to increase the total amount of light of the second wavelength obtained, which is beneficial to improve the brightness and intensity of the second wavelength of light finally obtained.
  • the increased intensity of the output light helps to reduce the power consumption of the light-emitting device and extend the service life of the light-emitting device.
  • the display panel 1 may include a plurality of light emitting devices 10 arranged in an array. Generally, the plurality of light emitting devices 10 are arranged at uniform intervals. For the purpose of brevity and clarity, FIG1A shows several light emitting devices 10, and uses ellipsis “...” to indicate many light emitting devices 10 not shown, but this does not mean that the display panel 1 includes only the several light emitting devices 10 shown in the figure. As known to those skilled in the art, the display panel 1 may include a large number of light emitting devices 10.
  • the display panel can be applied to various appropriate fields, including but not limited to the display field, the vehicle field, the medical field, etc.
  • the display panel can be used in any appropriate product or component such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, an e-book, a vehicle touch panel, a medical detection device, etc.
  • the first electrode 111 may be a reflective anode
  • the second electrode 112 may be a transmissive and reflective cathode, whereby the first electrode 111 and the second electrode 112 may constitute an optical resonant cavity.
  • the light-emitting device 10 constituted by such a first electrode 111 and a second electrode 112 is a top-emitting device, that is, the light-emitting device 10 emits blue light and green light from a side of the second electrode 112 away from the first electrode 111.
  • the electrode materials used for the first electrode 111 and the second electrode 112 may be adaptively adjusted according to actual needs.
  • the first electrode 111 and the second electrode 112 may be arranged relative to each other.
  • the first electrode 111 may include a first ITO layer 1111, an Ag layer 1112, and a second ITO layer 1113.
  • the thickness of the first electrode 111 may be
  • the thickness of the Ag layer can be
  • the thickness of each ITO layer can be
  • the preparation process of the first electrode 111 can be adaptively adjusted according to actual needs.
  • an ITO/Ag/ITO film layer can be formed by a sputtering process.
  • the material of the second electrode 112 may be a semi-transmissive and semi-reflective metal, such as one or more of Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, and Ti. In some embodiments, the thickness of the second electrode 112 may be approximately
  • the light of the first wavelength may be blue light, and the light of the second wavelength may be green light.
  • the light of the first wavelength and the light of the second wavelength may also be lights of other appropriate colors, but the first wavelength must be smaller than the second wavelength.
  • the light emitting device 10 may further include a first charge generation layer 131 between the first light emitting layer 121 and the second light emitting layer 122, a second charge generation layer 132 between the second light emitting layer 122 and the third light emitting layer 123, a third charge generation layer 133 between the third light emitting layer 123 and the fourth light emitting layer 124, and a fourth charge generation layer 134 between the fourth light emitting layer 124 and the fifth light emitting layer 125.
  • each of the first charge generation layer 131, the second charge generation layer 132, the third charge generation layer 133, and the fourth charge generation layer 134 may include one of an n-type charge generation layer and a p-type charge generation layer.
  • the first charge generation layer 131 can provide charges to the first light emitting layer 121 and the second light emitting layer 122, thereby controlling the charge balance between the first light emitting layer 121 and the second light emitting layer 122;
  • the second charge generation layer 132 can provide charges to the second light emitting layer 122 and the third light emitting layer 123, thereby controlling the charge balance between the second light emitting layer 122 and the third light emitting layer 123;
  • the third charge generation layer 133 can provide charges to the third light emitting layer 123 and the fourth light emitting layer 124, thereby controlling the charge balance between the third light emitting layer 123 and the fourth light emitting layer 124;
  • the fourth charge generation layer 134 can provide charges to the fourth light emitting layer 124 and the fifth light emitting layer 125, thereby controlling the charge balance between the fourth light emitting layer 124 and the fifth light emitting layer 125.
  • the light emitting device 10 may further include a charge injection layer 141 located between the fifth light emitting layer 125 and the second electrode 112, and a CPL layer (capping layer) 142 located on the side of the second electrode 112 away from the first electrode 111.
  • a charge injection layer 141 located between the fifth light emitting layer 125 and the second electrode 112
  • a CPL layer (capping layer) 142 located on the side of the second electrode 112 away from the first electrode 111.
  • a surface plasmon effect will exist near the interface between the metal second electrode 112 and the medium, which will lead to a decrease in the efficiency of the emitted light.
  • the presence of the CPL layer 142 can suppress this negative effect, thereby helping to improve the light emitting efficiency of the light emitting device 10.
  • At least one light-emitting layer in the plurality of light-emitting devices 10 includes one or two of a hole injection layer and a hole transport layer located on a side close to the first electrode 111, and one or two of an electron transport layer and an electron injection layer located away from the first electrode 111.
  • hole injection layers 1511, 1515, 1519, 1523, 1527, hole transport layers 1512, 1516, 1520, 1524, 1528, electron transport layers 1513, 1517, 1521, 1525, 1529, electron injection layers 1514, 1518, 1522, 1526, 1530 may be arranged between the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124, and the fifth light-emitting layer 125 as needed.
  • a hole injection layer and a hole transport layer may be provided between the first electrode 111 and the first light-emitting layer 121
  • an electron transport layer and an electron injection layer may be provided between the fifth light-emitting layer 125 and the second electrode layer 112 .
  • the light emitting device 10 may be an organic light emitting diode, and accordingly, the first light emitting layer 121 , the second light emitting layer 122 , the third light emitting layer 123 , the fourth light emitting layer 124 and the fifth light emitting layer 125 are all organic light emitting layers.
  • the light of the first wavelength emitted by the four light-emitting layers will form a first standing wave in the light-emitting device, and the light of the second wavelength emitted by the remaining light-emitting layers will form a second standing wave in the light-emitting device.
  • the first standing wave may be a standing wave generated by the blue light
  • the second standing wave may be a standing wave generated by the green light.
  • various possible arrangements of the light-emitting device are introduced by taking the case where the light of the first wavelength emitted by the light-emitting device is blue light and the light of the second wavelength emitted is green light as an example.
  • FIG1D schematically shows a schematic diagram of a standing wave and an anti-node according to an embodiment of the present disclosure.
  • the blue light emitted by the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 when the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 emit blue light, and the first light-emitting layer 121 emits green light, the blue light emitted by the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 will form a first standing wave W1 in the resonant cavity of the light-emitting device 10, and the green light emitted by the first light-emitting layer 121 will form a second standing wave W2 in the resonant cavity of the light-emitting device 10.
  • a standing wave includes a node and an antinode
  • a node refers to a point with the smallest amplitude in a standing wave
  • an antinode refers to a point with the largest amplitude in a standing wave.
  • a node is also called a node
  • an antinode is also called an antinode.
  • the second light-emitting layer 122 when the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 emit blue light, and the first light-emitting layer 121 emits green light, taking the surface of the first electrode 111 facing the first light-emitting layer 121 as a reference plane, the second light-emitting layer 122 is located at the second anti-node W12 of the first standing wave W1, the third light-emitting layer 123 is located at the third anti-node W13 of the first standing wave W1, the fourth light-emitting layer 124 is located at the fourth anti-node W14 of the first standing wave W1, the fifth light-emitting layer 125 is located at the fifth anti-node W15 of the first standing wave W1, and the first light-emitting layer 121 is located at the first anti-node W21 of the second standing wave W2.
  • the location of the light-emitting layer in the microcavity has an impact on the luminous brightness of the light-emitting layer.
  • the light emitted by the light-emitting layer forms a standing wave in the microcavity.
  • the microcavity effect can be strengthened to enhance the luminous intensity, thereby improving the luminous efficiency of the light-emitting device and enhancing the intensity of the emitted light.
  • the cavity length of the microcavity is different, and the number of anti-node positions is also different.
  • the blue light emitted by the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 can produce constructive interference to enhance the light output intensity of the blue light
  • the first light-emitting layer 121 is located at the anti-node position of the second standing wave, and the green light emitted by the first light-emitting layer 121 can produce constructive interference to enhance the light output intensity of the green light.
  • a first distance X1 from a first surface of the first electrode 111 close to the first light-emitting layer 121 to a surface of the first light-emitting layer 121 away from the first electrode 111 may be less than For example Etc.
  • the first electrode 111 is ITO/Ag/ITO
  • the first surface may be the surface of the first ITO layer 1111 away from the first light-emitting layer 121
  • X1 may be the distance from the surface of the first ITO layer 1111 away from the first light-emitting layer 121 to the surface of the first light-emitting layer 121 away from the first electrode 111.
  • a suitable first distance X1 can reduce the problem of reduced luminous efficiency caused by the surface plasmon polariton effect generated near the interface between the first electrode 111 and the first light-emitting layer 121, and thus a suitable first distance X1 can improve the luminous efficiency of the light-emitting device.
  • the light emitted here may be the strongest.
  • FIG. 1C schematically shows the relationship between the cavity length thickness and the emission spectrum of the light emitting device according to an embodiment of the present disclosure.
  • the abscissa represents the thickness of the electron transport layer
  • the ordinate represents the thickness of the hole transport layer.
  • the diagonal of the quadrilateral formed by the abscissa and the ordinate can be understood as the cavity length thickness of the overall resonant cavity of the light-emitting device.
  • the spectrum that appears at the cavity length thickness or on the diagonal is the light that the light-emitting device can emit at the cavity length thickness. Red represents light in the red band, green represents light in the green band, and blue represents light in the blue band.
  • the corresponding cavity length thickness can be obtained when one or more of the blue light, green light or red light can reach the strongest light intensity.
  • the red band and the blue band account for a large proportion of the diagonal of the quadrilateral formed by the abscissa and the ordinate; when the thickness of the electron transport layer and the hole transport layer are both 500nm, the green band and the blue band account for a large proportion of the diagonal of the quadrilateral formed by the abscissa and the ordinate. If you need to obtain light of different wavelengths, or need to emit light of a certain wavelength with the strongest intensity, you can intuitively find the corresponding cavity length thickness according to Figure 1C.
  • the second distance X2 between the first electrode 111 and the second electrode 112 can be equal to 5 times the distance between two adjacent anti-nodes of the first standing wave or 4 times the distance between two adjacent anti-nodes of the second standing wave.
  • This distance can also be understood as that in the light-emitting device, there are 5 positions where the blue light emits the strongest light, and at the same time, there are 4 positions where the corresponding green light emits the strongest light.
  • the second distance X2 is the cavity length of the resonant cavity of the light-emitting device 10.
  • the positions of the emission peaks of the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 are all the same, and the thickness of each light-emitting layer can be
  • the thickness of the first light emitting layer 121 can be
  • the thicknesses of the hole injection layer, hole transport layer, electron transport layer, electron injection layer and other layers set as needed in the light-emitting device can be calculated, and the thicknesses of these layers can also be adaptively adjusted according to actual needs.
  • FIG. 1E schematically shows a light emission spectrum diagram of the first light emitting layer of the light emitting device according to an embodiment of the present disclosure when emitting green light.
  • FIG. 1E it is the spectrum of light emitted by the light emitting device 10 after passing through the QD.
  • the horizontal axis in the figure is the wavelength, and the vertical axis is the light intensity.
  • the three light curves in the figure are blue light, green light, and red light, respectively. According to FIG. 1E , it can be concluded that the light emitted by the light emitting device 10 when the first light emitting layer 121 emits green light has a narrow half-peak width.
  • the blue light emitted by them can produce constructive interference to enhance the light intensity of the blue light;
  • the first light-emitting layer 121 of the light-emitting device 10 located at the first anti-node of the second standing wave the green light emitted by the first light-emitting layer 121 can be placed in the best resonance position, so that the brightness of the green light can reach the highest.
  • the blue light emitted by the light-emitting device 10 can be converted into green light, and the converted green light and the green light emitted by the light-emitting device 10 are added as the final green light.
  • the blue light and green light emitted by the light-emitting device 10 can also be converted into red light.
  • the green light emitted by the light-emitting device 10 itself can also be used as a supplementary light source to increase the total amount of green or red light obtained, which is beneficial to improve the brightness of the final green or red light, help reduce the power consumption of the light-emitting device, and extend the life of the light-emitting device.
  • FIG. 2A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure.
  • the light emitting device 20 is a variation of the light emitting device 10.
  • the light emitting device 20 shown in FIG2A has substantially the same structure as the light emitting device 10 shown in FIG1B , and therefore the same reference numerals are used to refer to the same components. Therefore, the specific structure and function of the components in FIG2A having the same reference numerals as those in FIG1B can refer to the description of FIG1B , and will not be repeated here. For the sake of brevity, only the differences between the light emitting device 20 and the light emitting device 10 are described below.
  • the light emitting device 20 is different from the light emitting device 10 in that the first light emitting layer 121 , the third light emitting layer 123 , the fourth light emitting layer 124 and the fifth light emitting layer 125 emit blue light, and the second light emitting layer 122 emits green light.
  • the blue light emitted by the first light-emitting layer 121, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 will form a first standing wave in the resonant cavity of the light-emitting device 20, and the green light emitted by the second light-emitting layer 122 will form a second standing wave in the resonant cavity of the light-emitting device 20.
  • the first light-emitting layer 121, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 emit blue light
  • the second light-emitting layer 122 emits green light
  • the first light-emitting layer 121 is located at the first anti-node of the first standing wave
  • the third light-emitting layer 123 is located at the third anti-node of the first standing wave
  • the fourth light-emitting layer 124 is located at the fourth anti-node of the first standing wave
  • the fifth light-emitting layer 125 is located at the fifth anti-node of the first standing wave
  • the second light-emitting layer 122 is located at the second anti-node of the second standing wave.
  • the blue light emitted by the first light-emitting layer 121, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 can produce constructive interference to enhance the light output intensity of the blue light
  • the second light-emitting layer 122 is located at the anti-node position of the second standing wave, and the green light emitted by the first light-emitting layer 122 can produce constructive interference to enhance the light output intensity of the green light.
  • the first distance X1 in the light emitting device 20 may be less than
  • the second distance X2 between the first electrode 111 and the second electrode 112 may be equal to 5 times the distance between two adjacent anti-nodes of the first standing wave or 4 times the distance between two adjacent anti-nodes of the second standing wave.
  • FIG. 2B schematically shows a light emission spectrum of the second light emitting layer of the light emitting device according to an embodiment of the present disclosure when emitting green light.
  • FIG2B it is the spectrum of light emitted by the light emitting device 20 after passing through the QD.
  • the horizontal axis in the figure is the wavelength, and the vertical axis is the light intensity.
  • the three light curves in the figure are blue light, green light, and red light, respectively. According to FIG2B , it can be concluded that the light emitted by the light emitting device 20 when the second light emitting layer 122 emits green light has a narrow half-peak width.
  • the blue light emitted by them can produce constructive interference to enhance the light intensity of the blue light;
  • the second light-emitting layer 122 of the light-emitting device 20 located at the second anti-node of the second standing wave the green light emitted by the second light-emitting layer 122 can be placed in the best resonance position, so that the brightness of the green light can reach the highest.
  • the blue light emitted by the light-emitting device 20 can be converted into green light, and the converted green light and the green light emitted by the light-emitting device 20 are added as the final green light.
  • the blue light and green light emitted by the light-emitting device 20 can also be converted into red light.
  • the green light emitted by the light-emitting device 20 itself can also be used as a supplementary light source to increase the total amount of green or red light obtained, which is beneficial to improve the brightness of the final green or red light, help reduce the power consumption of the light-emitting device, and extend the life of the light-emitting device.
  • FIG. 3A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure.
  • the light emitting device 30 is a variation of the light emitting device 10.
  • the light emitting device 30 shown in FIG3A has substantially the same structure as the light emitting device 10 shown in FIG1B , and therefore the same reference numerals are used to refer to the same components. Therefore, the specific structure and function of the components in FIG3A having the same reference numerals as those in FIG1B can refer to the description of FIG1B , and will not be repeated here. For the sake of brevity, only the differences between the light emitting device 30 and the light emitting device 10 are described below.
  • the light emitting device 30 is different from the light emitting device 10 in that the first light emitting layer 121 , the second light emitting layer 122 , the third light emitting layer 123 and the fifth light emitting layer 125 emit blue light, and the fourth light emitting layer 124 emits green light.
  • the blue light emitted by the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fifth light-emitting layer 125 will form a first standing wave in the resonant cavity of the light-emitting device 30, and the green light emitted by the fourth light-emitting layer 124 will form a second standing wave in the resonant cavity of the light-emitting device 30.
  • the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fifth light-emitting layer 125 emit blue light
  • the fourth light-emitting layer 124 emits green light
  • the first light-emitting layer 121 is located at the first anti-node of the first standing wave
  • the second light-emitting layer 122 is located at the second anti-node of the first standing wave
  • the third light-emitting layer 123 is located at the third anti-node of the first standing wave
  • the fifth light-emitting layer 125 is located at the fifth anti-node of the first standing wave
  • the fourth light-emitting layer 124 is located at the third anti-node of the second standing wave.
  • the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fifth light-emitting layer 125 are all located at the anti-node position of the first standing wave, the blue light emitted by the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fifth light-emitting layer 125 can produce constructive interference to enhance the light output intensity of the blue light.
  • the fourth light-emitting layer 124 is located at the anti-node position of the second standing wave, and the green light emitted by the fourth light-emitting layer 124 can produce constructive interference to enhance the light output intensity of the green light.
  • the first distance X1 in the light emitting device 30 may be less than
  • the second distance X2 between the first electrode 111 and the second electrode 112 may be equal to 5 times the distance between two adjacent anti-nodes of the first standing wave or 4 times the distance between two adjacent anti-nodes of the second standing wave.
  • FIG3B schematically shows a spectrum of emitted light when the fourth light-emitting layer of the light-emitting device according to an embodiment of the present disclosure emits green light.
  • FIG3B it is the spectrum of light emitted by the light emitting device 30 after passing through the QD.
  • the horizontal axis in the figure is the wavelength, and the vertical axis is the light intensity.
  • the three light curves in the figure are blue light, green light, and red light, respectively. According to FIG3B , it can be concluded that the light emitted by the light emitting device 30 when the fourth light emitting layer 124 emits green light has a narrow half-peak width.
  • the blue light emitted by them can be caused to produce constructive interference to enhance the light intensity of the blue light;
  • the fourth light-emitting layer 124 of the light-emitting device 30 located at the third anti-node of the second standing wave the green light emitted by the fourth light-emitting layer 124 can be placed in the best resonance position, so that the brightness of the green light can reach the highest.
  • the blue light emitted by the light-emitting device 30 can be converted into green light, and the converted green light and the green light emitted by the light-emitting device 30 are added as the final green light.
  • the blue light and green light emitted by the light-emitting device 30 can also be converted into red light.
  • the green light emitted by the light-emitting device 30 itself can also be used as a supplementary light source to increase the total amount of green or red light obtained, which is beneficial to improve the brightness of the final green or red light, help reduce the power consumption of the light-emitting device, and extend the life of the light-emitting device.
  • FIG. 4A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure.
  • the light emitting device 40 is a variation of the light emitting device 10.
  • the light emitting device 40 shown in FIG4A has substantially the same structure as the light emitting device 40 shown in FIG1B , and therefore the same reference numerals are used to refer to the same components. Therefore, the specific structure and function of the components in FIG4A having the same reference numerals as those in FIG1B can refer to the description of FIG1B , and will not be repeated here. For the sake of brevity, only the differences between the light emitting device 40 and the light emitting device 10 are described below.
  • the light emitting device 40 is different from the light emitting device 10 in that the first, second, third and fourth light emitting layers 121, 122, 123 and 124 emit blue light, and the fifth light emitting layer 125 emits green light.
  • the blue light emitted by the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fourth light-emitting layer 124 will form a first standing wave in the resonant cavity of the light-emitting device 40, and the green light emitted by the fifth light-emitting layer 125 will form a second standing wave in the resonant cavity of the light-emitting device 40.
  • the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fourth light-emitting layer 124 emit blue light
  • the fifth light-emitting layer 125 emits green light
  • the first light-emitting layer 121 is located at the first anti-node of the first standing wave
  • the second light-emitting layer 122 is located at the second anti-node of the first standing wave
  • the third light-emitting layer 123 is located at the third anti-node of the first standing wave
  • the fourth light-emitting layer 124 is located at the fourth anti-node of the first standing wave
  • the fifth light-emitting layer 125 is located at the fourth anti-node of the second standing wave.
  • the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fourth light-emitting layer 124 are all located at the anti-node position of the first standing wave, the blue light emitted by the first light-emitting layer 121, the second light-emitting layer 122, the third light-emitting layer 123 and the fourth light-emitting layer 124 can produce constructive interference to enhance the light output intensity of the blue light, and the fifth light-emitting layer 125 is located at the anti-node position of the second standing wave, and the green light emitted by the fifth light-emitting layer 125 can produce constructive interference to enhance the light output intensity of the green light.
  • the first distance X1 in the light emitting device 40 may be less than
  • the second distance X2 between the first electrode 111 and the second electrode 112 may be equal to 5 times the distance between two adjacent anti-nodes of the first standing wave or 4 times the distance between two adjacent anti-nodes of the second standing wave.
  • FIG. 4B schematically shows a light emission spectrum diagram of the fifth light emitting layer of the light emitting device according to an embodiment of the present disclosure when emitting green light.
  • FIG4B it is the spectrum of light emitted by the light emitting device 40 after passing through the QD.
  • the horizontal axis in the figure is the wavelength, and the vertical axis is the light intensity.
  • the three light curves in the figure are blue light, green light, and red light, respectively. According to FIG4B , it can be concluded that the light emitted by the light emitting device 40 when the fifth light emitting layer 125 emits green light has a narrow half-peak width.
  • the blue light emitted by them can produce constructive interference to enhance the light intensity of the blue light;
  • the fifth light-emitting layer 125 of the light-emitting device 40 located at the fourth anti-node of the second standing wave the green light emitted by the fifth light-emitting layer 125 can be placed in the best resonance position, so that the brightness of the green light can reach the highest.
  • the blue light emitted by the light-emitting device 40 can be converted into green light, and the converted green light and the green light emitted by the light-emitting device 40 are added as the final green light.
  • the blue light and green light emitted by the light-emitting device 40 can also be converted into red light.
  • the green light emitted by the light-emitting device 40 itself can also be used as a supplementary light source to increase the total amount of green or red light obtained, which is beneficial to improve the brightness of the final green or red light, help reduce the power consumption of the light-emitting device, and extend the life of the light-emitting device.
  • FIG5A schematically shows a cross-sectional view of a light emitting device according to another embodiment of the present disclosure.
  • the light emitting device 50 is a variation of the light emitting device 10.
  • the light emitting device 50 shown in FIG5A has substantially the same structure as the light emitting device 10 shown in FIG1B , and therefore the same reference numerals are used to refer to the same components. Therefore, the specific structure and function of the components in FIG5A having the same reference numerals as those in FIG1B can refer to the description of FIG1B , and will not be repeated here. For the sake of brevity, only the differences between the light emitting device 50 and the light emitting device 10 are described below.
  • the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 of the light-emitting device 50 emit blue light
  • the first light-emitting layer 121 emits green light.
  • the light-emitting device 50 is different from the light-emitting device 10 in that a first distance from a first surface of the first electrode 111 close to the first light-emitting layer 121 to a surface of the first light-emitting layer 121 away from the first electrode 111 is greater than
  • the first electrode 111 is ITO/Ag/ITO
  • the first surface may be the surface of the first ITO layer 1111 away from the first light-emitting layer 121
  • X1 may be the distance from the surface of the first ITO layer 1111 away from the first light-emitting layer 121 to the surface of the first light-emitting layer 121 away from the first electrode 111.
  • the first distance X1 may not only be less than It can also be greater than A suitable first distance X1 can reduce the surface plasmon polariton effect generated near the interface between the first electrode 111 and the first light-emitting layer 121 , thereby improving the light-emitting efficiency of the light-emitting device.
  • the blue light emitted by the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 will form a first standing wave in the resonant cavity of the light-emitting device 50, and the green light emitted by the first light-emitting layer 121 will form a second standing wave in the resonant cavity of the light-emitting device 50.
  • the second light emitting layer 122, the third light emitting layer 123, the fourth light emitting layer 124 and the fifth light emitting layer 125 emit blue light
  • the first light emitting layer 121 emits green light
  • X1 is greater than
  • the second light-emitting layer 122 is located at the third anti-node of the first standing wave
  • the third light-emitting layer 123 is located at the fourth anti-node of the first standing wave
  • the fourth light-emitting layer 124 is located at the fifth anti-node of the first standing wave
  • the fifth light-emitting layer 125 is located at the sixth anti-node of the first standing wave
  • the first light-emitting layer 121 is located at the second anti-node of the second standing wave.
  • the blue light emitted by the second light-emitting layer 122, the third light-emitting layer 123, the fourth light-emitting layer 124 and the fifth light-emitting layer 125 can produce constructive interference to enhance the light output intensity of the blue light
  • the first light-emitting layer 121 is located at the anti-node position of the second standing wave, and the green light emitted by the first light-emitting layer 121 can produce constructive interference to enhance the light output intensity of the green light.
  • the second light emitting layer 122, the third light emitting layer 123, the fourth light emitting layer 124 and the fifth light emitting layer 125 emit blue light
  • the first light emitting layer 121 emits green light
  • X1 is greater than
  • the second distance X2 between the first electrode 111 and the second electrode 112 can be equal to 6 times the distance between two adjacent anti-nodes of the first standing wave or 5 times the distance between two adjacent anti-nodes of the second standing wave.
  • the cavity length will be lengthened, so setting the second distance X2 to 6 times the distance between two adjacent anti-nodes of the first standing wave or 5 times the distance between two adjacent anti-nodes of the second standing wave will improve the light extraction efficiency of the light-emitting device and reduce power consumption.
  • the thickness of the first electrode 111, the thickness of the first light-emitting layer 121, etc. are the same as the thickness of the corresponding layers in the light-emitting device 10, and the increase is mainly achieved by increasing the thickness of the hole transport layer.
  • FIG. 5B schematically shows that the second distance of the light emitting device according to an embodiment of the present disclosure is greater than Emission spectrum diagram.
  • FIG5B it is the spectrum of light emitted by the light emitting device 50 after passing through the QD.
  • the horizontal axis in the figure is the wavelength, and the vertical axis is the light intensity.
  • the three light curves in the figure are blue light, green light, and red light. According to FIG5B, it can be concluded that the second distance is greater than The emitted light from the light emitting device 50 at this time has a narrow half-peak width.
  • the blue light emitted by them can produce constructive interference to enhance the light intensity of the blue light;
  • the first light-emitting layer 121 of the light-emitting device 50 located at the second anti-node of the second standing wave the green light emitted by the first light-emitting layer 121 can be placed in the best resonance position, so that the brightness of the green light can reach the highest.
  • the blue light emitted by the light-emitting device 50 can be converted into green light, and the converted green light and the green light emitted by the light-emitting device 50 are added as the final green light.
  • the blue light and green light emitted by the light-emitting device 50 can also be converted into red light.
  • the green light emitted by the light-emitting device 50 itself can also be used as a supplementary light source to increase the total amount of green or red light obtained, which is beneficial to improve the brightness of the final green or red light, help reduce the power consumption of the light-emitting device, and extend the life of the light-emitting device.
  • the material of the light emitting layer for emitting blue light may be a fluorescent light emitting material
  • the material of the light emitting layer for emitting green light may be a phosphorescent light emitting material
  • a wavelength conversion layer may be provided on the side of the second electrode away from the first electrode.
  • the material of the wavelength conversion layer may be quantum dots for absorbing light and then emitting light with an inherent wavelength.
  • a display device comprising the display panel described in any of the above embodiments.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a laptop computer, a digital photo frame, a navigator, etc.
  • the display device provided by the embodiment of the present disclosure includes the above-mentioned display panel.
  • the beneficial effects of the display device are the same as the beneficial effects of the above-mentioned display panel, which will not be repeated here.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板,该显示面板包括阵列布置的多个发光器件,多个发光器件中的每个发光器件(10)包括:第一电极(111);第一发光层(121),位于第一电极上(111);第二发光层(122),位于第一发光层(121)远离第一电极(111)的一侧;第三发光层(123),位于第二发光层(122)远离第一电极(111)的一侧;第四发光层(124),位于第三发光层(123)远离第一电极(111)的一侧;第五发光层(125),位于第四发光层(124)远离第一电极(111)的一侧;以及第二电极(112),位于第五发光层(125)远离第一电极(111)的一侧,其中,第一电极(111)和第二电极(112)之间形成微腔,第一发光层(121)、第二发光层(122)、第三发光层(123)、第四发光层(124)以及第五发光层(125)中的四个发光层发射第一波长的光,除发射第一波长的光的四个发光层以外的其余发光层发射第二波长的光,第一波长小于第二波长。还提供一包括该显示面板的显示装置。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示面板及显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)由于具有制备工艺简单、成本低以及可以实现柔性显示等优势,近年来在各种类型的显示装置中受到了越来越多的关注和应用。随着OLED的应用和推广,量子点(Quantum Dot,QD)凭借着自身的发光特性也被应用在了包含OLED的显示装置中。虽然目前的QD-OLED(量子点有机发光二极管)具有高色域、高色纯度、不具有视角依赖性等优势,但依然存在功耗较高、寿命较短的问题。
在本部分中公开的以上信息仅用于对本公开的技术构思的背景的理解,因此,以上信息可包含不构成现有技术的信息。
发明内容
为了解决上述问题的至少一个方面,本公开实施例提供一种显示面板及显示装置。
在一个方面,提供一种显示面板,该显示面板包括阵列布置的多个发光器件,所述多个发光器件中的每个发光器件包括:第一电极;第一发光层,位于所述第一电极上;第二发光层,位于所述第一发光层远离所述第一电极的一侧;第三发光层,位于所述第二发光层远离所述第一电极的一侧;第四发光层,位于所述第三发光层远离所述第一电极的一侧;第五发光层,位于所述第四发光层远离所述第一电极的一侧;以及第二电极,位于所述第五发光层远离所述第一电极的一侧,其中,所述第一电极和所述第二电极之间形成微腔,所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中的四个发光层发射第一波长的光,并且所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中的除发射所述第一波长的光的四个发光层以外的其余发光层发射第二波长的光,所述第一波长小于所述第二波长。
根据一些示例性的实施例,所述四个发光层发射的第一波长的光在所述发光器件内形成第一驻波,并且所述其余发光层发射的第二波长的光在所述发光器件内形成第二驻波。
根据一些示例性的实施例,所述第一电极靠近所述第一发光层的第一表面到所述第一发光层远离所述第一电极一侧的表面的第一距离小于
Figure PCTCN2022135092-appb-000001
根据一些示例性的实施例,所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层发射蓝光,并且所述第一发光层发射绿光。
根据一些示例性的实施例,以所述第一电极面向所述第一发光层的表面为参考面,所述第二发光层位于所述第一驻波的第二个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第四发光层位于所述第一驻波的第四个反节点处,第五发光层位于所述第一驻波的第五个反节点处,并且所述第一发光层位于所述第二驻波的第一个反节点处。
根据一些示例性的实施例,所述第一发光层、所述第三发光层、所述第四发光层以及所述第五发光层发射蓝光,并且所述第二发光层发射绿光。
根据一些示例性的实施例,以所述第一电极面向所述第一发光层的表面为参考面,所述第一发光层位于所述第一驻波的第一个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第四发光层位于所述第一驻波的第四个反节点处,所述第五发光层位于所述第一驻波的第五个反节点处,并且第二发光层位于所述第二驻波的第二个反节点处。
根据一些示例性的实施例,所述第一发光层、所述第二发光层、所述第三发光层以及所述第五发光层发射蓝光,并且所述第四发光层发射绿光。
根据一些示例性的实施例,以所述第一电极面向所述第一发光层的表面为参考面,所述第一发光层位于所述第一驻波的第一个反节点处,所述第二发光层位于所述第一驻波的第二个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第五发光层位于所述第一驻波的第五个反节点处,并且第四发光层位于所述第二驻波的第三个反节点处。
根据一些示例性的实施例,所述第一发光层、所述第二发光层、所述第三发光层以及所述第四发光层发射蓝光,并且所述第五发光层发射绿光。
根据一些示例性的实施例,以所述第一电极面向所述第一发光层的表面为参考面,所述第一发光层位于所述第一驻波的第一个反节点处,所述第二发光层位于所述第一 驻波的第二个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第四发光层位于所述第一驻波的第四个反节点处,并且第五发光层位于所述第二驻波的第四个反节点处。
根据一些示例性的实施例,所述第一电极和所述第二电极之间的第二距离等于所述第一驻波的相邻两个反节点之间距离的5倍或者所述第二驻波的相邻两个反节点之间距离的4倍。
根据一些示例性的实施例,所述第一电极靠近所述第一发光层的第一表面到所述第一发光层远离所述第一电极一侧的表面的第一距离大于
Figure PCTCN2022135092-appb-000002
根据一些示例性的实施例,所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层发射蓝光,并且所述第一发光层发射绿光。
根据一些示例性的实施例,以所述第一电极面向所述第一发光层的表面为参考面,所述第二发光层位于所述第一驻波的第三个反节点处,所述第三发光层位于所述第一驻波的第四个反节点处,所述第四发光层位于所述第一驻波的第五个反节点处,第五发光层位于所述第一驻波的第六个反节点处,并且所述第一发光层位于所述第二驻波的第二个反节点处。
根据一些示例性的实施例,所述第一电极和所述第二电极之间的第二距离等于所述第一驻波的相邻两个反节点之间距离的6倍或者所述第二驻波的相邻两个反节点之间距离的5倍。
根据一些示例性的实施例,所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中发射所述第一波长的光的四个发光层各自的厚度为
Figure PCTCN2022135092-appb-000003
并且所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中发射所述第二波长的光的发光层的厚度为
Figure PCTCN2022135092-appb-000004
根据一些示例性的实施例,所述多个发光器件中的每个发光器件还包括位于所述第一发光层与所述第二发光层之间的第一电荷产生层、位于所述第二发光层与所述第三发光层之间的第二电荷产生层、位于所述第三发光层与所述第四发光层之间的第三电荷产生层以及位于所述第四发光层与所述第五发光层之间的第四电荷产生层。
根据一些示例性的实施例,所述多个发光器件中的至少一个所述发光层包括位于靠近所述第一电极的一侧的空穴注入层和空穴传输层中的一层或两层,以及远离所述第一电极的电子传输层和电子注入层中的一层或两层。
根据一些示例性的实施例,所述显示面板还包括位于所述第二电极远离所述第一电极一侧的波长转换层,其中,所述波长转换层的材料包括量子点。
在另一个方面,提供一种显示装置,包括如上所述的显示面板。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1A示意性示出了根据本公开实施例的显示面板的平面图;
图1B示意性地示出了根据本公开实施例的沿着图1A所示发光器件的线A-A’截取的截面图;
图1C示意性示出了根据本公开实施例的腔长厚度与发光器件发射光谱之间的关系;
图1D示意性示出了根据本公开实施例的驻波与反节点的示意图;
图1E示意性示出了根据本公开实施例的发光器件第一发光层发射绿光时的发射光光谱图;
图2A示意性地示出了根据本公开另一实施例的发光器件的截面图;
图2B示意性示出了根据本公开实施例的发光器件第二发光层发射绿光时的发射光光谱图;
图3A示意性地示出了根据本公开另一实施例的发光器件的截面图;
图3B示意性示出了根据本公开实施例的发光器件第四发光层发射绿光时的发射光光谱图;
图4A示意性地示出了根据本公开另一实施例的发光器件的截面图;
图4B示意性示出了根据本公开实施例的发光器件第五发光层发射绿光时的发射光光谱图;
图5A示意性地示出了根据本公开另一实施例的发光器件的截面图;
图5B示意性示出了根据本公开实施例的发光器件的第二距离大于
Figure PCTCN2022135092-appb-000005
时的发射光光谱图。
需要注意的是,为了清晰起见,在用于描述本公开的实施例的附图中,层、结构或区域的尺寸可能被放大或缩小,即这些附图并非按照实际的比例绘制。
具体实施方式
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本公开实施方式的说明旨在对本公开的总体发明构思进行解释,而不应当理解为对本公开的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。
应该理解的是,尽管在这里可使用术语第一、第二等来描述不同的元件,但是这些元件不应受这些术语的限制。这些术语仅是用来将一个元件与另一个元件区分开来。例如,在不脱离示例实施例的范围的情况下,第一元件可以被命名为第二元件,类似地,第二元件可以被命名为第一元件。如在这里使用的术语“和/或”包括一个或多个相关所列的项目的任意组合和所有组合。
应该理解的是,当元件或层被称作“形成在”另一元件或层“上”时,该元件或层可以直接地或间接地形成在另一元件或层上。也就是,例如,可以存在中间元件或中间层。相反,当元件或层被称作“直接形成在”另一元件或层“上”时,不存在中间元件或中间层。应当以类似的方式来解释其它用于描述元件或层之间的关系的词语(例如,“在...之间”与“直接在…之间”、“相邻的”与“直接相邻的”等)。
在本文中,如无特别说明,表述“位于同一层”一般表示的是:第一部件和第二部件可以使用相同的材料并且可以通过同一构图工艺形成。表述“A与B连接成一体”表示部件A与部件B是一体形成的,即,它们通常包括相同的材料,并且形成为一个结构上连续的整体部件。
在本文中,除非另有特别说明,诸如“上”、“下”、“左”、“右”、“内”、“外”等方向性术语用于表示基于附图所示的方位或位置关系,仅是为了便于描述本公开,而不是指示或暗示所指的装置、元件或部件必须具有特定的方位、以特定的方位构造或操作。需要理解的是,当被描述对象的绝对位置改变后,则它们表示的相对位置关系也可能相应地改变。因此,这些方向性术语不能理解为对本公开的限制。
在本文中,表述“垂直”、“垂直连接”或类似表述不仅包括90度的情况,即完全垂直的情况,还包括与90度相差在一定的误差范围内的情况,例如,与90度相差在工艺误差范围内的情况。
QD-OLED的潜在优势在于其高分辨率、高色域、高色纯度、不具有视角依赖性,另外还有潜在应用优势,例如应用在大型/高色域的产品中,或者应用在中型UHD(Ultra High Definition,超高清)的高价值产品中。虽然目前的QD-OLED具有高色域、高色纯度、不具有视角依赖性等优势,但依然存在功耗较高、寿命较短的问题。
有鉴于此,本公开的发明人发现QD-OLED和EL(Emitting Layer,发光层)微腔结构进行组合可进一步提高发光效率以及色纯度,虽然会出现视角依赖性的问题,但QD的引入能够解决该视角依赖性的问题,而且采用合适的整合方案还能确保光学效果的最优化。在由量子点材料构成的色转换层上的红、绿像素并不具有强的光学调制作用,其吸收蓝光OLED进行发光后只是发生光色的转换,其视角特性仍符合传统的朗伯分布。
为了降低发光器件的功耗,蓝光OLED采用具有强光学谐振器作用的结构,该蓝光OLED具有较窄半波宽的发射光谱,以便于提升蓝光的出射强度(蓝色像素出射强度变高可降低发光器件的功耗)和色纯度;同时,蓝光出射强度变高且集中于特定的红/绿量子点激发波长范围可提升红/绿色像素出射强度,红/绿色像素出射强度变高也可降低发光器件的功耗。因此,这种具有强光学谐振器作用的结构在降低发光器件功耗的过程中是必须的。为了得到较高亮度的红绿光,用于激发的蓝光必须具备高亮度,而蓝光器件与QD器件的适配性非常重要,因此,研究用于降低功耗的发光器件的结构是重中之重。
基于此,本公开的实施例提供了一种内部具有五叠层的发光器件,通过对功耗色域的计算,可以得到当发光器件内发光层的堆叠层数为五层时,发光器件的功耗是较低的,功耗降低也有助于寿命的延长。
图1A示意性示出了根据本公开实施例的显示面板的平面图;图1B示意性地示出了根据本公开实施例的沿着图1A所示发光器件的线A-A’截取的截面图。
如图1A~图1B所示,一种显示面板,包括阵列布置的多个发光器件,发光器件10包括:第一电极111;第一发光层121,位于第一电极111上;第二发光层122,位于第一发光层121远离第一电极111的一侧;第三发光层123,位于第二发光层122远离第一电极111的一侧;第四发光层124,位于第三发光层123远离第一电极111的一侧;第五发光层125,位于第四发光层124远离第一电极111的一侧;以及第二电极112,位于第五发光层125远离第一电极111的一侧,其中,第一电极111和第二电极112之间形成微腔,第一发光层121、第二发光层122、第三发光层123、第四发 光层124以及第五发光层125中的四个发光层发射第一波长的光,并且第一发光层121、第二发光层122、第三发光层123、第四发光层124以及第五发光层125中的除发射第一波长的光的四个发光层以外的其余发光层发射第二波长的光,第一波长小于第二波长。
根据本公开的实施例,发光器件的功耗与发光器件内发光层的堆叠层数相关联,选择合适的堆叠层数有助于降低发光器件的功耗。通过对功耗色域的计算,当发光器件内发光层的堆叠层数为五层时,发光器件的功耗是较低的。因此,在本公开的实施例中,每个发光器件10内布置有依次堆叠的五个发光层121、122、123、124、125,从而有助于降低发光器件10的功耗。进一步地,相比于五个发光层均发射第一波长的光,使五个发光层121、122、123、124、125中的四个发光层发射第一波长的光,而剩余的另一个发光层发射第二波长的光,当期望通过该发光器件10获得第二波长的光时,可以将发光器件10出射的第一波长的光转换为第二波长的光,该转换的第二波长的光和发光器件10发射的第二波长的光相叠加作为最终得到的第二波长的光。这样,不仅可以通过利用第一波长的光本身具有的较窄半波宽的发射光谱特性来实现发光器件10的出射光的高亮度和高强度需求,还可以利用发光器件10本身发射的第二波长的光作为补充光源,以增加获得的第二波长的光总量,从而有利于提高最终得到的第二波长的光的亮度和强度,出射光的强度变强有助于发光器件的功耗降低,并延长发光器件的使用寿命。
如图1A所示,该显示面板1可以包括阵列布置的多个发光器件10。一般地,多个发光器件10以均匀的间隔布置。为了简洁和清晰的目的,图1A示出了几个发光器件10,并用省略号“……”来表示未示出的许多发光器件10,但是这并不意味着显示面板1仅包括如图示出的这几个发光器件10。如本领域技术人员已知的,显示面板1可以包括众多数量的发光器件10。
根据本公开的实施例,显示面板可以适用于各种适当的领域,包括但不限于显示领域、车载领域、医疗领域等。例如,显示面板可以用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子书、车载触控面板、医疗检测设备等任何适当的产品或部件。
根据本公开的实施例,第一电极111可以是具有反射性的阳极,并且第二电极112可以是具有透射性和反射性的阴极,由此,第一电极111和第二电极112可以构成光学谐振腔。由这样的第一电极111和第二电极112构成的发光器件10是顶发射器件, 即发光器件10会从第二电极112远离第一电极111的一侧出射蓝光和绿光。第一电极111和第二电极112所采用的电极材料可以根据实际需要进行适应性调整。第一电极111和第二电极112可以相对设置。
根据本公开的实施例,第一电极111可以包括第一ITO层1111、Ag层1112、第二ITO层1113,第一电极111的厚度可以为
Figure PCTCN2022135092-appb-000006
例如Ag层的厚度可以为
Figure PCTCN2022135092-appb-000007
每层ITO的厚度可以为
Figure PCTCN2022135092-appb-000008
第一电极111的制备工艺可以根据实际需要进行适应性调整,例如可以通过溅射工艺形成ITO/Ag/ITO膜层。
根据本公开的实施例,第二电极112的材料可以为半透半反的金属,例如Ag、Mg、Cu、Al、Pt、Pd、Au、Ni、Nd、Ir、Cr、Li、Ca、LiF/Ca、LiF/Al、Mo、Ti中的一种或多种。在一些实施例中,第二电极112的厚度可以大约为
Figure PCTCN2022135092-appb-000009
根据本公开的实施例,第一波长的光可以为蓝光,第二波长的光可以为绿光。当然,在替代的实施例中,第一波长的光和第二波长的光也可以是其他适当颜色的光,但是需要满足第一波长小于第二波长。
继续参照图1B,发光器件10还可以包括位于第一发光层121与第二发光层122之间的第一电荷产生层131、位于第二发光层122与第三发光层123之间的第二电荷产生层132、位于第三发光层123与第四发光层124之间的第三电荷产生层133以及位于第四发光层124与第五发光层125之间的第四电荷产生层134。在一些实施例中,第一电荷产生层131、第二电荷产生层132、第三电荷产生层133以及第四电荷产生层134中的每一个可包括n型电荷产生层和p型电荷产生层中的一个。第一电荷产生层131可向第一发光层121和第二发光层122提供电荷,从而控制第一发光层121和第二发光层122之间的电荷平衡;第二电荷产生层132可向第二发光层122和第三发光层123提供电荷,从而控制第二发光层122和第三发光层123之间的电荷平衡;第三电荷产生层133可向第三发光层123和第四发光层124提供电荷,从而控制第三发光层123和第四发光层124之间的电荷平衡;第四电荷产生层134可向第四发光层124和第五发光层125提供电荷,从而控制第四发光层124和第五发光层125之间的电荷平衡。通过布置这些电荷产生层,有助于提高发光器件10的发光效率,并且有助于降低发光器件10的驱动电压。
参照图1B,发光器件10还可以包括位于第五发光层125与第二电极112之间的电荷注入层141,以及位于第二电极112远离第一电极111一侧的CPL层(capping layer,封盖层)142。一般地,当发光器件10的发光层发射的光透过第二电极112向 外发射时,在金属第二电极112与介质界面附近会存在表面等离激元效应,该效应会导致出射光效率降低,而CPL层142的存在可以压制这种负面效应,从而有助于提高发光器件10的发光效率。
参照图1B,多个发光器件10中的至少一个发光层包括位于靠近第一电极111的一侧的空穴注入层和空穴传输层中的一层或两层,以及远离第一电极111的电子传输层和电子注入层中的一层或两层。例如在第一发光层121、第二发光层122、第三发光层123、第四发光层124以及第五发光层125彼此之间可以根据需要布置空穴注入层1511、1515、1519、1523、1527、空穴传输层1512、1516、1520、1524、1528、电子传输层1513、1517、1521、1525、1529、电子注入层1514、1518、1522、1526、1530。
需要指出的是,虽然图1B中未示出,但是在第一电极111和第一发光层121之间还可以设置有空穴注入层和空穴传输层,以及在第五发光层125和第二电极层112之间还可以设置有电子传输层和电子注入层。
根据本公开的实施例,发光器件10可以是有机发光二极管,相应地,第一发光层121、第二发光层122、第三发光层123、第四发光层124以及第五发光层125均为有机发光层。
根据本公开的实施例,四个发光层发射的第一波长的光在发光器件内会形成第一驻波,并且其余发光层发射的第二波长的光在发光器件内会形成第二驻波。例如,在第一波长的光是蓝光时,第一驻波可以是由蓝光产生的驻波,在第二波长的光的绿光时,第二驻波可以是由绿光产生的驻波。在本公开的多个实施例中,以发光器件发射的第一波长的光是蓝光、发射的第二波长的光是绿光为例,介绍发光器件的各种可能的布置方式。
图1D示意性示出了根据本公开实施例的驻波与反节点的示意图。
根据本公开的实施例,在第二发光层122、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第一发光层121发射绿光的情况下,第二发光层122、第三发光层123、第四发光层124以及第五发光层125发出蓝光在发光器件10的谐振腔内会形成第一驻波W1,第一发光层121发出的绿光在发光器件10的谐振腔内形成第二驻波W2。如本领域技术人员所知晓的,驻波包括波节和波腹,波节是指驻波中振幅最小的点,波腹是指驻波中振幅最大的点。波节又称为节点,波腹又称为反节点。
根据本公开的实施例,在第二发光层122、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第一发光层121发射绿光的情况下,以第一电极111 面向第一发光层121的表面为参考面,第二发光层122位于第一驻波W1的第二个反节点W12处,第三发光层123位于第一驻波W1的第三个反节点W13处,第四发光层124位于第一驻波W1的第四个反节点W14处,第五发光层125位于第一驻波W1的第五个反节点W15处,并且第一发光层121位于第二驻波W2的第一个反节点处W21。
根据本公开的实施例,在微腔OLED中,发光层在微腔中的设置位置对发光层的发光亮度有影响。发光层发出的光在微腔中会形成驻波,当将发光层的发光位置设置于驻波反节点的位置时,可以强化微腔效应,以增强发光强度,从而可以提高发光器件的发光效率,增强出射光的强度。微腔的腔长不同,反节点位置的数目也有所不同,
由于第二发光层122、第三发光层123、第四发光层124以及第五发光层125均位于第一驻波的反节点位置处,因此,由第二发光层122、第三发光层123、第四发光层124以及第五发光层125发出的蓝光可以产生建设性干涉以增强蓝光的出光强度,第一发光层121位于第二驻波的反节点位置处,第一发光层121发出的绿光可以产生建设性干涉以增强绿光的出光强度。
根据本公开的实施例,第一电极111靠近第一发光层121的第一表面到第一发光层121远离第一电极111一侧的表面的第一距离X1可以小于
Figure PCTCN2022135092-appb-000010
例如
Figure PCTCN2022135092-appb-000011
Figure PCTCN2022135092-appb-000012
等。具体地,在第一电极111为ITO/Ag/ITO的情况下,第一表面可以是第一ITO层1111远离第一发光层121一侧的表面,相应的,X1可以是第一ITO层1111远离第一发光层121一侧的表面到第一发光层121远离第一电极111一侧的表面的距离。合适的第一距离X1可以降低由第一电极111与第一发光层121界面附近产生的表面等离子极化激元效应所导致发光效率降低的问题,进而合适的第一距离X1可以提高发光器件的发光效率。在X1的区域内,此处的发出的光线可以是最强的。
图1C示意性示出了根据本公开实施例的腔长厚度与发光器件发射光谱之间的关系。
如图1C所示,横坐标表示电子传输层的厚度,纵坐标表示空穴传输层的厚度。在横、纵坐标均取相同厚度值的情况下,根据横、纵坐标构成的四边形的对角线可以理解为发光器件的总体谐振腔的腔长厚度。在该腔长厚度下,或者在该对角线上出现的光谱,即为发光器件在该腔长厚度下能发出的光,红色代表红色波段的光,绿色代表绿色波段的光,蓝色代表蓝色波段的光。根据图1C可以得到在同时满足蓝光、绿光或红光中的一种或多种光能够达到各自光强最强的情况下,所对应的腔长厚度。例如在 电子传输层和空穴传输层的厚度均取400nm的情况下,在根据横、纵坐标构成的四边形的对角线上,红色波段和蓝色波段的光占比较大;在在电子传输层和空穴传输层的厚度均取500nm的情况下,在根据横、纵坐标构成的四边形的对角线上,绿色波段和蓝色波段的光占比较大。若需要获取不同波段的光,或者需要发出某一波段的光的光强最强,可以根据图1C直观找到对应的腔长厚度。
根据本公开的实施例,在第二发光层122、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第一发光层121发射绿光的情况下,第一电极111和第二电极112之间的第二距离X2可以等于第一驻波的相邻两个反节点之间距离的5倍或者第二驻波的相邻两个反节点之间距离的4倍。该距离也可以理解为在该发光器件中蓝光可以有5个位置发光最强,同时,相应的绿光会有4个位置是发光最强的。第二距离X2为发光器件10的谐振腔的腔长。腔长的厚度与发光器件的发光效率之间并不是正相关的关系,因为在谐振腔的腔长越长的情况下,发光器件内需要的发光层会越多,这样会使得驱动电压增加,进而提高了发光器件的功耗。同时,由于腔长越长,在谐振腔内发生多次反射,进而使得被吸收的光线越多,降低了发光器件的出光效率。而且考虑到在制作过程中蒸镀工艺均一性的问题,该第一距离X2不宜选取过大。
根据本公开的实施例,第二发光层122、第三发光层123、第四发光层124以及第五发光层125的发光峰的位置均相同,每个发光层的厚度可以均为
Figure PCTCN2022135092-appb-000013
第一发光层121的厚度可以为
Figure PCTCN2022135092-appb-000014
根据本公开的实施例,在确定发光器件的腔长、第一距离X1、第一电极111的厚度、第二电极112的厚度、以及各个发光层的厚度的情况下,发光器件中根据需要设置的空穴注入层、空穴传输层、电子传输层、电子注入层等层的厚度可以推算出,这些层的厚度也可以根据实际需要进行适应性调整。
图1E示意性示出了根据本公开实施例的发光器件第一发光层发射绿光时的发射光光谱图。
如图1E所示,是发光器件10经过QD之后发射光的光谱。图中横坐标为波长,纵坐标为光强。图中的三个光的曲线分别为蓝光、绿光、红光。根据图1E可以得出第一发光层121发射绿光时的发光器件10发出的发射光均具有较窄的半峰宽。
根据本公开的实施例,通过使发光器件10的第二发光层122、第三发光层123、第三发光层124以及第五发光层125分别位于第一驻波的第二个、第三个、第四个、第五个反节点处,可以使它们发出的蓝光产生建设性干涉以增强蓝光的出光强度;通 过使发光器件10的第一发光层121位于第二驻波的第一个反节点处,可以使第一发光层121发射的绿光处于最佳共振位置,从而使绿光的亮度可以达到最高。在该OLED经过QD转换层后,当期望通过该发光器件10得到绿光时,可以将发光器件10出射的蓝光转换为绿光,该转换的绿光和发光器件10发射的绿光相加作为最终得到的绿光。当期望通过该发光器件10得到红光时,也可以将发光器件10出射的蓝光和绿光转换为红光。这样,不仅可以通过利用蓝光本身具有的较窄半波宽的发射光谱特性来实现发光器件10的出射光的高亮度和高强度需求,还可以利用发光器件10本身发射的绿光作为补充光源,以增加获得的绿光或红光总量,从而有利于提高最终得到的绿光或红光的亮度,助于降低发光器件的功耗,延长发光器件的寿命。
图2A示意性地示出了根据本公开另一实施例的发光器件的截面图。
如图2A所示,该发光器件20是发光器件10的一种变型。在图2A中示出的发光器件20具有与在图1B中示出的发光器件10基本相同的构造,并且因此使用相同的附图标记来指代相同的部件。因此,图2A中具有与图1B相同附图标记的部件的具体结构及功能可以参考对图1B的说明,此处不再赘述。为了简洁起见,下面仅介绍发光器件20与发光器件10的不同之处。
根据本公开的实施例,发光器件20与发光器件10的不同之处在于第一发光层121、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第二发光层122发射绿光。
根据本公开的实施例,在发光器件20中,第一发光层121、第三发光层123、第四发光层124以及第五发光层125发出的蓝光在发光器件20的谐振腔内会形成第一驻波,第二发光层122发射的绿光在发光器件20的谐振腔内形成第二驻波。
根据本公开的实施例,在第一发光层121、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第二发光层122发射绿光的情况下,以第一电极111面向第一发光层121的表面为参考面,第一发光层121位于第一驻波的第一个反节点处,第三发光层123位于第一驻波的第三个反节点处,第四发光层124位于第一驻波的第四个反节点处,第五发光层125位于第一驻波的第五个反节点处,并且第二发光层122位于第二驻波的第二个反节点处。
由于第一发光层121、第三发光层123、第四发光层124以及第五发光层125均位于第一驻波的反节点位置处,因此,由第一发光层121、第三发光层123、第四发光层124以及第五发光层125发出的蓝光可以产生建设性干涉以增强蓝光的出光强度,第 二发光层122位于第二驻波的反节点位置处,第一发光层122发出的绿光可以产生建设性干涉以增强绿光的出光强度。
根据本公开的实施例,发光器件20中的第一距离X1可以小于
Figure PCTCN2022135092-appb-000015
例如
Figure PCTCN2022135092-appb-000016
Figure PCTCN2022135092-appb-000017
等。在第一发光层121、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第二发光层122发射绿光的情况下,第一电极111和第二电极112之间的第二距离X2可以等于第一驻波的相邻两个反节点之间距离的5倍或者第二驻波的相邻两个反节点之间距离的4倍。
图2B示意性示出了根据本公开实施例的发光器件第二发光层发射绿光时的发射光光谱图。
如图2B所示,是发光器件20经过QD之后发射光的光谱。图中横坐标为波长,纵坐标为光强。图中的三个光的曲线分别为蓝光、绿光、红光。根据图2B可以得出第二发光层122发射绿光时的发光器件20发出的发射光均具有较窄的半峰宽。
根据本公开的实施例,通过使发光器件20的第一发光层121、第三发光层123、第四发光层124以及第五发光层125分别位于第一驻波的第一个、第三个、第四个、第五个反节点处,可以使它们发出的蓝光产生建设性干涉以增强蓝光的出光强度;通过使发光器件20的第二发光层122位于第二驻波的第二个反节点处,可以使第二发光层122发射的绿光处于最佳共振位置,从而使绿光的亮度可以达到最高。在该OLED经过QD转换层后,当期望通过该发光器件20得到绿光时,可以将发光器件20出射的蓝光转换为绿光,该转换的绿光和发光器件20发射的绿光相加作为最终得到的绿光。当期望通过该发光器件20得到红光时,也可以将发光器件20出射的蓝光和绿光转换为红光。这样,不仅可以通过利用蓝光本身具有的较窄半波宽的发射光谱特性来实现发光器件20的出射光的高亮度和高强度需求,还可以利用发光器件20本身发射的绿光作为补充光源,以增加获得的绿光或红光总量,从而有利于提高最终得到的绿光或红光的亮度,助于降低发光器件的功耗,延长发光器件的寿命。
图3A示意性地示出了根据本公开另一实施例的发光器件的截面图。
如图3A所示,该发光器件30是发光器件10的一种变型。在图3A中示出的发光器件30具有与在图1B中示出的发光器件10基本相同的构造,并且因此使用相同的附图标记来指代相同的部件。因此,图3A中具有与图1B相同附图标记的部件的具体结构及功能可以参考对图1B的说明,此处不再赘述。为了简洁起见,下面仅介绍发光器件30与发光器件10的不同之处。
根据本公开的实施例,发光器件30与发光器件10的不同之处在于第一发光层121、第二发光层122、第三发光层123以及第五发光层125发射蓝光,并且第四发光层124发射绿光。
根据本公开的实施例,在发光器件30中,第一发光层121、第二发光层122、第三发光层123以及第五发光层125发出的蓝光在发光器件30的谐振腔内会形成第一驻波,第四发光层124发射的绿光在发光器件30的谐振腔内形成第二驻波。
根据本公开的实施例,在第一发光层121、第二发光层122、第三发光层123以及第五发光层125发射蓝光,并且第四发光层124发射绿光的情况下,以第一电极111面向第一发光层121的表面为参考面,第一发光层121位于第一驻波的第一个反节点处,第二发光层122位于第一驻波的第二个反节点处,第三发光层123位于第一驻波的第三个反节点处,第五发光层125位于第一驻波的第五个反节点处,并且第四发光层124位于第二驻波的第三个反节点处。
由于第一发光层121、第二发光层122、第三发光层123以及第五发光层125均位于第一驻波的反节点位置处,因此,由第一发光层121、第二发光层122、第三发光层123以及第五发光层125发出的蓝光可以产生建设性干涉以增强蓝光的出光强度,第四发光层124位于第二驻波的反节点位置处,第四发光层124发出的绿光可以产生建设性干涉以增强绿光的出光强度。
根据本公开的实施例,发光器件30中的第一距离X1可以小于
Figure PCTCN2022135092-appb-000018
例如
Figure PCTCN2022135092-appb-000019
Figure PCTCN2022135092-appb-000020
等。在第一发光层121、第二发光层122、第三发光层123以及第五发光层125发射蓝光,并且第四发光层124发射绿光的情况下,第一电极111和第二电极112之间的第二距离X2可以等于第一驻波的相邻两个反节点之间距离的5倍或者第二驻波的相邻两个反节点之间距离的4倍。
图3B示意性示出了根据本公开实施例的发光器件第四发光层发射绿光时的发射光光谱图。
如图3B所示,是发光器件30经过QD之后发射光的光谱。图中横坐标为波长,纵坐标为光强。图中的三个光的曲线分别为蓝光、绿光、红光。根据图3B可以得出第四发光层124发射绿光时的发光器件30发出的发射光均具有较窄的半峰宽。
根据本公开的实施例,通过使发光器件30的第一发光层121、第二发光层122、第三发光层123以及第五发光层125分别位于第一驻波的第一个、第二个、第三个、第五个反节点处,可以使它们发出的蓝光产生建设性干涉以增强蓝光的出光强度;通 过使发光器件30的第四发光层124位于第二驻波的第三个反节点处,可以使第四发光层124发射的绿光处于最佳共振位置,从而使绿光的亮度可以达到最高。在该OLED经过QD转换层后,当期望通过该发光器件30得到绿光时,可以将发光器件30出射的蓝光转换为绿光,该转换的绿光和发光器件30发射的绿光相加作为最终得到的绿光。当期望通过该发光器件30得到红光时,也可以将发光器件30出射的蓝光和绿光转换为红光。这样,不仅可以通过利用蓝光本身具有的较窄半波宽的发射光谱特性来实现发光器件30的出射光的高亮度和高强度需求,还可以利用发光器件30本身发射的绿光作为补充光源,以增加获得的绿光或红光总量,从而有利于提高最终得到的绿光或红光的亮度,助于降低发光器件的功耗,延长发光器件的寿命。
图4A示意性地示出了根据本公开另一实施例的发光器件的截面图。
如图4A所示,该发光器件40是发光器件10的一种变型。在图4A中示出的发光器件40具有与在图1B中示出的发光器件40基本相同的构造,并且因此使用相同的附图标记来指代相同的部件。因此,图4A中具有与图1B相同附图标记的部件的具体结构及功能可以参考对图1B的说明,此处不再赘述。为了简洁起见,下面仅介绍发光器件40与发光器件10的不同之处。
根据本公开的实施例,发光器件40与发光器件10的不同之处在于第一发光层121、第二发光层122、第三发光层123以及第四发光层124发射蓝光,并且第五发光层125发射绿光。
根据本公开的实施例,在发光器件40中,第一发光层121、第二发光层122、第三发光层123以及第四发光层124发出的蓝光在发光器件40的谐振腔内会形成第一驻波,第五发光层125发射的绿光在发光器件40的谐振腔内形成第二驻波。
根据本公开的实施例,在第一发光层121、第二发光层122、第三发光层123以及第四发光层124发射蓝光,并且第五发光层125发射绿光的情况下,以第一电极111面向第一发光层121的表面为参考面,第一发光层121位于第一驻波的第一个反节点处,第二发光层122位于第一驻波的第二个反节点处,第三发光层123位于第一驻波的第三个反节点处,第四发光层124位于第一驻波的第四个反节点处,并且第五发光层125位于第二驻波的第四个反节点处。
由于第一发光层121、第二发光层122、第三发光层123以及第四发光层124均位于第一驻波的反节点位置处,因此,由第一发光层121、第二发光层122、第三发光层123以及第四发光层124发出的蓝光可以产生建设性干涉以增强蓝光的出光强度,第 五发光层125位于第二驻波的反节点位置处,第五发光层125发出的绿光可以产生建设性干涉以增强绿光的出光强度。
根据本公开的实施例,发光器件40中的第一距离X1可以小于
Figure PCTCN2022135092-appb-000021
例如
Figure PCTCN2022135092-appb-000022
Figure PCTCN2022135092-appb-000023
等。在第一发光层121、第二发光层122、第三发光层123以及第四发光层124发射蓝光,并且第五发光层125发射绿光的情况下,第一电极111和第二电极112之间的第二距离X2可以等于第一驻波的相邻两个反节点之间距离的5倍或者第二驻波的相邻两个反节点之间距离的4倍。
图4B示意性示出了根据本公开实施例的发光器件第五发光层发射绿光时的发射光光谱图。
如图4B所示,是发光器件40经过QD之后发射光的光谱。图中横坐标为波长,纵坐标为光强。图中的三个光的曲线分别为蓝光、绿光、红光。根据图4B可以得出第五发光层125发射绿光时的发光器件40发出的发射光均具有较窄的半峰宽。
根据本公开的实施例,通过使发光器件40的第一发光层121、第二发光层122、第三发光层123以及第四发光层124分别位于第一驻波的第一个、第二个、第三个、第四个反节点处,可以使它们发出的蓝光产生建设性干涉以增强蓝光的出光强度;通过使发光器件40的第五发光层125位于第二驻波的第四个反节点处,可以使第五发光层125发射的绿光处于最佳共振位置,从而使绿光的亮度可以达到最高。在该OLED经过QD转换层后,当期望通过该发光器件40得到绿光时,可以将发光器件40出射的蓝光转换为绿光,该转换的绿光和发光器件40发射的绿光相加作为最终得到的绿光。当期望通过该发光器件40得到红光时,也可以将发光器件40出射的蓝光和绿光转换为红光。这样,不仅可以通过利用蓝光本身具有的较窄半波宽的发射光谱特性来实现发光器件40的出射光的高亮度和高强度需求,还可以利用发光器件40本身发射的绿光作为补充光源,以增加获得的绿光或红光总量,从而有利于提高最终得到的绿光或红光的亮度,助于降低发光器件的功耗,延长发光器件的寿命。
图5A示意性地示出了根据本公开另一实施例的发光器件的截面图。
如图5A所示,该发光器件50是发光器件10的一种变型。在图5A中示出的发光器件50具有与在图1B中示出的发光器件10基本相同的构造,并且因此使用相同的附图标记来指代相同的部件。因此,图5A中具有与图1B相同附图标记的部件的具体结构及功能可以参考对图1B的说明,此处不再赘述。为了简洁起见,下面仅介绍发光器件50与发光器件10的不同之处。
根据本公开的实施例,发光器件50的第二发光层122、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第一发光层121发射绿光。发光器件50与发光器件10的不同之处在于第一电极111靠近第一发光层121的第一表面到第一发光层121远离第一电极111一侧的表面的第一距离大于
Figure PCTCN2022135092-appb-000024
例如
Figure PCTCN2022135092-appb-000025
Figure PCTCN2022135092-appb-000026
等。具体地,在第一电极111为ITO/Ag/ITO的情况下,第一表面可以是第一ITO层1111远离第一发光层121一侧的表面,相应的,X1可以是第一ITO层1111远离第一发光层121一侧的表面到第一发光层121远离第一电极111一侧的表面的距离。第一距离X1不仅可以小于
Figure PCTCN2022135092-appb-000027
也可以大于
Figure PCTCN2022135092-appb-000028
合适的第一距离X1可以降低第一电极111与第一发光层121界面附近会产生的表面等离子极化激元效应,提高发光器件的发光效率。
根据本公开的实施例,在发光器件50中,第二发光层122、第三发光层123、第四发光层124以及第五发光层125发出的蓝光在发光器件50的谐振腔内会形成第一驻波,第一发光层121发射的绿光在发光器件50的谐振腔内形成第二驻波。
根据本公开的实施例,在第二发光层122、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第一发光层121发射绿光,以及X1大于
Figure PCTCN2022135092-appb-000029
的情况下,以第一电极111面向第一发光层121的表面为参考面,第二发光层122位于第一驻波的第三个反节点处,第三发光层123位于第一驻波的第四个反节点处,第四发光层124位于第一驻波的第五个反节点处,第五发光层125位于第一驻波的第六个反节点处,并且第一发光层121位于第二驻波的第二个反节点处。
由于第二发光层122、第三发光层123、第四发光层124以及第五发光层125均位于第一驻波的反节点位置处,因此,由第二发光层122、第三发光层123、第四发光层124以及第五发光层125发出的蓝光可以产生建设性干涉以增强蓝光的出光强度,第一发光层121位于第二驻波的反节点位置处,第一发光层121发出的绿光可以产生建设性干涉以增强绿光的出光强度。
根据本公开的实施例,在发光器件50中,在第二发光层122、第三发光层123、第四发光层124以及第五发光层125发射蓝光,并且第一发光层121发射绿光,以及X1大于
Figure PCTCN2022135092-appb-000030
的情况下,第一电极111和第二电极112之间的第二距离X2可以等于第一驻波的相邻两个反节点之间距离的6倍或者第二驻波的相邻两个反节点之间距离的5倍。因此在该实施例中,X1大于
Figure PCTCN2022135092-appb-000031
会使得腔长加长,因此将第二距离X2设为第一驻波的相邻两个反节点之间距离的6倍或者第二驻波的相邻两个反节点之间 距离的5倍,会使得发光器件的出光效率提高,同时降低功耗。
根据本公开的实施,在X1大于
Figure PCTCN2022135092-appb-000032
的情况下,第一电极111的厚度、第一发光层121的厚度等均与发光器件10中的相应层的厚度相同,主要是通过增加空穴传输层的厚度实现增加的。
图5B示意性示出了根据本公开实施例的发光器件的第二距离大于
Figure PCTCN2022135092-appb-000033
时的发射光光谱图。
如图5B所示,是发光器件50经过QD之后发射光的光谱。图中横坐标为波长,纵坐标为光强。图中的三个光的曲线分别为蓝光、绿光、红光。根据图5B可以得出第二距离大于
Figure PCTCN2022135092-appb-000034
时的发光器件50发出的发射光均具有较窄的半峰宽。
根据本公开的实施例,通过使发光器件50的在第二发光层122、第三发光层123、第四发光层124以及第五发光层125分别位于第一驻波的第三个、第四个、第五个、第六个反节点处,可以使它们发出的蓝光产生建设性干涉以增强蓝光的出光强度;通过使发光器件50的第一发光层121位于第二驻波的第二个反节点处,可以使第一发光层121发射的绿光处于最佳共振位置,从而使绿光的亮度可以达到最高。在该OLED经过QD转换层后,当期望通过该发光器件50得到绿光时,可以将发光器件50出射的蓝光转换为绿光,该转换的绿光和发光器件50发射的绿光相加作为最终得到的绿光。当期望通过该发光器件50得到红光时,也可以将发光器件50出射的蓝光和绿光转换为红光。这样,不仅可以通过利用蓝光本身具有的较窄半波宽的发射光谱特性来实现发光器件50的出射光的高亮度和高强度需求,还可以利用发光器件50本身发射的绿光作为补充光源,以增加获得的绿光或红光总量,从而有利于提高最终得到的绿光或红光的亮度,助于降低发光器件的功耗,延长发光器件的寿命。
根据本公开的实施例,在上述发光器件中,用来发射蓝光的发光层的材料可以是荧光型发光材料,用来发射绿光的发光层的材料可以是磷光型发光材料。
根据本公开的实施例,在显示面板的结构中,还可以在第二电极远离第一电极一侧设置波长转换层,该波长转换层的材料可以是量子点,用于吸收光然后发射具有固有波长的光。
根据本公开的实施例,还提供了一种显示装置,该显示装置包括在上述任一个实施例中描述的显示面板。显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开实施例提供的显示装置包括上述显示面板,显示装置的有益效果与上述显 示面板的有益效果相同,此处不再赘述。
虽然本公开总体构思的一些实施例已被图示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (21)

  1. 一种显示面板,包括阵列布置的多个发光器件,其特征在于,所述多个发光器件中的每个发光器件包括:
    第一电极;
    第一发光层,位于所述第一电极上;
    第二发光层,位于所述第一发光层远离所述第一电极的一侧;
    第三发光层,位于所述第二发光层远离所述第一电极的一侧;
    第四发光层,位于所述第三发光层远离所述第一电极的一侧;
    第五发光层,位于所述第四发光层远离所述第一电极的一侧;以及
    第二电极,位于所述第五发光层远离所述第一电极的一侧,
    其中,所述第一电极和所述第二电极之间形成微腔,所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中的四个发光层发射第一波长的光,并且所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中的除发射所述第一波长的光的四个发光层以外的其余发光层发射第二波长的光,所述第一波长小于所述第二波长。
  2. 根据权利要求1所述的显示面板,其中,所述四个发光层发射的第一波长的光在所述发光器件内形成第一驻波,并且所述其余发光层发射的第二波长的光在所述发光器件内形成第二驻波。
  3. 根据权利要求2所述的显示面板,其中,所述第一电极靠近所述第一发光层的第一表面到所述第一发光层远离所述第一电极一侧的表面的第一距离小于
    Figure PCTCN2022135092-appb-100001
  4. 根据权利要求2所述的显示面板,其中,所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层发射蓝光,并且所述第一发光层发射绿光。
  5. 根据权利要求4所述的显示面板,其中,以所述第一电极面向所述第一发光层的表面为参考面,所述第二发光层位于所述第一驻波的第二个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第四发光层位于所述第一驻波的第四 个反节点处,第五发光层位于所述第一驻波的第五个反节点处,并且所述第一发光层位于所述第二驻波的第一个反节点处。
  6. 根据权利要求2所述的显示面板,其中,所述第一发光层、所述第三发光层、所述第四发光层以及所述第五发光层发射蓝光,并且所述第二发光层发射绿光。
  7. 根据权利要求6所述的显示面板,其中,以所述第一电极面向所述第一发光层的表面为参考面,所述第一发光层位于所述第一驻波的第一个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第四发光层位于所述第一驻波的第四个反节点处,所述第五发光层位于所述第一驻波的第五个反节点处,并且第二发光层位于所述第二驻波的第二个反节点处。
  8. 根据权利要求2所述的显示面板,其中,所述第一发光层、所述第二发光层、所述第三发光层以及所述第五发光层发射蓝光,并且所述第四发光层发射绿光。
  9. 根据权利要求8所述的显示面板,其中,以所述第一电极面向所述第一发光层的表面为参考面,所述第一发光层位于所述第一驻波的第一个反节点处,所述第二发光层位于所述第一驻波的第二个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第五发光层位于所述第一驻波的第五个反节点处,并且第四发光层位于所述第二驻波的第三个反节点处。
  10. 根据权利要求2所述的显示面板,其中,所述第一发光层、所述第二发光层、所述第三发光层以及所述第四发光层发射蓝光,并且所述第五发光层发射绿光。
  11. 根据权利要求10所述的显示面板,其中,以所述第一电极面向所述第一发光层的表面为参考面,所述第一发光层位于所述第一驻波的第一个反节点处,所述第二发光层位于所述第一驻波的第二个反节点处,所述第三发光层位于所述第一驻波的第三个反节点处,所述第四发光层位于所述第一驻波的第四个反节点处,并且第五发光层位于所述第二驻波的第四个反节点处。
  12. 根据权利要求2所述的显示面板,其中,所述第一电极和所述第二电极之间的第二距离等于所述第一驻波的相邻两个反节点之间距离的5倍或者所述第二驻波的相邻两个反节点之间距离的4倍。
  13. 根据权利要求2所述的显示面板,其中,所述第一电极靠近所述第一发光层的第一表面到所述第一发光层远离所述第一电极一侧的表面的第一距离大于
    Figure PCTCN2022135092-appb-100002
  14. 根据权利要求1~13中任一所述的显示面板,其中,所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层发射蓝光,并且所述第一发光层发射绿光。
  15. 根据权利要求14所述的显示面板,其中,以所述第一电极面向所述第一发光层的表面为参考面,所述第二发光层位于所述第一驻波的第三个反节点处,所述第三发光层位于所述第一驻波的第四个反节点处,所述第四发光层位于所述第一驻波的第五个反节点处,第五发光层位于所述第一驻波的第六个反节点处,并且所述第一发光层位于所述第二驻波的第二个反节点处。
  16. 根据权利要求12所述的显示面板,其中,所述第一电极和所述第二电极之间的第二距离等于所述第一驻波的相邻两个反节点之间距离的6倍或者所述第二驻波的相邻两个反节点之间距离的5倍。
  17. 根据权利要求2~16中任一项所述的显示面板,其中,所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中发射所述第一波长的光的四个发光层各自的厚度为
    Figure PCTCN2022135092-appb-100003
    并且所述第一发光层、所述第二发光层、所述第三发光层、所述第四发光层以及所述第五发光层中发射所述第二波长的光的发光层的厚度为
    Figure PCTCN2022135092-appb-100004
  18. 根据权利要求2~16中任一项所述的显示面板,其中,所述多个发光器件中的每个发光器件还包括位于所述第一发光层与所述第二发光层之间的第一电荷产生层、位于所述第二发光层与所述第三发光层之间的第二电荷产生层、位于所述第三发光层 与所述第四发光层之间的第三电荷产生层以及位于所述第四发光层与所述第五发光层之间的第四电荷产生层。
  19. 根据权利要求2~16中任一项所述的显示面板,其中,所述多个发光器件中的至少一个所述发光层包括位于靠近所述第一电极的一侧的空穴注入层和空穴传输层中的一层或两层,以及远离所述第一电极的电子传输层和电子注入层中的一层或两层。
  20. 根据权利要求1所述的显示面板,还包括位于所述第二电极远离所述第一电极一侧的波长转换层,其中,所述波长转换层的材料包括量子点。
  21. 一种显示装置,其特征在于,包括如权利要求1-20中任一项所述的显示面板。
PCT/CN2022/135092 2022-11-29 2022-11-29 显示面板及显示装置 WO2024113171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/135092 WO2024113171A1 (zh) 2022-11-29 2022-11-29 显示面板及显示装置
CN202280004742.4A CN118414886A (zh) 2022-11-29 2022-11-29 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/135092 WO2024113171A1 (zh) 2022-11-29 2022-11-29 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024113171A1 true WO2024113171A1 (zh) 2024-06-06

Family

ID=91322786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135092 WO2024113171A1 (zh) 2022-11-29 2022-11-29 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN118414886A (zh)
WO (1) WO2024113171A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170194387A1 (en) * 2015-12-31 2017-07-06 Samsung Display Co., Ltd. Blue organic light emitting device and display device including the same
CN106981504A (zh) * 2017-05-27 2017-07-25 华南理工大学 一种显示面板及显示装置
US20200091464A1 (en) * 2018-09-17 2020-03-19 Samsung Display Co., Ltd. Display device
CN112289940A (zh) * 2019-07-22 2021-01-29 夏普株式会社 高效率qled结构
JP2021057336A (ja) * 2019-09-30 2021-04-08 株式会社Joled 発光素子、自発光パネル、および、発光素子の製造方法
CN115394822A (zh) * 2017-09-27 2022-11-25 京东方科技集团股份有限公司 电致发光显示面板及其制作方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170194387A1 (en) * 2015-12-31 2017-07-06 Samsung Display Co., Ltd. Blue organic light emitting device and display device including the same
CN106981504A (zh) * 2017-05-27 2017-07-25 华南理工大学 一种显示面板及显示装置
CN115394822A (zh) * 2017-09-27 2022-11-25 京东方科技集团股份有限公司 电致发光显示面板及其制作方法、显示装置
US20200091464A1 (en) * 2018-09-17 2020-03-19 Samsung Display Co., Ltd. Display device
CN112289940A (zh) * 2019-07-22 2021-01-29 夏普株式会社 高效率qled结构
JP2021057336A (ja) * 2019-09-30 2021-04-08 株式会社Joled 発光素子、自発光パネル、および、発光素子の製造方法

Also Published As

Publication number Publication date
CN118414886A (zh) 2024-07-30

Similar Documents

Publication Publication Date Title
KR102429881B1 (ko) 디스플레이 장치
US9786720B2 (en) Organic light emitting display device
US9159957B2 (en) White organic light emitting device
KR102081117B1 (ko) 백색 유기 발광 소자
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
US11211574B2 (en) Light emitting device and fabrication method thereof, and electronic apparatus
WO2020030042A1 (zh) Oled显示基板及其制作方法、显示装置
KR100754127B1 (ko) 유기 전계 발광표시장치 및 그 제조방법
US10193104B2 (en) Organic light-emitting diode structure and fabrication method thereof, related display panel, and related display device
KR101365671B1 (ko) 유기전계발광소자
US10826010B1 (en) High-efficiency QLED structures
JP2009026574A (ja) 表示装置
US8987985B2 (en) Method and apparatus for light emission utilizing an OLED with a microcavity
WO2017138607A1 (ja) 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス表示装置
US20240224578A1 (en) Electroluminescent device and display apparatus
CN107634084B (zh) 顶发射白光oled显示装置
WO2016155147A1 (zh) 蓝光有机电致发光器件及制备方法、显示面板和显示装置
US10749127B2 (en) White organic light-emitting diode device
WO2024113171A1 (zh) 显示面板及显示装置
US10862063B2 (en) Electroluminescent device, display panel and display apparatus
KR102023943B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US11469391B2 (en) Light-emitting device and display apparatus including the same
CN105161510B (zh) 有机发光二极管显示器
US20220285643A1 (en) Light-emitting device with improved light emission efficiency and display apparatus including the same
CN117812927A (zh) 有机发光二极管、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966769

Country of ref document: EP

Kind code of ref document: A1