WO2011081141A1 - Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method - Google Patents

Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method Download PDF

Info

Publication number
WO2011081141A1
WO2011081141A1 PCT/JP2010/073583 JP2010073583W WO2011081141A1 WO 2011081141 A1 WO2011081141 A1 WO 2011081141A1 JP 2010073583 W JP2010073583 W JP 2010073583W WO 2011081141 A1 WO2011081141 A1 WO 2011081141A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection
illumination
image
unit
Prior art date
Application number
PCT/JP2010/073583
Other languages
French (fr)
Japanese (ja)
Inventor
賢 藤沼
宏也 福山
浩幸 西田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2011547692A priority Critical patent/JP5658171B2/en
Publication of WO2011081141A1 publication Critical patent/WO2011081141A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths

Definitions

  • the present invention relates to an apparatus and a method for observing the inside of a living body by measuring an object having light scattering properties, for example, backscattered light from the living body.
  • a living body is irradiated with light having a wavelength that is absorbed by a specific object to be observed (for example, a foreign part), and the intensity of the backscattered light is measured, whereby position information of the foreign part existing inside the living body is measured. Can be obtained.
  • Backscattered light is light that has passed deeper in a scatterer such as a living body as the distance between the irradiation position and the measurement position increases.
  • Patent Document 1 discloses a biological light observation apparatus including one light irradiation unit and a plurality of light detection units. The plurality of light detection units are arranged at positions that sequentially move away from the position of one light irradiation unit.
  • a technique for reconstructing a tomographic image (ie, three-dimensional data) of a living body based on a measurement result by the apparatus is disclosed.
  • Patent Document 2 discloses a biological light measurement device including one light irradiation unit and a plurality of light detection units.
  • the plurality of light detection units are arranged, for example, on concentric circles at a predetermined interval from the light irradiation unit.
  • One object of the present invention is to provide a method and apparatus that can observe the inside of a living body better than before.
  • the present invention provides a scatterer internal measurement device (that is, a scatterer internal observation device) that acquires information on a measurement target (that is, an observation target) inside the scatterer, and the measurement target, the scatterer, And an illuminator configured to irradiate the scatterer with light having different optical characteristics (that is, a light irradiator), and a detector configured to detect backscattered light emitted from the illuminator. And the presence or absence of the measurement target in the data acquired by the detection unit, including the depth of the measurement target in the scatterer from the distance between the irradiation position and the position where the measurement target is confirmed.
  • An scatterer internal measuring device wherein the illuminating unit and the detection unit perform measurement without contact with the scatterer. was To provide a measurement method.
  • a method and an apparatus that can observe the inside of a living body better than before are provided.
  • FIG. 1 is a block diagram showing the configuration of the in-vivo internal observation apparatus.
  • FIG. 2 is a schematic diagram showing the principle of the observation method of the present invention.
  • FIG. 3 is a diagram for explaining the distance between the centers of the illumination area and the detection area and the observation depth.
  • FIG. 4 is a diagram for explaining the relationship between the size of the second living tissue to be detected and the detection region, and the change in the amount of light at that time.
  • FIG. 5 is a block diagram showing the configuration of the in-vivo internal observation device to which the scanning unit is added.
  • FIG. 6 is a schematic diagram showing the principle of the observation method of the present invention when a scanning unit is added.
  • FIG. 7 is a schematic diagram of an image formed with the surface of the first living tissue when scanning is performed.
  • FIG. 1 is a block diagram showing the configuration of the in-vivo internal observation apparatus.
  • FIG. 2 is a schematic diagram showing the principle of the observation method of the present invention.
  • FIG. 3 is a diagram for
  • FIG. 8 is a configuration diagram of the first embodiment.
  • FIG. 9 is a configuration diagram of the second embodiment.
  • FIG. 10 is a diagram illustrating the configuration of the separation optical system.
  • FIG. 11 is a configuration diagram illustrating an example of an observation apparatus according to the present embodiment.
  • FIG. 12 is a graph of the wavelength dependence of the molar extinction coefficient of hemoglobin.
  • FIG. 13 is a graph of the wavelength dependence of the water absorption coefficient.
  • FIG. 14 is a block configuration diagram of the scatterer internal measurement device according to the third embodiment.
  • FIG. 15 is a flowchart showing the operation of the scatterer internal measurement device according to the present invention.
  • FIG. 16 is a conceptual diagram showing how light propagates inside the scatterer.
  • FIG. 16 is a conceptual diagram showing how light propagates inside the scatterer.
  • FIG. 17 is a schematic diagram of two-dimensional image data obtained by the scatterer internal measurement device according to the third embodiment.
  • FIG. 18 is a schematic diagram of two-dimensional image data when measurement is performed by changing the irradiation position.
  • FIG. 19 is a block diagram of a scatterer internal measurement device according to the fourth embodiment.
  • FIG. 20 is a block configuration diagram of the scatterer internal observation device according to the fifth embodiment.
  • FIG. 21 is a schematic diagram of a rigid mirror to which the scatterer internal observation device according to the third aspect is applied, and a conceptual diagram showing the state of light propagation in and on the scatterer.
  • FIG. 22 is a conceptual diagram illustrating a state of illumination scanning.
  • FIG. 22 is a conceptual diagram illustrating a state of illumination scanning.
  • FIG. 23A is a schematic diagram illustrating a locus of an equal depth region by scanning of an irradiation position.
  • FIG. 23B is a schematic diagram illustrating a locus of an equal depth region by scanning of an irradiation position.
  • FIG. 24 is a conceptual diagram showing a first method of noise removal method.
  • FIG. 25 is a conceptual diagram showing a second method of noise removal.
  • FIG. 26 is a conceptual diagram showing a third method of the noise removal method.
  • FIG. 27 shows an internal observation apparatus as an example of the seventh embodiment.
  • FIG. 28 shows an internal observation apparatus as an example of the eighth embodiment.
  • FIG. 29 shows an internal observation apparatus which is an example of the ninth embodiment.
  • FIG. 30 is a diagram schematically illustrating an example of a subject-side end of the observation apparatus.
  • FIG. 30 is a diagram schematically illustrating an example of a subject-side end of the observation apparatus.
  • FIG. 31 is a schematic diagram illustrating an example of a relationship between an observation apparatus terminal and a subject.
  • FIG. 32A is a schematic diagram illustrating each optical path, an irradiation region, and a detection region.
  • FIG. 32B is a flowchart illustrating an example of an imaging method.
  • FIG. 33 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image.
  • FIG. 34 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image.
  • FIG. 35 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image.
  • FIG. 36 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image.
  • FIG. 37 is a flowchart illustrating an example of the tenth embodiment.
  • FIG. 38 is a flowchart illustrating an example of a correction method for performing a filtering process.
  • FIG. 39 is a flowchart illustrating an example of a correction method for performing a filtering process.
  • FIG. 40 is a flowchart illustrating an example of a correction method for performing a filtering process.
  • FIG. 41 is a block diagram illustrating an example of the configuration of the control unit.
  • the scatterer means an arbitrary one composed of a scattering medium, and examples thereof include a living body.
  • the scatterer internal measurement device of the present invention measures a measurement object existing in a scattering medium inside the scatterer.
  • the measurement object in the present invention may be, for example, a blood vessel, but is not limited thereto.
  • the “internal observation apparatus for the object having light scattering properties” refers to an apparatus for observing the inside of the scatterer that is the object.
  • scatterer internal measurement device” and “in-vivo internal observation device” are devices for observing the inside of a living body, among objects having light scattering properties, and are synonymous with these, and are interchangeable. It can be used as possible.
  • the “internal observation endoscope” refers to an apparatus having an endoscope shape among the above observation apparatuses.
  • FIG. 1 shows a block diagram of the present embodiment.
  • the present observation apparatus 101 includes an illumination unit (illuminating unit in the figure) 102, a detection unit (in the figure, detection unit) 103, an imaging unit (in the figure, imaging unit) 104, a display unit. (Display means in the figure) 105 and a control unit (control means in the figure) 106 configured to control them are provided.
  • the illumination unit 102 irradiates the light 107 toward the living tissue based on the control from the control unit.
  • the detector 103 detects the backscattered light 108 generated by the illumination light 107 and converts it into an electrical signal.
  • This illumination and detection are for determining the presence or absence of the second biological tissue (observed object having a different scattering characteristic in the living body) 110 in the first biological tissue 109. Therefore, the illumination light 107 uses light including at least wavelengths having different optical characteristics between the first living tissue 109 and the second living tissue 110.
  • the imaging unit 104 generates a two-dimensional distribution of the light intensity detected by the detection unit 103 as a grayscale image or a color image and displays it on the display unit 105.
  • a living tissue is a medium composed of an infinite number of cells and their organelles. Therefore, except for some living tissues such as the eyeball, the living tissues are optically scattering. Some light is also absorbed. Therefore, the amount of light that enters the living tissue and returns to the rear, that is, the amount of the backscattered light 108 is greatly attenuated and becomes very weak compared to the reflected light and the surface diffused light on the surface.
  • a method of detecting weak light with a high S / N ratio there are a method of increasing the exposure time and a method of using a high sensitivity detector. However, the former has a problem that the photographing time becomes long, and the latter has a problem that the detector is expensive.
  • Fig. 2 shows a schematic diagram of the detection area.
  • the illumination area 201 represents a circular area when the illumination light 107 hits the surface of the first living tissue 109.
  • a detection area 202 represents a circular area detected by the detection unit 103 on the surface of the first biological tissue 109. That is, only the light emitted from the detection region 202 is detected from the backscattered light 108.
  • the shapes of the illumination area 201 and the detection area 202 are not necessarily circular.
  • the shape may be a square, a rectangle, a polygon, a regular circle, an ellipse, an arc block shape, or the like.
  • the area of the detection region 202 is increased, more backscattered light 108 can be detected, and even the backscattered light 108 that has become very weak can be detected with an increased S / N ratio.
  • a detection region 202 having the same area as the illumination region 201 is used.
  • the SN ratio is increased with a simple configuration by making the detection area 202 wider than the illumination area 201.
  • the backscattered light 108 that enters the biological tissue and returns backward is very weak light as in the previous period. is there. For this reason, no matter how high the S / N ratio is detected, it is buried in the reflected light or diffused light signal on the surface, so that it is difficult to read the change in the backscattered light 108.
  • FIG. 3 shows a schematic diagram of the arrangement of the illumination area 201 and the detection area 202.
  • detection can be performed while avoiding reflected light and diffused light.
  • the light detected in the detection region 202 is predominantly the light passing through the region 302 shown. Therefore, when the distance 301 changes, internal information with a different depth 303 is detected. Therefore, by designing the illumination unit 102 and the detection unit 103 so that the distance 301 is constant, information with a certain depth can be imaged.
  • the size of the detection area 202 is excessively increased while the distance 301 is defined, the illumination area 201 enters the detection area 202. As a result, reflected light and diffused light are detected simultaneously. Therefore, the size and the distance 301 of the detection area 202 need to be designed so that the illumination area 201 does not enter the detection area 202 in consideration of such circumstances.
  • the distance 301 is x ⁇ 2.8 ⁇ z I found out that In particular, it was found that the distance 301 should be set to about 8 mm or more in order to obtain information of a depth of 3 mm or more, which was difficult with conventional optical observation.
  • FIG. 5 shows a block configuration diagram of an observation apparatus to which the scanning unit 501 is added.
  • the scanning direction is not limited to the linear direction.
  • two or more sets of the illumination area 201 and the detection area 202 may be provided so as to simultaneously illuminate and detect two or more points. Thereby, observation can be performed in a wider range.
  • the distance between the groups is arbitrary, and may be adjacent to each other, or may be arranged in an illumination area and / or a detection area that are separated from each other.
  • the light intensity signal detected at each scanning point is displayed in association with the scanning point and the pixel position in the display image, whereby the two-dimensional distribution of the second living tissue 110 is displayed. It can be displayed as a two-dimensional image.
  • the light intensity signal may be displayed after being converted into color shading information, or may be displayed after being converted into color information.
  • FIGS. 6 and 7 are schematic diagrams showing the movement of the illumination area 201 and the detection area 202 when scanned.
  • the pixel 702 of the image configured by the imaging unit 104 is arranged. That is, the interval 701 between adjacent scanning points corresponds to the interval between the pixels 702.
  • the size of the detection area 202 is further increased.
  • the illumination area 201 enters the detection area 202, reflected light and diffused light are detected simultaneously. This makes it difficult to detect backscattered light. Therefore, the size of the detection area 202 must be within a range where the illumination area 201 does not enter.
  • the extent to which the detection area (S) should be increased depends on the overall characteristics of the observation system, the subject, and the detection system. It depends on.
  • the bandwidth of the illumination light 107 is BWL Hz
  • the light density in the detection region 202 is PW / cm 2
  • the photoelectric conversion efficiency of the detector is GV / W
  • the noise characteristic of the detector is NV
  • the presence or absence of the second living tissue 110 If the rate of change in light intensity is r and the exposure time to be detected is ts, the detection area S must satisfy the following relational expression. Otherwise, the information on the presence / absence of the second living tissue 110 is buried in noise.
  • FIG. 4 shows a schematic diagram when the detection region crosses the position where the second living tissue 403 is present.
  • W is the size of the second living tissue to be detected in the shape shown in the figure.
  • the figure shows two types of detection areas 401 and 402.
  • the detection area is assumed to be a square, and the scanning direction is the x-axis direction in the figure.
  • the smaller detection area 401 has a side length D1 ⁇ W, and the larger detection area 402 has a side length D2> W.
  • the amount of light detected on the second living tissue 403 is 0, and 1 at other positions.
  • the change in the detected light quantity is as shown in FIGS. 4a and 4b. Looking at the changes 404 and 405 of the two light quantity ratios, it can be seen that the change rate of the light quantity ratio decreases when the size of the detection regions 401 and 402 becomes larger than the second living tissue W. That is, the signal contrast is lowered. When the contrast decreases, the second living tissue becomes difficult to detect.
  • the detection area 202 when the detection area 202 is enlarged in order to increase the amount of detection light, the detection area 202 is set to a size that can be accommodated in the second living tissue 110, thereby further detecting.
  • Ability can be kept high.
  • FIG. 8 shows an example of an apparatus in which the scanning unit 501 is incorporated.
  • the laser light was used as the illumination light, and the illumination unit 102 was constituted by an LD 803 and an LD driver 802 for driving it.
  • the illumination light is transmitted through the optical fiber 804 and strikes the scanner mirror 806 via the NA adjustment optical system 805.
  • the light hitting the scanner mirror 806 is irradiated to the surface of the living tissue 109 through the illumination optical system 813.
  • the NA adjustment optical system 805 By passing through the NA adjustment optical system 805, the light emitted from the optical fiber can be converted into illumination light of a desired NA, for example, parallel light with minimal loss, and irradiated onto the surface of the living tissue 109. .
  • the detection unit 103 changes the light intensity into a digital signal by the photodiode 809, the preamplifier 810, and the AD converter 811.
  • the photodiode 809 may be an APD or a photomultiplier tube.
  • Light incident on the photodiode 809 is backscattered light 108 that has passed through the detection optical system 814 from the surface of the living tissue 109. At this time, the backscattered light 108 must be light that has emerged from the detection region 202, and must be scanned with the illumination light 108.
  • the backscattered light 108 passes through the detection optical system and then hits the scanner mirror 806 serving as a scanning unit, and an aperture having an opening having a size and shape that allows only light from the detection region 202 to pass therethrough is formed. It enters the photodiode 809 after passing through 808. All the light from other than the detection area 202 is cut off by this aperture 808.
  • the scanning unit employs a scanner mirror in this embodiment, but may be any means that changes the optical axis, such as a method of vibrating an optical fiber or a method of switching between a plurality of light sources and detectors.
  • a magnification adjusting optical system 807 for example, an objective lens for beam expansion
  • the beam diameter is adjusted so that the acquired detection light substantially matches the size of the opening of the aperture 808, It is preferable because light can be easily shielded with high accuracy.
  • the aperture 808 at a position conjugate with the detection region 202 in the detection optical system 814, light can be easily shielded with high accuracy.
  • the positional relationship between the detection region 202 and the illumination region 201 can be easily designed.
  • the positional relationship between the detection area 202 and the illumination area 201 is as described above.
  • the scanner mirror 806 is operated by a signal from the scanner driver 812, and these are controlled by the control unit 801.
  • the control unit 801 an image in which the scanner position and the light intensity signal are associated is formed and displayed on the display unit 105.
  • the display unit is an apparatus capable of displaying an image. In the present embodiment, a liquid crystal screen or a cathode ray tube is assumed.
  • the configuration of the present embodiment it is possible to detect the backscattered light 108 with high sensitivity and high accuracy with a simple configuration, and the distribution of the second biological tissue 110 inside the first biological tissue 109 can be detected.
  • a two-dimensional image can be taken at high speed. Since high-speed shooting is possible, video shooting is also possible. Moreover, since it is a simple structure, the weight reduction of the whole apparatus becomes easy.
  • FIG. 9 shows a block diagram of a configuration in which illumination light 107 and backscattered light 108 are passed through the same optical system as one embodiment.
  • the separation optical system 901 By providing the separation optical system 901 on the illumination unit 102 and the detection unit 103 side, the illumination light 107 and the backscattered light 108 are scanned by one scanning unit 902.
  • a light guide optical system 903 is disposed on the scanning unit 902 side, and the illumination light 107 is irradiated onto the surface of the first living tissue 109 to capture the backscattered light 108.
  • FIG. 10 shows a specific configuration of the apparatus incorporating the separation optical system 901.
  • the configuration in which only the light emitted from the detection region 202 is detected by causing the backscattered light 108 captured by the light guide optical system 903 to enter the detection unit 103 through the magnification adjustment optical system 807 and the aperture 808 is described above with reference to FIG. It is the same as that of the structure.
  • An optical element 1001 for separating the optical axes of the illumination light 107 and the backscattered light 108 is disposed inside the separation optical system 901, and the distance 301 between the illumination light 107 and the backscattered light 108 is defined by this element. it can.
  • the optical element 1001 is an element that controls the optical axis, such as a mirror or a prism.
  • the optical axis of the illumination light 107 is controlled to be merged with the optical axis of the backscattered light 108, but the optical axis of the backscattered light 108 may be controlled conversely, or both may be controlled. Also good.
  • FIG. 11 is a diagram illustrating an example of the overall configuration of the observation apparatus 101 including the optical system illustrated in FIG. With this configuration, only one scanning unit 902 is provided, and the light guide optical system 903 is a single optical axis. Therefore, the entire apparatus can be reduced in weight and size.
  • FIG. 12 shows the molar extinction coefficient of hemoglobin
  • FIG. 13 shows the absorption coefficient of water.
  • the position of the blood is shown as a shadow picture. It is possible to depict. Therefore, if the light including hemoglobin that is a component of blood or light including a wavelength having a large moisture absorption coefficient is used as the illumination light 107, the position of the blood is depicted like a shadow.
  • light including at least a wavelength 1201 in the range of 400 to 600 nm, a wavelength 1202 in the range of 800 to 1000 nm, or a wavelength 1301 in the range of 1350 to 1550 nm may be employed.
  • the first living tissue 109 also contains a lot of water, it is difficult to detect the second living tissue 110 with light having a wavelength 1301 in the range of 1350 to 1550 nm. Further, when the second living tissue 110 is present at a deep position of 3 mm or more, infrared light with less influence of light scattering by the first living tissue 109 is preferable. Therefore, when blood or blood vessels are targeted as the second biological tissue 110, it is preferable to use light having a wavelength of 1203 in the range of 900 to 1000 nm.
  • the small illumination area 202 is illuminated using the illumination light 107 having a limited wavelength in this way.
  • the size of the illumination area 201 is always kept constant by using the laser beam as the fine parallel illumination light 107. Is possible.
  • the laser beam is guided using an optical fiber, not only the arrangement in various optical system modes becomes easy and the degree of freedom of configuration increases, but also a flexible endoscope can be designed. Is preferable.
  • an imaging device for a moving living body for example, a medical endoscope, a surgical rigid endoscope (rigid endoscope), a capsule endoscope, an in vivo (or ex vivo) observation microscope Can provide a function of observing the inside of a living body.
  • an internal observation method for executing the above-described observation principle can be provided. Also provided are software for executing various observation apparatuses so as to execute such a method, and a control program for executing observation operations by the apparatus.
  • each aspect may be understood to be an invention expressed as shown below.
  • Each embodiment (A1) to (A24) will be described together with its effects.
  • the internal observation device is characterized in that, in an observation method of irradiating illumination light onto a target surface and detecting backscattered light, the area of a specific detection region is larger than the area of the illumination region .
  • the internal observation apparatus includes an illumination unit and a detection unit that are arranged so as to define a distance between the illumination region and the detection region.
  • the internal observation device includes the illumination unit and the detection unit arranged so that at least the illumination region is not included in the detection region.
  • the internal observation device is a device for observing an object including a first biological tissue and a second biological tissue, and the distance x between the center of the illumination region and the previous detection region is set to the second For the approximate depth z where the body tissue is expected to exist, x ⁇ 2.8 ⁇ z It is characterized by being defined as follows.
  • a signal for a desired depth inside the object can be obtained.
  • the internal observation device is characterized in that two or more sets of the illumination and the detection position are arranged on the surface of the first biological tissue, and an image corresponding to each position is configured.
  • the internal observation device includes a scanning unit configured to scan the illumination and the detection position, and forms an image corresponding to the scanning unit.
  • the internal observation device is characterized in that the size of the detection area is made larger than the center-to-center distance with the adjacent detection area so that an intersection occurs between the detection areas.
  • the light amount change between the adjacent detection areas becomes smooth, and the same noise reduction effect as the smoothing process on the image can be realized.
  • the internal observation device is characterized in that the size of the detection area is determined so that the illumination area does not enter the detection area.
  • the internal observation apparatus is characterized in that an image is configured in correspondence with the scanning interval.
  • the internal observation device is characterized in that the size of the detection region satisfies the following mathematical formula; D ⁇ W (The size of the detection region in one direction is D, and the size of the second living tissue to be grasped is W).
  • the internal observation device is characterized in that an aperture for extracting only the backscattered light from the detection region is arranged in the detection unit.
  • the internal observation apparatus arranges the position of the aperture at a position conjugate with the detection region in an optical system that guides backscattered light from the surface of the first biological tissue to the detection unit. It is characterized by doing.
  • the internal observation apparatus includes a magnification adjusting optical system between the scanning unit and the aperture.
  • the scanning unit and the light guide optical system can be combined into one, which can be downsized and manufactured at low cost.
  • the internal observation apparatus includes a light guide optical system that guides the illumination light and the backscattered light to the same optical system, and makes the illumination light incident on the light guide optical system and is behind the detection region. And a separation optical system that extracts only scattered light.
  • the internal observation apparatus is characterized by using a laser light source as an illumination light source.
  • the internal observation device is characterized in that an optical fiber is used to guide illumination light.
  • the living body internal observation device is characterized in that the target is a first living tissue and the object is a second living tissue.
  • the observed object can be observed even at a depth of 3 mm or more inside the living tissue as a target.
  • the in-vivo internal observation device is characterized in that the distance between the centers of the illumination area and the previous detection area is defined to be 8 mm or more.
  • a signal can be obtained even for a depth of 3 mm or more inside the living tissue.
  • the living body internal observation device is characterized in that the area S of the detection region satisfies the following mathematical formula.
  • the bandwidth of the illumination light is BWL
  • the detection light density in the detection region is P
  • the conversion coefficient for converting the detection light into the light intensity data is G
  • the noise floor of the detection unit is N
  • the detection is performed.
  • the exposure time is t
  • the change rate of the light intensity data depending on the presence or absence of the second living tissue is r
  • the internal observation apparatus includes an NA adjustment optical system so that the illumination light becomes parallel light at an irradiation end (from the illumination unit to the tissue incidence) on the first living tissue. It is characterized by that.
  • the in-vivo internal observation apparatus is characterized in that the wavelength of the illumination light is light including at least 400 to 600 nm, 800 to 1000 nm, or 1350 to 1550 nm.
  • the in-vivo internal observation device is characterized in that the wavelength of the illumination light is light including at least 900 to 1000 nm.
  • the endoscope is incorporated in a medical endoscope.
  • the endoscope is characterized by being incorporated into a surgical rigid endoscope.
  • the apparatus body has a plurality of detection elements. The user performs measurement while moving such a device to each measurement point. Therefore, the conventional apparatus and method have a problem that much time is required for measurement.
  • Patent Document 1 performs measurement by bringing a light source and a detection element into contact with the surface of a living body. Accordingly, in such a method and apparatus, it is necessary to obtain an image by bringing them into contact with each movement to each measurement point. Therefore, there is a problem that more time is required.
  • Such a problem is also solved by the above-described embodiment according to the present invention.
  • Such an aspect provides an internal observation device that can efficiently acquire a distribution image of a heterogeneous portion. Furthermore, according to these aspects, an internal observation apparatus that can observe a specific depth region inside the object with higher sensitivity than before is provided. Furthermore, the internal observation apparatus which can observe the inside of object also in a deeper area
  • a method and an internal observation apparatus that can observe a deeper region than before in the interior of an object are provided.
  • FIG. 14 is a block diagram of a scatterer internal measurement device 1401 according to the third embodiment of the present invention.
  • the scatterer internal measurement device 1401 includes a movable light irradiation unit 1410, a detection unit 1411, a control / analysis unit 1412, a memory 1413, a display unit 1414, and an input unit 1415.
  • the light irradiation unit 1410 is an illuminating unit that irradiates light having different optical characteristics between the measurement target 1407 inside the scatterer 1408 and the surrounding scattering medium 1406.
  • an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto.
  • As light irradiated from the light irradiation unit 1410 for example, light having a wavelength that is absorbed by the measurement target but not absorbed by the scattering medium can be used.
  • the light irradiation unit 1410 irradiates light toward the scatterer 1408 based on a control signal from the control / analysis unit 1412.
  • the detection unit 1411 detects the intensity of the backscattered light that is reflected, scattered, or absorbed by the scattering medium 1406 and the measurement target 1407 of the scatterer 1408 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 1410. Is.
  • the detection unit 1411 detects backscattered light based on the control from the control / analysis unit 1412.
  • the light irradiation unit 1410, the detection unit 1411, the display unit 1414, and the input unit 1415 are connected to the control / analysis unit 1412 by a signal circuit that transmits an electrical signal.
  • the control / analysis unit 1412 controls the operation of the light irradiation unit 1410 and the detection unit 1411 and analyzes the data detected by the detection unit 1411 to determine whether the measurement target 1407 exists inside the scatterer 1408. Confirm. When the measurement target 1407 is present inside the scatterer 1408, the position and depth at which the measurement target 1407 actually exists in the scatterer 1408 from the distance between the irradiation position of the light and the position where the measurement target 1407 is confirmed. Is analyzed.
  • the control / analysis unit 1412 includes a memory 1413 for storing detected data.
  • the detection unit 1411 can measure the wide area
  • An area detected at a time by the detection unit 1411 is referred to herein as a measurement area.
  • FIG. 15 is a flowchart showing the operation of the scatterer internal measurement device 1401 according to the present invention.
  • S1 the position where the scatterer is irradiated with light is determined.
  • S2 the light irradiating unit 1410 irradiates the scatterer with light.
  • the detection unit 1411 detects the backscattered light intensity reflected, scattered and absorbed by the scattering medium 1406 inside the scatterer 1408 and returning to the scatterer surface again.
  • the detected data is stored in the memory 1413 in S4.
  • S5 it is determined whether or not the measurement is finished. If not finished, the process returns to S1 and the measurement is continued. If completed, the process proceeds to S6.
  • control / analysis unit 1412 analyzes the data stored in the memory 1413.
  • the analysis result is displayed on the display unit 1414 in S7.
  • S8 it is determined whether or not to end the measurement. If not, the process returns to S1 to continue the measurement or returns to S6 to continue the analysis.
  • the analysis in S6 is performed by the following analysis method.
  • the position and depth of the measurement object are analyzed from the obtained data.
  • FIG. 16 is a conceptual diagram showing a state of light propagation inside the scatterer.
  • light irradiated to a scatterer loses its scattering anisotropy while repeating scattering inside the scatterer and approaches isotropic scattering.
  • the cross section of the average optical path becomes a banana shape.
  • the measurement object is near the surface between the detection positions I 1 and I 2 . In this case, no change is seen in the detection light at the detection positions I 1 and I 2 .
  • the measurement object is at a deeper position between the detection positions I 1 and I 2 . At this time, no change is seen in the detection light at the detection position I 1, but the detection light at the detection position I 2 is attenuated. As a result, the position and depth of the measurement target are determined.
  • a tomographic image at a certain depth is created from the obtained backscattered light intensity data (that is, image construction).
  • FIG. 17 shows a schematic diagram of the backscattered light measured in the measurement region.
  • a position where light is irradiated onto the scatterer from the light irradiation unit 1710 is indicated by a cross mark, and a measurement region 1740 scanned by the detection unit 1711 is indicated by a dotted line.
  • the backscattered light reflected, scattered and absorbed by the scatterer 1708 and emitted from the scatterer surface is concentric with the irradiation position as the center as shown in the figure.
  • FIG. 17 (a) the light having passed through the deep part of the scatterer as the diameter of the concentric circle increases.
  • the concentric regions 1741, 1742, and 1743 can be regarded as having information of substantially the same depth.
  • the depth corresponds to the distance from the irradiation position to the concentric circle, the depth is increased in the order of the concentric circular regions 1741, 1742, and 1743. Therefore, when scanning, the detection unit 1711 extracts data of the backscattered light intensity from at least one part of the concentric circular region, whereby image data at a certain depth can be selectively extracted, and the selected data Thus, a tomographic image at the depth can be created.
  • the above analysis method can easily acquire more information that can be used for analysis by changing the position of the light irradiation unit 1710 and performing measurement.
  • FIG. 18 shows a state where the measurement was performed by changing the irradiation position by the light irradiation unit 1810.
  • the detection unit 1811 is fixed, and the measurement region 1850 does not move. However, by changing the position irradiated by the light irradiation unit 1810, the concentric area as described above moves.
  • information at an arbitrary depth at a desired position can be obtained by changing the detection region to 1851, 1852, and 1853.
  • the light irradiation unit 1810 and the detection unit 1811 are scanned and analyzed so as to acquire data at a position separated from the desired position by a distance equal to the distance between the desired position and the irradiation position.
  • the distance between the desired position, the irradiation position, and the position of data to be analyzed is determined according to the depth at which information is desired.
  • the degree of freedom of the irradiation position and the detection position is high, information at an arbitrary depth at a desired position can be easily obtained.
  • FIG. 19 is a block diagram of a scatterer internal measurement device 1900 according to the fourth embodiment.
  • a light illumination unit 1909 and a detection unit 1910 are movably provided.
  • the light irradiation unit 1909 and the detection unit 1910 are moved, and are respectively arranged at positions that are equidistant from the desired position. Thereby, information of an arbitrary depth at a desired position can be obtained. The depth of information to be obtained can be easily changed by appropriately adjusting the distance between a desired position and the light irradiation unit 1909 and the detection unit 1910.
  • a scatterer internal measurement device that is, a scatterer internal observation device that acquires information on a measurement target (that is, an observation target) inside the scatterer, and scatters light having different optical characteristics between the measurement target and the scatterer.
  • An illumination unit configured to irradiate the body (that is, a light irradiation unit), a detection unit configured to detect backscattered light of light irradiated by the illumination unit, and acquired by the detection unit It is configured to check the presence or absence of the measurement target in the data, and obtain position information including the depth of the measurement target in the scatterer from the distance between the irradiation position and the position where the measurement target is confirmed.
  • the distance between the irradiation position and the detection position is fixed. Accordingly, detection cannot be performed at a position at an arbitrary distance from the irradiation position.
  • the backscattered light to be measured passes through the deepest part at the midpoint position between the irradiation position and the detection position. That is, of the observed information, the deepest information is at the midpoint between the irradiation position and the detection position.
  • the position of the deepest portion to be measured in the x and y directions is the light irradiation unit and the detection unit. The distance from the irradiation position increases as the distance between them increases. Therefore, there is a problem in that information with varying depth (z direction) cannot be obtained at a specific position.
  • the above-described aspect can solve these problems, and can arbitrarily analyze data located at a desired distance from the irradiation position by detecting backscattered light. Therefore, information on a desired position and depth can be easily acquired.
  • the present invention further relates to an apparatus and method for observing the inside of a scatterer by measuring backscattered light from the scatterer.
  • One or more embodiments of the third aspect of the present invention described below may be used in combination with one or more embodiments of the first and / or second aspects described above. Further, one embodiment shown in the third aspect may be used alone, or one or more embodiments may be used in combination.
  • the scatterer refers to an object mainly composed of a scattering medium, and examples include a living body.
  • the scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
  • the scatterer internal observation device on the third side is a device for observing a heterogeneous portion existing in a scattering medium inside the scatterer.
  • the heterogeneous portion is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
  • FIG. 20 is a block diagram of a scatterer internal observation device 2001 according to one embodiment of the third aspect.
  • the scatterer internal observation device 2001 includes a light irradiation unit 2010, a detection unit 2011, a control unit 2012, a display unit 2014, and an input unit 2015.
  • the light irradiation unit 2010 is an illuminating unit that irradiates light including at least wavelengths having different optical characteristics between the heterogeneous portion 2007 inside the scatterer 2008 and the surrounding scattering medium 2006.
  • an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto.
  • light including a wavelength in the near infrared region having absorption in hemoglobin is preferably used as the light including at least a different optically specific wavelength.
  • the light irradiation unit 2010 irradiates light toward the scatterer 2008 based on a control signal from the control unit 2012.
  • the detection unit 2011 detects the intensity of the backscattered light that is reflected, scattered, and absorbed by the scattering medium 2006 and the extraneous portion 2007 of the scatterer 2008 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 2010.
  • the light intensity data of the backscattered light is acquired.
  • the detection unit 2011 detects backscattered light based on the control from the control unit 2012.
  • the control unit 2012 controls the operations of the light irradiation unit 2010 and the detection unit 2011, analyzes data detected by the detection unit 2011, and creates an imaging unit 2016 that creates a plurality of tomographic images having different depths.
  • an analysis unit 2017 that selects a tomographic image on which a heterogeneous portion is displayed from the plurality of tomographic images.
  • the tomographic image selected by the analysis unit can be displayed by the display unit 2014.
  • the light irradiation unit 2010, the detection unit 2011, the display unit 2014, and the input unit 2015 are connected to the control unit 2012 by a signal circuit that transmits an electrical signal.
  • the obtained data is analyzed, and tomographic images having different depths are produced.
  • the principle of producing a tomographic image will be described.
  • FIG. 21 (a) is a schematic diagram of a rigid mirror 2100 to which the scatterer internal observation device of the third side surface is applied.
  • the rigid endoscope 2100 includes an illumination unit 2102 and a detection unit 2101, and includes a control unit and a display unit (not shown).
  • FIG. 21B is a schematic cross-sectional view of the scatterer
  • FIG. 21C is a schematic view of the surface of the scatterer as viewed from above.
  • the position where the light is irradiated from the light irradiation unit 2102 onto the scatterer 2108 is indicated by a cross
  • the detection range 2150 where the backscattered light is detected by the detection unit 2101 is indicated by a dotted line.
  • the backscattered light of the light irradiated to the scatterer 2108 from the light irradiation unit 2102 propagates as shown in FIG.
  • it becomes a concentric circle centered on the irradiation position as shown in FIG.
  • the larger the diameter of this concentric circle the more backscattered light has passed through the deeper part of the scatterer.
  • the concentric circular regions are backscattered light that has passed through substantially the same depth.
  • a tomographic image having a desired depth can be obtained by changing the distance from the irradiation position to the concentric area.
  • the illumination point is moved in the detection range 2250 as shown in FIG.
  • the region within the concentric circle moves with the movement of the illumination point. Therefore, information of the same depth can be obtained by always extracting light intensity data in a concentric circle region that is at a fixed distance from the illumination point. This will be described with reference to FIG.
  • FIG. 23A are diagrams in which partial areas included in the concentric circular areas 2351, 2352, and 2353 at the respective scanning points are overlapped. In other words, it is a diagram showing a trajectory in which a part of each of the concentric circular regions 2351, 2352 and 2353 has moved. A part of the concentric area may be divided in any way. Each concentric region has the same depth information. Therefore, by overlapping a plurality of detection results as shown in FIG. 23A (a), a tomographic image at that depth can be created as shown in FIG. 23B (b).
  • overlapping portions are generated when the data are overlapped, arbitrary data is selectively used from the overlapping data, or an average value of the overlapping data may be used.
  • the tomographic image in which the heterogeneous portion is displayed by the analysis unit 2017 as shown in FIG. 23B (c), for example. Is selected. This selection is performed by determining a tomographic image that satisfies a predetermined contrast condition.
  • FIG. 23A (a) is an example in which a region defined by a portion corresponding to a partial arc of each concentric circular region is adopted as the light receiving region.
  • FIG. 23A (a ′) an area defined by a portion corresponding to an arc of a part of each concentric area, and a part of this area, for example, an area defined by a substantially square is adopted as the light receiving area. It is an example.
  • the analysis unit 2017 determines whether or not each tomographic image satisfies the contrast condition, and determines that the tomographic image satisfying the contrast condition is a tomographic image having a heterogeneous portion.
  • the following methods (1) to (4) can be used as a method for determining whether or not a tomographic image satisfies a contrast condition.
  • the present invention is not limited to these, and various methods can be used.
  • the tomographic image screen is divided into several sections, and the average intensity is calculated for each section. Next, it is determined whether there is a certain difference or more in the average intensity between the sections. In this case, the condition that is considered to be different is the contrast condition.
  • the tomographic images having different depths are compared to detect a portion having different light intensity.
  • a portion having the same intensity change between the tomographic images can be regarded as noise. If there is a difference in light intensity change between tomographic images, it can be considered that a heterogeneous portion exists. In this case, the condition for regarding the difference in the light intensity between the tomographic images is the contrast condition.
  • a spatial light intensity distribution data image is created from the acquired light intensity data, and changes in the light intensity are observed. For example, on a line passing through an arbitrary point on the image, a portion where the light intensity greatly decreases can be regarded as a heterogeneous portion. Further, if the degree of decrease in light intensity is small, it can be determined that noise is present.
  • the tomographic image is displayed on the display unit 2014. At this time, only the selected tomographic image may be displayed, or the selected tomographic image may be displayed together with other tomographic images, for example, by displaying it larger than the other images.
  • a tomographic image at an arbitrary depth can be easily obtained by operating the light irradiation unit 2010 and the detection unit 2011 to acquire light intensity data. Furthermore, by automatically selecting a tomographic image at a depth at which a heterogeneous portion exists, the inside of the scatterer can be observed simply and efficiently.
  • the scatterer internal observation device in this aspect has a configuration in which a plurality of tomographic images created by the imaging unit are displayed and a user can select a desired tomographic image.
  • the scatterer internal observation device includes an illumination unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium forming the scatterer and the extraneous portion, and The detection unit configured to detect the backscattered light of the light irradiated by the illuminating unit and acquire the light intensity data of the backscattered light, and analyze the acquired light intensity data, each having a different depth
  • An imaging unit configured to generate a plurality of tomographic images, a display unit configured to display the generated tomographic images, and a desired tomographic image selected from the displayed plurality of tomographic images
  • an input unit configured to be displayed.
  • the illumination unit and the detection unit used in this aspect are the same as those in the scatterer internal observation device 2001 described above.
  • the display unit can simultaneously display a plurality of tomographic images created by the imaging unit, and further enlarges the tomographic image selected by the user or displays only the selected tomographic image. Can be displayed.
  • a monitor screen is preferably used, but is not limited thereto.
  • the input unit is for the user to select a desired tomographic image from the displayed tomographic images and to input the result.
  • a keyboard or the like that indicates a selected image may be used, or a monitor that uses a touch panel that indicates an image by touching the displayed image or surrounding it with an input pen may be used.
  • the present invention is not limited to these, and various input means can be used.
  • the illumination unit irradiates the scatterer with light
  • the detection unit detects the backscattered light of the irradiated light
  • acquires light intensity data of the backscattered light Next, the acquired light intensity data is analyzed based on the imaging amount, and a plurality of tomographic images having different depths are produced.
  • a plurality of produced tomographic images are displayed on the display unit. All of a plurality of tomographic images may be displayed simultaneously, or some may be displayed simultaneously.
  • the user selects a desired image from the displayed tomographic images, and inputs the result using the input unit.
  • the display unit displays the selected tomographic image based on the input instruction.
  • the series of steps described above are continuously repeated during the observation of the scatterer, and the displayed tomographic images are sequentially updated.
  • the selection of the tomographic image may be performed periodically by the user, but the condition of the tomographic image selected by the user may be stored, and the subsequent selection may be automatically performed according to the condition.
  • the condition of the tomographic image is, for example, depth.
  • the imaging unit further includes an illumination range recognition unit that recognizes the shape of the illumination range irradiated by the illumination unit, and the illumination recognized by the illumination range recognition unit.
  • An extraction position determining unit that determines an extraction position of light intensity data for producing a tomographic image based on the shape of the range.
  • a tomographic image of a scatterer can be acquired efficiently and with high accuracy.
  • the scatterer internal observation device includes an illumination range recognition unit (that is, an irradiation range recognition unit) that recognizes a shape of an illumination range (that is, an irradiation range) irradiated by the illumination unit, and illumination that is recognized by the illumination range recognition unit.
  • An imaging unit including an extraction position determination unit that determines an extraction position of light intensity data for producing a tomographic image based on the shape of the range;
  • the third aspect is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • the third aspect may be understood as an invention expressed as (B1) to (B12) shown below.
  • Such a third aspect may be understood as an invention expressed as the following (B1) to (B14).
  • a scatterer internal observation device that is, a scatterer internal observation device that acquires information on a heterogeneous portion (that is, an observation target) inside the scatterer, and includes a scattering medium that constitutes the scatterer and the heterogeneous portion.
  • An illuminating unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics (that is, a light irradiating unit), and detecting backscattered light of the light irradiated by the illuminating unit, and the backscatter
  • a detection unit configured to acquire light intensity data of light
  • an imaging unit configured to analyze the acquired light intensity data and generate a plurality of tomographic images having different depths (that is, images)
  • a construction unit an analysis unit configured to select a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images (that is, a selection unit), and the selected tomographic image.
  • Scattering medium observation device characterized in that it comprises a configured display unit to.
  • a scatterer internal observation device that acquires information on a heterogeneous portion inside the scatterer, wherein the scatterer includes light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the heterogeneous portion.
  • An illumination unit configured to irradiate the light
  • a detection unit configured to detect backscattered light of the light irradiated by the illumination unit, and acquire light intensity data of the backscattered light, and the acquisition Analyzing the generated light intensity data
  • an imaging unit configured to generate a plurality of tomographic images each having a different depth
  • a display unit configured to display the generated tomographic images
  • the display A scatterer internal observation device comprising: an input unit configured to select and display a desired tomographic image from a plurality of tomographic images.
  • a scatterer internal observation device that is, an observation object that acquires information on a heterogeneous portion (that is, an observation object) inside the scatterer,
  • An illumination unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; and
  • a detection unit configured to detect backscattered light of the light irradiated by the illumination unit and obtain light intensity data of the backscattered light;
  • An imaging unit configured to analyze the acquired light intensity data and create a plurality of tomographic images each having a different depth (that is, an image construction unit);
  • An analysis unit configured to select a tomographic image in which the heterogeneous portion is displayed from the prepared plurality of tomographic images (that is, a selection unit);
  • a scatterer internal observation device comprising: a display unit configured to display the selected tomographic image.
  • a scatterer internal observation device that acquires information on a heterogeneous portion inside the scatterer,
  • An illumination unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
  • a detection unit configured to detect backscattered light of the light irradiated by the illumination unit and obtain light intensity data of the backscattered light;
  • An imaging unit configured to analyze the acquired light intensity data and create a plurality of tomographic images each having a different depth;
  • a display unit configured to display the produced tomographic image;
  • An scatterer internal observation device comprising: an input unit configured to select and display a desired tomographic image from the displayed tomographic images.
  • (B10) A scatterer internal observation method for observing a heterogeneous part inside a scatterer, (A) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; (B) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light; (C) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth; (D) selecting a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images; (E) displaying the tomographic image selected in the step; A method comprising the steps of:
  • the step (d) includes a step of determining whether the produced tomographic image satisfies a predetermined contrast condition, and selects a tomographic image satisfying the predetermined contrast condition as a tomographic image in which a heterogeneous portion is displayed.
  • a scatterer internal observation method for observing a heterogeneous portion inside a scatterer (A) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; (B) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light; (C) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth; (D) displaying the produced tomographic image; (E) selecting and displaying a desired image from the displayed tomographic images; A method comprising the steps of:
  • Steps (a) to (d) are repeated, The method according to (B13), wherein a display is updated by selecting a tomographic image having the same condition as the tomographic image selected in step (e).
  • the light irradiation unit and the light detection unit are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, the depth that can be observed is determined, and there is a problem that a tomographic image can be created only at a certain depth.
  • a method and a scatterer internal observation device capable of efficiently acquiring a tomographic image at a depth at which a heterogeneous portion exists are provided.
  • a scatterer internal observation device having a function of removing noise generated from the vicinity of the surface layer of the scatterer.
  • One or more embodiments of the fourth aspect of the present invention described below are used in combination with one or more embodiments of the first, second and / or third aspects described above. May be. Further, one embodiment shown in the fourth aspect may be used alone, or one or more embodiments may be used in combination.
  • the scatterer internal observation device in this aspect is for producing a deep processing image from which noise due to the surface of the scatterer and the vicinity of the surface layer is removed.
  • the backscattered light detected by the detector includes reflected light from the surface of the scatterer. Since there are minute irregularities on the surface of the scatterer, the reflected light scatters and produces strength, which can be noise when creating a tomographic image. Further, the backscattered light to be detected includes backscattered light from a relatively shallow depth, and this also becomes noise when a tomographic image is produced by backscattered light from a deep part.
  • the scatterer internal observation device makes it possible to provide a tomographic image from which noise has been removed.
  • the tomographic image from which noise has been removed can be produced by any of the following methods (1) to (3).
  • a surface tomographic image and a deep tomographic image are created separately, and the surface tomographic image is subtracted from the deep tomographic image.
  • the surface layer tomographic image is a tomographic image prepared from backscattered light from a relatively shallow portion of the scatterer and reflected light from the surface of the scatterer.
  • the deep tomographic image is a tomographic image having a desired depth, and includes backscattered light from the surface layer.
  • the distance between the illumination unit and the detection unit is changed in order to separately produce the surface layer tomographic image and the deep part tomographic image.
  • detection is performed at the position of ⁇ as shown in FIG. Then, a surface layer tomographic image X as shown in FIG. 24B is obtained.
  • detection is performed at the position ⁇ as shown in FIG. Then, a deep tomographic image Y as shown in FIG.
  • each tomographic image can be easily obtained by making the distance of the point from which data is extracted to create the surface layer image shorter than the distance of the point from which data is extracted to create the deep tomographic image.
  • the surface tomographic image X is subtracted from the deep tomographic image Y as shown in FIG. Thereby, the deep part processed image Z from which the noise of the surface layer was removed can be obtained. Since the surface tomographic image X has a light intensity higher than that of the deep tomographic image Y, the light intensity is adjusted by multiplying the surface layer tomographic image X by a constant n.
  • the constant n may be determined so that the average light intensity of the surface tomographic image X and the deep tomographic image Y is approximately the same.
  • the calculation method can be performed, for example, by calculating the light intensity for each pixel on the produced image. Moreover, although the average of the light intensity of several pixels may be calculated and it may calculate using the average value, it is not limited to these, An appropriate method can be selected.
  • a surface layer tomographic image and a deep tomographic image are prepared separately.
  • light of different wavelengths is used as illumination.
  • a light source 1 that emits light of wavelength ⁇ 1 is used.
  • a surface layer tomographic image X as shown in FIG. 25B is obtained.
  • a light source 2 that irradiates light having a wavelength ⁇ 2 is used.
  • the deep part tomographic image Y as shown in FIG.25 (d) is obtained.
  • the surface tomographic image X is subtracted from the deep tomographic image Y.
  • the calculation method of the tomographic image is the same as the method (1). Thereby, the tomographic image Z from which the noise on the surface layer is removed can be obtained.
  • the low frequency component of the spatial frequency of the deep tomographic image Y corresponds to the center of the image shown in FIG. 26C
  • the high frequency component is the periphery of the image shown in FIG. Corresponding to the part.
  • the high frequency portion corresponds to the noise component obtained from the surface and surface layer of the scatterer.
  • the low frequency part corresponds to the component obtained from the deep part of the scatterer.
  • the deep processing image Z can be obtained by subtracting the surface layer tomographic image X obtained by inverse Fourier transform of the high frequency component from the deep tomographic image Y. .
  • the threshold value which divides high frequency and low frequency can be set suitably according to the size and position of the heterogeneous part to be observed.
  • the method described above can be implemented by the scatterer internal observation device according to the first to fourth embodiments.
  • the creation of the deep tomographic image and the surface tomographic image can be performed by the image processing unit, and each calculation can be performed by the analysis / processing unit.
  • control unit including an imaging unit and a calculation unit may be provided, and the configuration can be selected as appropriate.
  • the fourth aspect is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • the fourth aspect may be understood as an invention expressed as (C1) to (C4) shown below.
  • (C1) A scatterer internal observation method for observing a heterogeneous part inside a scatterer, Irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; and Detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light; Analyzing the light intensity data acquired by the step, and determining a detection region on the scatterer surface; Detecting the backscattered light of the detection region determined by the step, obtaining light intensity data; A method comprising an image processing step of creating a tomographic image of the scatterer from the light intensity data acquired by the step.
  • the method and apparatus according to the fourth aspect can be used as a method and / or apparatus for observing a living body, and can be used particularly in an endoscope or a rigid endoscope.
  • Such an aspect makes it possible to remove noise generated from the vicinity of the surface of the scatterer, thereby providing a method and apparatus capable of observing the inside of a living body better than before.
  • a method for favorably imaging backscattered light and an apparatus for observing the inside of a living body using the method are provided.
  • the internal observation apparatus when the internal observation apparatus is equipped with a function of spot-irradiating light and detecting backscattered light from a point separated by a certain distance, the optical paths of the illumination light and the detection light are not parallel. Therefore, the distance between the illumination point and the detection point (hereinafter referred to as “SD”) varies depending on the observation distance.
  • SD the distance between the illumination point and the detection point
  • the SD distance is increased and the amount of light decreases. Therefore, the ratio of signals to noise (hereinafter referred to as “SNR”) is reduced.
  • the SD distance approaches and the surface diffused light increases. Therefore, the scattered light from inside the scatterer is buried and cannot be detected.
  • a method capable of solving such a problem and an apparatus for observing the inside of a living body are provided.
  • One or more embodiments of the fifth aspect of the present invention described below are one or more embodiments of the first, second, third, and / or fourth aspects described above. May be used in combination. Further, one embodiment shown in the fifth aspect may be used alone, or one or more embodiments may be used in combination.
  • subject is used interchangeably with “observation object” or “measurement object”. In addition, any of these words may be described as “subject”.
  • FIG. 27 shows an internal observation apparatus as an example of the seventh embodiment that can be used in the fifth aspect.
  • FIG. 27 is a block diagram showing the overall configuration of the apparatus according to this embodiment.
  • the observation apparatus includes an input unit configured to allow an operator to input desired information such as numerical values and measurement conditions, a light source for irradiating the subject, and light from the light emitted from the light source on the subject surface.
  • an illumination optical system configured to irradiate through an irradiation port
  • a detection optical system configured to capture backscattered light emitted from the subject surface, and converts the backscattered light into an electrical signal.
  • a detector configured as described above, a scanning mechanism configured to scan an irradiation position and a detection position on the surface of the subject, a control unit configured to control the light source and the scanning mechanism, A measurement unit configured to measure the intensity of the electrical signal from the detector; and an imaging unit configured to generate an image based on the measured intensity of the electrical signal when scanned.
  • Said running Comprising the the configured computing unit to compute the adjustment contents route, and a display unit configured to display the generated image.
  • the light irradiated from the light source passes through the illumination optical system, passes through the irradiation port, and is then irradiated onto the subject.
  • the irradiation light is controlled by the scanning mechanism so as to irradiate a point and / or region at a predetermined position on the surface of the subject. Scanning by the scanning mechanism is controlled by the control unit. Control by the scanning mechanism is performed by changing the position of the irradiation optical system and / or the irradiation port.
  • the light to be detected from the subject is captured by the detection port of the detection optical system, and sent to the detector through the detection optical system.
  • the detection optical system and / or the detection port is scanned so as to receive light at a desired position by a scanning mechanism controlled by the control unit.
  • the light captured at the detection port passes through the detection optical system and is sent to the detector, where it is converted into an electrical signal.
  • the intensity of the changed electric signal is measured by the measuring unit.
  • the measurement unit generates an image from the obtained plurality of electric signal intensities. Further, the calculation unit calculates a scanning path and adjustment contents.
  • the input unit may be used by the user to select a desired tomographic image from a plurality of displayed tomographic images and input the result.
  • a keyboard or the like that indicates a selected image may be used, or a monitor that uses a touch panel that indicates an image by touching the displayed image or surrounding it with an input pen may be used.
  • the present invention is not limited to these, and various input means can be used.
  • irradiation unit light source
  • illumination optical system illumination optical system
  • detection port detection optical system
  • detector detection unit
  • the “measurement unit” may be called an “imaging unit” from the side of generating an image.
  • control unit may be configured and arranged independently, or one or more of them may be combined to form a single unit, or all of them may be configured as a single unit. May be.
  • control unit may control all of the scanning mechanism, the conversion of light from the detector into an electrical signal, measurement in the measurement unit and image generation, and various calculations in the calculation unit, and control some of them.
  • a plurality of control units may be arranged, and a plurality of corresponding control units may be arranged for each of them.
  • the light source is connected to the illumination optical system.
  • the first scanning mechanism is configured to scan the illumination optical system in accordance with an instruction from the control unit.
  • the second scanning mechanism is configured to scan the detection optical system in accordance with an instruction from the control unit.
  • the detector is connected to the detection optical system and configured to detect backscattered light that has entered the detection optical system.
  • the internal observation apparatus enables scanning by moving the optical system.
  • the observation apparatus may include a storage unit.
  • the storage unit can store information such as a look-up table, an image creation program, and / or a scanning protocol. Based on these information and / or by referring to the information, the control unit may perform a desired control on a desired component.
  • the observation apparatus may further include a recording unit.
  • the recording unit may be configured to temporarily store information, and may be configured to store a part and / or the entire obtained image.
  • the seventh embodiment may further use the same configuration and members as those described in the first aspect and the first and second embodiments.
  • the third aspect is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • FIG. 28 shows an internal observation apparatus as an example of the eighth embodiment that can be used in the fifth aspect.
  • FIG. 28 is a block diagram showing the overall configuration of the apparatus according to this embodiment.
  • This observation apparatus is configured to scan by moving the optical axis directly by arranging a scanning mechanism in the middle of the optical axis. Except for this point, this embodiment is the same as the seventh embodiment described in FIG.
  • the light source configured to guide the light from the light source to the illumination optical system, and the light from the first light guide optical system receiving the light to the subject surface
  • the illumination optical system configured to irradiate the light, and the optical axis is changed on the optical path for guiding the light from the first light guide optical system to the illumination optical system, and the irradiated light is scanned.
  • At least one first scanning mechanism configured as described above
  • a second light guide optical system for guiding light entering the detection optical system to the detector, and light from the second light guide optical system At least one second scanning mechanism configured to change the optical axis and scan the light to be detected on the optical path leading to the detector.
  • FIG. 29 shows an internal observation apparatus as an example of the ninth embodiment that can be used in the fifth aspect.
  • FIG. 29 is a block diagram showing the overall configuration of the apparatus according to this embodiment.
  • the first scanning mechanism and the second scanning mechanism are configured by a single scanning mechanism, and the optical axis of the irradiated light is connected to the scanning mechanism and the light to be detected.
  • This embodiment is the same as the eighth embodiment shown in FIG. 28 except that a center-to-center distance adjustment optical system configured to adjust the positional relationship with the optical axis is provided.
  • the center distance adjusting optical system may be configured independently of the scanning mechanism, or the center distance adjusting optical system and the scanning mechanism may be configured as one unit. Further, the center-to-center distance adjustment optical system may be disposed closer to the light source and the detector than the scanning mechanism, or may be disposed closer to the illumination optical system and the detection optical system than the scanning mechanism.
  • FIG. 30 is a diagram schematically showing the subject-side end of the observation devices according to the seventh to ninth embodiments.
  • an irradiation port of an irradiation optical system that irradiates light to the subject and a detection port of a detection optical system that receives light from the subject are indicated by circles.
  • a distance between the centers of the illumination port and the detection port is referred to as a center-to-center distance, and is indicated by d1.
  • FIG. 31 shows the relationship between the light emitted from the observation devices of the seventh embodiment to the ninth embodiment, the light emitted from the subject and captured by the detection aperture included in the detection optical system, and each part.
  • the distance between the center of the illumination port and the detection port of the observation apparatus is d1
  • the distance between the center of the illumination area and the detection area on the subject surface that is, the distance between the centers is d2.
  • FIG. 32A is a schematic diagram when FIG. 31 is viewed obliquely from above, and is a diagram when the irradiation optical system and the detection optical system are scanned.
  • FIG. 32A schematically shows an optical path, an irradiation area, and a detection area for each light when the irradiation optical system and the detection optical system are scanned.
  • the scanning direction is not limited to the linear direction. Two or more pairs of illumination areas and detection areas may be provided so that two or more points can be illuminated and detected simultaneously. Thereby, observation can be performed in a wider range.
  • the distance between the groups is arbitrary, and may be adjacent to each other, or may be arranged in an illumination area and / or a detection area that are separated from each other.
  • the observation apparatus may further include an imaging unit.
  • the imaging unit can display the two-dimensional distribution as a two-dimensional image by displaying the light intensity signal detected at each scanning point in association with the scanning point and the pixel position in the display image. it can.
  • the light intensity signal may be displayed after being converted into color shading information, or may be displayed after being converted into color information.
  • the observation apparatus may include an image processing unit. Thereby, a deep part tomographic image and a surface layer tomographic image may be created, and arbitrary image processing may be performed.
  • FIG. 32A shows a schematic diagram of the movement of the illumination area and the detection area when scanned.
  • the pixels of the image formed by the imaging unit are arranged. That is, the interval between adjacent scanning points corresponds to the interval between pixels.
  • control unit controls the illumination scanning mechanism based on the coordinates read in S323, moves the illumination optical system to be arranged at the position of the coordinates, and proceeds to S325.
  • control unit controls the scanning mechanism for detection based on the coordinates read in S325, moves the detection optical system to place it at the position of the coordinates, and proceeds to S327.
  • control unit emits light from the irradiation port of the illumination optical system arranged at the coordinates, and the light captured by the detection port of the detection optical system arranged at the coordinates is converted into an electrical signal by the detector.
  • the detection signal for the nth scanning point is read out and stored in the recording unit. The process proceeds to S328.
  • the image generated in S330 may be stored in the recording unit and / or displayed on the display unit.
  • the illumination position to be scanned and the detection position are held in the storage unit and / or recording unit of the composition observation apparatus as an LUT that is a series of coordinate data.
  • the control unit reads out the coordinates from the LUT, controls the scanning mechanism to move the positions of the illumination unit and the detection unit, and arranges them at desired positions corresponding to the coordinates. Do.
  • the LUT may hold coordinate data of a position on the surface of the subject, may hold data of a swing angle of illumination light and detection light, and an electrical signal (voltage value) used for control by the scanning mechanism. / Current value) data may be held. Further, the LUT may hold the positional relationship between illumination and detection (for example, the value of d2) separately, so that one LUT may be used for illumination and detection.
  • the intensity of the backscattered light increases as the illumination area on the subject surface and the detection area are closer. Therefore, the detection intensity increases as d2 decreases (see FIG. 33C).
  • the shooting distance WD can be estimated from the brightness of the screen (FIG. 35).
  • a correction value to be applied to the distance d2 can be calculated so that the brightness of the screen falls within the appropriate brightness range (FIG. 35 (c)).
  • FIGS. 36 (a) to (c) Examples of such distribution are shown in FIGS. 36 (a) to (c).
  • the brightness of the screen if the brightness in the screen is uniform, the average brightness value of the entire screen can be regarded as the brightness of the screen. However, actually, the brightness is different even within one screen as shown in FIGS. That is, even in one screen, there are portions where blood vessels are easily visible and difficult to see. It has been found that such a state can be improved by adjusting the distance d2 at each photographing point in the same screen. Such adjustment makes it easy to see blood vessels on the entire screen (FIGS. 37A to 37C).
  • the eleventh embodiment is a method of adjusting the distance d2 at each photographing point in the same screen as follows.
  • This filtering process is a process in which a structure image such as a blood vessel existing in an image is erased to obtain only a distribution of detected background intensity.
  • this process may be performed using a low-pass filter.
  • the spatial frequency threshold value to be filtered may be experimentally obtained in advance in accordance with a target object structure.
  • the WD at each shooting point can be calculated from the luminance value of each shooting point (each pixel on the image) in the filtering processing result, and the correction value to be applied to d2 can be calculated from the WD.
  • Data that associates the brightness value with WD and / or associates WD with d2 may be stored in advance in the storage unit.
  • Data that associates the brightness value with the correction value of d2 may be stored in the storage unit in advance.
  • the calculation unit and / or the control unit may perform desired processing with reference to the data.
  • This method can be implemented in any of the observation apparatuses described in any of the above aspects. Moreover, it is also preferable to be used in combination with the imaging method according to the tenth embodiment. Some examples will be described below. These methods may be used for still image capturing or moving image capturing.
  • Example 1 An imaging method which is an example of the eleventh embodiment will be described with reference to FIG.
  • control unit starts photographing with the observation apparatus, and proceeds to S381.
  • the image processing unit performs a filtering process on the entire image in accordance with an instruction from the control unit, and the process proceeds to S383.
  • the calculation unit calculates WD based on the luminance value for each scanning point for the entire filtered image, and the process proceeds to S384.
  • the calculation unit determines a correction value for the distance d2 for each scanning point according to the WD, and proceeds to S385.
  • control unit receives the correction value from the calculation unit, sets the distance d2 at each scanning point based on the correction value, and proceeds to S386.
  • control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism to move the illumination optical system and the detection optical system so as to maintain the corrected distance d2.
  • An image is obtained by repeating S321 to S330 described in 32B, and the process proceeds to S387.
  • control unit determines whether or not re-correction is necessary. If correction is not necessary, the process proceeds to S386. If correction is necessary, the process proceeds to S381, and each process is repeated again. S386 Then, the controller instructs the center-to-center distance adjustment optical system and the scanning mechanism to take an image in a state where the illumination optical system and the detection optical system are moved and arranged so as to maintain the corrected distance d2. Do. Further, the control unit displays the obtained image on the display unit.
  • control unit may determine whether “100 ms has elapsed since the previous correction time”. The execution of this determination may be programmed such that the control unit resets the timer each time correction is performed.
  • control unit may determine “10 images have been captured since the previous correction”.
  • the execution of this determination may be programmed, for example, so that the control unit resets the photographing counter every time it is corrected.
  • the correction value of the distance d2 for each scanning point according to the WD by the calculation unit is determined by, for example, information stored in the storage unit in advance by the calculation unit, for example, an LUT that associates the WD and the correction value. Etc., or calculation based on a pre-stored calculation formula, use of information obtained by previous measurement stored in the recording unit, or a combination thereof. Good.
  • Example 2 is a modification of Example 1 that is more appropriate for moving image shooting.
  • filtering processing is performed to acquire an image, thereby calculating a background intensity distribution, and calculating a correction value ⁇ required for the distance d2 from the calculated value.
  • the correction process may be omitted and d2 at the previous setting may be used as it is.
  • the observation apparatus can be reset to the initial d2 at any timing by providing a reset button. May be programmed as follows.
  • FIG. 39 (a) is a flowchart showing a correction method for performing a filtering process every time an image is acquired during moving image shooting.
  • control unit starts photographing with the observation apparatus, and proceeds to S391.
  • S391 an image is obtained by repeating S321 to S330 described in FIG. 32B in accordance with an instruction from the control unit, and the process proceeds to S392.
  • the image processing unit performs a filtering process on the entire image, and the process proceeds to S393.
  • the calculation unit determines a correction value ⁇ for the distance d2 based on the luminance value for each scanning point, and proceeds to S394.
  • control unit receives the correction value ⁇ from the calculation unit, and advances the distance d2 at each scanning point to S395.
  • control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism, and moves and arranges the illumination optical system and the detection optical system so as to maintain the corrected distance d2. And go to S392.
  • control unit determines whether there is an instruction to end shooting to the input unit or whether a preset condition is satisfied, and the control unit repeats the shooting loop of S392 to S395 according to the result. If the control unit accepts an instruction to end shooting or determines that a preset condition is satisfied, the shooting loop is exited and the operation ends.
  • a graph showing the relationship between the correction distance ⁇ applied to the distance d2 and the brightness of the image (that is, the luminance value of the image background) is shown in FIG.
  • the correction distance to be applied to the distance d2 may be determined so that appropriate brightness can be obtained.
  • Example 3 is a modified example of Example 1, and it is possible to obtain a correction value in a short time by adopting a configuration in which scanning points are thinned out in imaging for measuring the distribution of detection intensity of the background. It is. This will be described with reference to FIG.
  • control unit starts photographing with the observation apparatus, and proceeds to S401.
  • S401 an image is obtained by repeating S321 to S330 described in FIG. 32B for only a specific scanning point in accordance with the coordinates set in advance and stored in the storage unit according to the instruction of the control unit, and the process proceeds to S382.
  • the image processing unit performs a filtering process on the entire image in accordance with an instruction from the control unit, and the process proceeds to S403.
  • the image processing unit performs an interpolation process on the filtered image, and the process proceeds to S404.
  • the calculation unit calculates WD based on the luminance value for each scanning point for the interpolated image, and after determining the correction value of the distance d2 for each scanning point according to WD, the control unit The correction value is received from the calculation unit, the distance d2 at each scanning point is set based on the correction value, and the process proceeds to S405.
  • control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism to move the illumination optical system and the detection optical system so that the corrected distance d2 is maintained.
  • An image is obtained by repeating S321 to S330 described in 32B, and the process proceeds to S406.
  • control unit determines whether or not re-correction is necessary. If correction is not necessary, the process proceeds to S405. If correction is necessary, the process proceeds to S401, and each step is repeated again.
  • control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism to perform imaging in a state where the illumination optical system and the detection optical system are moved and arranged so as to maintain the corrected distance d2. I do. Further, the control unit displays the obtained image on the display unit. Return to S401.
  • the end of the loop including S401 to S406 is determined by the control unit judging the interruption of the operation in the loop and / or the end of a series of photographing steps in accordance with the input by the operator and / or the preset and stored conditions. Alternatively, it may be programmed to perform control for interruption.
  • Interpolation processing for the value of the detected intensity distribution of the thinned scanning points may be performed by any method known per se, such as the nearest neighbor method or linear interpolation method.
  • Example of re-correction determination may be performed in the same manner as described in Example 1.
  • conditions and procedures similar to those in Example 1 may be used except that thinning is performed.
  • Example 4 One example of the configuration of the control unit will be described below with reference to FIG.
  • 41 is an example in which a control unit, a measurement unit, and a calculation unit are included in one unit.
  • the control unit includes a storage unit (not shown) for storing data such as a table for associating each information, an adjustment coordinate data generation unit connected to the storage unit so that data can be transferred, and the data generation unit and the data
  • the d2 correction processing unit connected so as to be able to exchange, the data generation unit, the d2 correction processing unit, the image data generation unit connected so as to be able to exchange data, and the image data generation unit are connected so as to be able to exchange data.
  • the image processing unit and the image processing unit are connected to a display unit, and the adjustment coordinate data generation unit and the image data generation unit are connected to a timing control unit via a dedicated D / A converter. And connected to the illumination side operation mechanism and the detection side scanning mechanism.
  • the detector is connected to timing control via an amplifier and a D / A converter, and the timing control unit is connected to the image data generation unit.
  • the data of a series of scanning points used at the time of scanning is stored in the original coordinate file.
  • the original coordinate file is changed by the adjustment coordinate data generation unit to adjustment coordinate data obtained by correcting the distance d2 based on the detected intensity distribution.
  • a drive signal is sent to the illumination side scanning mechanism and the detection side scanning mechanism.
  • the scanning mechanism is analog control, it may be controlled via a converter (D / A) as shown in FIG.
  • the timing of illumination scanning point control, detection scanning point control, and exposure time of the detector must be correctly controlled. For example, in order to detect at the same time as the start of illumination, the scanning point control of illumination and detection is performed at the same time, and a signal from the detector is acquired after the exposure time has elapsed in order to obtain an exposure time of a certain time. And after signal acquisition, it shifts to control operation next. Therefore, a configuration in which a timing control mechanism is interposed as shown in FIG. 41 may be used to transmit a control signal to the scanning mechanism and to acquire a detector signal from the detector.
  • the detected intensity signal becomes image data by being combined with the coordinate data of the scanning point in the image data generation unit. Thereafter, various image processing for image quality adjustment is performed, and an image is displayed on the display unit.
  • the image data is further sent to the d2 correction processing unit, and the background intensity distribution and the d2 correction value are calculated based on the data.
  • Such a method and observation apparatus of the fifth aspect make it possible to obtain a better image.
  • the method according to this aspect can reduce the size of the observation apparatus as compared with the method using other means such as adjusting the SD distance according to the observation distance.
  • the configuration of the apparatus can be simplified.
  • 101 living body internal observation device 107 illumination light, 108 backscattered light, 109 first biological tissue, 110 second biological tissue, 201 illumination region, 202 detection region, 301 distance between the illumination region and the center of the detection region, 302
  • the region of light that has passed through the deep part, the depth at which 303 is detected, the detection region of 401 that fits within the second biological tissue, the detection region of 402 that protrudes from the second biological tissue, and the 404 detection region 401 A change in the amount of light when crossing the second biological tissue, a change in the amount of light when the 405 detection area 402 crosses the second biological tissue, a distance (interval) between adjacent scanning points, 702, and a pixel of the image to be displayed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

Provided is an internal observation device, such as an endoscope, that can perform internal observation by illuminating a tiny area of the surface of a light-scattering subject (for example, bodily tissue) and detecting backscattered light therefrom. By using a detection region larger than the illuminated region, the amount of detected light can be increased, the amount of time needed to detect an observation target (for example, a blood vessel) can be decreased, and deeper regions can be detected, with a simple and inexpensive configuration.

Description

光散乱性を有する対象の内部観察装置、生体内部観察装置および内部観察用内視鏡、並びに内部観察方法Internal observation device for target having light scattering property, biological internal observation device, endoscope for internal observation, and internal observation method
 本発明は、光散乱性を有する対象物、例えば生体による後方散乱光を計測することにより生体内部を観測する装置及び方法に関するものである。 The present invention relates to an apparatus and a method for observing the inside of a living body by measuring an object having light scattering properties, for example, backscattered light from the living body.
 光散乱性を有する対象物の内部を光学的に観察することは一般に容易ではない。多くは、生体内部を観測するための様々な方法論が提案されているにすぎない。その一つである光を用いた観測は、用いる光の波長を選択することにより特定の対象を観測できるという利点を有している。この手法では、特定の被観察対象(例えば、異質部分)に吸収される波長の光を生体に照射し、その後方散乱光強度を計測し、それにより、生体内部に存在する異質部分の位置情報を得ることができる。後方散乱光は、照射位置と計測位置との距離が大きくなるほど、生体などの散乱体のより深部を通ってきた光である。 It is generally not easy to optically observe the inside of an object having light scattering properties. In many cases, only various methodologies for observing the inside of a living body have been proposed. One of the observations using light has the advantage that a specific object can be observed by selecting the wavelength of the light to be used. In this method, a living body is irradiated with light having a wavelength that is absorbed by a specific object to be observed (for example, a foreign part), and the intensity of the backscattered light is measured, whereby position information of the foreign part existing inside the living body is measured. Can be obtained. Backscattered light is light that has passed deeper in a scatterer such as a living body as the distance between the irradiation position and the measurement position increases.
 またさらに、異質部分の位置情報を得るだけでなく、異質部分の深度情報を得ることもできる。更に、照射位置と計測位置との距離が同じである後方散乱光のデータを集めることにより、その分布画像(即ち、二次元データ)を作製することができる。特許文献1には、1つの光照射部と、複数の光検出部とを具備する生体光観測装置が開示されている。複数の光検出部は、1つの光照射部の位置から順次遠ざかる位置に配置される。また、該装置による計測結果に基づいて、生体の断層画像(即ち、三次元データ)を再構成する技術が開示されている。 Furthermore, it is possible to obtain not only the position information of the heterogeneous part but also the depth information of the heterogeneous part. Further, by collecting backscattered light data having the same distance between the irradiation position and the measurement position, a distribution image (that is, two-dimensional data) can be produced. Patent Document 1 discloses a biological light observation apparatus including one light irradiation unit and a plurality of light detection units. The plurality of light detection units are arranged at positions that sequentially move away from the position of one light irradiation unit. In addition, a technique for reconstructing a tomographic image (ie, three-dimensional data) of a living body based on a measurement result by the apparatus is disclosed.
 特許文献2には、1つの光照射部と、複数の光検出部を具備する生体光計測装置が開示されている。複数の光検出部は、光照射部から所定の間隔をおいて、例えば、同心円上になどに配置される。 Patent Document 2 discloses a biological light measurement device including one light irradiation unit and a plurality of light detection units. The plurality of light detection units are arranged, for example, on concentric circles at a predetermined interval from the light irradiation unit.
特開2006-200943号公報JP 2006-200903 A 特開2007-20735号公報JP 2007-20735 A
 本発明の1つの目的は、従来よりも良好に生体内部を観察できる方法および装置を提供することである。 One object of the present invention is to provide a method and apparatus that can observe the inside of a living body better than before.
 上記問題に鑑み、本発明は、散乱体内部の測定対象(すなわち観察対象)の情報を取得する散乱体内部計測装置(すなわち散乱体内部観察装置)であって、前記測定対象と前記散乱体とで光学特性の異なる光を前記散乱体に照射するように構成された照明部(すなわち光照射部)と、前記照明部により照射された光の後方散乱光を検出するように構成された検出部と、前記検出部により取得されたデータにおいて前記測定対象の存在の有無を確認し、前記照射位置と前記測定対象が確認された位置との距離から、前記散乱体における前記測定対象の深度を含めた位置情報を求めるように構成された解析部とを備え、前記照明部と前記検出部が前記散乱体に非接触で計測が行われることを特徴とする散乱体内部計測装置並びに該装置を用いた計測方法を提供する。 In view of the above problems, the present invention provides a scatterer internal measurement device (that is, a scatterer internal observation device) that acquires information on a measurement target (that is, an observation target) inside the scatterer, and the measurement target, the scatterer, And an illuminator configured to irradiate the scatterer with light having different optical characteristics (that is, a light irradiator), and a detector configured to detect backscattered light emitted from the illuminator. And the presence or absence of the measurement target in the data acquired by the detection unit, including the depth of the measurement target in the scatterer from the distance between the irradiation position and the position where the measurement target is confirmed. An scatterer internal measuring device, wherein the illuminating unit and the detection unit perform measurement without contact with the scatterer. Was To provide a measurement method.
 本発明の態様によれば、従来よりも良好に生体内部を観察できる方法および装置が提供される。 According to an aspect of the present invention, a method and an apparatus that can observe the inside of a living body better than before are provided.
図1は、生体内部観察装置の構成を表したブロック図である。FIG. 1 is a block diagram showing the configuration of the in-vivo internal observation apparatus. 図2は、本発明の観察手法の原理を表した模式図である。FIG. 2 is a schematic diagram showing the principle of the observation method of the present invention. 図3は、照明領域と検出領域の中心間距離と、観察深さを説明する図である。FIG. 3 is a diagram for explaining the distance between the centers of the illumination area and the detection area and the observation depth. 図4は、検出対象である第2の生体組織と検出領域との大きさの関係と、そのときの光量変化を説明する図である。FIG. 4 is a diagram for explaining the relationship between the size of the second living tissue to be detected and the detection region, and the change in the amount of light at that time. 図5は、走査部を付加した生体内部観察装置の構成を表したブロック図である。FIG. 5 is a block diagram showing the configuration of the in-vivo internal observation device to which the scanning unit is added. 図6は、走査部を付加した際の、本発明の観察手法の原理を表した模式図である。FIG. 6 is a schematic diagram showing the principle of the observation method of the present invention when a scanning unit is added. 図7は、走査をした際の、第1の生体組織の表面と構成される画像の模式図である。FIG. 7 is a schematic diagram of an image formed with the surface of the first living tissue when scanning is performed. 図8は、第1の実施形態の構成図である。FIG. 8 is a configuration diagram of the first embodiment. 図9は、第2の実施形態の構成図である。FIG. 9 is a configuration diagram of the second embodiment. 図10は、分離光学系の構成を説明する図である。FIG. 10 is a diagram illustrating the configuration of the separation optical system. 図11は、本態様に従う観察装置の1例を示す構成図である。FIG. 11 is a configuration diagram illustrating an example of an observation apparatus according to the present embodiment. 図12は、ヘモグロビンのモル吸光係数の波長依存性のグラフである。FIG. 12 is a graph of the wavelength dependence of the molar extinction coefficient of hemoglobin. 図13は、水の吸収係数の波長依存性のグラフである。FIG. 13 is a graph of the wavelength dependence of the water absorption coefficient. 図14は、第3の実施形態に係る散乱体内部計測装置のブロック構成図である。FIG. 14 is a block configuration diagram of the scatterer internal measurement device according to the third embodiment. 図15は、本発明に係る散乱体内部計測装置の動作を表したフローチャートである。FIG. 15 is a flowchart showing the operation of the scatterer internal measurement device according to the present invention. 図16は、散乱体内部の光の伝搬の様子を表す概念図である。FIG. 16 is a conceptual diagram showing how light propagates inside the scatterer. 図17は、第3の実施形態に係る散乱体内部計測装置により得られる2次元画像データの模式図である。FIG. 17 is a schematic diagram of two-dimensional image data obtained by the scatterer internal measurement device according to the third embodiment. 図18は、照射位置を変えて測定したときの2次元画像データの模式図である。FIG. 18 is a schematic diagram of two-dimensional image data when measurement is performed by changing the irradiation position. 図19は、第4の実施形態に係る散乱体内部計測装置のブロック構成図である。FIG. 19 is a block diagram of a scatterer internal measurement device according to the fourth embodiment. 図20は、第5の実施形態に係る散乱体内部観測装置のブロック構成図である。FIG. 20 is a block configuration diagram of the scatterer internal observation device according to the fifth embodiment. 図21は、第3の側面に従う散乱体内部観測装置を適用した硬性鏡の模式図及び散乱体内部及び表面における光の伝搬の様子を表す概念図である。FIG. 21 is a schematic diagram of a rigid mirror to which the scatterer internal observation device according to the third aspect is applied, and a conceptual diagram showing the state of light propagation in and on the scatterer. 図22は、照明の走査の様子を表す概念図である。FIG. 22 is a conceptual diagram illustrating a state of illumination scanning. 図23Aは、照射位置の走査による等深度領域の軌跡を示す模式図である。FIG. 23A is a schematic diagram illustrating a locus of an equal depth region by scanning of an irradiation position. 図23Bは、照射位置の走査による等深度領域の軌跡を示す模式図である。FIG. 23B is a schematic diagram illustrating a locus of an equal depth region by scanning of an irradiation position. 図24は、ノイズ除去方法の第1の方法を示す概念図である。FIG. 24 is a conceptual diagram showing a first method of noise removal method. 図25は、ノイズ除去方法の第2の方法を示す概念図である。FIG. 25 is a conceptual diagram showing a second method of noise removal. 図26は、ノイズ除去方法の第3の方法を示す概念図である。FIG. 26 is a conceptual diagram showing a third method of the noise removal method. 図27は、第7の実施形態の1例である内部観察装置を示すFIG. 27 shows an internal observation apparatus as an example of the seventh embodiment. 図28は、第8の実施形態の1例である内部観察装置を示すFIG. 28 shows an internal observation apparatus as an example of the eighth embodiment. 図29は、第9の実施形態の1例である内部観察装置を示す。FIG. 29 shows an internal observation apparatus which is an example of the ninth embodiment. 図30は、観察装置の被写体側末端の1例を模式的に示す図である。FIG. 30 is a diagram schematically illustrating an example of a subject-side end of the observation apparatus. 図31は、観察装置末端と被写体との関係の例を示す模式図である。FIG. 31 is a schematic diagram illustrating an example of a relationship between an observation apparatus terminal and a subject. 図32Aは、各光路と、照射領域および検出領域とを示す模式図である。FIG. 32A is a schematic diagram illustrating each optical path, an irradiation region, and a detection region. 図32Bは、撮像方法の1例を示すフローチャートである。FIG. 32B is a flowchart illustrating an example of an imaging method. 図33は、距離d2と撮影距離WDと画像の明るさの関係を示す図である。FIG. 33 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image. 図34は、距離d2と撮影距離WDと画像の明るさの関係を示す図であるである。FIG. 34 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image. 図35は、距離d2と撮影距離WDと画像の明るさの関係を示す図であるである。FIG. 35 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image. 図36は、距離d2と撮影距離WDと画像の明るさの関係を示す図であるである。FIG. 36 is a diagram illustrating the relationship between the distance d2, the shooting distance WD, and the brightness of the image. 図37は、第10の実施形態の1例を示すフローチャートである。FIG. 37 is a flowchart illustrating an example of the tenth embodiment. 図38は、フィルタリング処理を行う補正方法の1例を示すフローチャートである。FIG. 38 is a flowchart illustrating an example of a correction method for performing a filtering process. 図39は、フィルタリング処理を行う補正方法の1例を示すフローチャートである。FIG. 39 is a flowchart illustrating an example of a correction method for performing a filtering process. 図40は、フィルタリング処理を行う補正方法の1例を示すフローチャートである。FIG. 40 is a flowchart illustrating an example of a correction method for performing a filtering process. 図41は、制御ユニットの構成の1例を示すブロック図である。FIG. 41 is a block diagram illustrating an example of the configuration of the control unit.
 以下、本発明の散乱体内部計測装置について説明する。本発明において、散乱体とは、散乱媒質で構成される任意のものを意味し、その例として生体が挙げられる。本発明の散乱体内部計測装置は、散乱体内部の散乱媒質中に存在する測定対象について計測するものである。本発明における測定対象とは、例えば血管などであってよいがこれに限定されない。ここにおいて、「光散乱性を有する対象の内部観察装置」とは、上述の対象となる散乱体の内部を観察するための装置をいう。また、「散乱体内部計測装置」および「生体内部観察装置」とは、光散乱性を有する対象のうち、特に、生体についてその内部を観察するための装置をいい、これらの同義であり、交換可能に使用することが可能である。また、「内部観察用内視鏡」は、上記のような観察装置のうち、特に内視鏡の形態を有する装置をいう。 Hereinafter, the scatterer internal measurement device of the present invention will be described. In the present invention, the scatterer means an arbitrary one composed of a scattering medium, and examples thereof include a living body. The scatterer internal measurement device of the present invention measures a measurement object existing in a scattering medium inside the scatterer. The measurement object in the present invention may be, for example, a blood vessel, but is not limited thereto. Here, the “internal observation apparatus for the object having light scattering properties” refers to an apparatus for observing the inside of the scatterer that is the object. In addition, “scatterer internal measurement device” and “in-vivo internal observation device” are devices for observing the inside of a living body, among objects having light scattering properties, and are synonymous with these, and are interchangeable. It can be used as possible. In addition, the “internal observation endoscope” refers to an apparatus having an endoscope shape among the above observation apparatuses.
 以下、本発明の実施形態を図面に従って説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
 <第1の側面>
 以下、本発明の実施の形態を、光散乱性を有する観察対象として生体組織を例にした内部観察装置について図を参照して説明する。
<First aspect>
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings for an internal observation device taking a living tissue as an example of an observation target having light scattering properties.
 図1は、本実施形態のブロック構成図を示している。本観察装置101は、図に示したように、照明部(図中、照明手段)102、検出部(図中、検出手段)103、画像化部(図中、画像化手段)104、表示部(図中、表示手段)105、及びそれらを制御するように構成された制御部(図中、制御手段)106を備えている。 FIG. 1 shows a block diagram of the present embodiment. As shown in the figure, the present observation apparatus 101 includes an illumination unit (illuminating unit in the figure) 102, a detection unit (in the figure, detection unit) 103, an imaging unit (in the figure, imaging unit) 104, a display unit. (Display means in the figure) 105 and a control unit (control means in the figure) 106 configured to control them are provided.
 照明部102は、制御部からの制御に基づいて光107を生体組織へ向けて照射するものである。検出部103は、その照明光107によって生じる後方散乱光108を検出して電気信号へ変換するものである。この照明と検出は第1の生体組織109内での第2の生体組織(生体内部における散乱特性が異質である被観察対象)110の有無を判定するためのものである。そのため、照明光107は第1の生体組織109と第2の生体組織110とで光学特性の異なる波長を少なくとも含む光を用いる。画像化部104は、検出部103で検出した光強度の2次元分布を、濃淡画像やカラー画像として生成し、表示部105にて表示する。 The illumination unit 102 irradiates the light 107 toward the living tissue based on the control from the control unit. The detector 103 detects the backscattered light 108 generated by the illumination light 107 and converts it into an electrical signal. This illumination and detection are for determining the presence or absence of the second biological tissue (observed object having a different scattering characteristic in the living body) 110 in the first biological tissue 109. Therefore, the illumination light 107 uses light including at least wavelengths having different optical characteristics between the first living tissue 109 and the second living tissue 110. The imaging unit 104 generates a two-dimensional distribution of the light intensity detected by the detection unit 103 as a grayscale image or a color image and displays it on the display unit 105.
 第1の生体組織109内に存在する第2の生体組織110を光学的に観察する場合、生体組織内にまで入り込んだ光を活用した観察を行う必要がある。しかしながら、生体組織は、無数の細胞及びそのオルガネラ等で構成された媒質である。そのため、眼球など一部の生体組織を除いては、生体組織は光学的に散乱性を有する。また、吸収されてしまう光もある。そのため、生体組織内部にまで入りさらに後方にまで戻ってくる光、すなわち後方散乱光108の光量は大幅に減衰し、表面における反射光や表面拡散光と比較して非常に弱くなる。弱い光の検出を、SN比を高く行う方法としては、露光時間を長くする方法や高感度検出器を用いる方法がある。しかしながら、前者は撮影時間が長くなるという問題があり、後者では検出器の高額化という問題がある。 When optically observing the second living tissue 110 existing in the first living tissue 109, it is necessary to perform observation using light that has entered the living tissue. However, a living tissue is a medium composed of an infinite number of cells and their organelles. Therefore, except for some living tissues such as the eyeball, the living tissues are optically scattering. Some light is also absorbed. Therefore, the amount of light that enters the living tissue and returns to the rear, that is, the amount of the backscattered light 108 is greatly attenuated and becomes very weak compared to the reflected light and the surface diffused light on the surface. As a method of detecting weak light with a high S / N ratio, there are a method of increasing the exposure time and a method of using a high sensitivity detector. However, the former has a problem that the photographing time becomes long, and the latter has a problem that the detector is expensive.
 図2に検出領域の模式図を示す。照明領域201は、照明光107が第1の生体組織109の表面に当たったときの円形の領域を表している。検出領域202は、第1の生体組織109の表面で前記検出部103が検出する円形の領域を表している。すなわち、前記後方散乱光108のうち検出領域202から出てきた光のみが検出される。照明領域201と検出領域202の形状は、必ずしも円形である必要は無い。例えば、当該形状は、正方形、長方形、多角形、正円形、楕円および円弧状ブロック形状等であってもよい。 Fig. 2 shows a schematic diagram of the detection area. The illumination area 201 represents a circular area when the illumination light 107 hits the surface of the first living tissue 109. A detection area 202 represents a circular area detected by the detection unit 103 on the surface of the first biological tissue 109. That is, only the light emitted from the detection region 202 is detected from the backscattered light 108. The shapes of the illumination area 201 and the detection area 202 are not necessarily circular. For example, the shape may be a square, a rectangle, a polygon, a regular circle, an ellipse, an arc block shape, or the like.
 ここで、検出領域202の面積を大きくすれば、それだけ多くの後方散乱光108を検出することができ、且つ非常に弱くなった後方散乱光108でもSN比を上げて検出することができる。一般的な散乱光検出では、照明領域201と同程度の面積の検出領域202が用いられる。しかしながら、本態様では、検出領域202を照明領域201よりも広くすることにより、簡便な構成でSN比を上げている。 Here, if the area of the detection region 202 is increased, more backscattered light 108 can be detected, and even the backscattered light 108 that has become very weak can be detected with an increased S / N ratio. In general scattered light detection, a detection region 202 having the same area as the illumination region 201 is used. However, in this aspect, the SN ratio is increased with a simple configuration by making the detection area 202 wider than the illumination area 201.
 第1の生体組織109内に存在する第2の生体組織110を光学的に観察する場合、生体組織内部にまで入って後方に戻ってくる後方散乱光108は、前期の通り非常に弱い光である。そのため、どんなにSN比を上げて検出しても、表面における反射光や拡散光の信号の中に埋もれてしまうため、後方散乱光108の変化を読み出すことが難しい。 When optically observing the second biological tissue 110 existing in the first biological tissue 109, the backscattered light 108 that enters the biological tissue and returns backward is very weak light as in the previous period. is there. For this reason, no matter how high the S / N ratio is detected, it is buried in the reflected light or diffused light signal on the surface, so that it is difficult to read the change in the backscattered light 108.
 図3に、照明領域201と検出領域202の配置の模式図を示す。図のように照明領域201と検出領域202を一定の距離301だけ間隔を開けることにより、反射光や拡散光を避けた検出が可能である。このとき、第1の生体組織109内部では、検出領域202にて検出される光は図示した領域302を通る光が支配的となる。そのため、距離301が変化すると異なる深さ303の内部情報が検出されることとなる。よって、距離301が一定となるように照明部102と検出部103を設計することにより、一定の深さの情報を画像化することが可能となる。 FIG. 3 shows a schematic diagram of the arrangement of the illumination area 201 and the detection area 202. As shown in the figure, by separating the illumination area 201 and the detection area 202 by a certain distance 301, detection can be performed while avoiding reflected light and diffused light. At this time, in the first living tissue 109, the light detected in the detection region 202 is predominantly the light passing through the region 302 shown. Therefore, when the distance 301 changes, internal information with a different depth 303 is detected. Therefore, by designing the illumination unit 102 and the detection unit 103 so that the distance 301 is constant, information with a certain depth can be imaged.
 一方、距離301を規定しながらも、検出領域202のサイズを大きくしすぎると、検出領域202内に照明領域201が入ってしまう。その結果、反射光や拡散光を同時に検出してしまうことになる。そのため、検出領域202の大きさと距離301は、このような事情を考慮して、検出領域202内に照明領域201が入らないように、設計する必要がある。 On the other hand, if the size of the detection area 202 is excessively increased while the distance 301 is defined, the illumination area 201 enters the detection area 202. As a result, reflected light and diffused light are detected simultaneously. Therefore, the size and the distance 301 of the detection area 202 need to be designed so that the illumination area 201 does not enter the detection area 202 in consideration of such circumstances.
 生体組織における散乱特性は、部位や個体差によって異なる。しかしながら、いずれの場合でも距離301と検出される深さ303との間は、実験から図中のグラフ304のように、概ね、比例関係となることが分かった。このときの比例係数は、生体組織の場合ではおおよそx=2.8×zであった(xは距離301、zは検出される深さ303を表す)。 Scattering characteristics in biological tissues vary depending on the site and individual differences. However, in any case, the distance 301 and the detected depth 303 are found to be generally proportional as shown by a graph 304 in the figure. The proportionality coefficient at this time was approximately x = 2.8 × z in the case of the living tissue (x represents the distance 301 and z represents the detected depth 303).
 このことから、ある深さにある第2の生体組織110を検出するためには、距離301を一定距離以上大きくする必要がある。具体的には、深さzの第1の生体組織109内部の信号を得るためには、距離301を、
     x ≧ 2.8 × z
とすればよいことが分かった。とくに従来の光学的観察では難しかった3mm以上の深さの情報を得るためには、距離301を約8mm以上に設定すればよいことが判明した。
Therefore, in order to detect the second living tissue 110 at a certain depth, it is necessary to increase the distance 301 by a certain distance or more. Specifically, in order to obtain a signal inside the first living tissue 109 having a depth z, the distance 301 is
x ≧ 2.8 × z
I found out that In particular, it was found that the distance 301 should be set to about 8 mm or more in order to obtain information of a depth of 3 mm or more, which was difficult with conventional optical observation.
 図5に、走査部501を付加した観察装置のブロック構成図を示す。 FIG. 5 shows a block configuration diagram of an observation apparatus to which the scanning unit 501 is added.
 本検出手法を用いると、第2の生体組織110の有無による光量変化を、照明領域201と検出領域202の間の領域について検出することができる。よって、この照明部102と検出部103に走査部501を加え、距離301を規定したままで走査することにより、第2の生体組織110の2次元的分布を検出することが可能となる。このとき、走査の方向は直線方向に限らない。また、2点以上の複数点を同時に照明し検出するように照明領域201と検出領域202の組を2組以上設けてもよい。それにより、観察をより広範囲に行うことが可能である。この場合、各組同士の離間距離は任意であり、隣接していてもよいし、互いに距離が離れた照明領域および/または検出領域に配置するようにしてもよい。 When this detection method is used, a change in the amount of light due to the presence or absence of the second biological tissue 110 can be detected in the region between the illumination region 201 and the detection region 202. Therefore, it is possible to detect the two-dimensional distribution of the second living tissue 110 by adding the scanning unit 501 to the illumination unit 102 and the detection unit 103 and performing scanning while defining the distance 301. At this time, the scanning direction is not limited to the linear direction. Further, two or more sets of the illumination area 201 and the detection area 202 may be provided so as to simultaneously illuminate and detect two or more points. Thereby, observation can be performed in a wider range. In this case, the distance between the groups is arbitrary, and may be adjacent to each other, or may be arranged in an illumination area and / or a detection area that are separated from each other.
 画像化部104では、各走査点にて検出した光強度信号を、走査点と表示画像内での画素位置とを対応付けて表示させることによって、第2の生体組織110の2次元的分布を2次元画像として表示させることができる。このとき、光強度信号は色の濃淡情報に変換して表示してもよいし、色情報に変換して表示してもよい。 In the imaging unit 104, the light intensity signal detected at each scanning point is displayed in association with the scanning point and the pixel position in the display image, whereby the two-dimensional distribution of the second living tissue 110 is displayed. It can be displayed as a two-dimensional image. At this time, the light intensity signal may be displayed after being converted into color shading information, or may be displayed after being converted into color information.
 図6および図7に、走査した際の照明領域201と検出領域202の動きの模式図を示す。走査点の配置に従い、画像化部104で構成する画像の画素702を配置する。すなわち、隣接走査点の間隔701が、画素702の間隔に相当することとなる。 6 and 7 are schematic diagrams showing the movement of the illumination area 201 and the detection area 202 when scanned. According to the arrangement of the scanning points, the pixel 702 of the image configured by the imaging unit 104 is arranged. That is, the interval 701 between adjacent scanning points corresponds to the interval between the pixels 702.
 このとき、検出領域202の大きさを走査点間隔よりも大きくすると、隣接走査点での検出領域との間に交わり部703が生じさせることができる。こうすることにより、隣接する検出領域との間の光量変化が滑らかになり、画像上でスムージング処理をしたときと同じノイズ低減効果が得られる。 At this time, if the size of the detection area 202 is larger than the scanning point interval, an intersection 703 can be generated between the detection areas at adjacent scanning points. By doing so, the change in the amount of light between adjacent detection areas becomes smooth, and the same noise reduction effect as when smoothing processing is performed on the image can be obtained.
 このとき、検出領域202の大きさに関わらず走査点の間隔で画像を構成することにより、検出領域202を拡大することによる画像化部104への影響を避けることができる。 At this time, regardless of the size of the detection area 202, an image is formed at intervals of scanning points, so that the influence on the imaging unit 104 due to the enlargement of the detection area 202 can be avoided.
 このとき、ノイズ低減効果と検出光量増大効果を目論むと検出領域202のサイズをより大きくしていくこととなる。しかしながら、検出領域202内に照明領域201が入ると、反射光や拡散光を同時に検出してしまう。そのため、後方散乱光の検出が困難になる。従って、上記検出領域202のサイズは、照明領域201が入らない範囲で収めなければならない。 At this time, if the noise reduction effect and the detection light quantity increase effect are intended, the size of the detection area 202 is further increased. However, when the illumination area 201 enters the detection area 202, reflected light and diffused light are detected simultaneously. This makes it difficult to detect backscattered light. Therefore, the size of the detection area 202 must be within a range where the illumination area 201 does not enter.
 弱い後方散乱光108でも第2の生体組織110を光学的に検出できるようにするために、どこまで検出面積(S)を大きくすればよいかは、観察系と被検体と検出系の全体の特性により決まる。照明光107の帯域幅をBWLHz、検出領域202での光密度をPW/cm2、検出器の光電変換効率をGV/W、検出器の持つノイズ特性をNV、第2の生体組織110の有無による光強度の変化率をr、検出する露光時間をtsとおくと、前記検出面積Sは次の関係式を満たす必要がある。さもなければ、第2の生体組織110の有無の情報はノイズに埋もれることとなる。
Figure JPOXMLDOC01-appb-M000002
In order to be able to optically detect the second living tissue 110 even with weak backscattered light 108, the extent to which the detection area (S) should be increased depends on the overall characteristics of the observation system, the subject, and the detection system. It depends on. The bandwidth of the illumination light 107 is BWL Hz, the light density in the detection region 202 is PW / cm 2, the photoelectric conversion efficiency of the detector is GV / W, the noise characteristic of the detector is NV, and the presence or absence of the second living tissue 110 If the rate of change in light intensity is r and the exposure time to be detected is ts, the detection area S must satisfy the following relational expression. Otherwise, the information on the presence / absence of the second living tissue 110 is buried in noise.
Figure JPOXMLDOC01-appb-M000002
 図4に、検出領域が第2の生体組織403の存在位置上を横切った際の模式図を示す。第2の生体組織として、図中のような形状で検出したい大きさがWであるとする。図に2種類の検出領域401、402を示す。簡単のために検出領域は正方形を仮定し、両者を走査する方向は図のx軸方向とする。小さい方の検出領域401は1辺の長さがD1<Wであり、大きい方の検出領域402は1辺の長さがD2>Wである。また、第2の生体組織403上で検出される光量は0で、それ以外の位置では1とする。 FIG. 4 shows a schematic diagram when the detection region crosses the position where the second living tissue 403 is present. Assume that W is the size of the second living tissue to be detected in the shape shown in the figure. The figure shows two types of detection areas 401 and 402. For simplicity, the detection area is assumed to be a square, and the scanning direction is the x-axis direction in the figure. The smaller detection area 401 has a side length D1 <W, and the larger detection area 402 has a side length D2> W. The amount of light detected on the second living tissue 403 is 0, and 1 at other positions.
 この仮想状態で計算をすると、検出される光量の変化は図4aと図4bとなる。この2つの光量比の変化404、405を見ると、検出領域401、402の大きさが第2の生体組織Wより大きくなると、光量比の変化率が低下することがわかる。すなわち信号コントラストが低下する。コントラストが低下すると、第2の生体組織は検出しにくくなる。 If calculation is performed in this virtual state, the change in the detected light quantity is as shown in FIGS. 4a and 4b. Looking at the changes 404 and 405 of the two light quantity ratios, it can be seen that the change rate of the light quantity ratio decreases when the size of the detection regions 401 and 402 becomes larger than the second living tissue W. That is, the signal contrast is lowered. When the contrast decreases, the second living tissue becomes difficult to detect.
 上記の仮想モデルによる推論からも分かるように、検出光量を増やすために検出領域202を大きくする際に、検出領域202が第2の生体組織110の中に納まる大きさにすることにより、より検出能力を高く保つことができる。 As can be seen from the inference based on the virtual model, when the detection area 202 is enlarged in order to increase the amount of detection light, the detection area 202 is set to a size that can be accommodated in the second living tissue 110, thereby further detecting. Ability can be kept high.
 (第1の実施形態)
 図8に、走査部501を組み込んだ装置の1例を示す。
(First embodiment)
FIG. 8 shows an example of an apparatus in which the scanning unit 501 is incorporated.
 照明光としてレーザー光を使用し、その照明部102として、LD803とそれを駆動するLDドライバ802により構成した。レーザー光を使用することにより、生体組織109の表面での照明領域201の大きさを、簡便に小さくすることができる。照明光は光ファイバ804により伝送し、NA調整光学系805を介してスキャナーミラー806へ当たる。スキャナーミラー806へ当たった光は、照明用光学系813を経て、生体組織109表面へ照射される。前記NA調整光学系805を介することにより、光ファイバからの出射光を、ロスを最小限にして所望のNAの照明光、例えば平行光に変換して、生体組織109表面へ照射することができる。 The laser light was used as the illumination light, and the illumination unit 102 was constituted by an LD 803 and an LD driver 802 for driving it. By using laser light, the size of the illumination area 201 on the surface of the living tissue 109 can be easily reduced. The illumination light is transmitted through the optical fiber 804 and strikes the scanner mirror 806 via the NA adjustment optical system 805. The light hitting the scanner mirror 806 is irradiated to the surface of the living tissue 109 through the illumination optical system 813. By passing through the NA adjustment optical system 805, the light emitted from the optical fiber can be converted into illumination light of a desired NA, for example, parallel light with minimal loss, and irradiated onto the surface of the living tissue 109. .
 検出部103は、フォトダイオード809とプリアンプ810とAD変換器811により、光強度をデジタル信号へ変えている。ここでフォトダイオード809は、APDや光電子増倍管などでもよい。フォトダイオード809へ入射する光は、生体組織109表面から検出用光学系814を経てきた後方散乱光108である。このとき、この後方散乱光108は、検出領域202から出てきた光でなくてはならず、また、照明光108とともに走査されなければならない。よって、この後方散乱光108は、検出用光学系を通った後、走査部であるスキャナーミラー806へ当たり、検出領域202からの光のみが通過するような大きさや形状の開口部を形成したアパーチャ808を通ってからフォトダイオード809へ入射する。検出領域202以外からの光は、すべてこのアパーチャ808にて遮光カットされる。走査部は、本実施例ではスキャナーミラーを採用しているが、光ファイバを振動させる方式や複数の光源と検出器を切り替える方式など、光軸を変化させる手段であればよい。 The detection unit 103 changes the light intensity into a digital signal by the photodiode 809, the preamplifier 810, and the AD converter 811. Here, the photodiode 809 may be an APD or a photomultiplier tube. Light incident on the photodiode 809 is backscattered light 108 that has passed through the detection optical system 814 from the surface of the living tissue 109. At this time, the backscattered light 108 must be light that has emerged from the detection region 202, and must be scanned with the illumination light 108. Therefore, the backscattered light 108 passes through the detection optical system and then hits the scanner mirror 806 serving as a scanning unit, and an aperture having an opening having a size and shape that allows only light from the detection region 202 to pass therethrough is formed. It enters the photodiode 809 after passing through 808. All the light from other than the detection area 202 is cut off by this aperture 808. The scanning unit employs a scanner mirror in this embodiment, but may be any means that changes the optical axis, such as a method of vibrating an optical fiber or a method of switching between a plurality of light sources and detectors.
 このとき、倍率調整光学系807(例えばビーム拡大用の対物レンズ)を配して、取得した検出光をアパーチャー808の開口部のサイズにほぼ一致するようにビーム径を調整するようにすれば、高い精度での遮光を容易にすることができるので好ましい。 At this time, if a magnification adjusting optical system 807 (for example, an objective lens for beam expansion) is arranged, and the beam diameter is adjusted so that the acquired detection light substantially matches the size of the opening of the aperture 808, It is preferable because light can be easily shielded with high accuracy.
 さらに前記アパーチャ808を、検出用光学系814において検出領域202と共役な位置に配置することにより、高い精度での遮光を容易にすることができる。本検出系の構成により、検出領域202と照明領域201の位置関係を簡便に設計することが可能となる。検出領域202と照明領域201との位置関係は、前述の通りである。 Further, by disposing the aperture 808 at a position conjugate with the detection region 202 in the detection optical system 814, light can be easily shielded with high accuracy. With the configuration of the present detection system, the positional relationship between the detection region 202 and the illumination region 201 can be easily designed. The positional relationship between the detection area 202 and the illumination area 201 is as described above.
 スキャナミラー806は、スキャナドライバー812からの信号により動作し、これらは制御部801により制御される。制御部801では、スキャナー位置と光強度信号とを関係付けた画像を構成し、表示部105に表示させる。表示部は画像表示可能な装置で、本実施形態では液晶画面やブラウン管を想定している。 The scanner mirror 806 is operated by a signal from the scanner driver 812, and these are controlled by the control unit 801. In the control unit 801, an image in which the scanner position and the light intensity signal are associated is formed and displayed on the display unit 105. The display unit is an apparatus capable of displaying an image. In the present embodiment, a liquid crystal screen or a cathode ray tube is assumed.
 本実施形態の構成により、簡便な構成でありながら、高感度に高精度な後方散乱光108を検出することが可能となり、第1の生体組織109内部にある第2の生体組織110の分布を2次元画像として、高速に撮影することができる。高速に撮影できるため、動画撮影も可能となる。また簡便な構成であるため、装置全体の軽量化も容易になる。 With the configuration of the present embodiment, it is possible to detect the backscattered light 108 with high sensitivity and high accuracy with a simple configuration, and the distribution of the second biological tissue 110 inside the first biological tissue 109 can be detected. A two-dimensional image can be taken at high speed. Since high-speed shooting is possible, video shooting is also possible. Moreover, since it is a simple structure, the weight reduction of the whole apparatus becomes easy.
 (第2の実施形態)
 図9に、実施例の1つとして、照明光107と後方散乱光108を同一光学系に通す構成のブロック図を示す。
(Second Embodiment)
FIG. 9 shows a block diagram of a configuration in which illumination light 107 and backscattered light 108 are passed through the same optical system as one embodiment.
 照明部102と検出部103の側に分離光学系901を配することにより、1つの走査部902にて照明光107と後方散乱光108を走査する。走査部902の側には導光光学系903を配し、第1の生体組織109表面へ照明光107を照射し、後方散乱光108を取り込んでくる。この構成にすることにより、走査部と導光光学系を1つだけにすることが可能となり、小型かつ安価に作ることができる。 By providing the separation optical system 901 on the illumination unit 102 and the detection unit 103 side, the illumination light 107 and the backscattered light 108 are scanned by one scanning unit 902. A light guide optical system 903 is disposed on the scanning unit 902 side, and the illumination light 107 is irradiated onto the surface of the first living tissue 109 to capture the backscattered light 108. With this configuration, it is possible to have only one scanning unit and a light guide optical system, which can be made small and inexpensive.
 図10に分離光学系901を組み込んだ、装置の具体的構成を示す。導光光学系903で取り込まれた後方散乱光108を、倍率調整光学系807とアパーチャ808を通して検出部103に入射させることにより検出領域202から出てきた光のみを検出する構成は、前記図8の構成と同様である。分離光学系901の内部には、照明光107と後方散乱光108の光軸を分離するための光学素子1001が配してあり、この素子により照明光107と後方散乱光108の距離301を規定できる。光学素子1001は、例えばミラーやプリズムのように光軸を制御する素子である。本実施例では照明光107の光軸を制御して後方散乱光108の光軸に合流させているが、逆に後方散乱光108の光軸を制御してもよいし、両方を制御してもよい。 FIG. 10 shows a specific configuration of the apparatus incorporating the separation optical system 901. The configuration in which only the light emitted from the detection region 202 is detected by causing the backscattered light 108 captured by the light guide optical system 903 to enter the detection unit 103 through the magnification adjustment optical system 807 and the aperture 808 is described above with reference to FIG. It is the same as that of the structure. An optical element 1001 for separating the optical axes of the illumination light 107 and the backscattered light 108 is disposed inside the separation optical system 901, and the distance 301 between the illumination light 107 and the backscattered light 108 is defined by this element. it can. The optical element 1001 is an element that controls the optical axis, such as a mirror or a prism. In this embodiment, the optical axis of the illumination light 107 is controlled to be merged with the optical axis of the backscattered light 108, but the optical axis of the backscattered light 108 may be controlled conversely, or both may be controlled. Also good.
 図11は、図10に示した光学系を備えた観察装置101の全体構成の例を示す図である。本構成により、走査部902は1つのみとなり、導光光学系903は1本の光学軸となるので、装置全体の軽量小型化が可能となる。 FIG. 11 is a diagram illustrating an example of the overall configuration of the observation apparatus 101 including the optical system illustrated in FIG. With this configuration, only one scanning unit 902 is provided, and the light guide optical system 903 is a single optical axis. Therefore, the entire apparatus can be reduced in weight and size.
 図12にヘモグロビンのモル吸光係数、図13に水の吸収係数を示す。 12 shows the molar extinction coefficient of hemoglobin, and FIG. 13 shows the absorption coefficient of water.
 第2の生体組織110としてヘモグロビンを主成分とする赤血球を主に含む血液を対象とした場合、血液の存在する位置を通過した光のみが吸収されれば、血液の存在位置を影絵のように描写することが可能である。よって、照明光107として、血液の成分であるヘモグロビンや水分の吸収係数が大きい波長を含む光を採用すれば、血液の存在位置が影絵のように描写される。具体的には、図中のように400~600nmの範囲の波長1201または800~1000nmの範囲の波長1202または1350~1550nmの範囲の波長1301を少なくとも含む光を採用すればよい。 When blood mainly containing red blood cells mainly composed of hemoglobin is targeted as the second biological tissue 110, if only light that has passed through the position where the blood exists is absorbed, the position of the blood is shown as a shadow picture. It is possible to depict. Therefore, if the light including hemoglobin that is a component of blood or light including a wavelength having a large moisture absorption coefficient is used as the illumination light 107, the position of the blood is depicted like a shadow. Specifically, as shown in the figure, light including at least a wavelength 1201 in the range of 400 to 600 nm, a wavelength 1202 in the range of 800 to 1000 nm, or a wavelength 1301 in the range of 1350 to 1550 nm may be employed.
 このとき、第1の生体組織109も水分を多く含んでいる場合は、1350~1550nmの範囲の波長1301の光では第2の生体組織110の検出は困難である。さらに第2の生体組織110が3mm以上の深い位置に存在する場合は、第1の生体組織109による光散乱の影響の少なめな赤外光の方が好ましい。よって、第2の生体組織110として血液または血管を対象とする場合は、900~1000nmの範囲の波長1203の光を用いるのが好ましい。 At this time, if the first living tissue 109 also contains a lot of water, it is difficult to detect the second living tissue 110 with light having a wavelength 1301 in the range of 1350 to 1550 nm. Further, when the second living tissue 110 is present at a deep position of 3 mm or more, infrared light with less influence of light scattering by the first living tissue 109 is preferable. Therefore, when blood or blood vessels are targeted as the second biological tissue 110, it is preferable to use light having a wavelength of 1203 in the range of 900 to 1000 nm.
 本実施形態では、このように波長を限定した照明光107を用い、小さな照明領域202を照明する。このような場合、波長が限定的であり、かつ微細な平行光を生成するには、レーザー光を用いるのがもっとも簡便である。レーザー光で微細な平行光の照明光107とすることにより、光学系813,903と第1の生体組織109表面との距離が変化しても、つねに照明領域201の大きさを一定に保つことが可能となる。また、そのレーザー光を、光ファイバーを用いて導光すれば、多様な光学系の態様における配置が容易となり構成の自由度が増えるだけでなく、軟性内視鏡を設計することも可能となる点で好ましい。 In the present embodiment, the small illumination area 202 is illuminated using the illumination light 107 having a limited wavelength in this way. In such a case, it is easiest to use laser light in order to produce a limited parallel wavelength and fine parallel light. Even if the distance between the optical systems 813 and 903 and the surface of the first biological tissue 109 changes, the size of the illumination area 201 is always kept constant by using the laser beam as the fine parallel illumination light 107. Is possible. In addition, if the laser beam is guided using an optical fiber, not only the arrangement in various optical system modes becomes easy and the degree of freedom of configuration increases, but also a flexible endoscope can be designed. Is preferable.
 これらの構成により、本発明によれば、光散乱を有する対象内部の観察を高感度に行うことが可能となり、生体深部における異質部分の分布画像を、効率的に取得することが可能な生体内部観測装置を提供するができる。 With these configurations, according to the present invention, it becomes possible to observe the inside of the target having light scattering with high sensitivity, and the distribution image of the heterogeneous portion in the deep part of the living body can be efficiently acquired. An observation device can be provided.
 効率的に画像取得できるということは、1つの画像を生成するために要する時間が短くなるため、動く被写体に対して撮影を行なう場面や観察装置そのものが動き易い撮影場面での内部(深部)観察にも対応することが可能となる。したがって、本発明によれば、動く生体を対象とした撮影装置、例えば医療用内視鏡、手術用硬性鏡(硬性内視鏡)、カプセル内視鏡、in vivo(またはex vivo)観察用顕微鏡に対し生体内部観測の機能を提供することができる。 Efficient image acquisition means that the time required to generate one image is shortened, so internal (deep) observation in a scene where a moving subject is shot or in a shooting scene where the observation device itself is easy to move It becomes possible to cope with. Therefore, according to the present invention, an imaging device for a moving living body, for example, a medical endoscope, a surgical rigid endoscope (rigid endoscope), a capsule endoscope, an in vivo (or ex vivo) observation microscope Can provide a function of observing the inside of a living body.
 本発明によれば、上述した装置以外にも、上述した観察の原理を実行するような内部観察方法も提供できる。また、かかる方法を実行するように種々の観察装置を実行するためのソフトウェアや、該装置による観察操作を実行するための制御用プログラムも提供される。 According to the present invention, in addition to the above-described apparatus, an internal observation method for executing the above-described observation principle can be provided. Also provided are software for executing various observation apparatuses so as to execute such a method, and a control program for executing observation operations by the apparatus.
 更に、第1の側面において、各態様は、以下に示すように表現される発明であると解されてもよい。各態様(A1)~(A24)をその効果と共に記載する。 Furthermore, in the first aspect, each aspect may be understood to be an invention expressed as shown below. Each embodiment (A1) to (A24) will be described together with its effects.
 (A1) 当該内部観察装置は、対象の表面に照明光を照射し、その後方散乱光を検出する観察手法において、特定の検出領域の面積を照明領域の面積よりも大きくすることを特徴とする。 (A1) The internal observation device is characterized in that, in an observation method of irradiating illumination light onto a target surface and detecting backscattered light, the area of a specific detection region is larger than the area of the illumination region .
 このような態様によれば、光散乱性を有する対象内部の被観察物体の観察について、簡便かつ安価な構成で検出光量を増やし、検出に要する時間を短縮することが可能になる。 According to such an aspect, it is possible to increase the amount of detected light and reduce the time required for detection with a simple and inexpensive configuration for observing an object to be observed inside the object having light scattering properties.
 (A2) 当該内部観察装置は、前記照明領域と前記検出領域の距離を規定するように配置された照明部と検出部とを具備することを特徴とする。 (A2) The internal observation apparatus includes an illumination unit and a detection unit that are arranged so as to define a distance between the illumination region and the detection region.
 このような態様によれば、一定の深さの情報を画像化することが可能となる。 According to such an aspect, it becomes possible to image information of a certain depth.
 (A3) 当該内部観察装置は、前記検出領域に、少なくとも前記照明領域が含まれないように配された前記照明部と前記検出部とを具備することを特徴とする。 (A3) The internal observation device includes the illumination unit and the detection unit arranged so that at least the illumination region is not included in the detection region.
 このような態様によれば、反射光や拡散光を検出する恐れがなくなり、後方散乱光のみを検出することができる。 According to such an aspect, there is no fear of detecting reflected light or diffused light, and only backscattered light can be detected.
 (A4) 当該内部観察装置は、第1の生体組織と第2の生体組織を含む対象を観察するための装置であって、前記照明領域と前期検出領域の中心間距離 x を、前記第2の生体組織が存在すると予測されるおおよその深さ z に対して、
   x ≧ 2.8 × z
となるように規定したことを特徴とする。
(A4) The internal observation device is a device for observing an object including a first biological tissue and a second biological tissue, and the distance x between the center of the illumination region and the previous detection region is set to the second For the approximate depth z where the body tissue is expected to exist,
x ≧ 2.8 × z
It is characterized by being defined as follows.
 このよな態様によれば、対象内部の所望の深さに対する信号を得ることができる。 (A5) 当該内部観察装置は、前記照明と前記検出の位置とを第1の生体組織の表面に2組以上配し、それぞれの位置に対応させた画像を構成することを特徴とする。 According to this aspect, a signal for a desired depth inside the object can be obtained. (A5) The internal observation device is characterized in that two or more sets of the illumination and the detection position are arranged on the surface of the first biological tissue, and an image corresponding to each position is configured.
 このような態様によれば、対象内部にある物体の分布を検出することが可能となる。 According to such an aspect, it is possible to detect the distribution of objects inside the target.
 (A6) 当該内部観察装置は、前記照明と前記検出の位置とを走査するように構成された走査部を備え、それに対応させた画像を構成する画像化することを特徴とする。 (A6) The internal observation device includes a scanning unit configured to scan the illumination and the detection position, and forms an image corresponding to the scanning unit.
 このような態様によれば、対象内部にある物体の分布を検出し、画像化することが可能となる。 According to such an aspect, it is possible to detect and image the distribution of objects inside the target.
 (A7) 当該内部観察装置は、前記検出領域の大きさを隣接検出領域との中心間距離よりも大きくし、検出領域の間で交わりが生じるようにしたことを特徴とする。 (A7) The internal observation device is characterized in that the size of the detection area is made larger than the center-to-center distance with the adjacent detection area so that an intersection occurs between the detection areas.
 このような態様によれば、隣接する検出領域との間の光量変化が滑らかになり、画像上でのスムージング処理と同じノイズ低減効果を実現できる。 According to such an aspect, the light amount change between the adjacent detection areas becomes smooth, and the same noise reduction effect as the smoothing process on the image can be realized.
 (A8) 当該内部観察装置は、前記検出領域に前記照明領域が入らないように検出領域の大きさを決めたことを特徴とする。 (A8) The internal observation device is characterized in that the size of the detection area is determined so that the illumination area does not enter the detection area.
 このような態様によれば、対象の表面からの反射光と拡散光を除外し、後方散乱光のみを検出することが可能となる。 According to such an aspect, it becomes possible to exclude only reflected light and diffused light from the surface of the object and detect only the backscattered light.
 (A9) 当該内部観察装置は、走査時の間隔に対応させて画像を構成するようにしたことを特徴とする。 (A9) The internal observation apparatus is characterized in that an image is configured in correspondence with the scanning interval.
 このような態様によれば、検出領域を拡大することによる画像化部への影響を避けることが可能となる。 According to such an aspect, it is possible to avoid the influence on the imaging unit by enlarging the detection area.
 (A10) 当該内部観察装置は、前記検出領域の大きさを、以下の数式をみたすようにしたことを特徴とする;
   D ≦ W
(前記検出領域の1方向の大きさをD、前記第2の生体組織の把握したい大きさをWとした)。
(A10) The internal observation device is characterized in that the size of the detection region satisfies the following mathematical formula;
D ≤ W
(The size of the detection region in one direction is D, and the size of the second living tissue to be grasped is W).
 このような態様によれば、前記検出領域からの光のみを検出器へ入射させることが実現される。 According to such an aspect, it is realized that only light from the detection region is incident on the detector.
 (A11) 当該内部観察装置は、前記検出領域からの後方散乱光のみを抽出するためのアパーチャを前記検出部に配置したことを特徴とする。 (A11) The internal observation device is characterized in that an aperture for extracting only the backscattered light from the detection region is arranged in the detection unit.
 このような1態様によれば、前記検出領域以外からの光を、高い精度で遮光することが可能となる。 According to such one aspect, it is possible to shield light from other than the detection region with high accuracy.
 (A12) 当該内部観察装置は、アパーチャの位置を、前記第1の生体組織の表面からの後方散乱光を前記検出部まで導光してくる光学系において、前記検出領域と共役な位置に配置することを特徴とする。 (A12) The internal observation apparatus arranges the position of the aperture at a position conjugate with the detection region in an optical system that guides backscattered light from the surface of the first biological tissue to the detection unit. It is characterized by doing.
 このような1態様によれば、前記検出領域以外からの光を、高い精度で遮光することが容易になる。 According to such one aspect, it becomes easy to shield light from other than the detection region with high accuracy.
 (A13) 当該内部観察装置は、前記走査部と前記アパーチャとの間に倍率調整光学系を備えたことを特徴とする。 (A13) The internal observation apparatus includes a magnification adjusting optical system between the scanning unit and the aperture.
 このような1態様によれば、前記走査部と導光光学系を1つにすることが可能となり、小型化でき、かつ安価に製造可能となる。 According to such one aspect, the scanning unit and the light guide optical system can be combined into one, which can be downsized and manufactured at low cost.
 (A14) 当該内部観察装置は、前記照明光と前記後方散乱光を同一の光学系へ導光する導光光学系と、照明光を前記導光光学系へ入射させて前記検出領域からの後方散乱光のみを抽出する分離光学系とを備えたことを特徴とする。 (A14) The internal observation apparatus includes a light guide optical system that guides the illumination light and the backscattered light to the same optical system, and makes the illumination light incident on the light guide optical system and is behind the detection region. And a separation optical system that extracts only scattered light.
 このような態様によれば、照明光の波長帯域を限定し、照明領域を小さく絞ることが簡便に実現される。 According to such an aspect, it is possible to easily realize limiting the wavelength band of the illumination light and reducing the illumination area to be small.
 (A15) 当該内部観察装置は、照明光源としてレーザー光源を用いたことを特徴とする。 (A15) The internal observation apparatus is characterized by using a laser light source as an illumination light source.
 このような態様によれば、装置の構成の自由度を向上することが可能になる。 According to such an aspect, it becomes possible to improve the degree of freedom of the configuration of the apparatus.
 (A16)当該内部観察装置は、照明光の導光に光ファイバを用いたことを特徴とする。 (A16) The internal observation device is characterized in that an optical fiber is used to guide illumination light.
 このような態様によれば、観察距離に依存せずに、照明領域の大きさを一定に保つことが実現される。 According to such an aspect, it is possible to keep the size of the illumination area constant without depending on the observation distance.
 (A17) 当該生体内部観察装置は、前記対象が第1の生体組織であり、前記物体が第2の生体組織であることを特徴とする。 (A17) The living body internal observation device is characterized in that the target is a first living tissue and the object is a second living tissue.
 このような態様によれば、対象としての生体組織内部の3mm以上の深さについても、被観察物体を観察できる。 According to such an aspect, the observed object can be observed even at a depth of 3 mm or more inside the living tissue as a target.
 (A18) 当該生体内部観察装置は、前記照明領域と前期検出領域の中心間距離を、8 mm以上となるように規定したことを特徴とする。 (A18) The in-vivo internal observation device is characterized in that the distance between the centers of the illumination area and the previous detection area is defined to be 8 mm or more.
 このような態様によれば、生体組織内部の3mm以上の深さについても、信号を得ることが可能となる。 According to such an aspect, a signal can be obtained even for a depth of 3 mm or more inside the living tissue.
 (A19) 当該生体内部観察装置は、前記検出領域の面積Sを、以下の数式をみたすようにしたことを特徴とする。
Figure JPOXMLDOC01-appb-M000003
(A19) The living body internal observation device is characterized in that the area S of the detection region satisfies the following mathematical formula.
Figure JPOXMLDOC01-appb-M000003
(前記照明光の帯域幅をBWL、前記検出領域での検出光密度を P 、前期検出光を前記光強度データへ変換する変換係数を G 、前記検出部のノイズフロアをN、前記検出の際の露光時間をt、前記第2の生体組織の有無による前記光強度データの変化率をrとした)
 このような1態様によれば、第2の生体組織の有無の情報を、ノイズに埋もれることなく検出することが可能となる。 (A20)当該内部観察装置は、前記第1の生体組織への(照明部の出射から組織の入射までの)照射端において前記照明光が平行光となるように、NA調整光学系を備えたことを特徴とする。
(The bandwidth of the illumination light is BWL, the detection light density in the detection region is P, the conversion coefficient for converting the detection light into the light intensity data is G, the noise floor of the detection unit is N, and the detection is performed. The exposure time is t, and the change rate of the light intensity data depending on the presence or absence of the second living tissue is r)
According to such one aspect, it is possible to detect information on the presence or absence of the second living tissue without being buried in noise. (A20) The internal observation apparatus includes an NA adjustment optical system so that the illumination light becomes parallel light at an irradiation end (from the illumination unit to the tissue incidence) on the first living tissue. It is characterized by that.
 このような態様によれば、検出能力を低下させずに、範囲での前記検出領域の拡大が可能となる。 According to such an aspect, it is possible to expand the detection area in a range without reducing the detection capability.
 (A21)当該生体内部観察装置は、前記照明光の波長が400~600nmまたは800~1000nmまたは1350~1550nmを少なくとも含む光であることを特徴とする。 (A21) The in-vivo internal observation apparatus is characterized in that the wavelength of the illumination light is light including at least 400 to 600 nm, 800 to 1000 nm, or 1350 to 1550 nm.
 このような態様によれば、血液の存在位置を描写することが可能となる。 According to such an aspect, it is possible to depict the location of blood.
 (A22)当該生体内部観察装置は、前記照明光の波長が900~1000nmを少なくとも含む光であることを特徴とする。 (A22) The in-vivo internal observation device is characterized in that the wavelength of the illumination light is light including at least 900 to 1000 nm.
 このような態様によれば、前記第1の生体組織が水分を多く含んでいる場合でも、深さ3mm以上に存在する血液または血管を検出することが可能となる。 According to such an aspect, even when the first living tissue contains a large amount of water, it is possible to detect blood or blood vessels present at a depth of 3 mm or more.
 (A23)当該内視鏡は、医療用内視鏡に組み込んだことを特徴とする。 (A23) The endoscope is incorporated in a medical endoscope.
 このような態様によれば、生体内部観測を医療現場に応用することが可能となる。 According to such an aspect, it is possible to apply internal living body observation to a medical field.
 (A24)当該内視鏡は、手術用硬性内視鏡に組み込んだことを特徴とする。 (A24) The endoscope is characterized by being incorporated into a surgical rigid endoscope.
 このような態様によれば、生体内部観測を医療現場に応用することが可能となる。 According to such an aspect, it is possible to apply internal living body observation to a medical field.
 また更に、上述のような態様により以下のような従来の問題も解決することが可能である。 Furthermore, the following conventional problems can be solved by the above-described aspect.
 断層画像を得るためには、多くの測定点で測定を行わなければならない。従来の装置では、装置本体が複数の検出素子を配したものである。使用者はそのような装置を各測定点へ移動させながら測定する。そのため、従来の装置および方法では、測定において多くの時間が必要であるという問題がある。 In order to obtain a tomographic image, measurement must be performed at many measurement points. In the conventional apparatus, the apparatus body has a plurality of detection elements. The user performs measurement while moving such a device to each measurement point. Therefore, the conventional apparatus and method have a problem that much time is required for measurement.
 また、特許文献1に記載の方法および装置は、光源と検出素子とを生体表面に接触させ、測定を行う。従って、そのような方法および装置では、各測定点への移動を行うたびにそれらを接触させ、画像を得る必要がある。従って、さらに多くの時間が必要であるという問題がある。 Also, the method and apparatus described in Patent Document 1 performs measurement by bringing a light source and a detection element into contact with the surface of a living body. Accordingly, in such a method and apparatus, it is necessary to obtain an image by bringing them into contact with each movement to each measurement point. Therefore, there is a problem that more time is required.
 このような問題も、本発明に従う上述した態様により解決される。そのような態様により、異質部分の分布画像を効率的に取得することが可能な内部観測装置が提供される。更に、これらの態様により、対象内部の特定の深さ領域について、従来よりも高感度に観察可能な内部観察装置が提供される。さらに、これらの態様により、対象内部を、従来よりも深い領域においても観察できる内部観察装置が提供される。 Such a problem is also solved by the above-described embodiment according to the present invention. Such an aspect provides an internal observation device that can efficiently acquire a distribution image of a heterogeneous portion. Furthermore, according to these aspects, an internal observation apparatus that can observe a specific depth region inside the object with higher sensitivity than before is provided. Furthermore, the internal observation apparatus which can observe the inside of object also in a deeper area | region than before is provided by these aspects.
 また、このような態様により、光散乱性を有する対象物の内部に含まれる異質部分が存在する深度における、断層画像を効率的に取得できる方法および装置を提供することが可能になる。 In addition, according to such an aspect, it is possible to provide a method and an apparatus that can efficiently acquire a tomographic image at a depth where a heterogeneous portion included in an object having light scattering properties exists.
 このような態様により、照射位置を移動させることにより、多くの情報を簡便且つ短時間に取得でき、且つ容易に断層画像を作成できる方法および装置を提供することが可能である。 In this manner, it is possible to provide a method and apparatus that can acquire a lot of information easily and in a short time and can easily create a tomographic image by moving the irradiation position.
 このような態様により、対象内部の特定の深さ領域ついて、従来よりも高感度に観察できる方法および内部観察装置を提供することが可能になる。 In this manner, it is possible to provide a method and an internal observation apparatus that can observe a specific depth region inside a target with higher sensitivity than before.
 またこのような態様により、対象内部について、従来よりもより深い領域を観察できる方法および内部観察装置が提供される。 Further, according to such an aspect, a method and an internal observation apparatus that can observe a deeper region than before in the interior of an object are provided.
 従って、このような態様により、従来よりも良好に生体内部を観察できる方法および装置を提供することが可能となる。 Therefore, according to such an embodiment, it is possible to provide a method and apparatus that can observe the inside of a living body better than before.
 <第2の側面>
 以下に説明する本発明の第2の側面の1または1以上の態様は、上述した第1の側面の1または1以上の態様と組み合わせて使用されてもよい。また、第2の側面に示される1の態様が単独で、または1または1以上の態様が組み合わされて使用されてもよい。
<Second aspect>
One or more aspects of the second aspect of the invention described below may be used in combination with one or more aspects of the first aspect described above. Further, one embodiment shown in the second aspect may be used alone, or one or more embodiments may be used in combination.
 (第3の実施形態)
 図14は本発明の第3の実施形態に係る散乱体内部計測装置1401のブロック構成図である。同図に示すように、散乱体内部計測装置1401は、可動性の光照射部1410、検出部1411、制御/解析部1412、メモリ1413、表示部1414、入力部1415を具備している。
(Third embodiment)
FIG. 14 is a block diagram of a scatterer internal measurement device 1401 according to the third embodiment of the present invention. As shown in the figure, the scatterer internal measurement device 1401 includes a movable light irradiation unit 1410, a detection unit 1411, a control / analysis unit 1412, a memory 1413, a display unit 1414, and an input unit 1415.
 光照射部1410は、散乱体1408内部の測定対象1407とその周囲の散乱媒質1406とで光学特性の異なる光を照射する照明手段である。光照射部には例えばLDなどを用いることができるがこれらに限定されない。この光照射部1410から照射される光には、例えば、測定対象には吸収されるが散乱媒質には吸収されない波長の光を使用することができる。光照射部1410は、制御/解析部1412からの制御信号に基づいて光を散乱体1408に向けて照射する。 The light irradiation unit 1410 is an illuminating unit that irradiates light having different optical characteristics between the measurement target 1407 inside the scatterer 1408 and the surrounding scattering medium 1406. For example, an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto. As light irradiated from the light irradiation unit 1410, for example, light having a wavelength that is absorbed by the measurement target but not absorbed by the scattering medium can be used. The light irradiation unit 1410 irradiates light toward the scatterer 1408 based on a control signal from the control / analysis unit 1412.
 検出部1411は、光照射部1410によって照射された光が、散乱体1408の散乱媒質1406と測定対象1407により、反射、散乱、吸収され、散乱体表面から出射された後方散乱光強度を検出するものである。検出部1411は、制御/解析部1412からの制御に基づいて後方散乱光を検出する。 The detection unit 1411 detects the intensity of the backscattered light that is reflected, scattered, or absorbed by the scattering medium 1406 and the measurement target 1407 of the scatterer 1408 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 1410. Is. The detection unit 1411 detects backscattered light based on the control from the control / analysis unit 1412.
 上記の光照射部1410、検出部1411、表示部1414及び入力部1415は、電気信号が伝送される信号回路によって制御/解析部1412に接続される。 The light irradiation unit 1410, the detection unit 1411, the display unit 1414, and the input unit 1415 are connected to the control / analysis unit 1412 by a signal circuit that transmits an electrical signal.
 制御/解析部1412は、光照射部1410、検出部1411の動作を制御すると共に、検出部1411によって検出されたデータを解析し、測定対象1407が散乱体1408の内部に存在しているか否かを確認する。散乱体1408の内部に測定対象1407が存在している場合、光の照射位置と測定対象1407が確認された位置との距離などから、散乱体1408において測定対象1407が実際に存在する位置や深度が解析される。また制御/解析部1412は、検出されたデータを記憶するメモリ1413を備える。 The control / analysis unit 1412 controls the operation of the light irradiation unit 1410 and the detection unit 1411 and analyzes the data detected by the detection unit 1411 to determine whether the measurement target 1407 exists inside the scatterer 1408. Confirm. When the measurement target 1407 is present inside the scatterer 1408, the position and depth at which the measurement target 1407 actually exists in the scatterer 1408 from the distance between the irradiation position of the light and the position where the measurement target 1407 is confirmed. Is analyzed. The control / analysis unit 1412 includes a memory 1413 for storing detected data.
 撮像素子の光学系の画角の観点から、検出部1411が散乱体1408に接触せずに離れているほうが広い領域を計測できる。そこで、本実施形態における光照射部1410及び検出部1411は、散乱体に接触せずに一定距離を隔てて照射及び検出を行う。これにより、検出部1411は散乱体の広い領域を一度に計測することができる。この検出部1411により一度に検出される領域をここでは計測領域と称する。 From the viewpoint of the angle of view of the optical system of the image sensor, a wider region can be measured when the detection unit 1411 is away from the scatterer 1408 without being in contact therewith. Therefore, the light irradiation unit 1410 and the detection unit 1411 in the present embodiment perform irradiation and detection at a certain distance without contacting the scatterer. Thereby, the detection part 1411 can measure the wide area | region of a scatterer at once. An area detected at a time by the detection unit 1411 is referred to herein as a measurement area.
 次に、本実施形態に係る散乱体内部計測装置1401の作用を説明する。 Next, the operation of the scatterer internal measurement device 1401 according to this embodiment will be described.
 図15は本発明に係る散乱体内部計測装置1401の動作を表したフローチャートである。S1において、散乱体に光を照射する位置を決定する。S2において、光照射部1410により散乱体に光を照射する。S3において、検出部1411により、散乱体1408内部の散乱媒質1406により反射、散乱、吸収され、再度散乱体表面に戻ってきた後方散乱光強度を検出する。検出されたデータはS4においてメモリ1413中に記憶される。S5において、測定が終了か否か判断し、終了でなければS1に戻って測定を続ける。終了の場合はS6へ移行する。 FIG. 15 is a flowchart showing the operation of the scatterer internal measurement device 1401 according to the present invention. In S1, the position where the scatterer is irradiated with light is determined. In S2, the light irradiating unit 1410 irradiates the scatterer with light. In S3, the detection unit 1411 detects the backscattered light intensity reflected, scattered and absorbed by the scattering medium 1406 inside the scatterer 1408 and returning to the scatterer surface again. The detected data is stored in the memory 1413 in S4. In S5, it is determined whether or not the measurement is finished. If not finished, the process returns to S1 and the measurement is continued. If completed, the process proceeds to S6.
 S6において、制御/解析部1412がメモリ1413に記憶されたデータを解析する。解析結果はS7において表示部1414に表示される。S8において計測を終了するか否かを判断し、終了でなければ、S1に戻って計測を続けるかS6に戻って解析を続ける。 In S6, the control / analysis unit 1412 analyzes the data stored in the memory 1413. The analysis result is displayed on the display unit 1414 in S7. In S8, it is determined whether or not to end the measurement. If not, the process returns to S1 to continue the measurement or returns to S6 to continue the analysis.
 S6における解析は、以下のような解析手法により行われる。 The analysis in S6 is performed by the following analysis method.
 一つの解析方法として、得られたデータから、測定対象の位置と深度が解析される。 As one analysis method, the position and depth of the measurement object are analyzed from the obtained data.
 図16は散乱体内部の光の伝搬の様子を表す概念図である。一般的に散乱体に照射された光は、散乱体内部で散乱を繰り返すうちに散乱の異方性が失われて等方散乱に近づく。この結果、平均的な光経路の断面はバナナ状になることが知られている。 FIG. 16 is a conceptual diagram showing a state of light propagation inside the scatterer. In general, light irradiated to a scatterer loses its scattering anisotropy while repeating scattering inside the scatterer and approaches isotropic scattering. As a result, it is known that the cross section of the average optical path becomes a banana shape.
 図16において、光の照射位置から近い位置I1では散乱体の表面近くを伝搬してきた光が多く検出される。一方、照射位置から離れた位置I2では散乱体のより深部を伝搬してきた光が多く検出される。このように、光の照射位置から検出位置までの距離に応じて、検出された光が伝播してきた深度が変化する。この性質を利用して、測定対象が散乱体内部のいずれの深度に存在するかを解析する。 In FIG. 16, a large amount of light propagating near the surface of the scatterer is detected at a position I 1 close to the light irradiation position. On the other hand, a large amount of light propagating deeper in the scatterer is detected at the position I 2 away from the irradiation position. Thus, the depth at which the detected light has propagated changes according to the distance from the light irradiation position to the detection position. Using this property, it is analyzed at which depth in the scatterer the measurement object exists.
 例えば、図16(a)において測定対象は検出位置I1とI2の間の表面近くにある。この場合、検出位置I1とI2における検出光には変化が見られない。一方、図16(b)において測定対象は検出位置I1とI2の間のより深い位置にある。このとき、検出位置I1における検出光には変化が見られないが、検出位置I2における検出光は減弱する。これによって、測定対象の位置と深度が決定される。 For example, in FIG. 16A, the measurement object is near the surface between the detection positions I 1 and I 2 . In this case, no change is seen in the detection light at the detection positions I 1 and I 2 . On the other hand, in FIG. 16B, the measurement object is at a deeper position between the detection positions I 1 and I 2 . At this time, no change is seen in the detection light at the detection position I 1, but the detection light at the detection position I 2 is attenuated. As a result, the position and depth of the measurement target are determined.
 このように、後方散乱光強度の弱いポイントが見出された場合、そのポイントと光照射位置との距離を基に解析を行い、深度と位置を算出する。 In this way, when a point with weak backscattered light intensity is found, analysis is performed based on the distance between the point and the light irradiation position, and the depth and position are calculated.
 また他の解析方法として、得られた後方散乱光強度のデータから、一定深度での断層画像が作成される(すなわち画像構築)。 As another analysis method, a tomographic image at a certain depth is created from the obtained backscattered light intensity data (that is, image construction).
 図17に、計測領域で計測される後方散乱光の模式図を示した。光照射部1710から散乱体上に光が照射された位置をバツ印で示し、検出部1711によって走査される計測領域1740を点線で示した。散乱体1708によって反射、散乱、吸収され、散乱体表面から出射された後方散乱光は、図に示すように照射位置を中心とする同心円状になる。ここで、図17(a)に示すように、同心円の直径が大きくなるほど、散乱体のより深部を通ってきた光である。図17(b)においては同心円領域1741、1742及び1743は、それぞれが略同じ深度の情報を有すると見なすことができる。またその深度は照射位置からその同心円までの距離に対応するため、同心円領域1741、1742及び1743の順に深度が深い。よって、走査の際に、検出部1711が同心円領域の少なくとも1部から、後方散乱光強度のデータを抽出することにより、一定の深度における画像データを選択的に取り出すことができ、選択されたデータから該深度での断層画像を作成することができる。 FIG. 17 shows a schematic diagram of the backscattered light measured in the measurement region. A position where light is irradiated onto the scatterer from the light irradiation unit 1710 is indicated by a cross mark, and a measurement region 1740 scanned by the detection unit 1711 is indicated by a dotted line. The backscattered light reflected, scattered and absorbed by the scatterer 1708 and emitted from the scatterer surface is concentric with the irradiation position as the center as shown in the figure. Here, as shown in FIG. 17 (a), the light having passed through the deep part of the scatterer as the diameter of the concentric circle increases. In FIG. 17B, the concentric regions 1741, 1742, and 1743 can be regarded as having information of substantially the same depth. In addition, since the depth corresponds to the distance from the irradiation position to the concentric circle, the depth is increased in the order of the concentric circular regions 1741, 1742, and 1743. Therefore, when scanning, the detection unit 1711 extracts data of the backscattered light intensity from at least one part of the concentric circular region, whereby image data at a certain depth can be selectively extracted, and the selected data Thus, a tomographic image at the depth can be created.
 なお、上記の解析方法は、光照射部1710の位置を変化させて計測を行うことにより、解析に使用できる情報を簡便により多く取得することができる。 Note that the above analysis method can easily acquire more information that can be used for analysis by changing the position of the light irradiation unit 1710 and performing measurement.
 図18は、光照射部1810による照射位置を変化させて測定した様子を示す。検出部1811は固定されており、計測領域1850も移動しない。しかし、光照射部1810によって照射する位置を変動させることにより、上述したような同心円領域が移動する。 FIG. 18 shows a state where the measurement was performed by changing the irradiation position by the light irradiation unit 1810. The detection unit 1811 is fixed, and the measurement region 1850 does not move. However, by changing the position irradiated by the light irradiation unit 1810, the concentric area as described above moves.
 さらに他の解析方法として、検出する領域を1851、1852、1853と変化させることにより、所望の位置の任意の深度における情報を得ることができる。 As another analysis method, information at an arbitrary depth at a desired position can be obtained by changing the detection region to 1851, 1852, and 1853.
 上述したように、所望の位置と前記照射位置との間の距離と等しい距離だけ前記所望の位置から離れた位置におけるデータを取得するように光照射部1810と検出部1811を走査させ、解析することにより、前記所望の位置の任意の深度における情報を簡便に得ることができる。この場合、情報を得たい深度に応じて、所望の位置と、照射位置並びに解析するデータの位置との距離が決定される。 As described above, the light irradiation unit 1810 and the detection unit 1811 are scanned and analyzed so as to acquire data at a position separated from the desired position by a distance equal to the distance between the desired position and the irradiation position. Thus, information at an arbitrary depth of the desired position can be easily obtained. In this case, the distance between the desired position, the irradiation position, and the position of data to be analyzed is determined according to the depth at which information is desired.
 なお、上述した各解析方法においては、図15のデータ解析工程S6において、照射位置と検出位置との距離を求める際、検出部1411、1711または1811の光学系の焦点距離や倍率などを考慮に入れる。 In each analysis method described above, when the distance between the irradiation position and the detection position is obtained in the data analysis step S6 of FIG. 15, the focal length and magnification of the optical system of the detection unit 1411, 1711 or 1811 are taken into consideration. Put in.
 以上説明したように、本実施形態では、照射位置及び検出位置の自由度が高いため、所望の位置の任意の深度における情報を容易に得ることができる。 As described above, in the present embodiment, since the degree of freedom of the irradiation position and the detection position is high, information at an arbitrary depth at a desired position can be easily obtained.
 (第4の実施形態)
 次に、本発明の第4の実施形態を説明する。図19は、第4の実施形態に係る散乱体内部計測装置1900のブロック構成図である。本散乱体内部計測装置1900においては、光照明部1909及び検出部1910が可動可能に備えられる。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. FIG. 19 is a block diagram of a scatterer internal measurement device 1900 according to the fourth embodiment. In the scatterer internal measurement device 1900, a light illumination unit 1909 and a detection unit 1910 are movably provided.
 このような第4の実施形態に係る散乱体内部計測装置1900によれば、光照射部1909と検出部1910を可動させ、所望の位置を中心として、等距離となる位置にそれぞれを配置する。これにより、所望の位置における任意の深度の情報を得ることができる。得られる情報の深度は、所望の位置と光照射部1909及び検出部1910との距離を適宜調節することによって容易に変化させることができる。 According to the scatterer internal measurement device 1900 according to the fourth embodiment as described above, the light irradiation unit 1909 and the detection unit 1910 are moved, and are respectively arranged at positions that are equidistant from the desired position. Thereby, information of an arbitrary depth at a desired position can be obtained. The depth of information to be obtained can be easily changed by appropriately adjusting the distance between a desired position and the light irradiation unit 1909 and the detection unit 1910.
 本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 上述の態様は、次のように発明であると解されてもよい;
散乱体内部の測定対象(すなわち観察対象)の情報を取得する散乱体内部計測装置(すなわち散乱体内部観察装置)であって、前記測定対象と前記散乱体とで光学特性の異なる光を前記散乱体に照射するように構成された照明部(すなわち光照射部)と、前記照明部により照射された光の後方散乱光を検出するように構成された検出部と、前記検出部により取得されたデータにおいて前記測定対象の存在の有無を確認し、前記照射位置と前記測定対象が確認された位置との距離から、前記散乱体における前記測定対象の深度を含めた位置情報を求めるように構成された解析部とを備え、前記照明部と前記検出部が前記散乱体に非接触で計測が行われることを特徴とする散乱体内部計測装置並びに該装置を用いた計測方法。
The above aspects may be construed as inventions as follows:
A scatterer internal measurement device (that is, a scatterer internal observation device) that acquires information on a measurement target (that is, an observation target) inside the scatterer, and scatters light having different optical characteristics between the measurement target and the scatterer. An illumination unit configured to irradiate the body (that is, a light irradiation unit), a detection unit configured to detect backscattered light of light irradiated by the illumination unit, and acquired by the detection unit It is configured to check the presence or absence of the measurement target in the data, and obtain position information including the depth of the measurement target in the scatterer from the distance between the irradiation position and the position where the measurement target is confirmed. A scatterer internal measurement device, and a measurement method using the device, wherein the illumination unit and the detection unit perform measurement without contact with the scatterer.
 このような上述のような態様は、次のような従来の問題点も解決することが可能である。 Such an aspect as described above can also solve the following conventional problems.
 従来の装置では、光照射部と光検出部が一体に構成されているために、照射位置と検出位置との距離が固定されている。従って、照射位置から任意の距離の位置で検出を行うことができない。 In the conventional apparatus, since the light irradiation unit and the light detection unit are integrally formed, the distance between the irradiation position and the detection position is fixed. Accordingly, detection cannot be performed at a position at an arbitrary distance from the irradiation position.
 また更に、計測される後方散乱光は、照射位置と検出位置との間の中点の位置において最も深部を通る。即ち、観察される情報のうち、最深部の情報は、照射位置と検出位置との中間点の位置におけるものである。特許文献2おいて開示される、検出部が、光照射部から順次離れた位置に配置された装置の場合、計測される最深部のx、y方向の位置は、光照射部と検出部の間の距離が大きくなるにつれて照射位置から遠くなる。従って、ある特定の位置において、深度(z方向)を変化させた情報を得ることができないという問題がある。 Furthermore, the backscattered light to be measured passes through the deepest part at the midpoint position between the irradiation position and the detection position. That is, of the observed information, the deepest information is at the midpoint between the irradiation position and the detection position. In the case of an apparatus in which the detection unit disclosed in Patent Document 2 is sequentially disposed at a position away from the light irradiation unit, the position of the deepest portion to be measured in the x and y directions is the light irradiation unit and the detection unit. The distance from the irradiation position increases as the distance between them increases. Therefore, there is a problem in that information with varying depth (z direction) cannot be obtained at a specific position.
 これらの問題も上述の態様により解決することが可能である。 These problems can also be solved by the above-described aspect.
 また、上述の態様は、これらの問題を解決し、後方散乱光を検出することにより、照射位置から所望の距離に位置するデータを任意に解析することができる。よって、所望の位置及び深度の情報を容易に取得することができる。 In addition, the above-described aspect can solve these problems, and can arbitrarily analyze data located at a desired distance from the irradiation position by detecting backscattered light. Therefore, information on a desired position and depth can be easily acquired.
 さらに照射位置を移動させることにより、多くの情報を簡便且つ短時間で取得することができ、容易に断層画像を作成することができる。 Further, by moving the irradiation position, a lot of information can be acquired easily and in a short time, and a tomographic image can be easily created.
 このような態様により、照射位置から所望の距離に位置する対象に関する情報を解析できる方法および内部観察装置を提供することが可能となる。 In this manner, it is possible to provide a method and an internal observation apparatus that can analyze information related to an object located at a desired distance from the irradiation position.
 これにより、従来よりも良好に生体内部を観察できる方法および装置を提供することが可能となる。 This makes it possible to provide a method and apparatus that can observe the inside of a living body better than before.
 <第3の側面>
 本発明は、更に、散乱体による後方散乱光を計測することにより散乱体内部を観測する装置及び方法に関する。以下に説明する本発明の第3の側面の1または1以上の態様は、上述した第1の側面および/または第2の側面の1または1以上の態様と組み合わせて使用されてもよい。また、第3の側面に示される1の態様が単独で、または1または1以上の態様が組み合わされて使用されてもよい。
<Third aspect>
The present invention further relates to an apparatus and method for observing the inside of a scatterer by measuring backscattered light from the scatterer. One or more embodiments of the third aspect of the present invention described below may be used in combination with one or more embodiments of the first and / or second aspects described above. Further, one embodiment shown in the third aspect may be used alone, or one or more embodiments may be used in combination.
 第3の側面において、散乱体とは、主に散乱媒質から構成される物体を指し、例として生体が挙げられる。散乱媒質とは、少なくとも光を散乱する性質を示し、吸収よりも散乱のほうが支配的であるものである。 In the third aspect, the scatterer refers to an object mainly composed of a scattering medium, and examples include a living body. The scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
 第3の側面の散乱体内部観測装置は、散乱体内部の散乱媒質中に存在する異質部分を観測するための装置である。第3の側面において異質部分とは、透過率、屈折率、反射率、散乱係数、吸収係数などの光学特性が散乱媒質と異なるものである。例として血管が挙げられるが、これに限定されない。 The scatterer internal observation device on the third side is a device for observing a heterogeneous portion existing in a scattering medium inside the scatterer. In the third aspect, the heterogeneous portion is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
 以下、第3の側面の実施形態を図面に従って説明する。 Hereinafter, an embodiment of the third aspect will be described with reference to the drawings.
 (第5の実施形態)
 図20は第3の側面の一つの実施形態に係る散乱体内部観測装置2001のブロック構成図である。同図に示すように、散乱体内部観測装置2001は、光照射部2010、検出部2011、制御部2012、表示部2014、入力部2015を具備している。
(Fifth embodiment)
FIG. 20 is a block diagram of a scatterer internal observation device 2001 according to one embodiment of the third aspect. As shown in the figure, the scatterer internal observation device 2001 includes a light irradiation unit 2010, a detection unit 2011, a control unit 2012, a display unit 2014, and an input unit 2015.
 光照射部2010は、散乱体2008内部の異質部分2007とその周囲の散乱媒質2006とで光学特性の異なる波長を少なくとも含む光を照射する照明手段である。光照射部には例えばLDなどを用いることができるがこれらに限定されない。この光照射部2010から照射される光には、例えば、異質部分には吸収されるが散乱媒質には吸収されない波長を少なくとも含む光を使用することができる。光学特定の異なる波長を少なくとも含む光は、例えば、生体中の散乱特性が異なる異質物質が血管の場合、ヘモグロビンに吸収を持つ近赤外領域の波長を含む光が好適に用いられる。光照射部2010は、制御部2012からの制御信号に基づいて光を散乱体2008に向けて照射する。 The light irradiation unit 2010 is an illuminating unit that irradiates light including at least wavelengths having different optical characteristics between the heterogeneous portion 2007 inside the scatterer 2008 and the surrounding scattering medium 2006. For example, an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto. As the light irradiated from the light irradiation unit 2010, for example, light including at least a wavelength that is absorbed by a foreign portion but not absorbed by a scattering medium can be used. For example, in the case where a foreign substance having different scattering characteristics in the living body is a blood vessel, light including a wavelength in the near infrared region having absorption in hemoglobin is preferably used as the light including at least a different optically specific wavelength. The light irradiation unit 2010 irradiates light toward the scatterer 2008 based on a control signal from the control unit 2012.
 検出部2011は、光照射部2010によって照射された光が、散乱体2008の散乱媒質2006と異質部分2007により、反射、散乱、吸収され、散乱体表面から出射された後方散乱光強度を検出し、該後方散乱光の光強度データを取得するものである。検出部2011は、制御部2012からの制御に基づいて後方散乱光を検出する。 The detection unit 2011 detects the intensity of the backscattered light that is reflected, scattered, and absorbed by the scattering medium 2006 and the extraneous portion 2007 of the scatterer 2008 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 2010. The light intensity data of the backscattered light is acquired. The detection unit 2011 detects backscattered light based on the control from the control unit 2012.
 制御部2012は、光照射部2010、検出部2011の動作を制御すると共に、検出部2011によって検出されたデータを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化部2016と、作製された複数の断層画像から、異質部分が表示された断層画像を選択する解析部2017とを含む。解析部によって選択された断層画像は、表示部2014によって表示されることができる。 The control unit 2012 controls the operations of the light irradiation unit 2010 and the detection unit 2011, analyzes data detected by the detection unit 2011, and creates an imaging unit 2016 that creates a plurality of tomographic images having different depths. And an analysis unit 2017 that selects a tomographic image on which a heterogeneous portion is displayed from the plurality of tomographic images. The tomographic image selected by the analysis unit can be displayed by the display unit 2014.
 上記の光照射部2010、検出部2011、表示部2014及び入力部2015は、電気信号が伝送される信号回路によって制御部2012に接続される。 The light irradiation unit 2010, the detection unit 2011, the display unit 2014, and the input unit 2015 are connected to the control unit 2012 by a signal circuit that transmits an electrical signal.
 次に、本実施形態に係る散乱体内部観測装置2001の作用を説明する。 Next, the operation of the scatterer internal observation device 2001 according to this embodiment will be described.
 まず、光照射部2010により散乱体2008に光が照射される。次いで、散乱体2008内部の散乱媒質2006により反射、散乱、吸収され、再度散乱体表面に戻ってきた後方散乱光強度が、検出部2011により検出される。 First, light is irradiated onto the scatterer 2008 by the light irradiation unit 2010. Next, the backscattered light intensity reflected, scattered, and absorbed by the scattering medium 2006 inside the scatterer 2008 and returning to the scatterer surface again is detected by the detection unit 2011.
 次に、画像化部2016において、得られたデータが解析され、それぞれ深度が異なる断層画像が作製される。ここで、断層画像の作製原理について説明する。 Next, in the imaging unit 2016, the obtained data is analyzed, and tomographic images having different depths are produced. Here, the principle of producing a tomographic image will be described.
 図21(a)は、第3の側面の散乱体内部観測装置を適用した硬性鏡2100の模式図である。硬性鏡2100は、照明部2102及び検出部2101を備え、また図示されない制御部及び表示部を備える。図21(b)は散乱体の断面模式図を示し、図21(c)は散乱体の表面を上面から見た模式図である。図21(c)では、光照射部2102から散乱体2108上に光が照射された位置をバツ印で示し、検出部2101によって後方散乱光が検出される検出範囲2150を点線で示した。 FIG. 21 (a) is a schematic diagram of a rigid mirror 2100 to which the scatterer internal observation device of the third side surface is applied. The rigid endoscope 2100 includes an illumination unit 2102 and a detection unit 2101, and includes a control unit and a display unit (not shown). FIG. 21B is a schematic cross-sectional view of the scatterer, and FIG. 21C is a schematic view of the surface of the scatterer as viewed from above. In FIG. 21C, the position where the light is irradiated from the light irradiation unit 2102 onto the scatterer 2108 is indicated by a cross, and the detection range 2150 where the backscattered light is detected by the detection unit 2101 is indicated by a dotted line.
 光照射部2102から散乱体2108に照射された光の後方散乱光は、図21(b)に示すように伝播する。これを散乱体表面上からみると図21(c)に示すように照射位置を中心とした同心円状となる。この同心円の直径が大きいほど、散乱体のより深部を通ってきた後方散乱光である。例えば符号2151、2152及び2153で示されるリング状領域のように、同心円領域はそれぞれが略同じ深度を通ってきた後方散乱光である。その同心円領域での光強度データを抽出することにより、その深度における断層画像を作製することができる。 The backscattered light of the light irradiated to the scatterer 2108 from the light irradiation unit 2102 propagates as shown in FIG. When viewed from above the surface of the scatterer, it becomes a concentric circle centered on the irradiation position as shown in FIG. The larger the diameter of this concentric circle, the more backscattered light has passed through the deeper part of the scatterer. For example, like the ring-shaped regions indicated by reference numerals 2151, 2152, and 2153, the concentric circular regions are backscattered light that has passed through substantially the same depth. By extracting the light intensity data in the concentric region, a tomographic image at that depth can be created.
 また、照射位置から同心円領域までの距離は、深度に対応するために、照射位置から同心円領域までの距離を変化させることにより、所望の深度の断層画像を得ることができる。 In addition, since the distance from the irradiation position to the concentric area corresponds to the depth, a tomographic image having a desired depth can be obtained by changing the distance from the irradiation position to the concentric area.
 さらに、第3の側面の一つの態様における走査可能な照明部を具備する散乱体内部観測装置の場合、図22に示すように、検出範囲2250中で照明点が移動される。このとき、照明点の移動に伴って同心円内の領域も移動する。そのため、常に照明点から一定距離にある同心円領域での光強度データを抽出することにより、同じ深度の情報を得ることができる。これについて図23を参照して説明する。 Furthermore, in the case of the scatterer internal observation device having the scanable illumination unit in one aspect of the third aspect, the illumination point is moved in the detection range 2250 as shown in FIG. At this time, the region within the concentric circle moves with the movement of the illumination point. Therefore, information of the same depth can be obtained by always extracting light intensity data in a concentric circle region that is at a fixed distance from the illumination point. This will be described with reference to FIG.
 図23Aの(a)および(a’)は、各走査点における同心円領域2351、2352及び2353に含まれる一部の領域を重ね合わせた図である。換言すれば、同心円領域2351、2352及び2353のそれぞれの一部分が移動した軌跡を示す図である。同心円領域の一部分は領域内をどのように区切ってもよい。それぞれの同心円領域は同じ深度の情報を有している。従って、複数の検出結果を図23Aの(a)に示すように重ね合わせることにより、図23Bの(b)に示すように、その深度での断層画像を作製することができる。 (A) and (a ′) in FIG. 23A are diagrams in which partial areas included in the concentric circular areas 2351, 2352, and 2353 at the respective scanning points are overlapped. In other words, it is a diagram showing a trajectory in which a part of each of the concentric circular regions 2351, 2352 and 2353 has moved. A part of the concentric area may be divided in any way. Each concentric region has the same depth information. Therefore, by overlapping a plurality of detection results as shown in FIG. 23A (a), a tomographic image at that depth can be created as shown in FIG. 23B (b).
 なお、データを重ね合わせる際に重複する部分が生じるが、重複するデータから任意のデータを選択的に用いるか、重複するデータの平均値を用いればよい。 It should be noted that although overlapping portions are generated when the data are overlapped, arbitrary data is selectively used from the overlapping data, or an average value of the overlapping data may be used.
 図22及び図23AおよびBに示すように、照明を走査して検出を行うことにより、多くの光強度データを取得することができ、より精度の高い断層画像を得ることができる。 As shown in FIG. 22 and FIGS. 23A and 23B, by performing detection by scanning illumination, a large amount of light intensity data can be acquired, and a more accurate tomographic image can be obtained.
 上記で説明した原理に基づいて、深度の異なる複数の断層画像が作製されると、次に、解析部2017により、例えば図23Bの(c)に示すように、異質部分が表示された断層画像が選択される。この選択は、所定のコントラスト条件を満たす断層画像を決定することにより行われる。 When a plurality of tomographic images having different depths are created based on the principle described above, next, the tomographic image in which the heterogeneous portion is displayed by the analysis unit 2017 as shown in FIG. 23B (c), for example. Is selected. This selection is performed by determining a tomographic image that satisfies a predetermined contrast condition.
 図23A(a)では、各同心円領域の一部分の弧に対応する部分によって規定される領域を受光領域として採用する例である。図23A(a’)では、各同心円領域の一部分の弧に対応する部分によって規定される領域であって、更にこの領域の一部、例えば、略正方形で規定される領域を受光領域として採用する例である。 FIG. 23A (a) is an example in which a region defined by a portion corresponding to a partial arc of each concentric circular region is adopted as the light receiving region. In FIG. 23A (a ′), an area defined by a portion corresponding to an arc of a part of each concentric area, and a part of this area, for example, an area defined by a substantially square is adopted as the light receiving area. It is an example.
 断層画像に異質部分が存在する場合、画像中の光強度に変化が生じる。即ち、画像が均質でなくなり、コントラストが生じる。このとき、画面上にコントラストが生じたと判定する条件を「コントラスト条件」と称する。解析部2017は、各断層画像がコントラスト条件を満たすかどうかを判断し、コントラスト条件を満たす断層画像を異質部分が存在する断層画像であると決定する。 When there is a heterogeneous part in the tomographic image, the light intensity in the image changes. That is, the image is not homogeneous and contrast is generated. At this time, a condition for determining that contrast has occurred on the screen is referred to as a “contrast condition”. The analysis unit 2017 determines whether or not each tomographic image satisfies the contrast condition, and determines that the tomographic image satisfying the contrast condition is a tomographic image having a heterogeneous portion.
 断層画像がコントラスト条件を満たすかどうかを判断する方法には、次の(1)~(4)の方法を用いることができるが、これらに限定されず、種々の方法を用いることができる。 The following methods (1) to (4) can be used as a method for determining whether or not a tomographic image satisfies a contrast condition. However, the present invention is not limited to these, and various methods can be used.
(1)断層画像の画面をいくつかに分割し、それぞれの区分で平均強度を算出する。次いで、この区分間の平均強度に一定以上の相違があるかどうかを判断する。この場合、相違があると見なす条件がコントラスト条件である。 (1) The tomographic image screen is divided into several sections, and the average intensity is calculated for each section. Next, it is determined whether there is a certain difference or more in the average intensity between the sections. In this case, the condition that is considered to be different is the contrast condition.
(2)断層画像の画面における各画像の光強度を比較し、画素間で光強度に一定以上の相違があるかどうかを判断する。この場合、相違があると見なす条件がコントラスト条件である。 (2) The light intensity of each image on the tomographic image screen is compared, and it is determined whether there is a certain difference in light intensity between pixels. In this case, the condition that is considered to be different is the contrast condition.
(3)深度の異なる断層画像同士を比較し、光強度が異なる部分を検出する。各断層画像間で強度変化が同じ箇所はノイズと見なすことができる。断層画像間で、光強度の変化に相違がある場合は、異質部分が存在すると見なすことができる。この場合、断層画像間で光強度の変化に相違があると見なす条件がコントラスト条件である。 (3) The tomographic images having different depths are compared to detect a portion having different light intensity. A portion having the same intensity change between the tomographic images can be regarded as noise. If there is a difference in light intensity change between tomographic images, it can be considered that a heterogeneous portion exists. In this case, the condition for regarding the difference in the light intensity between the tomographic images is the contrast condition.
(4)取得された光強度データから、空間的な光強度分布データ画像を作製し、光強度の変化をみる。例えば、画像上の任意の点を通るライン上において、光強度が大きく減少した箇所は異質部分であるとみなすことができる。また、光強度の減少の程度が小さければ、ノイズであると判断できる。 (4) A spatial light intensity distribution data image is created from the acquired light intensity data, and changes in the light intensity are observed. For example, on a line passing through an arbitrary point on the image, a portion where the light intensity greatly decreases can be regarded as a heterogeneous portion. Further, if the degree of decrease in light intensity is small, it can be determined that noise is present.
 以上に説明した何れかの方法によって、異質部分が表示された断層画像が選択されると、その断層画像は表示部2014によって表示される。このとき、選択された断層画像のみを表示してもよく、選択された断層画像を他の画像より大きく表示するなどして他の断層画像とともに表示してもよい。 When a tomographic image displaying a heterogeneous portion is selected by any of the methods described above, the tomographic image is displayed on the display unit 2014. At this time, only the selected tomographic image may be displayed, or the selected tomographic image may be displayed together with other tomographic images, for example, by displaying it larger than the other images.
 なお、上記した一連の工程は、散乱体の観測の間、繰り返し連続的に行われ、表示される断層画像は逐次更新される。 Note that the series of steps described above are repeated continuously during the observation of the scatterer, and the displayed tomographic images are sequentially updated.
 以上説明したように、第3の側面の態様によれば、光照射部2010と検出部2011を操作して、光強度データを取得することにより、任意の深度の断層画像を容易に得ることができ、さらに、異質部分が存在する深度における断層画像を自動で選択することにより、簡便且つ効率的に、散乱体内部を観測することができる。 As described above, according to the aspect of the third aspect, a tomographic image at an arbitrary depth can be easily obtained by operating the light irradiation unit 2010 and the detection unit 2011 to acquire light intensity data. Furthermore, by automatically selecting a tomographic image at a depth at which a heterogeneous portion exists, the inside of the scatterer can be observed simply and efficiently.
 次に、第3の側面の他の態様について説明する。本態様における散乱体内部観測装置は、画像化部により作製された複数の断層画像を表示し、使用者が所望の断層画像を選択することができる構成を有する。 Next, another aspect of the third aspect will be described. The scatterer internal observation device in this aspect has a configuration in which a plurality of tomographic images created by the imaging unit are displayed and a user can select a desired tomographic image.
 本態様における散乱体内部観測装置は、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射するように構成された照明部と、前記照明部により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得するように構成された検出部と、前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製するように構成された画像化部と、作製された断層画像を表示するように構成された表示部と、前記表示された複数の断層画像から、所望の断層画像を選択して表示させるように構成された入力部とを備える。本態様で用いられる照明部及び検出部は、上記の散乱体内部観測装置2001と同様である。 The scatterer internal observation device according to this aspect includes an illumination unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium forming the scatterer and the extraneous portion, and The detection unit configured to detect the backscattered light of the light irradiated by the illuminating unit and acquire the light intensity data of the backscattered light, and analyze the acquired light intensity data, each having a different depth An imaging unit configured to generate a plurality of tomographic images, a display unit configured to display the generated tomographic images, and a desired tomographic image selected from the displayed plurality of tomographic images And an input unit configured to be displayed. The illumination unit and the detection unit used in this aspect are the same as those in the scatterer internal observation device 2001 described above.
 表示部は、画像化部により作製された複数の断層画像を同時に表示することができ、さらに、使用者によって選択された断層画像を拡大して表示するか、或いは選択された断層画像のみを拡大して表示することができる。例えばモニター画面などが好適に用いられるがこれに限定されない。 The display unit can simultaneously display a plurality of tomographic images created by the imaging unit, and further enlarges the tomographic image selected by the user or displays only the selected tomographic image. Can be displayed. For example, a monitor screen is preferably used, but is not limited thereto.
 入力部は、表示された複数の断層画像から使用者が所望の断層画像を選択し、その結果を入力するためのものである。例えば、選択画像を指示するキーボードなどであってもよく、或いは、表示された画像にタッチしたり、入力ペンで囲むなどして指示したりする、タッチパネルを用いたモニターなどであってもよいが、これらに限定されず、種々の入力手段が用いられ得る。 The input unit is for the user to select a desired tomographic image from the displayed tomographic images and to input the result. For example, a keyboard or the like that indicates a selected image may be used, or a monitor that uses a touch panel that indicates an image by touching the displayed image or surrounding it with an input pen may be used. However, the present invention is not limited to these, and various input means can be used.
 本態様における散乱体内部観測装置を用いる場合、
 照明部によって、散乱体に光を照射し、検出部によって該照射された光の後方散乱光を検出し、後方散乱光の光強度データを取得する。次いで、画像化分によって、取得された光強度データが解析され、それぞれ深度が異なる複数の断層画像が作製される。
When using the scatterer internal observation device in this aspect,
The illumination unit irradiates the scatterer with light, the detection unit detects the backscattered light of the irradiated light, and acquires light intensity data of the backscattered light. Next, the acquired light intensity data is analyzed based on the imaging amount, and a plurality of tomographic images having different depths are produced.
 次いで、表示部によって、作製された複数の断層画像を表示される。複数の断層画像の全てを同時に表示してもよく、或いは幾つかを同時に表示してもよい。 Next, a plurality of produced tomographic images are displayed on the display unit. All of a plurality of tomographic images may be displayed simultaneously, or some may be displayed simultaneously.
 次いで、表示された複数の断層画像から、使用者が所望の画像を選択し、その結果を入力部を用いて入力する。表示部は、入力された指示に基づいて、選択された断層画像を表示する。 Next, the user selects a desired image from the displayed tomographic images, and inputs the result using the input unit. The display unit displays the selected tomographic image based on the input instruction.
 上記した一連の工程は、散乱体の観測の間、繰り返し連続的に行われ、表示される断層画像は逐次更新される。断層画像の選択は使用者が定期的に行ってもよいが、使用者により選択された断層画像の条件を記憶し、その後の選択は該条件に従って自動で行ってもよい。ここで、断層画像の条件とは、例えば深度などである。 The series of steps described above are continuously repeated during the observation of the scatterer, and the displayed tomographic images are sequentially updated. The selection of the tomographic image may be performed periodically by the user, but the condition of the tomographic image selected by the user may be stored, and the subsequent selection may be automatically performed according to the condition. Here, the condition of the tomographic image is, for example, depth.
 以上に説明した各態様における散乱体内部観測装置は、さらに、画像化部に、照明部によって照射される照明範囲の形状を認識する照明範囲認識部と、該照明範囲認識部によって認識された照明範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する抽出位置決定部とを含むことができる。 In the scatterer internal observation device in each aspect described above, the imaging unit further includes an illumination range recognition unit that recognizes the shape of the illumination range irradiated by the illumination unit, and the illumination recognized by the illumination range recognition unit. An extraction position determining unit that determines an extraction position of light intensity data for producing a tomographic image based on the shape of the range.
 以上説明したように、第3の側面によれば、散乱体の断層画像を効率的且つ高精度に取得することができる。また、異質部分が存在する断層画像を簡便に選択、表示することができ、実用の際の便宜を向上させることができる。 As described above, according to the third aspect, a tomographic image of a scatterer can be acquired efficiently and with high accuracy. In addition, it is possible to easily select and display a tomographic image in which a heterogeneous portion exists, and it is possible to improve convenience in practical use.
 当該散乱体内部観測装置は、前記照明部によって照射される照明範囲(すなわち照射範囲)の形状を認識する照明範囲認識部(すなわち照射範囲認識部)と、前記照明範囲認識部によって認識された照明範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する抽出位置決定部とを含む画像化部を具備する。 The scatterer internal observation device includes an illumination range recognition unit (that is, an irradiation range recognition unit) that recognizes a shape of an illumination range (that is, an irradiation range) irradiated by the illumination unit, and illumination that is recognized by the illumination range recognition unit. An imaging unit including an extraction position determination unit that determines an extraction position of light intensity data for producing a tomographic image based on the shape of the range;
 第3の側面は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The third aspect is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 また更に、第3の側面は以下に示す(B1)~(B12)のように表現される発明であると解されてもよい。 Furthermore, the third aspect may be understood as an invention expressed as (B1) to (B12) shown below.
 このような第3の側面は、次の(B1)~(B14)のように表される発明であると解されてもよい。 Such a third aspect may be understood as an invention expressed as the following (B1) to (B14).
 (B1) 散乱体内部の異質部分(すなわち観察対象)の情報を取得する散乱体内部観測装置(すなわち散乱体内部観察装置)であって、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射するように構成された照明部(すなわち光照射部)と、前記照明部により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得するように構成された検出部と、前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製するように構成された画像化部(すなわち画像構築部)と、前記作製された複数の断層画像から、前記異質部分が表示された断層画像を選択するように構成された解析部(すなわち選択部)と、前記選択された断層画像を表示するように構成された表示部を備えることを特徴とする散乱体内部観測装置。 (B1) A scatterer internal observation device (that is, a scatterer internal observation device) that acquires information on a heterogeneous portion (that is, an observation target) inside the scatterer, and includes a scattering medium that constitutes the scatterer and the heterogeneous portion. An illuminating unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics (that is, a light irradiating unit), and detecting backscattered light of the light irradiated by the illuminating unit, and the backscatter A detection unit configured to acquire light intensity data of light, and an imaging unit configured to analyze the acquired light intensity data and generate a plurality of tomographic images having different depths (that is, images) A construction unit), an analysis unit configured to select a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images (that is, a selection unit), and the selected tomographic image. Scattering medium observation device, characterized in that it comprises a configured display unit to.
 (B2) 前記(B1)の散乱体内部観測装置を用いた散乱体内部観測方法。 (B2) A scatterer internal observation method using the above (B1) scatterer internal observation device.
 (B3) 散乱体内部の異質部分の情報を取得する散乱体内部観測装置であって、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射するように構成された照明部と、前記照明部により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得するように構成された検出部と、前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製するように構成された画像化部と、作製された断層画像を表示するように構成された表示部と、前記表示された複数の断層画像から、所望の断層画像を選択して表示させるように構成された入力部とを備えることを特徴とする散乱体内部観測装置。 (B3) A scatterer internal observation device that acquires information on a heterogeneous portion inside the scatterer, wherein the scatterer includes light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the heterogeneous portion. An illumination unit configured to irradiate the light, a detection unit configured to detect backscattered light of the light irradiated by the illumination unit, and acquire light intensity data of the backscattered light, and the acquisition Analyzing the generated light intensity data, an imaging unit configured to generate a plurality of tomographic images each having a different depth, a display unit configured to display the generated tomographic images, and the display A scatterer internal observation device comprising: an input unit configured to select and display a desired tomographic image from a plurality of tomographic images.
 (B4) 前記(B3)の散乱体内部観測装置を用いた散乱体内部観測方法。 (B4) A scatterer internal observation method using the scatterer internal observation device of (B3) above.
 (B5) 前記(B2またはB4)に記載の散乱体内部観測装置であって、前記照明部によって照射される照明範囲(すなわち照射範囲)の形状を認識するように構成された照明範囲認識部(すなわち照射範囲認識部)と、前記照明範囲認識部によって認識された照明範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定するように構成された抽出位置決定部とを含む画像化部を更に具備する散乱体内部観測装置。 (B5) The scatterer internal observation device according to (B2 or B4), wherein an illumination range recognition unit configured to recognize a shape of an illumination range (that is, an irradiation range) irradiated by the illumination unit ( That is, an extraction position determination unit configured to determine an extraction position of light intensity data for producing a tomographic image based on the shape of the illumination range recognized by the illumination range recognition unit The scatterer inside observation apparatus which further comprises the imaging part containing these.
 (B6) 散乱体内部の異質部分(即ち、観察対象)の情報を取得する散乱体内部観測装置(即ち、観察対象)であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射するように構成された照明部(即ち、光照射部)と、
 前記照明部により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得するように構成された検出部と、
 前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製するように構成された画像化部(即ち、画像構築部)と、
 前記作製された複数の断層画像から、前記異質部分が表示された断層画像を選択するように構成された解析部(即ち、選択部)と、
 前記選択された断層画像を表示するように構成された表示部を備えることを特徴とする、散乱体内部観測装置。
(B6) A scatterer internal observation device (that is, an observation object) that acquires information on a heterogeneous portion (that is, an observation object) inside the scatterer,
An illumination unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; and
A detection unit configured to detect backscattered light of the light irradiated by the illumination unit and obtain light intensity data of the backscattered light;
An imaging unit configured to analyze the acquired light intensity data and create a plurality of tomographic images each having a different depth (that is, an image construction unit);
An analysis unit configured to select a tomographic image in which the heterogeneous portion is displayed from the prepared plurality of tomographic images (that is, a selection unit);
A scatterer internal observation device, comprising: a display unit configured to display the selected tomographic image.
 (B7) 前記異質部分が表示された断層画像が、所定のコントラスト条件を満たす断層画像である、前記(B6)に記載の散乱体内部観測装置。 (B7) The scatterer internal observation device according to (B6), wherein the tomographic image on which the heterogeneous portion is displayed is a tomographic image satisfying a predetermined contrast condition.
 (B8) 散乱体内部の異質部分の情報を取得する散乱体内部観測装置であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射するように構成された照明部と、
 前記照明部により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得するように構成された検出部と、
 前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製するように構成された画像化部と、
 作製された断層画像を表示するように構成された表示部と、
 前記表示された複数の断層画像から、所望の断層画像を選択して表示させるように構成された入力部とを備えることを特徴とする、散乱体内部観測装置。
(B8) A scatterer internal observation device that acquires information on a heterogeneous portion inside the scatterer,
An illumination unit configured to irradiate the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
A detection unit configured to detect backscattered light of the light irradiated by the illumination unit and obtain light intensity data of the backscattered light;
An imaging unit configured to analyze the acquired light intensity data and create a plurality of tomographic images each having a different depth;
A display unit configured to display the produced tomographic image;
An scatterer internal observation device comprising: an input unit configured to select and display a desired tomographic image from the displayed tomographic images.
 (B9) 前記光学特定の異なる波長を少なくとも含む光が、ヘモグロビンに吸収を持つ近赤外領域の波長を含む光である、前記(B6)~(B8)の何れか一に記載の散乱体内部観測装置。 (B9) The inside of the scatterer according to any one of (B6) to (B8), wherein the light including at least the optically specific different wavelength is light including a wavelength in the near-infrared region having absorption in hemoglobin. Observation device.
 (B10) 散乱体内部の異質部分を観測する散乱体内部観測方法であって、
 (a) 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する工程と、
 (b) 前記照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
 (c) 前記工程により取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する工程と、
 (d) 前記作製された複数の断層画像から、前記異質部分が表示された断層画像を選択する工程と、
 (e) 前記工程により選択された断層画像を表示する工程と、
を含むことを特徴とする方法。
(B10) A scatterer internal observation method for observing a heterogeneous part inside a scatterer,
(A) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
(B) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light;
(C) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth;
(D) selecting a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images;
(E) displaying the tomographic image selected in the step;
A method comprising the steps of:
 (B11) 前記工程(d)が、作製された断層画像が所定のコントラスト条件を満たすかどうかを判定する工程を含み、所定のコントラスト条件を満たす断層画像を異質部分が表示された断層画像として選択することを特徴とする、前記(B10)に記載の方法。 (B11) The step (d) includes a step of determining whether the produced tomographic image satisfies a predetermined contrast condition, and selects a tomographic image satisfying the predetermined contrast condition as a tomographic image in which a heterogeneous portion is displayed. The method according to (B10) above, wherein:
 (B12) 前記工程(a)~(e)が繰り返し行われ、表示される断層画像が更新されることを特徴とする前記(B10)又は(B11)に記載の方法。 (B12) The method according to (B10) or (B11), wherein the steps (a) to (e) are repeatedly performed, and the displayed tomographic image is updated.
 (B13) 散乱体内部の異質部分を観測する散乱体内部観測方法であって、
 (a) 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する工程と、
 (b) 前記照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
 (c) 前記工程により取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する工程と、
 (d) 前記作製された断層画像を表示する工程と、
 (e) 前記表示された複数の断層画像から、所望の画像を選択して表示させる工程と、
を含むことを特徴とする方法。
(B13) A scatterer internal observation method for observing a heterogeneous portion inside a scatterer,
(A) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
(B) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light;
(C) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth;
(D) displaying the produced tomographic image;
(E) selecting and displaying a desired image from the displayed tomographic images;
A method comprising the steps of:
 (B14) 前記工程(a)~(d)が繰り返し行われ、
 前記工程(e)において選択された断層画像と同じ条件の断層画像が選択されて表示が更新されることを特徴とする前記(B13)に記載の方法。
(B14) Steps (a) to (d) are repeated,
The method according to (B13), wherein a display is updated by selecting a tomographic image having the same condition as the tomographic image selected in step (e).
 以上のような第3の側面によれば、次のような従来の問題点を解決することが可能である。 According to the third aspect as described above, the following conventional problems can be solved.
 従来の装置では、光照射部と光検出部が一体に構成されているために、照射位置と検出位置との距離が固定されている。そのため、観測できる深度が決まっており、一定の深度でしか断層画像を作製できないという問題がある。 In the conventional apparatus, since the light irradiation unit and the light detection unit are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, the depth that can be observed is determined, and there is a problem that a tomographic image can be created only at a certain depth.
 また、断層画像を得るためには、多くの測定点で測定を行わなければならず、断層画像を取得するのに多くの時間を要するという問題がある。 In addition, in order to obtain a tomographic image, measurement must be performed at many measurement points, and there is a problem that it takes a lot of time to acquire a tomographic image.
 このような問題についても、本願発明の第3の側面において解決することが可能である。 Such a problem can also be solved in the third aspect of the present invention.
 このような側面によれば、異質部分が存在する深度における断層画像を、効率的に取得することが可能な方法および散乱体内部観測装置が提供される。 According to such an aspect, a method and a scatterer internal observation device capable of efficiently acquiring a tomographic image at a depth at which a heterogeneous portion exists are provided.
 従って、このような態様により、従来よりも良好に生体内部を観察できる方法および装置を提供することが可能となる。 Therefore, according to such an embodiment, it is possible to provide a method and apparatus that can observe the inside of a living body better than before.
 <第4の側面>
 本発明に従う第4の側面において、散乱体の表層付近から生じるノイズを除去する機能を備えた散乱体内部観測装置が提供される。以下に説明する本発明の第4の側面の1または1以上の態様は、上述した第1の側面、第2の側面および/または第3の側面の1または1以上の態様と組み合わせて使用されてもよい。また、第4の側面に示される1の態様が単独で、または1または1以上の態様が組み合わされて使用されてもよい。
<Fourth aspect>
In a fourth aspect according to the present invention, there is provided a scatterer internal observation device having a function of removing noise generated from the vicinity of the surface layer of the scatterer. One or more embodiments of the fourth aspect of the present invention described below are used in combination with one or more embodiments of the first, second and / or third aspects described above. May be. Further, one embodiment shown in the fourth aspect may be used alone, or one or more embodiments may be used in combination.
 (第6の実施形態)
 本態様における散乱体内部観測装置は、散乱体の表面や表層付近によるノイズを除去した、深部処理画像を作製するものである。検出部によって検出される後方散乱光には、散乱体の表面からの反射光も含まれている。散乱体の表面には、微小な凹凸が存在するため、反射光が散乱して強弱を生じ、断層画像を作製する際のノイズとなり得る。また、検出される後方散乱光には比較的浅い深度からの後方散乱光も含まれており、深部からの後方散乱光によって断層画像を作製する際にはこれもノイズとなる。
(Sixth embodiment)
The scatterer internal observation device in this aspect is for producing a deep processing image from which noise due to the surface of the scatterer and the vicinity of the surface layer is removed. The backscattered light detected by the detector includes reflected light from the surface of the scatterer. Since there are minute irregularities on the surface of the scatterer, the reflected light scatters and produces strength, which can be noise when creating a tomographic image. Further, the backscattered light to be detected includes backscattered light from a relatively shallow depth, and this also becomes noise when a tomographic image is produced by backscattered light from a deep part.
 そこで、本態様における散乱体内部観測装置は、ノイズが除去された断層画像を提供することを可能にするものである。 Therefore, the scatterer internal observation device according to this aspect makes it possible to provide a tomographic image from which noise has been removed.
 ノイズが除去された断層画像は、以下の(1)~(3)のいずれかの方法によって作製することができる。 The tomographic image from which noise has been removed can be produced by any of the following methods (1) to (3).
 (1)表層断層画像と深部断層画像を別々に作製し、深部断層画像から表層断層画像を減算する。ここで、表層断層画像とは、散乱体の比較的浅い部分からの後方散乱光と、散乱体の表面からの反射光とから作製される断層画像である。一方、深部断層画像とは、所望の深度の断層画像であるが、これには表層からの後方散乱光も含まれている。 (1) A surface tomographic image and a deep tomographic image are created separately, and the surface tomographic image is subtracted from the deep tomographic image. Here, the surface layer tomographic image is a tomographic image prepared from backscattered light from a relatively shallow portion of the scatterer and reflected light from the surface of the scatterer. On the other hand, the deep tomographic image is a tomographic image having a desired depth, and includes backscattered light from the surface layer.
 表層断層画像と深部断層画像を別々に作製するために、本方法では、図24に示すように、照明部と検出部の距離を変化させる。表層断層画像を作製する際には、図24(a)に示すように、αの位置で検出する。すると、図24(b)に示すような表層断層画像Xが得られる。また、深部断層画像を作製する際には、図24(c)に示すように、βの位置で検出する。すると、図24(d)に示すような深部断層画像Yが得られる。 In this method, as shown in FIG. 24, the distance between the illumination unit and the detection unit is changed in order to separately produce the surface layer tomographic image and the deep part tomographic image. When creating a surface layer tomographic image, detection is performed at the position of α as shown in FIG. Then, a surface layer tomographic image X as shown in FIG. 24B is obtained. Further, when creating a deep tomographic image, detection is performed at the position β as shown in FIG. Then, a deep tomographic image Y as shown in FIG.
 なお、図24(a)及び(c)では、説明のために、照明部と検出部の距離を変化させたが、これに限定されず、検出部によって取得された光強度データを解析する際、表層画像を作製するためにデータを抽出する点の距離を、深部断層画像を作製するためにデータを抽出する点の距離よりも短くすることにより簡便にそれぞれの断層画像を得ることができる。 In FIGS. 24A and 24C, the distance between the illumination unit and the detection unit is changed for the sake of explanation. However, the present invention is not limited to this, and the light intensity data acquired by the detection unit is analyzed. Each tomographic image can be easily obtained by making the distance of the point from which data is extracted to create the surface layer image shorter than the distance of the point from which data is extracted to create the deep tomographic image.
 次に、図24(e)に示すように、深部断層画像Yから表層断層画像Xを減算する。これにより、表層のノイズが除去された深部処理画像Zを得ることができる。なお、表層断層画像Xは、深部断層画像Yよりも光強度が大きいため、表層断層画像Xに定数nを掛けて光強度を調節する。定数nは、表層断層画像Xと深部断層画像Yの光強度の平均が同程度になるように決定すればよい。 Next, the surface tomographic image X is subtracted from the deep tomographic image Y as shown in FIG. Thereby, the deep part processed image Z from which the noise of the surface layer was removed can be obtained. Since the surface tomographic image X has a light intensity higher than that of the deep tomographic image Y, the light intensity is adjusted by multiplying the surface layer tomographic image X by a constant n. The constant n may be determined so that the average light intensity of the surface tomographic image X and the deep tomographic image Y is approximately the same.
 演算方法は、例えば作製された画像上の画素毎に、光強度を演算することにより行うことができる。また複数の画素の光強度の平均を算出し、その平均値を用いて演算してもよいが、これらに限定されず、適切な方法を選択することができる。 The calculation method can be performed, for example, by calculating the light intensity for each pixel on the produced image. Moreover, although the average of the light intensity of several pixels may be calculated and it may calculate using the average value, it is not limited to these, An appropriate method can be selected.
 (2)上記(1)の方法と同様に、表層断層画像と深部断層画像を別々に作製する。本方法では、各断層画像を作製するために、異なる波長の光を照明として用いる。例えば、図25(a)に示すように、表層断層画像を作製する場合は、波長λ1の光を照射する光源1を用いる。すると、図25(b)に示すような表層断層画像Xが得られる。また、深部断層画像を作製する際には、図25(c)に示すように、波長λ2の光を照射する光源2を用いる。すると、図25(d)に示すような深部断層画像Yが得られる。表層断層画像を作製する際には、より散乱の強い光、即ち、波長の短い光を用いる。反対に、深部断層画像を作製する際には、より散乱の弱い光を用いる。 (2) Similar to the method (1) above, a surface layer tomographic image and a deep tomographic image are prepared separately. In this method, in order to produce each tomographic image, light of different wavelengths is used as illumination. For example, as shown in FIG. 25A, when producing a surface layer tomographic image, a light source 1 that emits light of wavelength λ1 is used. Then, a surface layer tomographic image X as shown in FIG. 25B is obtained. Further, when producing a deep tomographic image, as shown in FIG. 25C, a light source 2 that irradiates light having a wavelength λ2 is used. Then, the deep part tomographic image Y as shown in FIG.25 (d) is obtained. When a surface layer tomographic image is produced, light having a higher scattering, that is, light having a short wavelength is used. On the other hand, when producing a deep tomographic image, light with less scattering is used.
 次いで、図25(e)に示すように、深部断層画像Yから表層断層画像Xを減算する。断層画像の演算方法は上記方法(1)と同様である。これにより、表層のノイズが除去された断層画像Zを得ることができる。 Next, as shown in FIG. 25 (e), the surface tomographic image X is subtracted from the deep tomographic image Y. The calculation method of the tomographic image is the same as the method (1). Thereby, the tomographic image Z from which the noise on the surface layer is removed can be obtained.
 (3)図26(a)に示すように、通常の通りに後方散乱光の検出を行い、図26(b)に示すような深部断層画像Yを作製する。この深部断層画像Yを2次元フーリエ変換すると、図26(c)に示すような、横軸に深部断層画像Yの水平方向周波数、縦軸に深部断層画像Yの垂直方向周波数をとり、フーリエ変換後の振幅スペクトルを輝度値として表した画像が得られる。なお、ここでの周波数とは、画像上の周波数であり、これは空間周波数とも称する。 (3) As shown in FIG. 26A, backscattered light is detected as usual, and a deep tomographic image Y as shown in FIG. When this deep tomographic image Y is two-dimensionally Fourier transformed, as shown in FIG. 26C, the horizontal axis represents the horizontal frequency of the deep tomographic image Y, and the vertical axis represents the vertical frequency of the deep tomographic image Y. An image representing the later amplitude spectrum as a luminance value is obtained. In addition, the frequency here is a frequency on an image, and this is also called a spatial frequency.
 図26(c)に示す画像において、深部断層画像Yの空間周波数の低周波成分は図26(c)に示す画像の中心部に対応し、高周波成分は図26(c)に示す画像の周辺部に対応する。画像において、高周波数部分は、散乱体の表面及び表層から得られるノイズ成分に対応する。反対に、低周波数部分は、散乱体の深部から得られる成分に対応する。 In the image shown in FIG. 26C, the low frequency component of the spatial frequency of the deep tomographic image Y corresponds to the center of the image shown in FIG. 26C, and the high frequency component is the periphery of the image shown in FIG. Corresponding to the part. In the image, the high frequency portion corresponds to the noise component obtained from the surface and surface layer of the scatterer. Conversely, the low frequency part corresponds to the component obtained from the deep part of the scatterer.
 このフーリエ変換後の画像において、低周波数部分のみを選択し、逆フーリエ変換することにより、ノイズが除去された深部処理画像Zを得ることができる。 In the image after the Fourier transform, only the low frequency part is selected and the inverse Fourier transform is performed to obtain the deep processed image Z from which noise has been removed.
 また或いは、図26(d)に示すように、深部断層画像Yから、高周波数成分を逆フーリエ変換して得られた表層断層画像Xを減算することによって、深部処理画像Zを得ることもできる。 Alternatively, as shown in FIG. 26 (d), the deep processing image Z can be obtained by subtracting the surface layer tomographic image X obtained by inverse Fourier transform of the high frequency component from the deep tomographic image Y. .
 なお、高周波数と低周波数を区切る閾値は、観察対象の異質部分のサイズや位置によって、適宜設定することができる。 In addition, the threshold value which divides high frequency and low frequency can be set suitably according to the size and position of the heterogeneous part to be observed.
 以上に説明した方法は、上記第1~4実施形態にかかる散乱体内部観測装置によって実施することができる。例えば、深部断層画像および表層断層画像の作成は、画像処理部によって行い、各演算は解析/処理部によって行うことができる。 The method described above can be implemented by the scatterer internal observation device according to the first to fourth embodiments. For example, the creation of the deep tomographic image and the surface tomographic image can be performed by the image processing unit, and each calculation can be performed by the analysis / processing unit.
 或いは、画像化部、演算部を含む制御部を備えてもよく、構成は適宜選択することができる。 Alternatively, a control unit including an imaging unit and a calculation unit may be provided, and the configuration can be selected as appropriate.
 第4の側面は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The fourth aspect is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 以上の説明によれば、第4の側面は以下に示す(C1)~(C4)ように表現される発明であると解されてもよい。 According to the above description, the fourth aspect may be understood as an invention expressed as (C1) to (C4) shown below.
 (C1) 散乱体内部の異質部分を観測する散乱体内部観測方法であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する工程と、
 前記照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
 前記工程により取得された光強度データを解析し、散乱体表面における検出領域を決定する工程と、
 前記工程により決定された検出領域の後方散乱光を検出し、光強度データを取得する工程と、
 前記工程により取得された光強度データから、前記散乱体の断層画像を作製する画像処理工程を含むことを特徴とする方法。
(C1) A scatterer internal observation method for observing a heterogeneous part inside a scatterer,
Irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; and
Detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light;
Analyzing the light intensity data acquired by the step, and determining a detection region on the scatterer surface;
Detecting the backscattered light of the detection region determined by the step, obtaining light intensity data;
A method comprising an image processing step of creating a tomographic image of the scatterer from the light intensity data acquired by the step.
 (C2) 前記後方散乱光の検出が行われる検出範囲に、前記決定された検出領域が含まれるように調節する工程を含む、前記(C1)に記載の方法。 (C2) The method according to (C1), including a step of adjusting the detection range in which the backscattered light is detected to include the determined detection region.
 (C3) 前記散乱体に光が照射される照明範囲と、前記検出範囲を、散乱体表面上で一定の位置関係を維持したまま走査させて後方散乱光を検出し、光強度データを取得する工程をさらに含む、前記(C2)に記載の方法。 (C3) Scanning the illumination range where the light is irradiated to the scatterer and the detection range while maintaining a certain positional relationship on the scatterer surface to detect backscattered light and obtain light intensity data The method according to (C2), further comprising a step.
 (C4) 前記検出領域を決定する工程が自動で行われることを特徴とする、前記(C1)~(C3)の何れか一に記載の方法。 (C4) The method according to any one of (C1) to (C3), wherein the step of determining the detection area is automatically performed.
 第4の側面に従う方法および装置は、生体を観測する方法および/または装置として利用することができ、特に内視鏡や硬性鏡などにおいて利用することができる。 The method and apparatus according to the fourth aspect can be used as a method and / or apparatus for observing a living body, and can be used particularly in an endoscope or a rigid endoscope.
 このような態様により、散乱体の表面付近から生じるノイズを除去することが可能になり、それにより、従来よりも良好に生体内部を観察できる方法および装置が提供することが可能になる。 Such an aspect makes it possible to remove noise generated from the vicinity of the surface of the scatterer, thereby providing a method and apparatus capable of observing the inside of a living body better than before.
 <第5の側面>
 第5の側面によれば、後方散乱光を良好に画像化する方法およびそれを利用する生体内部を観察する装置が提供される。
<Fifth aspect>
According to the fifth aspect, a method for favorably imaging backscattered light and an apparatus for observing the inside of a living body using the method are provided.
 例えば、光を点照射し、そこから一定距離だけ離れた点からの後方散乱光を検出する機能を内部観察装置に搭載する場合、照明光と検出光の光路が平行ではない。そのため、照明点と検出点との間の距離(以下、「SD」と記載する)は観察距離により変化する。 For example, when the internal observation apparatus is equipped with a function of spot-irradiating light and detecting backscattered light from a point separated by a certain distance, the optical paths of the illumination light and the detection light are not parallel. Therefore, the distance between the illumination point and the detection point (hereinafter referred to as “SD”) varies depending on the observation distance.
 観察距離が長いと、SD距離が離れて、光量が減少する。そのため、ノイズに対する信号の割合(以下、「SNR」と記載する)が低くなる。また、観察距離が短いと、SD距離が近づき、表面拡散光が増加する。そのため、散乱体内部からの散乱光が埋もれて検出できなくなる。 If the observation distance is long, the SD distance is increased and the amount of light decreases. Therefore, the ratio of signals to noise (hereinafter referred to as “SNR”) is reduced. In addition, when the observation distance is short, the SD distance approaches and the surface diffused light increases. Therefore, the scattered light from inside the scatterer is buried and cannot be detected.
 第5の側面によれば、このような問題を解決することの可能な方法および生体内部を観察する装置が提供される。 According to the fifth aspect, a method capable of solving such a problem and an apparatus for observing the inside of a living body are provided.
 以下に説明する本発明の第5の側面の1または1以上の態様は、上述した第1の側面、第2の側面、第3の側面および/または第4の側面の1または1以上の態様と組み合わせて使用されてもよい。また、第5の側面に示される1の態様が単独で、または1または1以上の態様が組み合わされて使用されてもよい。 One or more embodiments of the fifth aspect of the present invention described below are one or more embodiments of the first, second, third, and / or fourth aspects described above. May be used in combination. Further, one embodiment shown in the fifth aspect may be used alone, or one or more embodiments may be used in combination.
 以下において使用される「被写体」の語は、「観察対象」または「測定対象」と交換可能に使用される。また、これらの語は何れも「対象」とも記載されてよい。 In the following, the term “subject” is used interchangeably with “observation object” or “measurement object”. In addition, any of these words may be described as “subject”.
 最初に、第5の側面において使用できる内部観察装置の基本的な構成および撮像方法について説明する。 First, the basic configuration and imaging method of the internal observation apparatus that can be used in the fifth aspect will be described.
 (第7の実施形態)
 図27に、第5の側面において使用できる第7の実施形態の1例である内部観察装置を示す。図27は、本実施形態の装置全体の構成を示すブロック構成図である。本観察装置は、オペレータが数値および測定条件などの所望の情報を入力するように構成された入力部と、被写体を照射するための光源と、前記光源からの照射光からの光を被写体表面に対して照射口を通して照射するように構成された照明用光学系と、被写体表面から出てくる後方散乱光を捉えるように構成された検出用光学系と、前記後方散乱光を電気信号に変換するように構成された検出器と、前記被写体表面上における照射位置と検出位置を走査させるように構成された走査機構と、前記光源と前記走査機構を制御するように構成された制御部と、前記検出器からの電気信号の強度を測定するように構成された計測部と、前記走査した際に、測定された電気信号の強度に基づいて画像を生成するように構成された画像化部と、前記走査の経路と調整内容を演算するように構成された演算部と、前記生成された画像を表示するように構成された表示部と、を備える。
(Seventh embodiment)
FIG. 27 shows an internal observation apparatus as an example of the seventh embodiment that can be used in the fifth aspect. FIG. 27 is a block diagram showing the overall configuration of the apparatus according to this embodiment. The observation apparatus includes an input unit configured to allow an operator to input desired information such as numerical values and measurement conditions, a light source for irradiating the subject, and light from the light emitted from the light source on the subject surface. On the other hand, an illumination optical system configured to irradiate through an irradiation port, a detection optical system configured to capture backscattered light emitted from the subject surface, and converts the backscattered light into an electrical signal. A detector configured as described above, a scanning mechanism configured to scan an irradiation position and a detection position on the surface of the subject, a control unit configured to control the light source and the scanning mechanism, A measurement unit configured to measure the intensity of the electrical signal from the detector; and an imaging unit configured to generate an image based on the measured intensity of the electrical signal when scanned. Said running Comprising the the configured computing unit to compute the adjustment contents route, and a display unit configured to display the generated image.
 所望に応じてオペレータにより入力された情報に応じて、光源から照射された光は、照明用光学系を通って照射口を経てから被写体に照射される。このと、照射光は、被写体表面の所定の位置の点および/または領域に対して照射されるように走査機構により制御される。走査機構による走査は、制御部により制御される。走査機構による制御は、照射用光学系および/または照射口の位置を変更することにより行う。被写体からの検出されるべき光は、検出用光学系の検出口で捉えられ、検出用光学系を通り検出器に送られる。検出用光学系および/または検出口は、制御部により制御された走査機構により所望の位置の光を受けるように走査される。検出口で捉えられた光は、検出用光学系を通り検出器に送られ、検出器において、電気信号に変換される。変化された電気信号の強度が計測部により測定される。計測部は、得られた複数の電気信号強度から画像を生成する。更に、演算部は、走査の経路と調整内容を演算する。 Depending on the information input by the operator as desired, the light irradiated from the light source passes through the illumination optical system, passes through the irradiation port, and is then irradiated onto the subject. At this time, the irradiation light is controlled by the scanning mechanism so as to irradiate a point and / or region at a predetermined position on the surface of the subject. Scanning by the scanning mechanism is controlled by the control unit. Control by the scanning mechanism is performed by changing the position of the irradiation optical system and / or the irradiation port. The light to be detected from the subject is captured by the detection port of the detection optical system, and sent to the detector through the detection optical system. The detection optical system and / or the detection port is scanned so as to receive light at a desired position by a scanning mechanism controlled by the control unit. The light captured at the detection port passes through the detection optical system and is sent to the detector, where it is converted into an electrical signal. The intensity of the changed electric signal is measured by the measuring unit. The measurement unit generates an image from the obtained plurality of electric signal intensities. Further, the calculation unit calculates a scanning path and adjustment contents.
 入力部は、表示された複数の断層画像から使用者が所望の断層画像を選択し、その結果を入力するために使用されてもよい。例えば、選択画像を指示するキーボードなどであってもよく、或いは、表示された画像にタッチしたり、入力ペンで囲むなどして指示したりする、タッチパネルを用いたモニターなどであってもよいが、これらに限定されず、種々の入力手段が用いられ得る。 The input unit may be used by the user to select a desired tomographic image from a plurality of displayed tomographic images and input the result. For example, a keyboard or the like that indicates a selected image may be used, or a monitor that uses a touch panel that indicates an image by touching the displayed image or surrounding it with an input pen may be used. However, the present invention is not limited to these, and various input means can be used.
 ここにおいて、「光源」、「照明用光学系」および「照射口」を総じて「照射部」と称してもよい。「検出用光学系」、「検出口」および「検出器」を総じて「検出部」と称してもよい。「計測部」は画像を生成する側面から「画像化部」と呼ばれてもよい。 Here, “light source”, “illumination optical system”, and “irradiation port” may be collectively referred to as “irradiation unit”. The “detection optical system”, “detection port”, and “detector” may be collectively referred to as “detection unit”. The “measurement unit” may be called an “imaging unit” from the side of generating an image.
 制御部、計測部および演算部は、それぞれ独立して構成され配置されてもよく、それらの1以上が組み合わされて1つのユニットとして構成されてもよく、それらの全てが1つのユニットとして構成されてもよい。また、制御部は、走査機構、検出器での光から電気信号への変換、計測部における測定および画像の生成、並びに演算部における各種演算を全て制御してもよく、それらの一部を制御するように複数の制御部が配されてもよく、それらの各々について対応する制御部が複数配置されてもよい。 The control unit, the measurement unit, and the calculation unit may be configured and arranged independently, or one or more of them may be combined to form a single unit, or all of them may be configured as a single unit. May be. In addition, the control unit may control all of the scanning mechanism, the conversion of light from the detector into an electrical signal, measurement in the measurement unit and image generation, and various calculations in the calculation unit, and control some of them. As such, a plurality of control units may be arranged, and a plurality of corresponding control units may be arranged for each of them.
 光源は、照明用光学系に接続されている。第1の走査機構は、制御部からの指示に従って照明用光学系を走査するように構成されている。同様に第2の走査機構は、制御部からの指示に従って検出用光学系を走査するように構成されている。検出器は、検出用光学系に接続され、検出用光学系に入った後方散乱光を検出するように構成されている。 The light source is connected to the illumination optical system. The first scanning mechanism is configured to scan the illumination optical system in accordance with an instruction from the control unit. Similarly, the second scanning mechanism is configured to scan the detection optical system in accordance with an instruction from the control unit. The detector is connected to the detection optical system and configured to detect backscattered light that has entered the detection optical system.
 このような図27の構成により、内部観察装置は、光学系を動かすことにより走査を可能にする。 27, the internal observation apparatus enables scanning by moving the optical system.
 更に当該観察装置は、記憶部を備えてもよい。記憶部には、ルックアップテーブル、画像作成プログラムおよび/または走査プロトコールなどの情報を格納することが可能である。これらの情報に基づき、および/またはこれらの情報を参照することにより制御部が、所望の構成要素に対して所望の制御を行ってよい。また、更に当該観察装置は、記録部を備えてもよい。記録部は、一時的に情報を格納させるように構成されてもよく、また、得られた画像の一部および/または全体を格納するように構成されてよい。 Furthermore, the observation apparatus may include a storage unit. The storage unit can store information such as a look-up table, an image creation program, and / or a scanning protocol. Based on these information and / or by referring to the information, the control unit may perform a desired control on a desired component. Furthermore, the observation apparatus may further include a recording unit. The recording unit may be configured to temporarily store information, and may be configured to store a part and / or the entire obtained image.
 更に、また第7の実施形態は、更に、第1の側面、並びに第1の実施形態および第2の実施形態において記載した構成および部材と同様の構成および部材を利用してもよい。 Furthermore, the seventh embodiment may further use the same configuration and members as those described in the first aspect and the first and second embodiments.
 第3の側面は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The third aspect is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 (第8の実施形態)
 図28に、第5の側面において使用できる第8の実施形態の1例である内部観察装置を示す。図28は、本実施形態の装置全体の構成を示すブロック構成図である。
(Eighth embodiment)
FIG. 28 shows an internal observation apparatus as an example of the eighth embodiment that can be used in the fifth aspect. FIG. 28 is a block diagram showing the overall configuration of the apparatus according to this embodiment.
 本観察装置は、光軸の途中に、走査機構を配することにより、光軸を直接に動かすことにより走査を行うように構成されている。この点を除いて、図27に記載した第7の実施形態と同様である。 This observation apparatus is configured to scan by moving the optical axis directly by arranging a scanning mechanism in the middle of the optical axis. Except for this point, this embodiment is the same as the seventh embodiment described in FIG.
 従って、光源と、光源からの光を照明用光学系に導くように構成された第1の導光光学系と、前記第1の導光光学系からの光を受けて被写体表面に対して光を照射するように構成された照明用光学系と、前記第1の導光光学系からの光を前記照明用光学系に導く光路上で、光軸を変更し、照射される光を走査するように構成された少なくとも1の第1の走査機構と、検出用光学系に入った光を検出器に導くための第2の導光光学系と、前記第2の導光光学系からの光を検出器に導く光路上で、光軸を変更し、検出されるべき光を走査するように構成された少なくとも1の第2の走査機構とを具備する。 Accordingly, the light source, the first light guide optical system configured to guide the light from the light source to the illumination optical system, and the light from the first light guide optical system receiving the light to the subject surface The illumination optical system configured to irradiate the light, and the optical axis is changed on the optical path for guiding the light from the first light guide optical system to the illumination optical system, and the irradiated light is scanned. At least one first scanning mechanism configured as described above, a second light guide optical system for guiding light entering the detection optical system to the detector, and light from the second light guide optical system At least one second scanning mechanism configured to change the optical axis and scan the light to be detected on the optical path leading to the detector.
 (第9の実施形態)
 図29に第5の側面において使用できる第9の実施形態の1例である内部観察装置を示す。図29は、本実施形態の装置全体の構成を示すブロック構成図である。
(Ninth embodiment)
FIG. 29 shows an internal observation apparatus as an example of the ninth embodiment that can be used in the fifth aspect. FIG. 29 is a block diagram showing the overall configuration of the apparatus according to this embodiment.
 本観察装置は、第1の走査機構と第2の走査機構が、1つの走査機構によって構成されること、および走査機構に接続され、照射される光の光軸と、検出されるべき光の光軸との位置関係を調整するように構成された中心間距離調整光学系を備えること以外は、図28に記載の第8の実施形態と同様である。 In this observation apparatus, the first scanning mechanism and the second scanning mechanism are configured by a single scanning mechanism, and the optical axis of the irradiated light is connected to the scanning mechanism and the light to be detected. This embodiment is the same as the eighth embodiment shown in FIG. 28 except that a center-to-center distance adjustment optical system configured to adjust the positional relationship with the optical axis is provided.
 中心間距離調整光学系は、当該走査機構とは独立して構成されてもよく、中心間距離調整光学系と当該走査機構とが1つのユニットとして構成されてもよい。また、中心間距離調整光学系は、当該走査機構よりも光源および検出器側に配置されてもよく、当該走査機構よりも照明用光学系および検出用光学系側に配置されてもよい。 The center distance adjusting optical system may be configured independently of the scanning mechanism, or the center distance adjusting optical system and the scanning mechanism may be configured as one unit. Further, the center-to-center distance adjustment optical system may be disposed closer to the light source and the detector than the scanning mechanism, or may be disposed closer to the illumination optical system and the detection optical system than the scanning mechanism.
 <被写体側末端>
 図30は、第7の実施形態~第9の実施形態の観察装置の被写体側末端を模式的に示す図である。観察装置の被写体側末端には、被写体に光を照射する照射用光学系の照射口と、被写体からの光を受け取る検出用光学系の検出口が円で示される。照明口と検出口のそれぞれの中心の間の距離を、中心間距離といい、d1で示される。
<Subject side end>
FIG. 30 is a diagram schematically showing the subject-side end of the observation devices according to the seventh to ninth embodiments. At the subject side end of the observation apparatus, an irradiation port of an irradiation optical system that irradiates light to the subject and a detection port of a detection optical system that receives light from the subject are indicated by circles. A distance between the centers of the illumination port and the detection port is referred to as a center-to-center distance, and is indicated by d1.
 図31は、第7の実施形態~第9の実施形態の観察装置から照射された光と、被写体から出て検出用光学系に含まれる検出口に捉えられる光と、各部位との関係を示す図である。 FIG. 31 shows the relationship between the light emitted from the observation devices of the seventh embodiment to the ninth embodiment, the light emitted from the subject and captured by the detection aperture included in the detection optical system, and each part. FIG.
 上記の通り、観察装置の照明口と検出口の中心間距離をd1とし、更に、被写体表面上における照明領域と検出領域との中心の間の距離、即ち、中心間距離をd2とする。このとき、照明口と検出口は隣接しているため、d1<d2となる。被写体表面から観察装置末端、即ち、照明口および検出口までの距離は、撮影距離(WD)である。 As described above, the distance between the center of the illumination port and the detection port of the observation apparatus is d1, and further, the distance between the center of the illumination area and the detection area on the subject surface, that is, the distance between the centers is d2. At this time, since the illumination port and the detection port are adjacent to each other, d1 <d2. The distance from the object surface to the end of the observation apparatus, that is, the illumination port and the detection port is a photographing distance (WD).
 図32Aは、図31を斜め上方から見たときの模式図であり、且つ照射用光学系および検出用光学系を走査したときの図である。図32Aでは、照射用光学系および検出用光学系を走査した場合の各光についての光路と、照射領域と検出領域とを模式的に示した。 FIG. 32A is a schematic diagram when FIG. 31 is viewed obliquely from above, and is a diagram when the irradiation optical system and the detection optical system are scanned. FIG. 32A schematically shows an optical path, an irradiation area, and a detection area for each light when the irradiation optical system and the detection optical system are scanned.
 このように照射用光学系および検出用光学系を走査することにより、第1の組織と、そこにおいて分布する第2の組織とを含む被写体について観察することが可能である。即ち、第2の組織の存在または不在に依存した光量変化を、照明領域と検出領域の間の領域について検出することができる。これにより、第1の組織における第2の組織の分布について、観察することが可能である。照明部と検出部に走査部を加え、距離d2を規定したままで走査することにより、第2の生体組織の2次元的分布を検出することが可能となる。このとき、走査の方向は直線方向に限らない。また、2点以上の複数点を同時に照明し検出するように照明領域と検出領域の組を2組以上設けてもよい。それにより、観察をより広範囲に行うことが可能である。この場合、各組同士の離間距離は任意であり、隣接していてもよいし、互いに距離が離れた照明領域および/または検出領域に配置するようにしてもよい。 By scanning the irradiation optical system and the detection optical system in this way, it is possible to observe a subject including the first tissue and the second tissue distributed there. That is, a change in the amount of light depending on the presence or absence of the second tissue can be detected in the region between the illumination region and the detection region. Thereby, it is possible to observe the distribution of the second tissue in the first tissue. By adding a scanning unit to the illumination unit and the detection unit and scanning with the distance d2 defined, it is possible to detect the two-dimensional distribution of the second living tissue. At this time, the scanning direction is not limited to the linear direction. Two or more pairs of illumination areas and detection areas may be provided so that two or more points can be illuminated and detected simultaneously. Thereby, observation can be performed in a wider range. In this case, the distance between the groups is arbitrary, and may be adjacent to each other, or may be arranged in an illumination area and / or a detection area that are separated from each other.
 第7の実施形態~第9の実施形態の観察装置は、更に画像化部を備えてもよい。それにより、走査により得られた複数の電気信号は画像化部において画像化される。画像化部では、各走査点にて検出した光強度信号を、走査点と表示画像内での画素位置とを対応付けて表示させることによって、2次元的分布を2次元画像として表示させることができる。このとき、光強度信号は色の濃淡情報に変換して表示してもよいし、色情報に変換して表示してもよい。また、更にまた観察装置は、画像処理部を備えてもよい。それにより、深部断層画像および表層断層画像が作成されてもよく、任意の画像処理が行われてもよい。 The observation apparatus according to the seventh to ninth embodiments may further include an imaging unit. Thereby, the plurality of electric signals obtained by scanning are imaged in the imaging unit. The imaging unit can display the two-dimensional distribution as a two-dimensional image by displaying the light intensity signal detected at each scanning point in association with the scanning point and the pixel position in the display image. it can. At this time, the light intensity signal may be displayed after being converted into color shading information, or may be displayed after being converted into color information. Furthermore, the observation apparatus may include an image processing unit. Thereby, a deep part tomographic image and a surface layer tomographic image may be created, and arbitrary image processing may be performed.
 図32Aに、走査した際の照明領域と検出領域の動きの模式図を示す。走査点の配置に従い、画像化部で構成する画像の画素を配置する。すなわち、隣接走査点の間隔が、画素の間隔に相当することとなる。 FIG. 32A shows a schematic diagram of the movement of the illumination area and the detection area when scanned. According to the arrangement of the scanning points, the pixels of the image formed by the imaging unit are arranged. That is, the interval between adjacent scanning points corresponds to the interval between pixels.
 このとき、検出領域の大きさを走査点間隔よりも大きくすると、隣接走査点での検出領域との間に交わり部が生じさせることができる。こうすることにより、隣接する検出領域との間の光量変化が滑らかになり、画像上でスムージング処理をしたときと同じノイズ低減効果が得られる。 At this time, if the size of the detection area is made larger than the scanning point interval, an intersection can be formed between the detection areas at adjacent scanning points. By doing so, the change in the amount of light between adjacent detection areas becomes smooth, and the same noise reduction effect as when smoothing processing is performed on the image can be obtained.
 (第10の実施形態)
 <撮像方法>
 第5の側面に従う検出方法の1例を図32Bに示したフローチャートを用いて説明する。
(Tenth embodiment)
<Imaging method>
An example of the detection method according to the fifth aspect will be described with reference to the flowchart shown in FIG. 32B.
 S321では、オペレータが当該観察装置の照明光を点灯して、S322に進む。 In S321, the operator turns on the illumination light of the observation apparatus, and the process proceeds to S322.
 S322では、制御部が、検出点の座標nに初期値「n=0」を与え、S323に進む。 In S322, the control unit gives an initial value “n = 0” to the coordinate n of the detection point, and proceeds to S323.
 S323では、制御部が照明するための第n走査点の座標を、記憶部に格納されたルックアップテーブル(以下、「LUT」と記載する)から読み出し、S324に進む。 In S323, the coordinates of the nth scanning point for illumination by the control unit are read from a lookup table (hereinafter referred to as “LUT”) stored in the storage unit, and the process proceeds to S324.
 S324では、制御部が、S323において読み出された座標に基づいて、照明用の走査機構を制御して、照明用光学系を移動して当該座標の位置に配置し、S325に進む。 In S324, the control unit controls the illumination scanning mechanism based on the coordinates read in S323, moves the illumination optical system to be arranged at the position of the coordinates, and proceeds to S325.
 S325では、制御部が検出するための第n走査点の座標を、記憶部に格納されたLUTから読み出し、S326に進む。 In S325, the coordinates of the nth scanning point for detection by the control unit are read from the LUT stored in the storage unit, and the process proceeds to S326.
 S326では、制御部が、S325において読み出された座標に基づいて、検出用の走査機構を制御して、検出光学系を移動して当該座標の位置に配置し、S327に進む。 In S326, the control unit controls the scanning mechanism for detection based on the coordinates read in S325, moves the detection optical system to place it at the position of the coordinates, and proceeds to S327.
 S327では、制御部が、当該座標に配置された照明用光学系の照射口から光を照射させ、当該座標に配置された検出用光学系の検出口で捉えた光を検出器で電気信号に変換させ、それにより第n走査点についての検出信号を読み出し、記録部に格納する。S328に進む。 In S327, the control unit emits light from the irradiation port of the illumination optical system arranged at the coordinates, and the light captured by the detection port of the detection optical system arranged at the coordinates is converted into an electrical signal by the detector. Thus, the detection signal for the nth scanning point is read out and stored in the recording unit. The process proceeds to S328.
 S328では、制御部が、検出点の座標について「n=n+1」の演算を行い、S329に進む。 In S328, the control unit calculates “n = n + 1” for the coordinates of the detection point, and proceeds to S329.
 S329では、制御部が、S328において与えられた検出点の座標nが終結値Nと等しいか(n=N)否かを判断し、等しくない場合には、S323に進み、n=Nになるまで走査検出ループを回す。等しい場合には、S330に進む。 In S329, the control unit determines whether or not the coordinate n of the detection point given in S328 is equal to the final value N (n = N). If not, the process proceeds to S323, where n = N. Rotate the scan detection loop until If equal, the process proceeds to S330.
 S330では、制御部が、n=1~Nの全座標について得て、記録部に格納した検出信号の強度を、制御部が画像化部に指示し、対応座標に配することによって画像を生成させ、S322に進む。 In S330, the control unit obtains all the coordinates of n = 1 to N, and the control unit instructs the imaging unit to indicate the intensity of the detection signal stored in the recording unit, and generates the image by arranging it on the corresponding coordinates. And proceed to S322.
 S330において生成された画像は、記録部に格納されてもよく、および/または表示部に表示されてもよい。 The image generated in S330 may be stored in the recording unit and / or displayed on the display unit.
 走査されるべき照明位置と検出位置は、一連の座標データであるLUTとして当該組成物観察装置の記憶部および/または記録部などに保持される。走査実行時には、制御部が各座標をLUTから座標を読み出して、走査機構を制御して照明部と検出部の位置を移動し、座標に対応する所望の位置に配置することにより、位置制御を行う。 The illumination position to be scanned and the detection position are held in the storage unit and / or recording unit of the composition observation apparatus as an LUT that is a series of coordinate data. When performing scanning, the control unit reads out the coordinates from the LUT, controls the scanning mechanism to move the positions of the illumination unit and the detection unit, and arranges them at desired positions corresponding to the coordinates. Do.
 LUTは、被写体表面上での位置の座標データを保持してもよく、照明光と検出光の振り角度のデータを保持してもよく、走査機構が制御のために使用する電気信号(電圧値/電流値)のデータを保持してもよい。更に、LUTは、照明と検出の位置関係(例えば、d2の値)を別に保持してもよく、それにより、照明と検出のために1つのLUTが利用されてもよい。 The LUT may hold coordinate data of a position on the surface of the subject, may hold data of a swing angle of illumination light and detection light, and an electrical signal (voltage value) used for control by the scanning mechanism. / Current value) data may be held. Further, the LUT may hold the positional relationship between illumination and detection (for example, the value of d2) separately, so that one LUT may be used for illumination and detection.
 <観察距離の分布についての調整>
 上述したように、一般的な観測装置では、図33(a)に示すように、d1<d2である。従って、観察距離(WD)が小さいか(即ち、近いか)、大きいか(即ち、遠いか)によりd2の大きさは変化する。従って、被写体表面と、照射口および検出口との観察距離(WD)が、近い場合には背景を含む画像がより明るくなり、当該距離が遠くなると背景を含む画像全体が暗くなる(図33(a)右側図、図33(b)を参照)。
<Adjustment of observation distance distribution>
As described above, in a general observation apparatus, d1 <d2 as shown in FIG. Therefore, the magnitude of d2 varies depending on whether the observation distance (WD) is small (ie, close) or large (ie, far). Therefore, when the observation distance (WD) between the subject surface and the irradiation port and the detection port is close, the image including the background becomes brighter, and when the distance becomes longer, the entire image including the background becomes dark (FIG. 33 ( a) Right side view, see FIG. 33 (b)).
 一方、後方散乱光の強度は、被写体表面上の照明領域と、検出領域が近いほど強くなる。従って、d2が小さいほど検出強度は大きくなる(図33(c)を参照)。 On the other hand, the intensity of the backscattered light increases as the illumination area on the subject surface and the detection area are closer. Therefore, the detection intensity increases as d2 decreases (see FIG. 33C).
 よって、WDが小さいほど検出光量は大きくなり、WDが大きいほど検出光量は小さくなる。即ち、WDが小さい位置で観察すると画像は明るくなり、WDが大きい位置で観察すると画像は暗くなる。 Therefore, the smaller the WD, the larger the detected light amount, and the larger the WD, the smaller the detected light amount. That is, the image becomes bright when observed at a position where the WD is small, and the image becomes dark when observed at a position where the WD is large.
 深部観察において、画像の明るさが変化すると、全体の画像が明るすぎれば、そこに存在する深度情報も薄くなって見えづらくなる。反対に暗すぎると深度情報は背景画像に埋もれて見えづらくなる。 In deep observation, if the brightness of an image changes, if the entire image is too bright, the depth information existing there will be thin and difficult to see. On the other hand, if it is too dark, the depth information is buried in the background image and is difficult to see.
 図34(a)および(b)に示すように、WDが変化してもd2が変化しないように、照明位置と検出位置を変化させれば、常にほどよい明るさの画像を得ることが可能になる。 As shown in FIGS. 34 (a) and 34 (b), it is possible to always obtain a moderately bright image by changing the illumination position and the detection position so that d2 does not change even if WD changes. become.
 例えば、血管をより明確に観察できる適切な明るさは、予め距離d2と画像の明るさの関係を実験的に得ることが必要である。図35(a)~(c)に示すように、距離d2と撮影距離WDとの関係(図35(a))を合わせて考えることにより、画面の明るさから撮影距離WDを推定できる(図35(b))。また、画面の明るさを適切な明るさの範囲内に収まるように、距離d2に施す補正値も算出できる(図35(c))。 For example, for appropriate brightness at which blood vessels can be observed more clearly, it is necessary to experimentally obtain the relationship between the distance d2 and the brightness of the image in advance. As shown in FIGS. 35A to 35C, by considering the relationship between the distance d2 and the shooting distance WD (FIG. 35A) together, the shooting distance WD can be estimated from the brightness of the screen (FIG. 35). 35 (b)). Also, a correction value to be applied to the distance d2 can be calculated so that the brightness of the screen falls within the appropriate brightness range (FIG. 35 (c)).
 また更に、このような内部観察装置を走査型の撮像装置として使用すると、同一画面内でも、観察距離が一定せずに、異なる距離について分布が生じる。そのため、画面の一部分においてのみしか、深部情報が見えないという現象が生じることを見出した。 Furthermore, when such an internal observation device is used as a scanning type imaging device, even within the same screen, the observation distance is not constant and a distribution occurs at different distances. For this reason, it has been found that a phenomenon occurs in which the deep information is visible only in a part of the screen.
 このような分布の例は図36(a)~(c)に示す。画面の明るさは、画面内の明るさが均一であれば、画面全体の輝度値の平均値を画面の明るさとして捉えることが可能である。しかし、実際には、図36(a)~(c)のように1つの画面内でも明るさが異なる。即ち、1つの画面内でも、血管の見え易い箇所と見え難い箇所が生じる。このような状態は、同一画面内において、各撮影点での距離d2を調整することによって改善されることが見出された。そのような調整によって画面全体において血管を見え易くすることが可能である(図37(a)~(c))。 Examples of such distribution are shown in FIGS. 36 (a) to (c). As for the brightness of the screen, if the brightness in the screen is uniform, the average brightness value of the entire screen can be regarded as the brightness of the screen. However, actually, the brightness is different even within one screen as shown in FIGS. That is, even in one screen, there are portions where blood vessels are easily visible and difficult to see. It has been found that such a state can be improved by adjusting the distance d2 at each photographing point in the same screen. Such adjustment makes it easy to see blood vessels on the entire screen (FIGS. 37A to 37C).
 (第11の実施形態)
 第11の実施形態は、次のように、同一画面内において、各撮影点での距離d2を調整する方法である。
(Eleventh embodiment)
The eleventh embodiment is a method of adjusting the distance d2 at each photographing point in the same screen as follows.
 まず、1つ画面を撮像する。次に、前記画像全体にフィルタリング処理を行う。このフィルタリング処理は、画像内に存在する血管などの構造体像を消去し、背景の検出強度の分布のみを得るような処理である。例えば、この処理は、ローパスフィルタを用いて行えばよい。また、フィルタリングする空間周波数の閾値は、対象となる被写体の構造物に合わせた値を予め実験的に得ておけばよい。 First, image one screen. Next, a filtering process is performed on the entire image. This filtering process is a process in which a structure image such as a blood vessel existing in an image is erased to obtain only a distribution of detected background intensity. For example, this process may be performed using a low-pass filter. In addition, the spatial frequency threshold value to be filtered may be experimentally obtained in advance in accordance with a target object structure.
 上記のフィルタリング処理結果における各撮影点(画像上では各ピクセル)の輝度値から、各撮影点におけるWDが算出でき、そのWDからd2に施す補正値を算出することができる。予め輝度値とWDとを対応付ける、および/またはWDとd2とを対応付けるデータを記憶部に記憶しておいてもよい。また、予め輝度値とd2の補正値とを対応付けるデータを記憶部に記憶しておいてもよい。演算部および/または制御部がそれらのデータを参照して、所望の処理を行ってもよい。 The WD at each shooting point can be calculated from the luminance value of each shooting point (each pixel on the image) in the filtering processing result, and the correction value to be applied to d2 can be calculated from the WD. Data that associates the brightness value with WD and / or associates WD with d2 may be stored in advance in the storage unit. Data that associates the brightness value with the correction value of d2 may be stored in the storage unit in advance. The calculation unit and / or the control unit may perform desired processing with reference to the data.
 最後に、得られた補正値により補正したd2を用いて再撮影を行い、表示部に画像を表示する。 Finally, re-photographing is performed using d2 corrected with the obtained correction value, and an image is displayed on the display unit.
 この方法は、上記の何れの側面における何れの実施形態に記載した観察装置においても実施することが可能である。また第10の実施形態である撮像方法と組み合わせて使用されることも好ましい。以下に幾つかの例を挙げて説明する。これらの方法は、静止画像の撮像について用いられても、動画の撮像について行われてもよい。 This method can be implemented in any of the observation apparatuses described in any of the above aspects. Moreover, it is also preferable to be used in combination with the imaging method according to the tenth embodiment. Some examples will be described below. These methods may be used for still image capturing or moving image capturing.
 例1
 図38を用いて、第11の実施形態の1例である撮像方法を説明する。
Example 1
An imaging method which is an example of the eleventh embodiment will be described with reference to FIG.
 オペレータの指示に従い、制御部が、観察装置における撮影を開始し、S381に進む。 In accordance with the operator's instruction, the control unit starts photographing with the observation apparatus, and proceeds to S381.
 S381では、制御部の指示に従い、図32Bに記載のS321~S330を繰り返すことにより画像を得て、S382に進む。 In S381, in accordance with an instruction from the control unit, an image is obtained by repeating S321 to S330 described in FIG. 32B, and the process proceeds to S382.
 S382では、制御部の指示により、画像処理部が画像全体にフィルタリング処理をして、S383に進む。 In S382, the image processing unit performs a filtering process on the entire image in accordance with an instruction from the control unit, and the process proceeds to S383.
 S383では、制御部の指示により、演算部が、フィルタリング処理された画像全体について、走査点毎の輝度値に基づいて、WDを算出し、S384に進む。 In S383, in accordance with an instruction from the control unit, the calculation unit calculates WD based on the luminance value for each scanning point for the entire filtered image, and the process proceeds to S384.
 S384では、演算部が、WDに応じて、走査点毎の距離d2の補正値を決定し、S385に進む。 In S384, the calculation unit determines a correction value for the distance d2 for each scanning point according to the WD, and proceeds to S385.
 S385では、制御部が、演算部から補正値を受け取り、この補正値を基に各走査点における距離d2を設定して、S386に進む。 In S385, the control unit receives the correction value from the calculation unit, sets the distance d2 at each scanning point based on the correction value, and proceeds to S386.
 S386では、制御部が、中心間距離調整光学系および走査機構に指示して、補正された距離d2を維持するように照明用光学系および検出用光学系を移動して配置した状態で、図32Bに記載のS321~S330を繰り返すことにより画像を得て、S387に進む。 In S386, the control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism to move the illumination optical system and the detection optical system so as to maintain the corrected distance d2. An image is obtained by repeating S321 to S330 described in 32B, and the process proceeds to S387.
 S387では、制御部が、再補正が必要か否かを判断し、補正が必要でない場合には、S386に進み、補正が必要である場合には、S381に進み、再度、各工程を繰り返す
 S386では、制御部が、中心間距離調整光学系および走査機構に指示して、補正された距離d2を維持するように照明用光学系および検出用光学系を移動して配置した状態で、撮像を行う。更に、制御部が、表示部に得られた画像を表示させる。
In S387, the control unit determines whether or not re-correction is necessary. If correction is not necessary, the process proceeds to S386. If correction is necessary, the process proceeds to S381, and each process is repeated again. S386 Then, the controller instructs the center-to-center distance adjustment optical system and the scanning mechanism to take an image in a state where the illumination optical system and the detection optical system are moved and arranged so as to maintain the corrected distance d2. Do. Further, the control unit displays the obtained image on the display unit.
 ここで、再補正の必要を判断する必要がない場合には、S382からS3841に進み、S3844までの工程を行えばよく、そのようにプログラムされればよい。 Here, if it is not necessary to determine whether re-correction is necessary, the process proceeds from S382 to S3841, and the steps up to S3844 may be performed, and the program may be programmed as such.
 また、再補正の判断の例は次の通りである。 Also, examples of re-correction judgment are as follows.
(1)前回の補正時刻からの経過した時間長さによって、再補正が必要であるか、否かの判断を行う。例えば、この場合、制御部が、「前回の補正時刻から100ms経過したか」を判断すればよい。この判断の実行は、例えば、制御部が、補正を行う毎にタイマーをリセットするように、プログラムされてもよい。 (1) It is determined whether or not re-correction is necessary based on the length of time that has elapsed since the previous correction time. For example, in this case, the control unit may determine whether “100 ms has elapsed since the previous correction time”. The execution of this determination may be programmed such that the control unit resets the timer each time correction is performed.
(2)前回の補正時から後に撮像した画像の枚数によって、再補正が必要であるか、否かを判断する。例えば、この場合、制御部が、「前回の補正時から10枚撮像したか」を判断すればよい。この判断の実行は、例えば、制御部が、補正する毎に撮影カウンターをリセットするように、プログラムされてもよい。 (2) It is determined whether re-correction is necessary or not based on the number of images taken after the previous correction. For example, in this case, the control unit may determine “10 images have been captured since the previous correction”. The execution of this determination may be programmed, for example, so that the control unit resets the photographing counter every time it is corrected.
 ここで、演算部による、WDに応じた走査点毎の距離d2の補正値の決定は、例えば、演算部が記憶部に予め格納された情報、例えば、WDと補正値とを対応付けたLUTなどを参照すること、または予め格納された計算式に基づいて演算すること、或いは記録部に格納されたそれ以前の測定により得られた情報を利用すること、またはこれらの組み合わせることにより行われればよい。 Here, the correction value of the distance d2 for each scanning point according to the WD by the calculation unit is determined by, for example, information stored in the storage unit in advance by the calculation unit, for example, an LUT that associates the WD and the correction value. Etc., or calculation based on a pre-stored calculation formula, use of information obtained by previous measurement stored in the recording unit, or a combination thereof. Good.
 例2
 例2は、動画撮影時により適切な例1の変形例である。動画撮影時には、画像を取得するためにフィルタリング処理を行い、それにより背景の強度分布を算出し、その値から、距離d2に必要な補正値Δを算出すればよい。その際、予め、背景分布の強度と補正値Δとの関係を対応付けるデータをLUTとして記憶部に記憶しておくことも可能である。それにより、撮影時に参照することが可能である。
Example 2
Example 2 is a modification of Example 1 that is more appropriate for moving image shooting. At the time of moving image shooting, filtering processing is performed to acquire an image, thereby calculating a background intensity distribution, and calculating a correction value Δ required for the distance d2 from the calculated value. At this time, it is also possible to store data associating the relationship between the intensity of the background distribution and the correction value Δ in advance in the storage unit as an LUT. Thereby, it is possible to refer to it at the time of shooting.
 また、Δが微小である場合、例えば、0.1mm以下などの場合、補正処理を省略して、前回設定時のd2をそのまま流用するようにプログラムされてもよい。 If Δ is very small, for example, 0.1 mm or less, the correction process may be omitted and d2 at the previous setting may be used as it is.
 撮影枚数を経る毎に初期のd2の値とは異なる値となっていくが、観察装置にリセットボタンを備える構成とすることにより、任意のタイミングで、オペレータが初期のd2に戻すことが可能なようにプログラムされてもよい。 Each time the number of shots passes, the value becomes different from the initial d2 value. However, the observation apparatus can be reset to the initial d2 at any timing by providing a reset button. May be programmed as follows.
 図39(a)に動画撮影時に画像を取得する度にフィルタリング処理を行う補正方法をフローチャートにより示す。 FIG. 39 (a) is a flowchart showing a correction method for performing a filtering process every time an image is acquired during moving image shooting.
 オペレータの指示に従い、制御部が、観察装置における撮影を開始し、S391に進む。 In accordance with the operator's instruction, the control unit starts photographing with the observation apparatus, and proceeds to S391.
 S391では、制御部の指示に従い、図32Bに記載のS321~S330を繰り返すことにより画像を得て、S392に進む。 In S391, an image is obtained by repeating S321 to S330 described in FIG. 32B in accordance with an instruction from the control unit, and the process proceeds to S392.
 S392では、画像処理部が画像全体に対してフィルタリング処理を行い、S393に進む。 In S392, the image processing unit performs a filtering process on the entire image, and the process proceeds to S393.
 S393では、制御部の指示により、演算部が、走査点毎の輝度値に基づいて、距離d2の補正値Δを決定して、S394に進む。 In S393, in accordance with an instruction from the control unit, the calculation unit determines a correction value Δ for the distance d2 based on the luminance value for each scanning point, and proceeds to S394.
 S394では、制御部が演算部より補正値Δを受け取り、各走査点での距離d2をS395に進む。 In S394, the control unit receives the correction value Δ from the calculation unit, and advances the distance d2 at each scanning point to S395.
 S395では、制御部が、中心間距離調整光学系および走査機構に指示して、補正された距離d2を維持するように照明用光学系および検出用光学系を移動して配置した状態で、画像を得て、S392に進む。 In S395, the control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism, and moves and arranges the illumination optical system and the detection optical system so as to maintain the corrected distance d2. And go to S392.
 S392では、制御部が、入力部への撮影終了の指示の有無または予め設定された条件を満たしたか否かを判断し、その結果に応じて、制御部が、S392~S395の撮影ループを繰り返し、制御部が撮影終了の指示を認める、または予め設定された条件を満たしたと判断した場合には、撮影ループを出て操作を終了する。 In S392, the control unit determines whether there is an instruction to end shooting to the input unit or whether a preset condition is satisfied, and the control unit repeats the shooting loop of S392 to S395 according to the result. If the control unit accepts an instruction to end shooting or determines that a preset condition is satisfied, the shooting loop is exited and the operation ends.
 距離d2に施す補正距離Δと画像の明るさ(即ち、画像背景の輝度値)との関係を示すグラフを図39(b)に示す。適切な明るさが得られるように距離d2に施す補正距離が決定されればよい。 A graph showing the relationship between the correction distance Δ applied to the distance d2 and the brightness of the image (that is, the luminance value of the image background) is shown in FIG. The correction distance to be applied to the distance d2 may be determined so that appropriate brightness can be obtained.
 例3
 例3は、更なる例1の変形例であり、背景の検出強度の分布を計測するための撮影において、走査点の間引きを行う構成とすることにより、短時間で補正値を得ることが可能である。図40を参照して説明する。
Example 3
Example 3 is a modified example of Example 1, and it is possible to obtain a correction value in a short time by adopting a configuration in which scanning points are thinned out in imaging for measuring the distribution of detection intensity of the background. It is. This will be described with reference to FIG.
 オペレータの指示に従い、制御部が、観察装置における撮影を開始し、S401に進む。 In accordance with the operator's instruction, the control unit starts photographing with the observation apparatus, and proceeds to S401.
 S401では、制御部の指示に従い、予め設定され、記憶部に記憶された座標に従い特定の走査点のみについて、図32Bに記載のS321~S330を繰り返すことにより画像を得て、S382に進む。 In S401, an image is obtained by repeating S321 to S330 described in FIG. 32B for only a specific scanning point in accordance with the coordinates set in advance and stored in the storage unit according to the instruction of the control unit, and the process proceeds to S382.
 S402では、制御部の指示により、画像処理部が画像全体にフィルタリング処理をして、S403に進む。 In S402, the image processing unit performs a filtering process on the entire image in accordance with an instruction from the control unit, and the process proceeds to S403.
 S403では、制御部の指示により、画像処理部が、フィルタリング処理された画像について補間処理を行い、S404に進む。 In S403, according to an instruction from the control unit, the image processing unit performs an interpolation process on the filtered image, and the process proceeds to S404.
 S404では、演算部が、補間された画像について、走査点毎の輝度値に基づいて、WDを算出し、WDに応じて、走査点毎の距離d2の補正値を決定した後、制御部が、演算部から補正値を受け取り、この補正値を基に各走査点における距離d2を設定して、S405に進む。 In S404, the calculation unit calculates WD based on the luminance value for each scanning point for the interpolated image, and after determining the correction value of the distance d2 for each scanning point according to WD, the control unit The correction value is received from the calculation unit, the distance d2 at each scanning point is set based on the correction value, and the process proceeds to S405.
 S405では、制御部が、中心間距離調整光学系および走査機構に指示して、補正された距離d2を維持するように照明用光学系および検出用光学系を移動して配置した状態で、図32Bに記載のS321~S330を繰り返すことにより画像を得て、S406に進む。 In S405, the control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism to move the illumination optical system and the detection optical system so that the corrected distance d2 is maintained. An image is obtained by repeating S321 to S330 described in 32B, and the process proceeds to S406.
 S406では、制御部が、再補正が必要か否かを判断し、補正が必要でない場合には、S405に進み、補正が必要である場合には、S401に進み、再度、各工程を繰り返す。 In S406, the control unit determines whether or not re-correction is necessary. If correction is not necessary, the process proceeds to S405. If correction is necessary, the process proceeds to S401, and each step is repeated again.
 405では、制御部が、中心間距離調整光学系および走査機構に指示して、補正された距離d2を維持するように照明用光学系および検出用光学系を移動して配置した状態で、撮像を行う。更に、制御部が、表示部に得られた画像を表示させる。S401に戻る。 In 405, the control unit instructs the center-to-center distance adjustment optical system and the scanning mechanism to perform imaging in a state where the illumination optical system and the detection optical system are moved and arranged so as to maintain the corrected distance d2. I do. Further, the control unit displays the obtained image on the display unit. Return to S401.
 S401~S406を含むループの終了は、オペレータによる入力および/または予め設定され格納された条件などに従って、制御部が、ループ中の操作の中断および/または一連の撮影工程の終了を判断し、終了または中断のための制御を行うようにプログラムされればよい。 The end of the loop including S401 to S406 is determined by the control unit judging the interruption of the operation in the loop and / or the end of a series of photographing steps in accordance with the input by the operator and / or the preset and stored conditions. Alternatively, it may be programmed to perform control for interruption.
 間引いた走査点の検出強度分布の値についての補間処理は、最近接法や線形補間法など、それ自身公知の何れかの方法により行えばよい。 Interpolation processing for the value of the detected intensity distribution of the thinned scanning points may be performed by any method known per se, such as the nearest neighbor method or linear interpolation method.
 再補正の判断の例は例1に記載と同様に行ってよい。また、間引きを行うこと以外は、例1と同様な条件および手続が利用してよい。 Example of re-correction determination may be performed in the same manner as described in Example 1. In addition, conditions and procedures similar to those in Example 1 may be used except that thinning is performed.
 例4
 制御ユニットの構成の1例を図41を参照しながら以下に説明する。
Example 4
One example of the configuration of the control unit will be described below with reference to FIG.
 図41の構成は、制御部、計測部および演算部が1つのユニットに含まれる例である。 41 is an example in which a control unit, a measurement unit, and a calculation unit are included in one unit.
 この制御ユニットは、各情報を対応付けるテーブルなどのデータを格納する記憶部(図示せず)と、記憶部とデータの受け渡し可能に接続された調整座標データ生成部と、前記データ生成部とデータの受け渡し可能に接続されたd2の補正処理部と、前記データ生成部および前記d2の補正処理部とデータの受け渡し可能に接続された画像データ生成部と、画像データ生成部とデータ受け渡し可能に接続された画像処理部と、前記画像処理部は、表示部に接続されており、前記調整座標データ生成部および画像データ生成部は、タイミング制御部に接続され、任煮のD/A変換器を介して、照明側操作機構、検出側走査機構に接続されている。また、検出器は、アンプ、D/A変換器を介してタイミング制御に接続され、タイミング制御部は、画像データ生成部に接続される。 The control unit includes a storage unit (not shown) for storing data such as a table for associating each information, an adjustment coordinate data generation unit connected to the storage unit so that data can be transferred, and the data generation unit and the data The d2 correction processing unit connected so as to be able to exchange, the data generation unit, the d2 correction processing unit, the image data generation unit connected so as to be able to exchange data, and the image data generation unit are connected so as to be able to exchange data. The image processing unit and the image processing unit are connected to a display unit, and the adjustment coordinate data generation unit and the image data generation unit are connected to a timing control unit via a dedicated D / A converter. And connected to the illumination side operation mechanism and the detection side scanning mechanism. The detector is connected to timing control via an amplifier and a D / A converter, and the timing control unit is connected to the image data generation unit.
 ここにおいて、走査時に使用する一連の走査点のデータは、原座標ファイルに格納される。原座標ファイルは、調整座標データ生成部にて、検出強度分布に基づく距離d2の補正を加えた調整座標データに変化される。 Here, the data of a series of scanning points used at the time of scanning is stored in the original coordinate file. The original coordinate file is changed by the adjustment coordinate data generation unit to adjustment coordinate data obtained by correcting the distance d2 based on the detected intensity distribution.
 調整データに基づいて、照明側の走査機構と検出側の走査機構へ駆動信号が送られる。走査機構がアナログ制御である場合は、図41のように変換機(D/A)を介して制御されればよい。 駆 動 Based on the adjustment data, a drive signal is sent to the illumination side scanning mechanism and the detection side scanning mechanism. If the scanning mechanism is analog control, it may be controlled via a converter (D / A) as shown in FIG.
 照明の走査点制御と、検出の走査点制御と、検出器の露光時間のタイミングは正しく制御される必要がある。例えば、照明開始と同時に検出するために、照明と検出の走査点制御は同時に行われ、一定時間の露光時間を得るために、検出器からの信号はその露光時間経過後に取得される。そして、信号取得後、次に制御動作に移行する。従って、走査機構への制御信号の送信と、検出器からの検出器信号の取得のために、図41のようにタイミング制御機構が介された構成が利用されてもよい。 The timing of illumination scanning point control, detection scanning point control, and exposure time of the detector must be correctly controlled. For example, in order to detect at the same time as the start of illumination, the scanning point control of illumination and detection is performed at the same time, and a signal from the detector is acquired after the exposure time has elapsed in order to obtain an exposure time of a certain time. And after signal acquisition, it shifts to control operation next. Therefore, a configuration in which a timing control mechanism is interposed as shown in FIG. 41 may be used to transmit a control signal to the scanning mechanism and to acquire a detector signal from the detector.
 検出された強度信号は、画像データ生成部において、走査点の座標データと組み合わせることにより画像データとなる。その後、画質調整のための各種画像処理が行われ、表示部にて画像が映し出される。 The detected intensity signal becomes image data by being combined with the coordinate data of the scanning point in the image data generation unit. Thereafter, various image processing for image quality adjustment is performed, and an image is displayed on the display unit.
 画像データは、更にd2補正処理部にも送られ、そのデータに基づいて背景強度分布の算出およびd2の補正値の計算が行われる。 The image data is further sent to the d2 correction processing unit, and the background intensity distribution and the d2 correction value are calculated based on the data.
 このような第5の側面の方法および観察装置により、より良好な画像を得ることが可能になる。 Such a method and observation apparatus of the fifth aspect make it possible to obtain a better image.
 別途測距機構を搭載することによって、観察距離に応じてSD距離を調整するなどの他の手段を利用する方法に比べて、本側面に従う方法によれば、観察装置の小型化が可能であり、且つ装置の構成をより単純にすることが可能である。 By separately installing a distance measuring mechanism, the method according to this aspect can reduce the size of the observation apparatus as compared with the method using other means such as adjusting the SD distance according to the observation distance. In addition, the configuration of the apparatus can be simplified.
101 生体内部観察装置、107 照明光、108 後方散乱光、109 第1の生体組織、110 第2の生体組織、201 照明領域、202 検出領域、301 照明領域と検出領域の中心間の距離、302 深部を通った光の領域、303 検出される深さ、401 第2の生体組織内に納まる大きさの検出領域、402 第2の生体組織からはみ出す大きさの検出領域、404 検出領域401が第2の生体組織を横切った際の光量変化、405 検出領域402が第2の生体組織を横切った際の光量変化、701 隣接する走査点の間の距離(間隔)、702 表示する画像の画素、703 隣接する検出領域間の重なり部分、804 光ファイバ、805 NA調整光学系、806 スキャナーミラー、807 倍率調整光学系、808 アパーチャ、809 フォトダイオード、901 分離光学系、903 導光光学系、1001 光軸を分離するための光学素子 101 living body internal observation device, 107 illumination light, 108 backscattered light, 109 first biological tissue, 110 second biological tissue, 201 illumination region, 202 detection region, 301 distance between the illumination region and the center of the detection region, 302 The region of light that has passed through the deep part, the depth at which 303 is detected, the detection region of 401 that fits within the second biological tissue, the detection region of 402 that protrudes from the second biological tissue, and the 404 detection region 401 A change in the amount of light when crossing the second biological tissue, a change in the amount of light when the 405 detection area 402 crosses the second biological tissue, a distance (interval) between adjacent scanning points, 702, and a pixel of the image to be displayed. 703 overlapping portion between adjacent detection regions, 804 optical fiber, 805 NA adjustment optical system, 806 scanner mirror, 807 magnification adjustment optical system, 808 光学 upper Catcher, 809 photodiode, 901 separating optical system, 903 light guiding optical system, an optical element for separating the 1001 optical axis

Claims (49)

  1.  光散乱性を有する対象とその深部に存在し得る被観察物体とにおいて前記対象から前記物体の存在を観察する内部観察装置であって、前記対象と前記物体とで光学特性の異なる波長を少なくとも含む光を前記対象に照射するように構成された照明部と、前記照明部により照射された照明光の後方散乱光のうち、特定の検出領域からの光を検出し光強度データを取得するように構成された検出部と、前記取得された光強度データを解析し画像を構成するように構成された画像化部と、前記画像を表示するように構成された表示部とを備え、前記特定の検出領域の面積が前記照明光の前記対象の表面における照明領域よりも大きく、前記検出領域からの後方散乱光を単一の検出素子に入射させる光学系を備えたことを特徴とする内部観察装置。 An internal observation apparatus for observing the presence of an object from the object in an object having light scattering properties and an object to be observed that may exist at a deep part thereof, and includes at least wavelengths having different optical characteristics between the object and the object The illumination unit configured to irradiate the target with light and the backscattered light of the illumination light irradiated by the illumination unit detects light from a specific detection region and acquires light intensity data. A detection unit configured; an imaging unit configured to analyze the acquired light intensity data to configure an image; and a display unit configured to display the image; An internal observation apparatus comprising an optical system in which an area of a detection region is larger than an illumination region on the surface of the target of the illumination light, and backscattered light from the detection region is incident on a single detection element .
  2.  前記照明領域と前記検出領域の距離を規定するように、前記照明部と前記検出部とを配した請求項1に記載の内部観察装置。 The internal observation device according to claim 1, wherein the illumination unit and the detection unit are arranged so as to define a distance between the illumination region and the detection region.
  3.  前記照明領域と前記検出領域の距離において、前記検出領域に少なくとも前記照明領域は含まれないように前記照明部と前記検出部とを配した請求項2に記載の内部観察装置。 The internal observation device according to claim 2, wherein the illumination unit and the detection unit are arranged so that at least the illumination region is not included in the detection region at a distance between the illumination region and the detection region.
  4.  前記照明光の前記対象の表面における位置と前記検出部が検出する後方散乱光の前記対象の表面における位置との中心間距離 x が、前記物体が存在する位置の前記対象の表面からのおおよその深さ z に対して、
       x ≧ 2.8 × z
    となるように規定された、請求項2または3に記載の内部観察装置。
    The center-to-center distance x between the position of the illumination light on the surface of the target and the position of the backscattered light detected by the detection unit on the surface of the target is an approximate distance from the surface of the target at the position where the object exists. For depth z
    x ≧ 2.8 × z
    The internal observation device according to claim 2 or 3, wherein the internal observation device is defined as follows.
  5.  前記照明部による照明位置と前記検出部による検出位置とを、前記対象の表面にそれぞれ2個以上に配する複数照明検出部を備え、前記照明位置と前記検出位置に対応させた画像を構成するように構成された画像化部とを備える、請求項1~4の何れか1項に記載の内部観察装置。 A plurality of illumination detection units are provided that each illuminate the illumination position and the detection position by the detection unit on the surface of the object in two or more, and configure an image corresponding to the illumination position and the detection position The internal observation device according to any one of claims 1 to 4, further comprising an imaging unit configured as described above.
  6.  前記照明部による照明位置と前記検出部による検出位置とを、前記対象に対して走査するように構成された走査部を備え、前記走査に対応させた画像を構成するように構成された画像化部とを備える、請求項1~5の何れか1項に記載の内部観察装置。 An imaging device comprising a scanning unit configured to scan the illumination position by the illumination unit and the detection position by the detection unit with respect to the object, and configured to configure an image corresponding to the scanning The internal observation device according to any one of claims 1 to 5, further comprising:
  7.  前記検出領域の大きさが隣接検出領域との中心間距離よりも大きく、隣接する検出領域の間で交わりが生じるようにした請求項5または6に記載の内部観察装置。 The internal observation device according to claim 5 or 6, wherein a size of the detection area is larger than a center-to-center distance with an adjacent detection area, and an intersection occurs between adjacent detection areas.
  8.  前記検出領域の大きさを前記検出領域に少なくとも前記照明領域は含まれないようにした、請求項1~7の何れか1項に記載の内部観察装置。 The internal observation device according to any one of claims 1 to 7, wherein a size of the detection area is set so that at least the illumination area is not included in the detection area.
  9.  前記画像化部において、検出した前記光強度データを、前記走査時の間隔に対応させて画像を構成するようにした請求項5~8の何れか1項に記載の内部観察装置。 The internal observation device according to any one of claims 5 to 8, wherein the imaging unit forms an image in correspondence with the detected light intensity data corresponding to the scanning interval.
  10.  前記検出部において、走査部を通して導光された前記後方散乱光のうち、前記検出領域からの後方散乱光のみを抽出するためのアパーチャを配置した請求項6~9の何れか1項に記載の内部観察装置。 The aperture according to any one of claims 6 to 9, wherein an aperture for extracting only the backscattered light from the detection region out of the backscattered light guided through the scanning unit is arranged in the detection unit. Internal observation device.
  11.  前記検出部において、走査部を通して導光された前記後方散乱光のうち、前記検出領域からの後方散乱光のみを抽出するためのアパーチャを導光する光学系における前記検出領域と共役な位置に配置した請求項10に記載の内部観察装置。 The detection unit is arranged at a position conjugate with the detection region in the optical system that guides an aperture for extracting only the backscattered light from the detection region out of the backscattered light guided through the scanning unit. The internal observation apparatus according to claim 10.
  12.  前記検出部において、走査部を通して導光された前記後方散乱光のうち、前記検出領域からの後方散乱光のみの切り出しを容易にするために、前記走査部と前記アパーチャとの間に倍率調整光学系を備えた、請求項10または11に記載の内部観察装置。 In the detection unit, in order to easily cut out only the backscattered light from the detection region out of the backscattered light guided through the scanning unit, a magnification adjusting optical element is provided between the scanning unit and the aperture. The internal observation device according to claim 10 or 11, comprising a system.
  13.  前記照明光と前記後方散乱光とを、同一の光学系へ導光する導光光学系と、前記照明部からの照明光を前記導光光学系へ入射させ、前記導光光学系からの前記後方散乱光より前記検出領域からの後方散乱光のみを抽出する分離光学系とを備える、請求項9~12の何れか1項に記載の内部観察装置。 The light guide optical system that guides the illumination light and the backscattered light to the same optical system, and the illumination light from the illumination unit is incident on the light guide optical system, and the light from the light guide optical system The internal observation device according to any one of claims 9 to 12, further comprising a separation optical system that extracts only backscattered light from the detection region from backscattered light.
  14.  前記照明部において、光源としてレーザー光源を用いた、請求項1~13の何れか1項に記載の内部観察装置。 The internal observation apparatus according to any one of claims 1 to 13, wherein a laser light source is used as a light source in the illumination unit.
  15.  前記レーザー光源を前記照明部の後段へ導光するために光ファイバを用いた、請求項14に記載の内部観察装置。 The internal observation apparatus according to claim 14, wherein an optical fiber is used to guide the laser light source to a subsequent stage of the illumination unit.
  16.  前記照明光を導光する際に、少なくとも照明部から出射した照明光が対象内部へ入射するまでの光路における照射端において、前記照明光が平行光となるように、NA調整光学系を備えた請求項10~15の何れか1項に記載の内部観察装置。 When guiding the illumination light, an NA adjustment optical system is provided so that the illumination light becomes parallel light at least at the irradiation end in the optical path until the illumination light emitted from the illumination unit enters the target. The internal observation device according to any one of claims 10 to 15.
  17.  第1の生体組織と、その深部に分布する第2の生体組織とにおいて、第1の生体組織表面から第2の生体組織の分布を観察する生体内部観察装置であって、前記第1の生体組織と前記第2の生体組織とで光学特性の異なる波長を少なくとも含む光を前記第1の生体組織に照射するように構成された照明部と、前記照明部により照射された照明光の後方散乱光のうち、前記第1の生体組織の表面の検出領域からの光のみを検出し光強度データを取得するように構成された検出部と、前記取得された光強度データを解析し、画像を構成するように構成された画像化部と、前記画像を表示するように構成された表示部とを備え、前記検出領域の面積が、前記照明光の前記第1の生体組織の表面における照明領域よりも大きく、前記検出領域からの後方散乱光を1つの検出素子に入射させる光学系を備えたことを特徴とする請求項1~16の何れか1項に記載の生体内部観察装置。 A living body internal observation device for observing a distribution of a second living tissue from a surface of the first living tissue in a first living tissue and a second living tissue distributed in a deep part thereof, wherein the first living body An illumination unit configured to irradiate the first biological tissue with light including at least wavelengths having different optical characteristics between the tissue and the second biological tissue, and backscattering of the illumination light irradiated by the illuminating unit Of the light, a detection unit configured to detect only light from a detection region on the surface of the first biological tissue and acquire light intensity data, and analyze the acquired light intensity data, An imaging region configured to configure, and a display unit configured to display the image, wherein the area of the detection region is an illumination region on the surface of the first biological tissue of the illumination light Larger than the backscattered light from the detection area One of the living body observation apparatus according to any one of claims 1 to 16, characterized in that it comprises an optical system to be incident on the detection element.
  18.  前記照明光の第1の生体組織の表面における位置と前記検出部が検出する後方散乱光の前記第1の生体組織の表面における位置との中心間距離が、8mm以上となるように規定された請求項17に記載の生体内部観察装置。 The center-to-center distance between the position of the illumination light on the surface of the first biological tissue and the position of the backscattered light detected by the detection unit on the surface of the first biological tissue was defined to be 8 mm or more. The in-vivo internal observation device according to claim 17.
  19.  前記検出領域の面積をS、前記照明光の帯域幅をBWL、前記検出領域での検出光密度をP、前期検出光を前記光強度データへ変換する変換係数をG、前記検出部のノイズフロアをN、前記検出の際の露光時間をt、前記第2の生体組織の有無による前記光強度データの変化率をrとしたとき、
    Figure JPOXMLDOC01-appb-M000001
    をみたすようにした、請求項18に記載の生体内部観察装置。
    The area of the detection region is S, the bandwidth of the illumination light is BWL, the detection light density in the detection region is P, the conversion coefficient for converting the previous detection light into the light intensity data is G, and the noise floor of the detection unit N, the exposure time at the time of detection is t, and the rate of change of the light intensity data due to the presence or absence of the second biological tissue is r,
    Figure JPOXMLDOC01-appb-M000001
    The in-vivo internal observation device according to claim 18, wherein:
  20.  前記検出領域の1方向の大きさをD、前記第2の生体組織の把握したい大きさをWとしたとき、D≦Wをみたすように前記検出領域の大きさを決めた、請求項17~19の何れか1項に記載の生体内部観察装置。 The size of the detection region is determined so as to satisfy D ≦ W, where D is the size of the detection region in one direction and W is the size of the second living tissue to be grasped. The living body internal observation device according to any one of 19.
  21.  前記第2の生体組織がヘモグロビンを含有し、前記第1の生体組織が血管以外の生体組織で、前記照明光の波長が400~600nmまたは800~1000nmまたは1350~1550nmを少なくとも含む光である、請求項17~20の何れか1項に記載の生体内部観察装置。 The second biological tissue contains hemoglobin, the first biological tissue is a biological tissue other than a blood vessel, and the wavelength of the illumination light includes at least 400 to 600 nm, 800 to 1000 nm, or 1350 to 1550 nm. The in-vivo internal observation device according to any one of claims 17 to 20.
  22.  前記第2の生体組織が血管であり、前記第1の生体組織が血管以外の生体組織であり、前記照明光の波長が900~1000nmを少なくとも含む光である、請求項17~20の何れか1項に記載の生体内部観察装置。 The any one of claims 17 to 20, wherein the second biological tissue is a blood vessel, the first biological tissue is a biological tissue other than a blood vessel, and the wavelength of the illumination light includes at least 900 to 1000 nm. The living body internal observation apparatus according to Item 1.
  23.  請求項1~23の何れか1項に記載の生体内部観察装置であって、医療用内視鏡として機能するように構成されたことを特徴とする生体内部観察装置。 The in-vivo internal observation device according to any one of claims 1 to 23, wherein the in-vivo internal observation device is configured to function as a medical endoscope.
  24.  請求項1~23の何れか1項に記載の生体内部観察装置であって、硬性内視鏡として機能するように構成されたことを特徴とする生体内部観察装置。 The in-vivo internal observation device according to any one of claims 1 to 23, wherein the in-vivo internal observation device is configured to function as a rigid endoscope.
  25.  被写体を照射するための光源と、
    前記光源からの照射光からの光を被写体表面に対して照射するように構成された照明用光学系と、
    前記被写体表面からの光を捉えるように構成された検出用光学系と、
    前記捉えられた光を電気信号に変換するように構成された検出器と、
    前記照明用光学系と前記検出用光学系とについて、前記被写体表面上での照射位置と検出位置を走査させるように構成された走査機構と、
    前記光源と前記走査機構を制御するように構成された制御部と、
    前記検出器からの電気信号の強度を測定するように構成された計測部と、
    前記計測部からの結果を基に画像を生成するように構成された画像化部と、
    前記走査の経路と画像の調整するための内容を演算するように構成された演算部と、
    前記生成された画像を表示するように構成された表示部と、
    を備える走査型の内部観察装置であって、
    前記画像の調整が、検出光量と観察距離とを関連付けて前記画像を補正することであることを特徴とする走査型の内部観察装置。
    A light source for illuminating the subject;
    An illumination optical system configured to irradiate the subject surface with light from the light emitted from the light source;
    A detection optical system configured to capture light from the subject surface;
    A detector configured to convert the captured light into an electrical signal;
    A scanning mechanism configured to scan an irradiation position and a detection position on the surface of the subject for the illumination optical system and the detection optical system;
    A controller configured to control the light source and the scanning mechanism;
    A measurement unit configured to measure the intensity of an electrical signal from the detector;
    An imaging unit configured to generate an image based on a result from the measurement unit;
    A computing unit configured to compute the scanning path and content for image adjustment;
    A display configured to display the generated image;
    A scanning type internal observation device comprising:
    A scanning type internal observation apparatus, wherein the adjustment of the image is to correct the image by associating a detected light amount with an observation distance.
  26.  1枚の撮像された前記画像について画像全体の光強度分布を算出し、算出された強度分布が一定となるような画像補正を行うことを特徴とする請求項25に記載の走査型の内部観察装置。 26. The scanning type internal observation according to claim 25, wherein a light intensity distribution of the entire image is calculated for one imaged image, and image correction is performed so that the calculated intensity distribution is constant. apparatus.
  27.  撮影された前記画像にローパスフィルタをかけることにより、当該画像全体の光強度分布を得ることに基づいて補正値を得ることを特徴とする請求項26に記載の走査型の内部観察装置。 27. The scanning internal observation apparatus according to claim 26, wherein a correction value is obtained based on obtaining a light intensity distribution of the entire image by applying a low-pass filter to the photographed image.
  28.  一度算出した光強度分布に基づいて補正値を得て、当該補正値を複数枚の当該画像についての補正において用いることを特徴とする請求項27に記載の走査型の内部観察装置。 28. The scanning internal observation apparatus according to claim 27, wherein a correction value is obtained based on the light intensity distribution calculated once, and the correction value is used in correction for a plurality of the images.
  29.  一定枚数の画像を撮影する毎に、光強度分布を算出し、それに基づいて補正値を得て、後に得られる当該画像についての補正を行うことを特徴とする請求項28に記載の走査型の内部観察装置。 29. The scanning type according to claim 28, wherein each time a certain number of images are taken, a light intensity distribution is calculated, a correction value is obtained based on the light intensity distribution, and correction for the image obtained later is performed. Internal observation device.
  30.  撮影されえた画像について算出された光強度分布を、それ以前に画像について算出された光強度分布と比較し、変化が少ない場合には、以前に算出された結果をそのまま用いることを特徴とする請求項28に記載の走査型の内部観察装置。 The light intensity distribution calculated for the captured image is compared with the light intensity distribution previously calculated for the image, and if the change is small, the previously calculated result is used as it is. Item 29. The scanning internal observation device according to Item 28.
  31.  撮影された画像内において複数の代表点を抽出し、それらの点での光強度から画像全体の光強度分布を得ることを特徴とする請求項26に記載の走査型の内部観察装置。 27. The scanning type internal observation apparatus according to claim 26, wherein a plurality of representative points are extracted from the photographed image, and the light intensity distribution of the entire image is obtained from the light intensity at those points.
  32.  予め代表点のみを走査し、それらのデータから画像全体の光強度分布を得ることを特徴とする請求項26に記載の走査型の内部観察装置。 27. The scanning internal observation apparatus according to claim 26, wherein only the representative points are scanned in advance, and the light intensity distribution of the entire image is obtained from the data.
  33.  照明範囲とは一致しない限られた範囲のみの光量を検出し、その照明範囲と検出範囲の両方を走査させ、走査点毎に検出光量を得ることによって画像を形成する走査型の内部観察装置において、前記検出光量と観察距離とを関連付けて画像の補正に用いることを特徴とする請求項25に記載の走査型の内部観察装置。 In a scanning type internal observation device that detects an amount of light only in a limited range that does not match the illumination range, scans both the illumination range and the detection range, and obtains a detected amount of light for each scanning point, thereby forming an image 26. The scanning internal observation apparatus according to claim 25, wherein the detected light quantity and the observation distance are associated with each other and used for image correction.
  34.  1枚の撮影された前記画像に対して画像全体の光強度分布を算出し、その強度分布が一定となるような画像補正を行うことを特徴とする請求項33に記載の走査型の内部観察装置。 34. Scanning type internal observation according to claim 33, wherein a light intensity distribution of the entire image is calculated for one photographed image, and image correction is performed so that the intensity distribution is constant. apparatus.
  35.  前記画像の調整が、照明範囲と検出範囲の中心距離の調整によって、検出光量を調整することであることを特徴とする請求項34に記載の走査型の内部観察装置。 35. The scanning internal observation apparatus according to claim 34, wherein the adjustment of the image is to adjust a detected light amount by adjusting a center distance between an illumination range and a detection range.
  36.  当該照明範囲と当該検出範囲の中心間距離の調整が、前記照明用光学系と前記検出用光学系の走査経路の調整によって行われることを特徴とする請求項35に記載の走査型の内部観察装置。 36. The scanning type internal observation according to claim 35, wherein the adjustment of the distance between the centers of the illumination range and the detection range is performed by adjusting a scanning path of the illumination optical system and the detection optical system. apparatus.
  37.  更に、中心間距離調整光学系を備える請求項36に記載の走査型の内部観察装置であって、当該照明範囲と当該検出範囲が、共通の走査機構により制御されることを特徴とする請求項36に記載の走査型の内部観察装置。 37. The scanning internal observation apparatus according to claim 36, further comprising a center-to-center distance adjustment optical system, wherein the illumination range and the detection range are controlled by a common scanning mechanism. 36. A scanning type internal observation device according to 36.
  38.  更に、記憶部を具備する請求項36に記載の走査型の内部観察装置であって、前記記憶部は、座標と中心間距離とを対応付けるルックアップテーブルを格納し、
     当該照明範囲と、当該検出範囲が、それぞれ独立した走査機構により制御され、それぞれの走査経路の座標に基づいて、当該照明範囲と当該検出範囲との中心間距離が調整されることを特徴とする請求項36に記載の走査型の内部観察装置。
    37. The scanning internal observation device according to claim 36, further comprising a storage unit, wherein the storage unit stores a look-up table that associates coordinates with a center-to-center distance.
    The illumination range and the detection range are controlled by independent scanning mechanisms, respectively, and the center-to-center distance between the illumination range and the detection range is adjusted based on the coordinates of each scanning path. 37. A scanning type internal observation device according to claim 36.
  39.  前記補正が、1枚の撮像された画像に対して画像全体の光強度分布を算出し、算出された強度分布から、撮影距離の分布および被写体の傾き程度を算出し、その算出結果に基づいて行われる画像補正であることを特徴とする請求項33に記載の走査型の内部観察装置。 The correction calculates the light intensity distribution of the entire image for one captured image, calculates the distribution of the shooting distance and the degree of inclination of the subject from the calculated intensity distribution, and based on the calculation result 34. The scanning type internal observation device according to claim 33, wherein the image correction is performed.
  40.  前記算出された撮影距離と、前記被写体傾き程度とに基づいて、照明範囲と検出範囲との中心間距離が調整されることを特徴とする請求項39に記載の走査型の内部観察装置。 40. The scanning internal observation apparatus according to claim 39, wherein a center-to-center distance between the illumination range and the detection range is adjusted based on the calculated photographing distance and the subject inclination degree.
  41.  当該照明範囲と、当該検出範囲の中心間距離の調整が、前記照明用光学系と前記検出用光学系の走査経路の調整によって行われることを特徴とする請求項40に記載の走査型の内部観察装置。 41. The interior of the scanning type according to claim 40, wherein the adjustment of the center distance between the illumination range and the detection range is performed by adjusting a scanning path of the illumination optical system and the detection optical system. Observation device.
  42.  更に、中心間距離調整光学系を備える請求項41に記載の走査型の内部観察装置であって、当該照明範囲と、当該検出範囲が共通の走査機構により制御されることを特徴とする請求項41に記載の走査型の内部観察装置。 42. The scanning internal observation apparatus according to claim 41, further comprising an inter-center distance adjustment optical system, wherein the illumination range and the detection range are controlled by a common scanning mechanism. 41. A scanning type internal observation device according to 41.
  43.  更に、記憶部を具備する請求項41に記載の走査型の内部観察装置であって、前記記憶部は、座標と中心間距離とを対応付けるルックアップテーブルを格納し、
     当該照明範囲と、当該検出範囲が、それぞれ独立した走査機構により制御され、それぞれの走査経路の座標に基づいて、当該照明範囲と検出範囲との中心間距離が調整されることを特徴とする請求項41に記載の走査型の内部観察装置。
    42. The scanning internal observation apparatus according to claim 41, further comprising a storage unit, wherein the storage unit stores a lookup table that associates coordinates with a center-to-center distance.
    The illumination range and the detection range are controlled by independent scanning mechanisms, respectively, and the center-to-center distance between the illumination range and the detection range is adjusted based on the coordinates of each scanning path. Item 42. The scanning internal observation device according to Item 41.
  44.  請求項25に記載の走査型の内部観察装置であって、
     各走査点毎に、二次元撮影装置で撮影し、当該照明範囲の中心から一定距離だけ離れた画素のみを抽出し、抽出された画素によって複数の抽出画像を生成し、それらの抽出画像を組み合わせることによって、撮影画像を作ることを特徴とする走査型の内部観察装置。
    A scanning type internal observation device according to claim 25,
    For each scanning point, the image is taken with a two-dimensional imaging device, only pixels that are separated from the center of the illumination range by a certain distance are extracted, a plurality of extracted images are generated by the extracted pixels, and the extracted images are combined. A scanning type internal observation device characterized in that a photographed image is created.
  45.  被写体を照射するための光源と、
    前記光源からの照射光からの光を被写体表面に対して照射するように構成された照明用光学系と、
    前記被写体表面からの光を捉えるように構成された検出用光学系と、
    前記捉えられた光を電気信号に変換するように構成された検出器と、
    前記照明用光学系と前記検出用光学系とについて、前記被写体表面上での照射位置と検出位置を走査させるように構成された走査機構と、
    前記光源と前記走査機構を制御するように構成された制御部と、
    前記検出器からの電気信号の強度を測定するように構成された計測部と、
    前記計測部からの結果を基に画像を生成するように構成された画像化部と、
    前記走査の経路と画像の調整するための内容を演算するように構成された演算部と、
    前記生成された画像を表示するように構成された表示部と、
    を備える走査型の内部観察装置を用いて、観察画像を得る方法であって、
    前記画像の調整が、検出光量と観察距離とを関連付けて前記画像を補正することであることを特徴とする方法。
    A light source for illuminating the subject;
    An illumination optical system configured to irradiate the subject surface with light from the light emitted from the light source;
    A detection optical system configured to capture light from the subject surface;
    A detector configured to convert the captured light into an electrical signal;
    A scanning mechanism configured to scan an irradiation position and a detection position on the surface of the subject for the illumination optical system and the detection optical system;
    A controller configured to control the light source and the scanning mechanism;
    A measurement unit configured to measure the intensity of an electrical signal from the detector;
    An imaging unit configured to generate an image based on a result from the measurement unit;
    A computing unit configured to compute the scanning path and content for image adjustment;
    A display configured to display the generated image;
    A method for obtaining an observation image using a scanning type internal observation device comprising:
    The method of adjusting the image is to correct the image by associating a detected light amount with an observation distance.
  46.  1枚の撮像された前記画像について画像全体の光強度分布を算出し、算出された強度分布が一定となるような画像補正を行うことを特徴とする請求項45に記載の方法。 46. The method according to claim 45, wherein a light intensity distribution of the entire image is calculated for one imaged image, and image correction is performed so that the calculated intensity distribution is constant.
  47.  撮影された前記画像にローパスフィルタをかけることにより、当該画像全体の光強度分布を得ることに基づいて補正値を得ることを特徴とする請求項46に記載の方法。 The method according to claim 46, wherein a correction value is obtained based on obtaining a light intensity distribution of the entire image by applying a low pass filter to the photographed image.
  48.  前記画像の調整が、照明範囲と検出範囲の中心距離の調整によって、検出光量を調整することであることを特徴とする請求項45に記載の方法。 46. The method according to claim 45, wherein the adjustment of the image is to adjust a detected light amount by adjusting a center distance between an illumination range and a detection range.
  49.  当該照明範囲と当該検出範囲の中心間距離の調整が、前記照明用光学系と前記検出用光学系の走査経路の調整によって行われることを特徴とする請求項48に記載の方法。 The method according to claim 48, wherein the adjustment of the center distance between the illumination range and the detection range is performed by adjusting a scanning path of the illumination optical system and the detection optical system.
PCT/JP2010/073583 2009-12-28 2010-12-27 Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method WO2011081141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011547692A JP5658171B2 (en) 2009-12-28 2010-12-27 Internal observation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009297178 2009-12-28
JP2009-297178 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011081141A1 true WO2011081141A1 (en) 2011-07-07

Family

ID=44226545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073583 WO2011081141A1 (en) 2009-12-28 2010-12-27 Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method

Country Status (2)

Country Link
JP (2) JP5658171B2 (en)
WO (1) WO2011081141A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200282A (en) * 2011-03-23 2012-10-22 Olympus Corp Inside observation device and inside observation method
JP2013045180A (en) * 2011-08-22 2013-03-04 Fujitsu Ltd Biometrics authentication apparatus, biometrics authentication method and program
WO2018229833A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
WO2018229834A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
WO2018229832A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
WO2018229831A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
JP2022514226A (en) * 2018-12-14 2022-02-10 天津先陽科技発展有限公司 Non-invasive detection methods, devices, systems, and wearable devices for tissue components
US11805988B2 (en) 2018-06-05 2023-11-07 Olympus Corporation Endoscope system
US11871906B2 (en) 2018-06-05 2024-01-16 Olympus Corporation Endoscope system
WO2024106458A1 (en) * 2022-11-18 2024-05-23 国立大学法人徳島大学 Imaging device, inspection device using said imaging device, and imaging method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193851B2 (en) * 2018-04-27 2022-12-21 大学共同利用機関法人情報・システム研究機構 Imaging apparatus and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166827A (en) * 2002-11-18 2004-06-17 Honda Motor Co Ltd Optical measuring device
JP2009153654A (en) * 2007-12-26 2009-07-16 Olympus Corp Living body observing apparatus and living body observing method
WO2009157229A1 (en) * 2008-06-27 2009-12-30 オリンパス株式会社 Scatterer interior observation device and scatterer interior observation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345904A (en) * 2004-06-04 2005-12-15 Sony Corp Image generation apparatus
JP2010060332A (en) * 2008-09-01 2010-03-18 Olympus Corp Apparatus and method for observing scatterer interior
JP2010008287A (en) * 2008-06-27 2010-01-14 Olympus Corp Inside detector of scattering object and inside detecting method of scattering object
JP2010223770A (en) * 2009-03-24 2010-10-07 Olympus Corp Scatterer inside observation device, and scatterer inside observation method
CN102361580B (en) * 2009-03-24 2014-06-04 奥林巴斯株式会社 Fluorescence observation device, fluorescence observation system, and fluorescence image processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166827A (en) * 2002-11-18 2004-06-17 Honda Motor Co Ltd Optical measuring device
JP2009153654A (en) * 2007-12-26 2009-07-16 Olympus Corp Living body observing apparatus and living body observing method
WO2009157229A1 (en) * 2008-06-27 2009-12-30 オリンパス株式会社 Scatterer interior observation device and scatterer interior observation method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200282A (en) * 2011-03-23 2012-10-22 Olympus Corp Inside observation device and inside observation method
JP2013045180A (en) * 2011-08-22 2013-03-04 Fujitsu Ltd Biometrics authentication apparatus, biometrics authentication method and program
US10972675B2 (en) 2017-06-12 2021-04-06 Olympus Corporation Endoscope system
WO2018229834A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
WO2018229832A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
WO2018229831A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
WO2018229833A1 (en) * 2017-06-12 2018-12-20 オリンパス株式会社 Endoscope system
US11045081B2 (en) 2017-06-12 2021-06-29 Olympus Corporation Endoscope system
US11070739B2 (en) 2017-06-12 2021-07-20 Olympus Corporation Endoscope system having a first light source for imaging a subject at different depths and a second light source having a wide band visible band
US11324385B2 (en) 2017-06-12 2022-05-10 Olympus Corporation Endoscope system for processing second illumination image using image information other than image information about outermost surface side of subject among three image information from at least four images of first illumination images
US11805988B2 (en) 2018-06-05 2023-11-07 Olympus Corporation Endoscope system
US11871906B2 (en) 2018-06-05 2024-01-16 Olympus Corporation Endoscope system
JP2022514226A (en) * 2018-12-14 2022-02-10 天津先陽科技発展有限公司 Non-invasive detection methods, devices, systems, and wearable devices for tissue components
JP7236770B2 (en) 2018-12-14 2023-03-10 天津先陽科技発展有限公司 NON-INVASIVE DETECTION METHOD, APPARATUS, SYSTEM, AND WEARABLE DEVICE FOR TISSUE COMPONENTS
WO2024106458A1 (en) * 2022-11-18 2024-05-23 国立大学法人徳島大学 Imaging device, inspection device using said imaging device, and imaging method

Also Published As

Publication number Publication date
JPWO2011081141A1 (en) 2013-05-13
JP2015077415A (en) 2015-04-23
JP5658171B2 (en) 2015-01-21
JP5965972B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5965972B2 (en) Scanning internal observation device
US9055866B2 (en) Internal observation device for object having light scattering properties, internal body observation device, endoscope for internal observation and internal observation method
JP5095167B2 (en) Fundus observation apparatus, fundus image display apparatus, and fundus observation program
JP5058627B2 (en) Fundus observation device
JP6062688B2 (en) Ophthalmic apparatus, method for controlling ophthalmic apparatus, and program
US20100324366A1 (en) Endoscope system, endoscope, and method for measuring distance and illumination angle
JP5916110B2 (en) Image display device, image display method, and program
JP2008237237A (en) Fundus oculi observing system, ophthalmologic image display system, and program
JP2016116595A (en) Blood flow measurement device
US10149599B2 (en) Processing apparatus
JP2017158962A (en) Information processing device
WO2009157229A1 (en) Scatterer interior observation device and scatterer interior observation method
JP2017042602A (en) Blood flow measuring device
JP6402025B2 (en) Blood flow measuring device
JP2010060332A (en) Apparatus and method for observing scatterer interior
WO2017033669A1 (en) Blood flow measurement device
JP6469436B2 (en) Blood flow measuring device
JP5809823B2 (en) Internal observation device
JP6502791B2 (en) Blood flow measuring device
JP2012050598A (en) Imaging and displaying method and apparatus
JP5812785B2 (en) Optical tomographic image processing apparatus and method of operating optical tomographic image processing apparatus
JP5188909B2 (en) Scatterer internal observation device and scatterer internal observation method
JP2012225826A (en) Interference light measuring apparatus
JP2019010346A (en) Subject information acquisition apparatus and ultrasound probe
JP2010035950A (en) Fundus photographing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547692

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840997

Country of ref document: EP

Kind code of ref document: A1