WO2024111630A1 - Grain-oriented electrical steel sheet - Google Patents

Grain-oriented electrical steel sheet Download PDF

Info

Publication number
WO2024111630A1
WO2024111630A1 PCT/JP2023/042012 JP2023042012W WO2024111630A1 WO 2024111630 A1 WO2024111630 A1 WO 2024111630A1 JP 2023042012 W JP2023042012 W JP 2023042012W WO 2024111630 A1 WO2024111630 A1 WO 2024111630A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
steel sheet
grooves
grain
oriented electrical
Prior art date
Application number
PCT/JP2023/042012
Other languages
French (fr)
Japanese (ja)
Inventor
尚 茂木
将嵩 岩城
直樹 和田
克 高橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024111630A1 publication Critical patent/WO2024111630A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to grain-oriented electrical steel sheets, and in particular to grain-oriented electrical steel sheets that have excellent iron loss characteristics after stress relief annealing.
  • Grain-oriented electrical steel sheets are used as magnetic cores in many electrical devices.
  • Grain-oriented electrical steel sheets are steel sheets that contain approximately 1.0% to 5.0% Si and have a highly concentrated crystal orientation in the ⁇ 110 ⁇ 001> direction.
  • Grain-oriented electrical steel sheets have excellent magnetic properties and are used, for example, as core materials for static inductors such as transformers. For this reason, the magnetic properties required are a high magnetic flux density, as represented by the B8 value, and a low iron loss, as represented by W17/50.
  • Grain-oriented electromagnetic steel sheets which are used as the base material for wound transformers, are particularly required to have even lower iron loss. Magnetic domain refinement is performed on electromagnetic steel sheets to reduce iron loss, but wound transformers are annealed to remove distortion during the manufacturing process, so when performing magnetic domain refinement, heat-resistant magnetic domain refinement technology is required.
  • Patent Document 1 it is widely known that a laser irradiation method can be used to relatively easily and stably form grooves on the surface of a steel sheet and control the magnetic domains.
  • Patent Document 2 discloses a grain-oriented electrical steel sheet with grooves that, when grooves are formed on the surface of the steel sheet, is highly productive and can improve iron loss.
  • Grain-oriented electrical steel sheets used as the base material for wound transformers are required to have even lower iron loss.
  • Heat-resistant magnetic domain refinement is generally achieved by forming linear grooves or introducing distortion to refine the magnetic domain width by 180°, which reduces eddy current loss, which is part of the iron loss.
  • eddy current loss which is part of the iron loss.
  • the present invention was made in consideration of the above problems.
  • the purpose of the invention is to further reduce the iron loss of the resulting grain-oriented electrical steel sheet by controlling the shape of the grooves within a certain range in order to subdivide the magnetic domains.
  • the inventors discovered that the shape of the groove (particularly the groove width and the undulation of the groove edge, which is the boundary between the steel plate surface and the groove) and the overlap between adjacent grooves affect iron loss, and came up with the invention that can reduce iron loss by limiting these amounts.
  • the gist of the present invention is The steel plate has a steel plate surface on which a groove is formed extending in a direction intersecting the rolling direction and having a groove depth direction in the plate thickness direction,
  • a groove group is formed by arranging a plurality of the grooves in the plate width direction, A grain-oriented electrical steel sheet in which the groove groups are arranged at intervals in the rolling direction, In at least 75% of the groove groups,
  • the grooves constituting the groove group have an average width of 42 to 62 ⁇ m; the grooves constituting the groove group are arranged so as to overlap with adjacent grooves on a projection plane that is parallel to the groove extension direction and the groove depth direction,
  • an end portion in the sheet width direction of the steel sheet is defined as a reference end portion
  • adjacent grooves among the plurality of grooves in the groove group are defined as a first groove and a second groove in the order of proximity to the reference end portion, Two groove ends in a direction in which
  • the shape of the groove (particularly the groove width and the undulation of the groove edge, which is the boundary between the steel plate surface and the groove) and the overlap between adjacent grooves affect iron loss, and by limiting these amounts, pinning during magnetic domain wall movement is eliminated, thereby reducing iron loss.
  • FIG. 2 is a schematic diagram showing grooves formed on a steel sheet surface of a grain-oriented electrical steel sheet according to an embodiment of the present invention.
  • 2 is a diagram showing a cross-sectional shape of a groove (longitudinal direction) taken along line AA in FIG. 1.
  • 2 is a diagram showing a cross-sectional shape of a groove (short side direction) taken along line BB shown in FIG. 1.
  • FIG. 1 is an explanatory diagram regarding the definition of a groove.
  • FIG. 1 is an explanatory diagram regarding the definition of a groove.
  • FIG. 1 is an explanatory diagram regarding the definition of a groove.
  • FIG. 1 is an explanatory diagram regarding the definition of a groove.
  • FIG. 1 is an explanatory diagram regarding the definition of a groove.
  • FIG. 1 is an explanatory diagram regarding the definition of a groove.
  • FIG. 4 is a diagram showing groove longitudinal projection lines of adjacent grooves of the grain-oriented electrical steel sheet according to the present embodiment.
  • FIG. 13 is a diagram showing the relationship between the average width of a groove and the waviness of the edge of the groove.
  • 11 is a diagram showing the relationship between the overlapping margin between adjacent grooves and the waviness of the groove edges.
  • the grain-oriented electrical steel sheet according to the present embodiment is not particularly limited, and grain-oriented electrical steel sheets made of known steel components can be used. Such steel sheets that can be used for the grain-oriented electrical steel sheet according to the present invention will be described by way of example.
  • the steel sheet used in the grain-oriented electrical steel sheet of the present invention has a composition that is favorable for controlling the crystal orientation to a Goss texture that is concentrated in the ⁇ 110 ⁇ 001> orientation, and can contain at least Si: 1.0-5.0% and Mn: 0.01-0.15%.
  • Si 1.0 to 5.0%
  • the content of Si is 1.0 to 5.0%. Si increases the electrical resistance of the steel sheet, thereby reducing eddy current loss, which is one of the causes of iron loss. If the content of Si is less than 1.0%, it is not preferable because it becomes difficult to sufficiently suppress the eddy current loss of the final grain-oriented electrical steel sheet. If the content of Si is more than 5.0%, it is not preferable because the workability of the grain-oriented electrical steel sheet decreases. Therefore, the content of Si is 1.0 to 5.0, preferably 2.50 to 4.50%, and more preferably 2.70 to 4.00%.
  • Mn 0.01 to 0.15%
  • Mn forms MnS and MnSe, which are inhibitors that affect secondary recrystallization. If the content of Mn is less than 0.01%, the absolute amount of MnS and MnSe that cause secondary recrystallization is insufficient, which is not preferable. If the content of Mn is more than 0.15%, it is not preferable because it becomes difficult to dissolve Mn during slab heating. In addition, if the content of Mn is more than 0.15%, the precipitation size of MnS and MnSe, which are inhibitors, tends to become coarse, which is not preferable because the optimal size distribution as an inhibitor is impaired. Therefore, the content of Mn is 0.01 to 0.15%, preferably 0.03 to 0.13%.
  • the components other than Si and Mn may be the components contained in ordinary grain-oriented electrical steel sheets.
  • components other than Si and Mn the following may be contained in mass %: C: 0.085% or less, acid-soluble Al: 0.065% or less, N: 0.012% or less, Cr: 0.30% or less, Cu: 0.40% or less, P: 0.50% or less, Sn: 0.30% or less, Sb: 0.30% or less, Ni: 1.000% or less, and S: 0.0150% or less.
  • B, Bi, Se, Pb, Sn, Ti, etc. may be added as other inhibitor constituent elements.
  • the amount of addition may be appropriately adjusted, and the upper limit of the B content may be 0.080%, the upper limit of the Bi content may be 0.010%, the upper limit of the Se content may be 0.035%, the upper limit of the Pb content may be 0.10%, the upper limit of the Sn content may be 0.10%, and the upper limit of the Ti content may be 0.015%. Since these optional added elements may be contained according to known purposes, there is no need to set a lower limit for the content of the optional added elements, and the lower limit may be, for example, 0%.
  • impurity elements refer to components contained in the raw materials or components mixed in during the manufacturing process, and are permissible to the extent that they do not substantially affect this embodiment.
  • the chemical composition of steel plate can be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, the chemical composition is determined by measuring a 35 mm square test piece taken from the steel plate using a Shimadzu ICPS-8100 or other measuring device under conditions based on a pre-created calibration curve. C and S can be measured using the combustion-infrared absorption method, and N can be measured using the inert gas fusion-thermal conductivity method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • FIG. 1 is a plan view of a grain-oriented electromagnetic steel sheet 1 according to this embodiment.
  • FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1.
  • the rolling direction of the grain-oriented electromagnetic steel sheet 1 is defined as X
  • the sheet width direction of the grain-oriented electromagnetic steel sheet 1 (direction perpendicular to the rolling direction in the same plane) as Y
  • the sheet thickness direction of the grain-oriented electromagnetic steel sheet 1 (direction perpendicular to the XY plane) as Z.
  • the grain-oriented electromagnetic steel sheet 1 according to this embodiment has grooves 3 for magnetic domain refinement on the steel sheet surface 2a.
  • FIG. 1 is a schematic diagram showing the grooves 3 when the grain-oriented electromagnetic steel sheet according to this embodiment is viewed from the sheet thickness direction Z (hereinafter sometimes referred to as "planar view").
  • the groove longitudinal direction L the extension direction of the groove 3 (arrow L shown in FIG. 1) is called the groove longitudinal direction L.
  • the direction perpendicular to the groove longitudinal direction L of the groove 3 (arrow Q shown in FIG. 1) is called the groove width direction Q.
  • the steel plate surface 2a and the groove 3 of an actual grain-oriented electromagnetic steel plate are not uniformly formed, at least a part of them is shown in FIG. 1 to FIG. 3 and FIG. 5 to FIG. 8 in order to explain the features of the invention.
  • the groove 3 may have a bow-like shape when viewed from the plate thickness direction Z (when the groove 3 is viewed in a plan view). However, in this embodiment, for convenience of explanation, a groove 3 having a linear shape is illustrated.
  • the grain-oriented electrical steel sheet 1 comprises a steel sheet (base steel) 2 whose crystal orientation has been controlled by a combination of cold rolling and annealing so that the magnetization easy axis of the crystal grains coincides with the rolling direction X, and has grooves 3 on the surface of the steel sheet 2 (steel sheet surface 2a).
  • the grooves 3 extend in a direction intersecting the rolling direction X and are formed so that their depth direction is the plate thickness direction Z.
  • the grain-oriented electrical steel sheet 1 has a groove group 30 composed of a plurality of grooves 3 arranged in the plate width direction Y, and the groove groups are arranged at intervals in the rolling direction.
  • the extension direction of the grooves 3 is not particularly limited, but when the plate width direction Y is set to 0°, the angle between the extension direction of the plate width grooves 3 and the plate width direction Y may be in the range of 0° to ⁇ 60°.
  • the grooves 3 constituting the groove group 30 are approximately parallel to each other, and may have an angle difference of several degrees from approximately parallel, and for example, an angle difference within ⁇ 5° or ⁇ 3° is allowed.
  • the grooves constituting the groove group have specific average groove widths, overlaps between adjacent grooves, and waviness of the groove edges, which makes it possible to effectively improve iron loss.
  • the groove shape is measured after removing at least the glass coating and insulating coating inside the grooves from the final product by pickling or the like. In the following description, terms are defined.
  • the depth of the groove 3 refers to the length in the plate thickness direction Z from the height of the steel plate surface 2a to the surface (bottom 4) of the groove 3, as shown in the example of FIG. 2.
  • the average groove depth D may be measured as follows. When the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in plan), the observation range is set to a part of the groove 3. It is desirable to set the observation range to a region excluding the end portion in the groove longitudinal direction L of the groove 3 (i.e., a region where the shape of the groove bottom is stable).
  • the observation range may be an observation region that is approximately the center of the groove longitudinal direction L and has a length in the groove longitudinal direction L of about 30 ⁇ m to 300 ⁇ m.
  • a height distribution (groove depth distribution) within the observation range is obtained using a laser microscope, and the maximum groove depth within this observation range is obtained.
  • the same measurement is performed in at least three regions, more preferably 10 regions, by changing the observation range.
  • the average value of the maximum groove depth in each observation region is calculated, and this is defined as the average groove depth D.
  • the average groove depth D of the grooves 3 in this embodiment is preferably, for example, 5 ⁇ m or more and 100 ⁇ m or less, and more preferably more than 10 ⁇ m and 40 ⁇ m or less.
  • the position (height) of the steel plate surface 2a in the plate thickness direction Z may be measured using a laser microscope for each of a plurality of points on the steel plate surface 2a within each observation range, and the average value of the measurement results may be used as the height of the steel plate surface 2a.
  • the groove short cross section is used when measuring the groove average width W as described later, so the steel plate surface 2a may be measured from this groove short cross section.
  • the two plate surfaces (the observation surface and the back surface) of the steel plate sample are approximately parallel.
  • the width of the groove 3 refers to the length of the groove opening in the groove short-side direction Q when the groove 3 is viewed in a cross section perpendicular to the groove long-side direction L (groove width direction cross section or groove short-side cross section) as shown in the example of Fig. 3.
  • the average groove width W may be measured as follows. As with the average groove depth D, when the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in plan), the observation range is set to a part of the groove 3. It is desirable to set the observation range to a region excluding the end portions of the groove 3 in the groove long-side direction L (i.e., a region where the shape of the groove bottom is stable).
  • the observation range may be an observation region that is approximately at the center of the groove longitudinal direction L and has a length in the groove longitudinal direction L of about 30 ⁇ m to 300 ⁇ m.
  • a laser microscope is used to obtain a groove short-side cross section perpendicular to the groove longitudinal direction L at any one location within the observation range (for example, the position of the maximum groove depth in the observation region).
  • the length of the groove opening is obtained from the contour curves of the steel sheet surface 2a and the groove 3 that appear in this groove short-side cross section.
  • a low-pass filter (cutoff value ⁇ s) is applied to the measured cross-sectional curve MCL that forms the contour of the steel plate surface 2a and groove 3 that appear in the short cross-section of the groove to obtain a cross-sectional curve
  • a band-pass filter (cutoff values ⁇ f, ⁇ c) is applied to the cross-sectional curve to remove long and short wavelength components from the cross-sectional curve, resulting in a waviness curve WWC that forms the contour of the groove 3 in the short cross-section of the groove, as shown in Figure 3.
  • a waviness curve is a type of contour curve that is suitable for simplifying the contour shape itself with a smooth line.
  • the average groove width W of the grooves 3 is, for example, 42 ⁇ m or more and 62 ⁇ m or less in order to preferably obtain the effect of magnetic domain refinement.
  • the position (height) of the steel sheet surface 2a in the sheet thickness direction Z in advance.
  • the position (height) in the sheet thickness direction Z may be measured for each of a plurality of points on the steel sheet surface 2a on the waviness curve in each groove short cross section, and the average value of the measurement results may be used as the height of the steel sheet surface 2a.
  • the grooves 3 constituting the groove group 30 are arranged so that adjacent grooves overlap when viewed on a projection plane (cross section indicated by dashed line 11a in Figure 1) that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z).
  • a projection plane cross section indicated by dashed line 11a in Figure 1 that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z).
  • the grooves 3 constituting the groove group 30 are formed in the order of proximity to the reference end 21a, that is, the first groove 31, the second groove 32, and the n-th groove 3n.
  • the first groove 31, the second groove 32, and the n-th groove 3n are arranged such that the ends of adjacent grooves 3 overlap each other on a projection plane that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z).
  • the groove groups 30 are arranged so as to be spaced apart from each other in the rolling direction X.
  • the grooves 3 can be arranged so that the ends of adjacent grooves 3 overlap on a projection plane that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z), thereby effectively improving iron loss.
  • the groove longitudinal projection line LWP may be measured as follows.
  • an area including the entire groove 3 or an area including the end of the groove 3 i.e., an area including from the start of the groove longitudinal direction L of the groove 3 to the area where the shape of the groove bottom is stable
  • the observation range Within this observation range, multiple virtual lines are virtually set along the groove longitudinal direction L.
  • the virtual lines L1 to Ln can be set at any height in the plate thickness direction Z. Then, of the above virtual lines L1 to Ln, a virtual line that is along the groove longitudinal direction L and satisfies the condition that the average depth of the groove is maximized is selected as the groove reference line BL.
  • the groove reference line BL For example, as shown in FIG. 6, when the groove depth D2 is the maximum among the groove depths D1 to Dn obtained for each of the virtual lines L1 to Ln, the virtual line L2 is defined as the groove reference line BL.
  • the curve obtained when the groove depth distribution along the selected virtual line is projected onto the projection plane as the overall contour (waviness curve) of the groove 3 in the groove longitudinal direction L is defined as the groove longitudinal projection line LWP.
  • the observation range is preferable to set the observation range as an area including the entire two adjacent grooves, or an area including the overlapping ends of the two adjacent grooves (i.e., an area including an area where the shape of the groove bottom of one groove is stable, an area where the groove ends of the two adjacent grooves overlap, and an area where the shape of the groove bottom of the other groove is stable).
  • the two groove ends in the groove longitudinal direction L of each groove constituting the groove group 30 are defined as the first groove end and the second groove end in the order of proximity to the reference end 21a.
  • FIG. 8 shows a schematic diagram of the first groove end 31a and the second groove end 31b of the first groove longitudinal projection line LWP1 of the first groove 31, and the first groove end 32a and the second groove end 32b of the second groove longitudinal projection line LWP2 of the second groove 32. Note that, in order to explain the positional relationship between adjacent grooves in the groove longitudinal direction L, FIG. 8 shows only two grooves 31, 32 adjacent to each other in the groove longitudinal direction L among the multiple grooves 3 of the grain-oriented electrical steel sheet 1 according to this embodiment.
  • FIG. 1 illustrates an example of an arrangement in which the ends of the first groove 31 and the second groove 32 adjacent in the groove longitudinal direction L do not overlap when viewed from the plate thickness direction Z.
  • the ends of the first groove 31 and the second groove 32 may overlap when viewed from the plate thickness direction Z.
  • the ends of the first groove 31 and the second groove 32 completely overlap when viewed from the plate thickness direction Z, they can be considered to be a single groove.
  • Adjacent grooves overlap in the groove longitudinal direction L so that the position in the groove longitudinal direction L of the first groove end 32a of the second groove 32 on the second groove longitudinal projection line LWP2 is located closer to the reference end 21a than the position in the groove longitudinal direction L of the second groove end 31b of the first groove 31 on the first groove longitudinal projection line LWP1.
  • the area R where the first groove 31 and the second groove 32 overlap in the groove longitudinal direction L is between the second groove end 31b of the first groove 31 and the first groove end 32a of the second groove 32.
  • the grain-oriented electromagnetic steel sheet 1 In the overlapping region R, the distance in the longitudinal direction L between the second groove end 31b of the first groove 31 and the first groove end 32a of the second groove 32 is called the "overlap".
  • the grain-oriented electromagnetic steel sheet 1 according to this embodiment has an "overlap" of 5 to 30 mm.
  • a plurality of grooves are formed in the groove longitudinal direction L, and adjacent grooves 31, 32 overlap each other, and the "overlap" is 5 to 30 mm, so that iron loss can be kept low. If the overlap is less than 5 mm, the effect of magnetic domain refinement decreases as the groove end is approached, and the magnetic domains are difficult to refine. Therefore, the magnetic domains in the overlap area are not refined, and the effect of reducing iron loss cannot be expected.
  • the overlap is more than 30 mm, the number of places where the groove spacing is narrow increases relatively. If the groove spacing is narrow, the magnetic domains are refined, but the magnetic domain walls are fixed in the groove area, and the magnetic domain walls are difficult to move in response to changes in the external magnetic field. This increases the hysteresis loss that constitutes the iron loss, negating the effect of magnetic domain refinement. As a result, iron loss increases and no improvement in magnetic properties can be expected. In other words, by arranging multiple grooves 3 in the groove longitudinal direction L and arranging both ends of adjacent grooves so that they overlap moderately in the groove longitudinal direction L, it is possible to improve iron loss in the same way as when a single groove of uniform depth is formed in the groove longitudinal direction L.
  • the distance in the rolling direction X between the first groove 31 and the second groove 32 adjacent in the plate width direction Y may be set to be smaller than the distance in the rolling direction X between adjacent groove groups 30 in the rolling direction X (distance F2 shown in FIG. 1).
  • the first groove 31 and the second groove 32 may be arranged so that the distance between the first groove end 32a of the second groove 32 and the reference end 21a of the steel plate 2 is shorter than the distance between the second groove end 31b of the first groove 31 and the reference end 21a of the steel plate 2.
  • the edge of the groove 3, i.e., the ridge line (boundary line) between the groove 3 and the steel sheet 2 is not necessarily linear as shown in Fig. 6, but may be curved and wavy. Therefore, it is necessary to clarify the wavy edge of the groove when the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in plan). Below, a method for identifying the wavy edge of the groove when the groove 3 is viewed in plan will be described.
  • the edge of the groove 3 in the groove extension direction is measured using a laser microscope or the like, and a measured edge curve MEL forming the edge of the groove 3 as shown in FIG. 7 is obtained.
  • the boundary between the groove 3 and the steel plate 2 is the point where the position (height) of the steel plate surface 2 starts to drop toward the bottom of the groove.
  • the connection of these boundaries is the ridge line (boundary line) between the groove 3 and the steel plate 2, and defines the edge of the groove.
  • the position (height) of the steel plate surface 2 in the Z direction in advance.
  • the position (height) in the Z direction may be measured using a laser surface roughness measuring device, and the average value of these measurement results may be used as the height of the steel plate surface 2.
  • the groove 3 is longer in the groove extension direction than the observation field of the laser microscope or the like, the groove 3 may be divided into several observation ranges 50 from one end 31a to the other end 31b and observed.
  • the observation range 50 may be an observation area whose length in the groove extension direction is about 300 ⁇ m.
  • a bandpass filter (cutoff values ⁇ f, ⁇ c) is applied to the edge curve to remove long and short wavelength components from the measured edge curve, and a waviness curve EWC that forms the edge contour in the groove extension direction of the groove 3 is obtained as shown in FIG. 7.
  • the waviness curve is a contour curve that is suitable for simplifying the contour shape itself with a smooth line.
  • a virtual line that is aligned in the groove longitudinal direction L and satisfies the condition that the difference with the measured edge curve MEL of the groove is minimized is selected as the edge reference line EBL.
  • the virtual line Ln that has the smallest displacement difference with the measured edge curve MEL by the least squares method is defined as the edge reference line EBL.
  • the edge reference line EBL As shown in FIG. 7, by using the difference between the edge reference line EBL and the waviness curve EWC, the waviness of the groove edge can be evaluated with high accuracy.
  • the waviness of the groove edge is 0.5 to 5.0 ⁇ m. If the waviness of the groove edge is less than 0.5 ⁇ m, the effect as a starting point for the generation of domain walls is small, and magnetic domains may not be sufficiently refined. If the waviness of the groove edge is more than 5.0 ⁇ m, pinning occurs that inhibits domain wall movement during the magnetization process of the magnetic steel sheet, making it difficult to reduce iron loss.
  • the waviness of the groove edge can be defined by the following formula (1).
  • a slab is prepared.
  • An example of a method for producing a slab is as follows. First, molten steel is produced (melted). Then, a slab is produced using the molten steel.
  • the method for producing the slab is not particularly limited, and for example, the slab may be produced by a continuous casting method.
  • An ingot may be produced using the molten steel, and the ingot may be bloomed to produce a slab.
  • the thickness of the slab is not particularly limited. The thickness of the slab may be, for example, 150 mm to 350 mm. The thickness of the slab is preferably 220 mm to 280 mm. As the slab, a so-called thin slab having a thickness of 10 mm to 70 mm may be used. When a thin slab is used, rough rolling before finish rolling can be omitted in the hot rolling step S2.
  • composition of the slab may be any composition that allows secondary recrystallization to occur.
  • the basic components and optional elements of the slab are specifically described below. Note that the percentages used for the components refer to mass percent.
  • Si is an important element for increasing electrical resistance and reducing iron loss. If the content exceeds 5.0%, the material will be prone to cracking during cold rolling, making rolling impossible. On the other hand, lowering the amount of Si will cause ⁇ transformation during final annealing, impairing the crystal orientation, so the lower limit may be set at 1.0%, which does not affect the crystal orientation during final annealing. Therefore, the Si content may be 1.0-5.0%.
  • Mn and S precipitate as MnS and act as inhibitors If the Mn content is less than 0.01% and the S content is less than 0.005%, it may not be possible to secure the required amount of effective MnS inhibitors. Furthermore, if the Mn content is more than 0.15% and the S content is more than 0.150%, solutionization during slab heating may be insufficient, and secondary recrystallization may not occur stably. Therefore, the Mn content may be 0.01-0.15%, and the S content may be 0.005-0.150%.
  • the C content may be 0.085% or less.
  • the preferred upper limit of the C content is 0.080%.
  • C is purified in the decarburization annealing step S5 and the finish annealing step S8 described below, and becomes 0.005% or less after the finish annealing step S8.
  • the lower limit of the C content may be more than 0%, or may be 0.001%, taking into account the productivity in industrial production.
  • Acid-soluble Al is an element that functions as an inhibitor when it bonds with N to form AlN or (Al,Si)N.
  • the content of acid-soluble Al may be 0.012% to 0.065%, at which point the magnetic flux density increases.
  • the upper limit of the N content may be 0.012%. Since N can be added by nitriding during the manufacturing process, there is no particular lower limit and it may be 0%. However, since the detection limit for N is 0.0001%, the effective lower limit is 0.0001%.
  • inhibitor constituent elements such as B, Bi, Se, Pb, Sn, and Ti can also be added to the slab.
  • the amounts added can be adjusted as appropriate, and the upper limit for the B content can be 0.080%, the upper limit for the Bi content can be 0.010%, the upper limit for the Se content can be 0.035%, the upper limit for the Pb content can be 0.10%, the upper limit for the Sn content can be 0.10%, and the upper limit for the Ti content can be 0.015%.
  • These optional added elements can be added to the slab according to known purposes, so there is no need to set a lower limit for the content of the optional added elements, and the lower limit can be 0%, for example.
  • the remainder of the chemical composition of the slab consists of Fe and impurities.
  • impurities here refer to components that are mixed into the slab due to various factors in the manufacturing process and raw materials such as ores and scraps when the slab is industrially manufactured, and are acceptable to the extent that they do not substantially affect the grain-oriented electrical steel sheet according to this embodiment.
  • the slab may contain (add) a known optional element in place of a portion of Fe.
  • optional elements to be contained in the slab in place of a portion of Fe include Cu, P, Sb, Sn, Cr, and Ni. Any one or more of these may be added to the slab.
  • the upper limit of the Cu content may be 0.3%
  • the upper limit of the P content may be 0.5%
  • the upper limit of the Sb content may be 0.3%
  • the upper limit of the Sn content may be 0.3%
  • the upper limit of the Cr content may be 0.30%
  • the upper limit of the Ni content may be 1.0%. Since these optional added elements may be contained in the slab according to a known purpose, there is no need to set a lower limit for the content of the optional added element, and the lower limit may be 0%.
  • the chemical composition of the slab can be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, the chemical composition is determined by measuring a 35 mm square test piece taken from the slab using a Shimadzu ICPS-8100 or other measuring device under conditions based on a previously prepared calibration curve. C and S can be measured using the combustion-infrared absorption method, and N can be measured using the inert gas fusion-thermal conductivity method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the hot rolling step S2 is a step of hot rolling a slab heated to a predetermined heating temperature (for example, 1100°C to 1400°C) to obtain a hot-rolled steel sheet.
  • the heating temperature during hot rolling may be, for example, 1100°C or higher from the viewpoint of ensuring the temperature during hot rolling, and may be 1280°C or lower from the viewpoint of not completely dissolving AlN, which is an inhibitor component. Note that, when AlN and MnS are used as main inhibitors, the heating temperature during hot rolling may be 1300°C or higher at which these inhibitor components are completely dissolved.
  • the hot-rolled steel sheet annealing step S3 is a step in which the hot-rolled steel sheet obtained in the hot rolling step S2 is annealed immediately or for a short time to obtain an annealed steel sheet.
  • the annealing may be performed in a temperature range of 750°C to 1200°C for 30 seconds to 30 minutes. This annealing is effective for improving the magnetic properties of the product.
  • the cold rolling step S4 is a step of obtaining a cold-rolled steel sheet by performing a single cold rolling process or performing multiple cold rolling processes (two or more times) via annealing (intermediate annealing) (for example, a total cold rolling rate of 80% to 95%) on the annealed steel sheet obtained in the hot-rolled steel sheet annealing step S3.
  • the thickness of the cold-rolled steel sheet may be, for example, 0.10 mm to 0.50 mm.
  • the decarburization annealing step S5 is a step of performing decarburization annealing on the cold-rolled steel sheet obtained in the cold rolling step S4 to obtain a decarburization annealed steel sheet in which primary recrystallization has occurred (a cold-rolled steel sheet that has been subjected to the decarburization annealing step).
  • the decarburization annealing may be performed at 700°C to 900°C for 1 minute to 3 minutes, for example.
  • Decarburization annealing is preferably performed in a humid atmosphere in order to remove the C components contained in the cold-rolled steel sheet.
  • the nitriding process S6 is a process that is carried out as necessary to adjust the strength of the inhibitor in the secondary recrystallization.
  • the nitriding process is a process that increases the nitrogen content of the cold-rolled steel sheet by about 40 ppm to 200 ppm from the start of the decarburization annealing process to the start of the secondary recrystallization in the finish annealing process.
  • Examples of the nitriding process include a process of annealing the decarburization annealed steel sheet in an atmosphere containing a nitriding gas such as ammonia, and a process of applying an annealing separator containing a powder having a nitriding ability such as MnN to the decarburization annealed steel sheet in the annealing separator application process S7 described later.
  • a nitriding gas such as ammonia
  • an annealing separator containing a powder having a nitriding ability such as MnN to the decarburization annealed steel sheet in the annealing separator application process S7 described later.
  • the annealing separator application step S7 is a step of applying an annealing separator to the decarburized annealed steel sheet.
  • an annealing separator mainly composed of alumina (Al 2 O 3 ) can be used as the annealing separator.
  • the decarburized annealed steel sheet after the annealing separator application is wound into a coil and finish-annealed in the next finish-annealing step S8.
  • an annealing separator containing magnesia (MgO) as a main component is used.
  • the final annealing step S8 is a step in which the decarburized annealed steel sheet coated with the annealing separator is subjected to final annealing to cause secondary recrystallization.
  • This final annealing step S8 involving secondary recrystallization causes the ⁇ 100 ⁇ 001> oriented grains to grow preferentially by promoting secondary recrystallization in a state in which the growth of primary recrystallized grains is suppressed by an inhibitor, and thus dramatically improves the magnetic flux density.
  • a glass coating containing Mg 2 SiO 4 is formed in this finish annealing step S8.
  • such a glass coating is also included in the base steel sheet (finish annealed steel sheet described later). Therefore, for example, when a glass coating is formed on a finish annealed steel sheet, the "surface of the finish annealed steel sheet" means the surface of the glass coating. It is expected that the properties of the grain-oriented electrical steel sheet finally obtained will be further improved by forming a glass coating.
  • the groove forming step S9 is a step of forming grooves in the steel sheet for the purpose of magnetic domain control (magnetic domain refinement).
  • the grooves can be formed by a known method such as a laser, an electron beam, plasma, a mechanical method, or etching.
  • the groove forming process S9 is performed after the finish annealing process S8.
  • the groove forming process S9 may also be performed on a steel sheet that has been subjected to the cold rolling process S4 (i.e., a cold-rolled steel sheet).
  • the timing for performing the groove forming process S9 may be before or after the finish annealing process S8.
  • the tension coating application process S10 described below is performed, the groove forming process S9 must be performed before that process S10.
  • the electromagnetic steel sheet according to this embodiment can be obtained by using the following example laser irradiation conditions.
  • a laser may be irradiated onto the surface of the steel plate (one side only) to form multiple grooves on the surface of the steel plate extending in a direction intersecting the rolling direction at a desired pitch interval in the range of 2 to 20 mm along the rolling direction.
  • the laser irradiation device may rotate a polygon mirror to irradiate the laser light onto the surface of the steel plate, and may also scan the laser light in a direction that forms an angle of 0 to 30 degrees with the direction perpendicular to the rolling direction.
  • a water jet may be sprayed onto the area of the steel plate irradiated with the laser light.
  • water jet water pressurized by a high-pressure water pump is discharged from a nozzle and an ultra-high-speed water stream is collided with the target part, thereby cleaning, peeling, cutting, etc. of the target part.
  • the pressure can be up to 50 to 350 MPa
  • the nozzle can be about 0.1 mm to 1 mm in size
  • an abrasive sandblasting garnet, etc.
  • the material and grain size (#) of the abrasive can be appropriately selected.
  • the grain size (#) may be in the range of 10 to 1000.
  • the water jet plays a role in removing the components melted or evaporated from the steel plate by the laser irradiation. By spraying the water jet, it is possible to prevent the above-mentioned melted or evaporated components from remaining in the groove, and the undulation of the edge of the groove can be stably formed within the desired range.
  • an assist gas such as air or an inert gas may be sprayed onto the area of the steel plate where the laser light is irradiated.
  • inert gas include nitrogen or argon.
  • the assist gas serves to remove components that have melted or evaporated from the steel plate due to the laser irradiation. By spraying the assist gas, the laser light can reach the steel plate without being obstructed by the melted or evaporated components, so that grooves are formed stably.
  • a high-power laser generally used for industrial purposes such as a fiber laser, a YAG laser, a semiconductor laser, or a CO2 laser
  • a pulsed laser or a continuous wave laser may be used as the laser light source as long as it can stably form a groove.
  • a single mode laser with high light-collecting ability is generally used for forming a groove, but a multimode laser with an appropriately distributed power peak may also be used.
  • the laser output is set to 200W to 3000W, and the laser beam shape is changed when forming the grooves.
  • the diameter of the focused spot of the laser light (i.e. the diameter containing 86% of the laser output, hereinafter sometimes abbreviated as 86% diameter) may be set to 10 ⁇ m to 1000 ⁇ m, the laser scanning speed to 1 m/s to 100 m/s, and the laser scanning pitch (spacing PL) to 2 mm to 10 mm. These laser irradiation conditions are adjusted as appropriate to obtain the desired groove.
  • the tension coating step S10 is a step of applying a coating solution to the groove-formed surface of the finish-annealed steel sheet and baking it to form an insulating coating (tensile coating) on the groove-formed surface.
  • a coating solution to the groove-formed surface of the finish-annealed steel sheet and baking it to form an insulating coating (tensile coating) on the groove-formed surface.
  • the coating solution contains, for example, a compound of phosphoric acid, a phosphate, chromic anhydride, a chromate, alumina, or silica. Baking may be performed, for example, at 350°C to 1150°C for 5 seconds to 300 seconds.
  • the grain-oriented electromagnetic steel sheet according to one embodiment of the present invention will be described in more detail, with reference to examples. Note that the examples shown below are merely examples of the grain-oriented electromagnetic steel sheet according to this embodiment, and the grain-oriented electromagnetic steel sheet according to this embodiment is not limited to the examples shown below.
  • the grain-oriented electrical steel sheet contained, by mass fraction, Si: 3.0%, C: 0.080%, acid-soluble Al: 0.028%, N: 0.010%, Mn: 0.12%, Cr: 0.05%, Cu: 0.04%, P: 0.01%, Sn: 0.02%, Sb: 0.01%, Ni: 0.005%, S: 0.007%, Se: 0.001%, with the remainder being Fe and impurities.
  • the slab was then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.3 mm.
  • the above hot-rolled steel sheets were subjected to an annealing treatment under temperature conditions of heating at 1000° C. for 1 minute. After the annealing treatment, cold rolling was performed to obtain a cold-rolled steel sheet having a thickness of 0.23 mm. Subsequently, the cold-rolled steel sheet was subjected to a decarburization annealing treatment under a temperature condition of heating at 800° C. for 2 minutes, and then an annealing separator containing magnesia (MgO) as a main component was applied to the surface of the cold-rolled steel sheet.
  • MgO magnesia
  • the cold-rolled steel sheet coated with the annealing separator was subjected to a final annealing process under the temperature conditions of heating at 1200°C for 20 hours.
  • a steel sheet was obtained with the above-mentioned chemical composition, a glass film formed on the surface, and a crystal orientation controlled so that the magnetization easy axis of the crystal grains coincided with the rolling direction.
  • a water jet was applied to the surface of the steel plate under the conditions shown in Table 1, while a laser was irradiated to create grooves on the surface of the steel plate.
  • Sandblast Garnet high hardness garnet Type-2 (800-300 ⁇ m) manufactured by Nitchu Co., Ltd.
  • the laser light irradiation device used was a fiber laser manufactured by IPG.
  • the laser light irradiation conditions were adjusted to a laser output of 300 W, a laser scanning speed of 50 m/s, and a laser scanning pitch (spacing PL) of 3 mm.
  • the focused spot diameter of the laser light was adjusted to 50 ⁇ m.
  • Linear grooves with a depth D of approximately 20 ⁇ m were formed at intervals of 3 mm in the direction perpendicular to the rolling direction.
  • Grain-oriented electrical steel sheets were manufactured so that 75% of all groove groups had groove widths, overlaps between adjacent grooves, and undulations at the edges of the grooves adjusted to satisfy the conditions shown in Table 1.
  • the groove formation process was performed either after finish annealing or after the cold rolling process.
  • a wound core with a capacity of 25 kVA was manufactured from the obtained magnetic steel sheet, and after stress relief annealing (holding at a soaking temperature of 750°C for 4 hours), the core loss W17/50 was measured. The results are shown in Table 1.
  • grooves were formed with a laser output of 3100 W, a focused spot diameter of 8 ⁇ m, a laser scanning speed of 1 m/s, and a laser scanning pitch (spacing PL) of 2 mm.
  • the waviness of the groove edge was 15 ⁇ m, and the iron loss was large at 0.89 W/kg.
  • Figure 9 confirms that the magnetic properties are good when the groove width and undulation of the groove edges are within the range of the present invention. Even in this case, when the core iron loss was measured using a material with a core density of 0.74 W/kg, good magnetic properties were obtained, not exceeding 0.80 W/kg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

The present invention further reduces iron loss of an obtained grain-oriented electrical steel sheet by controlling the shape of grooves to be within a predetermined range in order to subdivide a magnetic domain. This grain-oriented electrical steel sheet comprises a steel sheet that has a steel sheet surface having formed therein grooves which extend in a direction intersecting the rolling direction and in which the groove depth direction is the sheet thickness direction. When the steel sheet surface is viewed in the thickness direction, the grain-oriented electrical steel sheet has groove groups each formed of a plurality of said grooves arranged in the sheet width direction, and the groove groups are arranged apart from each other in the rolling direction. In at least 75% of the groove groups, the average width of the grooves forming the groove groups is 42-62 μm. The grooves forming said groove groups are arranged so as to, in a projection plane in which the groove depth direction is parallel to the direction in which the grooves extend, overlap grooves adjacent thereto. In the projection plane, the size of overlap between a first groove and a second groove is 5-30 mm, and the size of undulation of edges of the grooves forming the groove groups is 0.5-5.0 μm.

Description

方向性電磁鋼板Grain-oriented electrical steel sheet
 本発明は、方向性電磁鋼板、特に歪取焼鈍後の鉄損特性に優れた方向性電磁鋼板に関する。 The present invention relates to grain-oriented electrical steel sheets, and in particular to grain-oriented electrical steel sheets that have excellent iron loss characteristics after stress relief annealing.
 方向性電磁鋼板は、磁気鉄心として多くの電気機器に用いられている。方向性電磁鋼板は、Siをおおよそ1.0%~5.0%含有し製品の結晶方位を{110}<001>方位に高度に集中させた鋼板である。方向性電磁鋼板は、磁気特性に優れ、例えば、変圧器等の静止誘導器の鉄心材料などとして利用される。そのため、磁気特性として、B値で代表される磁束密度が高いこと、及び、W17/50で代表される鉄損が低いことが要求される。 Grain-oriented electrical steel sheets are used as magnetic cores in many electrical devices. Grain-oriented electrical steel sheets are steel sheets that contain approximately 1.0% to 5.0% Si and have a highly concentrated crystal orientation in the {110}<001> direction. Grain-oriented electrical steel sheets have excellent magnetic properties and are used, for example, as core materials for static inductors such as transformers. For this reason, the magnetic properties required are a high magnetic flux density, as represented by the B8 value, and a low iron loss, as represented by W17/50.
 このような方向性電磁鋼板では、磁気特性を向上させるために、種々の技術開発がなされている。特に、近年の省エネルギー化の要請に伴って、方向性電磁鋼板では、さらなる低鉄損化が求められている。方向性電磁鋼板の低鉄損化には、鋼板の結晶粒の方位について、Goss方位への集積度を高めて磁束密度を向上させて、ヒステリシス損失を低減することが有効である。 In order to improve the magnetic properties of such grain-oriented electrical steel sheets, various technological developments have been made. In particular, with the recent demand for energy conservation, there is a demand for further reduction in iron loss in grain-oriented electrical steel sheets. To reduce iron loss in grain-oriented electrical steel sheets, it is effective to increase the concentration of crystal grains in the Goss orientation in the steel sheet, improve magnetic flux density, and reduce hysteresis loss.
 巻トランスの母材として用いられる方向性電磁鋼板には、特に、更なる低鉄損化が求められている。電磁鋼板では、低鉄損化の為に磁区細分化を行っているが、巻トランスでは製造工程で歪み取り焼鈍を行う為、磁区細分化を行う場合、耐熱型の磁区細分化技術が必要である。 Grain-oriented electromagnetic steel sheets, which are used as the base material for wound transformers, are particularly required to have even lower iron loss. Magnetic domain refinement is performed on electromagnetic steel sheets to reduce iron loss, but wound transformers are annealed to remove distortion during the manufacturing process, so when performing magnetic domain refinement, heat-resistant magnetic domain refinement technology is required.
 例えば、特許文献1に開示されるように、レーザー照射法を用いて、比較的、容易且つ安定的に鋼板表面に溝を形成して、磁区制御することが広く知られている。 For example, as disclosed in Patent Document 1, it is widely known that a laser irradiation method can be used to relatively easily and stably form grooves on the surface of a steel sheet and control the magnetic domains.
 特許文献2は、鋼板表面に溝を形成する場合に、生産性に優れ、且つ、鉄損を改善させることができる、溝を有する方向性電磁鋼板について開示している。 Patent Document 2 discloses a grain-oriented electrical steel sheet with grooves that, when grooves are formed on the surface of the steel sheet, is highly productive and can improve iron loss.
国際公開第2016/1711124号International Publication No. 2016/1711124 国際公開第2016/1711129号International Publication No. 2016/1711129
 巻トランスの母材として用いられる方向性電磁鋼板には、更なる低鉄損化が求められている。耐熱型の磁区細分化は一般的には、線状溝を形成することや歪の導入を行うことで180°磁区幅が細分化され、それに伴い鉄損の一部である渦電流損が低減される。しかし、更なる低鉄損化の需要がある。 Grain-oriented electrical steel sheets used as the base material for wound transformers are required to have even lower iron loss. Heat-resistant magnetic domain refinement is generally achieved by forming linear grooves or introducing distortion to refine the magnetic domain width by 180°, which reduces eddy current loss, which is part of the iron loss. However, there is a demand for even lower iron loss.
 本発明は上記課題に鑑みてなされたものである。磁区細分化の為に、溝の形状を一定の範囲内にコントロールすることで、得られる方向性電磁鋼板の鉄損を更に低減することを目的とする。 The present invention was made in consideration of the above problems. The purpose of the invention is to further reduce the iron loss of the resulting grain-oriented electrical steel sheet by controlling the shape of the grooves within a certain range in order to subdivide the magnetic domains.
 本発明者らは、溝の形状(特に、溝幅や、鋼板表面と溝との境界線である溝縁のうねり)、及び隣り合う溝どうしの重なり代が、鉄損に影響することを知見し、これらの量を制限することで鉄損を低減することのできる本発明に想到した。 The inventors discovered that the shape of the groove (particularly the groove width and the undulation of the groove edge, which is the boundary between the steel plate surface and the groove) and the overlap between adjacent grooves affect iron loss, and came up with the invention that can reduce iron loss by limiting these amounts.
 本発明の要旨は、
 圧延方向と交差する方向に延在しかつ溝深さ方向が板厚方向となる溝が形成された鋼板表面を有する鋼板を備え、
 前記板厚方向から前記鋼板表面を見た場合に、板幅方向に対して前記溝が複数配されて構成される溝群を有し、
 前記溝群が前記圧延方向に対して間隔を有して複数配される方向性電磁鋼板であって、
 前記溝群のうち75%以上の溝群において、
 前記溝群を構成する前記溝の平均幅が42~62μmであり、
 前記溝群を構成する前記溝が、前記溝の延在する方向と前記溝深さ方向とに平行である投影面上で隣り合う溝と重なるように配され、
 この方向性電磁鋼板において、前記鋼板の前記板幅方向の端部を基準端部とし、前記溝群の複数の前記溝のうちの隣り合う溝を前記基準端部から近い順に第一の溝、第二の溝とし、
 前記溝群を構成する各溝での前記溝の延在する方向(長手方向)の2つの溝端を、前記基準端部から近い順に第一溝端、第二溝端とし、
 前記投影面において、前記第二の溝の前記第一溝端と前記第一の溝の前記第二溝端との間の重なり代が5~30mmであり、
 前記溝群を構成する前記溝の縁のうねりが0.5~5.0μmである。
The gist of the present invention is
The steel plate has a steel plate surface on which a groove is formed extending in a direction intersecting the rolling direction and having a groove depth direction in the plate thickness direction,
When the steel plate surface is viewed from the plate thickness direction, a groove group is formed by arranging a plurality of the grooves in the plate width direction,
A grain-oriented electrical steel sheet in which the groove groups are arranged at intervals in the rolling direction,
In at least 75% of the groove groups,
The grooves constituting the groove group have an average width of 42 to 62 μm;
the grooves constituting the groove group are arranged so as to overlap with adjacent grooves on a projection plane that is parallel to the groove extension direction and the groove depth direction,
In this grain-oriented electrical steel sheet, an end portion in the sheet width direction of the steel sheet is defined as a reference end portion, and adjacent grooves among the plurality of grooves in the groove group are defined as a first groove and a second groove in the order of proximity to the reference end portion,
Two groove ends in a direction in which the groove extends (longitudinal direction) of each groove constituting the groove group are designated as a first groove end and a second groove end in the order of proximity to the reference end portion,
an overlapping margin between the first groove end of the second groove and the second groove end of the first groove is 5 to 30 mm on the projection plane;
The grooves constituting the groove group have an edge waviness of 0.5 to 5.0 μm.
 本発明によれば、溝の形状(特に、溝幅や、鋼板表面と溝との境界線である溝縁のうねり)、及び隣り合う溝どうしの重なり代が、鉄損に影響することを知見し、これらの量を制限することによって、磁壁移動の際のピンニングをなくし、鉄損を低減する。 According to the present invention, it has been discovered that the shape of the groove (particularly the groove width and the undulation of the groove edge, which is the boundary between the steel plate surface and the groove) and the overlap between adjacent grooves affect iron loss, and by limiting these amounts, pinning during magnetic domain wall movement is eliminated, thereby reducing iron loss.
本発明の一実施形態に係る方向性電磁鋼板の鋼板表面に形成される溝を示す模式図である。FIG. 2 is a schematic diagram showing grooves formed on a steel sheet surface of a grain-oriented electrical steel sheet according to an embodiment of the present invention. 図1のA-A線における溝(長手方向)の断面形状を示す図である。2 is a diagram showing a cross-sectional shape of a groove (longitudinal direction) taken along line AA in FIG. 1. 図1に示すB-B線における溝(短手方向)の断面形状を示す図である。2 is a diagram showing a cross-sectional shape of a groove (short side direction) taken along line BB shown in FIG. 1. 溝の定義に関する説明図である。FIG. 1 is an explanatory diagram regarding the definition of a groove. 溝の定義に関する説明図である。FIG. 1 is an explanatory diagram regarding the definition of a groove. 溝の定義に関する説明図である。FIG. 1 is an explanatory diagram regarding the definition of a groove. 溝の定義に関する説明図である。FIG. 1 is an explanatory diagram regarding the definition of a groove. 本実施形態に係る方向性電磁鋼板の隣り合う溝の溝長手投影線を示す図である。FIG. 4 is a diagram showing groove longitudinal projection lines of adjacent grooves of the grain-oriented electrical steel sheet according to the present embodiment. 溝の平均幅と溝の縁のうねりとの関係を示す図である。FIG. 13 is a diagram showing the relationship between the average width of a groove and the waviness of the edge of the groove. 隣り合う溝どうしの重なり代と溝の縁のうねりとの関係を示す図である。11 is a diagram showing the relationship between the overlapping margin between adjacent grooves and the waviness of the groove edges. FIG.
 以下に本発明の好適な実施の形態について詳細に説明する。なお、特に断らない限り、数値AおよびBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。 The preferred embodiment of the present invention will be described in detail below. Unless otherwise specified, the notation "A-B" for numerical values A and B means "greater than or equal to A and less than or equal to B." In such notations, when a unit is added only to numerical value B, the unit is also applied to numerical value A.
[鋼板の成分組成]
 まず、本実施形態にかかる方向性電磁鋼板は、特に制限されるものではなく、公知の鋼成分からなる方向性電磁鋼板を用いることができる。そのような、本発明に係る方向性電磁鋼板に用いることのできる鋼板について例示的に説明する。
[Steel plate composition]
First, the grain-oriented electrical steel sheet according to the present embodiment is not particularly limited, and grain-oriented electrical steel sheets made of known steel components can be used. Such steel sheets that can be used for the grain-oriented electrical steel sheet according to the present invention will be described by way of example.
[鋼板の成分組成]
 典型的な鋼板の成分組成を説明する。なお、以下では特に断りのない限り、「%」との表記は「質量%」を表わすものとする。
[Steel plate composition]
The chemical composition of a typical steel sheet will be described below. Note that, hereinafter, unless otherwise specified, the notation "%" represents "mass %".
 発明に係る方向性電磁鋼板に用いられる鋼板の成分は、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御するために好ましい成分構成を有し、少なくとも、Si:1.0~5.0%、Mn:0.01~0.15%を含有することができる。 The steel sheet used in the grain-oriented electrical steel sheet of the present invention has a composition that is favorable for controlling the crystal orientation to a Goss texture that is concentrated in the {110}<001> orientation, and can contain at least Si: 1.0-5.0% and Mn: 0.01-0.15%.
 (Si:1.0~5.0%)
 Si(ケイ素)の含有量は、1.0~5.0%である。Siは、鋼板の電気抵抗を高めることで、鉄損の原因の一つである渦電流損失を低減する。Siの含有量が1.0%未満である場合、最終的な方向性電磁鋼板の渦電流損失を十分に抑制することが困難になるため好ましくない。Siの含有量が5.0%超である場合、方向性電磁鋼板の加工性が低下するため好ましくない。したがって、Siの含有量は、1.0~5.0であり、好ましくは、2.50~4.50%であり、より好ましくは、2.70~4.00%である。
(Si: 1.0 to 5.0%)
The content of Si (silicon) is 1.0 to 5.0%. Si increases the electrical resistance of the steel sheet, thereby reducing eddy current loss, which is one of the causes of iron loss. If the content of Si is less than 1.0%, it is not preferable because it becomes difficult to sufficiently suppress the eddy current loss of the final grain-oriented electrical steel sheet. If the content of Si is more than 5.0%, it is not preferable because the workability of the grain-oriented electrical steel sheet decreases. Therefore, the content of Si is 1.0 to 5.0, preferably 2.50 to 4.50%, and more preferably 2.70 to 4.00%.
 (Mn:0.01~0.15%)
 Mn(マンガン)の含有量は、0.01~0.15%である。Mnは、二次再結晶を左右するインヒビターであるMnSおよびMnSeなどを形成する。Mnの含有量が0.01%未満である場合、二次再結晶を生じさせるMnSおよびMnSeの絶対量が不足するため好ましくない。Mnの含有量が0.15%超である場合、スラブ加熱時にMnの固溶が困難になるため好ましくない。また、Mnの含有量が0.15%超である場合、インヒビターであるMnSおよびMnSeの析出サイズが粗大化し易く、インヒビターとしての最適サイズ分布が損なわれるため好ましくない。したがって、Mnの含有量は、0.01~0.15%であり、好ましくは、0.03~0.13%である。
(Mn: 0.01 to 0.15%)
The content of Mn (manganese) is 0.01 to 0.15%. Mn forms MnS and MnSe, which are inhibitors that affect secondary recrystallization. If the content of Mn is less than 0.01%, the absolute amount of MnS and MnSe that cause secondary recrystallization is insufficient, which is not preferable. If the content of Mn is more than 0.15%, it is not preferable because it becomes difficult to dissolve Mn during slab heating. In addition, if the content of Mn is more than 0.15%, the precipitation size of MnS and MnSe, which are inhibitors, tends to become coarse, which is not preferable because the optimal size distribution as an inhibitor is impaired. Therefore, the content of Mn is 0.01 to 0.15%, preferably 0.03 to 0.13%.
 SiおよびMn以外の成分は、通常の方向性電磁鋼板に含まれている成分となることができる。
 例えば、Si,Mn以外の成分として、質量%で、C:~0.085%以下、酸可溶性Al:~0.065%以下、N:~0.012%以下、Cr:~0.30%以下、Cu:~0.40%以下、P:~0.50%以下、Sn:~0.30%以下、Sb:~0.30%以下、Ni:~1.000%以下、S:~0.0150%以下、を含有することができる。また、他のインヒビター構成元素としてB、Bi、Se、Pb、Sn、Tiなどを添加することもできる。添加量は適宜調整されてもよく、B含有量の上限値は0.080%、Bi含有量の上限値は0.010%、Se含有量の上限値は0.035%、Pb含有量の上限値は0.10%、Sn含有量の上限値は0.10%、Ti含有量の上限値は0.015%であってもよい。これら任意添加元素は、公知の目的に応じて含有させればよいため、任意添加元素の含有量の下限値を設ける必要はなく、例えば下限値は0%であってもよい。
The components other than Si and Mn may be the components contained in ordinary grain-oriented electrical steel sheets.
For example, as components other than Si and Mn, the following may be contained in mass %: C: 0.085% or less, acid-soluble Al: 0.065% or less, N: 0.012% or less, Cr: 0.30% or less, Cu: 0.40% or less, P: 0.50% or less, Sn: 0.30% or less, Sb: 0.30% or less, Ni: 1.000% or less, and S: 0.0150% or less. In addition, B, Bi, Se, Pb, Sn, Ti, etc. may be added as other inhibitor constituent elements. The amount of addition may be appropriately adjusted, and the upper limit of the B content may be 0.080%, the upper limit of the Bi content may be 0.010%, the upper limit of the Se content may be 0.035%, the upper limit of the Pb content may be 0.10%, the upper limit of the Sn content may be 0.10%, and the upper limit of the Ti content may be 0.015%. Since these optional added elements may be contained according to known purposes, there is no need to set a lower limit for the content of the optional added elements, and the lower limit may be, for example, 0%.
 鋼板の上記成分以外の残部は、Feおよび不純物である。ここで、不純物元素とは、原材料に含まれる成分、または製造の過程で混入する成分であって、本実施形態に実質的に影響を与えない範囲で許容される成分を指す。 The remainder of the steel plate other than the above components is Fe and impurities. Here, impurity elements refer to components contained in the raw materials or components mixed in during the manufacturing process, and are permissible to the extent that they do not substantially affect this embodiment.
 鋼板の化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定することができる。具体的には、鋼板から採取した35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより、化学組成が特定される。なお、CおよびSは燃焼-赤外線吸収法を用いて測定し、Nは不活性ガス融解-熱伝導度法を用いて測定することができる。 The chemical composition of steel plate can be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, the chemical composition is determined by measuring a 35 mm square test piece taken from the steel plate using a Shimadzu ICPS-8100 or other measuring device under conditions based on a pre-created calibration curve. C and S can be measured using the combustion-infrared absorption method, and N can be measured using the inert gas fusion-thermal conductivity method.
[溝]
 以下、図面を参照して本発明の実施形態による溝について説明する。ただし、本発明は本実施形態に開示の構成のみに限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
[groove]
Hereinafter, grooves according to embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the configurations disclosed in the present embodiments, and various modifications are possible without departing from the spirit of the present invention.
 図1は、本実施形態に係る方向性電磁鋼板1の平面図である。図2は、図1のA-A線における矢視断面図である。なお、図において、方向性電磁鋼板1の圧延方向をX、方向性電磁鋼板1の板幅方向(同一平面内で圧延方向に直交する方向)をY、方向性電磁鋼板1の板厚方向(XY平面に直交する方向)をZと定義する。本実施形態に係る方向性電磁鋼板1は、鋼板表面2aに、磁区細分化のための溝3を有する。図1は、本実施形態に係る方向性電磁鋼板を板厚方向Zから見たとき(以下、「平面視」と記載する場合がある)の溝3を示す模式図である。 FIG. 1 is a plan view of a grain-oriented electromagnetic steel sheet 1 according to this embodiment. FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1. In the figure, the rolling direction of the grain-oriented electromagnetic steel sheet 1 is defined as X, the sheet width direction of the grain-oriented electromagnetic steel sheet 1 (direction perpendicular to the rolling direction in the same plane) as Y, and the sheet thickness direction of the grain-oriented electromagnetic steel sheet 1 (direction perpendicular to the XY plane) as Z. The grain-oriented electromagnetic steel sheet 1 according to this embodiment has grooves 3 for magnetic domain refinement on the steel sheet surface 2a. FIG. 1 is a schematic diagram showing the grooves 3 when the grain-oriented electromagnetic steel sheet according to this embodiment is viewed from the sheet thickness direction Z (hereinafter sometimes referred to as "planar view").
 図1に示すように、板厚方向Zから溝3を見た場合(溝3を平面視した場合)に、溝3の延在方向(図1に示す矢印L)を溝長手方向Lという。溝3を平面視した場合に、溝3の溝長手方向Lに直交する方向(図1に示す矢印Q)を溝幅方向Qという。実際の方向性電磁鋼板の鋼板表面2a及び溝3は、表面が均一に形成されるものではないが、発明の特徴を説明するために図1から図3、図5から図8、では少なくとも一部を模式的に示している。また、溝3は、板厚方向Zから見た場合(溝3を平面視した場合)に、弓状の形状を有してもよい。ただし、本実施形態では、説明の便宜上、直線形状を有する溝3を例示する。 As shown in FIG. 1, when the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in a plan view), the extension direction of the groove 3 (arrow L shown in FIG. 1) is called the groove longitudinal direction L. When the groove 3 is viewed in a plan view, the direction perpendicular to the groove longitudinal direction L of the groove 3 (arrow Q shown in FIG. 1) is called the groove width direction Q. Although the steel plate surface 2a and the groove 3 of an actual grain-oriented electromagnetic steel plate are not uniformly formed, at least a part of them is shown in FIG. 1 to FIG. 3 and FIG. 5 to FIG. 8 in order to explain the features of the invention. In addition, the groove 3 may have a bow-like shape when viewed from the plate thickness direction Z (when the groove 3 is viewed in a plan view). However, in this embodiment, for convenience of explanation, a groove 3 having a linear shape is illustrated.
 方向性電磁鋼板1は、冷間圧延処理と焼鈍処理との組み合わせによって結晶粒の磁化容易軸と圧延方向Xとが一致するように結晶方位が制御された鋼板(地鉄)2を備え、鋼板2の表面(鋼板表面2a)に溝3を有する。 The grain-oriented electrical steel sheet 1 comprises a steel sheet (base steel) 2 whose crystal orientation has been controlled by a combination of cold rolling and annealing so that the magnetization easy axis of the crystal grains coincides with the rolling direction X, and has grooves 3 on the surface of the steel sheet 2 (steel sheet surface 2a).
 溝3は、図1に示すように、圧延方向Xと交差する方向に延在し、かつ、深さ方向が板厚方向Zとなるように形成されている。方向性電磁鋼板1は、板厚方向Zから鋼板表面2aを見た場合に、板幅方向Yに対して複数配された溝3から構成された溝群30を有し、前記溝群が前記圧延方向に対して間隔を有して複数配される。溝3の延在方向は、特に制限されるものではないが、板幅方向Yを0°としたとき、板幅溝3の延在方向と板幅方向Yのなす角が0°~±60°の範囲にあってもよい。溝群30を構成する溝3どうしは略平行であり、略平行とは数度の角度差があってもよく、例えば±5°以内また±3°以内の角度差が許容される。 As shown in FIG. 1, the grooves 3 extend in a direction intersecting the rolling direction X and are formed so that their depth direction is the plate thickness direction Z. When the steel plate surface 2a is viewed from the plate thickness direction Z, the grain-oriented electrical steel sheet 1 has a groove group 30 composed of a plurality of grooves 3 arranged in the plate width direction Y, and the groove groups are arranged at intervals in the rolling direction. The extension direction of the grooves 3 is not particularly limited, but when the plate width direction Y is set to 0°, the angle between the extension direction of the plate width grooves 3 and the plate width direction Y may be in the range of 0° to ±60°. The grooves 3 constituting the groove group 30 are approximately parallel to each other, and may have an angle difference of several degrees from approximately parallel, and for example, an angle difference within ±5° or ±3° is allowed.
 全ての溝群のうち75%以上の溝群において、
当該溝群を構成する溝が、溝の平均幅、隣り合う溝どうしの重なり代及び、溝の縁のうねりが特定の範囲であることにより、効果的に鉄損を改善させることができる。なお、溝形状の測定は最終製品から、酸洗等により少なくとも溝内部のグラス被膜および絶縁被膜を除去した後に行う。
 以下の説明における用語を定義する。
In 75% or more of all groove groups,
The grooves constituting the groove group have specific average groove widths, overlaps between adjacent grooves, and waviness of the groove edges, which makes it possible to effectively improve iron loss. Note that the groove shape is measured after removing at least the glass coating and insulating coating inside the grooves from the final product by pickling or the like.
In the following description, terms are defined.
(溝平均深さD)
 溝3の深さとは、図2の例で示されるように、鋼板表面2aの高さから溝3の表面(底部4)までの板厚方向Zの長さをいう。溝平均深さDは以下のように測定すればよい。板厚方向Zから溝3を見た場合(溝3を平面視した場合)に、観察範囲を溝3の一部に設定する。観察範囲は、溝3の溝長手方向Lにおける端部を除く領域(すなわち、溝底の形状が安定している領域)に設定することが望ましい。例えば、観察範囲は、溝長手方向Lの略中央部で、溝長手方向Lの長さが30μm~300μm程度となるような観察領域とすればよい。次に、レーザー顕微鏡を用いて観察範囲内の高さ分布(溝深さ分布)を得て、この観察範囲内での最大溝深さを求める。同様の測定を、観察範囲を変えて少なくとも3領域以上、より好ましくは10領域にて行う。そして、各観察領域における最大溝深さの平均値を算出し、これが溝平均深さDと定義される。本実施形態における溝3の溝平均深さDは、磁区細分化の効果を好ましく得るために、例えば、5μm以上100μm以下であることが好ましく、10μm超40μm以下であるとさらに好ましい。
 なお、鋼板表面2aと溝3の表面との間の距離を測定するためには、板厚方向Zにおける鋼板表面2aの位置(高さ)を予め測定しておく必要がある。例えば、各観察範囲内の鋼板表面2aにおける複数箇所のそれぞれについて、レーザー顕微鏡を用いて板厚方向Zの位置(高さ)を測定し、それらの測定結果の平均値を鋼板表面2aの高さとして利用してもよい。また、本実施形態では、後述のように溝平均幅Wを測定する際に溝短手断面を使用するので、この溝短手断面から鋼板表面2aを測定してもよい。なお、レーザー顕微鏡にて鋼板サンプルを観察する際には、この鋼板サンプルの2つの板面(観察面およびその裏面)が略平行であることが好ましい。
(Average Groove Depth D)
The depth of the groove 3 refers to the length in the plate thickness direction Z from the height of the steel plate surface 2a to the surface (bottom 4) of the groove 3, as shown in the example of FIG. 2. The average groove depth D may be measured as follows. When the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in plan), the observation range is set to a part of the groove 3. It is desirable to set the observation range to a region excluding the end portion in the groove longitudinal direction L of the groove 3 (i.e., a region where the shape of the groove bottom is stable). For example, the observation range may be an observation region that is approximately the center of the groove longitudinal direction L and has a length in the groove longitudinal direction L of about 30 μm to 300 μm. Next, a height distribution (groove depth distribution) within the observation range is obtained using a laser microscope, and the maximum groove depth within this observation range is obtained. The same measurement is performed in at least three regions, more preferably 10 regions, by changing the observation range. Then, the average value of the maximum groove depth in each observation region is calculated, and this is defined as the average groove depth D. In order to obtain the desired effect of refining the magnetic domains, the average groove depth D of the grooves 3 in this embodiment is preferably, for example, 5 μm or more and 100 μm or less, and more preferably more than 10 μm and 40 μm or less.
In order to measure the distance between the steel plate surface 2a and the surface of the groove 3, it is necessary to measure the position (height) of the steel plate surface 2a in the plate thickness direction Z in advance. For example, the position (height) in the plate thickness direction Z may be measured using a laser microscope for each of a plurality of points on the steel plate surface 2a within each observation range, and the average value of the measurement results may be used as the height of the steel plate surface 2a. In addition, in this embodiment, the groove short cross section is used when measuring the groove average width W as described later, so the steel plate surface 2a may be measured from this groove short cross section. In addition, when observing a steel plate sample with a laser microscope, it is preferable that the two plate surfaces (the observation surface and the back surface) of the steel plate sample are approximately parallel.
(平均溝幅W)
 溝3の幅とは、図3の例で示されるように、溝長手方向Lに直交する断面(溝幅方向断面あるいは溝短手断面)で溝3を見た場合の溝短手方向Qの溝開口部の長さをいう。平均溝幅Wは以下のように測定すればよい。溝平均深さDと同様に、板厚方向Zから溝3を見た場合(溝3を平面視した場合)に、観察範囲を溝3の一部に設定する。観察範囲は、溝3の溝長手方向Lにおける端部を除く領域(すなわち、溝底の形状が安定している領域)に設定することが望ましい。
 例えば、観察範囲は、溝長手方向Lの略中央部で、溝長手方向Lの長さが30μm~300μm程度となるような観察領域とすればよい。次に、レーザー顕微鏡を用いて観察範囲内の任意の1カ所(例えば、観察領域での最大溝深さの位置)にて、溝長手方向Lに直交する溝短手断面を得る。この溝短手断面に現れる鋼板表面2aおよび溝3の輪郭曲線から溝開口部の長さを求める。
(Average groove width W)
The width of the groove 3 refers to the length of the groove opening in the groove short-side direction Q when the groove 3 is viewed in a cross section perpendicular to the groove long-side direction L (groove width direction cross section or groove short-side cross section) as shown in the example of Fig. 3. The average groove width W may be measured as follows. As with the average groove depth D, when the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in plan), the observation range is set to a part of the groove 3. It is desirable to set the observation range to a region excluding the end portions of the groove 3 in the groove long-side direction L (i.e., a region where the shape of the groove bottom is stable).
For example, the observation range may be an observation region that is approximately at the center of the groove longitudinal direction L and has a length in the groove longitudinal direction L of about 30 μm to 300 μm. Next, a laser microscope is used to obtain a groove short-side cross section perpendicular to the groove longitudinal direction L at any one location within the observation range (for example, the position of the maximum groove depth in the observation region). The length of the groove opening is obtained from the contour curves of the steel sheet surface 2a and the groove 3 that appear in this groove short-side cross section.
 具体的には、上記溝短手断面に現れる鋼板表面2aおよび溝3の輪郭を成す測定断面曲線MCLに低域フィルタ(カットオフ値λs)を適用して断面曲線を得た後、その断面曲線に帯域フィルタ(カットオフ値λf、λc)を適用して、断面曲線から長い波長成分と短い波長成分を除去すると、図3に示すように、溝短手断面での溝3の輪郭を成すうねり曲線WWCが得られる。うねり曲線は、輪郭の形状そのものを滑らかな線で単純化するのに適した輪郭曲線の一種である。 Specifically, a low-pass filter (cutoff value λs) is applied to the measured cross-sectional curve MCL that forms the contour of the steel plate surface 2a and groove 3 that appear in the short cross-section of the groove to obtain a cross-sectional curve, and then a band-pass filter (cutoff values λf, λc) is applied to the cross-sectional curve to remove long and short wavelength components from the cross-sectional curve, resulting in a waviness curve WWC that forms the contour of the groove 3 in the short cross-section of the groove, as shown in Figure 3. A waviness curve is a type of contour curve that is suitable for simplifying the contour shape itself with a smooth line.
 図3に示すように、溝短手断面での溝3のうねり曲線WWC上で、鋼板表面2aの溝3で隔てられた2つの点(第三点33、第四点34)間を結ぶ線分の長さ(溝開口部)Wを求める。
 同様の測定を、観察範囲を変えて少なくとも3領域以上、より好ましくは10領域にて行う。そして、各観察領域における溝開口部の平均値を算出し、これが平均溝幅Wと定義される。本実施形態における溝3の平均溝幅Wは、磁区細分化の効果を好ましく得るために、例えば42μm以上62μm以下である。
 なお、鋼板表面2aの溝3で隔てられた2つの点(第三点33、第四点34)を測定するためには、板厚方向Zにおける鋼板表面2aの位置(高さ)を予め測定しておく必要がある。例えば、各溝短手断面内のうねり曲線上の鋼板表面2aにおける複数箇所のそれぞれについて、板厚方向Zの位置(高さ)を測定し、それらの測定結果の平均値を鋼板表面2aの高さとして利用してもよい。
As shown in FIG. 3 , on the waviness curve WWC of the groove 3 at the short cross section of the groove, the length Wn of the line segment connecting two points (third point 33 and fourth point 34) separated by the groove 3 on the steel sheet surface 2a is found (groove opening).
Similar measurements are performed in at least three regions, more preferably ten regions, by changing the observation range. Then, the average value of the groove opening in each observation region is calculated, and this is defined as the average groove width W. In this embodiment, the average groove width W of the grooves 3 is, for example, 42 μm or more and 62 μm or less in order to preferably obtain the effect of magnetic domain refinement.
In order to measure the two points (third point 33 and fourth point 34) separated by the groove 3 on the steel sheet surface 2a, it is necessary to measure the position (height) of the steel sheet surface 2a in the sheet thickness direction Z in advance. For example, the position (height) in the sheet thickness direction Z may be measured for each of a plurality of points on the steel sheet surface 2a on the waviness curve in each groove short cross section, and the average value of the measurement results may be used as the height of the steel sheet surface 2a.
(溝の重なり)
 溝群30を構成する溝3は、溝延在方向(または溝長手方向L)と溝の深さ方向(または板厚方向Z)と平行である投影面(図1の破線11aで示す断面)で見たときに、隣り合う溝同士が重なるように配される。
 この構成により、方向性電磁鋼板1は、板幅方向Yにおいて複数の溝3を形成した場合に、板幅方向Yに溝3が形成された状態を確保し、鉄損を改善させることができる。
(Groove overlap)
The grooves 3 constituting the groove group 30 are arranged so that adjacent grooves overlap when viewed on a projection plane (cross section indicated by dashed line 11a in Figure 1) that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z).
With this configuration, when multiple grooves 3 are formed in the plate width direction Y, the grain-oriented electrical steel sheet 1 can ensure that the grooves 3 are formed in the plate width direction Y, thereby improving iron loss.
 鋼板の板幅方向Yの一方の端部を基準端部21aとしたとき、溝群30を構成する複数の溝3は、基準端部21aから近い順に第一の溝31、第二の溝32、第nの溝3nと複数形成されている。この第一の溝31、第二の溝32、第nの溝3nは、図1に示すように、溝延在方向(または溝長手方向L)と溝の深さ方向(または板厚方向Z)と平行である投影面上で隣り合う溝3同士の端部が重なる(オーバーラップする)ように配される。
 また、溝群30は、図1に示すように、他の溝群30と圧延方向Xが離間するように配されている。
When one end of the steel plate in the plate width direction Y is defined as the reference end 21a, the grooves 3 constituting the groove group 30 are formed in the order of proximity to the reference end 21a, that is, the first groove 31, the second groove 32, and the n-th groove 3n. As shown in Fig. 1, the first groove 31, the second groove 32, and the n-th groove 3n are arranged such that the ends of adjacent grooves 3 overlap each other on a projection plane that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z).
As shown in FIG. 1 , the groove groups 30 are arranged so as to be spaced apart from each other in the rolling direction X.
 溝3は、溝延在方向(または溝長手方向L)と溝の深さ方向(または板厚方向Z)と平行である投影面上で隣り合う溝3同士の端部が重なる(オーバーラップする)ように配すると、効果的に鉄損を改善させることができる。 The grooves 3 can be arranged so that the ends of adjacent grooves 3 overlap on a projection plane that is parallel to the groove extension direction (or groove longitudinal direction L) and the groove depth direction (or plate thickness direction Z), thereby effectively improving iron loss.
 溝長手方向Lと板厚方向Zと平行である面を投影面とし、この投影面に溝3の溝長手方向Lの輪郭を投影した場合、投影面に投影された溝長手方向Lの輪郭を溝長手投影線LWPと定義する。溝長手投影線LWPは以下のように測定すればよい。板厚方向Zから溝3を平面視したときに(図6参照)、観察範囲として、溝3の全体を含む領域、または溝3の端部を含む領域(すなわち、溝3の溝長手方向Lの始まりから溝底の形状が安定している領域までを含む領域)を設定する。この観察範囲内に、溝長手方向Lに沿う複数の仮想線を仮想的に設定する。仮想線L1~Lnは、板厚方向Zには任意の高さに設定できるものとする。そして、上記の仮想線L1~Lnのうち、溝長手方向Lに沿い且つ溝の平均深さが最大になるという条件を満足する仮想線を溝基準線BLとして選択する。例えば、図6に示すように、仮想線L1~Lnのそれぞれについて得られた溝深さD1~Dnのうち、溝深さD2が最大である場合、仮想線L2が溝基準線BLと定義される。選択した仮想線に沿った溝深さ分布を溝3の溝長手方向Lの全体の輪郭(うねり曲線)として上記投影面に投影したときに得られる曲線を溝長手投影線LWPとする。なお、上記の観察範囲として、隣り合う2つの溝の全体を含む領域、または隣り合う2つの溝の重なり合う端部を含む領域(すなわち、一方の溝の溝底の形状が安定している領域、隣り合う2つの溝の溝端が重なる領域、および他方の溝の溝底の形状が安定している領域を含む領域)を設定することが好ましい。溝群30を構成する各溝における溝長手方向Lの2つの溝端を、基準端部21aから近い順に、第一溝端、第二溝端とする。図8には、第一の溝31の第一溝長手投影線LWP1の第一溝端31aおよび第二溝端31bと、第二の溝32の第二溝長手投影線LWP2第一溝端32aおよび第二溝端32bとを模式的に示す。なお、隣り合う溝同士の溝長手方向Lにおける位置関係を説明するため、図8では、本実施形態に係る方向性電磁鋼板1の複数の溝3のうち、溝長手方向Lに隣り合う二つの溝31、32のみを抽出して記載している。 When a plane parallel to the groove longitudinal direction L and the plate thickness direction Z is used as a projection plane and the contour of the groove longitudinal direction L of the groove 3 is projected onto this projection plane, the contour of the groove longitudinal direction L projected onto the projection plane is defined as the groove longitudinal projection line LWP. The groove longitudinal projection line LWP may be measured as follows. When the groove 3 is viewed in plan from the plate thickness direction Z (see FIG. 6), an area including the entire groove 3 or an area including the end of the groove 3 (i.e., an area including from the start of the groove longitudinal direction L of the groove 3 to the area where the shape of the groove bottom is stable) is set as the observation range. Within this observation range, multiple virtual lines are virtually set along the groove longitudinal direction L. The virtual lines L1 to Ln can be set at any height in the plate thickness direction Z. Then, of the above virtual lines L1 to Ln, a virtual line that is along the groove longitudinal direction L and satisfies the condition that the average depth of the groove is maximized is selected as the groove reference line BL. For example, as shown in FIG. 6, when the groove depth D2 is the maximum among the groove depths D1 to Dn obtained for each of the virtual lines L1 to Ln, the virtual line L2 is defined as the groove reference line BL. The curve obtained when the groove depth distribution along the selected virtual line is projected onto the projection plane as the overall contour (waviness curve) of the groove 3 in the groove longitudinal direction L is defined as the groove longitudinal projection line LWP. Note that it is preferable to set the observation range as an area including the entire two adjacent grooves, or an area including the overlapping ends of the two adjacent grooves (i.e., an area including an area where the shape of the groove bottom of one groove is stable, an area where the groove ends of the two adjacent grooves overlap, and an area where the shape of the groove bottom of the other groove is stable). The two groove ends in the groove longitudinal direction L of each groove constituting the groove group 30 are defined as the first groove end and the second groove end in the order of proximity to the reference end 21a. 8 shows a schematic diagram of the first groove end 31a and the second groove end 31b of the first groove longitudinal projection line LWP1 of the first groove 31, and the first groove end 32a and the second groove end 32b of the second groove longitudinal projection line LWP2 of the second groove 32. Note that, in order to explain the positional relationship between adjacent grooves in the groove longitudinal direction L, FIG. 8 shows only two grooves 31, 32 adjacent to each other in the groove longitudinal direction L among the multiple grooves 3 of the grain-oriented electrical steel sheet 1 according to this embodiment.
 本実施形態に係る方向性電磁鋼板1は、図1に示すように、溝長手方向Lに隣り合う第一の溝31の第二溝端31bと、第二の溝32の第一溝端32aとが、溝長手方向Lでオーバーラップするように配される。図1では、溝長手方向Lに隣り合う第一の溝31及び第二の溝32は、板厚方向Zから見たとき、端部が重ならない配置を例示した。しかし、第一の溝31及び第二の溝32は、板厚方向Zから見たとき、端部が重なっていてもよい。例えば、第一の溝31及び第二の溝32が、板厚方向Zから見たとき、端部が完全に重なっているのであれば、1本の溝であると見なすことができる。 As shown in FIG. 1, in the grain-oriented electromagnetic steel sheet 1 according to this embodiment, the second groove end 31b of the first groove 31 and the first groove end 32a of the second groove 32 adjacent in the groove longitudinal direction L are arranged so as to overlap in the groove longitudinal direction L. FIG. 1 illustrates an example of an arrangement in which the ends of the first groove 31 and the second groove 32 adjacent in the groove longitudinal direction L do not overlap when viewed from the plate thickness direction Z. However, the ends of the first groove 31 and the second groove 32 may overlap when viewed from the plate thickness direction Z. For example, if the ends of the first groove 31 and the second groove 32 completely overlap when viewed from the plate thickness direction Z, they can be considered to be a single groove.
 第二溝長手投影線LWP2における第二の溝32の第一溝端32aの溝長手方向Lの位置は、第一溝長手投影線LWP1における第一の溝31の第二溝端31bの溝長手方向Lの位置よりも基準端部21a側に位置するように、隣り合う溝同士が溝長手方向Lに重なる。図8に示すように、第一の溝31の第二溝端31bと第二の溝32の第一溝端32aとの間が第一の溝31と第二の溝32とが溝長手方向Lにおいてオーバーラップする領域Rである。  Adjacent grooves overlap in the groove longitudinal direction L so that the position in the groove longitudinal direction L of the first groove end 32a of the second groove 32 on the second groove longitudinal projection line LWP2 is located closer to the reference end 21a than the position in the groove longitudinal direction L of the second groove end 31b of the first groove 31 on the first groove longitudinal projection line LWP1. As shown in FIG. 8, the area R where the first groove 31 and the second groove 32 overlap in the groove longitudinal direction L is between the second groove end 31b of the first groove 31 and the first groove end 32a of the second groove 32.
 オーバーラップする領域Rにおいて、第一の溝31の第二溝端31bと第二の溝32の第一溝端32aとの間の長手方向Lの距離を「重なり代」と称する。本実施形態に係る方向性電磁鋼板1は、「重なり代」が5~30mmである。方向性電磁鋼板1において、溝長手方向Lに複数の溝を形成し、且つ、隣り合う溝31、32同士が互いにオーバーラップし、「重なり代」が5~30mmであることにより、鉄損を低く抑えることができる。重なり代が5mm未満であると、溝の端部に近づくにつれて磁区細分化の効果が小さくなり、磁区が細分化されにくくなる。したがって、重なり代の部分の磁区が細分化されず、鉄損低減の効果が期待できない。一方で重なり代が30mm超であると、溝の間隔が狭い箇所が相対的に増加する。溝間隔が狭いと磁区が細分化するが、溝の部分で磁壁が固着され、外部の磁界変化に応じて磁壁が移動しにくくなる。これにより、鉄損を構成するヒステリシス損が大きくなり、磁区細分化による効果を打ち消すこととなる。したがって鉄損が増加し磁気特性の改善が期待できない。すなわち、複数の溝3を溝長手方向Lに配置し、且つ隣り合う互いの溝の両端部を溝長手方向Lに適度にオーバーラップさせて配することにより、均一な深さの溝を溝長手方向Lに一つ形成した場合と同様に鉄損を改善できる。 In the overlapping region R, the distance in the longitudinal direction L between the second groove end 31b of the first groove 31 and the first groove end 32a of the second groove 32 is called the "overlap". The grain-oriented electromagnetic steel sheet 1 according to this embodiment has an "overlap" of 5 to 30 mm. In the grain-oriented electromagnetic steel sheet 1, a plurality of grooves are formed in the groove longitudinal direction L, and adjacent grooves 31, 32 overlap each other, and the "overlap" is 5 to 30 mm, so that iron loss can be kept low. If the overlap is less than 5 mm, the effect of magnetic domain refinement decreases as the groove end is approached, and the magnetic domains are difficult to refine. Therefore, the magnetic domains in the overlap area are not refined, and the effect of reducing iron loss cannot be expected. On the other hand, if the overlap is more than 30 mm, the number of places where the groove spacing is narrow increases relatively. If the groove spacing is narrow, the magnetic domains are refined, but the magnetic domain walls are fixed in the groove area, and the magnetic domain walls are difficult to move in response to changes in the external magnetic field. This increases the hysteresis loss that constitutes the iron loss, negating the effect of magnetic domain refinement. As a result, iron loss increases and no improvement in magnetic properties can be expected. In other words, by arranging multiple grooves 3 in the groove longitudinal direction L and arranging both ends of adjacent grooves so that they overlap moderately in the groove longitudinal direction L, it is possible to improve iron loss in the same way as when a single groove of uniform depth is formed in the groove longitudinal direction L.
 板幅方向Yに隣り合う第一の溝31と第二の溝32との圧延方向Xの離間距離(図1に示す距離F1)は、圧延方向Xに隣り合う溝群30同士の圧延方向Xの離間距離(図1に示す距離F2)より小さく設定されていてもよい。板幅方向Yに設けられた複数の溝31、32、・・・、3nの溝群平均深さをDAとしたとき、第二の溝32の第一溝端32aと鋼板2の基準端部21aと間の距離は、第一の溝31の第二溝端31bと鋼板2の基準端部21aと間の距離よりも短くなるように、第一の溝31と第二の溝32とが配置されていてもよい。これにより、複数の溝3を板幅方向Yに配置し、且つ隣り合う互いの溝31、32の両端部を板幅方向Yにオーバーラップさせることができ、均一な深さの溝を板幅方向Yに一つ形成した場合と同様に鉄損を改善できる。 The distance in the rolling direction X between the first groove 31 and the second groove 32 adjacent in the plate width direction Y (distance F1 shown in FIG. 1) may be set to be smaller than the distance in the rolling direction X between adjacent groove groups 30 in the rolling direction X (distance F2 shown in FIG. 1). When the average depth of the groove group of the multiple grooves 31, 32, ..., 3n provided in the plate width direction Y is DA, the first groove 31 and the second groove 32 may be arranged so that the distance between the first groove end 32a of the second groove 32 and the reference end 21a of the steel plate 2 is shorter than the distance between the second groove end 31b of the first groove 31 and the reference end 21a of the steel plate 2. This allows multiple grooves 3 to be arranged in the plate width direction Y, and both ends of the adjacent grooves 31 and 32 to overlap in the plate width direction Y, improving iron loss in the same way as when one groove of uniform depth is formed in the plate width direction Y.
(溝の縁のうねり)
 溝3の縁、すなわち溝3と鋼板2との稜線(境界線)は、必ずしも図6に示すような直線状ではなく、うねりのある曲線状となる場合がある。そこで、板厚方向Zから溝3を視た場合(溝3を平面視した場合)の溝の縁のうねりを明確にする必要がある。以下では、溝3を平面視した場合の溝の縁のうねりの特定方法について説明する。
(Waviness of the groove edge)
The edge of the groove 3, i.e., the ridge line (boundary line) between the groove 3 and the steel sheet 2, is not necessarily linear as shown in Fig. 6, but may be curved and wavy. Therefore, it is necessary to clarify the wavy edge of the groove when the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in plan). Below, a method for identifying the wavy edge of the groove when the groove 3 is viewed in plan will be described.
 板厚方向Zから溝3を視た場合(溝3を平面視した場合)に、レーザー顕微鏡等を用いて、溝3の溝延在方向の縁を測定すると、図7に示すような溝3の縁を成す測定縁曲線MELが得られる。ここで、鋼板表面2の位置(高さ)から、溝の底に向かって低下し始めた点を溝3と鋼板2との境界とする。その境界を連結したものが、溝3と鋼板2の稜線(境界線)であり、溝の縁が画定される。溝3の縁、すなわち溝3と鋼板2との稜線(境界線)を測定するためには、Z方向における鋼板表面2の位置(高さ)を予め測定しておく必要がある。例えば、観察範囲50内の鋼板表面2における複数箇所のそれぞれについて、レーザー式表面粗さ測定器を用いてZ方向の位置(高さ)を測定し、それらの測定結果の平均値を鋼板表面2の高さとして利用してもよい。溝3が、レーザー顕微鏡等の観察視野より溝延在方向に長い場合、溝3の一端31aから他端31bまでいくつかの観察範囲50に区切って観察すればよい。例えば、観察範囲50は、溝延在方向の長さが300μm程度となるような観察領域とすればよい。 When the groove 3 is viewed from the plate thickness direction Z (when the groove 3 is viewed in a plane), the edge of the groove 3 in the groove extension direction is measured using a laser microscope or the like, and a measured edge curve MEL forming the edge of the groove 3 as shown in FIG. 7 is obtained. Here, the boundary between the groove 3 and the steel plate 2 is the point where the position (height) of the steel plate surface 2 starts to drop toward the bottom of the groove. The connection of these boundaries is the ridge line (boundary line) between the groove 3 and the steel plate 2, and defines the edge of the groove. In order to measure the edge of the groove 3, i.e., the ridge line (boundary line) between the groove 3 and the steel plate 2, it is necessary to measure the position (height) of the steel plate surface 2 in the Z direction in advance. For example, for each of multiple points on the steel plate surface 2 within the observation range 50, the position (height) in the Z direction may be measured using a laser surface roughness measuring device, and the average value of these measurement results may be used as the height of the steel plate surface 2. If the groove 3 is longer in the groove extension direction than the observation field of the laser microscope or the like, the groove 3 may be divided into several observation ranges 50 from one end 31a to the other end 31b and observed. For example, the observation range 50 may be an observation area whose length in the groove extension direction is about 300 μm.
 上記のように得られた測定縁曲線MELに低域フィルタ(カットオフ値λs)を適用して縁曲線を得た後、その縁曲線に帯域フィルタ(カットオフ値λf、λc)を適用して、測定縁曲線から長い波長成分と短い波長成分を除去すると、図7に示すように、溝3の溝延在方向の縁の輪郭を成すうねり曲線EWCが得られる。うねり曲線は、輪郭の形状そのものを滑らかな線で単純化するのに適した輪郭曲線である。一方で、仮想線L1~Lnのうち、溝長手方向Lに沿い且つ溝の測定縁曲線MELとの差が最小になるという条件を満足する仮想線を縁基準線EBLとして選択する。例えば、図6に示すように、仮想線L1~Lnのそれぞれについて、測定縁曲線MELとの変位差が最小二乗法で最小になる仮想線Lnが、縁基準線EBLと定義される。図7に示すように、縁基準線EBLとうねり曲線EWCとの差分を用いると、溝の縁のうねりを精度よく評価することができる。 After applying a low-pass filter (cutoff value λs) to the measured edge curve MEL obtained as described above to obtain an edge curve, a bandpass filter (cutoff values λf, λc) is applied to the edge curve to remove long and short wavelength components from the measured edge curve, and a waviness curve EWC that forms the edge contour in the groove extension direction of the groove 3 is obtained as shown in FIG. 7. The waviness curve is a contour curve that is suitable for simplifying the contour shape itself with a smooth line. On the other hand, among the virtual lines L1 to Ln, a virtual line that is aligned in the groove longitudinal direction L and satisfies the condition that the difference with the measured edge curve MEL of the groove is minimized is selected as the edge reference line EBL. For example, as shown in FIG. 6, for each of the virtual lines L1 to Ln, the virtual line Ln that has the smallest displacement difference with the measured edge curve MEL by the least squares method is defined as the edge reference line EBL. As shown in FIG. 7, by using the difference between the edge reference line EBL and the waviness curve EWC, the waviness of the groove edge can be evaluated with high accuracy.
(溝の縁のうねり Rag)
 本実施態様において、溝の縁のうねりは0.5~5.0μmである。溝の縁のうねりRagが0.5μm未満であると、磁壁発生の起点として作用が小さく、十分に磁区細分化しないことがある。また、溝の縁のうねりが5.0μm超であると、電磁鋼板の磁化過程における磁壁移動を阻害するピンニングが生じて、鉄損の低下が困難となる。
(Rag)
In this embodiment, the waviness of the groove edge is 0.5 to 5.0 μm. If the waviness of the groove edge is less than 0.5 μm, the effect as a starting point for the generation of domain walls is small, and magnetic domains may not be sufficiently refined. If the waviness of the groove edge is more than 5.0 μm, pinning occurs that inhibits domain wall movement during the magnetization process of the magnetic steel sheet, making it difficult to reduce iron loss.
 溝の縁のうねりを下記式(1)で定義することができる。
Figure JPOXMLDOC01-appb-M000001
The waviness of the groove edge can be defined by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
[方向性電磁鋼板の製造方法]
 本発明の方向性電磁鋼板の製造工程を、以下に例示的に説明する。なお、これはあくまで本実施形態に係る方向性電磁鋼板の製造方法の一例であり、本実施形態の効果を損なわない範囲で任意に変更されてもよい。
[Method of manufacturing grain-oriented electrical steel sheet]
The manufacturing process of the grain-oriented electrical steel sheet of the present invention will be described below by way of example. Note that this is merely one example of the manufacturing method of the grain-oriented electrical steel sheet according to the present embodiment, and may be arbitrarily modified as long as the effects of the present embodiment are not impaired.
 (鋳造工程S1)
 鋳造工程S1では、スラブを準備する。スラブの製造方法の一例は次のとおりである。まず、溶鋼を製造(溶製)する。ついで、溶鋼を用いてスラブを製造する。スラブの製造方法は特に制限されないが、例えば連続鋳造法によりスラブを製造してもよい。溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。スラブの厚さは、特に限定されない。スラブの厚さは、例えば、150mm~350mmであってもよい。スラブの厚さは、好ましくは、220mm~280mmである。スラブとして、厚さが10mm~70mmの、いわゆる薄スラブを用いてもよい。薄スラブを用いる場合、熱間圧延工程S2において、仕上げ圧延前の粗圧延を省略できる。
(Casting process S1)
In the casting step S1, a slab is prepared. An example of a method for producing a slab is as follows. First, molten steel is produced (melted). Then, a slab is produced using the molten steel. The method for producing the slab is not particularly limited, and for example, the slab may be produced by a continuous casting method. An ingot may be produced using the molten steel, and the ingot may be bloomed to produce a slab. The thickness of the slab is not particularly limited. The thickness of the slab may be, for example, 150 mm to 350 mm. The thickness of the slab is preferably 220 mm to 280 mm. As the slab, a so-called thin slab having a thickness of 10 mm to 70 mm may be used. When a thin slab is used, rough rolling before finish rolling can be omitted in the hot rolling step S2.
 スラブの成分組成は、二次再結晶が生じる成分組成であればよい。スラブの基本成分、任意元素については具体的に述べると次のとおりである。なお、成分について用いられる%の表記は質量%を意味する。 The composition of the slab may be any composition that allows secondary recrystallization to occur. The basic components and optional elements of the slab are specifically described below. Note that the percentages used for the components refer to mass percent.
 Siは、電気抵抗を高め、鉄損を下げる上で重要な元素である。含有率が5.0%を超えると、冷間圧延時に材料が割れやすくなり圧延不可能になる。一方、Si量を下げると仕上げ焼鈍時にα→γ変態を生じ、結晶の方向性が損なわれるので、仕上げ焼鈍において結晶の方向性に影響を及ぼさない1.0%を下限としてもよい。したがって、Si含有量は1.0~5.0%であってもよい。 Si is an important element for increasing electrical resistance and reducing iron loss. If the content exceeds 5.0%, the material will be prone to cracking during cold rolling, making rolling impossible. On the other hand, lowering the amount of Si will cause α→γ transformation during final annealing, impairing the crystal orientation, so the lower limit may be set at 1.0%, which does not affect the crystal orientation during final annealing. Therefore, the Si content may be 1.0-5.0%.
 MnとSはMnSとして析出して、インヒビターとしての役割を果たす。Mn含有量が0.01%より少なく、またS含有量が0.005%より少ないと所定量の有効なMnSインヒビターが確保できない可能性がある。また、Mn含有量が0.15%より多く、S含有量が0.150%より多いとスラブ加熱時の溶体化が不十分となり、二次再結晶が安定して行われなくなる可能性がある。ゆえに、Mn含有量は0.01~0.15%であってもよく、S含有量は0.005~0.150%であってもよい。 Mn and S precipitate as MnS and act as inhibitors. If the Mn content is less than 0.01% and the S content is less than 0.005%, it may not be possible to secure the required amount of effective MnS inhibitors. Furthermore, if the Mn content is more than 0.15% and the S content is more than 0.150%, solutionization during slab heating may be insufficient, and secondary recrystallization may not occur stably. Therefore, the Mn content may be 0.01-0.15%, and the S content may be 0.005-0.150%.
 Cは、製造工程においては一次再結晶組織の制御に有効な元素であるものの、最終製品への含有量が過剰であると磁気特性に悪影響を及ぼす可能性がある。したがって、C含有量は0.085%以下としてもよい。C含有量の好ましい上限は0.080%である。Cは後述の脱炭焼鈍工程S5及び仕上げ焼鈍工程S8で純化され、仕上げ焼鈍工程S8の後には0.005%以下となる。スラブがCを含む場合、工業生産における生産性を考慮すると、C含有量の下限は0%超であってもよく、0.001%であってもよい。 Although C is an effective element for controlling the primary recrystallization structure in the manufacturing process, excessive C content in the final product may adversely affect the magnetic properties. Therefore, the C content may be 0.085% or less. The preferred upper limit of the C content is 0.080%. C is purified in the decarburization annealing step S5 and the finish annealing step S8 described below, and becomes 0.005% or less after the finish annealing step S8. When the slab contains C, the lower limit of the C content may be more than 0%, or may be 0.001%, taking into account the productivity in industrial production.
 酸可溶性Alは、Nと結合してAlNまたは(Al,Si)Nとなった状態でインヒビターとして機能する元素である。酸可溶性Alの含有量は、磁束密度が高くなる0.012%~0.065%としてもよい。 Acid-soluble Al is an element that functions as an inhibitor when it bonds with N to form AlN or (Al,Si)N. The content of acid-soluble Al may be 0.012% to 0.065%, at which point the magnetic flux density increases.
 Nは製鋼時に0.012%以上添加されるとブリスターと呼ばれる鋼板中の空孔が生じるので、N含有量の上限は0.012%であってもよい。Nは製造工程の途中で窒化により含有させることが可能であるため下限は特に限定されず、0%であってもよい。ただし、Nの検出限界が0.0001%なので、実質的な下限は0.0001%である。 If 0.012% or more of N is added during steelmaking, voids in the steel plate called blisters will form, so the upper limit of the N content may be 0.012%. Since N can be added by nitriding during the manufacturing process, there is no particular lower limit and it may be 0%. However, since the detection limit for N is 0.0001%, the effective lower limit is 0.0001%.
 スラブには、他のインヒビター構成元素としてB、Bi、Se、Pb、Sn、Tiなどを添加することもできる。添加量は適宜調整されてもよく、B含有量の上限値は0.080%、Bi含有量の上限値は0.010%、Se含有量の上限値は0.035%、Pb含有量の上限値は0.10%、Sn含有量の上限値は0.10%、Ti含有量の上限値は0.015%であってもよい。これら任意添加元素は、公知の目的に応じてスラブに含有させればよいため、任意添加元素の含有量の下限値を設ける必要はなく、例えば下限値は0%であってもよい。 Other inhibitor constituent elements such as B, Bi, Se, Pb, Sn, and Ti can also be added to the slab. The amounts added can be adjusted as appropriate, and the upper limit for the B content can be 0.080%, the upper limit for the Bi content can be 0.010%, the upper limit for the Se content can be 0.035%, the upper limit for the Pb content can be 0.10%, the upper limit for the Sn content can be 0.10%, and the upper limit for the Ti content can be 0.015%. These optional added elements can be added to the slab according to known purposes, so there is no need to set a lower limit for the content of the optional added elements, and the lower limit can be 0%, for example.
 スラブの化学組成の残部はFe及び不純物からなる。なお、ここでいう「不純物」は、スラブを工業的に製造する際に、鉱石、スクラップなどの原料、製造工程の種々の要因によってスラブに混入する成分であって、本実施形態に係る方向性電磁鋼板に実質的に影響を与えない範囲で許容されるものを意味する。 The remainder of the chemical composition of the slab consists of Fe and impurities. Note that "impurities" here refer to components that are mixed into the slab due to various factors in the manufacturing process and raw materials such as ores and scraps when the slab is industrially manufactured, and are acceptable to the extent that they do not substantially affect the grain-oriented electrical steel sheet according to this embodiment.
 スラブには、化合物形成によるインヒビター機能の強化や磁気特性への影響を考慮して、Feの一部に代えて、公知の任意元素を含有(添加)させてもよい。Feの一部に代えてスラブに含有させる任意元素として、例えば、Cu、P、Sb、Sn、Cr、Ni等が挙げられる。これらの何れか1種または2種以上をスラブに添加してもよい。Cu含有量の上限値は0.3%、P含有量の上限値は0.5%、Sb含有量の上限値は0.3%、Sn含有量の上限値は0.3%、Cr含有量の上限値は0.30%、Ni含有量の上限値は1.0%であってもよい。これらの任意添加元素は、公知の目的に応じてスラブに含有させればよいため、任意添加元素の含有量の下限値を設ける必要はなく、下限値は0%でもよい。  In consideration of the strengthening of the inhibitor function by compound formation and the effect on magnetic properties, the slab may contain (add) a known optional element in place of a portion of Fe. Examples of optional elements to be contained in the slab in place of a portion of Fe include Cu, P, Sb, Sn, Cr, and Ni. Any one or more of these may be added to the slab. The upper limit of the Cu content may be 0.3%, the upper limit of the P content may be 0.5%, the upper limit of the Sb content may be 0.3%, the upper limit of the Sn content may be 0.3%, the upper limit of the Cr content may be 0.30%, and the upper limit of the Ni content may be 1.0%. Since these optional added elements may be contained in the slab according to a known purpose, there is no need to set a lower limit for the content of the optional added element, and the lower limit may be 0%.
 スラブの化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定することができる。具体的には、スラブから採取した35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより、化学組成が特定される。なお、CおよびSは燃焼-赤外線吸収法を用いて測定し、Nは不活性ガス融解-熱伝導度法を用いて測定することができる。 The chemical composition of the slab can be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, the chemical composition is determined by measuring a 35 mm square test piece taken from the slab using a Shimadzu ICPS-8100 or other measuring device under conditions based on a previously prepared calibration curve. C and S can be measured using the combustion-infrared absorption method, and N can be measured using the inert gas fusion-thermal conductivity method.
 (熱間圧延工程S2)
 熱間圧延工程S2は、所定の加熱温度(例えば1100℃~1400℃)まで加熱されたスラブの熱間圧延を行い、熱延鋼板を得る工程である。熱間圧延時の加熱温度は、例えば、熱間圧延時の温度確保の観点から1100℃以上であってもよく、さらにはインヒビター成分であるAlNを完全溶体化させないという観点から1280℃以下であってもよい。なお、AlNとMnSを主インヒビターとする場合、熱間圧延時の加熱温度は、これらのインヒビター成分が完全溶体化する1300℃以上としてもよい。
(Hot rolling process S2)
The hot rolling step S2 is a step of hot rolling a slab heated to a predetermined heating temperature (for example, 1100°C to 1400°C) to obtain a hot-rolled steel sheet. The heating temperature during hot rolling may be, for example, 1100°C or higher from the viewpoint of ensuring the temperature during hot rolling, and may be 1280°C or lower from the viewpoint of not completely dissolving AlN, which is an inhibitor component. Note that, when AlN and MnS are used as main inhibitors, the heating temperature during hot rolling may be 1300°C or higher at which these inhibitor components are completely dissolved.
 (熱延鋼板焼鈍工程S3)
 熱延鋼板焼鈍工程S3は、熱間圧延工程S2で得られた熱延鋼板を直ちに、もしくは短時間で焼鈍し、焼鈍鋼板を得る工程である。焼鈍は750℃~1200℃の温度域で30秒~30分間行われてもよい。この焼鈍は製品の磁気特性を高めるために有効である。
(Hot-rolled steel sheet annealing process S3)
The hot-rolled steel sheet annealing step S3 is a step in which the hot-rolled steel sheet obtained in the hot rolling step S2 is annealed immediately or for a short time to obtain an annealed steel sheet. The annealing may be performed in a temperature range of 750°C to 1200°C for 30 seconds to 30 minutes. This annealing is effective for improving the magnetic properties of the product.
 (冷間圧延工程S4)
 冷間圧延工程S4は、熱延鋼板焼鈍工程S3で得た焼鈍鋼板を、1回の冷間圧延、又は、焼鈍(中間焼鈍)を介して複数回(2回以上)の冷間圧延(例えば総冷延率で80%~95%)により、冷延鋼板を得る工程である。冷延鋼板の厚さは、例えば0.10mm~0.50mmであってもよい。
(Cold rolling process S4)
The cold rolling step S4 is a step of obtaining a cold-rolled steel sheet by performing a single cold rolling process or performing multiple cold rolling processes (two or more times) via annealing (intermediate annealing) (for example, a total cold rolling rate of 80% to 95%) on the annealed steel sheet obtained in the hot-rolled steel sheet annealing step S3. The thickness of the cold-rolled steel sheet may be, for example, 0.10 mm to 0.50 mm.
 (脱炭焼鈍工程S5)
 脱炭焼鈍工程S5は、冷間圧延工程S4で得た冷延鋼板に脱炭焼鈍を行い、一次再結晶が生じた脱炭焼鈍鋼板(脱炭焼鈍工程を行った冷延鋼板)を得る工程である。脱炭焼鈍は、例えば700℃~900℃で1分間~3分間行えばよい。
(Decarburization annealing step S5)
The decarburization annealing step S5 is a step of performing decarburization annealing on the cold-rolled steel sheet obtained in the cold rolling step S4 to obtain a decarburization annealed steel sheet in which primary recrystallization has occurred (a cold-rolled steel sheet that has been subjected to the decarburization annealing step). The decarburization annealing may be performed at 700°C to 900°C for 1 minute to 3 minutes, for example.
 冷延鋼板に脱炭焼鈍を行うことで、冷延鋼板中に含まれるC成分が除去される。脱炭焼鈍は、冷延鋼板中に含まれるC成分を除去するために、湿潤雰囲気中で行うことが好ましい。 By subjecting cold-rolled steel sheet to decarburization annealing, the C components contained in the cold-rolled steel sheet are removed. Decarburization annealing is preferably performed in a humid atmosphere in order to remove the C components contained in the cold-rolled steel sheet.
 (窒化処理工程S6)
 窒化処理工程S6は、二次再結晶におけるインヒビターの強度を調整するため、必要に応じて実施される工程である。窒化処理は、脱炭焼鈍工程の開始から、仕上げ焼鈍工程における二次再結晶の開始までの間に、冷延鋼板の窒素量を40ppm~200ppm程度増加させる処理である。窒化処理としては、例えば、アンモニア等の窒化能のあるガスを含有する雰囲気中で脱炭焼鈍鋼板を焼鈍する処理、MnN等の窒化能を有する粉末を含む焼鈍分離剤を後述の焼鈍分離剤塗布工程S7で脱炭焼鈍鋼板に塗布する処理等が挙げられる。
(Nitriding process S6)
The nitriding process S6 is a process that is carried out as necessary to adjust the strength of the inhibitor in the secondary recrystallization. The nitriding process is a process that increases the nitrogen content of the cold-rolled steel sheet by about 40 ppm to 200 ppm from the start of the decarburization annealing process to the start of the secondary recrystallization in the finish annealing process. Examples of the nitriding process include a process of annealing the decarburization annealed steel sheet in an atmosphere containing a nitriding gas such as ammonia, and a process of applying an annealing separator containing a powder having a nitriding ability such as MnN to the decarburization annealed steel sheet in the annealing separator application process S7 described later.
 (焼鈍分離剤塗布工程S7)
 焼鈍分離剤塗布工程S7は、脱炭焼鈍鋼板に焼鈍分離剤を塗布する工程である。焼鈍分離剤としては、例えば、アルミナ(Al)を主成分とする焼鈍分離剤を用いることができる。焼鈍分離剤を塗布した後の脱炭焼鈍鋼板は、コイル状に巻取った状態で、次の仕上げ焼鈍工程S8で仕上げ焼鈍される。
 なお、MgSiOを含むグラス被膜を形成する場合には、マグネシア(MgO)を主成分とする焼鈍分離剤を用いる。
(Annealing separator application step S7)
The annealing separator application step S7 is a step of applying an annealing separator to the decarburized annealed steel sheet. As the annealing separator, for example, an annealing separator mainly composed of alumina (Al 2 O 3 ) can be used. The decarburized annealed steel sheet after the annealing separator application is wound into a coil and finish-annealed in the next finish-annealing step S8.
When forming a glass coating containing Mg 2 SiO 4 , an annealing separator containing magnesia (MgO) as a main component is used.
 (仕上げ焼鈍工程S8)
 仕上げ焼鈍工程S8は、焼鈍分離剤が塗布された脱炭焼鈍鋼板に仕上げ焼鈍を施し、二次再結晶を生じさせる工程である。この二次再結晶を伴う仕上げ焼鈍工程S8は、一次再結晶粒の成長をインヒビターにより抑制した状態で二次再結晶を進行させることによって、{100}<001>方位粒を優先成長させ、磁束密度を飛躍的に向上させる。
 なお、上述の焼鈍分離剤塗布工程S7でマグネシア(MgO)を塗布した場合には、この仕上げ焼鈍工程S8によりMgSiOを含むグラス被膜が形成される。なお、本形態では、このようなグラス被膜も母材鋼板(後述の仕上げ焼鈍鋼板)に含まれるものとする。したがって、例えば、仕上げ焼鈍鋼板にグラス被膜が形成される場合、「仕上げ焼鈍鋼板の表面」はグラス被膜の表面を意味するものとする。グラス被膜を形成することで、最終的に得られる方向性電磁鋼板の特性がさらに高まることが期待される。
(Finish annealing step S8)
The final annealing step S8 is a step in which the decarburized annealed steel sheet coated with the annealing separator is subjected to final annealing to cause secondary recrystallization. This final annealing step S8 involving secondary recrystallization causes the {100}<001> oriented grains to grow preferentially by promoting secondary recrystallization in a state in which the growth of primary recrystallized grains is suppressed by an inhibitor, and thus dramatically improves the magnetic flux density.
In addition, when magnesia (MgO) is applied in the above-mentioned annealing separator application step S7, a glass coating containing Mg 2 SiO 4 is formed in this finish annealing step S8. In this embodiment, such a glass coating is also included in the base steel sheet (finish annealed steel sheet described later). Therefore, for example, when a glass coating is formed on a finish annealed steel sheet, the "surface of the finish annealed steel sheet" means the surface of the glass coating. It is expected that the properties of the grain-oriented electrical steel sheet finally obtained will be further improved by forming a glass coating.
 (溝形成工程S9)
 溝形成工程S9は、磁区制御(磁区細分化)を目的として、鋼板に対し溝を形成する工程である。溝の形成は、レーザー、電子ビーム、プラズマ、機械的方法、エッチングなど、公知の手法により、形成することができる。
(Groove forming step S9)
The groove forming step S9 is a step of forming grooves in the steel sheet for the purpose of magnetic domain control (magnetic domain refinement). The grooves can be formed by a known method such as a laser, an electron beam, plasma, a mechanical method, or etching.
 上記の説明の流れでは、溝形成工程S9は、仕上げ焼鈍工程S8の後で行われている。しかし、溝形成工程S9は、冷間圧延工程S4を経た鋼板(すなわち冷延鋼板)に対して行ってもよい。この場合にも、磁区細分化に理想的な線状溝Gの断面形状を維持することが出来る。したがって、溝形成工程S9を行うタイミングは、仕上げ焼鈍工程S8の前でも後でもよい。ただし、後述する張力被膜付与工程S10を行う場合は、当該工程S10の前に溝形成工程9を行っておく必要がある。 In the above explanation, the groove forming process S9 is performed after the finish annealing process S8. However, the groove forming process S9 may also be performed on a steel sheet that has been subjected to the cold rolling process S4 (i.e., a cold-rolled steel sheet). In this case as well, it is possible to maintain the cross-sectional shape of the linear grooves G that is ideal for magnetic domain refinement. Therefore, the timing for performing the groove forming process S9 may be before or after the finish annealing process S8. However, if the tension coating application process S10 described below is performed, the groove forming process S9 must be performed before that process S10.
 溝形成のために、レーザーを用いる場合、以下のレーザー照射条件の例により、本実施形態による電磁鋼板を得ることができる。 When using a laser to form the grooves, the electromagnetic steel sheet according to this embodiment can be obtained by using the following example laser irradiation conditions.
 レーザー照射工程では、鋼板の表面(片面のみ)に対してレーザーを照射して、鋼板の表面に、圧延方向と交差する方向に延びる複数の溝を、圧延方向に沿って2~20mmの範囲の所望のピッチ間隔で形成してもよい。 In the laser irradiation process, a laser may be irradiated onto the surface of the steel plate (one side only) to form multiple grooves on the surface of the steel plate extending in a direction intersecting the rolling direction at a desired pitch interval in the range of 2 to 20 mm along the rolling direction.
 レーザー照射工程では、レーザー照射装置が、ポリゴンミラーの回転駆動によって、レーザー光を鋼板の表面に向けて照射すると共に、レーザー光を圧延直角方向と0~30°の角度をなす方向に走査してもよい。 In the laser irradiation process, the laser irradiation device may rotate a polygon mirror to irradiate the laser light onto the surface of the steel plate, and may also scan the laser light in a direction that forms an angle of 0 to 30 degrees with the direction perpendicular to the rolling direction.
 レーザー光の照射と同時に、ウォータージェットが、レーザー光が照射される鋼板の部位に吹き付けられてもよい。ウォータージェットでは、高圧水ポンプで加圧した水をノズルから吐出した超高速水流を対象部に衝突させることで、対象部の洗浄、剥離、切断等の作用を生じることができる。加圧は50~350MPaまで、ノズルは0.1mm-1mmほどの大きさであってもよく、溶媒(水)に研磨材(サンドブラストガーネット等)を加えてもよい。研磨材の材質、粒度(#)等は、適宜選択することができる。粒度(#)10~1000の範囲であってもよい。ウォータージェットは、レーザー照射によって鋼板から溶融又は蒸発した成分を除去する役割を担っている。ウォータージェットの吹き付けにより、上記溶融又は蒸発した成分が溝に残らないようにすることができ、溝の縁のうねりを所望の範囲で安定的に形成することができる。 At the same time as the laser light is irradiated, a water jet may be sprayed onto the area of the steel plate irradiated with the laser light. In the water jet, water pressurized by a high-pressure water pump is discharged from a nozzle and an ultra-high-speed water stream is collided with the target part, thereby cleaning, peeling, cutting, etc. of the target part. The pressure can be up to 50 to 350 MPa, the nozzle can be about 0.1 mm to 1 mm in size, and an abrasive (sandblasting garnet, etc.) can be added to the solvent (water). The material and grain size (#) of the abrasive can be appropriately selected. The grain size (#) may be in the range of 10 to 1000. The water jet plays a role in removing the components melted or evaporated from the steel plate by the laser irradiation. By spraying the water jet, it is possible to prevent the above-mentioned melted or evaporated components from remaining in the groove, and the undulation of the edge of the groove can be stably formed within the desired range.
 レーザー光の照射と同時に、空気又は不活性ガス等のアシストガスが、レーザー光が照射される鋼板の部位に吹き付けられてもよい。不活性ガスとは、例えば、窒素又はアルゴン等である。アシストガスは、レーザー照射によって鋼板から溶融又は蒸発した成分を除去する役割を担っている。アシストガスの吹き付けにより、レーザー光が上記溶融又は蒸発した成分によって阻害されずに鋼板に到達するため、溝が安定的に形成される。 At the same time as the laser light is irradiated, an assist gas such as air or an inert gas may be sprayed onto the area of the steel plate where the laser light is irradiated. Examples of inert gas include nitrogen or argon. The assist gas serves to remove components that have melted or evaporated from the steel plate due to the laser irradiation. By spraying the assist gas, the laser light can reach the steel plate without being obstructed by the melted or evaporated components, so that grooves are formed stably.
 レーザー光源としては、例えばファイバレーザー、YAGレーザー、半導体レーザー、またはCO2レーザー等の一般的に工業用に用いられる高出力レーザーを使用することができる。また、溝を安定的に形成することができさえすれば、パルスレーザー、または連続波レーザーをレーザー光源として使用してもよい。レーザー光としては、溝の形成には集光性が高いシングルモードレーザーを用いることが一般的であるが、パワーピークを適当に分布させたマルチモードレーザーを用いてもよい。 As the laser light source, for example, a high-power laser generally used for industrial purposes, such as a fiber laser, a YAG laser, a semiconductor laser, or a CO2 laser, can be used. In addition, a pulsed laser or a continuous wave laser may be used as the laser light source as long as it can stably form a groove. As the laser light, a single mode laser with high light-collecting ability is generally used for forming a groove, but a multimode laser with an appropriately distributed power peak may also be used.
 レーザー光の照射条件の一例として、例えば、レーザー出力を200W~3000Wとして、溝を形成する際のレーザーのビーム形状を変化させ実施する。 As an example of the laser light irradiation conditions, the laser output is set to 200W to 3000W, and the laser beam shape is changed when forming the grooves.
 レーザー光の集光スポット径(すなわちレーザー出力の86%を含む直径、以下、86%径と省略記載することもある)を10μm~1000μmに設定し、レーザー走査速度を1m/s~100m/sに、レーザー走査ピッチ(間隔PL)を2mm~10mmに設定してもよい。所望の溝が得られるように、これらのレーザー照射条件を適宜調整する。 The diameter of the focused spot of the laser light (i.e. the diameter containing 86% of the laser output, hereinafter sometimes abbreviated as 86% diameter) may be set to 10 μm to 1000 μm, the laser scanning speed to 1 m/s to 100 m/s, and the laser scanning pitch (spacing PL) to 2 mm to 10 mm. These laser irradiation conditions are adjusted as appropriate to obtain the desired groove.
 (張力被膜付与工程S10)
 張力被膜付与工程S10は、仕上げ焼鈍鋼板の溝形成面にコーティング溶液を塗布し、焼き付けることで、溝形成面上に絶縁被膜(張力被膜)を形成する工程である。絶縁被膜(張力被膜)を形成することで、最終的に得られる方向性電磁鋼板の特性がさらに高まることが期待される。
(Tension coating step S10)
The tension coating step S10 is a step of applying a coating solution to the groove-formed surface of the finish-annealed steel sheet and baking it to form an insulating coating (tensile coating) on the groove-formed surface. By forming the insulating coating (tensile coating), it is expected that the properties of the finally obtained grain-oriented electrical steel sheet will be further improved.
 ここで、コーティング溶液は、例えば、リン酸、リン酸塩、無水クロム酸、クロム酸塩、アルミナ、又はシリカの化合物を含む。焼き付けは、例えば、350℃~1150℃で、5秒間~300秒間の条件で行えばよい。 Here, the coating solution contains, for example, a compound of phosphoric acid, a phosphate, chromic anhydride, a chromate, alumina, or silica. Baking may be performed, for example, at 350°C to 1150°C for 5 seconds to 300 seconds.
 以下に、実施例を示しながら、本発明の一実施形態に係る方向性電磁鋼板について、より具体的に説明する。なお、以下に示す実施例は、本実施形態に係る方向性電磁鋼板のあくまでも一例に過ぎず、本実施形態に係る方向性電磁鋼板が以下に示す実施例に限定されるものではない。 Below, the grain-oriented electromagnetic steel sheet according to one embodiment of the present invention will be described in more detail, with reference to examples. Note that the examples shown below are merely examples of the grain-oriented electromagnetic steel sheet according to this embodiment, and the grain-oriented electromagnetic steel sheet according to this embodiment is not limited to the examples shown below.
 方向性電磁鋼板が質量分率で、Si:3.0%、C:0.080%、酸可溶性Al:0.028%、N:0.010%、Mn:0.12%、Cr:0.05%、Cu:0.04%、P:0.01%、Sn:0.02%、Sb:0.01%、Ni:0.005%、S:0.007%、Se:0.001%、を含有し、残部がFeおよび不純物からなる化学成分を有するように調製したスラブに対して熱間圧延が実施され、厚さ2.3mmの熱延鋼板を得た。 The grain-oriented electrical steel sheet contained, by mass fraction, Si: 3.0%, C: 0.080%, acid-soluble Al: 0.028%, N: 0.010%, Mn: 0.12%, Cr: 0.05%, Cu: 0.04%, P: 0.01%, Sn: 0.02%, Sb: 0.01%, Ni: 0.005%, S: 0.007%, Se: 0.001%, with the remainder being Fe and impurities. The slab was then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 2.3 mm.
 続いて、上記の熱延鋼板に対して、1000℃で1分間加熱するという温度条件の下で焼鈍処理を実施した。
 焼鈍処理の後、冷間圧延を実施して、厚さ0.23mmの冷延鋼板を得た。続いて、この冷延鋼板に対して、800℃で2分間加熱するという温度条件の下で脱炭焼鈍処理を実施した後、マグネシア(MgO)を主成分として含有する焼鈍分離剤を、冷延鋼板の表面に塗布した。
Next, the above hot-rolled steel sheets were subjected to an annealing treatment under temperature conditions of heating at 1000° C. for 1 minute.
After the annealing treatment, cold rolling was performed to obtain a cold-rolled steel sheet having a thickness of 0.23 mm. Subsequently, the cold-rolled steel sheet was subjected to a decarburization annealing treatment under a temperature condition of heating at 800° C. for 2 minutes, and then an annealing separator containing magnesia (MgO) as a main component was applied to the surface of the cold-rolled steel sheet.
 続いて、焼鈍分離剤が塗布された冷延鋼板に対して、1200℃で20時間加熱するという温度条件の下で仕上焼鈍処理を実施した。その結果、上述の化学組成を有し、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された、グラス皮膜が表面に形成された鋼板が得られた。 Then, the cold-rolled steel sheet coated with the annealing separator was subjected to a final annealing process under the temperature conditions of heating at 1200°C for 20 hours. As a result, a steel sheet was obtained with the above-mentioned chemical composition, a glass film formed on the surface, and a crystal orientation controlled so that the magnetization easy axis of the crystal grains coincided with the rolling direction.
 続いて、鋼板の表面に対して、表1に示す条件でウォータージェットを当てながら、レーザーを照射して、鋼板の表面に、溝を付与した。ウォータージェットでは、研磨材としてサンドブラストガーネット(株)ニッチュー製 高硬度ガーネットType-2(800-300μm))を用いた。 Then, a water jet was applied to the surface of the steel plate under the conditions shown in Table 1, while a laser was irradiated to create grooves on the surface of the steel plate. For the water jet, Sandblast Garnet (high hardness garnet Type-2 (800-300 μm) manufactured by Nitchu Co., Ltd.) was used as the abrasive.
 レーザー光照射装置はIPG社製のファイバレーザーを用いた。レーザー光の照射条件は、レーザー出力が300Wで、レーザー走査速度が50m/sで、レーザー走査ピッチ(間隔PL)が3mmになるよう調整した。レーザー光の集光スポット径は50μmになるよう調整した。圧延方向と直角の方向に3mm間隔で、深さDが約20μmの線状の溝が形成された。表1に示す条件を満たすように、溝の幅、隣り合う溝どうしの重なり代、及び溝の縁のうねりを調整された溝群が、全ての溝群の75%となるように、方向性電磁鋼板を製造した。なお、溝を形成する工程は、仕上焼鈍後または冷間圧延工程後のいずれかで行った。 The laser light irradiation device used was a fiber laser manufactured by IPG. The laser light irradiation conditions were adjusted to a laser output of 300 W, a laser scanning speed of 50 m/s, and a laser scanning pitch (spacing PL) of 3 mm. The focused spot diameter of the laser light was adjusted to 50 μm. Linear grooves with a depth D of approximately 20 μm were formed at intervals of 3 mm in the direction perpendicular to the rolling direction. Grain-oriented electrical steel sheets were manufactured so that 75% of all groove groups had groove widths, overlaps between adjacent grooves, and undulations at the edges of the grooves adjusted to satisfy the conditions shown in Table 1. The groove formation process was performed either after finish annealing or after the cold rolling process.
 得られた電磁鋼板で容量25kVAの巻コアを製造し、歪取焼鈍(均熱温度750℃で4時間保持)を行った上で、鉄損W17/50を測定した。結果を表1に示す。 A wound core with a capacity of 25 kVA was manufactured from the obtained magnetic steel sheet, and after stress relief annealing (holding at a soaking temperature of 750°C for 4 hours), the core loss W17/50 was measured. The results are shown in Table 1.
 [磁気特性評価]
 巻コアに関し、JIS C 2550-1:2011に記載の励磁電流法を用いた測定を、周波数50Hz、磁束密度1.7Tの条件で行ない、巻鉄心の鉄損値(鉄心鉄損またはコア鉄損と称することもある)WAを測定する。
[Magnetic property evaluation]
For the wound core, measurements are performed using the excitation current method described in JIS C 2550-1:2011 under conditions of a frequency of 50 Hz and a magnetic flux density of 1.7 T to measure the iron loss value (sometimes referred to as iron core iron loss or core iron loss) WA of the wound core.
 この結果から、本発明の範囲内の電磁鋼板で試作した巻きコアの磁気特性が良く、コア鉄損の増加を抑えることができることが判った。詳しくは、素材鉄損が0.74W/kgの材料を用い、トランコ型のコアを作製したところ、実測のコア鉄損が劣化した。コア鉄損に関して0.80W/kgを越えない、という判定基準を設けたところ、No.2とNo.5の条件がこれを満たした。 These results show that the magnetic properties of the prototype wound core made from electromagnetic steel sheets within the scope of this invention are good, and that it is possible to suppress an increase in core iron loss. In more detail, when a Tranco-type core was made using a material with a material iron loss of 0.74 W/kg, the actual measured core iron loss deteriorated. When a criterion was set for the core iron loss not to exceed 0.80 W/kg, conditions No. 2 and No. 5 met this.
 また、No.10では、ウォータージェットを当てずに、レーザー光による溝形成の例としてレーザー出力を3100W、集光スポット径を8μm、レーザー走査速度を1m/s、レーザー走査ピッチ(間隔PL)を2mmとして、溝を形成した。この合、溝の縁のうねりが15μmになり、鉄損が0.89W/kgと大きくなった。 In No. 10, as an example of groove formation using laser light without applying a water jet, grooves were formed with a laser output of 3100 W, a focused spot diameter of 8 μm, a laser scanning speed of 1 m/s, and a laser scanning pitch (spacing PL) of 2 mm. In this case, the waviness of the groove edge was 15 μm, and the iron loss was large at 0.89 W/kg.
 別途、隣り合う溝どうしの重なり代を25mmに固定して、溝の幅と溝の縁のうねりを変化させた場合について調査した。結果を図9に示す。図9において、溝の幅と溝の縁のうねりが本発明の範囲内であると磁気特性が良好であることを確認した。この場合においても、素材0.74W/kgの材料を用いてコア鉄損を測定したところ0.80W/kgを越えない良好な磁気特性を得た。 Separately, an investigation was carried out in which the overlap between adjacent grooves was fixed at 25 mm, and the groove width and undulation of the groove edges were varied. The results are shown in Figure 9. Figure 9 confirms that the magnetic properties are good when the groove width and undulation of the groove edges are within the range of the present invention. Even in this case, when the core iron loss was measured using a material with a core density of 0.74 W/kg, good magnetic properties were obtained, not exceeding 0.80 W/kg.
 別途、溝の幅を50μmに固定して、隣り合う溝どうしの重なり代と溝の縁のうねりを変化させた場合について調査した。結果を図10に示す。図10において、隣り合う溝どうしの重なり代と溝の縁のうねりが本発明の範囲内であると、磁気特性が良好であることを確認した。この場合においても、素材0.74W/kgの材料を用いてコア鉄損を測定したところ0.80W/kgを越えない良好な磁気特性を得た。 Separately, we investigated the case where the groove width was fixed at 50 μm and the overlap between adjacent grooves and the waviness of the groove edges were changed. The results are shown in Figure 10. In Figure 10, it was confirmed that the magnetic properties were good when the overlap between adjacent grooves and the waviness of the groove edges were within the range of the present invention. Even in this case, when the core iron loss was measured using a material with a material strength of 0.74 W/kg, good magnetic properties were obtained that did not exceed 0.80 W/kg.

Claims (1)

  1.  圧延方向と交差する方向に延在しかつ溝深さ方向が板厚方向となる溝が形成された鋼板表面を有する鋼板を備え、
     前記板厚方向から前記鋼板表面を見た場合に、板幅方向に対して前記溝が複数配されて構成される溝群を有し、前記溝群が前記圧延方向に対して間隔を有して複数配される方向性電磁鋼板であって、
     前記溝群のうち75%以上の溝群において、
     前記溝群を構成する前記溝の平均幅が42~62μmであり、
     前記溝群を構成する前記溝が、前記溝の延在する方向と前記溝深さ方向とに平行である投影面上で隣り合う溝と重なるように配され、
     この方向性電磁鋼板において、前記鋼板の前記板幅方向の端部を基準端部とし、前記溝群の複数の前記溝のうちの隣り合う溝を前記基準端部から近い順に第一の溝、第二の溝とし、
     前記溝群を構成する各溝での前記溝の延在する方向の2つの溝端を、前記基準端部から近い順に第一溝端、第二溝端とし、
     前記投影面において、前記第二の溝の前記第一溝端と前記第一の溝の前記第二溝端との間の重なり代が5~30mmであり、
     前記溝群を構成する前記溝の縁のうねりが0.5~5.0μmである、方向性電磁鋼板。
    The steel plate has a steel plate surface on which a groove is formed extending in a direction intersecting the rolling direction and having a groove depth direction in the plate thickness direction,
    A grain-oriented electrical steel sheet having a groove group formed by arranging a plurality of the grooves in the sheet width direction when the steel sheet surface is viewed from the sheet thickness direction, and the groove groups are arranged at intervals in the rolling direction,
    In at least 75% of the groove groups,
    The grooves constituting the groove group have an average width of 42 to 62 μm;
    the grooves constituting the groove group are arranged so as to overlap with adjacent grooves on a projection plane that is parallel to the groove extension direction and the groove depth direction,
    In this grain-oriented electrical steel sheet, an end portion in the sheet width direction of the steel sheet is defined as a reference end portion, and adjacent grooves among the plurality of grooves in the groove group are defined as a first groove and a second groove in the order of proximity to the reference end portion,
    two groove ends in an extending direction of each groove constituting the groove group are designated as a first groove end and a second groove end in the order of being closer to the reference end portion;
    an overlapping margin between the first groove end of the second groove and the second groove end of the first groove is 5 to 30 mm on the projection plane;
    The groove group includes an edge waviness of the grooves of 0.5 to 5.0 μm.
PCT/JP2023/042012 2022-11-22 2023-11-22 Grain-oriented electrical steel sheet WO2024111630A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-186417 2022-11-22
JP2022186417 2022-11-22

Publications (1)

Publication Number Publication Date
WO2024111630A1 true WO2024111630A1 (en) 2024-05-30

Family

ID=91196081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042012 WO2024111630A1 (en) 2022-11-22 2023-11-22 Grain-oriented electrical steel sheet

Country Status (1)

Country Link
WO (1) WO2024111630A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140470A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Grain oriented silicon steel plate and production method thereof
WO2016171129A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet
KR20200034379A (en) * 2018-09-21 2020-03-31 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP2021025061A (en) * 2019-07-31 2021-02-22 Jfeスチール株式会社 Method of forming linear groove and method of manufacturing grain-oriented electrical steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140470A (en) * 2014-01-30 2015-08-03 Jfeスチール株式会社 Grain oriented silicon steel plate and production method thereof
WO2016171129A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet
KR20200034379A (en) * 2018-09-21 2020-03-31 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP2021025061A (en) * 2019-07-31 2021-02-22 Jfeスチール株式会社 Method of forming linear groove and method of manufacturing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2016171129A1 (en) Oriented electromagnetic steel sheet
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
KR20130037216A (en) Oriented electromagnetic steel plate and production method for same
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP7393698B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP2022022494A (en) Grain oriented electrical steel sheet
JP2000063950A (en) Grain oriented silicon steel sheet excellent in magnetic property and film characteristic and its production
JP2013087299A (en) Method for producing grain-oriented electromagnetic steel sheet
MX2012015155A (en) Process for producing grain-oriented magnetic steel sheet.
JP5760506B2 (en) Method for producing grain-oriented electrical steel sheet
KR20170074608A (en) Grain oriented electrical steel sheet and manufacturing method for the same
JP2022022490A (en) Grain oriented electrical steel sheet
WO2023195466A1 (en) Grain-oriented electromagnetic steel sheet and production method for same
WO2023195470A9 (en) Oriented electromagnetic steel sheet and method for producing same
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
WO2024111630A1 (en) Grain-oriented electrical steel sheet
JPWO2014080763A1 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR102176346B1 (en) Electrical steel sheet and manufacturing method of the same
WO2024111628A1 (en) Grain-oriented electrical steel sheet having excellent iron loss characteristics
JP7473864B1 (en) Wound core
JP6003197B2 (en) Magnetic domain subdivision processing method
WO2024111613A1 (en) Wound core
JP2000034521A (en) Production of grain oriented silicon steel sheet excellent in magnetic property