WO2024111625A1 - Acoustic wave device and communication device - Google Patents

Acoustic wave device and communication device Download PDF

Info

Publication number
WO2024111625A1
WO2024111625A1 PCT/JP2023/041983 JP2023041983W WO2024111625A1 WO 2024111625 A1 WO2024111625 A1 WO 2024111625A1 JP 2023041983 W JP2023041983 W JP 2023041983W WO 2024111625 A1 WO2024111625 A1 WO 2024111625A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic wave
heat dissipation
wave device
wiring pattern
multilayer substrate
Prior art date
Application number
PCT/JP2023/041983
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 浜谷
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024111625A1 publication Critical patent/WO2024111625A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • This disclosure relates to an elastic wave device.
  • Patent Document 1 discloses a technology in which a pattern in a multilayer substrate to which a SAW (Surface Acoustic Wave) filter is connected has thermal vias, and the thermal vias are used to dissipate heat generated by the SAW filter from the back side of the surface on which the SAW filter is located.
  • SAW Surface Acoustic Wave
  • an acoustic wave device includes an acoustic wave chip and a multilayer substrate having a first surface bonded to the acoustic wave chip, the multilayer substrate having a heat dissipation section in an inner layer of the multilayer substrate, the heat dissipation section being made of a conductor connected to a first wiring provided on the acoustic wave chip, and a metal layer located on a second surface opposite the first surface is not connected to the heat dissipation section.
  • FIG. 11 is a diagram illustrating a schematic configuration of a communication device according to a second embodiment.
  • 1 is an example of a circuit diagram of a ladder type filter.
  • 1 is an example of an elastic wave device according to a reference example.
  • Patent Document 1 while a high heat dissipation effect can be achieved, the back surface of the SAW filter is occupied by thermal vias for heat dissipation. This leads to a narrowing of the mounting area for components on the multilayer board, which is an obstacle to miniaturization.
  • One aspect of the present disclosure aims to realize an acoustic wave device that does not occupy the component mounting area of a multilayer board and ensures heat dissipation.
  • Resonator filters are used in communication devices. There are two types of resonator filters: ladder type filters and multimode filters (Double Mode SAW:DMS).
  • FIG. 6 is an example of a circuit diagram of a ladder type filter.
  • a ladder type filter is made up of multiple one-port resonators connected in a ladder shape.
  • resonators 1S to 4S connected in series from the input terminal IN to the output terminal OUT are called the series arm
  • resonators 1P to 3P which connect between the connection points between the resonators in the series arm and ground, are called the parallel arm.
  • the ladder type filter By matching the anti-resonance frequency of the parallel arm with the resonant frequency of the series arm, the ladder type filter becomes a filter whose low-frequency stop band is near the anti-resonant frequency of the series arm and whose high-frequency stop band is near the resonant frequency of the parallel arm.
  • An acoustic wave device is manufactured in which a ladder-type filter is configured by combining a plurality of resonators on one chip to achieve a desired performance.
  • Fig. 7 shows an example of an acoustic wave device 100 according to a reference example.
  • the acoustic wave device 100 is configured by an acoustic wave chip 10, a multilayer substrate 20, and a molded resin 30.
  • the acoustic wave chip 10 is an element that combines a circuit made up of multiple resonator filters.
  • the acoustic wave chip 10 is composed of a piezoelectric layer and an IDT (Interdigital Transducer) electrode.
  • the multilayer substrate 20 is a substrate in which insulating layers and conductor layers are stacked.
  • One example of the multilayer substrate 20 is a substrate having a total thickness of 250 ⁇ m or less, particularly 170 to 180 ⁇ m.
  • the acoustic wave chip 10 is bonded to the first surface 21 of the multilayer substrate 20.
  • the surface of the multilayer substrate 20 opposite the first surface 21 is referred to as the second surface 22.
  • the molded resin 30 is a resin that seals the multilayer substrate 20 after placing the acoustic wave chip 10 on the multilayer substrate 20 and connecting the bumps of the acoustic wave chip to the pattern of the multilayer substrate 20. For this reason, an acoustic wave device 100 sealed with the molded resin 30 is commonly used.
  • the acoustic wave chip 10 and the multilayer substrate 20 are connected by the bumps 13 of the acoustic wave chip 10 and the lands 41 of the multilayer substrate 20.
  • the lands 41 are connected to wiring via holes 42 for connecting signal lines, and the wiring via holes 42 are connected to a wiring pattern 43 in an inner layer of the multilayer substrate 20.
  • the wiring pattern 43 is further connected to a wiring pattern 45 on the second surface 22 via a wiring via hole 44.
  • These components are also referred to as a wiring conductor portion 40.
  • other mounted components besides the acoustic wave device 100 are connected to the wiring pattern 45 to configure a communication device or the like.
  • the signal lines connected to the acoustic wave chip 10 include ANT, which connects to the antenna, Rx, which outputs the received signal from the antenna, and Tx, which inputs the transmitted signal to the antenna.
  • ANT which connects to the antenna
  • Rx which outputs the received signal from the antenna
  • Tx which inputs the transmitted signal to the antenna.
  • grounds and other necessary components for configuring a ladder-type filter are connected as appropriate.
  • the elastic wave chip 10 is resin-molded with the mold resin 30, so heat tends to build up inside the elastic wave device 100.
  • the maximum temperature is approximately 312.4°C.
  • the bumps 13 may reach their melting point, causing electrical connection failure. For this reason, it is necessary for the elastic wave device 100 to dissipate heat.
  • the heat dissipation of the elastic wave device 100 has been ensured by increasing the area of the wiring conductor portion 40 (the area of the wiring patterns 43 and 45). This leads to a reduction in the mounting area of other electronic components on the second surface 22. In other words, the increase in size of the elastic wave device 100 prevents the miniaturization of communication devices.
  • FIG. 1 is a cross-sectional view of an elastic wave device 1 in accordance with embodiment 1.
  • Fig. 2 is a circuit diagram of the elastic wave device 1 in accordance with embodiment 1.
  • the elastic wave device 1 differs from the elastic wave device 100 in that a heat dissipation portion 50 is provided in a multilayer substrate 20a.
  • the acoustic wave chip 10a has bumps 14 in addition to the acoustic wave chip 10.
  • the bumps 14 are connected to the connection point (first wiring CON) between the input terminal Tx and the resonator 1S.
  • the first wiring CON is not limited to the connection point with the resonator 1S, and may be located in the series arm of the ladder filter.
  • the multilayer substrate 20a is connected to the bumps 14 and lands 51 on the first surface 21.
  • the land 51 and a heat dissipation pattern 53 (wiring pattern) which is an inner layer of the multilayer substrate 20a, are connected to the multilayer substrate 20a by heat dissipation via holes 52.
  • the land 51, the heat dissipation via holes 52, and the heat dissipation pattern 53 are collectively referred to as the heat dissipation section 50.
  • the heat dissipation section 50 is made of a conductor and may be the same as a general wiring pattern or via hole.
  • the second surface 22 does not have a metal layer that is a heat dissipation pattern connected to the heat dissipation section 50.
  • the metal layer that is a conductor located on the second surface is not connected to the heat dissipation section 50.
  • the end of the heat dissipation section 50 opposite the end connected to the first wiring CON remains in the inner layer of the multilayer substrate 20a.
  • the heat dissipation section 50 is an antenna-like wiring pattern that is connected only to the first wiring CON, and is not connected to ground.
  • Fig. 3 is a plan view of the elastic wave device 1 according to the first embodiment viewed from a direction perpendicular to the first surface 21.
  • resonators 1S to 5S and resonators 1P to 5P are arranged.
  • the resonators 1S to 5S are provided as series arms between input terminals Tx and Rx, and an output terminal ANT is connected between resonator 3S and resonator 4S.
  • One end of each of the resonators 1P to 5P is connected to the series arm, and the other end is connected to ground.
  • the area of the heat dissipation pattern 53 viewed from a direction perpendicular to the first surface is 20,000 ⁇ m2 or more.
  • the heat dissipation pattern 53 when viewed in a plan view from a direction perpendicular to the first surface, the heat dissipation pattern 53 does not overlap the intersection regions of the multiple resonators 1S-5S and resonators 1P-5P. Therefore, there is no electrical interference between the heat dissipation pattern 53 and the resonators 1S-5S and resonators 1P-5P. Furthermore, the heat dissipation structure allows heat to be dissipated without heat being returned to the resonators 1S-5S and resonators 1P-5P.
  • the maximum temperature was approximately 264.3° C. Therefore, compared to the reference example, when the room temperature was 20° C., the temperature increase from room temperature was suppressed by 16.5%.
  • the maximum temperature is about 274.2°C. Therefore, compared to the reference example, when the room temperature is 20°C, the temperature rise from room temperature is suppressed by 13.1%.
  • the heat dissipation efficiency is improved and the maximum temperature is reduced. This makes it possible to reduce changes in resonance characteristics due to temperature rise. As a result of the improved heat dissipation, it is possible to suppress temperature rise even when a large amount of power is input, improving power durability. In addition, the possibility of poor conductivity due to the temperature of the acoustic wave chip 10a can be reduced.
  • an elastic wave device 1 can be obtained that generates less heat than many other electronic components, and sufficient cooling performance can be ensured even without a heat dissipation structure on the second surface of the multilayer substrate 20a. Because there is no need to have a heat dissipation structure on the second surface, it is possible to reduce the size and height even when a large number of electronic components are arranged on the second surface.
  • An elastic wave chip 10a measuring 2.5 mm x 2.0 mm or less, particularly 1.6 mm x 1.2 mm or less, can be realized.
  • the layer configuration of the multilayer substrate 20a is not particularly limited.
  • the multilayer substrate 20a may be composed of three conductor layers mainly composed of tungsten, molybdenum, or a tungsten-molybdenum alloy, and two insulating layers mainly composed of aluminum oxide.
  • two of the three conductor layers become the first surface 21 and the second surface 22, and the remaining layer becomes an inner layer having the heat dissipation pattern 53.
  • the heat dissipation pattern 53 is located in the central conductor layer.
  • the number of conductor layers in the multilayer board 20a is not limited to three. That is, for example, consider a case where there are five conductor layers and four insulator layers, two of which correspond to the first surface 21 and the second surface 22, and the remaining three layers are inner layers. In this case, the heat dissipation pattern 53 may be located in any of the three inner layers.
  • the heat dissipation pattern is located farther away from the acoustic wave chip 10a, which is the heat source, and therefore a strong heat dissipation effect can be expected.
  • the elastic wave chip 10a may have a temperature compensation effect, since the temperature drop of the elastic wave chip 10a is suppressed by heat dissipation in the heat dissipation pattern. The temperature compensation effect will be described in detail later.
  • (Temperature compensation effect) 4 shows an example of a resonator structure having a temperature compensation effect of the acoustic wave chip 10a.
  • the temperature compensation effect refers to improving the temperature characteristics of the acoustic wave chip 10a itself by using the structure of the acoustic wave chip 10a itself.
  • the resonator 60a is made up of a silicon layer 62, a piezoelectric layer 63, and an IDT electrode 61 stacked in this order.
  • the piezoelectric layer 63 is made of, for example, lithium tantalate (LT) or lithium niobate (LN).
  • the resonator 60b has an IDT electrode 61 formed on a piezoelectric layer 64, and the IDT electrode 61 is covered with silicon oxide 65.
  • the piezoelectric layer 64 is, for example, lithium niobate.
  • the resonator 60c is made up of a silicon layer 62, silicon oxide 65, piezoelectric layer 63, and IDT electrode 61 stacked in that order.
  • the resonator 60d is formed by stacking a silicon layer 62, an acoustic reflection film 66, a piezoelectric layer 63, and an IDT electrode 61 in that order.
  • the acoustic reflection film 66 has a laminated structure of a low acoustic impedance layer and a high acoustic impedance layer.
  • the low acoustic impedance layer is, for example, silicon oxide
  • the high acoustic impedance layer is, for example, hafnium oxide or zirconium oxide.
  • the structure is not limited to these and may be any structure.
  • it may be a structure that does not have a temperature compensation effect.
  • the thickness of the multilayer substrate 20a is 250 ⁇ m or less in total, but is not limited to this. In particular, if it is an organic substrate, the thickness may exceed 400 ⁇ m. Even in this case, the first embodiment described above can be realized.
  • the multilayer substrate may have a large heat capacity for use in dissipating heat from the acoustic wave chip.
  • the specific heat of the entire multilayer substrate may be greater than 750 kJ/kg ⁇ K.
  • the large heat capacity provides a high cooling effect for the acoustic wave chip.
  • the type of resonator used in the acoustic wave chip is not limited to SAW, but may be BAW (Bulk Acoustic Wave).
  • the heat dissipation pattern 53 is disposed between the resonators when viewed in a plan view from a direction perpendicular to the first surface, but this is not limited to the above.
  • the heat dissipation pattern 53 may be disposed at a location where the greatest amount of heat is generated in the acoustic wave chip 10a. In this case, high heat dissipation characteristics can be obtained.
  • FIG. 5 is a diagram illustrating a schematic configuration of a communication device 151 according to the second embodiment.
  • the communication device 151 is an application example of an elastic wave device according to an aspect of the present disclosure, and performs wireless communication using radio waves.
  • the communication device 151 may include one duplexer 101 as a transmission filter 109 and another duplexer 101 as a reception filter 111.
  • Each of the two duplexers 101 may include an elastic wave device according to an aspect of the present disclosure (e.g., elastic wave device 1 or 1a). In this manner, the communication device 151 may include an elastic wave device according to an aspect of the present disclosure.
  • a transmission information signal TIS containing information to be transmitted may be modulated and frequency-increased (converted into a high-frequency signal having a carrier frequency) by an RF-IC (Radio Frequency-Integrated Circuit) 153, and converted into a transmission signal TS.
  • RF-IC Radio Frequency-Integrated Circuit
  • a bandpass filter 155 may remove unnecessary components from the TS outside the transmission passband.
  • the TS after the unnecessary components have been removed may be amplified by an amplifier 157 and input to the transmission filter 109.
  • the transmit filter 109 may remove unnecessary components outside the transmission passband from the input transmit signal TS.
  • the transmit filter 109 may output the TS after removing the unnecessary components to the antenna 159 via an antenna terminal (e.g., the above-mentioned TCin).
  • the antenna 159 may convert the TS, which is an electrical signal input to itself, into radio waves as a wireless signal, and transmit the radio waves to the outside of the communication device 151.
  • the antenna 159 may also convert the received external radio waves into a received signal RS, which is an electrical signal, and input the RS to the receiving filter 111 via the antenna terminal.
  • the receiving filter 111 may remove unnecessary components from the input RS outside the receiving passband.
  • the receiving filter 111 may output the received signal RS after the unnecessary components have been removed to the amplifier 161.
  • the outputted RS may be amplified by the amplifier 161.
  • the bandpass filter 163 may remove unnecessary components from the amplified RS outside the receiving passband.
  • the RS after the unnecessary components have been removed may be frequency-downgraded and demodulated by the RF-IC 153, and converted into a received information signal RIS.
  • the TIS and RIS may be low-frequency signals (baseband signals) containing appropriate information.
  • the TIS and RIS may be analog voice signals or digitized voice signals.
  • the passband of the wireless signals may be set as appropriate and may conform to various known standards.
  • An elastic wave device comprises an elastic wave chip and a multilayer substrate having a first surface joined to the elastic wave chip, the multilayer substrate having a heat dissipation section in an inner layer of the multilayer substrate, the heat dissipation section being made of a conductor connected to a first wiring provided on the elastic wave chip, and a metal layer located on a second surface opposite the first surface is not connected to the heat dissipation section.
  • the acoustic wave chip With the above configuration, the acoustic wave chip generates little heat, so sufficient cooling performance can be ensured even in a situation where there is no heat dissipation structure. Therefore, a dedicated pattern for the acoustic wave chip on the second surface is not required. This contributes to space saving in equipment equipped with an acoustic wave device, making it possible to make the equipment smaller and thinner.
  • the end of the heat dissipation portion opposite to the end connected to the first wiring may remain in an inner layer of the multilayer substrate.
  • heat dissipation can be promoted by connecting the wiring pattern at only one point with the first wiring.
  • the elastic wave device may be the elastic wave chip in aspect 1 or 2, which constitutes a ladder-type filter, the first wiring is located in a series arm of the ladder-type filter, and the heat dissipation portion is not connected to the ground of the elastic wave chip.
  • the first wiring can be provided in the series arm of the ladder filter.
  • An elastic wave device is any one of aspects 1 to 3, wherein the heat dissipation portion has a wiring pattern on the inner layer, and an area of the wiring pattern when viewed in a planar view from a direction perpendicular to the first surface may be 20,000 ⁇ m2 or more.
  • the area of the wiring pattern can be made 20,000 ⁇ m 2 or more, and sufficient heat dissipation performance can be ensured.
  • the elastic wave device is any one of aspects 1 to 4, in which the elastic wave chip has a plurality of IDT electrodes, the heat dissipation section has a wiring pattern in the inner layer, and when viewed in a plan view from a direction perpendicular to the first surface, the wiring pattern does not have to overlap an intersection region of the plurality of IDT electrodes.
  • the resonator and wiring pattern are not in close proximity, reducing adverse effects on electrical characteristics and reducing the return of dissipated heat to the resonator.
  • the elastic wave device is any one of aspects 1 to 5, in which the heat dissipation section has a wiring pattern on the inner layer, and the wiring pattern may be closer to the second surface side than to the first surface side.
  • the wiring pattern is close to the second surface, so heat can be dissipated efficiently from the second surface. This makes it easy to ensure cooling performance.
  • the elastic wave device is any one of aspects 1 to 5, in which the elastic wave chip has a temperature compensation effect, the heat dissipation section has a wiring pattern in the inner layer, and the wiring pattern may be closer to the first surface side than to the second surface side.
  • the wiring pattern is close to the first surface, so the radiated heat also heats the acoustic wave chip, but this is not harmful because the acoustic wave chip has a temperature compensation effect.
  • the elastic wave device is any one of aspects 1 to 5, in which the heat dissipation section has a wiring pattern on the inner layer, and the wiring pattern may be located near the center between the first surface and the second surface.
  • the above configuration has a wiring pattern near the center of the first and second surfaces, which reduces warping caused by uneven distribution of heat during heat dissipation.
  • the elastic wave device is any one of aspects 1 to 5, in which the multilayer substrate is made of two insulating layers mainly made of aluminum oxide and three conductor layers mainly made of either tungsten, molybdenum, or a tungsten-molybdenum alloy, and the heat dissipation section has a wiring pattern in the inner layer, and the wiring pattern may be located in the central conductor layer.
  • the wiring pattern is located on the central conductor layer, which reduces warping caused by uneven distribution of heat during heat dissipation.
  • the elastic wave device according to aspect 10 of the present disclosure may be any of aspects 1 to 9, in which the specific heat of the entire multilayer substrate is greater than 750 J/kg ⁇ K.
  • the above configuration allows the specific heat of the multilayer substrate to be sufficiently large, so that the multilayer substrate can be used as a cooling fin for the acoustic wave chip.
  • the elastic wave device according to aspect 11 of the present disclosure may be any one of aspects 1 to 10, in which the total thickness of the multilayer substrate is 250 ⁇ m or less.
  • the total thickness of the multilayer board is thin enough that heat can be dissipated from both the first and second surfaces.
  • the communication device uses an acoustic wave device according to any one of aspects 1 to 11.
  • the above configuration makes it possible to realize a small, low-profile communication device using an acoustic wave device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

The present invention realizes an acoustic wave device securing heat dissipation properties without occupying a component mounting area in a multilayer board. This acoustic wave device includes an acoustic wave chip and a multilayer board having a first surface side thereof bonded to the acoustic wave chip, wherein the multilayer board has, on an inner layer thereof, a heat dissipation portion made with a conductor that is connected to first wiring provided in the acoustic wave chip, and does not have a metal layer, which is connected to the heat dissipation portion, on a second surface which is the opposite side of the first surface.

Description

弾性波装置、および通信装置Acoustic wave device and communication device
 本開示は弾性波装置に関する。 This disclosure relates to an elastic wave device.
 携帯端末および移動体通信端末の小型化、高機能化に伴い、部品の小型・薄型化が求められている。消費エネルギーがほぼ変化しないまま体積が減ることによって、各部品における発熱の懸念がある。 As mobile devices and mobile communication terminals become smaller and more functional, there is a demand for smaller and thinner components. As the volume decreases while the energy consumption remains almost unchanged, there are concerns about heat generation in each component.
 特許文献1には、SAW(Surface Acoustic Wave)フィルタを接続している多層基板におけるパターンがサーマルビアを有し、該サーマルビアでもってSAWフィルタが配置されている面の裏面からSAWフィルタの発熱を放熱する技術が開示されている。 Patent Document 1 discloses a technology in which a pattern in a multilayer substrate to which a SAW (Surface Acoustic Wave) filter is connected has thermal vias, and the thermal vias are used to dissipate heat generated by the SAW filter from the back side of the surface on which the SAW filter is located.
日本国特開2006-121147号公報Japanese Patent Publication No. 2006-121147
 上記の課題を解決するために、本開示の一態様に係る弾性波装置は、弾性波チップと、前記弾性波チップに第1面側を接合した多層基板と、を備え、前記多層基板は、前記弾性波チップに設けられた第1配線に接続された導体による放熱部を当該多層基板の内層に有し、前記第1面の反対の面である第2面に位置する金属層は、前記放熱部に接続されていない。 In order to solve the above problem, an acoustic wave device according to one aspect of the present disclosure includes an acoustic wave chip and a multilayer substrate having a first surface bonded to the acoustic wave chip, the multilayer substrate having a heat dissipation section in an inner layer of the multilayer substrate, the heat dissipation section being made of a conductor connected to a first wiring provided on the acoustic wave chip, and a metal layer located on a second surface opposite the first surface is not connected to the heat dissipation section.
実施形態1に係る弾性波装置の断面図である。1 is a cross-sectional view of an elastic wave device according to a first embodiment. 実施形態1に係る弾性波装置の回路図である。1 is a circuit diagram of an elastic wave device according to a first embodiment. 実施形態1に係る弾性波装置を第1面に垂直な方向から平面視した図である。1 is a plan view of an elastic wave device according to a first embodiment, viewed in a direction perpendicular to a first surface. 弾性波チップの温度補償効果を有する共振子の構造の例である。1 is an example of a structure of a resonator having a temperature compensation effect of an elastic wave chip. 実施形態2における通信装置の概略的な構成を例示する図である。FIG. 11 is a diagram illustrating a schematic configuration of a communication device according to a second embodiment. ラダー型フィルタの回路図の一例である。1 is an example of a circuit diagram of a ladder type filter. 参考例に係る弾性波装置の一例である。1 is an example of an elastic wave device according to a reference example.
 特許文献1では高い放熱効果が得られる代わりに、SAWフィルタに対する裏面の部分を放熱用のサーマルビアが占有することになる。そのため、多層基板における部品の実装面積を狭くすることに繋がり、小型化の障害になっている。 In Patent Document 1, while a high heat dissipation effect can be achieved, the back surface of the SAW filter is occupied by thermal vias for heat dissipation. This leads to a narrowing of the mounting area for components on the multilayer board, which is an obstacle to miniaturization.
 本開示の一態様は、多層基板における部品の実装領域を占有せず、放熱性を担保した弾性波装置を実現することを目的とする。 One aspect of the present disclosure aims to realize an acoustic wave device that does not occupy the component mounting area of a multilayer board and ensures heat dissipation.
 〔参考例〕
 まず、本開示に関連した参考例を図面に基づいて説明する。実施形態において、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[Reference Example]
First, reference examples related to the present disclosure will be described with reference to the drawings. In the embodiments, the same or corresponding parts in the drawings are designated by the same reference characters and their description will not be repeated.
 (ラダー型フィルタ)
 共振子フィルタが通信機器のフィルタに用いられている。共振子フィルタには、ラダー型フィルタと、多重モード型フィルタ(Double Mode SAW:DMS)がある。
(Ladder type filter)
Resonator filters are used in communication devices. There are two types of resonator filters: ladder type filters and multimode filters (Double Mode SAW:DMS).
 図6は、ラダー型フィルタの回路図の一例である。図6に示すように、ラダー型フィルタは、複数個の1ポート共振子を梯子状に接続したものである。図6の共振子フィルタでは、入力端INから出力端OUTまでの間を直列に接続された共振子1S~4Sを直列腕と称し、直列腕における共振子間の接続点とグランドとの間をそれぞれ接続する共振子1P~3Pを並列腕と称する。ラダー型フィルタは、並列腕の反共振周波数と直列腕の共振周波数を一致させることにより、直列腕の反共振周波数付近を低域側の阻止域、並列腕の共振周波数付近を高域側の阻止域とするフィルタとなる。 Figure 6 is an example of a circuit diagram of a ladder type filter. As shown in Figure 6, a ladder type filter is made up of multiple one-port resonators connected in a ladder shape. In the resonator filter of Figure 6, resonators 1S to 4S connected in series from the input terminal IN to the output terminal OUT are called the series arm, and resonators 1P to 3P, which connect between the connection points between the resonators in the series arm and ground, are called the parallel arm. By matching the anti-resonance frequency of the parallel arm with the resonant frequency of the series arm, the ladder type filter becomes a filter whose low-frequency stop band is near the anti-resonant frequency of the series arm and whose high-frequency stop band is near the resonant frequency of the parallel arm.
 (参考例での弾性波装置の構成)
 所望の性能を発揮するように、1チップ上に複数の共振子を組み合わせたラダー型フィルタが構成された弾性波装置が製作されている。図7は、参考例に係る弾性波装置100の一例である。弾性波装置100は、弾性波チップ10と、多層基板20と、モールド樹脂30と、によって構成されている。
(Configuration of Elastic Wave Device in Reference Example)
An acoustic wave device is manufactured in which a ladder-type filter is configured by combining a plurality of resonators on one chip to achieve a desired performance. Fig. 7 shows an example of an acoustic wave device 100 according to a reference example. The acoustic wave device 100 is configured by an acoustic wave chip 10, a multilayer substrate 20, and a molded resin 30.
 弾性波チップ10は、複数の共振子フィルタによって構成された回路をまとめた素子である。弾性波チップ10は、圧電体層とIDT(Interdigital Transducer)電極とによって構成される。 The acoustic wave chip 10 is an element that combines a circuit made up of multiple resonator filters. The acoustic wave chip 10 is composed of a piezoelectric layer and an IDT (Interdigital Transducer) electrode.
 多層基板20は、絶縁体層と導体層とを積層した基板である。多層基板20の一例としては、総厚みが250μm以下の基板、特に170~180μmであってもよい。弾性波チップ10は、多層基板20の第1面21に面して接合されている。また、多層基板20における第1面21の反対の面を第2面22と称する。 The multilayer substrate 20 is a substrate in which insulating layers and conductor layers are stacked. One example of the multilayer substrate 20 is a substrate having a total thickness of 250 μm or less, particularly 170 to 180 μm. The acoustic wave chip 10 is bonded to the first surface 21 of the multilayer substrate 20. The surface of the multilayer substrate 20 opposite the first surface 21 is referred to as the second surface 22.
 モールド樹脂30は、多層基板20に弾性波チップ10を乗せ、弾性波チップのバンプと多層基板20のパターンとを接続したうえで、封止する樹脂である。そのため、モールド樹脂30によって封止された弾性波装置100が一般的に用いられている。 The molded resin 30 is a resin that seals the multilayer substrate 20 after placing the acoustic wave chip 10 on the multilayer substrate 20 and connecting the bumps of the acoustic wave chip to the pattern of the multilayer substrate 20. For this reason, an acoustic wave device 100 sealed with the molded resin 30 is commonly used.
 弾性波チップ10と多層基板20とは、弾性波チップ10のバンプ13と多層基板20のランド41とで接続されている。ランド41には、信号線を接続するための配線用ビアホール42が接続されており、該配線用ビアホール42は、多層基板20の内層において配線用パターン43に接続されている。さらに配線用パターン43からは、配線用ビアホール44を介して、第2面22における配線用パターン45と接続されている。これらの構成要素を配線用導体部40とも称する。また、配線用パターン45に弾性波装置100以外の他の実装部品が接続され、通信装置等が構成される。 The acoustic wave chip 10 and the multilayer substrate 20 are connected by the bumps 13 of the acoustic wave chip 10 and the lands 41 of the multilayer substrate 20. The lands 41 are connected to wiring via holes 42 for connecting signal lines, and the wiring via holes 42 are connected to a wiring pattern 43 in an inner layer of the multilayer substrate 20. The wiring pattern 43 is further connected to a wiring pattern 45 on the second surface 22 via a wiring via hole 44. These components are also referred to as a wiring conductor portion 40. In addition, other mounted components besides the acoustic wave device 100 are connected to the wiring pattern 45 to configure a communication device or the like.
 弾性波チップ10に接続される信号線としては、アンテナとの接続を行うANTと、アンテナからの受信信号を出力するRxと、アンテナに対する送信信号を入力するTxとが接続されている。また、適宜ラダー型フィルタを構成するために必要なグランド等が接続されている。 The signal lines connected to the acoustic wave chip 10 include ANT, which connects to the antenna, Rx, which outputs the received signal from the antenna, and Tx, which inputs the transmitted signal to the antenna. In addition, grounds and other necessary components for configuring a ladder-type filter are connected as appropriate.
 弾性波装置100では、モールド樹脂30によって弾性波チップ10が樹脂モールドされているために熱が弾性波装置100内に籠り易い。その結果、参考例におけるシミュレーションでは、最高温度が312.4℃程度になる。弾性波装置100が熱をもつことによって、バンプ13が融点に到達し、電気的な接続に不良が発生することがある。そのため、弾性波装置100では放熱を行うことが必要である。 In the elastic wave device 100, the elastic wave chip 10 is resin-molded with the mold resin 30, so heat tends to build up inside the elastic wave device 100. As a result, in the simulation of the reference example, the maximum temperature is approximately 312.4°C. When the elastic wave device 100 becomes hot, the bumps 13 may reach their melting point, causing electrical connection failure. For this reason, it is necessary for the elastic wave device 100 to dissipate heat.
 従来は弾性波装置100の放熱には、配線用導体部40の面積(配線用パターン43および45の面積)を大きくすることによって、放熱性を確保していた。そのため、第2面22における他の電子部品の実装面積を小さくすることに繋がっている。すなわち、弾性波装置100の大型化が、通信機器の小型化を妨げている。 Conventionally, the heat dissipation of the elastic wave device 100 has been ensured by increasing the area of the wiring conductor portion 40 (the area of the wiring patterns 43 and 45). This leads to a reduction in the mounting area of other electronic components on the second surface 22. In other words, the increase in size of the elastic wave device 100 prevents the miniaturization of communication devices.
 〔実施形態1〕
 以下、本開示の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
[Embodiment 1]
Hereinafter, an embodiment according to one aspect of the present disclosure (hereinafter also referred to as "the present embodiment") will be described with reference to the drawings.
 (構成)
 図1は、実施形態1に係る弾性波装置1の断面図である。図2は、実施形態1に係る弾性波装置1の回路図である。弾性波装置1は、弾性波装置100と異なり、多層基板20aに、放熱部50を有する点が異なる。
(composition)
Fig. 1 is a cross-sectional view of an elastic wave device 1 in accordance with embodiment 1. Fig. 2 is a circuit diagram of the elastic wave device 1 in accordance with embodiment 1. The elastic wave device 1 differs from the elastic wave device 100 in that a heat dissipation portion 50 is provided in a multilayer substrate 20a.
 弾性波チップ10aは、弾性波チップ10に対してバンプ14を追加で有する。バンプ14は、入力端子であるTxと共振子1Sとの接続点(第1配線CON)と接続されたバンプである。ここで、第1配線CONは、共振子1Sとの接続点に限定されず、ラダー型フィルタの直列腕に位置すればよい。多層基板20aは、第1面21においてバンプ14とランド51で接続している。多層基板20aには、ランド51と多層基板20aの内層である放熱用パターン53(配線パターン)とが放熱用ビアホール52にて接続されている。ランド51、放熱用ビアホール52、および放熱用パターン53を合わせて放熱部50と称する。放熱部50は導体で構成され、一般的な配線パターンまたはビアホールと同一であってもよい。 The acoustic wave chip 10a has bumps 14 in addition to the acoustic wave chip 10. The bumps 14 are connected to the connection point (first wiring CON) between the input terminal Tx and the resonator 1S. Here, the first wiring CON is not limited to the connection point with the resonator 1S, and may be located in the series arm of the ladder filter. The multilayer substrate 20a is connected to the bumps 14 and lands 51 on the first surface 21. The land 51 and a heat dissipation pattern 53 (wiring pattern), which is an inner layer of the multilayer substrate 20a, are connected to the multilayer substrate 20a by heat dissipation via holes 52. The land 51, the heat dissipation via holes 52, and the heat dissipation pattern 53 are collectively referred to as the heat dissipation section 50. The heat dissipation section 50 is made of a conductor and may be the same as a general wiring pattern or via hole.
 第2面22には放熱部50と接続された放熱用パターンである金属層を有しない。つまり、第2面に位置する導体である金属層は、放熱部50には接続されていない。また、放熱部50は、第1配線CONに接続された側と逆側の端部が多層基板20aの内層に留まっている。つまり、放熱部50は、第1配線CONのみに接続されたアンテナ状の配線パターンであり、グランドに非接続である。 The second surface 22 does not have a metal layer that is a heat dissipation pattern connected to the heat dissipation section 50. In other words, the metal layer that is a conductor located on the second surface is not connected to the heat dissipation section 50. In addition, the end of the heat dissipation section 50 opposite the end connected to the first wiring CON remains in the inner layer of the multilayer substrate 20a. In other words, the heat dissipation section 50 is an antenna-like wiring pattern that is connected only to the first wiring CON, and is not connected to ground.
 図3は実施形態1に係る弾性波装置1を第1面21に垂直な方向から平面視した図である。図3に示すように、共振子1S~5Sおよび共振子1P~5Pが配置されている。入力端子であるTxとRxとの間に、共振子1S~5Sを直列腕として有し、共振子3Sと共振子4Sとの間に、出力端子ANTが接続されている。また、共振子1P~5Pは、それぞれ片端が直列腕に接続され、他端がグランドに接続される。第1面に垂直な方向から平面視した、放熱用パターン53の面積は、20000μm以上である。 Fig. 3 is a plan view of the elastic wave device 1 according to the first embodiment viewed from a direction perpendicular to the first surface 21. As shown in Fig. 3, resonators 1S to 5S and resonators 1P to 5P are arranged. The resonators 1S to 5S are provided as series arms between input terminals Tx and Rx, and an output terminal ANT is connected between resonator 3S and resonator 4S. One end of each of the resonators 1P to 5P is connected to the series arm, and the other end is connected to ground. The area of the heat dissipation pattern 53 viewed from a direction perpendicular to the first surface is 20,000 µm2 or more.
 また、第1面に垂直な方向から平面視したときに、放熱用パターン53は、複数の共振子1S~5Sおよび共振子1P~5Pの交差領域に重ならない。そのため、放熱用パターン53と共振子1S~5Sおよび共振子1P~5Pとは電気的に相互に干渉しない。また、放熱構造から、共振子1S~5Sおよび共振子1P~5Pに熱が戻ってくることがなく、放熱を行うことができる。 In addition, when viewed in a plan view from a direction perpendicular to the first surface, the heat dissipation pattern 53 does not overlap the intersection regions of the multiple resonators 1S-5S and resonators 1P-5P. Therefore, there is no electrical interference between the heat dissipation pattern 53 and the resonators 1S-5S and resonators 1P-5P. Furthermore, the heat dissipation structure allows heat to be dissipated without heat being returned to the resonators 1S-5S and resonators 1P-5P.
 (放熱部による効果)
 実施形態1に係る弾性波装置1における弾性波チップ10aのシミュレーションでは、最高温度が264.3℃程度になる。従って、参考例に対して、室温20℃の場合、室温からの温度上昇が16.5%抑えられた。
(Effect of heat dissipation section)
In a simulation of the acoustic wave chip 10a in the acoustic wave device 1 according to the first preferred embodiment, the maximum temperature was approximately 264.3° C. Therefore, compared to the reference example, when the room temperature was 20° C., the temperature increase from room temperature was suppressed by 16.5%.
 また、放熱部に、放熱用ビアホール52および放熱用パターン53がなく、ランド51のみを有する場合のシミュレーションでは、最高温度が274.2℃程度になる。従って、参考例に対して、室温20℃の場合、室温からの温度上昇が13.1%抑えられた。 In addition, in a simulation in which the heat dissipation section does not have the heat dissipation via holes 52 and heat dissipation patterns 53, but only has the lands 51, the maximum temperature is about 274.2°C. Therefore, compared to the reference example, when the room temperature is 20°C, the temperature rise from room temperature is suppressed by 13.1%.
 以上のことから、多層基板20aが放熱部を備えることによって、放熱効率が向上し、最高温度が低下することがわかる。そのため、温度上昇による共振特性の変化を低減できる。放熱性が向上したことから、大電力を入力した場合であっても、温度上昇を抑えることができるようになり、耐電力性が向上した。また、弾性波チップ10aの温度起因による導通不良の可能性を低減できる。 From the above, it can be seen that by providing the multilayer substrate 20a with a heat dissipation section, the heat dissipation efficiency is improved and the maximum temperature is reduced. This makes it possible to reduce changes in resonance characteristics due to temperature rise. As a result of the improved heat dissipation, it is possible to suppress temperature rise even when a large amount of power is input, improving power durability. In addition, the possibility of poor conductivity due to the temperature of the acoustic wave chip 10a can be reduced.
 また、他の多くの電子部品よりも発熱が小さい弾性波装置1を得ることができ、多層基板20aの第2面に、放熱構造を有しなくとも十分な冷却性能を確保できる。第2面に放熱構造を有しないでいいために、第2面に多数の電子部品を配置した状態であっても、小型化・低背化が可能になる。弾性波チップ10aとして、2.5mm×2.0mm以下、特に1.6mm×1.2mm以下の弾性波チップ10aを実現することができる。 In addition, an elastic wave device 1 can be obtained that generates less heat than many other electronic components, and sufficient cooling performance can be ensured even without a heat dissipation structure on the second surface of the multilayer substrate 20a. Because there is no need to have a heat dissipation structure on the second surface, it is possible to reduce the size and height even when a large number of electronic components are arranged on the second surface. An elastic wave chip 10a measuring 2.5 mm x 2.0 mm or less, particularly 1.6 mm x 1.2 mm or less, can be realized.
 (構造)
 多層基板20aの層の構成は特に限定されない。具体的には、多層基板20aは、タングステン、モリブデン、またはタングステン‐モリブデン合金のいずれかを主成分とする導体層を3層と、酸化アルミニウムを主成分とする層を用いた絶縁体層を2層で構成されてもよい。この場合、導体層3層のうち2層は第1面21および第2面22になり、残りの1層が、放熱用パターン53を有する内層になる。つまり、放熱用パターン53は、中央の導体層に位置する。
(structure)
The layer configuration of the multilayer substrate 20a is not particularly limited. Specifically, the multilayer substrate 20a may be composed of three conductor layers mainly composed of tungsten, molybdenum, or a tungsten-molybdenum alloy, and two insulating layers mainly composed of aluminum oxide. In this case, two of the three conductor layers become the first surface 21 and the second surface 22, and the remaining layer becomes an inner layer having the heat dissipation pattern 53. In other words, the heat dissipation pattern 53 is located in the central conductor layer.
 また、多層基板20aの導体層の層数は3層に限定されない。すなわち、例えば、導体層が5層あり、絶縁体層が4層あり、導体層のうちの2層が第1面21および第2面22にあたり、残り3層は内層である場合を考える。この場合、内層の3層のいずれに放熱用パターン53があってもよい。 Furthermore, the number of conductor layers in the multilayer board 20a is not limited to three. That is, for example, consider a case where there are five conductor layers and four insulator layers, two of which correspond to the first surface 21 and the second surface 22, and the remaining three layers are inner layers. In this case, the heat dissipation pattern 53 may be located in any of the three inner layers.
 (i)放熱用パターンを有する内層が第1面21側よりも第2面22側に近い場合、熱源である弾性波チップ10aからより離れた位置に放熱用パターンを有することから、強い放熱効果を見込める。 (i) If the inner layer having the heat dissipation pattern is closer to the second surface 22 than to the first surface 21, the heat dissipation pattern is located farther away from the acoustic wave chip 10a, which is the heat source, and therefore a strong heat dissipation effect can be expected.
 (ii)放熱用パターンを有する内層が第2面22側よりも第1面21側に近い場合、熱源である弾性波チップ10aに近い位置に放熱用パターンを有することになる。そのため、放熱用パターンでの放熱によって、弾性波チップ10aの温度低下が抑えられることになるため、弾性波チップ10aは、温度補償効果を有してもよい。温度補償効果の詳細に関しては後述する。 (ii) When the inner layer having the heat dissipation pattern is closer to the first surface 21 than to the second surface 22, the heat dissipation pattern is located closer to the elastic wave chip 10a, which is the heat source. Therefore, the elastic wave chip 10a may have a temperature compensation effect, since the temperature drop of the elastic wave chip 10a is suppressed by heat dissipation in the heat dissipation pattern. The temperature compensation effect will be described in detail later.
 (iii)放熱用パターンを有する内層が第1面21と第2面22との中央付近に位置する場合、中央の導体層に位置するために、発熱および放熱に伴う熱膨張による反りを低減することができる。 (iii) When the inner layer having the heat dissipation pattern is located near the center between the first surface 21 and the second surface 22, it is located in the central conductor layer, so that warping due to thermal expansion associated with heat generation and heat dissipation can be reduced.
 (温度補償効果)
 図4は、弾性波チップ10aの温度補償効果を有する共振子の構造の例である。温度補償効果とは、弾性波チップ10a自体の構造を用いて、弾性波チップ自体の温度特性を良好にすることである。
(Temperature compensation effect)
4 shows an example of a resonator structure having a temperature compensation effect of the acoustic wave chip 10a. The temperature compensation effect refers to improving the temperature characteristics of the acoustic wave chip 10a itself by using the structure of the acoustic wave chip 10a itself.
 共振子60aは、シリコン層62、圧電体層63、およびIDT電極61の順に重畳している。圧電体層63は、例えば、タンタル酸リチウム(LT)またはニオブ酸リチウム(LN)からなる。 The resonator 60a is made up of a silicon layer 62, a piezoelectric layer 63, and an IDT electrode 61 stacked in this order. The piezoelectric layer 63 is made of, for example, lithium tantalate (LT) or lithium niobate (LN).
 共振子60bは、圧電体層64の上にIDT電極61を構成し、IDT電極61を酸化ケイ素65で覆ったものである。圧電体層64は、例えばニオブ酸リチウムである。 The resonator 60b has an IDT electrode 61 formed on a piezoelectric layer 64, and the IDT electrode 61 is covered with silicon oxide 65. The piezoelectric layer 64 is, for example, lithium niobate.
 共振子60cは、シリコン層62、酸化ケイ素65、圧電体層63、およびIDT電極61の順に重畳している。 The resonator 60c is made up of a silicon layer 62, silicon oxide 65, piezoelectric layer 63, and IDT electrode 61 stacked in that order.
 共振子60dは、シリコン層62、音響反射膜66、圧電体層63、およびIDT電極61の順に重畳している。音響反射膜66は、低音響インピーダンス層と高音響インピーダンス層の積層構造を有する。低音響インピーダンス層は、例えば酸化ケイ素であり、故音響インピーダンス層は、例えば酸化ハフニウムまたは酸化ジルコニウムなどである。 The resonator 60d is formed by stacking a silicon layer 62, an acoustic reflection film 66, a piezoelectric layer 63, and an IDT electrode 61 in that order. The acoustic reflection film 66 has a laminated structure of a low acoustic impedance layer and a high acoustic impedance layer. The low acoustic impedance layer is, for example, silicon oxide, and the high acoustic impedance layer is, for example, hafnium oxide or zirconium oxide.
 構造としてはこれらに限定されず、任意の構造であってもよい。例えば、温度補償効果を有しない構造であってもよい。 The structure is not limited to these and may be any structure. For example, it may be a structure that does not have a temperature compensation effect.
 〔変形例〕
 (多層基板の厚み)
 実施形態1では、多層基板20aの厚みは総厚みが250μm以下の基板としたが、これに限定されない。特に、有機基板等であれば、400μmを超える場合もある。この場合であっても、上述した実施形態1は実現可能である。
[Modifications]
(Thickness of multi-layer board)
In the first embodiment, the thickness of the multilayer substrate 20a is 250 μm or less in total, but is not limited to this. In particular, if it is an organic substrate, the thickness may exceed 400 μm. Even in this case, the first embodiment described above can be realized.
 (多層基板の比熱)
 多層基板は、弾性波チップの放熱に用いるために、熱容量が大きくてもよい。特に、多層基板全体の比熱が750kJ/kg・Kより大きくてもよい。熱容量が大きいために、弾性波チップの高い冷却効果が得られる。
(Specific heat of multilayer board)
The multilayer substrate may have a large heat capacity for use in dissipating heat from the acoustic wave chip. In particular, the specific heat of the entire multilayer substrate may be greater than 750 kJ/kg·K. The large heat capacity provides a high cooling effect for the acoustic wave chip.
 (共振子の種類)
 弾性波チップで用いる共振子の種類はSAWに制限されず、BAW(Bulk Acoustic Wave)であってもよい。
(Type of resonator)
The type of resonator used in the acoustic wave chip is not limited to SAW, but may be BAW (Bulk Acoustic Wave).
 (放熱用パターン53の配置)
 実施形態1では、放熱用パターン53を第1面に垂直な方向から平面視したときに、共振子の間に配置したがこれに限定されない。最も弾性波チップ10aにおいて発熱が大きい箇所に配置してもよい。この場合、高い放熱特性が得られる。
(Arrangement of heat dissipation pattern 53)
In the first embodiment, the heat dissipation pattern 53 is disposed between the resonators when viewed in a plan view from a direction perpendicular to the first surface, but this is not limited to the above. The heat dissipation pattern 53 may be disposed at a location where the greatest amount of heat is generated in the acoustic wave chip 10a. In this case, high heat dissipation characteristics can be obtained.
 〔実施形態2〕
 図5は、実施形態2における通信装置151の概略的な構成を例示する図である。通信装置151は、本開示の一態様に係る弾性波装置の一適用例であり、電波を利用した無線通信を行う。通信装置151は、送信フィルタ109としての1つの分波器101と、受信フィルタ111としての別の1つの分波器101とを含んでいてよい。2つの分波器101のそれぞれは、本開示の一態様に係る弾性波装置(例:弾性波装置1、または1a)を含んでいてよい。このように、通信装置151は、本開示の一態様に係る弾性波装置を含んでいてよい。
[Embodiment 2]
5 is a diagram illustrating a schematic configuration of a communication device 151 according to the second embodiment. The communication device 151 is an application example of an elastic wave device according to an aspect of the present disclosure, and performs wireless communication using radio waves. The communication device 151 may include one duplexer 101 as a transmission filter 109 and another duplexer 101 as a reception filter 111. Each of the two duplexers 101 may include an elastic wave device according to an aspect of the present disclosure (e.g., elastic wave device 1 or 1a). In this manner, the communication device 151 may include an elastic wave device according to an aspect of the present disclosure.
 通信装置151において、送信すべき情報を含む送信情報信号TISは、RF-IC(Radio Frequency-Integrated Circuit)153によって変調および周波数の引き上げ(搬送波周波数を有する高周波信号への変換)がなされ、送信信号TSへと変換されてよい。バンドパスフィルタ155は、TSについて、送信用の通過帯以外の不要成分を除去してよい。次いで、不要成分除去後のTSは、増幅器157によって増幅されて、送信フィルタ109に入力されてよい。 In the communication device 151, a transmission information signal TIS containing information to be transmitted may be modulated and frequency-increased (converted into a high-frequency signal having a carrier frequency) by an RF-IC (Radio Frequency-Integrated Circuit) 153, and converted into a transmission signal TS. A bandpass filter 155 may remove unnecessary components from the TS outside the transmission passband. Next, the TS after the unnecessary components have been removed may be amplified by an amplifier 157 and input to the transmission filter 109.
 送信フィルタ109は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去してよい。送信フィルタ109は、アンテナ端子(例:上述のTCin)を介して、不要成分除去後のTSをアンテナ159に出力してよい。アンテナ159は、自身に入力された電気信号であるTSを、無線信号としての電波に変換し、当該電波を通信装置151の外部に送信してよい。 The transmit filter 109 may remove unnecessary components outside the transmission passband from the input transmit signal TS. The transmit filter 109 may output the TS after removing the unnecessary components to the antenna 159 via an antenna terminal (e.g., the above-mentioned TCin). The antenna 159 may convert the TS, which is an electrical signal input to itself, into radio waves as a wireless signal, and transmit the radio waves to the outside of the communication device 151.
 また、アンテナ159は、受信した外部からの電波を、電気信号である受信信号RSに変換し、アンテナ端子を介して当該RSを受信フィルタ111に入力してよい。受信フィルタ111は、入力されたRSから受信用の通過帯以外の不要成分を除去してよい。受信フィルタ111は、不要成分除去後の受信信号RSを増幅器161へ出力してよい。出力されたRSは、増幅器161によって増幅されてよい。バンドパスフィルタ163は、増幅後のRSについて、受信用の通過帯以外の不要成分を除去してよい。不要成分除去後のRSは、RF-IC153によって周波数の引き下げおよび復調がなされ、受信情報信号RISへと変換されてよい。 The antenna 159 may also convert the received external radio waves into a received signal RS, which is an electrical signal, and input the RS to the receiving filter 111 via the antenna terminal. The receiving filter 111 may remove unnecessary components from the input RS outside the receiving passband. The receiving filter 111 may output the received signal RS after the unnecessary components have been removed to the amplifier 161. The outputted RS may be amplified by the amplifier 161. The bandpass filter 163 may remove unnecessary components from the amplified RS outside the receiving passband. The RS after the unnecessary components have been removed may be frequency-downgraded and demodulated by the RF-IC 153, and converted into a received information signal RIS.
 TISおよびRISは、適宜な情報を含む低周波信号(ベースバンド信号)であってよい。例えば、TISおよびRISは、アナログ音声信号であってもよいし、あるいはデジタル化された音声信号であってよい。無線信号の通過帯は、適宜に設定されてよく、公知の各種の規格に準拠してよい。 The TIS and RIS may be low-frequency signals (baseband signals) containing appropriate information. For example, the TIS and RIS may be analog voice signals or digitized voice signals. The passband of the wireless signals may be set as appropriate and may conform to various known standards.
 〔まとめ〕
 本開示の態様1に係る弾性波装置は、弾性波チップと、前記弾性波チップに第1面側を接合した多層基板と、を備え、前記多層基板は、前記弾性波チップに設けられた第1配線に接続された導体による放熱部を当該多層基板の内層に有し、前記第1面の反対の面である第2面に位置する金属層は、前記放熱部に接続されていない。
〔summary〕
An elastic wave device according to aspect 1 of the present disclosure comprises an elastic wave chip and a multilayer substrate having a first surface joined to the elastic wave chip, the multilayer substrate having a heat dissipation section in an inner layer of the multilayer substrate, the heat dissipation section being made of a conductor connected to a first wiring provided on the elastic wave chip, and a metal layer located on a second surface opposite the first surface is not connected to the heat dissipation section.
 上記の構成によれば、弾性波チップの発熱が小さいことから、放熱構造を有しない状況下でも十分な冷却性能を確保することができる。そのため、第2面に弾性波チップのための専用のパターンを必要としない。これにより、弾性波装置を搭載した装置の省スペース化に貢献し、小型化・低背化を行うことができるようになる。 With the above configuration, the acoustic wave chip generates little heat, so sufficient cooling performance can be ensured even in a situation where there is no heat dissipation structure. Therefore, a dedicated pattern for the acoustic wave chip on the second surface is not required. This contributes to space saving in equipment equipped with an acoustic wave device, making it possible to make the equipment smaller and thinner.
 本開示の態様2に係る弾性波装置は、前記態様1において、前記放熱部は、前記第1配線に接続された側と逆側の端部が、前記多層基板の内層に留まってもよい。 In the elastic wave device according to aspect 2 of the present disclosure, in the above-mentioned aspect 1, the end of the heat dissipation portion opposite to the end connected to the first wiring may remain in an inner layer of the multilayer substrate.
 上記の構成によれば、配線パターンを第1配線にて一点だけ接続することによって、放熱を促進することができる。 With the above configuration, heat dissipation can be promoted by connecting the wiring pattern at only one point with the first wiring.
 本開示の態様3に係る弾性波装置は、前記態様1または2において、前記弾性波チップは、ラダー型フィルタを構成しており、前記第1配線は、前記ラダー型フィルタの直列腕に位置し、前記放熱部は、前記弾性波チップにおけるグランドに非接続であってもよい。 The elastic wave device according to aspect 3 of the present disclosure may be the elastic wave chip in aspect 1 or 2, which constitutes a ladder-type filter, the first wiring is located in a series arm of the ladder-type filter, and the heat dissipation portion is not connected to the ground of the elastic wave chip.
 上記の構成によれば、第1配線をラダー型フィルタの直列腕に設けることができる。 With the above configuration, the first wiring can be provided in the series arm of the ladder filter.
 本開示の態様4に係る弾性波装置は、前記態様1から3のいずれかにおいて、前記放熱部は、前記内層に配線パターンを有しており、前記第1面に垂直な方向から平面視した、前記配線パターンの面積は、20000μm以上であってもよい。 An elastic wave device according to aspect 4 of the present disclosure is any one of aspects 1 to 3, wherein the heat dissipation portion has a wiring pattern on the inner layer, and an area of the wiring pattern when viewed in a planar view from a direction perpendicular to the first surface may be 20,000 μm2 or more.
 上記の構成によれば、配線パターンの面積を20000μm以上とすることができ、十分な放熱性能を確保することができる。 According to the above configuration, the area of the wiring pattern can be made 20,000 μm 2 or more, and sufficient heat dissipation performance can be ensured.
 本開示の態様5に係る弾性波装置は、前記態様1から4のいずれかにおいて、前記弾性波チップは、複数のIDT電極を有しており、前記放熱部は、前記内層に配線パターンを有しており、前記第1面に垂直な方向から平面視したときに、前記配線パターンは、前記複数のIDT電極の交差領域に重ならなくてもよい。 The elastic wave device according to aspect 5 of the present disclosure is any one of aspects 1 to 4, in which the elastic wave chip has a plurality of IDT electrodes, the heat dissipation section has a wiring pattern in the inner layer, and when viewed in a plan view from a direction perpendicular to the first surface, the wiring pattern does not have to overlap an intersection region of the plurality of IDT electrodes.
 上記の構成によれば、弾性波チップが低背構造の際、共振子と配線パターンが近接しないため、電気的特性への悪影響や、放熱した熱が再度共振子に戻ることを低減することができる。 With the above configuration, when the acoustic wave chip has a low-profile structure, the resonator and wiring pattern are not in close proximity, reducing adverse effects on electrical characteristics and reducing the return of dissipated heat to the resonator.
 本開示の態様6に係る弾性波装置は、前記態様1から5のいずれかにおいて、前記放熱部は、前記内層に配線パターンを有しており、前記配線パターンは、前記第1面側よりも、前記第2面側に近くてもよい。 The elastic wave device according to aspect 6 of the present disclosure is any one of aspects 1 to 5, in which the heat dissipation section has a wiring pattern on the inner layer, and the wiring pattern may be closer to the second surface side than to the first surface side.
 上記の構成によれば、第2面に配線パターンが近いために、第2面から効率的に放熱することができる。そのため、冷却性能を確保することが容易である。 With the above configuration, the wiring pattern is close to the second surface, so heat can be dissipated efficiently from the second surface. This makes it easy to ensure cooling performance.
 本開示の態様7に係る弾性波装置は、前記態様1から5のいずれかにおいて、前記弾性波チップは温度補償効果を有し、前記放熱部は、前記内層に配線パターンを有しており、前記配線パターンは、前記第2面側よりも、前記第1面側に近くてもよい。 The elastic wave device according to aspect 7 of the present disclosure is any one of aspects 1 to 5, in which the elastic wave chip has a temperature compensation effect, the heat dissipation section has a wiring pattern in the inner layer, and the wiring pattern may be closer to the first surface side than to the second surface side.
 上記の構成によれば、第1面に配線パターンが近いために、放熱した熱によって、弾性波チップも加熱されることになるが、弾性波チップには、温度補償効果があるため、有害ではない。 With the above configuration, the wiring pattern is close to the first surface, so the radiated heat also heats the acoustic wave chip, but this is not harmful because the acoustic wave chip has a temperature compensation effect.
 本開示の態様8に係る弾性波装置は、前記態様1から5のいずれかにおいて、前記放熱部は、前記内層に配線パターンを有しており、前記配線パターンは、前記第1面と前記第2面との中央付近に位置してもよい。 The elastic wave device according to aspect 8 of the present disclosure is any one of aspects 1 to 5, in which the heat dissipation section has a wiring pattern on the inner layer, and the wiring pattern may be located near the center between the first surface and the second surface.
 上記の構成によれば、第1面と第2面の中央付近に配線パターンを有するために、放熱に伴う熱の偏りから発生する反りを低減することができる。 The above configuration has a wiring pattern near the center of the first and second surfaces, which reduces warping caused by uneven distribution of heat during heat dissipation.
 本開示の態様9に係る弾性波装置は、前記態様1から5のいずれかにおいて、前記多層基板は、酸化アルミニウムを主成分とする2層の絶縁体層と、タングステン、モリブデン、又はタングステン-モリブデン合金のいずれかを主成分とする3層の導体層とからなり、前記放熱部は、前記内層に配線パターンを有しており、前記配線パターンは、中央の導体層に位置してもよい。 The elastic wave device according to aspect 9 of the present disclosure is any one of aspects 1 to 5, in which the multilayer substrate is made of two insulating layers mainly made of aluminum oxide and three conductor layers mainly made of either tungsten, molybdenum, or a tungsten-molybdenum alloy, and the heat dissipation section has a wiring pattern in the inner layer, and the wiring pattern may be located in the central conductor layer.
 上記の構成によれば、中央の導体層に配線パターンが位置するために、放熱に伴う熱の偏りから発生する反りを低減することができる。 With the above configuration, the wiring pattern is located on the central conductor layer, which reduces warping caused by uneven distribution of heat during heat dissipation.
 本開示の態様10に係る弾性波装置は、前記態様1から9のいずれかにおいて、前記多層基板全体の比熱は、750J/kg・Kより大きくてもよい。 The elastic wave device according to aspect 10 of the present disclosure may be any of aspects 1 to 9, in which the specific heat of the entire multilayer substrate is greater than 750 J/kg·K.
 上記の構成によれば、多層基板の比熱を十分に大きくすることができるため、多層基板を弾性波チップの冷却フィンとして用いることができる。 The above configuration allows the specific heat of the multilayer substrate to be sufficiently large, so that the multilayer substrate can be used as a cooling fin for the acoustic wave chip.
 本開示の態様11に係る弾性波装置は、前記態様1から10のいずれかにおいて、前記多層基板の総厚みが250μm以下であってもよい。 The elastic wave device according to aspect 11 of the present disclosure may be any one of aspects 1 to 10, in which the total thickness of the multilayer substrate is 250 μm or less.
 上記の構成によれば、多層基板の総厚みが十分に薄いために、第1面および第2面の両面から放熱することができる。 With the above configuration, the total thickness of the multilayer board is thin enough that heat can be dissipated from both the first and second surfaces.
 本開示の態様12に係る通信装置は、前記態様1から11のいずれかに記載の弾性波装置を用いる。 The communication device according to aspect 12 of the present disclosure uses an acoustic wave device according to any one of aspects 1 to 11.
 上記の構成によれば、弾性波装置を用いた、小型・低背の通信装置を実現することができる。 The above configuration makes it possible to realize a small, low-profile communication device using an acoustic wave device.
 〔付記事項〕
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。
[Additional Notes]
The present disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. Embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of the present disclosure.
 1、100 弾性波装置
 10、10a 弾性波チップ
 13、14 バンプ
 20、20a 多層基板
 30 モールド樹脂
 40 配線用導体部
 41、51 ランド
 42、44 配線用ビアホール
 43、45 配線用パターン
 50 放熱部
 52 放熱用ビアホール
 53 放熱用パターン
REFERENCE SIGNS LIST 1, 100 Acoustic wave device 10, 10a Acoustic wave chip 13, 14 Bump 20, 20a Multilayer substrate 30 Molding resin 40 Wiring conductor portion 41, 51 Land 42, 44 Wiring via hole 43, 45 Wiring pattern 50 Heat dissipation portion 52 Heat dissipation via hole 53 Heat dissipation pattern

Claims (12)

  1.  弾性波チップと、
     前記弾性波チップに第1面側を接合した多層基板と、を備え、
     前記多層基板は、
      前記弾性波チップに設けられた第1配線に接続された導体による放熱部を当該多層基板の内層に有し、
      前記第1面の反対の面である第2面に位置する金属層は、前記放熱部に接続されていない、弾性波装置。
    An acoustic wave chip;
    a multilayer substrate having a first surface side bonded to the acoustic wave chip;
    The multilayer substrate comprises:
    a heat dissipation portion formed of a conductor connected to a first wiring provided on the acoustic wave chip, the heat dissipation portion being provided in an inner layer of the multilayer substrate;
    An acoustic wave device, wherein a metal layer located on a second surface opposite to the first surface is not connected to the heat sink.
  2.  前記放熱部は、前記第1配線に接続された側と逆側の端部が、前記多層基板の内層に留まっている、請求項1に記載の弾性波装置。 The elastic wave device according to claim 1, wherein the end of the heat dissipation section opposite to the end connected to the first wiring is retained in an inner layer of the multilayer substrate.
  3.  前記弾性波チップは、ラダー型フィルタを構成しており、
     前記第1配線は、前記ラダー型フィルタの直列腕に位置し、
     前記放熱部は、前記弾性波チップにおけるグランドに非接続である、請求項1または2に記載の弾性波装置。
    The acoustic wave chip constitutes a ladder type filter,
    the first wiring is located in a series arm of the ladder filter,
    The acoustic wave device according to claim 1 , wherein the heat dissipation portion is not connected to a ground of the acoustic wave chip.
  4.  前記放熱部は、前記内層に配線パターンを有しており、
     前記第1面に垂直な方向から平面視した、前記配線パターンの面積は、20000μm以上である、請求項1から3のいずれか1項に記載の弾性波装置。
    The heat dissipation portion has a wiring pattern on the inner layer,
    The acoustic wave device according to claim 1 , wherein an area of the wiring pattern in a plan view from a direction perpendicular to the first surface is 20,000 μm 2 or more.
  5.  前記弾性波チップは、複数のIDT電極を有しており、
     前記放熱部は、前記内層に配線パターンを有しており、
     前記第1面に垂直な方向から平面視したときに、前記配線パターンは、前記複数のIDT電極の交差領域に重ならない、請求項1から4のいずれか1項に記載の弾性波装置。
    the acoustic wave chip has a plurality of IDT electrodes;
    The heat dissipation portion has a wiring pattern on the inner layer,
    The acoustic wave device according to claim 1 , wherein the wiring pattern does not overlap an intersection region of the plurality of IDT electrodes when viewed in a plan view from a direction perpendicular to the first surface.
  6.  前記放熱部は、前記内層に配線パターンを有しており、
     前記配線パターンは、前記第1面側よりも、前記第2面側に近い、請求項1から5のいずれか1項に記載の弾性波装置。
    The heat dissipation portion has a wiring pattern on the inner layer,
    The acoustic wave device according to claim 1 , wherein the wiring pattern is closer to the second surface side than to the first surface side.
  7.  前記弾性波チップは温度補償効果を有し、
     前記放熱部は、前記内層に配線パターンを有しており、
     前記配線パターンは、前記第2面側よりも、前記第1面側に近い、請求項1から5のいずれか1項に記載の弾性波装置。
    The acoustic wave chip has a temperature compensation effect;
    The heat dissipation portion has a wiring pattern on the inner layer,
    The acoustic wave device according to claim 1 , wherein the wiring pattern is closer to the first surface side than to the second surface side.
  8.  前記放熱部は、前記内層に配線パターンを有しており、
     前記配線パターンは、前記第1面と前記第2面との中央付近に位置する、請求項1から5のいずれか1項に記載の弾性波装置。
    The heat dissipation portion has a wiring pattern on the inner layer,
    The acoustic wave device according to claim 1 , wherein the wiring pattern is located near a center between the first surface and the second surface.
  9.  前記多層基板は、酸化アルミニウムを主成分とする2層の絶縁体層と、タングステン、モリブデン、又はタングステン-モリブデン合金のいずれかを主成分とする3層の導体層とからなり、
     前記放熱部は、前記内層に配線パターンを有しており、
     前記配線パターンは、中央の導体層に位置する、請求項1から5のいずれか1項に記載の弾性波装置。
    The multilayer substrate is composed of two insulating layers mainly made of aluminum oxide, and three conductor layers mainly made of tungsten, molybdenum, or a tungsten-molybdenum alloy,
    The heat dissipation portion has a wiring pattern on the inner layer,
    The acoustic wave device according to claim 1 , wherein the wiring pattern is located on a central conductor layer.
  10.  前記多層基板全体の比熱は、比熱が750J/kg・Kより大きい、請求項1から9のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 9, wherein the specific heat of the entire multilayer substrate is greater than 750 J/kg·K.
  11.  前記多層基板の総厚みが250μm以下である、請求項1から10のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 10, wherein the total thickness of the multilayer substrate is 250 μm or less.
  12.  請求項1から11のいずれか1項に記載の弾性波装置を用いた通信装置。 A communication device using the acoustic wave device according to any one of claims 1 to 11.
PCT/JP2023/041983 2022-11-25 2023-11-22 Acoustic wave device and communication device WO2024111625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-188659 2022-11-25
JP2022188659 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111625A1 true WO2024111625A1 (en) 2024-05-30

Family

ID=91195706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041983 WO2024111625A1 (en) 2022-11-25 2023-11-22 Acoustic wave device and communication device

Country Status (1)

Country Link
WO (1) WO2024111625A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114278A (en) * 2010-11-25 2012-06-14 Kyocera Corp Wiring board and multiple-pattern wiring board
WO2019225698A1 (en) * 2018-05-24 2019-11-28 凸版印刷株式会社 Circuit board
JP2021106337A (en) * 2019-12-26 2021-07-26 株式会社村田製作所 High frequency module and communication device
JP2021158655A (en) * 2020-03-27 2021-10-07 株式会社村田製作所 Filter device, composite filter device and filter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114278A (en) * 2010-11-25 2012-06-14 Kyocera Corp Wiring board and multiple-pattern wiring board
WO2019225698A1 (en) * 2018-05-24 2019-11-28 凸版印刷株式会社 Circuit board
JP2021106337A (en) * 2019-12-26 2021-07-26 株式会社村田製作所 High frequency module and communication device
JP2021158655A (en) * 2020-03-27 2021-10-07 株式会社村田製作所 Filter device, composite filter device and filter circuit

Similar Documents

Publication Publication Date Title
US9385686B2 (en) Acoustic wave device
JP4255959B2 (en) Balance filter and duplexer
US9680446B2 (en) Demultiplexing apparatus with heat transfer via electrodes
JP5333403B2 (en) Surface acoustic wave filter device
US11799447B2 (en) Acoustic wave resonator with multiple resonant frequencies
JP2016096439A (en) Acoustic wave device, transmission/reception device and mobile communication equipment
US20210203305A1 (en) Bulk acoustic wave resonator on surface acoustic wave device
WO2022009976A1 (en) High frequency module and communication device
US10659003B2 (en) Electronic component with two substrates enclosing functional element and insulating film therein
WO2007114390A1 (en) Elastic surface wave element, elastic surface wave device, and communication device
JP6934322B2 (en) Electronic components
US20230261678A1 (en) Radio frequency module and communication device
JP2008258882A (en) Resonator filter, and duplexer
JP3886033B2 (en) Surface acoustic wave device
WO2022260015A1 (en) High frequency module and communication device
WO2024111625A1 (en) Acoustic wave device and communication device
WO2022259763A1 (en) High frequency module, communication device, and method for manufacturing high frequency module
WO2011111425A1 (en) Acoustic wave device
JPH0832402A (en) Surface acoustic wave device, branching filter for mobile radio equipment and mobile radio equipment
JP2022113172A (en) elastic wave device
JP5382141B2 (en) Electronic module and communication device
JP7465515B1 (en) Acoustic Wave Devices
WO2022145412A1 (en) High frequency module and communication apparatus
JP5862210B2 (en) High frequency electronic components
JP2003087093A (en) Surface accoustic wave filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894629

Country of ref document: EP

Kind code of ref document: A1