WO2024106458A1 - Imaging device, inspection device using said imaging device, and imaging method - Google Patents

Imaging device, inspection device using said imaging device, and imaging method Download PDF

Info

Publication number
WO2024106458A1
WO2024106458A1 PCT/JP2023/041064 JP2023041064W WO2024106458A1 WO 2024106458 A1 WO2024106458 A1 WO 2024106458A1 JP 2023041064 W JP2023041064 W JP 2023041064W WO 2024106458 A1 WO2024106458 A1 WO 2024106458A1
Authority
WO
WIPO (PCT)
Prior art keywords
measured
light
imaging
light source
imaging device
Prior art date
Application number
PCT/JP2023/041064
Other languages
French (fr)
Japanese (ja)
Inventor
格 宮崎
量彦 山口
良文 高橋
顕雄 江本
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Publication of WO2024106458A1 publication Critical patent/WO2024106458A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod

Definitions

  • the present invention relates to an imaging device, an inspection device using the imaging device, and an imaging method, and in particular to an imaging device for inspecting the sealing portion of an object to be measured for adhesion defects and foreign matter contamination, an inspection device using the imaging device, and an imaging method.
  • the opening is sealed after the contents are placed in the packaging. At that time, there may be gaps in the sealed part of the packaging, or the contents or their debris may become trapped inside. Products with such poor sealing must be rejected as defective.
  • DOS diffuse optical spectroscopy
  • DOT diffuse optical tomography
  • OCT optical coherence tomography
  • a technology uses a relatively inexpensive projector-camera system to extract the signal amplitude of light reflected from specific three-dimensional positions on the surface and inside of an object, based on digital image signals of multiple composite images that change sequentially over time and correspond respectively to multiple spatial frequencies in a pattern image projected from a projector onto an object and multiple spatial frequencies output from an imaging device, and calculate the optical characteristics inside the object (see, for example, Patent Document 1).
  • a technique in which a slight delay of less than 1 millisecond is intentionally inserted between the timing of illumination and photography to reduce the effect of reflected light on the subject's surface and measure the scattered light that passes through the interior of the subject (see, for example, non-patent document 1).
  • Patent Document 1 does not directly capture images of the inside of an object, but estimates information about the inside of an object through information processing.
  • the technology disclosed in Patent Document 1 has problems in that it requires a large amount of processing and cannot be applied to inspection equipment in which objects to be measured are transported one after another, and there is also a problem in that the surface reflection component and the deep scattering component cannot be sufficiently separated spatially.
  • Non-Patent Document 1 Furthermore, as can be seen from the fact that the images acquired using the technology disclosed in Non-Patent Document 1 reflect not only the interior of the subject but also the subject's surface (surfaces of the face, arms, etc.), the technology disclosed in Non-Patent Document 1 also had the problem of being unable to sufficiently separate spatially the surface reflection component and the deep scattering component.
  • the present invention has been made to solve these problems in the past, and aims to provide an imaging device capable of obtaining a tomographic image with resolution in the depth direction of the object being measured, an inspection device using the imaging device, and an imaging method.
  • the imaging device is an imaging device that includes an imaging system that moves relative to the object to be measured, and an image processing unit that generates a tomographic image of the object to be measured, the imaging system including a light source that irradiates the object to be measured with outgoing light in a wavelength range that can transmit the object to be measured at a certain angle of incidence, an imaging optical system that acquires reflected light or transmitted light from the object to be measured irradiated with the outgoing light from the light source, and a photoreceiver that photoelectrically converts the reflected light or transmitted light acquired by the imaging optical system at multiple pixels to continuously generate image data of the object to be measured, and the image processing unit includes a partial image generating unit that extracts data of a specific pixel from each of the image data generated by the photoreceiver and generates a partial image made of the data of the specific pixel, and a tomographic image generating unit that combines the multiple partial images to generate the tomographic image at
  • the imaging device of the present invention continuously generates image data of the object to be measured using the photoreceiver while irradiating the object to be measured, which is moving relative to the imaging system, with light at a constant angle of incidence, and further generates a tomographic image by synthesizing partial images at depths corresponding to specific pixels of the photoreceiver.
  • the imaging device of the present invention can directly capture a tomographic image with resolution in the depth direction of the object to be measured.
  • the imaging device of the present invention can provide the user with a tomographic image that includes information such as poor adhesion of the seal of the object to be measured or the presence of foreign matter.
  • the depth of field of the imaging optical system may be set to a range that includes the desired observation position of the object to be measured.
  • the imaging device can generate a tomographic image of the desired observation position of the object to be measured by appropriately setting the depth of field of the imaging optical system to a range that includes the desired observation position of the object to be measured.
  • the angle of incidence is set at an angle at which an illumination area on the surface of the object to be measured, where the light emitted from the light source is irradiated, is separated from an exit position on at least a portion of the surface of the object to be measured from which the light emitted from the light source that entered the inside of the object to be measured exits, in a planar view, and the partial image may be an image obtained by capturing the reflected light or the transmitted light from the exit position of the object to be measured.
  • the imaging device of the present invention can spatially separate the surface reflection components and deep scattering components of the object being measured by appropriately setting the angle of incidence of the light emitted from the light source on the surface of the object being measured, so that it is possible to generate a tomographic image by eliminating or spatially separating the light reflected from the surface of the object being measured.
  • the imaging device may further include a scatterer between the light source and the object to be measured on the optical path of the light emitted from the light source.
  • the imaging device of the present invention can effectively irradiate the light emitted from the light source into the inside of the object to be measured by spreading the light emitted from the light source onto a spherical surface using a scatterer and making it incident on the object to be measured.
  • the imaging device may further include a convex lens between the light source and the object to be measured on the optical path of the light emitted from the light source.
  • the imaging device of the present invention can use the convex lens to adjust the spread and incident angle of the wavefront of the light emitted from the light source, allowing the light emitted from the light source to be effectively irradiated inside the object to be measured.
  • the imaging device may further include a polarizer between the light source and the imaging optical system on the optical path of the light emitted from the light source.
  • the imaging device can use the polarizer to adjust the polarization state of the light emitted from the light source to either linearly polarized, elliptically polarized, or circularly polarized, and can effectively irradiate the light emitted from the light source into the inside of the object being measured.
  • the polarizer can be used to adjust the polarization state of the light emitted from the light source to either linearly polarized, elliptically polarized, or circularly polarized, and can effectively irradiate the light emitted from the light source into the inside of the object being measured.
  • it is effective to use circularly polarized or randomly polarized light as the polarization state of the light emitted from the light source.
  • the imaging device may further include an optical slit between the light receiver and the object to be measured on the optical path of the light emitted from the light source, which selects the reflected light from a specific depth position of the object to be measured, or the transmitted light that is not reflected but is transmitted through the specific depth position of the object to be measured, and causes it to enter the light receiver.
  • the imaging device can generate a tomographic image with improved depth resolution by determining the depth of the slice to be imaged in advance using an optical slit.
  • the imaging device according to the present invention may further include a drive mechanism for periodically translating the optical slit.
  • the imaging device of the present invention can generate a tomographic image with no blind spots in the depth direction while improving the depth resolution by periodically translating the optical slit using a drive mechanism to continuously change the depth of the tomographic section to be imaged.
  • the inspection device is configured to include any of the imaging devices described above and an inspection section that inspects the object to be measured based on the tomographic image generated by the imaging device.
  • the inspection device can provide the user with inspection results for things like poor adhesion or foreign matter contamination in the object being measured, enabling highly sensitive inspection of defects.
  • An imaging method is an imaging method using an imaging device including an imaging system that moves relative to the object to be measured, the imaging system including a light source that irradiates the object to be measured with outgoing light in a wavelength range that can be transmitted through the object to be measured at a constant angle of incidence, an imaging optical system that acquires reflected light or transmitted light from the object to be measured irradiated with the outgoing light from the light source, and a photoreceiver that photoelectrically converts the reflected light or transmitted light acquired by the imaging optical system at multiple pixels to continuously generate image data of the object to be measured, and includes a partial image generation step of extracting data of a specific pixel from each of the image data generated by the photoreceiver to generate a partial image consisting of the data of the specific pixel, and a tomographic image generation step of synthesizing the multiple partial images to generate the tomographic image at a depth corresponding to the specific pixel.
  • the present invention provides an imaging device capable of obtaining a tomographic image with resolution in the depth direction of an object to be measured, an inspection device using the imaging device, and an imaging method.
  • FIG. 1 is a configuration diagram of an imaging device and an inspection device according to a first embodiment of the present invention.
  • 2 is a diagram showing a configuration example in which a scatterer is disposed between a light source and an object to be measured of the imaging device shown in FIG. 1 ;
  • 2 is a diagram showing the depth of field of the imaging optical system of the image pickup apparatus shown in FIG. 1 .
  • 1A shows a cross-sectional view of a model of an object to be measured taken along a plane parallel to the conveying direction
  • FIG. 1B shows a plan view of the model of an object to be measured.
  • 13A to 13C are diagrams showing how the positions of the irradiation area and the imaging line shift relative to the object to be measured as the object to be measured is transported.
  • FIG. 2 is a diagram showing a configuration example in which an optical slit is disposed between a light receiver and a measured object of the imaging device shown in FIG. 1 .
  • FIG. 1 is a diagram showing the incident angle of light emitted from a light source to an object to be measured, the irradiation area on the surface of the object to be measured onto which the light emitted from the light source is irradiated, and the exit position on the upper surface of the object to be measured from which the light emitted from the light source that entered the inside of the object to be measured exits.
  • FIG. 4 is a diagram showing an example of a tomographic image generated by an image processing unit.
  • FIG. 4A to 4C are diagrams illustrating the direction of light emitted from a measurement object when the incident angle of light emitted from a light source to the measurement object is set to various values.
  • FIG. 11 is a configuration diagram of an imaging device and an inspection device according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing the angle of incidence of light emitted from a light source to an object to be measured, the irradiation area on the surface of the object to be measured onto which the light emitted from the light source is irradiated, and the exit position on the lower surface of the object to be measured from which the light emitted from the light source that entered inside the object to be measured exits.
  • FIG. 1 is a diagram showing the angle of incidence of light emitted from a light source to an object to be measured, the irradiation area on the surface of the object to be measured onto which the light emitted from the light source is irradiated, and the exit position on the lower surface of the object
  • FIG. 1A is a diagram showing an example of a tomographic image generated by the image processing unit based on reflected light from the object to be measured
  • FIG. 1B to FIG. 1D are diagrams showing examples of tomographic images generated by the image processing unit based on transmitted light from the object to be measured.
  • 4 is a flowchart showing the process of an imaging method using the imaging device according to the embodiment of the present invention.
  • the imaging device 1 includes a conveying unit 10, a light source 20, an imaging unit 30, an operation unit 40, a display unit 50, and an image processing unit 61.
  • the light source 20 and the imaging unit 30 constitute an imaging system that moves relative to the object (article) W.
  • the imaging device 1 irradiates the object W with light from the light source 20 in a wavelength range that appropriately transmits the object W, and generates a tomographic image of the object W based on the light transmitted or reflected by the object W at that time.
  • the object W is, for example, a packaging material or a container that contains a resin material and has a sealing portion.
  • it is desirable that the transmittance of the object W to the light irradiated from the light source 20 is 10% or more.
  • the inspection device 100 includes an imaging device 1 and an inspection unit 64.
  • the inspection device 100 performs various inspections of the object W to be measured, such as checking for the presence of foreign matter and for defective seals, based on the tomographic images generated by the imaging device 1.
  • the transport unit 10 is composed of, for example, a belt conveyor arranged horizontally relative to the main body of the imaging device 1, and includes a transport belt 11 made of a material that easily transmits light emitted from the light source 20.
  • the transport unit 10 transports multiple objects W to be measured sequentially along a predetermined transport direction (direction indicated by arrow X) to the inspection area R within a transport path formed by the transport belt 11.
  • the transport belt 11 has a transport surface 11a on which the objects W to be measured are placed and transported in the transport direction.
  • the transport unit 10 drives the transport belt 11 at a transport speed that is set in advance by the rotation of a drive motor based on the control of a transport control unit (not shown).
  • the light source 20 is composed of a laser or an LED (Light Emitting Diode), and is configured to irradiate the object W being measured transported by the transport unit 10 with emitted light having a wavelength range of 380 nm to 2500 nm that can transmit the object W.
  • the light source 20 may be configured as a line light source perpendicular to the transport direction of the object W being measured by the transport unit 10.
  • the imaging device 1 of this embodiment may include a convex lens 21 between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20.
  • a convex lens 21 between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20.
  • the imaging device 1 of this embodiment may also include a polarizer between the light source 20 and the imaging optical system 31 (described later) on the optical path of the light emitted from the light source 20.
  • a polarizer 22 between the light source 20 and the object to be measured W the polarization state of the light emitted from the light source 20 can be adjusted to be linearly polarized, elliptically polarized, or circularly polarized, so that the light emitted from the light source 20 can be effectively irradiated inside the object to be measured W.
  • the combination of the polarizer 22 and the polarizer 23 can be configured to select only a specific polarized component of the emitted light and prevent reflected light from the surface of the object to be measured W from entering the imaging unit 30.
  • the imaging device 1 of this embodiment may include a scatterer 24 such as frosted glass or a resin plate between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20.
  • a scatterer 24 such as frosted glass or a resin plate between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20.
  • the imaging unit 30 has an imaging optical system 31 that acquires reflected light from the object to be measured W irradiated with light emitted from the light source 20, and a light receiver 32 that receives the reflected light acquired by the imaging optical system 31 and continuously generates image data of the object to be measured W being transported by the transport unit 10.
  • the imaging optical system 31 is made up of at least one imaging lens 33, and is arranged between the object to be measured W and the light receiver 32 on the optical path of the light emitted from the light source 20, so that the light reflected from the object to be measured W is imaged on the light receiver 32.
  • the imaging optical system 31 has an aperture 34 between the light receiver 32 and the imaging lens 33 to block light reflected from the surface of the object to be measured W and scattered components whose optical path has been significantly shifted.
  • the depth of field D of the imaging optical system 31 is set to a range that includes the desired observation position of the object to be measured W.
  • the depth of field D of the imaging optical system 31 is set to cover the entire thickness of the object to be measured W.
  • the depth of field D of the imaging optical system 31 may be set to be narrower than the thickness of the object to be measured W so as to include only the desired depth position of the object to be measured W.
  • the position of the imaging optical system 31 is adjusted appropriately so that the depth of field can be set to the desired area of the object to be measured W, including this convex lens 21.
  • the light receiver 32 includes an image sensor 32a, such as an area sensor or line sensor, in which a plurality of photoelectric conversion elements are arranged in an array to photoelectrically convert the light reflected from the object to be measured W via the imaging optical system 31, and an image data output unit 32b that converts the photoelectrically converted electrical signal output from the image sensor 32a into image data in a predetermined output format and outputs it.
  • each photoelectric conversion element possessed by the light receiver 32 constitutes one pixel.
  • the image data output from the image data output unit 32b is a one-dimensional image when the image sensor 32a is a line sensor, and is a two-dimensional image when the image sensor 32a is an area sensor.
  • the light source 20 and the imaging unit 30 that constitute the imaging system are installed in fixed positions, and the measured object W is transported by the transport unit 10, but the present invention is not limited to this, and the imaging device 1 may be configured so long as the measured object W and the imaging system move relative to each other.
  • the imaging device 1 may be configured so that the imaging system moves to one-dimensionally or two-dimensionally scan multiple measured objects W that are arranged one-dimensionally or two-dimensionally.
  • the imaging device 1 may be configured so that the multiple measured objects W and the imaging system move together.
  • the operation unit 40 is for accepting operation input by the user, and is composed of, for example, a touch panel equipped with a touch sensor for detecting the contact position by a touch operation on an input surface corresponding to the display screen of the display unit 50.
  • the operation unit 40 recognizes that the position detected by the touch sensor on the display screen matches the position of the item, and outputs a signal to the image processing unit 61 and the inspection unit 64 to execute the function assigned to each item.
  • the operation unit 40 may be composed of an input device such as a keyboard or a mouse.
  • the display unit 50 is composed of display devices such as an LCD display or a CRT, and displays various display contents such as the tomographic image of the object W to be measured generated by the tomographic image generating unit 63 based on display control by the image processing unit 61 and the inspection unit 64. Furthermore, the display unit 50 displays operation objects such as buttons, soft keys, pull-down menus, and text boxes for setting various conditions.
  • the image processing unit 61 and the inspection unit 64 are configured by a control device including, for example, a CPU, a GPU, an FPGA, a ROM, a RAM, a HDD, and the like.
  • the image processing unit 61 and the inspection unit 64 can be configured in software by the execution of a specific program by the CPU or the GPU.
  • the above program is stored in the ROM or the HDD in advance.
  • the above program may be provided or distributed in an installable or executable format recorded on a computer-readable recording medium such as a compact disc or a DVD.
  • the above program may be stored in a computer connected to a network such as the Internet, and provided or distributed by downloading via the network.
  • the image processing unit 61 is configured to generate a tomographic image of the object W to be measured based on the multiple image data output from the image data output unit 32b, and includes a partial image generating unit 62 and a tomographic image generating unit 63.
  • the partial image generating unit 62 extracts data of specific pixels from each image data generated at different times by the photoreceiver 32, and generates a partial image consisting of the data of the specific pixels.
  • a specific pixel refers to a pixel row corresponding to a desired imaging line for the object to be measured W.
  • the position of the imaging line is determined in the inspection region R.
  • the tomographic image generating unit 63 arranges and synthesizes multiple partial images generated at different times in chronological order to generate a tomographic image of a depth corresponding to a specific pixel of the image sensor 32a of the light receiver 32. In other words, the tomographic image generating unit 63 outputs information equivalent to tomographic imaging of a deep part of the object W to be measured by stitching together multiple partial images in which different parts are captured at a specific depth position of the object W to be measured.
  • Figures 4(a) and (b) show a model of the object to be measured W to explain the operation of the image processing unit 61.
  • Figure 4(a) shows a cross-sectional view parallel to the transport direction of the object to be measured W.
  • Figure 4(b) shows a plan view of the object to be measured W.
  • This object to be measured W is composed of five layers, from the first layer to the fifth layer, from the top, and internal structure patterns P1 and P2 that imitate foreign matter are formed in the second and fourth layers.
  • the irradiation area of the object to be measured W on which the light emitted from the light source 20 is irradiated at a certain point in time is indicated by the symbol Rw.
  • the partial image generating unit 62 generates three one-dimensional images as partial images based on the reflected light emitted from the positions of the imaging lines A, B, and C on the measured object W and received by three pixel rows of the image sensor 32a of the receiver 32.
  • the position of each imaging line in the inspection region R and the correspondence between each imaging line and the pixel rows of the receiver 32 can be set in advance according to the type of measured object W.
  • Figs. 5(a) to (c) show how the positions of the irradiation region Rw and the imaging lines A, B, and C shift relative to the measured object W as the measured object W is transported.
  • the partial image generating unit 62 sequentially generates three one-dimensional images as partial images based on the reflected light emitted from the positions of the imaging lines A, B, and C that move relative to the measured object W.
  • the imaging device 1 of this embodiment may have an optical slit 25 between the light receiver 32 and the object to be measured W on the optical path of the light emitted from the light source 20, which selects reflected light from a specific depth position of the object to be measured W and allows it to enter the image sensor 32a of the light receiver 32.
  • FIG. 6 shows an example in which, of the light reflected from the first layer at depth d1, the second layer at depth d2, and the third layer at depth d3 of the object W, the reflected light from the first and second layers and other scattered light are blocked by the optical slit 25, and only the reflected light from the third layer is selected by the optical slit 25 and enters the light receiver 32.
  • the imaging device 1 By providing the imaging device 1 with such an optical slit 25, it is possible to determine in advance the depth of the tomography in the object W to be imaged by the image processing unit 61, and to generate a tomography image of the object W with improved depth resolution.
  • the descriptions of the first layer at depth d1, the second layer at depth d2, and the third layer at depth d3 are for convenience, and the object W does not necessarily have a layered structure.
  • the imaging device 1 of this embodiment may include a drive mechanism 26 that periodically translates the optical slit 25 in a plane parallel to the transport surface 11a.
  • the drive mechanism 26 translates the opening of the optical slit 25 once to scan the reflected light from the object W while the object W is transported a predetermined distance. This causes the depth of the slice imaged by the image processing unit 61 to change continuously. Thereafter, the drive mechanism 26 repeats the translation of the optical slit 25, thereby enabling the image processing unit 61 to generate a slice image with no blind spots in the depth direction while increasing the depth resolution.
  • the angle of incidence ⁇ of the light emitted from the light source 20 on the object to be measured W is set to a constant value. As shown in FIG. 7, it is desirable that the angle of incidence ⁇ is set so that the irradiation area Rw on the surface of the object to be measured W onto which the light emitted from the light source 20 is irradiated is separated from the exit position x of at least a portion of the upper surface of the object to be measured W from which the light emitted from the light source 20 that has entered the inside of the object to be measured W is emitted (for example, the positions of the arbitrarily set imaging lines A, B, C in FIG. 7) in a plan view.
  • the width of the irradiation region Rw along the transport direction of the object W is 2r
  • the emission positions x of the reflected light from the first layer, the second layer, and the third layer from the outermost surface of the object W on the light source 20 side when the center of the irradiation region Rw is used as a reference are expressed as x1 , x2 , and x3 , respectively, it is desirable that r ⁇ xn is satisfied.
  • the maximum value of n is 3, but the maximum value of n can take any positive integer value depending on the desired depth resolution.
  • the partial image generated by the partial image generating unit 62 is preferably an image obtained by capturing reflected light from within the object W that is emitted from an emission position xn of the object W and satisfies r ⁇ xn .
  • imaging lines A, B, and C are set for the top three layers of the structural model of the object to be measured W, but imaging lines A, B, and C may also be set for any layer in a five-layer model such as that shown in FIG. 4. Also, while the examples of the object to be measured W shown in FIGS. 4 and 7 are both represented by multi-layer models, imaging lines can be set at any position in the same way for any continuous model that is not divided into layers.
  • FIG. 8 shows an example of a tomographic image generated by the image processing unit 61 when the angle of incidence ⁇ of the light emitted from the light source 20 on the object to be measured W is set in various ways.
  • the imaging lines A, B, and C are set for a five-layer model as shown in FIG. 4.
  • FIGS. 9(a) to (c) are diagrams showing the direction of the light emitted from the object to be measured W when the angle of incidence ⁇ of the light emitted from the light source 20 on the object to be measured W is set in various ways.
  • This object to be measured W is composed of five layers, from the first layer to the fifth layer, in order from the top, and internal structure patterns P1 and P2 simulating foreign objects are formed in the second and fourth layers.
  • the internal structure pattern P1 of the second layer is imaged dimly in the tomographic image of the second layer based on the reflected light at the position of the imaging line B in Figure 9(a). This is thought to be because, as shown in Figure 9(a), the emission angle of the light emitted from the object W to be measured increases the farther away from the irradiation position of the light emitted from the light source 20 on the object W to be measured, but the power density of the light emitted from the light source 20 decreases significantly inside the object W to be measured.
  • the internal structure pattern P1 of the second layer was clearly imaged in the tomographic image of the second layer based on reflected light at the position of imaging line B in FIG. 9(b).
  • the internal structure pattern P1 of the second layer was faintly reflected in the tomographic image of the first layer based on reflected light at the position of imaging line A in FIG. 9(b).
  • the internal structure pattern P2 of the third layer was dimly imaged in the tomographic image of the third layer based on reflected light at the position of imaging line C in FIG. 9(b). It is believed that these tomographic images enable information derived from the internal shape and structure of the object W to be measured to be extracted while maintaining the power density of the light emitted from the light source 20, compared to when the incident angle ⁇ was 0°.
  • the internal structure pattern P1 of the second layer is relatively clearly imaged in the tomographic image of the second layer based on the reflected light at the position of the imaging line B in FIG. 9(c).
  • the internal structure pattern P2 of the third layer is relatively clearly imaged in the tomographic image of the third layer based on the reflected light at the position of the imaging line C in FIG. 9(c).
  • the internal structure pattern P1 of the second layer is dimly imaged in the tomographic image of the first layer based on the reflected light at the position of the imaging line A in FIG. 9(c).
  • the imaging device 1 of this embodiment can extract information on different depth positions of the object W to be measured, depending on the angle of incidence ⁇ of the light emitted from the light source 20 onto the object W to be measured.
  • the angle of incidence ⁇ is 0°, 4.1°, and 8.8°
  • the depth position of the object W from which information can be extracted becomes deeper when the angle of incidence ⁇ is increased.
  • the inspection unit 64 provided in the inspection device 100 of this embodiment inspects the object W for adhesion defects in the seals based on the tomographic image generated by the image processing unit 61, and outputs the inspection results to the display unit 50.
  • the tomographic image generated by the image processing unit 61 captures reflected light due to differences in refractive index distributed in the depth direction of the object W.
  • the inspection unit 64 detects locations where the refractive index change is relatively large due to adhesion defects or foreign matter contamination in the seals of food, cosmetic, and pharmaceutical containers that are compressed by thermocompression or the like, and outputs the detection results to the display unit 50. In this way, the inspection unit 64 can provide the user with inspection results for adhesion defects or foreign matter contamination in the object W, achieving highly sensitive defect inspection.
  • the imaging device 1 continuously generates image data of the object W to be measured by the photoreceiver 32 while irradiating the transported object W with light at a constant angle of incidence, and further generates a tomographic image by synthesizing partial images at depths corresponding to specific pixels of the photoreceiver 32.
  • the imaging device 1 according to this embodiment can directly capture a tomographic image having resolution in the depth direction of the object W to be measured.
  • the imaging device 1 according to this embodiment can provide the user with a tomographic image that includes information such as poor adhesion of the seal of the object W to be measured and the presence of foreign matter.
  • the imaging device 1 can generate a tomographic image of the desired observation position of the object W by appropriately setting the depth of field of the imaging optical system to a range that includes the desired observation position of the object W.
  • the imaging device 1 can spatially separate the surface reflection components and deep scattering components of the object W by appropriately setting the angle of incidence of the light emitted from the light source 20 on the surface of the object W to be measured, so that it is possible to generate a tomographic image by eliminating or spatially separating the light reflected from the surface of the object W to be measured.
  • the imaging device 1 can effectively irradiate the light emitted from the light source 20 into the inside of the object to be measured W by spreading the light emitted from the light source 20 onto a spherical surface using the scatterer 24 and making it incident on the object to be measured W.
  • the imaging device 1 can adjust the spread of the wavefront and the angle of incidence of the light emitted from the light source 20 using the convex lens 21, so that the light emitted from the light source 20 can be effectively irradiated inside the object to be measured W.
  • the imaging device 1 can adjust the polarization state of the light emitted from the light source 20 to either linearly polarized, elliptically polarized, or circularly polarized light using the polarizer 22, and can effectively irradiate the light emitted from the light source 20 into the inside of the object to be measured W.
  • it is effective to use circularly polarized or randomly polarized light as the polarization state of the light emitted from the light source 20.
  • the combination of the polarizer 22 and the polarizer 23 can be used to select only specific polarization components of the emitted light, and it can be configured to prevent reflected light from the surface of the object to be measured W from entering the imaging unit 30.
  • the imaging device 1 can generate a tomographic image with improved depth resolution by determining the depth of the slice to be imaged in advance using the optical slit 25.
  • the imaging device 1 can generate a tomographic image with no blind spots in the depth direction while improving the depth resolution by periodically translating the optical slit 25 using the drive mechanism 26 to continuously change the depth of the slice to be imaged.
  • an imaging device 2 according to a second embodiment of the present invention will be described with reference to the drawings. Note that descriptions of configurations and operations similar to those of the first embodiment will be omitted as appropriate.
  • a process for generating a tomographic image based on reflected light from the object to be measured W irradiated with light emitted from the light source 20 has been described as an example, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the same effect as that of the imaging device 1 of the first embodiment can be obtained.
  • the imaging device 2 of this embodiment has a configuration for measuring the reflected light from the object to be measured W, as well as a configuration for measuring the transmitted light from the object to be measured W.
  • the imaging device 2 of this embodiment further includes one imaging unit 30', a prism 27a that irradiates the light emitted from the light source 20 onto the object to be measured W, a prism 27b that causes the reflected light from the object to be measured W to enter the imaging optical system 31 of the imaging unit 30, and a prism 27c that causes the transmitted light from the object to be measured W to enter the imaging optical system 31' of the imaging unit 30'.
  • the configuration of the imaging unit 30' is the same as that of the imaging unit 30 in the first embodiment. Furthermore, if it is not necessary to perform measurements using two imaging units 30 and 30' simultaneously, one imaging device can be used as the imaging unit 30 or imaging unit 30' as appropriate.
  • the imaging unit 30' has an imaging optical system 31' that acquires transmitted light from the object to be measured W irradiated with the light emitted from the light source 20, and a photoreceiver 32' that photoelectrically converts the transmitted light acquired by the imaging optical system 31' at multiple pixels to continuously generate image data of the object to be measured W being transported by the transport unit 10.
  • the imaging optical system 31' of the imaging unit 30' consists of at least one imaging lens 33', and is arranged between the object to be measured W and the light receiver 32' on the optical path of the light emitted from the light source 20, so as to image the transmitted light from the object to be measured W on the light receiver 32'.
  • the depth of field of the imaging optical system 31' is set to a range that includes the desired observation position of the object to be measured W.
  • the imaging optical system 31' has an aperture (not shown) between the light receiver 32' and the imaging lens 33' to block light reflected on the surface of the object to be measured W.
  • the optical receiver 32' has the same configuration as the optical receiver 32 in the first embodiment, except that it generates image data of transmitted light from the object to be measured W, rather than image data of reflected light from the object to be measured W.
  • the imaging device 2 may also include a convex lens 21' on the optical path of the light emitted from the light source 20, between the light source 20 and the object to be measured W, or between the object to be measured W and the imaging unit 30, 30'.
  • the imaging device 2 may also include polarizers 22', 23' between the light source 20 and the imaging optical systems 31, 31' on the optical path of the light emitted from the light source 20.
  • the imaging device 2 may also include a scatterer (not shown) between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20.
  • the imaging device 2 may also have an optical slit 25' between the light receiver 32' and the object to be measured W on the optical path of the light emitted from the light source 20, which selects the transmitted light that is not reflected at a specific depth position of the object to be measured W and transmits it to the image sensor of the light receiver 32'.
  • the imaging device 2 may also include a drive mechanism 26' that periodically translates the optical slits 25, 25'. For example, while the object W is being transported a predetermined distance, the drive mechanism 26' translates the openings of the optical slits 25, 25' once so as to scan the transmitted light from the object W. Thereafter, the drive mechanism 26' repeats the translation of the optical slits 25, 25' in the same manner.
  • the angle of incidence ⁇ of the light emitted from the light source 20 on the object to be measured W is set to a constant value. As shown in FIG. 11, it is desirable to set the angle of incidence ⁇ so that the irradiation area Rw on the surface of the object to be measured W onto which the light emitted from the light source 20 is irradiated is separated from the emission position x (for example, the position of the imaging lines A', B', C' in FIG. 11) on the lower surface of the object to be measured W from which the light emitted from the light source 20 that has entered the inside of the object to be measured W is emitted, in a plan view.
  • the emission position x for example, the position of the imaging lines A', B', C' in FIG. 11
  • the object to be measured W shown in FIG. 11 has a three-layer structure, with an internal structure pattern P1 consisting of an air layer formed in the second layer. That is, the refractive indexes of the first and third layers, and the areas of the second layer where the internal structure pattern P1 is not formed, are greater than the refractive index of the internal structure pattern P1. For this reason, the behavior of the light emitted from the light source 20 that passes through the internal structure pattern P1 is, for example, as described below.
  • the transmitted light whose emission position x is x 1 ' from the outermost surface of the object W opposite the light source 20 and based on the center of the irradiation area Rw, has an emission angle (refraction angle) smaller than the incidence angle at the interface between the internal structure pattern P1 in the second layer and the third layer.
  • the transmitted light whose emission position x from the outermost surface of the object W opposite the light source 20 is x2 ' based on the center of the irradiation area Rw is not significantly affected by the change in refractive index in the internal structure pattern P1 in the second layer, and the emission angle (refraction angle) is approximately equal to the incidence angle at the interface between the internal structure pattern P1 in the first layer and the internal structure pattern P1 in the second layer and at the interface between the internal structure pattern P1 in the second layer and the third layer.
  • the transmitted light whose emission position x from the outermost surface of the object W opposite the light source 20 is x3 ' based on the center of the irradiation area Rw has an emission angle (refraction angle) larger than the incidence angle at the interface between the internal structure pattern P1 in the first layer and the second layer.
  • the partial image generating section 62 of the image processing section 61 sequentially generates one-dimensional images as partial images based on reflected light or transmitted light that is emitted from the position of the imaging line on the measured object W and received by the pixel rows of the image sensor of the light receiver 32 or 32'. It is desirable that the partial images generated by the partial image generating section 62 are images obtained by capturing transmitted light inside the measured object W that is emitted from the emission position x n ' of the measured object W and satisfies r ⁇ x n '.
  • FIG. 12(a) shows an example of a tomographic image of the object W to be measured, generated by the image processing unit 61 based on image data obtained by the imaging unit 30, which captures the reflected light from the object W to be measured.
  • FIGS. 12(b) to (d) show examples of tomographic images of the object W to be measured, generated by the image processing unit 61 based on image data obtained by the imaging unit 30', which captures the transmitted light from the object W to be measured, as shown diagrammatically in FIG. 11.
  • the internal structure pattern P1 was captured relatively clearly in the tomographic image of the second layer based on the reflected light emitted from the position of the imaging line A' shown in FIG. 11.
  • the internal structure pattern P1 was captured relatively clearly in the tomographic image of the second layer based on the transmitted light emitted from the imaging line A' position shown in FIG. 11.
  • This tomographic image in the imaging line A' is based on transmitted light that contains a large amount of refracted components after passing through the air layer of the internal structure pattern P1, so the brightness of the tomographic image of the second layer based on the reflected light emitted from the imaging line A' position shown in FIG. 12(a) is inverted. Note that in FIGS.
  • the reflected light and transmitted light emitted from the imaging line A' position are shown at the same emission position x and inverted in brightness, but depending on the configuration of the measured object, a tomographic image based on reflected light and a tomographic image based on transmitted light with inverted brightness may be obtained on different imaging lines.
  • the imaging device 2 of this embodiment which captures the transmitted light from the object to be measured W, can also generate a tomographic image that includes information on the desired depth position of the object to be measured W by selecting an appropriate imaging line.
  • the imaging device 2 of this embodiment may be configured so that the user can select whether to use the imaging unit 30 that captures reflected light from the object to be measured W, or the imaging unit 30' that captures transmitted light from the object to be measured W, depending on the type of object to be measured W and the purpose of the inspection.
  • the inspection unit 64 provided in the inspection device 110 of this embodiment inspects the object W for defects such as poor adhesion of the seal portion based on a tomographic image generated by the image processing unit 61 that captures reflected light or transmitted light due to differences in refractive index distributed in the depth direction of the object W, and outputs the inspection results to the display unit 50.
  • the inspection unit 64 detects areas in the object W where the change in refractive index is relatively large, and outputs the detection results to the display unit 50.
  • the image processing unit 61 sets the position of a specific pixel of the image sensor of the photoreceiver 32 or 32' that corresponds to the desired imaging line in response to a user's operation on the operation unit 40 (step S1).
  • the transport unit 10 starts transporting the object to be measured W (step S2).
  • the light source 20 irradiates the measured object W, which has been transported to the inspection area R by the transport unit 10, with emitted light in a wavelength range that can be transmitted through the measured object W (step S3).
  • the photoreceiver 32 or 32' photoelectrically converts the reflected or transmitted light from the object W acquired by the imaging optical system 31 or 31' at multiple pixels to generate image data of the object W being transported by the transport unit 10 (step S4).
  • the image processing unit 61 extracts data of the specific pixel set in step S1 from the image data generated by the photodetector 32 or 32' in step S4, and executes a process of generating a partial image consisting of the data of the specific pixel (partial image generation step S5).
  • the image processing unit 61 determines whether the object W being measured has left the inspection area R (step S6). If the object W being measured has left the inspection area R, the image processing unit 61 executes the process of step S7. On the other hand, if the object W being measured has not left the inspection area R, the image processing unit 61 executes the processes from step S4 onwards again.
  • step S7 the image processing unit 61 performs a process of synthesizing the partial images obtained at different times in the partial image generation step S5 and generating a tomographic image at a depth corresponding to a specific pixel of the image sensor of the optical receiver 32 or 32' (tomographic image generation step S7).
  • the display unit 50 displays the tomographic image generated in the tomographic image generation step S7 (step S8).
  • the image processing unit 61 determines whether or not tomographic images of all of the objects W to be measured have been generated in the tomographic image generation step S7 (step S9). If tomographic images of all of the objects W to be measured have been generated, the image processing unit 61 ends the processing. On the other hand, if tomographic images of all of the objects W to be measured have not been generated, the image processing unit 61 executes the processing from step S3 onwards again.

Landscapes

  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Provided are an imaging device with which it is possible to obtain a tomographic image having resolution in the depth direction of an object being measured, an inspection device using the imaging device, and an imaging method. This imaging device comprises: a light source 20 that irradiates an object W being measured with emitted light at a certain angle of incidence, the emitted light having a wavelength range that can pass through the object W being measured; an image formation optical system 31 that acquires reflected light from the object W being measured irradiated with the emitted light from the light source 20; a light receiver 32 that photoelectrically converts the reflected light acquired by the image formation optical system 31 with a plurality of pixels to continuously generate image data of the object W being measured; a partial image generating unit 62 that extracts data of specific pixels from a plurality of image data items generated by the light receiver 32 to generate partial images composed of the data of the specific pixels; and a tomographic image generating unit 63 that combines a plurality of partial images to generate a tomographic image of a depth corresponding to the specific pixels. The object W being measured, the light source 20, the coupling optical system 31, and the light receiver 32 move relative to each other.

Description

撮像装置、当該撮像装置を用いた検査装置、及び撮像方法Imaging device, inspection device using said imaging device, and imaging method
 本発明は、撮像装置、当該撮像装置を用いた検査装置、及び撮像方法に関し、特に、被測定物のシール部の接着不良や異物混入の検査を行うための撮像装置、当該撮像装置を用いた検査装置、及び撮像方法に関する。 The present invention relates to an imaging device, an inspection device using the imaging device, and an imaging method, and in particular to an imaging device for inspecting the sealing portion of an object to be measured for adhesion defects and foreign matter contamination, an inspection device using the imaging device, and an imaging method.
 袋状あるいはチューブ状の包装材に食品などの内容物が収容された製品には、包装材への内容物の収容後に開口部分にシールが施されている。その際、包装材のシール部に空隙が含まれたり、内容物やそのくず等が噛み込まれたりすることがある。このようなシール不良の製品は不良品として排除する必要がある。 For products in which food or other contents are packed in bag- or tube-shaped packaging, the opening is sealed after the contents are placed in the packaging. At that time, there may be gaps in the sealed part of the packaging, or the contents or their debris may become trapped inside. Products with such poor sealing must be rejected as defective.
 このため、この種の包装材に内容物が包まれてシールが施された製品を被測定物とし、この被測定物のシール不良を画像化できる検査装置が望まれている。 For this reason, there is a demand for an inspection device that can image sealing defects on products that have been sealed with this type of packaging material as the test object.
 従来、生体内部の情報を画像化する技術として、拡散光スペクトロスコピー(Diffuse Optical Spectroscopy:DOS)、拡散光トモグラフィ(Diffuse Optical Tomography:DOT)、光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)などが知られている。 Traditionally, techniques known for imaging information inside living organisms include diffuse optical spectroscopy (DOS), diffuse optical tomography (DOT), and optical coherence tomography (OCT).
 しかしながら、これらの技術は、高価な装置を必要とする上に、紙、金属、プラスチック、又は樹脂などからなる包装材の内部の画像化には適していないという問題がある。 However, these techniques have the problem that they require expensive equipment and are not suitable for imaging the inside of packaging materials made of paper, metal, plastic, or resin.
 一方、比較的安価なプロジェクタ・カメラシステムを用いて、プロジェクタから物体に投影されるパターン画像における複数の空間周波数、及び、撮像装置から出力される複数の空間周波数に各別に対応した時間的に順次変化する複数の合成画像のディジタル画像信号に基づき、物体の表面及び内部の特定の3次元位置から反射した光の信号振幅を抽出して、物体内部の光学特性を算出する技術が知られている(例えば、特許文献1参照)。 On the other hand, a technology is known that uses a relatively inexpensive projector-camera system to extract the signal amplitude of light reflected from specific three-dimensional positions on the surface and inside of an object, based on digital image signals of multiple composite images that change sequentially over time and correspond respectively to multiple spatial frequencies in a pattern image projected from a projector onto an object and multiple spatial frequencies output from an imaging device, and calculate the optical characteristics inside the object (see, for example, Patent Document 1).
 また、レーザ走査型プロジェクタによる照明とローリングシャッター方式のカメラによる撮影とを行うプロジェクタ-カメラシステムにおいて、照明と撮影とのタイミングに1ミリ秒以下の僅かな遅延時間を意図的に挿入することにより、被写体表面での反射光の影響を低減して、被写体内部を経由した散乱光を計測する技術が知られている(例えば、非特許文献1参照)。 In addition, in a projector-camera system that uses illumination from a laser scanning projector and photography with a rolling shutter camera, a technique is known in which a slight delay of less than 1 millisecond is intentionally inserted between the timing of illumination and photography to reduce the effect of reflected light on the subject's surface and measure the scattered light that passes through the interior of the subject (see, for example, non-patent document 1).
特開2020-85618号公報JP 2020-85618 A
 しかしながら、特許文献1に開示された技術は、物体内部を直接的に撮影するものではなく、物体内部の情報を情報処理で推定するものであった。このため、特許文献1に開示された技術は、処理量が多く、被測定物が次々に搬送される検査装置に適用できないという問題があるとともに、表面反射成分と深部散乱成分とが空間的に十分に分離できていないという問題があった。 However, the technology disclosed in Patent Document 1 does not directly capture images of the inside of an object, but estimates information about the inside of an object through information processing. As a result, the technology disclosed in Patent Document 1 has problems in that it requires a large amount of processing and cannot be applied to inspection equipment in which objects to be measured are transported one after another, and there is also a problem in that the surface reflection component and the deep scattering component cannot be sufficiently separated spatially.
 また、非特許文献1に開示された技術により取得された画像には、被写体の内部だけでなく、被写体の表面(顔や腕などの表面)が映り込んでいることから分かるように、非特許文献1に開示された技術においても、表面反射成分と深部散乱成分とが空間的に十分に分離できていないという問題があった。 Furthermore, as can be seen from the fact that the images acquired using the technology disclosed in Non-Patent Document 1 reflect not only the interior of the subject but also the subject's surface (surfaces of the face, arms, etc.), the technology disclosed in Non-Patent Document 1 also had the problem of being unable to sufficiently separate spatially the surface reflection component and the deep scattering component.
 本発明は、このような従来の課題を解決するためになされたものであって、被測定物の深さ方向に分解能を持った断層画像を得ることができる撮像装置、当該撮像装置を用いた検査装置、及び撮像方法を提供することを目的とする。 The present invention has been made to solve these problems in the past, and aims to provide an imaging device capable of obtaining a tomographic image with resolution in the depth direction of the object being measured, an inspection device using the imaging device, and an imaging method.
 上記課題を解決するために、本発明に係る撮像装置は、被測定物と相対移動する撮像系と、前記被測定物の断層画像を生成する画像処理部と、を備える撮像装置であって、前記撮像系は、前記被測定物を透過可能な波長域の出射光を当該被測定物に対して一定の入射角で照射する光源と、前記光源からの出射光が照射された前記被測定物からの反射光又は透過光を取得する結像光学系と、前記結像光学系により取得された前記反射光又は前記透過光を複数の画素で光電変換して、前記被測定物の画像データを連続的に生成する受光器と、を含み、前記画像処理部は、前記受光器により生成された各前記画像データから特定の画素のデータを抽出して、前記特定の画素のデータからなる部分画像を生成する部分画像生成部と、複数の前記部分画像を合成し、前記特定の画素に対応する深さの前記断層画像を生成する断層画像生成部と、を含む構成である。 In order to solve the above problem, the imaging device according to the present invention is an imaging device that includes an imaging system that moves relative to the object to be measured, and an image processing unit that generates a tomographic image of the object to be measured, the imaging system including a light source that irradiates the object to be measured with outgoing light in a wavelength range that can transmit the object to be measured at a certain angle of incidence, an imaging optical system that acquires reflected light or transmitted light from the object to be measured irradiated with the outgoing light from the light source, and a photoreceiver that photoelectrically converts the reflected light or transmitted light acquired by the imaging optical system at multiple pixels to continuously generate image data of the object to be measured, and the image processing unit includes a partial image generating unit that extracts data of a specific pixel from each of the image data generated by the photoreceiver and generates a partial image made of the data of the specific pixel, and a tomographic image generating unit that combines the multiple partial images to generate the tomographic image at a depth corresponding to the specific pixel.
 この構成により、本発明に係る撮像装置は、撮像系に対して相対移動している被測定物に一定の入射角の光を照射しながら被測定物の画像データを受光器により連続的に生成し、さらに受光器の特定の画素に対応する深さの部分画像を合成して断層画像を生成するようになっている。すなわち、本発明に係る撮像装置は、被測定物の深さ方向に分解能を持った断層画像を直接的に撮影することができる。さらに、本発明に係る撮像装置は、被測定物のシール部の接着不良や異物混入などの情報を含む断層画像をユーザに提供することができる。 With this configuration, the imaging device of the present invention continuously generates image data of the object to be measured using the photoreceiver while irradiating the object to be measured, which is moving relative to the imaging system, with light at a constant angle of incidence, and further generates a tomographic image by synthesizing partial images at depths corresponding to specific pixels of the photoreceiver. In other words, the imaging device of the present invention can directly capture a tomographic image with resolution in the depth direction of the object to be measured. Furthermore, the imaging device of the present invention can provide the user with a tomographic image that includes information such as poor adhesion of the seal of the object to be measured or the presence of foreign matter.
 また、本発明に係る撮像装置においては、前記結像光学系の被写界深度が、前記被測定物の所望の観察位置を含む範囲に設定されていてもよい。 In addition, in the imaging device according to the present invention, the depth of field of the imaging optical system may be set to a range that includes the desired observation position of the object to be measured.
 この構成により、本発明に係る撮像装置は、結像光学系の被写界深度を被測定物の所望の観察位置を含む範囲に適切に設定することで、被測定物の所望の観察位置の断層画像を生成することができる。 With this configuration, the imaging device according to the present invention can generate a tomographic image of the desired observation position of the object to be measured by appropriately setting the depth of field of the imaging optical system to a range that includes the desired observation position of the object to be measured.
 また、本発明に係る撮像装置においては、前記入射角は、前記光源からの出射光が照射される前記被測定物の表面の照射領域と、前記被測定物内部に入射した前記光源からの出射光が出射する前記被測定物の表面の少なくとも一部の出射位置とが平面視において離れる角度に設定されており、前記部分画像は、前記被測定物の前記出射位置からの前記反射光又は前記透過光が撮像された画像であってもよい。 In addition, in the imaging device according to the present invention, the angle of incidence is set at an angle at which an illumination area on the surface of the object to be measured, where the light emitted from the light source is irradiated, is separated from an exit position on at least a portion of the surface of the object to be measured from which the light emitted from the light source that entered the inside of the object to be measured exits, in a planar view, and the partial image may be an image obtained by capturing the reflected light or the transmitted light from the exit position of the object to be measured.
 この構成により、本発明に係る撮像装置は、光源からの出射光の被測定物の表面への入射角を適切に設定することで、被測定物における表面反射成分と深部散乱成分を空間的に分離できるため、被測定物の表面からの反射光を排除して、あるいは空間的に分離して、断層画像を生成することができる。 With this configuration, the imaging device of the present invention can spatially separate the surface reflection components and deep scattering components of the object being measured by appropriately setting the angle of incidence of the light emitted from the light source on the surface of the object being measured, so that it is possible to generate a tomographic image by eliminating or spatially separating the light reflected from the surface of the object being measured.
 また、本発明に係る撮像装置は、前記光源からの出射光の光路上において、前記光源と前記被測定物との間に散乱体を更に備える構成であってもよい。 The imaging device according to the present invention may further include a scatterer between the light source and the object to be measured on the optical path of the light emitted from the light source.
 この構成により、本発明に係る撮像装置は、散乱体によって光源からの出射光を球面上に拡げて被測定物に入射させることにより、光源からの出射光を被測定物の内部に効果的に照射することができる。 With this configuration, the imaging device of the present invention can effectively irradiate the light emitted from the light source into the inside of the object to be measured by spreading the light emitted from the light source onto a spherical surface using a scatterer and making it incident on the object to be measured.
 また、本発明に係る撮像装置は、前記光源からの出射光の光路上において、前記光源と前記被測定物との間に凸レンズを更に備える構成であってもよい。 The imaging device according to the present invention may further include a convex lens between the light source and the object to be measured on the optical path of the light emitted from the light source.
 この構成により、本発明に係る撮像装置は、凸レンズによって光源からの出射光の波面の拡がりと入射角を調整して、光源からの出射光を被測定物の内部に効果的に照射することができる。 With this configuration, the imaging device of the present invention can use the convex lens to adjust the spread and incident angle of the wavefront of the light emitted from the light source, allowing the light emitted from the light source to be effectively irradiated inside the object to be measured.
 また、本発明に係る撮像装置は、前記光源からの出射光の光路上において、前記光源と前記結像光学系との間に偏光子を更に備える構成であってもよい。 The imaging device according to the present invention may further include a polarizer between the light source and the imaging optical system on the optical path of the light emitted from the light source.
 この構成により、本発明に係る撮像装置は、偏光子によって光源からの出射光の偏光状態を、直線偏光、楕円偏光、又は円偏光のいずれかに調整して、光源からの出射光を被測定物の内部に効果的に照射することができる。特に、散乱性が高い被測定物においては、光源からの出射光の偏光状態として円偏光あるいはランダム偏光を用いるのが効果的である。 With this configuration, the imaging device according to the present invention can use the polarizer to adjust the polarization state of the light emitted from the light source to either linearly polarized, elliptically polarized, or circularly polarized, and can effectively irradiate the light emitted from the light source into the inside of the object being measured. In particular, for objects that are highly scattering, it is effective to use circularly polarized or randomly polarized light as the polarization state of the light emitted from the light source.
 また、本発明に係る撮像装置は、前記光源からの出射光の光路上において、前記受光器と前記被測定物との間に、前記被測定物の特定の深さ位置からの前記反射光、又は、前記被測定物の特定の深さ位置で反射されずに透過した前記透過光を選択して前記受光器に入射させる光学スリットを更に備える構成であってもよい。 The imaging device according to the present invention may further include an optical slit between the light receiver and the object to be measured on the optical path of the light emitted from the light source, which selects the reflected light from a specific depth position of the object to be measured, or the transmitted light that is not reflected but is transmitted through the specific depth position of the object to be measured, and causes it to enter the light receiver.
 この構成により、本発明に係る撮像装置は、光学スリットによってあらかじめ画像化する断層の深さを決めることで、深さ分解能を高めて断層画像を生成することができる。 With this configuration, the imaging device according to the present invention can generate a tomographic image with improved depth resolution by determining the depth of the slice to be imaged in advance using an optical slit.
 また、本発明に係る撮像装置は、前記光学スリットを周期的に平行移動させる駆動機構を更に備える構成であってもよい。 The imaging device according to the present invention may further include a drive mechanism for periodically translating the optical slit.
 この構成により、本発明に係る撮像装置は、光学スリットを駆動機構によって周期的に平行移動させることにより、画像化する断層の深さを連続的に変化させることで、深さ分解能を高めつつ、深さ方向に死角のない断層画像を生成することができる。 With this configuration, the imaging device of the present invention can generate a tomographic image with no blind spots in the depth direction while improving the depth resolution by periodically translating the optical slit using a drive mechanism to continuously change the depth of the tomographic section to be imaged.
 また、本発明に係る検査装置は、上記のいずれかに記載の撮像装置と、前記撮像装置により生成された前記断層画像に基づいて前記被測定物を検査する検査部と、を備える構成である。 The inspection device according to the present invention is configured to include any of the imaging devices described above and an inspection section that inspects the object to be measured based on the tomographic image generated by the imaging device.
 この構成により、本発明に係る検査装置は、被測定物における接着不良や異物混入などの検査結果をユーザに提供することができ、高感度な不良検査を実現できる。 With this configuration, the inspection device according to the present invention can provide the user with inspection results for things like poor adhesion or foreign matter contamination in the object being measured, enabling highly sensitive inspection of defects.
 また、本発明に係る撮像方法は、被測定物と相対移動する撮像系を備え、前記撮像系は、前記被測定物を透過可能な波長域の出射光を当該被測定物に対して一定の入射角で照射する光源と、前記光源からの出射光が照射された前記被測定物からの反射光又は透過光を取得する結像光学系と、前記結像光学系により取得された前記反射光又は前記透過光を複数の画素で光電変換して、前記被測定物の画像データを連続的に生成する受光器と、を含む撮像装置を用いる撮像方法であって、前記受光器により生成された各前記画像データから特定の画素のデータを抽出して、前記特定の画素のデータからなる部分画像を生成する部分画像生成ステップと、複数の前記部分画像を合成し、前記特定の画素に対応する深さの前記断層画像を生成する断層画像生成ステップと、を含む構成である。  An imaging method according to the present invention is an imaging method using an imaging device including an imaging system that moves relative to the object to be measured, the imaging system including a light source that irradiates the object to be measured with outgoing light in a wavelength range that can be transmitted through the object to be measured at a constant angle of incidence, an imaging optical system that acquires reflected light or transmitted light from the object to be measured irradiated with the outgoing light from the light source, and a photoreceiver that photoelectrically converts the reflected light or transmitted light acquired by the imaging optical system at multiple pixels to continuously generate image data of the object to be measured, and includes a partial image generation step of extracting data of a specific pixel from each of the image data generated by the photoreceiver to generate a partial image consisting of the data of the specific pixel, and a tomographic image generation step of synthesizing the multiple partial images to generate the tomographic image at a depth corresponding to the specific pixel.
 本発明は、被測定物の深さ方向に分解能を持った断層画像を得ることができる撮像装置、当該撮像装置を用いた検査装置、及び撮像方法を提供するものである。 The present invention provides an imaging device capable of obtaining a tomographic image with resolution in the depth direction of an object to be measured, an inspection device using the imaging device, and an imaging method.
本発明の第1の実施形態に係る撮像装置及び検査装置の構成図である。1 is a configuration diagram of an imaging device and an inspection device according to a first embodiment of the present invention. 図1に示す撮像装置の光源と被測定物との間に散乱体が配置された構成例を示す図である。2 is a diagram showing a configuration example in which a scatterer is disposed between a light source and an object to be measured of the imaging device shown in FIG. 1 ; 図1に示す撮像装置の結像光学系の被写界深度を示す図である。2 is a diagram showing the depth of field of the imaging optical system of the image pickup apparatus shown in FIG. 1 . (a)は被測定物のモデルの搬送方向に平行な断面図を示しており、(b)は、被測定物のモデルの平面図を示している。1A shows a cross-sectional view of a model of an object to be measured taken along a plane parallel to the conveying direction, and FIG. 1B shows a plan view of the model of an object to be measured. (a)~(c)は、被測定物の搬送に伴って照射領域と撮像ラインの位置が被測定物に対して相対的にずれていく様子を示す図である。13A to 13C are diagrams showing how the positions of the irradiation area and the imaging line shift relative to the object to be measured as the object to be measured is transported. 図1に示す撮像装置の受光器と被測定物との間に光学スリットが配置された構成例を示す図である。2 is a diagram showing a configuration example in which an optical slit is disposed between a light receiver and a measured object of the imaging device shown in FIG. 1 . 光源からの出射光の被測定物への入射角、光源からの出射光が照射される被測定物の表面の照射領域、被測定物内部に入射した光源からの出射光が出射する被測定物の上側の表面の出射位置を示す図である。FIG. 1 is a diagram showing the incident angle of light emitted from a light source to an object to be measured, the irradiation area on the surface of the object to be measured onto which the light emitted from the light source is irradiated, and the exit position on the upper surface of the object to be measured from which the light emitted from the light source that entered the inside of the object to be measured exits. 画像処理部により生成された断層画像の例を示す図である。FIG. 4 is a diagram showing an example of a tomographic image generated by an image processing unit. (a)~(c)は光源からの出射光の被測定物への入射角を様々に設定した場合の被測定物からの出射光の方向を模式的に示す図である。4A to 4C are diagrams illustrating the direction of light emitted from a measurement object when the incident angle of light emitted from a light source to the measurement object is set to various values. 本発明の第2の実施形態に係る撮像装置及び検査装置の構成図である。FIG. 11 is a configuration diagram of an imaging device and an inspection device according to a second embodiment of the present invention. 光源からの出射光の被測定物への入射角、光源からの出射光が照射される被測定物の表面の照射領域、被測定物内部に入射した光源からの出射光が出射する被測定物の下側の表面の出射位置を示す図である。FIG. 1 is a diagram showing the angle of incidence of light emitted from a light source to an object to be measured, the irradiation area on the surface of the object to be measured onto which the light emitted from the light source is irradiated, and the exit position on the lower surface of the object to be measured from which the light emitted from the light source that entered inside the object to be measured exits. (a)は被測定物からの反射光に基づいて画像処理部により生成された断層画像の例を示す図であり、(b)~(d)は、被測定物からの透過光に基づいて画像処理部により生成された断層画像の例を示す図である。FIG. 1A is a diagram showing an example of a tomographic image generated by the image processing unit based on reflected light from the object to be measured, and FIG. 1B to FIG. 1D are diagrams showing examples of tomographic images generated by the image processing unit based on transmitted light from the object to be measured. 本発明の実施形態に係る撮像装置を用いる撮像方法の処理を示すフローチャートである。4 is a flowchart showing the process of an imaging method using the imaging device according to the embodiment of the present invention.
 以下、本発明に係る撮像装置、当該撮像装置を用いた検査装置、及び撮像方法の実施形態について図面を用いて説明する。 Below, the imaging device according to the present invention, an inspection device using the imaging device, and an imaging method will be described with reference to the drawings.
(第1の実施形態)
 図1に示すように、本発明の第1の実施形態に係る撮像装置1は、搬送部10と、光源20と、撮像部30と、操作部40と、表示部50と、画像処理部61と、を備える。ここで、光源20及び撮像部30は、被測定物(物品)Wと相対移動する撮像系を構成する。撮像装置1は、被測定物Wに対して、光源20から被測定物Wを適切に透過する波長域の光を照射し、そのときに被測定物Wを透過又は反射した光に基づいて、被測定物Wの断層画像を生成するものである。ここで、被測定物Wは、例えば、樹脂材料を含み、シール部を有する包装材や容器である。また、光源20から照射される光の被測定物Wの透過率は、10%以上であることが望ましい。
First Embodiment
As shown in FIG. 1, the imaging device 1 according to the first embodiment of the present invention includes a conveying unit 10, a light source 20, an imaging unit 30, an operation unit 40, a display unit 50, and an image processing unit 61. Here, the light source 20 and the imaging unit 30 constitute an imaging system that moves relative to the object (article) W. The imaging device 1 irradiates the object W with light from the light source 20 in a wavelength range that appropriately transmits the object W, and generates a tomographic image of the object W based on the light transmitted or reflected by the object W at that time. Here, the object W is, for example, a packaging material or a container that contains a resin material and has a sealing portion. In addition, it is desirable that the transmittance of the object W to the light irradiated from the light source 20 is 10% or more.
 また、本発明の第1の実施形態に係る検査装置100は、撮像装置1と、検査部64と、を備える。検査装置100は、撮像装置1により生成された断層画像に基づいて、被測定物Wに対して、異物混入の有無、シール部不良の有無などの各種検査を行うものである。 The inspection device 100 according to the first embodiment of the present invention includes an imaging device 1 and an inspection unit 64. The inspection device 100 performs various inspections of the object W to be measured, such as checking for the presence of foreign matter and for defective seals, based on the tomographic images generated by the imaging device 1.
 搬送部10は、例えば撮像装置1本体に対して水平に配置されたベルトコンベアで構成されており、光源20からの出射光を透過しやすい材料からなる搬送ベルト11を備える。搬送部10は、搬送ベルト11により形成される搬送路内で、複数の被測定物Wを所定の搬送方向(矢印Xで示す方向)に沿って検査領域Rに順次搬送するようになっている。搬送ベルト11は、被測定物Wを載置し搬送方向に搬送する搬送面11aを有する。搬送部10は、被測定物Wの検査を行うときに、不図示の搬送制御部の制御に基づく駆動モータの回転によりあらかじめ設定される搬送速度で、搬送ベルト11を駆動するようになっている。 The transport unit 10 is composed of, for example, a belt conveyor arranged horizontally relative to the main body of the imaging device 1, and includes a transport belt 11 made of a material that easily transmits light emitted from the light source 20. The transport unit 10 transports multiple objects W to be measured sequentially along a predetermined transport direction (direction indicated by arrow X) to the inspection area R within a transport path formed by the transport belt 11. The transport belt 11 has a transport surface 11a on which the objects W to be measured are placed and transported in the transport direction. When inspecting the objects W to be measured, the transport unit 10 drives the transport belt 11 at a transport speed that is set in advance by the rotation of a drive motor based on the control of a transport control unit (not shown).
 光源20は、レーザ又はLED(Light Emitting Diode)などからなり、例えば被測定物Wを透過可能な波長域が380nm~2500nmの出射光を、搬送部10により搬送されている被測定物Wに照射するようになっている。例えば、光源20は、搬送部10による被測定物Wの搬送方向に対して直交するライン光源として構成されていてもよい。 The light source 20 is composed of a laser or an LED (Light Emitting Diode), and is configured to irradiate the object W being measured transported by the transport unit 10 with emitted light having a wavelength range of 380 nm to 2500 nm that can transmit the object W. For example, the light source 20 may be configured as a line light source perpendicular to the transport direction of the object W being measured by the transport unit 10.
 本実施形態の撮像装置1は、光源20からの出射光の光路上において、光源20と被測定物Wとの間に凸レンズ21を備えていてもよい。このように凸レンズ21が設けられることにより、光源20からの出射光の波面の広がりと入射角θを調整して、光源20からの出射光を被測定物Wの内部に効果的に照射することができる。なお、光源20からの出射光の光路上において、被測定物Wと撮像部30との間に更に凸レンズが配置されていてもよい。 The imaging device 1 of this embodiment may include a convex lens 21 between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20. By providing the convex lens 21 in this manner, the spread of the wavefront of the light emitted from the light source 20 and the incident angle θ can be adjusted, and the light emitted from the light source 20 can be effectively irradiated inside the object to be measured W. Note that a further convex lens may be disposed between the object to be measured W and the imaging unit 30 on the optical path of the light emitted from the light source 20.
 また、本実施形態の撮像装置1は、光源20からの出射光の光路上において、光源20と後述する結像光学系31との間に偏光子を備えていてもよい。例えば、光源20と被測定物Wとの間に偏光子22が設けられることにより、光源20からの出射光の偏光状態を、直線偏光、楕円偏光、又は円偏光のいずれかに調整して、光源20からの出射光を被測定物Wの内部に効果的に照射することができる。また、さらに、被測定物Wと撮像部30との間に偏光子23が設けられることにより、偏光子22と偏光子23の組合せで出射光の特定の偏光成分のみを選択し、被測定物Wの表面からの反射光が撮像部30に入射することを防ぐように構成することもできる。 The imaging device 1 of this embodiment may also include a polarizer between the light source 20 and the imaging optical system 31 (described later) on the optical path of the light emitted from the light source 20. For example, by providing a polarizer 22 between the light source 20 and the object to be measured W, the polarization state of the light emitted from the light source 20 can be adjusted to be linearly polarized, elliptically polarized, or circularly polarized, so that the light emitted from the light source 20 can be effectively irradiated inside the object to be measured W. Furthermore, by providing a polarizer 23 between the object to be measured W and the imaging unit 30, the combination of the polarizer 22 and the polarizer 23 can be configured to select only a specific polarized component of the emitted light and prevent reflected light from the surface of the object to be measured W from entering the imaging unit 30.
 また、図2に示すように、本実施形態の撮像装置1は、光源20からの出射光の光路上において、光源20と被測定物Wとの間に、すりガラスや樹脂板などの散乱体24を備えていてもよい。このように散乱体24が設けられることにより、光源20からの出射光が球面状に広がって被測定物Wに入射することになり、光源20からの出射光を被測定物Wの内部に効果的に照射することができる。 Also, as shown in FIG. 2, the imaging device 1 of this embodiment may include a scatterer 24 such as frosted glass or a resin plate between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20. By providing the scatterer 24 in this manner, the light emitted from the light source 20 spreads spherically and enters the object to be measured W, so that the light emitted from the light source 20 can be effectively irradiated into the inside of the object to be measured W.
 図1に示すように、撮像部30は、光源20からの出射光が照射された被測定物Wからの反射光を取得する結像光学系31と、結像光学系31により取得された反射光を受光して、搬送部10により搬送されている被測定物Wの画像データを連続的に生成する受光器32と、を有する。 As shown in FIG. 1, the imaging unit 30 has an imaging optical system 31 that acquires reflected light from the object to be measured W irradiated with light emitted from the light source 20, and a light receiver 32 that receives the reflected light acquired by the imaging optical system 31 and continuously generates image data of the object to be measured W being transported by the transport unit 10.
 結像光学系31は、少なくとも1つの結像レンズ33からなり、光源20からの出射光の光路上において被測定物Wと受光器32との間に配置されて、被測定物Wからの反射光を受光器32に結像させるようになっている。また、結像光学系31は、受光器32と結像レンズ33との間に、被測定物Wの表面で反射した光や大きく光路がずれた散乱成分を遮断するための絞り34を有していることが望ましい。 The imaging optical system 31 is made up of at least one imaging lens 33, and is arranged between the object to be measured W and the light receiver 32 on the optical path of the light emitted from the light source 20, so that the light reflected from the object to be measured W is imaged on the light receiver 32. In addition, it is preferable that the imaging optical system 31 has an aperture 34 between the light receiver 32 and the imaging lens 33 to block light reflected from the surface of the object to be measured W and scattered components whose optical path has been significantly shifted.
 結像光学系31の被写界深度Dは、被測定物Wの所望の観察位置を含む範囲に設定される。例えば、図3に示すように、結像光学系31の被写界深度Dは、被測定物Wの厚さ全体にわたるように設定される。あるいは、結像光学系31の被写界深度Dは、被測定物Wの所望の深さ位置のみを含むように、被測定物Wの厚さよりも狭く設定されてもよい。 The depth of field D of the imaging optical system 31 is set to a range that includes the desired observation position of the object to be measured W. For example, as shown in FIG. 3, the depth of field D of the imaging optical system 31 is set to cover the entire thickness of the object to be measured W. Alternatively, the depth of field D of the imaging optical system 31 may be set to be narrower than the thickness of the object to be measured W so as to include only the desired depth position of the object to be measured W.
 凸レンズ21が、光源20からの出射光の光路上において、被測定物Wと撮像部30との間に配置される場合には、この凸レンズ21を含めて被測定物Wの観測したい領域に被写界深度を設定できるように、結像光学系31の位置を適宜調整することになる。 If the convex lens 21 is placed between the object to be measured W and the imaging unit 30 on the optical path of the light emitted from the light source 20, the position of the imaging optical system 31 is adjusted appropriately so that the depth of field can be set to the desired area of the object to be measured W, including this convex lens 21.
 図1に示すように、受光器32は、結像光学系31を介した被測定物Wからの反射光を光電変換する複数の光電変換素子がアレイ状に配置されたエリアセンサ又はラインセンサなどのイメージセンサ32aと、イメージセンサ32aから出力される光電変換された電気信号を所定の出力形式の画像データに変換して出力する画像データ出力部32bと、を含む。ここで、受光器32が有する各光電変換素子は、1つの画素を構成する。画像データ出力部32bから出力される画像データは、イメージセンサ32aがラインセンサの場合には1次元画像であり、イメージセンサ32aがエリアセンサの場合には2次元画像である。 As shown in FIG. 1, the light receiver 32 includes an image sensor 32a, such as an area sensor or line sensor, in which a plurality of photoelectric conversion elements are arranged in an array to photoelectrically convert the light reflected from the object to be measured W via the imaging optical system 31, and an image data output unit 32b that converts the photoelectrically converted electrical signal output from the image sensor 32a into image data in a predetermined output format and outputs it. Here, each photoelectric conversion element possessed by the light receiver 32 constitutes one pixel. The image data output from the image data output unit 32b is a one-dimensional image when the image sensor 32a is a line sensor, and is a two-dimensional image when the image sensor 32a is an area sensor.
 本実施形態では、撮像系を構成する光源20や撮像部30が固定位置に設置され、被測定物Wが搬送部10により搬送されるとしているが、本発明はこれに限定されず、撮像装置1は、被測定物Wと撮像系とが相対移動する構成であればよい。例えば、撮像装置1は、1次元的又は2次元的に配列された複数の被測定物Wを1次元的又は2次元的にスキャンするように撮像系が動く構成であってもよい。あるいは、撮像装置1は、複数の被測定物Wと撮像系が共に動く構成であってもよい。 In this embodiment, the light source 20 and the imaging unit 30 that constitute the imaging system are installed in fixed positions, and the measured object W is transported by the transport unit 10, but the present invention is not limited to this, and the imaging device 1 may be configured so long as the measured object W and the imaging system move relative to each other. For example, the imaging device 1 may be configured so that the imaging system moves to one-dimensionally or two-dimensionally scan multiple measured objects W that are arranged one-dimensionally or two-dimensionally. Alternatively, the imaging device 1 may be configured so that the multiple measured objects W and the imaging system move together.
 操作部40は、ユーザによる操作入力を受け付けるためのものであり、例えば表示部50の表示画面に対応する入力面への接触操作による接触位置を検出するためのタッチセンサを備えるタッチパネルで構成される。操作部40は、ユーザが表示画面に表示されている特定の項目の位置を指やスタイラス等で触れた際に、タッチセンサが表示画面上で検出した位置と項目の位置との一致を認識することにより、各項目に割り当てられた機能を実行するための信号を画像処理部61や検査部64に出力する。あるいは、操作部40は、キーボード又はマウスのような入力デバイスを含んで構成されてもよい。 The operation unit 40 is for accepting operation input by the user, and is composed of, for example, a touch panel equipped with a touch sensor for detecting the contact position by a touch operation on an input surface corresponding to the display screen of the display unit 50. When the user touches the position of a specific item displayed on the display screen with a finger, a stylus, etc., the operation unit 40 recognizes that the position detected by the touch sensor on the display screen matches the position of the item, and outputs a signal to the image processing unit 61 and the inspection unit 64 to execute the function assigned to each item. Alternatively, the operation unit 40 may be composed of an input device such as a keyboard or a mouse.
 表示部50は、液晶ディスプレイやCRT等の表示機器で構成され、画像処理部61や検査部64による表示制御に基づき、断層画像生成部63により生成された被測定物Wの断層画像などの各種表示内容を表示するようになっている。さらに、表示部50は、各種条件を設定するためのボタン、ソフトキー、プルダウンメニュー、テキストボックスなどの操作対象の表示を行うようになっている。 The display unit 50 is composed of display devices such as an LCD display or a CRT, and displays various display contents such as the tomographic image of the object W to be measured generated by the tomographic image generating unit 63 based on display control by the image processing unit 61 and the inspection unit 64. Furthermore, the display unit 50 displays operation objects such as buttons, soft keys, pull-down menus, and text boxes for setting various conditions.
 画像処理部61及び検査部64は、例えばCPU、GPU、FPGA、ROM、RAM、HDDなどを含む制御装置で構成される。例えば、画像処理部61及び検査部64は、CPU又はGPUによる所定のプログラムの実行により、ソフトウェア的に構成することが可能である。なお、上記のプログラムは、ROM又はHDDにあらかじめ格納されている。あるいは、上記のプログラムは、インストール可能な形式又は実行可能な形式でコンパクトディスク、DVD等のコンピュータで読み取り可能な記録媒体に記録された状態で提供又は配布されるようにしてもよい。あるいは、上記のプログラムは、インターネット等のネットワークに接続されたコンピュータに格納され、ネットワーク経由でのダウンロードにより提供又は配布されるようにしてもよい。 The image processing unit 61 and the inspection unit 64 are configured by a control device including, for example, a CPU, a GPU, an FPGA, a ROM, a RAM, a HDD, and the like. For example, the image processing unit 61 and the inspection unit 64 can be configured in software by the execution of a specific program by the CPU or the GPU. The above program is stored in the ROM or the HDD in advance. Alternatively, the above program may be provided or distributed in an installable or executable format recorded on a computer-readable recording medium such as a compact disc or a DVD. Alternatively, the above program may be stored in a computer connected to a network such as the Internet, and provided or distributed by downloading via the network.
 画像処理部61は、画像データ出力部32bから出力された複数の画像データに基づいて被測定物Wの断層画像を生成するようになっており、部分画像生成部62と、断層画像生成部63と、を含む。 The image processing unit 61 is configured to generate a tomographic image of the object W to be measured based on the multiple image data output from the image data output unit 32b, and includes a partial image generating unit 62 and a tomographic image generating unit 63.
 部分画像生成部62は、受光器32により異なる時刻に生成された各画像データから特定の画素のデータを抽出して、特定の画素のデータからなる部分画像を生成するようになっている。例えば、特定の画素とは、被測定物Wに対する所望の撮像ラインに対応する画素列を指す。ここで、撮像系を構成する光源20や撮像部30が固定位置に設置される構成では、撮像ラインの位置は検査領域Rにおいて決定される。 The partial image generating unit 62 extracts data of specific pixels from each image data generated at different times by the photoreceiver 32, and generates a partial image consisting of the data of the specific pixels. For example, a specific pixel refers to a pixel row corresponding to a desired imaging line for the object to be measured W. Here, in a configuration in which the light source 20 and the imaging unit 30 constituting the imaging system are installed at fixed positions, the position of the imaging line is determined in the inspection region R.
 断層画像生成部63は、異なる時刻に生成された複数の部分画像を時刻順に並べて合成して、受光器32のイメージセンサ32aの特定の画素に対応する深さの断層画像を生成するようになっている。つまり、断層画像生成部63は、被測定物Wの特定の深さ位置において異なる箇所が撮像された複数の部分画像を繋ぎ合わせることによって、被測定物Wの深部の断層撮影に相当する情報を出力するものである。 The tomographic image generating unit 63 arranges and synthesizes multiple partial images generated at different times in chronological order to generate a tomographic image of a depth corresponding to a specific pixel of the image sensor 32a of the light receiver 32. In other words, the tomographic image generating unit 63 outputs information equivalent to tomographic imaging of a deep part of the object W to be measured by stitching together multiple partial images in which different parts are captured at a specific depth position of the object W to be measured.
 図4(a)及び(b)は、画像処理部61の動作を説明するための被測定物Wのモデルを示している。図4(a)は、被測定物Wの搬送方向に平行な断面図を示している。図4(b)は、被測定物Wの平面図を示している。この被測定物Wは、上から順に第1層から第5層までの5つの層から構成されており、第2層と第4層に異物を模した内部構造パターンP1,P2が形成されている。図4(a)及び(b)において、ある時点での光源20からの出射光の被測定物Wへの照射領域は符号Rwで示されている。 Figures 4(a) and (b) show a model of the object to be measured W to explain the operation of the image processing unit 61. Figure 4(a) shows a cross-sectional view parallel to the transport direction of the object to be measured W. Figure 4(b) shows a plan view of the object to be measured W. This object to be measured W is composed of five layers, from the first layer to the fifth layer, from the top, and internal structure patterns P1 and P2 that imitate foreign matter are formed in the second and fourth layers. In Figures 4(a) and (b), the irradiation area of the object to be measured W on which the light emitted from the light source 20 is irradiated at a certain point in time is indicated by the symbol Rw.
 例えば、図4(a)及び(b)に示すように、部分画像生成部62は、被測定物Wにおいて撮像ラインA,B,Cの位置からそれぞれ出射され、受光器32のイメージセンサ32aの3つの画素列で受光された反射光に基づく3つの1次元画像を部分画像として生成する。ここで、各撮像ラインの検査領域Rにおける位置と、各撮像ラインと受光器32の画素列との対応関係は、被測定物Wの種類に応じてあらかじめ設定しておくことができる。図5(a)~(c)は、被測定物Wの搬送に伴って、照射領域Rwと撮像ラインA,B,Cの位置が被測定物Wに対して相対的にずれていく様子を示している。すなわち、部分画像生成部62は、被測定物Wに対して相対的に移動する撮像ラインA,B,Cの位置からそれぞれ出射された反射光に基づいて、3つの1次元画像を部分画像として順次生成する。 For example, as shown in Figs. 4(a) and (b), the partial image generating unit 62 generates three one-dimensional images as partial images based on the reflected light emitted from the positions of the imaging lines A, B, and C on the measured object W and received by three pixel rows of the image sensor 32a of the receiver 32. Here, the position of each imaging line in the inspection region R and the correspondence between each imaging line and the pixel rows of the receiver 32 can be set in advance according to the type of measured object W. Figs. 5(a) to (c) show how the positions of the irradiation region Rw and the imaging lines A, B, and C shift relative to the measured object W as the measured object W is transported. In other words, the partial image generating unit 62 sequentially generates three one-dimensional images as partial images based on the reflected light emitted from the positions of the imaging lines A, B, and C that move relative to the measured object W.
 図6に示すように、本実施形態の撮像装置1は、光源20からの出射光の光路上において、受光器32と被測定物Wとの間に、被測定物Wの特定の深さ位置からの反射光を選択して受光器32のイメージセンサ32aに入射させる光学スリット25を備えていてもよい。 As shown in FIG. 6, the imaging device 1 of this embodiment may have an optical slit 25 between the light receiver 32 and the object to be measured W on the optical path of the light emitted from the light source 20, which selects reflected light from a specific depth position of the object to be measured W and allows it to enter the image sensor 32a of the light receiver 32.
 図6は、被測定物Wの深さd1の第1層、深さd2の第2層、及び深さd3の第3層における反射光のうち、第1層及び第2層における反射光やその他の散乱光が光学スリット25により遮断されて、第3層における反射光のみが光学スリット25により選択されて受光器32に入射する例を示している。撮像装置1は、このような光学スリット25を備えることにより、被測定物Wにおいて画像処理部61により画像化される断層の深さをあらかじめ決めることができるとともに、深さ分解能を高めて被測定物Wの断層画像を生成することができる。なお、深さd1の第1層、深さd2の第2層、及び深さd3の第3層との記載は便宜上のものであって、被測定物Wは必ずしも層状の構造を成していない。 6 shows an example in which, of the light reflected from the first layer at depth d1, the second layer at depth d2, and the third layer at depth d3 of the object W, the reflected light from the first and second layers and other scattered light are blocked by the optical slit 25, and only the reflected light from the third layer is selected by the optical slit 25 and enters the light receiver 32. By providing the imaging device 1 with such an optical slit 25, it is possible to determine in advance the depth of the tomography in the object W to be imaged by the image processing unit 61, and to generate a tomography image of the object W with improved depth resolution. Note that the descriptions of the first layer at depth d1, the second layer at depth d2, and the third layer at depth d3 are for convenience, and the object W does not necessarily have a layered structure.
 さらに、本実施形態の撮像装置1は、上記の光学スリット25を搬送面11aに平行な平面内で周期的に平行移動させる駆動機構26を備えていてもよい。例えば、駆動機構26は、被測定物Wが所定距離搬送される間に、光学スリット25の開口を被測定物Wからの反射光をスキャンするように1回平行移動させるようになっている。これにより、画像処理部61により画像化される断層の深さが連続的に変化する。以降も同様に、駆動機構26が光学スリット25の平行移動を繰り返すことにより、画像処理部61は、深さ分解能を高めつつ、深さ方向に死角のない断層画像を生成することができる。 Furthermore, the imaging device 1 of this embodiment may include a drive mechanism 26 that periodically translates the optical slit 25 in a plane parallel to the transport surface 11a. For example, the drive mechanism 26 translates the opening of the optical slit 25 once to scan the reflected light from the object W while the object W is transported a predetermined distance. This causes the depth of the slice imaged by the image processing unit 61 to change continuously. Thereafter, the drive mechanism 26 repeats the translation of the optical slit 25, thereby enabling the image processing unit 61 to generate a slice image with no blind spots in the depth direction while increasing the depth resolution.
 光源20からの出射光の被測定物Wへの入射角θは一定に設定される。図7に示すように、入射角θの角度は、光源20からの出射光が照射される被測定物Wの表面の照射領域Rwと、被測定物W内部に入射した光源20からの出射光が出射する被測定物Wの上側の表面の少なくとも一部の出射位置x(例えば、図7における任意に設定された撮像ラインA,B,Cの位置)とが、平面視において離れるように設定されていることが望ましい。 The angle of incidence θ of the light emitted from the light source 20 on the object to be measured W is set to a constant value. As shown in FIG. 7, it is desirable that the angle of incidence θ is set so that the irradiation area Rw on the surface of the object to be measured W onto which the light emitted from the light source 20 is irradiated is separated from the exit position x of at least a portion of the upper surface of the object to be measured W from which the light emitted from the light source 20 that has entered the inside of the object to be measured W is emitted (for example, the positions of the arbitrarily set imaging lines A, B, C in FIG. 7) in a plan view.
 すなわち、被測定物Wの搬送方向に沿った照射領域Rwの幅を2r、照射領域Rwの中心を基準とした場合の第1層、第2層、及び第3層からの反射光の被測定物Wの光源20側の最表面からの出射位置xをそれぞれx,x,xと表すとすると、r<xが成り立つことが望ましい。ここでは、nの最大値を3としているが、所望の深さ分解能に応じてnの最大値は任意の正の整数値を取り得る。仮に、rがxよりも大きい場合、被測定物Wの内部からの反射光と被測定物Wの光源20側の最表面からの反射光とが重畳して、深さ方向の情報と表面の情報が混ざってしまう。そのため、r<xが成り立つように入射角θを設定することで、光源20からの被測定物Wへの入射光の広がりが、撮像ラインA,B,Cに対応する受光器32の各画素での検出に影響を及ぼさないようにすることができる。部分画像生成部62により生成される部分画像は、r<xを満たす被測定物Wの出射位置xから出射された被測定物W内部の反射光が撮像された画像であることが望ましい。 That is, if the width of the irradiation region Rw along the transport direction of the object W is 2r, and the emission positions x of the reflected light from the first layer, the second layer, and the third layer from the outermost surface of the object W on the light source 20 side when the center of the irradiation region Rw is used as a reference are expressed as x1 , x2 , and x3 , respectively, it is desirable that r< xn is satisfied. Here, the maximum value of n is 3, but the maximum value of n can take any positive integer value depending on the desired depth resolution. If r is larger than xn , the reflected light from the inside of the object W and the reflected light from the outermost surface of the object W on the light source 20 side are superimposed, and the information in the depth direction and the information on the surface are mixed. Therefore, by setting the incident angle θ so that r< xn is satisfied, it is possible to prevent the spread of the incident light from the light source 20 to the object W from affecting the detection at each pixel of the light receiver 32 corresponding to the imaging lines A, B, and C. The partial image generated by the partial image generating unit 62 is preferably an image obtained by capturing reflected light from within the object W that is emitted from an emission position xn of the object W and satisfies r< xn .
 ここでは、図7において、任意に設定可能な撮像ラインA,B,Cを被測定物Wの上位3層の構造モデルに対して設定した例を示したが、図4のような5層のモデルにおける任意の層に撮像ラインA,B,Cを設定してもよい。また、図4及び図7に示した被測定物Wの例はいずれも多層モデルによって表されているが、層状に分かれていない連続した任意のモデルであっても同様に、任意の位置に撮像ラインを設定することができる。 In FIG. 7, an example is shown in which arbitrarily settable imaging lines A, B, and C are set for the top three layers of the structural model of the object to be measured W, but imaging lines A, B, and C may also be set for any layer in a five-layer model such as that shown in FIG. 4. Also, while the examples of the object to be measured W shown in FIGS. 4 and 7 are both represented by multi-layer models, imaging lines can be set at any position in the same way for any continuous model that is not divided into layers.
 図8は、光源20からの出射光の被測定物Wへの入射角θを様々に設定した場合に、画像処理部61により生成される断層画像の例を示している。撮像ラインA,B,Cは、図4のような5層モデルに対して設定されている。図9(a)~(c)は、光源20からの出射光の被測定物Wへの入射角θを様々に設定した場合の被測定物Wからの出射光の方向を模式的に示す図である。この被測定物Wは、上から順に第1層から第5層までの5つの層から構成されており、第2層と第4層に異物を模した内部構造パターンP1,P2が形成されている。 FIG. 8 shows an example of a tomographic image generated by the image processing unit 61 when the angle of incidence θ of the light emitted from the light source 20 on the object to be measured W is set in various ways. The imaging lines A, B, and C are set for a five-layer model as shown in FIG. 4. FIGS. 9(a) to (c) are diagrams showing the direction of the light emitted from the object to be measured W when the angle of incidence θ of the light emitted from the light source 20 on the object to be measured W is set in various ways. This object to be measured W is composed of five layers, from the first layer to the fifth layer, in order from the top, and internal structure patterns P1 and P2 simulating foreign objects are formed in the second and fourth layers.
 入射角θが0°の場合は、図9(a)の撮像ラインBの位置での反射光に基づく第2層の断層画像において、第2層の内部構造パターンP1が薄暗く撮像された。これは、図9(a)に示すように、被測定物Wにおける光源20からの出射光の照射位置から離れるほど、被測定物Wからの出射光の出射角は大きくなるが、光源20からの出射光のパワー密度が被測定物W内部で大きく低下したためと考えられる。 When the incident angle θ is 0°, the internal structure pattern P1 of the second layer is imaged dimly in the tomographic image of the second layer based on the reflected light at the position of the imaging line B in Figure 9(a). This is thought to be because, as shown in Figure 9(a), the emission angle of the light emitted from the object W to be measured increases the farther away from the irradiation position of the light emitted from the light source 20 on the object W to be measured, but the power density of the light emitted from the light source 20 decreases significantly inside the object W to be measured.
 入射角θが4.1°の場合は、図9(b)の撮像ラインBの位置での反射光に基づく第2層の断層画像において、第2層の内部構造パターンP1が明瞭に撮像された。また、図9(b)の撮像ラインAの位置での反射光に基づく第1層の断層画像には、第2層の内部構造パターンP1がかすかに映り込んだ。また、図9(b)の撮像ラインCの位置での反射光に基づく第3層の断層画像には、第3層の内部構造パターンP2が薄暗く撮像された。これらの断層画像から、入射角θが0°の場合と比較して、光源20からの出射光のパワー密度を保ったまま、被測定物W内部の形状や構造に由来した情報を取り出すことができたと考えられる。 When the incident angle θ was 4.1°, the internal structure pattern P1 of the second layer was clearly imaged in the tomographic image of the second layer based on reflected light at the position of imaging line B in FIG. 9(b). The internal structure pattern P1 of the second layer was faintly reflected in the tomographic image of the first layer based on reflected light at the position of imaging line A in FIG. 9(b). The internal structure pattern P2 of the third layer was dimly imaged in the tomographic image of the third layer based on reflected light at the position of imaging line C in FIG. 9(b). It is believed that these tomographic images enable information derived from the internal shape and structure of the object W to be measured to be extracted while maintaining the power density of the light emitted from the light source 20, compared to when the incident angle θ was 0°.
 入射角θが8.8°の場合は、図9(c)の撮像ラインBの位置での反射光に基づく第2層の断層画像において、第2層の内部構造パターンP1が比較的明瞭に撮像された。また、図9(c)の撮像ラインCの位置での反射光に基づく第3層の断層画像においても、第3層の内部構造パターンP2が比較的明瞭に撮像された。一方、図9(c)の撮像ラインAの位置での反射光に基づく第1層の断層画像には、第2層の内部構造パターンP1が薄暗く撮像された。これらの断層画像から、入射角θが0°の場合と比較して、光源20からの出射光のパワー密度を保ったまま、被測定物W内部の形状や構造に由来した情報を取り出すことができたと考えられる。さらに、これらの断層画像から、入射角θが4.1°の場合と比較して、被測定物W内部のより深い位置での形状や構造に由来した情報を取り出すことができたことが分かる。 When the incident angle θ is 8.8°, the internal structure pattern P1 of the second layer is relatively clearly imaged in the tomographic image of the second layer based on the reflected light at the position of the imaging line B in FIG. 9(c). The internal structure pattern P2 of the third layer is relatively clearly imaged in the tomographic image of the third layer based on the reflected light at the position of the imaging line C in FIG. 9(c). On the other hand, the internal structure pattern P1 of the second layer is dimly imaged in the tomographic image of the first layer based on the reflected light at the position of the imaging line A in FIG. 9(c). From these tomographic images, it is considered that information derived from the shape and structure inside the measured object W can be extracted while maintaining the power density of the light emitted from the light source 20, compared to when the incident angle θ is 0°. Furthermore, from these tomographic images, it is understood that information derived from the shape and structure at a deeper position inside the measured object W can be extracted, compared to when the incident angle θ is 4.1°.
 つまり、図8に示した断層画像の例から分かるように、本実施形態の撮像装置1は、光源20からの出射光の被測定物Wへの入射角θに応じて、被測定物Wの異なる深さ位置の情報を取り出すことができる。例えば、入射角θが0°、4.1°、8.8°の上記の各例に示すように、入射角θを大きくすると、情報を抽出できる被測定物Wの深さ位置が深くなることが分かる。 In other words, as can be seen from the example of the tomographic image shown in FIG. 8, the imaging device 1 of this embodiment can extract information on different depth positions of the object W to be measured, depending on the angle of incidence θ of the light emitted from the light source 20 onto the object W to be measured. For example, as shown in the above examples where the angle of incidence θ is 0°, 4.1°, and 8.8°, it can be seen that the depth position of the object W from which information can be extracted becomes deeper when the angle of incidence θ is increased.
 本実施形態の検査装置100が備える検査部64は、画像処理部61により生成された断層画像に基づき、被測定物Wに対してシール部接着不良等の検査を行い、検査結果を表示部50に出力するようになっている。画像処理部61により生成された断層画像は、被測定物Wの深さ方向に分布する屈折率の違いによる反射光を捉えたものである。例えば、検査部64は、熱圧着などで圧着される食品、化粧品、医薬品容器のシール部の接着不良や異物混入などに起因する、屈折率の変化が比較的大きな箇所を検出し、その検出結果を表示部50に出力する。これにより、検査部64は、被測定物Wにおける接着不良や異物混入などの検査結果をユーザに提供することができ、高感度な不良検査を実現できる。 The inspection unit 64 provided in the inspection device 100 of this embodiment inspects the object W for adhesion defects in the seals based on the tomographic image generated by the image processing unit 61, and outputs the inspection results to the display unit 50. The tomographic image generated by the image processing unit 61 captures reflected light due to differences in refractive index distributed in the depth direction of the object W. For example, the inspection unit 64 detects locations where the refractive index change is relatively large due to adhesion defects or foreign matter contamination in the seals of food, cosmetic, and pharmaceutical containers that are compressed by thermocompression or the like, and outputs the detection results to the display unit 50. In this way, the inspection unit 64 can provide the user with inspection results for adhesion defects or foreign matter contamination in the object W, achieving highly sensitive defect inspection.
 以上説明したように、本実施形態に係る撮像装置1は、搬送されている被測定物Wに一定の入射角の光を照射しながら被測定物Wの画像データを受光器32により連続的に生成し、さらに受光器32の特定の画素に対応する深さの部分画像を合成して断層画像を生成するようになっている。すなわち、本実施形態に係る撮像装置1は、被測定物Wの深さ方向に分解能を持った断層画像を直接的に撮影することができる。さらに、本実施形態に係る撮像装置1は、被測定物Wのシール部の接着不良や異物混入などの情報を含む断層画像をユーザに提供することができる。 As described above, the imaging device 1 according to this embodiment continuously generates image data of the object W to be measured by the photoreceiver 32 while irradiating the transported object W with light at a constant angle of incidence, and further generates a tomographic image by synthesizing partial images at depths corresponding to specific pixels of the photoreceiver 32. In other words, the imaging device 1 according to this embodiment can directly capture a tomographic image having resolution in the depth direction of the object W to be measured. Furthermore, the imaging device 1 according to this embodiment can provide the user with a tomographic image that includes information such as poor adhesion of the seal of the object W to be measured and the presence of foreign matter.
 また、本実施形態に係る撮像装置1は、結像光学系の被写界深度を被測定物Wの所望の観察位置を含む範囲に適切に設定することで、被測定物Wの所望の観察位置の断層画像を生成することができる。 In addition, the imaging device 1 according to this embodiment can generate a tomographic image of the desired observation position of the object W by appropriately setting the depth of field of the imaging optical system to a range that includes the desired observation position of the object W.
 また、本実施形態に係る撮像装置1は、光源20からの出射光の被測定物Wの表面への入射角を適切に設定することで、被測定物Wにおける表面反射成分と深部散乱成分を空間的に分離できるため、被測定物Wの表面からの反射光を排除して、あるいは空間的に分離して、断層画像を生成することができる。 In addition, the imaging device 1 according to this embodiment can spatially separate the surface reflection components and deep scattering components of the object W by appropriately setting the angle of incidence of the light emitted from the light source 20 on the surface of the object W to be measured, so that it is possible to generate a tomographic image by eliminating or spatially separating the light reflected from the surface of the object W to be measured.
 また、本実施形態に係る撮像装置1は、散乱体24によって光源20からの出射光を球面上に拡げて被測定物Wに入射させることにより、光源20からの出射光を被測定物Wの内部に効果的に照射することができる。 In addition, the imaging device 1 according to this embodiment can effectively irradiate the light emitted from the light source 20 into the inside of the object to be measured W by spreading the light emitted from the light source 20 onto a spherical surface using the scatterer 24 and making it incident on the object to be measured W.
 また、本実施形態に係る撮像装置1は、凸レンズ21によって光源20からの出射光の波面の拡がりと入射角を調整して、光源20からの出射光を被測定物Wの内部に効果的に照射することができる。 In addition, the imaging device 1 according to this embodiment can adjust the spread of the wavefront and the angle of incidence of the light emitted from the light source 20 using the convex lens 21, so that the light emitted from the light source 20 can be effectively irradiated inside the object to be measured W.
 また、本実施形態に係る撮像装置1は、偏光子22によって光源20からの出射光の偏光状態を、直線偏光、楕円偏光、又は円偏光のいずれかに調整して、光源20からの出射光を被測定物Wの内部に効果的に照射することができる。特に、散乱性が高い被測定物Wにおいては、光源20からの出射光の偏光状態として円偏光あるいはランダム偏光を用いるのが効果的である。また、さらに、被測定物Wと撮像部30との間に偏光子23を設けることにより、偏光子22と偏光子23の組合せで出射光の特定の偏光成分のみを選択し、被測定物Wの表面からの反射光が撮像部30に入射することを防ぐように構成することもできる。 In addition, the imaging device 1 according to this embodiment can adjust the polarization state of the light emitted from the light source 20 to either linearly polarized, elliptically polarized, or circularly polarized light using the polarizer 22, and can effectively irradiate the light emitted from the light source 20 into the inside of the object to be measured W. In particular, for an object to be measured W that has high scattering properties, it is effective to use circularly polarized or randomly polarized light as the polarization state of the light emitted from the light source 20. Furthermore, by providing a polarizer 23 between the object to be measured W and the imaging unit 30, the combination of the polarizer 22 and the polarizer 23 can be used to select only specific polarization components of the emitted light, and it can be configured to prevent reflected light from the surface of the object to be measured W from entering the imaging unit 30.
 また、本実施形態に係る撮像装置1は、光学スリット25によってあらかじめ画像化する断層の深さを決めることで、深さ分解能を高めて断層画像を生成することができる。 In addition, the imaging device 1 according to this embodiment can generate a tomographic image with improved depth resolution by determining the depth of the slice to be imaged in advance using the optical slit 25.
 また、本実施形態に係る撮像装置1は、光学スリット25を駆動機構26によって周期的に平行移動させることにより、画像化する断層の深さを連続的に変化させることで、深さ分解能を高めつつ、深さ方向に死角のない断層画像を生成することができる。 In addition, the imaging device 1 according to this embodiment can generate a tomographic image with no blind spots in the depth direction while improving the depth resolution by periodically translating the optical slit 25 using the drive mechanism 26 to continuously change the depth of the slice to be imaged.
(第2の実施形態)
 続いて、本発明の第2の実施形態に係る撮像装置2について、図面を参照しながら説明する。なお、第1の実施形態と同様の構成及び動作については適宜説明を省略する。
Second Embodiment
Next, an imaging device 2 according to a second embodiment of the present invention will be described with reference to the drawings. Note that descriptions of configurations and operations similar to those of the first embodiment will be omitted as appropriate.
 第1の実施形態では、光源20からの出射光が照射された被測定物Wからの反射光に基づいて断層画像を生成する処理を例に挙げて説明したが、本発明はこれに限定されない。例えば、光源20からの出射光が照射された被測定物Wからの透過光に基づいて断層画像を生成する構成であっても、第1の実施形態の撮像装置1と同様の効果を得ることができる。 In the first embodiment, a process for generating a tomographic image based on reflected light from the object to be measured W irradiated with light emitted from the light source 20 has been described as an example, but the present invention is not limited to this. For example, even if a configuration is used in which a tomographic image is generated based on transmitted light from the object to be measured W irradiated with light emitted from the light source 20, the same effect as that of the imaging device 1 of the first embodiment can be obtained.
 図10に示すように、本実施形態の撮像装置2は、被測定物Wからの反射光を測定する構成に加えて、被測定物Wからの透過光を測定する構成を備えている。 As shown in FIG. 10, the imaging device 2 of this embodiment has a configuration for measuring the reflected light from the object to be measured W, as well as a configuration for measuring the transmitted light from the object to be measured W.
 すなわち、本実施形態の撮像装置2は、第1の実施形態の撮像装置1の構成に加えて、更に1台の撮像部30'と、光源20からの出射光を被測定物Wに照射させるプリズム27aと、被測定物Wからの反射光を撮像部30の結像光学系31に入射させるプリズム27bと、被測定物Wからの透過光を撮像部30'の結像光学系31'に入射させるプリズム27cと、を備える。 In other words, in addition to the configuration of the imaging device 1 of the first embodiment, the imaging device 2 of this embodiment further includes one imaging unit 30', a prism 27a that irradiates the light emitted from the light source 20 onto the object to be measured W, a prism 27b that causes the reflected light from the object to be measured W to enter the imaging optical system 31 of the imaging unit 30, and a prism 27c that causes the transmitted light from the object to be measured W to enter the imaging optical system 31' of the imaging unit 30'.
 撮像部30'の構成は、第1の実施形態における撮像部30と同様である。また、2台の撮像部30,30'を同時に用いて測定を行う必要がない場合には、1台の撮像装置を適宜撮像部30又は撮像部30'として用いればよい。 The configuration of the imaging unit 30' is the same as that of the imaging unit 30 in the first embodiment. Furthermore, if it is not necessary to perform measurements using two imaging units 30 and 30' simultaneously, one imaging device can be used as the imaging unit 30 or imaging unit 30' as appropriate.
 撮像部30'は、光源20からの出射光が照射された被測定物Wからの透過光を取得する結像光学系31'と、結像光学系31'により取得された透過光を複数の画素で光電変換して、搬送部10により搬送されている被測定物Wの画像データを連続的に生成する受光器32'と、を有する。 The imaging unit 30' has an imaging optical system 31' that acquires transmitted light from the object to be measured W irradiated with the light emitted from the light source 20, and a photoreceiver 32' that photoelectrically converts the transmitted light acquired by the imaging optical system 31' at multiple pixels to continuously generate image data of the object to be measured W being transported by the transport unit 10.
 撮像部30'の結像光学系31'は、少なくとも1つの結像レンズ33'からなり、光源20からの出射光の光路上において被測定物Wと受光器32'との間に配置されて、被測定物Wからの透過光を受光器32'に結像させるようになっている。結像光学系31'の被写界深度は、被測定物Wの所望の観察位置を含む範囲に設定される。また、結像光学系31'は、受光器32'と結像レンズ33'との間に、被測定物Wの表面で反射した光を遮断するための絞り(不図示)を有していることが望ましい。 The imaging optical system 31' of the imaging unit 30' consists of at least one imaging lens 33', and is arranged between the object to be measured W and the light receiver 32' on the optical path of the light emitted from the light source 20, so as to image the transmitted light from the object to be measured W on the light receiver 32'. The depth of field of the imaging optical system 31' is set to a range that includes the desired observation position of the object to be measured W. In addition, it is preferable that the imaging optical system 31' has an aperture (not shown) between the light receiver 32' and the imaging lens 33' to block light reflected on the surface of the object to be measured W.
 受光器32'は、被測定物Wからの反射光の画像データではなく、被測定物Wからの透過光の画像データを生成する点以外は、第1の実施形態における受光器32と同様の構成である。 The optical receiver 32' has the same configuration as the optical receiver 32 in the first embodiment, except that it generates image data of transmitted light from the object to be measured W, rather than image data of reflected light from the object to be measured W.
 また、撮像装置2は、光源20からの出射光の光路上において、光源20と被測定物Wとの間、あるいは、被測定物Wと撮像部30,30'との間に凸レンズ21'を備えていてもよい。 The imaging device 2 may also include a convex lens 21' on the optical path of the light emitted from the light source 20, between the light source 20 and the object to be measured W, or between the object to be measured W and the imaging unit 30, 30'.
 また、撮像装置2は、光源20からの出射光の光路上において、光源20と結像光学系31,31'との間に偏光子22',23'を備えていてもよい。 The imaging device 2 may also include polarizers 22', 23' between the light source 20 and the imaging optical systems 31, 31' on the optical path of the light emitted from the light source 20.
 また、撮像装置2は、光源20からの出射光の光路上において、光源20と被測定物Wとの間に散乱体(不図示)を備えていてもよい。 The imaging device 2 may also include a scatterer (not shown) between the light source 20 and the object to be measured W on the optical path of the light emitted from the light source 20.
 また、撮像装置2は、光源20からの出射光の光路上において、受光器32'と被測定物Wとの間に、被測定物Wの特定の深さ位置で反射されずに透過した透過光を選択して受光器32'のイメージセンサに入射させる光学スリット25'を備えていてもよい。 The imaging device 2 may also have an optical slit 25' between the light receiver 32' and the object to be measured W on the optical path of the light emitted from the light source 20, which selects the transmitted light that is not reflected at a specific depth position of the object to be measured W and transmits it to the image sensor of the light receiver 32'.
 また、撮像装置2は、光学スリット25,25'を周期的に平行移動させる駆動機構26'を備えていてもよい。例えば、駆動機構26'は、被測定物Wが所定距離搬送される間に、光学スリット25,25'の開口を被測定物Wからの透過光をスキャンするように1回平行移動させるようになっている。以降も同様に、駆動機構26'は光学スリット25,25'の平行移動を繰り返す。 The imaging device 2 may also include a drive mechanism 26' that periodically translates the optical slits 25, 25'. For example, while the object W is being transported a predetermined distance, the drive mechanism 26' translates the openings of the optical slits 25, 25' once so as to scan the transmitted light from the object W. Thereafter, the drive mechanism 26' repeats the translation of the optical slits 25, 25' in the same manner.
 第1の実施形態と同様に、光源20からの出射光の被測定物Wへの入射角θは一定に設定される。図11に示すように、入射角θの角度は、光源20からの出射光が照射される被測定物Wの表面の照射領域Rwと、被測定物W内部に入射した光源20からの出射光が出射する被測定物Wの下側の表面の出射位置x(例えば、図11における撮像ラインA',B',C'の位置)とが、平面視において離れるように設定されていることが望ましい。 As in the first embodiment, the angle of incidence θ of the light emitted from the light source 20 on the object to be measured W is set to a constant value. As shown in FIG. 11, it is desirable to set the angle of incidence θ so that the irradiation area Rw on the surface of the object to be measured W onto which the light emitted from the light source 20 is irradiated is separated from the emission position x (for example, the position of the imaging lines A', B', C' in FIG. 11) on the lower surface of the object to be measured W from which the light emitted from the light source 20 that has entered the inside of the object to be measured W is emitted, in a plan view.
 図11に示す被測定物Wは、3層構造になっており、その第2層に空気層からなる内部構造パターンP1が形成されている。すなわち、第1層及び第3層、並びに、第2層のうち内部構造パターンP1が形成されていない領域の屈折率は、内部構造パターンP1の屈折率よりも大きい。このため、内部構造パターンP1を透過する光源20からの出射光の振る舞いは、例えば以下に説明するようになる。 The object to be measured W shown in FIG. 11 has a three-layer structure, with an internal structure pattern P1 consisting of an air layer formed in the second layer. That is, the refractive indexes of the first and third layers, and the areas of the second layer where the internal structure pattern P1 is not formed, are greater than the refractive index of the internal structure pattern P1. For this reason, the behavior of the light emitted from the light source 20 that passes through the internal structure pattern P1 is, for example, as described below.
 被測定物Wの光源20の反対側の最表面からの出射位置xが照射領域Rwの中心を基準としてx'である透過光は、第2層における内部構造パターンP1と第3層との界面において、出射角(屈折角)が入射角よりも小さくなる。 The transmitted light, whose emission position x is x 1 ' from the outermost surface of the object W opposite the light source 20 and based on the center of the irradiation area Rw, has an emission angle (refraction angle) smaller than the incidence angle at the interface between the internal structure pattern P1 in the second layer and the third layer.
 また、被測定物Wの光源20の反対側の最表面からの出射位置xが照射領域Rwの中心を基準としてx'である透過光は、第2層における内部構造パターンP1において屈折率変化の影響をあまり受けず、第1層と第2層における内部構造パターンP1との界面と、第2層における内部構造パターンP1と第3層との界面において、出射角(屈折角)が入射角とほぼ等しくなる。 Furthermore, the transmitted light whose emission position x from the outermost surface of the object W opposite the light source 20 is x2 ' based on the center of the irradiation area Rw is not significantly affected by the change in refractive index in the internal structure pattern P1 in the second layer, and the emission angle (refraction angle) is approximately equal to the incidence angle at the interface between the internal structure pattern P1 in the first layer and the internal structure pattern P1 in the second layer and at the interface between the internal structure pattern P1 in the second layer and the third layer.
 また、被測定物Wの光源20の反対側の最表面からの出射位置xが照射領域Rwの中心を基準としてx'である透過光は、第1層と第2層における内部構造パターンP1との界面において、出射角(屈折角)が入射角よりも大きくなる。 In addition, the transmitted light whose emission position x from the outermost surface of the object W opposite the light source 20 is x3 ' based on the center of the irradiation area Rw has an emission angle (refraction angle) larger than the incidence angle at the interface between the internal structure pattern P1 in the first layer and the second layer.
 いずれの透過光についても、反射光の場合と同様に、r<x'が成り立つことが望ましい。 For any transmitted light, it is desirable that r<x n ' holds true, as in the case of reflected light.
 本実施形態においては、画像処理部61の部分画像生成部62は、被測定物Wにおいて撮像ラインの位置から出射され、受光器32又は32'のイメージセンサの画素列で受光された反射光又は透過光に基づく1次元画像を部分画像として順次生成する。部分画像生成部62により生成される部分画像は、r<x'を満たす被測定物Wの出射位置x'から出射された被測定物W内部の透過光が撮像された画像であることが望ましい。 In this embodiment, the partial image generating section 62 of the image processing section 61 sequentially generates one-dimensional images as partial images based on reflected light or transmitted light that is emitted from the position of the imaging line on the measured object W and received by the pixel rows of the image sensor of the light receiver 32 or 32'. It is desirable that the partial images generated by the partial image generating section 62 are images obtained by capturing transmitted light inside the measured object W that is emitted from the emission position x n ' of the measured object W and satisfies r < x n '.
 図12(a)は、被測定物Wからの反射光を撮像する撮像部30で得られた画像データに基づいて、画像処理部61により生成された被測定物Wの断層画像の例を示している。図12(b)~(d)は、図11に模式的に示した被測定物Wからの透過光を撮像する撮像部30'で得られた画像データに基づいて、画像処理部61により生成された被測定物Wの断層画像の例を示している。 FIG. 12(a) shows an example of a tomographic image of the object W to be measured, generated by the image processing unit 61 based on image data obtained by the imaging unit 30, which captures the reflected light from the object W to be measured. FIGS. 12(b) to (d) show examples of tomographic images of the object W to be measured, generated by the image processing unit 61 based on image data obtained by the imaging unit 30', which captures the transmitted light from the object W to be measured, as shown diagrammatically in FIG. 11.
 図12(a)に示すように、図11に示した撮像ラインA'の位置から出射された反射光に基づく第2層の断層画像において、内部構造パターンP1が比較的明瞭に撮像された。 As shown in FIG. 12(a), the internal structure pattern P1 was captured relatively clearly in the tomographic image of the second layer based on the reflected light emitted from the position of the imaging line A' shown in FIG. 11.
 図12(b)に示すように、図11に示した撮像ラインA'の位置から出射された透過光に基づく第2層の断層画像において、内部構造パターンP1が比較的明瞭に撮像された。この撮像ラインA'における断層画像は、内部構造パターンP1の空気層を通過後に屈折した成分を多く含む透過光によるものであるため、図12(a)に示した撮像ラインA'の位置から出射された反射光に基づく第2層の断層画像の明暗を反転させたものとなっている。なお、図12(a)及び(b)では、被測定物Wの厚さが比較的薄いため、撮像ラインA'の位置から出射された反射光と透過光は、出射位置xが等しく、そして明暗が反転した状態を示しているが、被測定物の構成によっては、反射光による断層画像と、透過光による明暗の反転した断層画像とが、異なる撮像ラインで得られることもある。 As shown in FIG. 12(b), the internal structure pattern P1 was captured relatively clearly in the tomographic image of the second layer based on the transmitted light emitted from the imaging line A' position shown in FIG. 11. This tomographic image in the imaging line A' is based on transmitted light that contains a large amount of refracted components after passing through the air layer of the internal structure pattern P1, so the brightness of the tomographic image of the second layer based on the reflected light emitted from the imaging line A' position shown in FIG. 12(a) is inverted. Note that in FIGS. 12(a) and (b), since the thickness of the measured object W is relatively thin, the reflected light and transmitted light emitted from the imaging line A' position are shown at the same emission position x and inverted in brightness, but depending on the configuration of the measured object, a tomographic image based on reflected light and a tomographic image based on transmitted light with inverted brightness may be obtained on different imaging lines.
 一方、図12(b)及び(c)に示すように、図11に示した撮像ラインB',C'の位置から出射された透過光に基づく断層画像においては、内部構造パターンP1は明確には撮像されなかった。 On the other hand, as shown in Figures 12(b) and (c), the internal structure pattern P1 was not clearly captured in the tomographic images based on the transmitted light emitted from the positions of the imaging lines B' and C' shown in Figure 11.
 このように、被測定物Wからの透過光を撮像する本実施形態の撮像装置2も、適切な撮像ラインを選択することによって、被測定物Wの所望の深さ位置の情報を含む断層画像を生成することができる。 In this way, the imaging device 2 of this embodiment, which captures the transmitted light from the object to be measured W, can also generate a tomographic image that includes information on the desired depth position of the object to be measured W by selecting an appropriate imaging line.
 また、本実施形態の撮像装置2は、被測定物Wからの反射光を撮像する撮像部30を利用するか、被測定物Wからの透過光を撮像する撮像部30'を利用するかを、被測定物Wの種類や検査の目的に応じてユーザが選択できるようになっていてもよい。 In addition, the imaging device 2 of this embodiment may be configured so that the user can select whether to use the imaging unit 30 that captures reflected light from the object to be measured W, or the imaging unit 30' that captures transmitted light from the object to be measured W, depending on the type of object to be measured W and the purpose of the inspection.
 本実施形態の検査装置110が備える検査部64は、画像処理部61により生成された、被測定物Wの深さ方向に分布する屈折率の違いによる反射光又は透過光を捉えた断層画像に基づき、被測定物Wに対してシール部接着不良等の検査を行い、検査結果を表示部50に出力するようになっている。第1の実施形態と同様に、検査部64は、被測定物Wにおける屈折率の変化が比較的大きな箇所を検出し、その検出結果を表示部50に出力する。 The inspection unit 64 provided in the inspection device 110 of this embodiment inspects the object W for defects such as poor adhesion of the seal portion based on a tomographic image generated by the image processing unit 61 that captures reflected light or transmitted light due to differences in refractive index distributed in the depth direction of the object W, and outputs the inspection results to the display unit 50. As in the first embodiment, the inspection unit 64 detects areas in the object W where the change in refractive index is relatively large, and outputs the detection results to the display unit 50.
(撮像方法)
 以下、第1の実施形態に係る撮像装置1又は第2の実施形態に係る撮像装置2を用いる撮像方法について、図13のフローチャートを参照しながらその処理の一例を説明する。
(Imaging method)
Hereinafter, an example of processing of an imaging method using the imaging device 1 according to the first embodiment or the imaging device 2 according to the second embodiment will be described with reference to the flowchart of FIG.
 まず、画像処理部61は、ユーザによる操作部40への操作に応じて、所望の撮像ラインに対応する受光器32又は32'のイメージセンサの特定の画素の位置を設定する(ステップS1)。 First, the image processing unit 61 sets the position of a specific pixel of the image sensor of the photoreceiver 32 or 32' that corresponds to the desired imaging line in response to a user's operation on the operation unit 40 (step S1).
 次に、搬送部10は、被測定物Wの搬送を開始する(ステップS2)。 Next, the transport unit 10 starts transporting the object to be measured W (step S2).
 次に、光源20は、被測定物Wを透過可能な波長域の出射光を、搬送部10により検査領域Rに搬送された被測定物Wに照射する(ステップS3)。 Next, the light source 20 irradiates the measured object W, which has been transported to the inspection area R by the transport unit 10, with emitted light in a wavelength range that can be transmitted through the measured object W (step S3).
 次に、受光器32又は32'は、結像光学系31又は31'により取得された被測定物Wからの反射光又は透過光を複数の画素で光電変換して、搬送部10により搬送されている被測定物Wの画像データを生成する(ステップS4)。 Next, the photoreceiver 32 or 32' photoelectrically converts the reflected or transmitted light from the object W acquired by the imaging optical system 31 or 31' at multiple pixels to generate image data of the object W being transported by the transport unit 10 (step S4).
 次に、画像処理部61は、ステップS4において受光器32又は32'により生成された画像データからステップS1で設定された特定の画素のデータを抽出して、当該特定の画素のデータからなる部分画像を生成する処理を実行する(部分画像生成ステップS5)。 Next, the image processing unit 61 extracts data of the specific pixel set in step S1 from the image data generated by the photodetector 32 or 32' in step S4, and executes a process of generating a partial image consisting of the data of the specific pixel (partial image generation step S5).
 次に、画像処理部61は、注目している被測定物Wが検査領域Rを抜けたか否かを判断する(ステップS6)。注目している被測定物Wが検査領域Rを抜けた場合には、画像処理部61はステップS7の処理を実行する。一方、注目している被測定物Wが検査領域Rを抜けていない場合には、画像処理部61は再びステップS4以降の処理を実行する。 Next, the image processing unit 61 determines whether the object W being measured has left the inspection area R (step S6). If the object W being measured has left the inspection area R, the image processing unit 61 executes the process of step S7. On the other hand, if the object W being measured has not left the inspection area R, the image processing unit 61 executes the processes from step S4 onwards again.
 ステップS7において画像処理部61は、部分画像生成ステップS5において異なる時刻に得られた部分画像を合成し、受光器32又は32'のイメージセンサの特定の画素に対応する深さの断層画像を生成する処理を実行する(断層画像生成ステップS7)。 In step S7, the image processing unit 61 performs a process of synthesizing the partial images obtained at different times in the partial image generation step S5 and generating a tomographic image at a depth corresponding to a specific pixel of the image sensor of the optical receiver 32 or 32' (tomographic image generation step S7).
 次に、表示部50は、断層画像生成ステップS7により生成された断層画像を表示する(ステップS8)。 Next, the display unit 50 displays the tomographic image generated in the tomographic image generation step S7 (step S8).
 次に、画像処理部61は、断層画像生成ステップS7において、全ての被測定物Wの断層画像が生成されたか否かを判断する(ステップS9)。全ての被測定物Wの断層画像が生成された場合には、画像処理部61は処理を終了する。一方、全ての被測定物Wの断層画像が生成されていない場合には、画像処理部61は再びステップS3以降の処理を実行する。 Next, the image processing unit 61 determines whether or not tomographic images of all of the objects W to be measured have been generated in the tomographic image generation step S7 (step S9). If tomographic images of all of the objects W to be measured have been generated, the image processing unit 61 ends the processing. On the other hand, if tomographic images of all of the objects W to be measured have not been generated, the image processing unit 61 executes the processing from step S3 onwards again.
 1,2 撮像装置
 10 搬送部
 11 搬送ベルト
 11a 搬送面
 20 光源
 21 凸レンズ
 22,23 偏光子
 24 散乱体
 25,25' 光学スリット
 26,26' 駆動機構
 27a,27b,27c プリズム
 30,30' 撮像部
 31,31' 結像光学系
 32,32' 受光器
 32a イメージセンサ
 32b 画像データ出力部
 33 結像レンズ
 40 操作部
 50 表示部
 60 制御装置
 61 画像処理部
 62 部分画像生成部
 63 断層画像生成部
 100,110 検査装置
 W 被測定物
REFERENCE SIGNS LIST 1, 2 Imaging device 10 Conveyor section 11 Conveyor belt 11a Conveyor surface 20 Light source 21 Convex lens 22, 23 Polarizer 24 Scatterer 25, 25' Optical slit 26, 26' Driving mechanism 27a, 27b, 27c Prism 30, 30' Imaging section 31, 31' Imaging optical system 32, 32' Light receiver 32a Image sensor 32b Image data output section 33 Imaging lens 40 Operation section 50 Display section 60 Control device 61 Image processing section 62 Partial image generating section 63 Tomographic image generating section 100, 110 Inspection device W Object to be measured

Claims (10)

  1.  被測定物(W)と相対移動する撮像系と、前記被測定物の断層画像を生成する画像処理部(61)と、を備える撮像装置(1,2)であって、
     前記撮像系は、
     前記被測定物を透過可能な波長域の出射光を当該被測定物に対して一定の入射角で照射する光源(20)と、
     前記光源からの出射光が照射された前記被測定物からの反射光又は透過光を取得する結像光学系(31,31')と、
     前記結像光学系により取得された前記反射光又は前記透過光を複数の画素で光電変換して、前記被測定物の画像データを連続的に生成する受光器(32,32')と、を含み、
     前記画像処理部は、
     前記受光器により生成された各前記画像データから特定の画素のデータを抽出して、前記特定の画素のデータからなる部分画像を生成する部分画像生成部(62)と、
     複数の前記部分画像を合成し、前記特定の画素に対応する深さの前記断層画像を生成する断層画像生成部(63)と、を含むことを特徴とする撮像装置。
    An imaging device (1, 2) including an imaging system that moves relatively to a measured object (W) and an image processing unit (61) that generates a tomographic image of the measured object,
    The imaging system includes:
    a light source (20) that irradiates the object to be measured with emitted light having a wavelength range that can transmit the object to be measured at a constant incident angle;
    an imaging optical system (31, 31′) for acquiring reflected light or transmitted light from the object to be measured irradiated with light emitted from the light source;
    a light receiver (32, 32') that photoelectrically converts the reflected light or the transmitted light acquired by the imaging optical system at a plurality of pixels to continuously generate image data of the object to be measured,
    The image processing unit includes:
    a partial image generating unit (62) for extracting data of a specific pixel from each of the image data generated by the light receiver and generating a partial image consisting of the data of the specific pixel;
    a tomographic image generating unit (63) that combines a plurality of the partial images to generate the tomographic image at a depth corresponding to the specific pixel.
  2.  前記結像光学系の被写界深度が、前記被測定物の所望の観察位置を含む範囲に設定されていることを特徴とする請求項1に記載の撮像装置。 The imaging device according to claim 1, characterized in that the depth of field of the imaging optical system is set to a range that includes the desired observation position of the object to be measured.
  3.  前記入射角は、前記光源からの出射光が照射される前記被測定物の表面の照射領域と、前記被測定物内部に入射した前記光源からの出射光が出射する前記被測定物の表面の少なくとも一部の出射位置とが平面視において離れる角度に設定されており、
     前記部分画像は、前記被測定物の前記出射位置からの前記反射光又は前記透過光が撮像された画像であることを特徴とする請求項1又は請求項2に記載の撮像装置。
    the incidence angle is set to an angle at which an illumination area on the surface of the object to be measured, on which the light emitted from the light source is irradiated, is separated from an emission position of at least a part of the surface of the object to be measured, from which the light emitted from the light source having entered the inside of the object to be measured is emitted, in a plan view;
    3. The imaging device according to claim 1, wherein the partial image is an image obtained by capturing the reflected light or the transmitted light from the emission position of the object to be measured.
  4.  前記光源からの出射光の光路上において、前記光源と前記被測定物との間に散乱体(24)を更に備えることを特徴とする請求項1又は請求項2に記載の撮像装置。 The imaging device according to claim 1 or 2, further comprising a scatterer (24) between the light source and the object to be measured on the optical path of the light emitted from the light source.
  5.  前記光源からの出射光の光路上において、前記光源と前記被測定物との間に凸レンズ(21,21')を更に備えることを特徴とする請求項1又は請求項2に記載の撮像装置。 The imaging device according to claim 1 or 2, further comprising a convex lens (21, 21') between the light source and the object to be measured on the optical path of the light emitted from the light source.
  6.  前記光源からの出射光の光路上において、前記光源と前記結像光学系との間に偏光子(22,23,22',23')を更に備えることを特徴とする請求項1又は請求項2に記載の撮像装置。 The imaging device according to claim 1 or 2, further comprising a polarizer (22, 23, 22', 23') between the light source and the imaging optical system on the optical path of the light emitted from the light source.
  7.  前記光源からの出射光の光路上において、前記受光器と前記被測定物との間に、前記被測定物の特定の深さ位置からの前記反射光、又は、前記被測定物の特定の深さ位置で反射されずに透過した前記透過光を選択して前記受光器に入射させる光学スリット(25,25')を更に備えることを特徴とする請求項1又は請求項2に記載の撮像装置。 The imaging device according to claim 1 or 2, further comprising an optical slit (25, 25') between the light receiver and the object to be measured on the optical path of the light emitted from the light source, for selecting the reflected light from a specific depth position of the object to be measured or the transmitted light that is not reflected at a specific depth position of the object to be measured and is transmitted therethrough, and for allowing it to enter the light receiver.
  8.  前記光学スリットを周期的に平行移動させる駆動機構(26,26')を更に備えることを特徴とする請求項7に記載の撮像装置。 The imaging device according to claim 7, further comprising a driving mechanism (26, 26') for periodically translating the optical slit.
  9.  請求項1又は請求項2に記載の撮像装置と、
     前記撮像装置により生成された前記断層画像に基づいて前記被測定物を検査する検査部(64)と、を備える検査装置。
    The imaging device according to claim 1 or 2,
    and an inspection section (64) that inspects the object to be measured based on the tomographic image generated by the imaging device.
  10.  被測定物(W)と相対移動する撮像系を備え、
     前記撮像系は、
     前記被測定物を透過可能な波長域の出射光を当該被測定物に対して一定の入射角で照射する光源(20)と、
     前記光源からの出射光が照射された前記被測定物からの反射光又は透過光を取得する結像光学系(31,31')と、
     前記結像光学系により取得された前記反射光又は前記透過光を複数の画素で光電変換して、前記被測定物の画像データを連続的に生成する受光器(32,32')と、を含む撮像装置を用いる撮像方法であって、
     前記受光器により生成された各前記画像データから特定の画素のデータを抽出して、前記特定の画素のデータからなる部分画像を生成する部分画像生成ステップ(S5)と、
     複数の前記部分画像を合成し、前記特定の画素に対応する深さの前記断層画像を生成する断層画像生成ステップ(S7)と、を含むことを特徴とする撮像方法。
    An imaging system that moves relative to the object to be measured (W),
    The imaging system includes:
    a light source (20) that irradiates the object to be measured with emitted light having a wavelength range that can transmit the object to be measured at a constant incident angle;
    an imaging optical system (31, 31′) for acquiring reflected light or transmitted light from the object to be measured irradiated with light emitted from the light source;
    a light receiver (32, 32') that photoelectrically converts the reflected light or the transmitted light acquired by the imaging optical system at a plurality of pixels to continuously generate image data of the object to be measured,
    a partial image generating step (S5) of extracting data of a specific pixel from each of the image data generated by the light receiver and generating a partial image consisting of the data of the specific pixel;
    and a tomographic image generating step (S7) of synthesizing a plurality of the partial images to generate the tomographic image at the depth corresponding to the specific pixel.
PCT/JP2023/041064 2022-11-18 2023-11-15 Imaging device, inspection device using said imaging device, and imaging method WO2024106458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022184920A JP2024073929A (en) 2022-11-18 2022-11-18 Imaging device, inspection device using said imaging device, and imaging method
JP2022-184920 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024106458A1 true WO2024106458A1 (en) 2024-05-23

Family

ID=91084843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041064 WO2024106458A1 (en) 2022-11-18 2023-11-15 Imaging device, inspection device using said imaging device, and imaging method

Country Status (2)

Country Link
JP (1) JP2024073929A (en)
WO (1) WO2024106458A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346802A (en) * 1999-03-26 2000-12-15 Sony Corp Inspecting device for inside of element and its method
US6495833B1 (en) * 2000-01-20 2002-12-17 Research Foundation Of Cuny Sub-surface imaging under paints and coatings using early light spectroscopy
JP2004245637A (en) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd Apparatus for measuring surface potential
JP2008249386A (en) * 2007-03-29 2008-10-16 Dainippon Screen Mfg Co Ltd Defect inspection device and defect inspection method
JP2009281846A (en) * 2008-05-22 2009-12-03 National Institute Of Advanced Industrial & Technology Flaw inspecting method and flaw inspection device
JP2010060330A (en) * 2008-09-01 2010-03-18 Olympus Corp Scatterer interior observation device and scatterer interior observation method
WO2011081141A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method
JP2015219090A (en) * 2014-05-16 2015-12-07 三井金属計測機工株式会社 Transmission inspection device
WO2017169732A1 (en) * 2016-03-28 2017-10-05 オリンパス株式会社 Measurement device and measurement method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346802A (en) * 1999-03-26 2000-12-15 Sony Corp Inspecting device for inside of element and its method
US6495833B1 (en) * 2000-01-20 2002-12-17 Research Foundation Of Cuny Sub-surface imaging under paints and coatings using early light spectroscopy
JP2004245637A (en) * 2003-02-12 2004-09-02 Fuji Photo Film Co Ltd Apparatus for measuring surface potential
JP2008249386A (en) * 2007-03-29 2008-10-16 Dainippon Screen Mfg Co Ltd Defect inspection device and defect inspection method
JP2009281846A (en) * 2008-05-22 2009-12-03 National Institute Of Advanced Industrial & Technology Flaw inspecting method and flaw inspection device
JP2010060330A (en) * 2008-09-01 2010-03-18 Olympus Corp Scatterer interior observation device and scatterer interior observation method
WO2011081141A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method
JP2015219090A (en) * 2014-05-16 2015-12-07 三井金属計測機工株式会社 Transmission inspection device
WO2017169732A1 (en) * 2016-03-28 2017-10-05 オリンパス株式会社 Measurement device and measurement method

Also Published As

Publication number Publication date
JP2024073929A (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US9733384B2 (en) Package inspection system
TWI504884B (en) Apparatus and method for detecting defects inside a transparent plate body and use of the device
US6909094B2 (en) System and method for terahertz imaging using a single terahertz detector
KR20150056713A (en) Non-destructive inspection system for display panel and method, and non-destructive inspection apparatus therefor
KR20070121820A (en) Glass inspection systems and methods for using same
JP5884144B1 (en) Packaging inspection equipment
KR20070013512A (en) Image processing device and method
CN107003254A (en) Equipment, method and computer program product for the defects detection in workpiece
TWI629665B (en) Defect inspection method and defect inspection system
JP5344792B2 (en) Measurement system and method for detecting defects in an object
CN100397036C (en) Method and arrangement in a measuring system
CA2851538A1 (en) Retro-reflective imaging
JP2012164801A (en) Inspection apparatus and inspection method
JP5884145B1 (en) Inspection device using electromagnetic wave detector and optical detector
CN114127520A (en) Spectrometer device
CN108174059A (en) Photographic device
KR102091320B1 (en) Terahertz wave based defect measurement apparatus and measuring method using the same
WO2024106458A1 (en) Imaging device, inspection device using said imaging device, and imaging method
KR102231835B1 (en) Apparatus and method for tomographic inspection
CN108168715A (en) Optical detection device
JP6617238B2 (en) Packaging inspection equipment
Mathai et al. Transparent object detection using single-pixel imaging and compressive sensing
EP4130725A1 (en) Foreign matter inspection device
JP4213106B2 (en) Appearance inspection device and PTP packaging machine
JPH041507A (en) Measuring method for thickness and surface strain of object and detecting method for mixed foreign matter