WO2009157229A1 - Scatterer interior observation device and scatterer interior observation method - Google Patents

Scatterer interior observation device and scatterer interior observation method Download PDF

Info

Publication number
WO2009157229A1
WO2009157229A1 PCT/JP2009/055486 JP2009055486W WO2009157229A1 WO 2009157229 A1 WO2009157229 A1 WO 2009157229A1 JP 2009055486 W JP2009055486 W JP 2009055486W WO 2009157229 A1 WO2009157229 A1 WO 2009157229A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scatterer
detection
unit
image
Prior art date
Application number
PCT/JP2009/055486
Other languages
French (fr)
Japanese (ja)
Inventor
利治 成田
賢 藤沼
遼佑 伊藤
健二 平
秀行 高岡
真一 瀧本
浩幸 西田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008169460A external-priority patent/JP2010008287A/en
Priority claimed from JP2008169459A external-priority patent/JP5451991B2/en
Priority claimed from JP2008223957A external-priority patent/JP2010060330A/en
Priority claimed from JP2008223959A external-priority patent/JP5188909B2/en
Priority claimed from JP2008223960A external-priority patent/JP2010060332A/en
Priority claimed from JP2008223958A external-priority patent/JP2010057566A/en
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2009157229A1 publication Critical patent/WO2009157229A1/en
Priority to US12/978,932 priority Critical patent/US9055866B2/en
Priority to US14/708,654 priority patent/US20150238089A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium

Definitions

  • the present invention relates to a scatterer internal measurement device (that is, a scatterer internal observation device) and a measurement method (that is, an observation method) that measure the inside of a scatterer by a non-invasive method using light.
  • the inside of a scatterer such as a living body.
  • One of the measurements using light has the advantage that a specific object can be measured by selecting the wavelength of the light to be used.
  • the position and depth information of the measurement target in the scatterer can be obtained by irradiating the scatterer with light having a wavelength absorbed by the measurement target and measuring the intensity of the backscattered light. It is known that the backscattered light is light that has passed deeper in the scatterer as the distance between the irradiation position and the measurement position increases.
  • Patent Document 1 discloses a biological light measurement device having a configuration in which a plurality of light detection means are provided at positions sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
  • Patent Document 2 discloses a biological light measurement device having a configuration including a plurality of light detection units arranged at predetermined intervals such as concentric circles from a light irradiation unit. JP 2006-200943 JP 2007-20735 JP
  • the backscattered light to be measured passes through the deepest part at the midpoint position between the irradiation position and the detection position. That is, the deepest information in the observed information is at the midpoint position between the irradiation position and the detection position.
  • the detection unit is sequentially arranged away from the light irradiation unit as in Patent Document 2
  • the position of the deepest portion to be measured in the x and y directions is large in the distance between the light irradiation unit and the detection unit. As it becomes, it becomes far from the irradiation position. Therefore, there is a problem in that information with varying depth (z direction) cannot be obtained at a specific position.
  • the present invention provides a scatterer internal measurement device (that is, a scatterer internal observation device) that acquires information on a measurement target (that is, an observation target) inside the scatterer, and the measurement target, the scatterer,
  • the illumination means for irradiating the scatterer with light having different optical characteristics that is, the light irradiation means
  • the detection means for detecting the backscattered light of the light emitted by the illumination means as a two-dimensional image
  • the detection means The presence or absence of the measurement target is confirmed in the acquired two-dimensional image data, and the measurement target in the scatterer is determined from the distance between the irradiation position on the two-dimensional image and the position where the measurement target is confirmed.
  • a scatterer internal measuring device array comprising: an analyzing means for obtaining position information including depth, wherein the illuminating means and the detecting means perform measurement without contact with the scatterer. It provides a measurement method using the apparatus.
  • the invention's effect ⁇ According to the present invention, it is possible to arbitrarily analyze data located at a desired distance from the irradiation position by detecting the backscattered light as a two-dimensional image. Therefore, information on a desired position and depth can be easily acquired.
  • FIG. 1 is a block configuration diagram of the scatterer internal measurement device according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the scatterer internal measurement device according to the present invention.
  • FIG. 3 is a conceptual diagram showing a state of light propagation inside the scatterer.
  • FIG. 4 is a schematic diagram of two-dimensional image data obtained by the scatterer internal measurement device according to the first embodiment.
  • FIG. 5 is a schematic diagram of two-dimensional image data when measurement is performed by changing the irradiation position.
  • FIG. 6 is a schematic diagram showing a locus of equal depth data when measurement is performed by changing the irradiation position.
  • FIG. 7 is a modification of the scatterer internal measurement device according to the first embodiment.
  • FIG. 1 is a block configuration diagram of the scatterer internal measurement device according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the scatterer internal measurement device according to the present invention.
  • FIG. 3 is a conceptual diagram showing a state of light
  • FIG. 8 is a modification of the scatterer internal measurement device according to the first embodiment.
  • FIG. 9 is a modified example of the scatterer internal measurement device according to the first embodiment.
  • FIG. 10 is a block configuration diagram of the scatterer internal measurement device according to the second embodiment.
  • FIG. 11 is a block diagram of a scatterer internal measurement device according to the third embodiment.
  • FIG. 12 is a block diagram of the scatterer internal observation device.
  • FIG. 13 is a schematic diagram of a rigid mirror to which the scatterer internal observation device of the side surface 1 is applied, and a conceptual diagram showing a state of light propagation inside and on the surface of the scatterer.
  • FIG. 14 is a conceptual diagram showing how illumination is scanned.
  • FIG. 14 is a conceptual diagram showing how illumination is scanned.
  • FIG. 15 is a schematic diagram showing the locus of the equal depth region by scanning the irradiation position.
  • FIG. 16 is a conceptual diagram showing how light propagates inside and on the surface of a scatterer when incident obliquely.
  • Block diagram of scatterer internal observation device according to side surface 2 The conceptual diagram showing the mode of the propagation of the light inside a scatterer.
  • FIG. 20 is a block configuration diagram of the scatterer internal observation device according to the first mode of the side surface 2.
  • FIG. 21 is a conceptual diagram illustrating a two-dimensional image obtained by the scatterer internal observation device according to the first aspect of the side surface 2.
  • FIG. 22 is a block configuration diagram of a modified example of the scatterer internal observation device according to the first aspect of the side surface 2.
  • FIG. 23 is a schematic diagram of two-dimensional image data when measurement is performed by changing the light irradiation position.
  • FIG. 24 is a schematic diagram showing a miracle of equi-depth data when measurement is performed by changing the light irradiation position.
  • FIG. 25 is a block configuration diagram of the scatterer internal observation device according to the second mode of the side surface 2.
  • FIG. 26 is a conceptual diagram illustrating a two-dimensional image obtained by the scatterer internal observation device according to the second aspect of the side surface 2.
  • FIG. 27 is a diagram showing a laser beam intensity profile.
  • FIG. 28 is a diagram illustrating a modification of the scatterer internal observation device on the side surface 2.
  • FIG. 29 is a diagram showing a modification of the scatterer internal observation device on the side surface 2.
  • FIG. 30 is a diagram illustrating a modified example of the scatterer internal observation device on the side surface 2.
  • FIG. 31 is a block configuration diagram of the scatterer internal observation device according to the first embodiment.
  • FIG. 32 is a schematic diagram showing the detection range of the scatterer surface.
  • FIG. 33 is a block configuration diagram of the scatterer internal observation device according to the second embodiment.
  • FIG. 34 is a block configuration diagram of the scatterer internal observation device according to the third embodiment.
  • FIG. 35 is a block configuration diagram of the scatterer internal observation device according to the fourth embodiment.
  • FIG. 36 is a block configuration diagram of a scatterer internal observation device according to a modification of the fourth embodiment.
  • FIG. 37 is a schematic diagram showing a detection area and a detection range.
  • FIG. 38 is a conceptual diagram illustrating a detection range determination method.
  • FIG. 39 is a conceptual diagram showing a first method of noise removal method.
  • FIG. 40 is a conceptual diagram showing a second method of noise removal method.
  • FIG. 41 is a conceptual diagram showing a third method of noise removal.
  • FIG. 42 is a block diagram illustrating an example of the side surface 4.
  • FIG. 43 is a block diagram illustrating an example of the side surface 4.
  • FIG. 44 is a block diagram illustrating an example of the side surface 4.
  • FIG. 45 is a block diagram showing an example of the side surface 4.
  • FIG. 46 is a block diagram illustrating an example of the side surface 4.
  • FIG. 47 is a block diagram showing an example of the side surface 4.
  • FIG. 48 is a diagram illustrating an example of measurement using the apparatus of the side surface 4.
  • FIG. 49 is a diagram showing an example of a scatterer having a heterogeneous portion inside.
  • FIG. 50 is a schematic diagram showing how backscattered light from a scattering medium is detected and the light intensity data is acquired.
  • FIG. 51 is a schematic functional block diagram of the scatterer internal detection device according to the first embodiment.
  • FIG. 52 is a diagram showing an example of a mark by the presenting means.
  • FIG. 53 is a schematic functional block diagram of a modification of the scatterer internal detection device according to the first embodiment.
  • FIG. 54 is a schematic block diagram showing a modification of the presenting means of the scatterer internal detection device according to the first embodiment.
  • FIG. 55 is a schematic operation flowchart of the scatterer internal detection device of the first embodiment.
  • FIG. 56 is a schematic diagram showing a state in which the light intensity signal is detected by scanning the surface of the living body S.
  • FIG. 57 is a frequency distribution diagram of the light intensity signal.
  • FIG. 58 is a schematic diagram illustrating threshold setting and data extraction.
  • FIG. 59 is a flow chart of processing for extracting scattering medium detection signal data.
  • FIG. 60 is a schematic functional block diagram of the scatterer internal detection device according to the second embodiment.
  • FIG. 61 is a diagram illustrating an example of the detector 5212 of the scatterer inside detection device according to the second embodiment.
  • FIG. 62 is a schematic diagram showing the arrangement of illumination areas, detection elements (d1 to d6), and detection areas (e1 to e6) in the second embodiment.
  • FIG. 63 is a schematic operation flowchart of the scatterer internal detection device of the second embodiment.
  • FIG. 64 is a frequency distribution diagram for four groups (g1 to g4) having the same illumination-detection distance.
  • FIG. 65 is a frequency distribution diagram Btg created for each group in FIG.
  • FIG. 66 is a diagram illustrating an example of a determination result in the second embodiment.
  • FIG. 67 is a diagram illustrating a display example of the determination result in the second embodiment.
  • the scatterer means an arbitrary one composed of a scattering medium, and examples thereof include a living body.
  • the scatterer internal measurement device of the present invention measures a measurement object existing in a scattering medium inside the scatterer.
  • the measurement object in the present invention may be, for example, a blood vessel, but is not limited thereto.
  • FIG. 1 is a block diagram of a scatterer internal measurement device 1 according to the first embodiment of the present invention.
  • the scatterer internal measurement device 1 includes a movable light irradiation unit 10, a detection unit 11, a control / analysis unit 12, a memory 13, a display unit 14, and an input unit 15.
  • the light irradiation unit 10 is an illumination unit that irradiates light having different optical characteristics between the measurement object 7 inside the scatterer 8 and the surrounding scattering medium 6.
  • an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto.
  • the light irradiation unit 10 irradiates light toward the scatterer 8 based on a control signal from the control / analysis unit 12.
  • the detection unit 11 detects the intensity of the backscattered light that is reflected, scattered, or absorbed by the scattering medium 6 of the scatterer 8 and the measurement object 7 and emitted from the scatterer surface. Is.
  • an image sensor that can detect an optical signal as two-dimensional image data is used as the detection unit 11.
  • a CCD can be used, but is not limited thereto.
  • the detection unit 11 detects backscattered light based on the control from the control / analysis unit 12.
  • the light irradiation unit 10, the detection unit 11, the display unit 14, and the input unit 15 are connected to the control / analysis unit 12 by a signal circuit through which an electric signal is transmitted.
  • the control / analysis unit 12 controls the operations of the light irradiation unit 10 and the detection unit 11, analyzes the two-dimensional image data detected by the detection unit 11, and the measurement object 7 exists inside the scatterer 8. Check if it exists. When the measurement object 7 exists inside the scatterer 8, the measurement object 7 in the scatterer 8 is determined from the distance between the light irradiation position on the two-dimensional image data and the position where the measurement object 7 is confirmed. The actual position and depth are analyzed.
  • the control / analysis unit 12 includes a memory 13 for storing detected data.
  • an image pickup device that can acquire two-dimensional image data is used as the detection unit 11.
  • the detection unit 11 is far away without being in contact with the scatterer 8. A wide area can be measured. Therefore, the light irradiation unit 10 and the detection unit 11 in this embodiment perform irradiation and detection at a certain distance without contacting the scatterer. Thereby, the detection part 11 can measure the wide area
  • FIG. 2 is a flowchart showing the operation of the scatterer internal measurement device 1 according to the present invention.
  • S1 the position at which the scatterer is irradiated with light is determined.
  • S2 the light irradiating unit 10 irradiates the scatterer with light.
  • the detection unit 11 detects the backscattered light intensity reflected, scattered, and absorbed by the scattering medium 6 inside the scatterer 8 and returning to the scatterer surface again as a two-dimensional image.
  • the detected data is stored in the memory 13 in S4.
  • S5 it is determined whether or not the measurement is finished. If not finished, the process returns to S1 and the measurement is continued. In the case of termination, the process proceeds to S6.
  • control / analysis unit 12 analyzes the data stored in the memory 13. The analysis result is displayed on the display unit 14 in S7. In S8, it is determined whether or not to end the measurement. If not, the process returns to S1 to continue the measurement or returns to S6 and the analysis is continued.
  • FIG. 3 is a conceptual diagram showing a state of light propagation inside the scatterer.
  • light irradiated to a scatterer loses its scattering anisotropy while repeating scattering inside the scatterer and approaches isotropic scattering. As a result, it is known that the cross section of the average optical path becomes a banana shape.
  • the measurement object is near the surface between the detection positions I 1 and I 2 . In this case, no change is seen in the detection light at the detection positions I 1 and I 2 .
  • the measurement object is at a deeper position between the detection positions I 1 and I 2 . At this time, no change is seen in the detection light at the detection position I 1, but the detection light at the detection position I 2 is attenuated. As a result, the position and depth of the measurement target are determined.
  • FIG. 4 the schematic diagram of the backscattered light measured in a measurement area
  • the backscattered light reflected, scattered and absorbed by the scatterer 8 and emitted from the scatterer surface becomes concentric with the irradiation position as the center as shown in the figure.
  • FIG. 4A as the diameter of the concentric circles increases, the light travels deeper in the scatterer.
  • the concentric regions 41, 42 and 43 can be regarded as having information of substantially the same depth. Further, since the depth corresponds to the distance from the irradiation position to the concentric circle, the depth is deeper in the order of the concentric circular regions 41, 42 and 43. Therefore, by extracting the image data of the concentric circle region from the two-dimensional image data, the image data at a certain depth can be selectively extracted, and a tomographic image at the depth can be created from the selected data. it can.
  • FIG. 5 shows a state where measurement is performed by changing the irradiation position by the light irradiation unit 10.
  • the detection unit 11 is fixed, and the measurement region 50 does not move.
  • the concentric region as described above moves by changing the position irradiated by the light irradiation unit 10. This is shown in FIG.
  • FIG. 6 (a) to 6 (c) are schematic diagrams showing the trajectories of the concentric circular regions 51, 52, and 53, respectively.
  • Each concentric region has the same depth information. Therefore, by superimposing a plurality of measurement results as shown in FIG. 6, a tomographic image at that depth can be created. Note that overlapping portions occur when the data are superimposed, but arbitrary data may be selectively used from the overlapping data, or an average value of the overlapping data may be used.
  • the light irradiation part 10 is comprised so that it can move.
  • the light irradiation unit 10 may be configured to move freely, or may be configured to move the irradiation position by changing the light irradiation angle.
  • a plurality of two-dimensional image data can be easily acquired without moving the scatterer internal measurement device itself, and detection data necessary for creating a tomographic image can be efficiently acquired. can do. Thereby, the measurement time can be shortened.
  • information at an arbitrary depth at a desired position can be obtained from the obtained two-dimensional image data.
  • the detected data is a two-dimensional image
  • data at a desired position in the image can be arbitrarily used. Therefore, on the plurality of two-dimensional image data obtained as described above, by analyzing data at a position away from the desired position by a distance equal to the distance between the desired position and the irradiation position, Information at an arbitrary depth of the desired position can be easily obtained. In this case, the distance between the desired position, the irradiation position, and the position of data to be analyzed is determined according to the depth at which information is desired.
  • the focal length and magnification of the optical system of the detection unit 11 are taken into consideration when obtaining the distance between the irradiation position and the detection position in the data analysis step S6 of FIG. Furthermore, in the case of an imaging system used by a detection means such as an endoscope, distortion may occur. In this case, the magnitude of the influence of distortion is obtained in advance using a lattice chart or the like, and this is taken into account when obtaining the distance between the irradiation position and the detection position.
  • FIG. 7 to 9 are block diagrams showing modifications of the scatterer internal measurement device 1 according to the first embodiment.
  • FIG. 7 shows an apparatus including a plurality of light irradiation units 70 that emit spot-like illumination light.
  • FIG. 8 shows an apparatus provided with a light irradiation unit 80 that emits line-shaped illumination light.
  • FIG. 9 shows an apparatus provided with a plurality of light irradiation units 90 that emit linear illumination light.
  • the line-shaped illumination light preferably has a uniform light intensity. Alternatively, it is preferable to provide means for performing correction according to the light intensity.
  • the light irradiating units are arranged at positions separated from each other so that detection data obtained by the respective lights do not interfere with each other.
  • the measured data is two-dimensional image data
  • data at a position separated from the irradiation position by an arbitrary distance can be freely selected. Therefore, the degree of freedom in setting the irradiation position and the detection position is high.
  • it is two-dimensional image data, more information can be acquired by one measurement.
  • measurement is performed in a non-contact manner with the scatterer, a wider area can be measured at a time, and deep information can be easily acquired. Therefore, it is not necessary to enlarge the apparatus.
  • the degree of freedom of the irradiation position and the detection position is high, information at an arbitrary depth at a desired position can be easily obtained.
  • FIG. 10 is a block configuration diagram of the scatterer internal measurement device 100 according to the second embodiment.
  • the light illumination unit 109 is movably provided in the scatterer internal measurement device 100.
  • the detection unit 101 includes a plurality of light detection elements 107.
  • the light detection elements 107 may be arranged along one direction away from the light irradiation unit 109 along the surface of the scatterer 8, or may be arranged in a two-dimensional matrix along the surface of the scatterer 8. Good.
  • the light irradiation unit 109 is moved, and acquired by the light detection element 107 that is symmetric with respect to the irradiation position around the desired position.
  • the obtained data information of an arbitrary depth at a desired position can be easily obtained.
  • FIG. 11 is a block configuration diagram of the scatterer internal measurement device 110 according to the third embodiment.
  • the light illumination unit 119 and the detection unit 120 are movably provided.
  • the light irradiation unit 119 and the detection unit 120 are moved, and each is arranged at an equidistant position with a desired position as a center. Thereby, information of an arbitrary depth at a desired position can be obtained. The depth of information to be obtained can be easily changed by appropriately adjusting the distance between the desired position and the light irradiation unit 119 and the detection unit 120.
  • the side surface 1 relates to an apparatus and a method for observing the inside of the scatterer by measuring backscattered light from the scatterer.
  • Japanese Unexamined Patent Application Publication No. 2006-200943 discloses a biological light observation apparatus having a configuration in which a plurality of light detection means are provided at positions that are sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
  • Japanese Unexamined Patent Application Publication No. 2007-20735 discloses a living body light observation apparatus having a configuration including a plurality of light detection units arranged at predetermined intervals such as concentric circles from a light irradiation unit.
  • an object of the side surface 1 is to provide a scatterer internal observation device that can efficiently acquire a tomographic image at a depth at which a heterogeneous portion exists.
  • a scatterer internal observation device that is, a scatterer internal observation device
  • the scattering medium that constitutes the scatterer and the foreign material
  • Illuminating means that is, light irradiating means
  • Detection means for acquiring light intensity data
  • imaging means for analyzing the acquired light intensity data and generating a plurality of tomographic images each having a different depth (that is, an image construction means), and the plurality of generated tomograms
  • a scatterer comprising: analysis means (that is, selection means) for selecting a tomographic image in which the heterogeneous portion is displayed from an image; and display means for displaying the selected tomographic image. Scattering medium observation method using
  • the scatterer internal observation device acquires information on the extraneous portion inside the scatterer, and has different wavelengths of optical characteristics between the scattering medium constituting the scatterer and the extraneous portion.
  • Illuminating means for irradiating the scatterer with light including at least, detecting means for detecting backscattered light of light irradiated by the illuminating means, and acquiring light intensity data of the backscattered light, and the acquired light Analyzing intensity data, imaging means for producing a plurality of tomographic images each having a different depth, display means for displaying the produced tomographic images, and selecting a desired tomographic image from the displayed plurality of tomographic images And a scatterer internal observation device using the device, and an scatterer internal observation method using the device.
  • the scatterer internal observation device includes an illumination range recognition unit (that is, an irradiation range recognition unit) that recognizes a shape of an illumination range (that is, an irradiation range) irradiated by the illumination unit, and the illumination range recognition unit.
  • Imaging means including extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the illumination range recognized by.
  • the invention's effect ⁇ According to the aspect 1, it is possible to provide a scatterer internal observation device that can efficiently acquire a tomographic image at a depth at which a heterogeneous portion exists.
  • a scatterer refers to an object mainly composed of a scattering medium, and a living body can be mentioned as an example.
  • the scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
  • the side 1 scatterer internal observation device is a device for observing a heterogeneous portion present in the scattering medium inside the scatterer.
  • the heterogeneous portion in the side surface 1 is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
  • FIG. 12 is a block diagram of a scatterer internal observation device 1001 according to one embodiment of the side surface 1.
  • the scatterer internal observation device 1001 includes a light irradiation unit 1010, a detection unit 1011, a control unit 1012, a display unit 1014, and an input unit 1015.
  • the light irradiation unit 1010 is an illuminating unit that irradiates light including at least wavelengths having different optical characteristics between the heterogeneous portion 1007 inside the scatterer 1008 and the surrounding scattering medium 1006.
  • an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto.
  • the light irradiated from the light irradiation unit 1010 for example, light including at least a wavelength that is absorbed by a foreign portion but not absorbed by a scattering medium can be used.
  • light including a wavelength in the near infrared region having absorption in hemoglobin is preferably used as the light including at least a different optically specific wavelength.
  • the light irradiation unit 1010 irradiates light toward the scatterer 1008 based on a control signal from the control unit 1012.
  • the detection unit 1011 detects the intensity of the backscattered light that is reflected, scattered, and absorbed by the scattering medium 1006 and the extraneous portion 1007 of the scatterer 1008 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 1010.
  • the light intensity data of the backscattered light is acquired.
  • an image sensor that can detect an optical signal as two-dimensional image data is used for the detection unit 1011.
  • a CCD can be used, but is not limited thereto.
  • the detection unit 1011 detects backscattered light based on the control from the control unit 1012.
  • the control unit 1012 controls the operations of the light irradiation unit 1010 and the detection unit 1011, analyzes the two-dimensional image data detected by the detection unit 1011, and creates imaging means 1016 that creates a plurality of tomographic images having different depths.
  • analysis means 1017 for selecting a tomographic image in which a heterogeneous portion is displayed from a plurality of produced tomographic images.
  • the tomographic image selected by the analysis unit can be displayed by the display unit 1014.
  • the light irradiation unit 1010, the detection unit 1011, the display unit 1014, and the input unit 1015 are connected to the control unit 1012 by a signal circuit that transmits an electrical signal.
  • the imaging means 1016 the obtained two-dimensional image data is analyzed, and tomographic images having different depths are produced.
  • the principle of producing a tomographic image will be described.
  • FIG. 13A is a schematic diagram of a rigid endoscope 1100 to which the scatterer internal observation device on the side surface 1 is applied.
  • the rigid endoscope 1100 includes an illumination unit 1102 and a detection unit 1101, and includes a control unit and a display unit (not shown).
  • FIG. 13B is a schematic cross-sectional view of the scatterer
  • FIG. 13C is a schematic view of the surface of the scatterer as viewed from above.
  • a position where light is irradiated from the light irradiation unit 1102 onto the scatterer 1008 is indicated by a cross
  • a detection range 1050 where the backscattered light is detected by the detection unit 1101 is indicated by a dotted line.
  • the back scattered light of the light irradiated from the light irradiation unit 1102 to the scatterer 1008 propagates as shown in FIG. 13B, and when viewed from above the scatterer surface, it is irradiated as shown in FIG. 13C.
  • Concentric circles centered on the position. The larger the diameter of this concentric circle, the more backscattered light has passed through the deeper part of the scatterer.
  • the concentric circular regions are backscattered light that has passed through substantially the same depth, and by extracting light intensity data in the concentric circular regions, A tomographic image at a depth can be created.
  • a tomographic image having a desired depth can be obtained by changing the distance from the irradiation position to the concentric area.
  • the illumination point is moved in the detection range 1050 as shown in FIG.
  • the concentric region moves as the illumination point moves. Therefore, information of the same depth can be obtained by always extracting light intensity data in a concentric circle region that is at a fixed distance from the illumination point. This will be described with reference to FIG.
  • FIG. 15A is a diagram in which concentric regions 1051, 1052, and 1053 at the respective scanning points are overlaid.
  • each of the concentric circular regions 1051, 1052, and 1053 is a diagram showing a trajectory moved.
  • Each concentric region has the same depth information. Therefore, by superimposing a plurality of detection results as shown in FIG. 15A, a tomographic image at that depth can be created as shown in FIG. 15B.
  • overlapping portions are generated when the data are overlapped, arbitrary data is selectively used from the overlapping data, or an average value of the overlapping data may be used.
  • the tomographic image on which the heterogeneous portion is displayed is then displayed by the analyzing unit 1017, for example, as shown in FIG. Selected. This selection is performed by determining a tomographic image that satisfies a predetermined contrast condition.
  • the analysis unit 1017 determines whether each tomographic image satisfies the contrast condition, and determines that the tomographic image satisfying the contrast condition is a tomographic image in which a heterogeneous portion exists.
  • the following methods (1) to (4) can be used as a method for determining whether or not a tomographic image satisfies a contrast condition.
  • the present invention is not limited to these, and various methods can be used.
  • the tomographic image screen is divided into several sections, and the average intensity is calculated for each section. Next, it is determined whether there is a certain difference or more in the average intensity between the sections. In this case, the condition that is considered to be different is the contrast condition.
  • the tomographic images having different depths are compared to detect a portion having different light intensity.
  • a portion having the same intensity change between the tomographic images can be regarded as noise. If there is a difference in light intensity change between tomographic images, it can be considered that a heterogeneous portion exists. In this case, the condition for regarding the difference in the light intensity between the tomographic images is the contrast condition.
  • a spatial light intensity distribution data image is created from the acquired light intensity data, and changes in the light intensity are observed. For example, on a line passing through an arbitrary point on the image, a portion where the light intensity greatly decreases can be regarded as a heterogeneous portion. Further, if the degree of decrease in light intensity is small, it can be determined that noise is present.
  • the tomographic image is displayed by the display unit 1014. At this time, only the selected tomographic image may be displayed, or the selected tomographic image may be displayed together with other tomographic images, for example, by displaying it larger than the other images.
  • the side surface 1 it is possible to easily obtain a tomographic image at an arbitrary depth by acquiring light intensity data as a two-dimensional image, and at a depth at which a heterogeneous portion exists. By automatically selecting the tomographic image, the inside of the scatterer can be observed simply and efficiently.
  • the scatterer internal observation device in this aspect has a configuration in which a plurality of tomographic images created by the imaging unit are displayed, and the user can select a desired tomographic image.
  • the scatterer internal observation device is irradiated by the illuminating unit, the illuminating unit that irradiates the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion.
  • the illumination means and detection means used in this aspect are the same as those in the above-described scatterer internal observation device 1001.
  • the display means can simultaneously display a plurality of tomographic images produced by the imaging means, and further enlarges the tomographic image selected by the user or enlarges only the selected tomographic image. Can be displayed.
  • a monitor screen is preferably used, but is not limited thereto.
  • the input means is for the user to select a desired tomographic image from the displayed tomographic images and to input the result.
  • a keyboard or the like that indicates a selected image may be used, or a monitor that uses a touch panel that indicates an image by touching the displayed image or surrounding it with an input pen may be used.
  • the present invention is not limited to these, and various input means can be used.
  • the illuminating unit irradiates the scatterer with light
  • the detecting unit detects the backscattered light of the irradiated light
  • acquires light intensity data of the backscattered light Next, the acquired light intensity data is analyzed by means of the image, and a plurality of tomographic images having different depths are produced.
  • a plurality of produced tomographic images are displayed by the display means. All of a plurality of tomographic images may be displayed simultaneously, or some may be displayed simultaneously.
  • the display unit displays the selected tomographic image based on the input instruction.
  • the series of steps described above are continuously repeated during the observation of the scatterer, and the displayed tomographic images are sequentially updated.
  • the selection of the tomographic image may be performed periodically by the user, but the condition of the tomographic image selected by the user may be stored, and the subsequent selection may be automatically performed according to the condition.
  • the condition of the tomographic image is, for example, depth.
  • the imaging unit further includes an illumination range recognition unit that recognizes the shape of the illumination range irradiated by the illumination unit, and the illumination recognized by the illumination range recognition unit.
  • Extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the range can be included.
  • the shape of the illumination range is recognized by the illumination range recognition means.
  • backscattered light is detected at a location near the illumination point in the captured two-dimensional image of backscattered light.
  • the illumination range includes both backscattered light and surface reflected light from a very shallow depth.
  • a graph is created by plotting the light intensity on the line including the illumination point.
  • two points having the same intensity across the illumination point can be regarded as positions where backscattered light from the same depth is emitted.
  • the shape of the illumination range can be recognized. For example, it is performed while changing the angle of the line plotted with the illumination point as the center.
  • the position for extracting light intensity data is then determined by the extraction position determining means based on the shape in order to produce a tomographic image. This can be determined, for example, by sequentially expanding the shape of the illumination range.
  • the imaging unit includes the illumination range recognition unit and the extraction position determination unit, recognizes the shape of the irradiation range, determines the position where the light intensity data is extracted, and then creates the tomographic image. A tomographic image with improved accuracy can be acquired.
  • the present invention is not limited to this, and the light that emits the spot-like illumination light is used.
  • a plurality of irradiation units may be provided.
  • the light irradiation part which emits a linear illumination light may be provided.
  • the line-shaped illumination light preferably has a uniform light intensity.
  • the tomographic image of the scatterer can be acquired efficiently and with high accuracy.
  • a scatterer internal observation device that acquires information on a heterogeneous part inside a scatterer, Illuminating means for irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; Detecting means for detecting backscattered light of the light irradiated by the illuminating means, and obtaining light intensity data of the backscattered light; An imaging means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having a different depth; Analyzing means for selecting a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images; A scatterer internal observation device comprising display means for displaying the selected tomographic image.
  • the tomographic image in which the heterogeneous portion is displayed is a tomographic image satisfying a predetermined contrast condition.
  • a scatterer internal observation device that acquires information on a heterogeneous part inside a scatterer, Illuminating means for irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; Detecting means for detecting backscattered light of the light irradiated by the illuminating means, and obtaining light intensity data of the backscattered light; An imaging means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having a different depth; Display means for displaying the produced tomographic image; An scatterer internal observation device, comprising: an input unit that selects and displays a desired tomographic image from the plurality of displayed tomographic images.
  • the imaging means Illumination range recognition means for recognizing the shape of the illumination range irradiated by the illumination means; Extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the illumination range recognized by the illumination range recognition means;
  • the above-described 1. is characterized by comprising: ⁇ 3.
  • the scatterer internal observation apparatus as described in any one of.
  • the light including at least the optically specific different wavelength is light including a wavelength in a near infrared region having absorption in hemoglobin.
  • ⁇ 4 The scatterer internal observation apparatus as described in any one of.
  • a scatterer internal observation method for observing a heterogeneous part inside a scatterer (a) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; (b) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light; (c) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth; (d) selecting a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images; (e) displaying the tomographic image selected by the step;
  • a method comprising the steps of:
  • the step (d) includes a step of determining whether the produced tomographic image satisfies a predetermined contrast condition, and selecting a tomographic image satisfying a predetermined contrast condition as a tomographic image on which a heterogeneous portion is displayed.
  • the above-mentioned 6 The method described in 1.
  • a scatterer internal observation method for observing a heterogeneous part inside a scatterer, (a) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; (b) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light; (c) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth; (d) displaying the produced tomographic image; (e) selecting and displaying a desired image from the displayed plurality of tomographic images; A method comprising the steps of:
  • Steps (a) to (d) are repeated, 8.
  • the tomographic image having the same condition as the tomographic image selected in the step (e) is selected and the display is updated. The method described in 1.
  • the scatterer internal observation device on the side surface 1 is preferably applied to, for example, an endoscope or a rigid endoscope.
  • the side surface 2 relates to a scatterer internal observation device and an observation method for observing the inside of the scatterer by a non-invasive method using light.
  • Japanese Unexamined Patent Application Publication No. 2006-200903 discloses a biological light measurement apparatus having a configuration in which a plurality of light detection means are provided at positions that are sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
  • Japanese Unexamined Patent Application Publication No. 2007-20735 discloses a biological light measurement device having a configuration including a plurality of light detection units arranged at predetermined intervals such as concentric circles from a light irradiation unit.
  • the light irradiation means and the light detection means are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, there is a problem that detection cannot be performed at a position at an arbitrary distance from the irradiation position.
  • the backscattered light to be measured passes through the deepest part at the midpoint position between the irradiation position and the detection position. That is, the deepest information in the observed information is at the midpoint position between the irradiation position and the detection position. Therefore, in an apparatus in which the detection unit is sequentially arranged away from the light irradiation unit as disclosed in Japanese Patent Application Laid-Open No. 2007-20735, the position of the deepest portion to be measured in the x and y directions is the light irradiation unit and the detection unit. As the distance increases, the distance from the irradiation position increases. Therefore, there is a problem in that information with varying depth (z direction) cannot be obtained at a specific position.
  • Japanese Patent Application No. 2008-169459 discloses a scatterer internal measurement device for acquiring information on an observation target inside a scatterer.
  • the device described in Japanese Patent Application No. 2008-169459 is characterized in that data located at a desired distance from the irradiation position can be arbitrarily analyzed by detecting backscattered light as a two-dimensional image.
  • the purpose of the side surface 2 is to select an appropriate pixel region corresponding to a desired depth in a two-dimensional image captured by a plurality of pixels when acquiring information on an observation target inside the scatterer using backscattered light. There is to be able to do it.
  • the light irradiating means for irradiating the surface of the scatterer including the observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium, and the scatterer by the light irradiation means.
  • An imaging unit that is, a detection unit that captures backscattered light of a light irradiated to an arbitrary light irradiation position on the surface as a two-dimensional image using an imaging surface including a plurality of pixels, and a surface of the scatterer
  • the scattered light emitted from the backscattered light detection region is incident
  • a tomographic image inside the scatterer is obtained from pixel area determining means for determining a pixel area composed of pixels on the imaging surface in the two-dimensional image and light intensity information from each pixel constituting the pixel area. Scattering medium observation device and an image construction unit that built are provided.
  • the surface of the scatterer including the observation target inside the scattering medium is irradiated with light having different optical characteristics between the observation target and the scattering medium
  • the light irradiation means Imaging a back-scattered light of a light irradiated to an arbitrary light irradiation position as a two-dimensional image using an imaging surface including a plurality of pixels, and a predetermined distance from the light irradiation position on the surface of the scatterer
  • the image pickup unit is configured by pixels on the imaging surface on which the scattered light emitted from the backscattered light detection region is incident.
  • a scatterer internal observation method comprising: determining a pixel area to be determined in the two-dimensional image; and constructing a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel area. It is subjected.
  • an appropriate pixel region corresponding to a desired depth is selected in a two-dimensional image captured by a plurality of pixels when acquiring information on an observation target inside the scatterer using backscattered light. It becomes possible.
  • the scatterer internal observation device on the side surface 2 will be described.
  • the scatterer means an arbitrary object composed of a scattering medium, and examples thereof include a living body.
  • the scatterer includes an observation target inside the scattering medium.
  • the scatterer internal observation device on the side surface 2 is for obtaining information about the observation target existing inside the scatterer by irradiating the surface of the scatterer with light.
  • the observation object in the side surface 2 refers to a substance composed of components having different scattering characteristics with respect to the light scattering component distributed in the observation region of the observation apparatus. Not.
  • the term that the scattering property is heterogeneous means that the light scattering degree is significantly different from other parts, so that the light scattering degree of the observation object is significantly different from the surrounding parts. Is used.
  • the light scattering degree in the observation object can be lowered and the S / N ratio can be improved by using light of a wavelength having a large light absorption in the observation object.
  • the observation target is a blood vessel, it is preferable to use light having a wavelength in the near-infrared region that exhibits light absorption specific to hemoglobin.
  • FIG. 17 is a block configuration diagram of the scatterer internal observation device according to the side surface 2.
  • the scatterer internal observation device 2001 includes a light irradiation unit 2010, a detection unit (that is, a detection unit) 2011, a control / analysis unit 2012, a memory 2013, a display unit 2014, and an input unit 2015. .
  • the light irradiation means 2010 is an illumination means for irradiating light having different optical characteristics between the observation object 2007 inside the scatterer 2008 and the surrounding scattering medium 2006.
  • a laser diode (LD) can be used as the light irradiation means 2010, but is not limited thereto.
  • the light irradiation unit 2010 irradiates light toward the scatterer 2008 based on a control signal from the control / analysis unit 2012.
  • the light irradiation means 2010 may be movable.
  • the detection unit 2011 detects the intensity of the backscattered light that is reflected, scattered, and absorbed by the scattering medium 2006 of the scatterer 2008 and the observation target 2007 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 2010. Is.
  • an image sensor that can detect an optical signal as two-dimensional image data can be used.
  • a CCD can be used, but is not limited thereto.
  • the detection unit 2011 detects backscattered light based on the control from the control / analysis unit 2012.
  • the detection unit 2011 may be movable.
  • the light irradiation means 2010, the detection unit 2011, the display unit 2014, and the input unit 2015 are connected to the control / analysis unit 2012 by a signal circuit that transmits an electrical signal.
  • the control / analysis unit 2012 controls the operation of the light irradiation unit 2010 and the detection unit 2011, analyzes the two-dimensional image data detected by the detection unit 2011, and the observation target 2007 exists inside the scatterer 2008. Check if it exists.
  • the control / analysis unit 2012 includes a memory 2013 that stores detected data. A tomographic image at a desired depth can be created based on a plurality of stored two-dimensional image data.
  • an image sensor that can acquire two-dimensional image data can be used as the detection unit 2011.
  • the detection unit 2011 is not in contact with the scatterer 2008 from the viewpoint of the angle of view of the optical system of the image sensor. A wider area can be measured. Therefore, the light irradiation means 2010 and the detection unit 2011 on the side surface 2 perform irradiation and detection without contacting the scatterer 2008. Thereby, the detection part 2011 can measure the wide area
  • FIG. 18 is a conceptual diagram showing a state of light propagation inside the scatterer.
  • the light irradiated to the scatterer loses its scattering anisotropy while repeating scattering inside the scatterer and approaches isotropic scattering.
  • the cross section of the average optical path becomes a banana shape.
  • the observation target is close to the surface between the detection positions I 1 and I 2. In this case, the detection light at the detection positions I 1 and I 2 hardly changes.
  • the observation target is in the deeper position between the detection positions I 1 and I 2. At this time, the detection light at the detection position I 1 hardly changes, but the detection light at the detection position I 2 is attenuated.
  • the depth and position of the observation target can be calculated from the distance between the point and the light irradiation position.
  • a tomographic image at a certain depth can be created from the obtained two-dimensional image data.
  • FIG. 19 is a schematic diagram of backscattered light detected by the scatterer internal observation device on the side surface 2 and the obtained two-dimensional image data.
  • a position where light is irradiated on the scatterer 2008 from the light irradiation unit 2010 is indicated by a cross, and an imaging region 2030 imaged by the imaging element 2110 is indicated by a dotted line.
  • the imaging region 2030 means a region on the scatterer 2008 that is imaged at once by the imaging element 2110.
  • the backscattered light reflected, scattered and absorbed by the scatterer 2008 and emitted from the scatterer surface is usually concentric with the irradiation position as the center as shown in the figure.
  • an area where backscattered light having a fixed positional relationship from the light irradiation position is detected is referred to as a backscattered light detection area.
  • the region need not necessarily be concentric.
  • the greater the diameter of the concentric circle in the backscattered light detection region the more light that has passed through the deeper part of the scatterer 2008 is detected.
  • the light detected in the backscattered light detection regions 2031, 2032, and 2033 can be regarded as having substantially the same depth information in each region. Further, since the depth corresponds to the distance from the irradiation position to the backscattered light detection region, the depth is deeper in the order of the backscattered light detection regions 2031, 2032, and 2033. Therefore, by extracting image data of a predetermined backscattered light detection region from the two-dimensional image data, image data at a certain depth can be selectively extracted, and a tomographic image at the depth can be extracted from the selected data. Can be created.
  • FIG. 20 is a block configuration diagram of the scatterer internal observation device according to the first mode of the side surface 2. As shown in the figure, the scatterer internal observation device 2004 includes a distance measuring means 2041.
  • the distance measuring means 2041 is for measuring the distance z from the tip of the image sensor 2110 to the surface of the scatterer 2008. Since the angle of view ⁇ of the imaging element 2110 is constant, the imaging region 2040 can be calculated from the relationship with the angle of view ⁇ by measuring the distance z from the tip of the imaging element 2110 to the surface of the scatterer 2008. Become.
  • various means used in this field can be used, and examples thereof include a method using trigonometry and a method using ultrasonic reflection.
  • the method using ultrasonic reflection is a method of irradiating an ultrasonic signal to a scatterer, receiving a returning ultrasonic signal, and calculating a distance.
  • An image sensor 2110 is used as the detection unit.
  • the imaging element 2110 captures backscattered light of light irradiated to an arbitrary light irradiation position on the surface of the scatterer by the light irradiation unit as a two-dimensional image using an imaging surface including a plurality of pixels.
  • a large number of two-dimensional image data can be obtained at a time by scanning light within the imaging region 2040. These data are stored in the memory 2013.
  • the control / analysis unit 2012 cooperates with the distance measuring unit 2041 to determine a pixel region corresponding to a desired backscattered light detection region in the two-dimensional image.
  • the pixel region is a two-dimensional image composed of pixels on the imaging surface on which the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer is incident. Refers to the upper area.
  • a tomographic image inside the scatterer can be constructed based on light intensity information from each pixel constituting the pixel region.
  • FIG. 21 is a conceptual diagram showing a two-dimensional image obtained by the scatterer internal observation device according to the first mode of the side surface 2.
  • the scatterer internal observation device according to the first aspect of the side surface 2 includes the distance measuring unit, the imaging region can be calculated. By comparing the calculated imaging region with the obtained two-dimensional image, it is possible to select an appropriate pixel region 2051 corresponding to a desired backscattered light detection region on the scatterer in the two-dimensional image.
  • the imaging region on the scatterer is determined from the distance z from the tip of the imaging device to the surface of the scatterer, and the backscattering is performed based on the light irradiation position in the imaging region and the position of the desired backscattered light detection region.
  • a pixel region 2051 corresponding to the light detection region can be determined on the two-dimensional image. In FIG. 21, the pixel region 2051 is specified by r1 and r2.
  • the backscattered light detection region in the scatterer can be determined from the focused pixel region.
  • the position information including the depth of the observation target can be analyzed from the determined distance between the backscattered light detection region and the light irradiation position.
  • FIG. 22 is a block configuration diagram of a modified example of the scatterer internal observation device according to the first mode of the side surface 2.
  • light irradiation may be performed with a fixed distance z from the tip of the image sensor 2110 to the surface of the scatterer 2008.
  • the scatterer internal observation device according to the first aspect of the side surface 2 is provided with the rod member 2061.
  • the distance z from the tip of the imaging element 2110 to the surface of the scatterer 2008 can be fixed to obtain a plurality of image data.
  • the distance z can be adjusted according to the purpose.
  • the size of the pixel region corresponding to the desired backscattered light detection region is also fixed. That is, since the imaging region determined by the analysis method described above always has a constant size, the sizes of r1 and r2 determined from the light irradiation position and the backscattered light detection region in the imaging region are also fixed. Once r1 and r2 are determined, there is an advantage that information of the same depth can be obtained using the same r1 and r2 in other images as long as the same means is used for imaging.
  • FIG. 23 is a schematic diagram of two-dimensional image data when measurement is performed by changing the light irradiation position.
  • the distance from the tip of the image sensor 2110 to the scatterer surface is fixed, and the imaging region 2070 does not move.
  • the backscattered light detection region moves by changing the position irradiated by the light irradiation means 2010. This is shown in FIG.
  • FIG. 24 is a schematic diagram showing a miracle of equi-depth data when measurement is performed by changing the light irradiation position.
  • FIGS. 24A to 24C show the trajectories of the backscattered light detection areas 2071, 2072, and 2073, respectively. Each backscattered light detection area has information of the same depth. Therefore, by superimposing a plurality of detection results as shown in FIG. 24, a tomographic image at that depth can be created. Note that overlapping portions occur when the data are superimposed, but arbitrary data may be selectively used from the overlapping data, or an average value of the overlapping data may be used.
  • the scatterer internal observation device includes the distance measuring means. Therefore, even when the distance from the front end of the imaging device to the scatterer surface is not fixed and the imaging region is different, it is possible to selectively use data of the same depth from among a plurality of image data. .
  • the obtained data can be used as shown in FIGS. 23 and 24 to construct a tomographic image in the scatterer.
  • the light irradiation means 2010 may be installed so that movement is possible.
  • the light irradiation means 2010 may be configured so as to be freely movable, or may be configured to move the irradiation position by changing the angle of light irradiation.
  • the focal length and magnification of the optical system of the detection unit are taken into consideration when determining the distance between the irradiation position and the detection position. Further, in the case of an imaging system used by a detection unit such as an endoscope, distortion may occur. In this case, the magnitude of the influence of distortion is obtained in advance using a lattice chart or the like, and this is taken into account when obtaining the distance between the irradiation position and the detection position.
  • FIG. 25 is a block configuration diagram of the scatterer internal observation device according to the second mode of the side surface 2.
  • an index 2091 is arranged in the imaging region, and the pixel region is determined based on the size of the image.
  • the index 2091 is an appropriate pixel area corresponding to a desired backscattered light detection area on the scatterer 2008. Used to allow selection on a dimensional image. Therefore, the indicator 2091 needs to be imaged in the same two-dimensional image together with the backscattered light detection region, and for that purpose, it needs to be arranged in the imaging region.
  • the index for example, a part of a treatment instrument whose size is measured in advance or a jig for distance measurement can be used.
  • FIG. 26 is a conceptual diagram showing a two-dimensional image obtained by the scatterer internal observation device according to the second mode of the side surface 2.
  • FIG. 26B is a diagram in the case where the distance between the imaging element and the scatterer is shorter than that in FIG.
  • the index is enlarged, and the pixel area indicating the same backscattered light detection area is also enlarged. Even when an image with a non-constant distance between the image sensor and the scatterer is obtained in this way, the desired backscattered light detection is performed based on the relationship between the actual size of the index and the size of the image in the image.
  • An appropriate pixel region corresponding to the region can be selected on the two-dimensional image.
  • the backscattered light detection region on the corresponding scatterer based on a specific pixel region on the two-dimensional image data.
  • the position information of the observation target can be analyzed from the distance between the backward scattered light detection region and the light irradiation position.
  • the pixel region can be determined based on the information of the intensity distribution in the image of the irradiated light.
  • the vertical axis of the graph indicates the intensity of the laser beam.
  • the intensity of light is highest at the center of the beam, becomes weaker as it moves outward, and forms a bell-shaped intensity distribution with an expanded base.
  • Such a distribution is called a Gaussian distribution and is a standard laser spatial intensity distribution.
  • an intensity profile of a point irradiation image is created using a light source whose beam intensity is known in advance.
  • determining r1 and r2 and determining a pixel region so that i1 / i0 and i2 / i0 are always constant an image with the same depth can be cut out even when analyzing a plurality of images.
  • this method it is possible to select an appropriate pixel region even when the photographing distance is unknown, and it is possible to create a tomographic image at a constant depth.
  • the scatterer internal observation device on the side surface 2 can be modified as follows in order to perform detection more efficiently. Although not shown in FIGS. 28 to 30, all the devices are provided with distance measuring means, use an index, or perform analysis using light intensity distribution.
  • FIG. 28 to 30 are block diagrams showing modifications of the scatterer internal observation device according to the side surface 2.
  • FIG. 28 shows an apparatus provided with a plurality of light irradiation means 2120 for emitting spot-like illumination light.
  • FIG. 29 shows an apparatus provided with light irradiation means 2130 that emits line-shaped illumination light.
  • FIG. 30 shows an apparatus provided with a plurality of light irradiation means 2140 for emitting illumination light on the line.
  • the line-shaped illumination light preferably has a uniform light intensity. Alternatively, it is preferable to provide means for performing correction according to the light intensity.
  • the light irradiating means are arranged at positions separated so that detection data obtained by the respective lights do not interfere with each other.
  • the data detected on the side surface 2 is two-dimensional image data
  • data at a position separated from the irradiation position by an arbitrary distance can be freely selected. Therefore, the degree of freedom when setting the irradiation position and the detection position is high. Moreover, more information can be acquired by one measurement.
  • a distance measuring means using an index, or utilizing a light intensity distribution, an appropriate one corresponding to a desired backscattered light detection region on the scatterer is obtained from the obtained two-dimensional image data. It is possible to select a pixel region.
  • measurement is performed in a non-contact manner with the scatterer, a wider area can be measured at a time, and deep information can be easily obtained. Therefore, it is not necessary to enlarge the apparatus.
  • the degree of freedom of the irradiation position and the detection position is high, information at an arbitrary depth at a desired position can be easily obtained.
  • the side surface 2 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • a light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium; Imaging means for imaging backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface by the light irradiation means as a two-dimensional image using an imaging surface including a plurality of pixels; Scattering emitted from the backscattered light detection region in order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer by the imaging means.
  • Pixel area determination means for determining a pixel area composed of pixels on the imaging surface on which light is incident in the two-dimensional image
  • a scatterer internal observation device comprising: image construction means for constructing a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel region.
  • the pixel region is determined based on a distance measured by a distance measuring unit that measures a distance from the front end of the image sensor to a scatterer.
  • the scatterer internal observation apparatus as described in 1 ..
  • the pixel area determining unit is configured to determine a pixel area based on a size of an index image arranged within a range imaged by the imaging unit.
  • the scatterer internal observation apparatus as described in 1 ..
  • the indicator is a part of a treatment instrument.
  • the scatterer internal observation apparatus as described in any one of.
  • the pixel region determination unit wherein the pixel region is determined based on information on an intensity distribution in an image of irradiated light.
  • the scatterer internal observation apparatus as described in any one of.
  • Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium; Imaging the backscattered light of the light irradiated to an arbitrary light irradiation position on the scatterer surface by the light irradiation means as a two-dimensional image using an imaging surface including a plurality of pixels; Scattering emitted from the backscattered light detection region in order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer by the imaging means.
  • a scatterer internal observation method including a step of constructing a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel region.
  • the side surface 3 relates to an apparatus and a method for observing the inside of the scatterer by measuring backscattered light from the scatterer.
  • Japanese Unexamined Patent Application Publication No. 2006-200943 discloses a biological light observation apparatus having a configuration in which a plurality of light detection means are provided at positions that are sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
  • an object of the side surface 3 is to provide a scatterer internal observation device and method capable of efficiently acquiring backscattered light from an arbitrary depth.
  • the aspect 3 it is a scatterer internal observation device that acquires information on a heterogeneous portion (that is, an observation target) inside the scatterer, and has different optical characteristics between the scattering medium constituting the scatterer and the heterogeneous portion.
  • Illuminating means for irradiating the scatterer with light containing at least light i.e., light irradiating means
  • an imaging element that images the scatterer
  • an imaging optical system that limits a detection range captured by the imaging element
  • the detection range A detection range variable mechanism that adjusts so that a desired region is included, detecting back scattered light of the light irradiated by the illumination unit, and obtaining light intensity data of the back scattered light, and Analyzing the light intensity data acquired by the detecting means and controlling the detection range variable mechanism, and from the light intensity data acquired by the detecting means to an arbitrary depth inside the scatterer
  • a scatterer internal observation device that is, a scatterer internal observation device
  • an scatterer internal observation method using the device that is, a scatterer internal observation method
  • the invention's effect According to the side surface 3, by detecting the backscattered light as a two-dimensional image and further adjusting the range in which the backscattered light is detected, information at an arbitrary depth can be acquired easily and efficiently.
  • a scatterer refers to an object mainly composed of a scattering medium, and a living body can be mentioned as an example.
  • the scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
  • the scatterer internal observation device on the side surface 3 is a device for observing a heterogeneous portion existing in a scattering medium inside the scatterer.
  • the heterogeneous portion in the side surface 3 is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
  • FIG. 31 is a schematic functional block diagram of the scatterer internal observation device 3100 according to the first embodiment of the side surface 3.
  • the scatterer internal observation device 3100 includes an illumination unit 3101, a detection unit 3102, an analysis / control unit 3103, and an image processing unit 3107.
  • the illumination unit 3101 is a unit that generates light including at least wavelengths having different optical characteristics between the scattering medium and the extraneous portion and irradiates the scatterer. As shown in FIG. 31, the scatterer internal observation device 3100 of the present embodiment is propagated and emitted by a light source 3101a, a light guide 3101b using an optical fiber for guiding generated light, and the optical fiber.
  • An illuminating unit 3101 configured by a condensing body 3101c that converts a divergent light into a narrow parallel light beam in order to irradiate a limited area is provided.
  • the light collecting body 3101c is not limited to making the light beam into a thin parallel shape, but may be condensed to illuminate a narrow range, or a light collecting body for illuminating a wide range is prepared. Also good.
  • the illumination unit 3101 irradiates light toward the scatterer S based on a control signal from the analysis / control unit 3103. Note that an area on the surface of the scatterer irradiated with light by the condenser 3101c is referred to as an illumination range, and is a range indicated by an arrow 3104 in FIG.
  • the light source 3101a a light source that generates light having a wavelength different from that of the scattering medium and a different part is used.
  • the light source 3101a having a wavelength distribution having a sharp peak at the wavelength is selected.
  • the present invention is not limited to this, and a light source having a wide wavelength range may be used as long as it includes a wavelength that can be specified to have different optical characteristics between a scattering medium and a heterogeneous portion.
  • an optical fiber is preferably used for the light guide 3101b, but the light guide 3101b is not limited to this, and may be configured by a relay lens. Although a lens is suitably used for the light condensing body 3101c, it is not limited to this, You may comprise by a mirror. Or you may comprise with a prism or a diffraction grating.
  • a condensing body 3101c it is not necessary to use a condensing body 3101c by using a laser beam or the like with a light beam focused in advance as a light source.
  • the illumination range may be limited by a mask or the like instead of using the light collector 3101c.
  • the detection means 3102 is a means having sensitivity in a wavelength band including the wavelength of light emitted by the illumination means 3101, detecting backscattered light emitted from the scatterer surface, and acquiring the light intensity data.
  • the scatterer internal observation device 3100 of the present embodiment is sensitive to a wavelength band including the wavelength of light emitted from the light source 3101a, and has an imaging element 3102a that images backscattered light emitted from the surface of the scatterer,
  • An imaging optical system 3102b that limits a detection range 3105 captured by the image sensor and a detection means 3102 that includes a detection range variable mechanism 3102c that adjusts the detection range 3105 to include a desired region 3106 are provided.
  • Desired region 3106 means a region on the scatterer surface where backscattered light with a desired depth is emitted, and is also referred to as a detection region.
  • a schematic diagram thereof is shown in FIG. FIG. 32 is a view of the surface of the scatterer S as viewed from above.
  • the light emitted from the illumination means 3101 illuminates the illumination range 3104 on the surface of the scatterer S, and the illuminated light propagates through the scatterer and exits from the scatterer surface.
  • point illumination is used for the illumination means
  • the backscattered light generally propagates concentrically.
  • the region for detecting the backscattered light has a ring shape like a hatched region indicated by reference numeral 3106 in FIG.
  • the detection range variable mechanism 3102c included in the observation device on the side surface 3 adjusts so that the detection range 3105 includes the desired region 3106 without waste.
  • the detection range variable mechanism 3102c may be, for example, an optical system or a zoom lens, but is not limited thereto.
  • an image sensor such as a CCD that simultaneously detects a plurality of points can be used as the image sensor 3102a.
  • the imaging optical system 3102b for example, a lens or the like can be used.
  • the analysis / control unit 3103 is a unit that analyzes the light intensity data acquired by the detection unit 3102 and controls the image sensor 3102a and the detection range variable mechanism 3102c based on the analysis result.
  • a control device such as a computer in which appropriate software for analysis is installed in advance is preferably used.
  • the analysis / control unit 3103 is configured to control both the image sensor 3102a and the detection range variable mechanism 3102c, but is not limited thereto, and controls the detection range variable mechanism 3102c.
  • the second control unit may be configured such that a signal is transmitted from the analysis / control unit 3103 to the second control unit, and the second control unit controls the detection range variable mechanism 3102c based on the signal.
  • the image processing unit 3107 is a unit that creates a tomographic image at an arbitrary depth inside the scatterer based on the light intensity data acquired by the detection unit 3102.
  • the scatterer internal observation device 3100 may further include a display unit 3108 and an input unit 3109.
  • the display unit 3108 is a means for displaying a two-dimensional image of light intensity data captured by the image sensor 3102a and a tomographic image created by the image processing unit 3107.
  • a monitor or the like can be used.
  • the input unit 3109 is a means for inputting commands such as illumination, detection, or display method.
  • a keyboard is used, but the present invention is not limited thereto.
  • the illumination unit 3101, the detection unit 3102, the analysis / control unit 3103, the image processing unit 3107, the display unit 3108, and the input unit 3109 may be connected to each other by a signal circuit that transmits an electrical signal.
  • the display unit 3108 is connected to the image processing unit 3107
  • the input unit 3109 is connected to the analysis / control unit 3103.
  • the present invention is not limited to this, and the connection relationship can be changed as appropriate.
  • light is irradiated from the illumination means 3101 to the scatterer.
  • This irradiation light is reflected, scattered and absorbed by the scattering medium inside the scatterer S, and becomes backscattered light.
  • the detection means 3102 detects this backscattered light as a two-dimensional image, and acquires light intensity data.
  • the obtained light intensity data is analyzed to determine a desired region (detection region) 3106 on the scatterer surface.
  • the detection area may be automatically determined based on the setting stored in the analysis / control unit 3103 in advance, or the display unit 3108 may display a two-dimensional image of the light intensity data, The user may determine the area on the spot.
  • the detection area 3106 is determined by the depth to be observed, the accuracy of the tomographic image obtained, and the like.
  • a signal based on the result is transmitted from the analysis / control unit 3103 to the detection range variable mechanism 3102c.
  • the detection range variable mechanism 3102c adjusts the detection range 3105 based on the signal. As a result, the detection area 3106 is adjusted to include the detection range 3105 without waste.
  • backscattered light is detected again within the determined detection range 3105, and light intensity data is acquired.
  • the acquired light intensity data is analyzed, and a tomographic image is created in the image processing unit 3107.
  • the produced tomographic image is displayed on the display unit 3108.
  • the scatterer internal observation device on the side surface 3 it is possible to efficiently acquire data by determining a detection range including a desired detection region and performing detection within that range. Further, since the amount of data to be analyzed is reduced, the analysis time can be shortened.
  • FIG. 33 is a schematic functional block diagram of the scatterer internal observation 3110 according to the second embodiment.
  • the scatterer internal observation device 3110 according to this embodiment includes a scan mirror 3111 in the detection unit 3102 in addition to the same configuration as the scatterer internal observation device 3100 of the first embodiment.
  • the scan mirror 3111 moves the detection range 3105 on the scatterer surface based on the signal from the analysis / control unit 3103.
  • the scatterer internal observation device 3110 includes the scan mirror 3111 and can move the detection range 3105 to an arbitrary position within the field of view of the image sensor.
  • FIG. 34 is a schematic functional block diagram of the scatterer internal observation 3200 according to the third embodiment.
  • the scatterer internal observation 3200 according to the third embodiment has basically the same configuration as the scatterer internal observation device according to the first embodiment, and includes an illumination unit 3201, a detection unit 3202, an analysis / control unit 3203, An image processing unit 3207, a display unit 3208, and an input unit 3209 are provided.
  • the scatterer internal observation device 3200 includes an illumination scan mirror (that is, an irradiation scan mirror) 3212 in the illumination unit, and a detection scan mirror 3211 in the detection unit.
  • an illumination scan mirror that is, an irradiation scan mirror
  • the scatterer internal observation device 3200 includes a scan control unit 3213 for controlling the scan mirrors 3211 and 3212.
  • the scan mirror can arbitrarily move the detection range and illumination range on the scatterer surface by changing the angle of the mirror.
  • the scatterer internal observation device 3200 includes a scan mirror so that the detection range 3105 can be moved so that the detection range 3105 includes the detection region 3106, and the illumination range 3104 and the detection range 3105 are also included. Can be scanned.
  • the scatterer internal observation device 3200 can scan the illumination range 3104 and the detection range 3105, detection can be performed at a large number of measurement points without moving the observation device body. Therefore, more light intensity data can be acquired more easily, and a tomographic image can be acquired easily and in a short time.
  • the scanning mirror 3212 for illumination and the scanning mirror 3211 for detection are controlled by a scanning control unit 3213.
  • the scan control unit 3213 controls each scan mirror based on the signal from the analysis / control unit 3103.
  • the scan control unit 3213 preferably controls both the scan mirrors so that the illumination range 3104 and the detection range 3105 are scanned while maintaining a certain positional relationship on the scatterer surface. By controlling both scan mirrors in conjunction with each other, detection can be performed under certain conditions during scanning.
  • a mirror usually used for scanning may be used.
  • a galvano mirror, a polygon mirror, a MEMS mirror, or the like can be used.
  • a scan mirror using two mirrors such as a galvano mirror or a polygon mirror is inexpensive and easy to control.
  • the MEMS mirror is difficult to control, but the configuration can be simplified.
  • a detection area is determined. Based on the result, the analysis / control unit 3203 controls the scan mirror 3211 and the detection range variable mechanism 3202c to adjust the detection range so that the detection region is included.
  • the detection means captures the detection range 3105 through the above steps
  • the backscattered light is detected while scanning while changing the angles of the illumination scan mirror 3212 and the detection scan mirror 3211.
  • the scanning is performed by the scanning control unit 3213 controlling the scan mirrors 3211 and 3212 and moving the illumination range 3104 and the detection range 3105 in accordance with a signal from the analysis / control unit 3203.
  • the illumination scan mirror 3212 and the detection scan mirror 3211 are controlled in conjunction so that the illumination range 3104 and the detection range 3105 maintain a fixed positional relationship on the scatterer surface.
  • the image processing unit 3207 creates a tomographic image at an arbitrary depth inside the scatterer from the acquired light intensity data.
  • a large amount of light intensity data can be acquired more easily by scanning the illumination range and the detection range, and a tomographic image can be obtained easily and in a short time. Obtainable.
  • the illumination scan mirror 3212 and the detection scan mirror 3211 may be controlled and scanned independently if necessary.
  • FIG. 35 is a schematic functional block diagram of a scatterer internal observation device 3300 according to the fourth embodiment.
  • the scatterer internal observation device 3300 includes an illumination unit 3301, a detection unit 3302, an analysis / control unit 3303, an image processing unit 3307, a half mirror 3314, a scan mirror 3311, and a scan control unit 3313.
  • a display unit 3308 and an input unit 3309 can be provided.
  • the detection means 3302 includes an image sensor 3302a, an image pickup optical system 3302b, and a detection range variable mechanism 3102c.
  • the illumination unit 3301 includes a light source 3301a and an optical system 3301b.
  • the scatterer internal observation device 3300 has a configuration in which illumination means and detection means are arranged so that their optical axes are coaxial.
  • the half mirror 3314 is provided to make the optical axes of the illumination unit and the detection unit coaxial, and is disposed between the imaging element 3302a and the imaging optical system 3302b.
  • the optical system 3301b included in the illumination unit is provided between the light source 3301a and the half mirror 3314, and in combination with the imaging optical system 3302b, plays a role of converting illumination light into a light beam that irradiates the illumination range 3104. is there.
  • a lens or the like is used for the optical system 3301b.
  • the scan mirror 3311 is provided for scanning both the illumination range and the detection range, and is disposed between the half mirror 3311 and the imaging optical system 3302b.
  • the scatterer internal observation device 3300 can scan the illumination range and the detection range with the same scan mirror by having the above configuration. That is, a set of scan mirrors provided in the scatterer internal observation device can be provided.
  • the illumination range and the detection range can be scanned with one scan mirror, the scan mirror can be easily controlled, and the configuration of the device is simplified. You can also.
  • FIG. 36 is a schematic functional block diagram of a scatterer internal observation device 3310 according to a modification of the fourth embodiment.
  • This scatterer internal observation device 3310 includes a scan mirror 3318.
  • a MEMS mirror that performs scanning with a single mirror is used.
  • the light source 3301a, the optical system 3301b, the half mirror 3314, and the scan mirror 3318 are arranged at right angles to the imaging optical system 3302b.
  • the imaging element 3302a is arranged in the perpendicular direction, the present invention is not limited to this, and various arrangements can be taken.
  • the configuration of the apparatus can be simplified by using the MEMS mirror.
  • the scatterer internal observation device in each of the embodiments described above can further include a detection region determination unit that determines a desired region.
  • the detection area determination means can be included in the analysis / control means, for example, but is not limited thereto.
  • the detection area determination means is means for analyzing the acquired light intensity data and determining a desired area (detection area) 3106 on the scatterer surface.
  • the detection area may be automatically determined based on settings stored in advance in the analysis / control unit or the like, or a two-dimensional image of light intensity data is displayed on the display unit, and the user can change the detection area on the spot.
  • the region may be determined.
  • the scatterer internal observation device can be provided with input means (that is, setting input means) for inputting a setting for determining a desired region.
  • the input means may be, for example, a keyboard for inputting settings to the analysis / control unit in advance, or a touch panel type operation panel that indicates an area on a two-dimensional image displayed on the display unit. It may be.
  • FIG. 37 illustrates the relationship between the illumination range 3104 and the detection region 3105.
  • the illumination is point illumination
  • the backscattered light propagates concentrically.
  • the detection area is determined based on the depth to be observed. Therefore, when the depth to be observed is determined, the distance between the illumination range 3104 and the detection region 3106 is determined.
  • the width of the detection region 3106 needs to be determined. The width of the detection region 3106 can be appropriately determined depending on the desired accuracy of the observation information. Thereby, the detection area 3106 is determined.
  • the detection range 3105 includes. As shown in FIG. 37A, there are a method of including a part of the ring-shaped detection region 3106 and a method of including the entire ring-shaped detection region 3106 as shown in FIG.
  • FIG. 37 (c) shows an example of line-shaped illumination.
  • a plurality of point illuminations can be used.
  • the detection region can be determined as appropriate.
  • the line-shaped illumination light preferably has a uniform light intensity.
  • each illumination is arrange
  • the determination of the detection area and which part of the detection area is included in the detection range can be appropriately set by an engineer in consideration of various conditions.
  • the detection area and detection range as described above can be set manually by the user or automatically. Next, an embodiment in which the detection area is automatically determined will be described.
  • light intensity data is acquired by detecting backscattered light.
  • the acquired light intensity data is analyzed by the analysis / control means to produce spatial light intensity distribution data as shown in FIG.
  • the maximum intensity point that is, the X and Y coordinates of the illumination point are determined.
  • a graph as shown in FIG. 38B is obtained.
  • the range can be determined by determining the center point in the graph as shown in FIG. 38 (b) and truncating the bottom of the graph by statistical processing.
  • a coordinate graph may be obtained by preparing a cumulative graph of light intensity based on a graph as shown in FIG. 38 (b) and calculating a rising point and a convergence point from the inclination.
  • the detection area can be determined by repeating this process while changing the angle on the X and Y coordinates of the line passing through the illumination point.
  • unnecessary portions can be excluded, and the detection range can include only a desired area.
  • the change in light intensity on the line passing through the illumination point is plotted.
  • the light intensity may be plotted on a line parallel to the X and Y coordinate axes.
  • plotting is performed while moving the line little by little in the spatial light intensity distribution data image shown in FIG.
  • the corresponding part on the graph of FIG. 38 (b) is determined based on the illumination-detection distance and width calculated from the depth and accuracy to be observed. To do.
  • the detection region can be set automatically, and observation inside the scatterer can be performed more simply, quickly and efficiently.
  • the scatterer internal observation device in this aspect is for producing a deep processing image from which noise due to the surface of the scatterer and the vicinity of the surface layer is removed.
  • the backscattered light detected by the detection means includes reflected light from the surface of the scatterer. Since there are minute irregularities on the surface of the scatterer, the reflected light scatters and produces strength, which can be noise when creating a tomographic image.
  • the detected backscattered light also includes backscattered light from a relatively shallow depth, and this also becomes noise when a tomographic image is produced by backscattered light from a deep part.
  • the scatterer internal observation device makes it possible to provide a tomographic image from which noise has been removed.
  • the tomographic image from which noise has been removed can be produced by any of the following methods (1) to (3).
  • a surface tomographic image and a deep tomographic image are created separately, and the surface tomographic image is subtracted from the deep tomographic image.
  • the surface layer tomographic image is a tomographic image prepared from backscattered light from a relatively shallow portion of the scatterer and reflected light from the surface of the scatterer.
  • the deep tomographic image is a tomographic image having a desired depth, and includes backscattered light from the surface layer.
  • the distance between the illumination means and the detection means is changed in order to separately produce the surface layer tomographic image and the deep part tomographic image.
  • detection is performed at the position of ⁇ as shown in FIG.
  • a surface layer tomographic image X as shown in FIG. 39 (b) is obtained.
  • detection is performed at the position ⁇ , as shown in FIG. 39 (c).
  • a deep tomographic image Y as shown in FIG. 39 (d) is obtained.
  • each tomographic image can be easily obtained by making the distance of the point from which data is extracted to create the surface layer image shorter than the distance of the point from which data is extracted to create the deep tomographic image.
  • the surface layer tomographic image X is subtracted from the deep tomographic image Y as shown in FIG. Thereby, the deep part processed image Z from which the noise of the surface layer was removed can be obtained. Since the surface tomographic image X has a light intensity higher than that of the deep tomographic image Y, the light intensity is adjusted by multiplying the surface layer tomographic image X by a constant n.
  • the constant n may be determined so that the average light intensity of the surface tomographic image X and the deep tomographic image Y is approximately the same.
  • the calculation method can be performed, for example, by calculating the light intensity for each pixel on the produced image. Alternatively, it can be performed by calculating the light intensity for each pixel on the image sensor. Moreover, although the average of the light intensity of several pixels may be calculated and it may calculate using the average value, it is not limited to these, An appropriate method can be selected.
  • a surface layer tomographic image and a deep tomographic image are prepared separately.
  • light of different wavelengths is used as illumination.
  • a light source 1 that emits light of wavelength ⁇ 1 is used.
  • a surface layer tomographic image X as shown in FIG. 40 (b) is obtained.
  • a light source 2 that irradiates light having a wavelength ⁇ 2 is used.
  • a deep tomographic image Y as shown in FIG. 40 (d) is obtained.
  • a surface layer tomographic image is produced, light having a higher scattering, that is, light having a short wavelength is used.
  • light with less scattering is used.
  • the surface tomographic image X is subtracted from the deep tomographic image Y.
  • the calculation method of the tomographic image is the same as the method (1). Thereby, the tomographic image Z from which the noise on the surface layer is removed can be obtained.
  • FIG. 41 (a) backscattered light is detected as usual to create a deep tomographic image Y as shown in FIG. 41 (b).
  • this deep tomographic image Y is two-dimensionally Fourier transformed, as shown in FIG. 41 (c)
  • the horizontal axis represents the horizontal frequency of the deep tomographic image Y
  • the vertical axis represents the vertical frequency of the deep tomographic image Y.
  • An image representing the later amplitude spectrum as a luminance value is obtained.
  • the frequency here is a frequency on an image, and this is also called a spatial frequency.
  • the low frequency component of the spatial frequency of the deep tomographic image Y corresponds to the center of the image shown in FIG. 41 (c), and the high frequency component is the periphery of the image shown in FIG. 41 (c).
  • the high frequency portion corresponds to the noise component obtained from the surface and surface layer of the scatterer.
  • the low frequency part corresponds to the component obtained from the deep part of the scatterer.
  • the deep processing image Z can be obtained by subtracting the surface layer tomographic image X obtained by inverse Fourier transform of the high frequency component from the deep tomographic image Y. .
  • the threshold value which divides high frequency and low frequency can be set suitably according to the size and position of the heterogeneous part to be observed.
  • the method described above can be implemented by the scatterer internal observation device according to the first to fourth embodiments.
  • the deep tomographic image and the surface layer tomographic image can be performed by an image processing unit, and the calculation can be performed by an analysis / processing unit.
  • control means including imaging means and calculation means may be provided, and the configuration can be selected as appropriate.
  • the side surface 3 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • a scatterer internal observation device that acquires information on a heterogeneous part inside a scatterer, Illuminating means for irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
  • An illuminating unit including: an imaging element that images the scatterer; an imaging optical system that limits a detection range captured by the imaging element; and a detection range variable mechanism that adjusts the detection range to include a desired region.
  • Detecting means for detecting the backscattered light of the light emitted by, and obtaining light intensity data of the backscattered light; Analysis / control means for analyzing the light intensity data acquired by the detection means and controlling the detection range variable mechanism;
  • An scatterer internal observation device comprising: an image processing unit that creates a tomographic image at an arbitrary depth inside the scatterer from the light intensity data acquired by the detection unit.
  • the detection unit further includes a scan mirror capable of moving the detection range.
  • the scatterer internal observation device described in 1.
  • the illumination means comprises an illumination scan mirror;
  • the detecting means includes a scanning mirror for detection; 18.
  • the scanning control means for controlling both scanning mirrors to scan the illumination range illuminated by the illumination means and the detection range on the surface of the scatterer.
  • the illumination means and the detection means are arranged such that their optical paths are coaxial, 18.
  • a scan mirror that scans the illumination range illuminated by the illumination means and the detection range on the surface of a scatterer.
  • the detection area determining means for determining the desired area is further included. 21.
  • the above-described 22 .. further comprising input means for inputting settings for determining the desired area.
  • a scatterer internal observation method for observing a heterogeneous part inside a scatterer Irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; and Detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light; Analyzing the light intensity data acquired by the step, and determining a detection region on the scatterer surface; Detecting the backscattered light of the detection region determined by the step, obtaining light intensity data; A method comprising an image processing step of creating a tomographic image of the scatterer from the light intensity data acquired by the step.
  • the side surface 3 can be used as an apparatus for observing a living body, and can be used particularly in an endoscope or a rigid endoscope.
  • the side surface 4 relates to a device for observing the inside of a living body.
  • the joint strength inspection apparatus disclosed in JP-T-2007-525248 is an apparatus for detecting unstable plaque in a blood vessel wall by collecting deep scattered light.
  • Some endoscopes having a scanning function are provided with a scanning mechanism at the distal end portion of the endoscope.
  • a scanning mechanism that performs scanning by vibrating a fiber with an electromagnet coil and a magnet.
  • Surgical endoscopes need to be sterilized for each case, so the scanning mechanism at the tip must be sealed, so that it can withstand sterilization environments. Further, conventionally, it is necessary to prepare an endoscope dedicated for scanning observation separately from that for normal observation.
  • the purpose of the side surface 4 is to provide an in-vivo observation device for scanning observation that enables efficient observation.
  • a further object of the side surface 4 is to provide an in-vivo observation device for scanning observation that can be easily cleaned and sterilized.
  • a further object of the side surface 4 is to provide an in-vivo observation device capable of special observation and normal observation in one device.
  • Means for solving the above object are as follows: In an in-vivo observation device (that is, an in-vivo observation device) having a function of scanning illumination light, a scanning means that realizes a scanning function is disposed at a site that is not an insertion portion that is inserted into the living body. This is an in-vivo observation device.
  • an in-vivo observation device for scanning observation capable of efficient observation is provided.
  • an in-vivo observation device for scanning observation having a configuration that can be easily cleaned and sterilized is provided.
  • an in-vivo observation device capable of special observation and normal observation in one device is provided.
  • FIG. 42 shows an in-vivo observation device 4010 according to one aspect of the side surface 4.
  • the in-vivo observation device 4010 includes at least a scanning unit 4002 that transmits while scanning supplied light, an illumination image guide 4003 that transmits light from the scanning unit 4002 to the subject, and light from the subject.
  • the “in-vivo observation apparatus” in the side surface 4 is an endoscope, for example, a surgical rigid endoscope, a digestive organ endoscope, an otolaryngological endoscope, a urological endoscope, a surgical microscope, and a medical imaging. Any device such as a device for observing the inside of a living body may be used.
  • the illumination light source 4001 that supplies light to the scanning unit 4002 may be provided in the in-vivo observation device 4010 or may be disposed outside the in-vivo observation device 4010 to supply desired light.
  • the illumination light source 4001 may be any light source known per se that can supply light to be used. For example, when a blood vessel is observed using scattered light, a laser capable of irradiating near infrared rays is preferable.
  • the shape and size of incident illumination light to be scanned may be arbitrary, and may be, for example, a dot shape or a linear shape (that is, a line scan).
  • the sexual body observation apparatus 4010 may further include a further optical system. That is, the optical system 4006a is provided between the scanning unit 4002 and the illumination image guide 4003, the optical system 4006b is adjacent to the subject side of the illumination image guide 4003, and the optical system 4006b is adjacent to the subject side of the imaging image guide 4004.
  • the system 4006c may include an optical system 4006d between the imaging image guide 4004 and the imaging element 4005.
  • the optical systems 4006a to 4006d may be at least one lens and / or mirror.
  • the scanning unit 4002 may be any scanning unit known per se that can transmit light while scanning.
  • a scan mirror system such as a galvanometer mirror scanner, a polygon mirror, a rotating mirror, a scan mirror system using a vibration mirror, a scan system using a Nipow disk, and a scan system that vibrates an optical fiber may be used.
  • the illumination image guide 4003 transmits the light emitted from the scanning unit 4002 to the subject.
  • the light transmitted to the subject is transmitted by the imaging image guide 4004 and detected as an image by the imaging device 4005.
  • the illumination image guide 4003 and the imaging image guide 4004 may be relay lenses or optical fibers.
  • the image sensor 4005 may be any image sensor known per se, for example, a CCD image sensor or a CMOS image sensor.
  • the in-vivo observation device 4010 may further include a control unit 4007 for controlling the illumination light source 4001, the scanning unit 4002, and the image sensor 4005.
  • the control unit 4007 only needs to be constructed by software stored in a processor and storage means, and may be a control device such as a computer in which software for performing desired control is installed in advance. Further, a display unit (not shown) and / or an input unit (not shown) may be operably connected to the control unit 4007.
  • the above-described constituent elements are arranged for each unit and provided in the in-vivo observation device 4010. More specifically, the apparatus of the side surface 4 will be described.
  • the in-vivo observation device 4010 includes a scanning unit 4031 that transmits irradiated light while scanning, an insertion unit 4022 that is inserted into the living body and transmits the light, and light from the subject.
  • An imaging unit 4032 for detection is provided.
  • the scanning unit 4031 includes an illumination light source 4001 and an operation unit 2.
  • the insertion unit 4022 includes an optical system 4006a, an illumination image guide 4003, an optical system 4006b, an optical system 4006c, an imaging image guide 4004, and an optical system 4006d.
  • the imaging unit 4032 includes an imaging element 4005.
  • the illumination light source 4001, the scanning unit 4002, and the image sensor 4005 are controlled by a control unit 4007 provided outside the in-vivo observation device 4010.
  • a control unit 4007 provided outside the in-vivo observation device 4010.
  • a display unit and / or an input unit may be operatively connected to the control unit 4007.
  • FIG. 43 When the in-vivo observation device 4010 shown in FIG. 43A is represented for each unit, a configuration as shown in FIG. 47B is obtained.
  • the observation in this case is performed as follows.
  • the control unit 4007 instructs the irradiation light source 4001 to perform irradiation, and irradiation is started.
  • the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 4031 and transmitted to the illumination image guide 4003 in the insertion unit 4022.
  • the light transmitted to the illumination image guide 4003 is irradiated from the distal end of the insertion portion 4022 as irradiation light to the scan range of the subject as a continuous point or a discontinuous point.
  • Optical information about a desired imaging range is captured from the distal end of the insertion unit 4022 and is detected by the imaging element 4005 of the imaging unit 4032 through the imaging image guide 4004 in the insertion unit 4022.
  • the detected image is processed in the control unit 4007 as necessary and displayed on the display unit 24.
  • the scanning unit 4031, the insertion unit 4022, and the imaging unit 4032 may be detachably connected.
  • the connection between the scanning unit 4031 and the insertion unit 4022 and the imaging unit 4032 may be achieved by a known fitting mechanism.
  • the in-vivo observation device 4010 can wash and / or sterilize only the insertion unit 4022 and the imaging unit 4032 after use.
  • the scanning unit is not required to have the hermeticity required in the sterilization operation or the like.
  • the scanning unit 4031 may be exchangeable with another desired light source system, for example, the white light source irradiation unit 36. With such a configuration, the light source can be exchanged during observation or every observation. Thereby, a plurality of types of observations and / or observations can be performed by one apparatus.
  • the dot-like or linear light information scanned by the scanning unit 4002 and applied to the subject is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
  • the imaging unit 4032 and the insertion unit 4022 may be detachably connected together with the scanning unit 4031.
  • the scanning unit 4031 and the imaging unit 4032 may be detachably connected or may not be detachable.
  • the in-vivo observation device 4010 shown in FIG. 43 (A) may be changed as shown in FIG. 43 (B).
  • the in-vivo observation device 4010 illustrated in FIG. 43B is the same as the device illustrated in FIG. 43A except that the optical system 4006a is included in the scanning unit 4031 and the optical system 4006d is included in the imaging unit 4032. It may be the same.
  • the in-vivo observation device 4010 illustrated in FIG. 43A may have a configuration in which the scanning unit 21 includes a scanning unit 4031 and an imaging unit 4032 as illustrated in FIG. 44A.
  • the structure as shown in FIG. 44 (A) may be interpreted as the structure as shown in FIG. 47 (A).
  • observation in the in-vivo observation device 4010 is performed as follows. (1) In accordance with an instruction from the operator, the control unit 4007 instructs the irradiation light source 4001 to perform irradiation, and irradiation is started. (2) The light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 21 and transmitted to the illumination image guide 4003 in the insertion unit 4022.
  • the light transmitted to the illumination image guide 4003 is irradiated to the subject scan range 4027 as a continuous point or a discontinuous point as irradiation light 4025, for example, irradiation laser light 4025, from the tip of the insertion portion 4022. Is done.
  • Optical information about a desired imaging range 4028 is taken from the distal end of the insertion unit 4022 and is detected by the imaging device 4005 provided in the scanning unit 21 through the imaging image guide 4004 in the insertion unit 4022.
  • the detected image is processed in the control unit 4007 as necessary and displayed on the display unit 24.
  • the scanning unit 21 and the insertion unit 4022 may be detachably connected.
  • the connection between the scanning unit 21 and the insertion portion 4022 may be achieved by a well-known fitting mechanism.
  • the in-vivo observation device 4010 can wash and / or sterilize only the insertion portion 4022 after use. Therefore, the scanning unit is not required to have a sealing property required in a sterilization operation or the like.
  • the dot-like or linear light information scanned by the scanning unit 4002 and applied to the subject is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
  • the in-vivo observation device 4010 shown in FIG. 44 (A) may be modified as shown in FIG. 44 (B).
  • the in-vivo observation device 4010 shown in FIG. 44 (B) may be the same as the device shown in FIG. 44 (A) except that the optical systems 4006a and 4006d are provided in the scanning unit 21.
  • the in-vivo observation device 4010 includes a scanning unit 21 and an insertion unit 4022.
  • the scanning unit 21 includes an illumination light source 4001 and scanning means 4002. Therefore, in this aspect, the scanning unit 21 may be interpreted as a scanning unit.
  • the insertion unit 4022 includes an optical system 4006a, an irradiation image guide 3, an optical system 4006b, an optical system 4006c, an imaging image guide 4004, and an imaging element 4005.
  • the illumination light source 4001, the scanning unit 4002, and the image sensor 4005 are controlled by a control unit 4007 installed outside the in-vivo observation device 4010.
  • the scanning unit 21 and the insertion unit 4022 may be detachably connected. This connection is achieved by a fitting mechanism known per se.
  • Observation in the in-vivo observation device 4010 is performed as follows. (1) In accordance with an operator instruction, the control unit 4007 instructs the irradiation light source 4001 of the scanning unit 21 to perform irradiation, and irradiation is started. (2) Light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 21 and transmitted to the illumination image guide 4003 of the insertion unit 4022. (3) The light transmitted to the illumination image guide 4003 is irradiated from the distal end of the insertion portion 4022 as irradiation light to the scan range of the subject as a continuous point or a discontinuous point.
  • Optical information about a desired imaging range is taken from the distal end of the insertion unit 4022, passes through the imaging image guide 4004 in the insertion unit 4022, is sent to the imaging device 4005 and is detected. (5) The detected image is processed in the control unit 4007 as necessary and displayed on the display unit 24.
  • the in-vivo observation device 4010 shown in FIG. 45 (A) may be modified as shown in FIG. 45 (B).
  • the in-vivo observation device 4010 shown in FIG. 45 (B) is the same as the device shown in FIG. 45 (A) except that the optical system 4006a is provided in the scanning unit 21.
  • the dot-like or linear light information scanned by the scanning unit 4002 and irradiated on the subject is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
  • the in-vivo observation device 4010 can wash and / or sterilize only the insertion portion 4022 after use.
  • the scanning unit is not required to have the hermeticity required for sterilization scanning or the like.
  • the scanning unit 21 exchangeable with another desired light source system, the light source can be exchanged during observation or for each observation. Thereby, a plurality of observations and / or observations can be performed by one apparatus.
  • the biological observation apparatus 4010 includes a scanning unit 21 and an insertion unit 4022.
  • the scanning unit 21 includes an illumination light source 4001 and scanning means 4002. Therefore, in this aspect, the scanning unit 21 may be interpreted as a scanning unit.
  • the insertion unit 4022 includes an optical system 4006a, an irradiation image guide 3, an optical system 4006b, an optical system 4006c, and an image sensor 4005.
  • the illumination light source 4001, the scanning unit 4002, and the image sensor 4005 are controlled by a control unit 4007 installed outside the in-vivo observation device 4010.
  • the scanning unit 21 and the insertion unit 4022 may be detachably connected. This connection is achieved by a fitting mechanism known per se.
  • Observation in the in-vivo observation apparatus 4010 is performed as follows. (1) In accordance with an operator instruction, the control unit 4007 instructs the irradiation light source 4001 of the scanning unit 21 to perform irradiation, and irradiation is started. (2) Light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 21 and transmitted to the illumination image guide 4003 of the insertion unit 4022. (3) The light transmitted to the illumination image guide 4003 is irradiated from the distal end of the insertion portion 4022 as irradiation light to the scan range of the subject as a continuous point or a discontinuous point.
  • Optical information about a desired imaging range is captured from the distal end of the insertion unit 4022, and sent to the image sensor 4005 to be detected.
  • the detected image is processed in the control unit 4007 as necessary and displayed on a display unit (not shown).
  • the light information that is scanned by the scanning unit 4002 and is irradiated onto the subject and that is dotted or linear is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
  • the scanning unit 21 and the insertion unit 4022 may be detachably connected.
  • the connection between the scanning unit 21 and the insertion portion 4022 may be achieved by a known fitting mechanism.
  • the in-vivo observation device 4010 can wash and / or sterilize only the insertion portion 4022 after use.
  • the scanning unit is not required to have the hermeticity required for sterilization scanning or the like.
  • the scanning unit 21 may be exchangeable with another desired light source system. With such a configuration, the light source can be exchanged during observation or every observation. Thereby, a plurality of types of observations and / or observations can be performed with one apparatus.
  • FIG. 46 (A) may be changed as shown in FIG. 46 (B).
  • the in-vivo observation device 4010 shown in FIG. 46 (B) may be the same as the device shown in FIG. 46 (A) except that the optical system 4006a is provided in the scanning unit 21.
  • This embodiment is an apparatus that uses the in-vivo observation device 4010 shown in the first embodiment to perform observation by using a special light for special observation, for example, near infrared rays, and capturing a scattered image. .
  • a special light for special observation for example, near infrared rays
  • FIG. 48 is a schematic diagram showing a state in which backscattered light passing through the scattering medium is detected and its light intensity data is acquired.
  • FIG. 48A shows a case where a heterogeneous portion (that is, an observation target) 102 having larger absorption than the scattering medium 101 exists inside the scatterer S.
  • FIG. The light emitted from the irradiation light source 4201 is attenuated by the influence of the heterogeneous portion 102, the attenuated backscattered light 4401 is detected by the detection means 4204, and the light intensity data is acquired.
  • the light intensity data detected in the case shown in FIG. 48A is referred to as data in which the influence of the foreign portion is dominant, or the foreign portion detection signal.
  • FIG. 48A shows a case where a heterogeneous portion (that is, an observation target) 102 having larger absorption than the scattering medium 101 exists inside the scatterer S.
  • FIG. The light emitted from the irradiation light source 4201 is at
  • the light intensity data detected in the case shown in FIG. 48B is referred to as data in which the influence of the scattering medium is dominant, or the scattering medium detection signal.
  • FIG. 48 (c) For example, when the scatterer S as shown in FIGS. 48 (a) and 48 (b) is continuously detected, a light intensity graph as shown in FIG. 48 (c) is obtained.
  • the light intensity data 4402 in which the influence of the scattering medium 101 is dominant and the light intensity data 4401 in which the influence of the heterogeneous portion is dominant exist, so that data having different intensities are detected. It is possible to detect the presence of the heterogeneous portion 102 in the scatterer S using such a difference in intensity.
  • scattered light that spreads radially from the incident point of the subject when the irradiation light is scanned spreads according to the depth in the subject by the light receiving surface of the image sensor. Since certain light reception data is detected at a time for each scanning point, the detection efficiency can be very high. In addition, light emitted from a position away from the position where the irradiated light is incident on the subject is detected.
  • the light receiving position in the image sensor changes even if the incident light is incident from the same incident position, so that the light is received on a two-dimensionally wide surface like the image sensor. This is also very convenient in that a detection error can be prevented.
  • the side surface 3 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • An in-vivo observation apparatus having a function of scanning illumination light, wherein the in-vivo observation apparatus is configured such that a scanning unit that realizes a scanning function is arranged at a portion that is not an insertion portion to be inserted into the living body.
  • the in-vivo observation device further comprising an illumination image guide that transmits light from the scanning unit to the subject, an imaging image guide that transmits light from the subject, and the imaging image guide
  • An image sensor for detecting light from the image as an image, the scanning means and the image sensor are disposed in a scanning unit, and the image guide for irradiation and the image capturing are in an insertion portion connected to the scanning unit.
  • the in-vivo observation device according to claim 1, further comprising an illumination image guide that transmits light from the scanning unit to the subject, and an imaging device for detecting light from the subject as an image,
  • the in-vivo observation apparatus wherein the scanning unit is disposed in a scanning unit, and the irradiation image guide and the imaging element are disposed in an insertion portion connected to the scanning unit.
  • the light source for supplying light to the scanning means is provided in the scanning unit.
  • the in-vivo observation apparatus according to any one of the above.
  • the insertion unit is detachable from the scanning unit.
  • To 32. The in-vivo observation apparatus according to any one of the above.
  • the in-vivo observation device further comprising: an illumination image guide that transmits light from the scanning unit to the subject; an imaging image guide that transmits light from the subject; and the imaging image guide An image sensor for detecting light from the image as an image, wherein the scanning means is disposed in a scanning section, and the image guide for irradiation, the image guide for imaging, and the image sensor in an insertion section connected to the scanning section And an in-vivo observation device.
  • the in-vivo observation device further comprising: an illumination image guide that transmits light from the scanning unit to the subject; an imaging image guide that transmits light from the subject; and the imaging image guide
  • An image sensor for detecting light from the image as an image the scanning means is disposed in the scanning unit, the image sensor is disposed in the imaging unit, and the scanning unit and the insertion unit connected to the imaging unit
  • the light source for supplying light to the scanning means is provided in the scanning section. Or 35.
  • the in-vivo observation apparatus according to any one of the above.
  • the side surface 5 relates to an apparatus and method that can accurately and quickly detect the position of a heterogeneous portion inside the scatterer by measuring the backscattered light from the scatterer.
  • JP-A-2006-102029 An apparatus for recognizing the position of a blood vessel inside a living tissue as disclosed in JP-A-2006-102029 is disclosed.
  • the device disclosed in Japanese Patent Laid-Open No. 2006-102029 is a blood vessel position presentation device for a doctor or nurse to perform intravenous injection or infusion on a patient's arm or the like.
  • a threshold value of detection signal intensity is set for identifying a blood vessel, and the blood vessel is identified based on whether the signal is larger or smaller than a predetermined threshold value.
  • Japanese Patent Laid-Open No. 2006-102029 discloses a first step S for identifying a blood vessel by scanning the surface of a living body in a line, and a step for marking a blood vessel position while scanning in a line again based on the identification result.
  • a method comprising two steps S is disclosed.
  • the illumination unit and the detection unit are fixed, it is not applicable when it is desired to observe the apparatus in a stationary state. For this reason, the use range is limited.
  • the side surface 5 is a scatterer internal detection device (that is, a scatterer internal observation device) that detects a heterogeneous portion (that is, an observation target) inside the scatterer, and the scattering medium that constitutes the scatterer and the Illumination means for irradiating the scatterer with light having different optical characteristics from different parts (that is, light irradiation means), detection means for detecting backscattered light of the light emitted by the illumination means, and detection by the detection means Storage means for storing the light intensity data of the backscattered light, and frequency distribution information of a plurality of light intensity data stored in the storage means, and based on the information, at a desired position of the scatterer
  • An analysis unit that is, a determination unit
  • the scatterer refers to an object mainly composed of a scattering medium, and examples thereof include a living body.
  • the scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
  • the scatterer internal detection device on the side surface 5 is a device for detecting a heterogeneous portion present in the scattering medium inside the scatterer.
  • the heterogeneous portion in the side surface 5 is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
  • FIG. 49 shows an example of a scatterer having a heterogeneous portion inside.
  • an area that is an observation range is shown as an observation area 5103.
  • FIG. 49B is a cross-sectional view taken along the alternate long and short dash line in FIG. In the example of FIG. 49, a shape in which a string-like heterogeneous portion travels is shown, but the present invention is not limited to this, and there are lump-like or loop-like heterogeneous portions.
  • the scatterer In the scatterer internal detection device on the side surface 5, the scatterer is irradiated with light having different optical characteristics between the scattering medium and the heterogeneous portion.
  • Light with different optical properties between the scattering medium and the heterogeneous part means light with different wavelengths in the scattering medium and in the extraneous part, such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. To do.
  • FIG. 50 is a schematic diagram showing how the backscattered light from the scattering medium is detected and the light intensity data is acquired.
  • FIG. 50A shows a case where a foreign portion 5102 having larger absorption than the scattering medium 5101 exists inside the scatterer S.
  • FIG. The light illuminated by the illumination unit 5201 is attenuated by the influence of the extraneous portion 5102, the attenuated backscattered light 5401 is detected by the detection unit 5204, and the light intensity data is acquired.
  • the light intensity data detected in such a case is referred to as data in which the influence of the foreign portion is dominant or the foreign portion detection signal.
  • FIG. 50B shows a case where the heterogeneous portion 5102 does not exist inside the scatterer S.
  • the light illuminated by the illumination unit 5201 is not attenuated, the backscattered light 5402 scattered by the scattering medium 5101 is detected by the detection unit 5204, and the light intensity data is acquired.
  • the light intensity data detected in such a case is referred to as data in which the influence of the scattering medium is dominant, or the scattering medium detection signal.
  • FIG. 49 (b) when a scatterer as shown in FIG. 49 (b) is detected along the one-dot chain line in FIG. 49 (a), a graph of light intensity as shown in FIG. 50 (c) is obtained.
  • data having different intensities are detected as light intensity data 5402 in which the influence of the scattering medium is dominant and light intensity data 5401 in which the influence of the heterogeneous portion is dominant.
  • the scattering medium and the extraneous portion are determined by analyzing the data thus obtained as described later.
  • the light intensity dominant in the influence of the heterogeneous portion 5102 is smaller than the light intensity dominant in the influence of the scattering medium 5101, but this relationship is reversed. Even in this case, the side surface 5 can be applied.
  • FIG. 51 is a schematic functional block diagram of the scatterer internal detection device 5100 according to the first embodiment of the side surface 5.
  • the scatterer internal detection device 5100 includes an illumination unit 5201, a detection unit 5204, a storage unit 5207, an analysis unit 5208, and a presentation unit 5209.
  • the illumination unit 5201 is a unit that generates light having different optical characteristics in the scattering medium and in the heterogeneous portion and irradiates the scatterer.
  • the scatterer internal detection device 5100 of this embodiment is propagated by a light source 5201a, a light guide 5201b using an optical fiber for guiding generated light, and the optical fiber.
  • an illuminating unit 5201 configured by a condensing body 5201c that converts to a thin parallel light speed is provided.
  • the light source 5201a a light source that generates light having a wavelength different from that of the scattering medium in a different part is used.
  • An optical fiber is preferably used for the light guide 5201b, but the light guide 5201b is not limited to this, and may be configured by a relay lens.
  • a lens is suitably used for the light condensing body 5201c, it is not limited to this, You may comprise by a mirror. Or you may comprise with a prism or a diffraction grating.
  • a detection region to which the illumination light hits may be limited by a mask or the like.
  • the detection region means a region on the surface of the scatterer irradiated with light by the illumination unit 5201, and is indicated by reference sign a1 in FIG.
  • the detection means 5204 is a means having sensitivity in a wavelength band including the wavelength of light emitted by the illumination means 5201, and detecting backscattered light emitted from the scatterer surface and converting it into an electrical signal.
  • the scatterer internal detection device 5100 of this embodiment has at least one detection element 5204a having sensitivity in a wavelength band including the wavelength of light emitted from the light source 5201a, and signal transmission for propagating a light intensity signal detected by the detection element 5204a.
  • a detecting unit 5204 including a unit 5204b and a processing unit 5204c that converts the light intensity signal into optical data.
  • a general light detection element is used for the detection element 5204a.
  • a photodetector, a photomultiplier tube, etc. can be used, it is not limited to this.
  • an image sensor such as a CCD that detects a plurality of points simultaneously may be used.
  • An electric wire may be used for the signal transmission unit 5204b, and a photodetector amplifier that converts a received light current into a voltage may be used for the processing unit 5204c, but is not limited thereto.
  • FIG. 51 (b) is a view of the surface portion of the scatterer, which is irradiated and detected by the scatterer internal detection device 5100, as viewed from above.
  • the light (a1) emitted from the illumination means 5201 irradiates the illumination area a2 on the surface of the scatterer S, and the illuminated light propagates through the scatterer to detect the detection area a3 on the scatterer surface. Ejected from.
  • the emitted light (a4) is detected by the detecting means 5204 and converted into light intensity data.
  • the detection region is a region where backscattered light is detected by the detection means, particularly the detection element, and the illumination region is a region irradiated with light by the illumination unit.
  • Storage means 5207 is means for storing the light intensity data detected and converted by the detection means 5204, and a memory is preferably used.
  • the analyzing means 5208 is means for analyzing the light intensity data stored in the storage means 5207, and a control device such as a computer in which appropriate software for analysis is installed in advance is preferably used.
  • the presenting means 5209 is a means for displaying the result analyzed by the analyzing means 5208.
  • the presenting unit 5209 uses, for example, a unit that irradiates visible light that marks the surface of the scatterer so as to include the detection region and the detection region in the observation region, and switches the mark based on the determination result. If the method uses visible light, the degree of freedom of the mark method is high, and switching can be easily realized by turning on and off the light source, so that the determination result can be notified promptly. In addition, since the result can be presented at the detection position during scanning of the scatterer surface, the result can be presented quickly. Further, if the same light guide as that of the illumination means is used, a downsized configuration can be realized.
  • the scatterer internal detection device 5100 of this embodiment includes a light source 5209a that generates visible light, a light guide 5209b that uses an optical fiber as a light guide for the generated light, and divergent light that is propagated and emitted by the optical fiber.
  • a display means 5209 configured by a display condensing unit 5209c that condenses the light on the measurement area (a5) including the illumination area (a2) and the detection area (a3).
  • the analysis result is displayed by irradiating different marks when the scattering medium is detected and when the foreign portion is detected.
  • the circular mark 1801 may be switched between on and off, or various mark switching methods such as switching between a round mark and a cross mark may be taken.
  • the light guide 5201b, the light collector 5201c, the detection element 5204a, and the signal transmission unit 5204b are arranged inside the holder 5210.
  • the condenser 5201c and the detection element 5204a are fixed to the holder 5210, the illumination area a2 and the detection area a3 are held at a specific distance.
  • the observation area can be scanned by moving the holder 5210.
  • a protection part 5211 for protecting the light collector 5201c and the detection element 5204a can be attached to the tip of the holder 5210. By detecting the holder 5210 by pressing the holder 5210 against the surface of the scatterer via the protection unit 5211, the distance from the scatterer surface to the illumination means 5201 and the detection means 5204 can be kept constant.
  • the protection portion 5211 is preferably made of a material that absorbs less light at the wavelength of light irradiated by the illumination unit 5201.
  • FIG. 51c is a schematic front view of the holder 5210 as seen from the tip.
  • the display condensing unit 5209c of the presenting means is arranged so as to be shifted from the condensing unit 5201c and the detecting unit 5204a.
  • the condensing unit 5201c, the detecting unit 5204a, and the display condensing unit 5209c are shown in a triangular arrangement.
  • the presenting means 5209 on the side surface 5 does not deviate from the purpose of marking the detection position. Can also be arranged.
  • FIG. 53 shows a modification of the scatterer internal detection device 5100 in the first embodiment.
  • an illuminating unit capable of scanning the scatterer surface and a detecting unit including a plurality of detecting elements are provided.
  • the detection unit 5204a ′ includes a plurality of detection elements 5206.
  • a plurality of detection elements 5206 are represented in order as d1 to dn.
  • the illumination area is moved without moving the holder 5210 by moving only the light condensing unit 5201c.
  • the detection element 5206 used for light detection is changed with the movement of the light collecting unit 5201c, and the distance between the illumination area and the detection area is kept constant. Thereby, the illumination area and the detection area are kept at a specific distance, and information of the same depth can be obtained.
  • the presentation means 5209 is not shown in FIG. 53, a presentation means can be provided with the same structure as FIG.
  • FIG. 54 is a diagram showing a modification of the presenting means 5209 in the scatterer internal detection device 5100 of the first embodiment.
  • FIG. 54A is a modification in which the illumination unit 5201 further has a function of irradiating the scatterer surface with visible light for displaying the analysis result.
  • a form of displaying using a monitor FIG. 54 (b)
  • a form of presenting an analysis result by sound FIG. 54 (c)
  • FIG. 55 shows a schematic operation flow of the scatterer internal detection device 5100 of the first embodiment.
  • step S802 it is determined whether or not the process switch is on.
  • step S804 the processes after step S804 are executed.
  • step S803 the process flow operation is interrupted or terminated in step S803. Note that whether or not the switch is off is determined at any time, and if it is off, the process ends.
  • the surface of the living body is scanned in step S804 to obtain a light intensity signal.
  • the surface of the living body S (in the observation area) is randomly scanned, and the backscattered light at various positions in the observation area 5103.
  • the light intensity signal is detected.
  • the detected light intensity signal is converted into light intensity data and stored in the storage means 5207 at regular time intervals.
  • step S805 it is determined whether or not the acquired light intensity data is sufficient to create frequency distribution information. If not, the light intensity data is acquired again in step S806, and if sufficient, the process proceeds to step S807. In step S806, the acquired light intensity data is stored in the storage means in step S804 as long as the switch is on.
  • step S807 frequency distribution information is created using the light intensity data stored in the storage means.
  • the frequency distribution information of the light intensity data is a histogram taking the frequency of the light intensity.
  • the frequency distribution based on the detected light intensity is the sum of the distribution of the light intensity data in which the influence of the scattering medium is dominant and the distribution of the light intensity data in which the influence of the heterogeneous portion is dominant. Since each distribution has a width due to noise, when added together, it becomes a multimodal distribution with overlapping distribution tails. An example of this is shown in FIG.
  • FIG. 57 shows an example of the frequency distribution when the frequency of the signal detecting the scattering medium is higher than the frequency of the signal detecting the heterogeneous portion.
  • a distribution 5602 is a scattering medium detection signal
  • a distribution 5601 is a foreign portion detection signal.
  • the distribution derived from the scattering medium detection signal 5602 and the heterogeneous part detection signal 5601 shows a bimodal frequency distribution having a peak and a width, respectively. Therefore, both distributions can be distinguished based on the frequency distribution information.
  • a threshold is set based on the frequency distribution information in step S808.
  • the threshold value is a value that distinguishes the scattering medium signal and the heterogeneous portion detection signal.
  • the threshold value is set from the valley portion between the scattering medium detection signal distribution and the heterogeneous part detection signal distribution from the frequency distribution information created in step S807.
  • step S809 based on the set threshold value, only the data of the scattering medium detection signal corresponding to the area indicated by the oblique lines in FIG. 58 is selectively extracted. Based on the extracted data, a frequency distribution data set Bt of the scattering medium detection signal is created.
  • FIG. 59 shows an extraction process flow of scattering medium detection signal data.
  • FIG. 59 (a) is a processing flow of a method for fitting a normal distribution to a distribution.
  • the backscattered light intensity acquired by scanning the biological surface S in step S901 is stored, and frequency distribution information is created in step S902.
  • the frequency distribution is fitted with two normal curves. Thereby, the intersection of two normal curves becomes clear and this intersection can be made into a threshold value (S904).
  • step S905 data having an intensity greater than this threshold is extracted as a scattering medium detection signal.
  • FIG. 59 (b) is a processing flow of a method of extracting the peaks and valleys of the distribution and setting the valleys as threshold values.
  • the backscattered light intensity acquired by scanning the biological surface S in step S901 is stored, and frequency distribution information is created in step S902.
  • step S906 two peak values of the peak of the frequency distribution and one peak value of the valley between them are extracted, and in step S907, the peak value of the valley is set as a threshold value. Subsequently, in step S907, data having an intensity greater than this threshold is extracted as a scattering medium detection signal.
  • a frequency distribution data set Bt is created from the scattering medium detection signal extracted as described above.
  • step S810 the light intensity is continuously detected at arbitrary measurement points on the scatterer surface, and a light intensity data set Dt is created.
  • the light intensity data detected at this time is referred to as detection data.
  • Detecting the light intensity continuously at an arbitrary measurement point means that detection is performed a plurality of times (n times) at the same position to obtain n light intensity data.
  • step S811 whether or not the light intensity data set Dt created in step S810 and the frequency distribution data set Bt created in step S809 are based on the same distribution is based on a statistical test process. Compare.
  • t test (test of difference of mean value of distribution) is performed as statistical test processing.
  • the probability that Dt is a distribution generated from the same population as the distribution of Bt can be expressed by a parameter called p-value.
  • the p value ranges from 0 to 1. The closer the p value is to 1, the higher the probability that Dt and Bt are distributions from the same population. The closer the p value is to 0, the more Dt and Bt Means that there is a high probability that the distribution is derived from another population. In the example of the present embodiment, the closer the p value is to 0, the more the Dt is a set different from the scattering medium detection signal data Bt, that is, a foreign portion detection signal.
  • step S812 when the p value calculated by the above statistical property is smaller than a predetermined threshold thp, it is determined that the current data Dt is a foreign portion detection signal.
  • the threshold thp affects the reliability of determination and can be set as appropriate depending on the desired reliability. If the threshold value thp is set high, the determination result can be obtained even with high noise data although the reliability is low. If the threshold value thp is set low, the reliability may be high, but there may be a case where the determination result cannot be obtained when the difference in the average value is not noticeable with high noise data.
  • the threshold value Thp is preferably a value not more than 0.1 and not less than 0.01. For example, 0.05, 0.1, etc. can be set.
  • step S812 If it is determined in step S812 that the p-value is smaller than the threshold thp, it is determined that a heterogeneous portion has been detected, and in step S813 this is notified by the presenting means. If the p-value is larger than the threshold thp, it is determined that a scattering medium has been detected, and that is notified by the presenting means in step S814.
  • step S802 After displaying the determination result, the process returns to step S802, and the processes of S804 to S814 are repeated unless the switch is turned off.
  • the data determined to be the scattering medium detection signal is incorporated into the data for creating the frequency distribution data set Bt in step S809, and the frequency distribution diagram Bt is updated as appropriate.
  • the scanning within the observation region will not change if the influence of the influence on the backscattered light intensity does not change between the scattering medium and the extraneous part.
  • An appropriate threshold can be set according to the position to be set.
  • the relationship between the influence of the scattering medium and the influence of the extraneous part on the intensity of the backscattered light does not change means that the magnitude relationship between the degree of attenuation of light by the scattering medium and the degree of attenuation of light by the extraneous part is maintained. That is.
  • the scatterer inside detection device 5100 shown in FIG. 53 When the scatterer inside detection device 5100 shown in FIG. 53 is used, the backscattered light is detected by scanning the illumination. And it detects with a different detection element with the movement of an illumination area
  • the illumination scanning may be performed as long as at least the detection region can scan the observation region, and may be performed by moving only the light collector 5201c in the holder, or the angle of the light collector 5201c is changed to change the illumination region. It may be moved.
  • a threshold value for distinguishing a scattering medium and a heterogeneous portion is set in advance while the setting criteria remain ambiguous.
  • An appropriate threshold value is set based on the detected light intensity data.
  • the frequency distribution information is updated while continuing the determination, and the threshold value is updated each time. Therefore, it is possible to cope with the heterogeneity of the scattering medium and the heterogeneous portion, and to perform more accurate and highly adaptable detection. Is possible.
  • detection can be performed by moving only the illumination means, it can be applied to detection in a state where the apparatus is stationary.
  • detection and determination and presentation of the determination result can be performed at the same time, the operation is simple and short, it can be applied to a wide range of observations, and the shape of the heterogeneous portion can be easily confirmed.
  • threshold determination and test processing based on the frequency distribution information can be applied to a scattering medium having a plurality of different parts having different optical characteristics from the scattering medium.
  • t-test is used, but other statistical methods can also be used. Further, in the above-described embodiment, the case where data in which the influence of the scattering medium is dominant is extracted in advance and the information is compared with the detection data has been shown. It will be understood that there may be a way to compare the information with the detection data.
  • FIG. 60 is a schematic functional block diagram of a scatterer internal detection device 5200 according to the second embodiment.
  • the scatterer internal detection device 5200 includes an illumination unit 5201, a detection unit 5204, a storage unit 5207, an analysis unit 5208, and a presentation unit 5209.
  • the illumination unit 5201, the storage unit 5207, and the analysis unit 5208 are the same as those in the first embodiment.
  • the detection means 5204 has an imaging optical system 5214 for imaging backscattered light emitted from the scatterer surface S and a plurality of detection elements 5206 having sensitivity in a wavelength band including the wavelength of light emitted from the light source 5201a.
  • a detection body 5212 composed of (not shown), a signal transmission unit 5204b that propagates the light intensity signal detected by the detection element 5206, and a processing unit 5204c that converts the light intensity signal into optical data are provided.
  • the scatterer internal detection device 5200 includes a presentation unit 5213 that displays an image of the result analyzed by the analysis unit 5208.
  • the light guide 5201b, the light collector 5201c, the imaging optical system 5214, the detector 5212, and the signal transmission unit 5204b are fixedly disposed inside the holder 5210. .
  • the angle of the light collector 5201c can be changed as appropriate, and the detection region can be scanned by changing the angle of the light to be irradiated.
  • the imaging optical system 5214 can be a lens including a microlens array, but is not limited to this.
  • the detection body 5212 in the scatterer internal detection device 5200 of the present embodiment includes a plurality of detection elements 5206, the entire observation region can be detected without moving the detection hand 5212. Therefore, the inside of the observation area can be scanned without scanning the holder 5210.
  • FIG. 61 is a front view showing an example of the detection body 5212.
  • FIG. As shown in the figure, a plurality of detection elements 5206 are arranged on a plane.
  • a detector 5212 having an appropriate shape such as a square shape as shown in FIG. 61 (a) or a circular shape as shown in FIG. 61 (b) can be used.
  • Various modifications may be made without departing from the gist of the side surface 5.
  • FIG. 62 is a schematic diagram showing the arrangement of the condenser 5201c, its illumination area (c1), the detection elements (d1 to d6) constituting the detection body 5212, and the respective detection areas (e1 to e6).
  • the detection elements 5206 are arranged in the detection body 5212, which are d1 to d6, respectively.
  • the light emitted from the condenser 5201c illuminates the detection area c1 on the scatterer surface.
  • the detection units d1 to d6 detect backscattered light emitted from the corresponding detection areas e1 to e6, respectively.
  • the distance between the illumination area and the detection area is referred to as an illumination-detection distance, and is indicated by a double arrow in the figure.
  • FIG. 63 shows a schematic operation flow of the scatterer internal detection device 5200 of the second embodiment.
  • step S1701 the processing flow starts.
  • step S1702 it is determined whether or not the processing switch is on. When it is on, the processing after step S1704 is executed, and when it is off, the processing flow operation is interrupted or terminated in step S1703.
  • the surface of the living body is scanned in step S1706 to obtain a light intensity signal.
  • the illumination area is moved by changing the angle of the light emitted by the illumination means 5201, and the light intensity signal of the entire observation area is acquired.
  • the obtained light intensity signal is converted into light intensity data and stored in the storage means 5207 at regular time intervals. At this time, the distance between the detection area where each light intensity data is obtained and the illumination area is also stored.
  • step S1705 it is determined whether or not the acquired light intensity data is sufficient to create frequency distribution information. If it is not sufficient, light intensity data is acquired again in step S1706. If it is sufficient, the process proceeds to step S1707. In step S1706, the acquired light intensity data is stored in the storage means in step S1704 as long as the switch is on.
  • step S1707 the light intensity data stored in the storage means is classified according to the illumination-detection distance, and data having the same illumination-detection distance is grouped.
  • analysis is performed for each group. Light intensity data with different illumination-detection distances cannot be compared because they are light intensity data with different depths. Therefore, the comparison is performed using light intensity data having the same illumination-detection distance.
  • the number of groups is less than the number of detection elements, and the illumination-detection distance in one group can be set to be approximately equal.
  • step S1708 frequency distribution information of light intensity data is created for each group grouped in step S1707.
  • the procedure for creating frequency distribution information is performed in the same manner as in the first embodiment.
  • FIG. 64 shows how the frequency distribution of light intensity data is created for four groups (g1 to g4) having the same illumination-detection distance. As shown in FIG. 64, the frequency distribution varies depending on the group.
  • a threshold value is set for each group based on the frequency distribution information in step S1709.
  • the threshold value is set in the same manner as in the first embodiment.
  • the position of the set threshold value is represented by a one-dot chain line.
  • step S1710 When the threshold value is set, in step S1710, only the data of the scattering medium detection signal is selectively extracted based on the set threshold value. Based on the extracted data, a frequency distribution data set Btg of the scattering medium detection signal is created. This process is performed for each group. The created frequency distribution data set Btg is stored in the storage unit 5207. FIG. 65 shows a frequency distribution diagram Btg created for each group. The extraction process of the scattering medium detection signal data and the creation of the frequency distribution diagram Btg are performed in the same manner as in the first embodiment.
  • step S1711 in FIG. 63 the light intensity in the entire observation region is detected.
  • the light intensity data detected at this time is referred to as detection data Dtg.
  • step S1712 whether or not the detection data Dtg acquired in step S1711 and the frequency distribution chart Btg created in step S1710 are based on the same distribution is compared based on statistical test processing.
  • the frequency distribution diagram Btg used for comparison here is for a group having an illumination-detection distance equivalent to the illumination-detection distance of the detection data.
  • the statistical test in step S1712 is performed by t test.
  • the probability that Dtg is a distribution generated from the same population as the distribution of Btg can be expressed by a parameter called p-value.
  • the p value ranges from 0 to 1. The closer the p value is to 1, the higher the probability that Dtg and Btg are from the same population. The closer the p value is to 0, the more Dtg and Btg Means that there is a high probability that the distribution is derived from another population.
  • Dtg is a set different from the scattering medium detection signal data Btg, that is, a heterogeneous partial detection signal.
  • the detection data Dtg is a foreign portion detection signal.
  • the p value is larger than the threshold value thp, it is determined as a scattering medium detection signal.
  • the threshold thp can be set as appropriate depending on the desired reliability. For example, a value of 0.1 or less and 0.01 or more is desirable, and more preferably 0.05 or 0.1.
  • FIG. 66 shows an example of the determination result.
  • light intensity data of the entire observation region is acquired in the illumination range of FIG. 62 (a)
  • light intensity data f1 to f6 are obtained by the detection elements d1 to d6, respectively.
  • These light intensity data f1 to f6 are subjected to a test process according to the respective illumination-detection distances, and it is determined whether the signal is a scattering medium detection signal or a foreign part detection signal.
  • f3 and f5 are foreign portion detection signals
  • f1, f2, f4, and f6 are scattering medium detection signals.
  • step S1713 the determination result is associated with a value obtained by reducing the information amount. Then, according to the distance between the region where the light intensity data is detected and the region irradiated with the light, the corresponding value is imaged and displayed on the monitor.
  • 0 is assigned to the scattering medium detection signal
  • 1 is assigned to the foreign portion detection signal.
  • f1, f2, f4, and f6 correspond to 0, and f3 and f5 correspond to 1.
  • an image is formed based on the assigned value in accordance with the positional relationship of the detection area of each detection data and displayed by the display means. For example, as shown in FIG. 67, the value 0 is displayed in white, the value 1 is displayed in black, and the display of each light intensity data (for example, f1 to f6) is displayed in the corresponding detection area (for example, e1 to e6). Arrange so as to correspond to the positional relationship.
  • the shape of the heterogeneous portion can be highlighted by displaying the determination result in association with the value with the reduced amount of information and further in association with the arrangement of the detection area.
  • 0 is assigned to the scattering medium detection signal and 1 is assigned to the foreign portion detection signal.
  • other values may be assigned, 0 to 1 are set to the scattering medium detection signal, and 1 is assigned to the foreign portion detection signal.
  • a value may be given with a width as in ⁇ 2.
  • each heterogeneous part can also be displayed in different colors.
  • step S1714 of FIG. 63 After the determination result is displayed in step S1714 of FIG. 63, the process returns to step S1702, and the processing of S1704 to S1714 is repeated unless the switch is turned off.
  • a large amount of light intensity data can be obtained easily and in a short time by performing detection with a detection body composed of a plurality of detection elements.
  • the obtained light intensity data is grouped according to the distance between the detection region of each detection element and the illumination region, and statistical processing is performed, so that a lot of data can be easily and efficiently analyzed.
  • displaying the determination result as an image has an advantage that the shape of the heterogeneous portion can be confirmed at a glance.
  • the side surface 5 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention.
  • constituent elements over different embodiments may be appropriately combined.
  • a scatterer internal detection device for detecting a heterogeneous part inside a scatterer, Illumination means for irradiating the scatterer with light having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; Detecting means for detecting backscattered light of the light irradiated by the illuminating means, and obtaining light intensity data of the backscattered light; Storage means for storing light intensity data of backscattered light detected by the detection means; Frequency distribution information of a plurality of light intensity data stored in the storage means is created, and based on the information, it is determined whether the inside of the scatterer at a desired position is a scattering medium or a heterogeneous part. Analysis means; Presenting means for displaying the determination result by the analyzing means; A scatterer internal detection device comprising:
  • the analysis means is From the light intensity data stored in the storage means, create a frequency distribution diagram Bt of the light intensity data in which the influence of the scattering medium or the heterogeneous portion is dominant, A frequency distribution diagram Dt is created from detection data of light intensity continuously detected at an arbitrary measurement point on the scatterer surface, Comparing the frequency distribution chart Bt and the frequency distribution chart Dt based on a statistical test process; When the frequency distribution diagram Bt is based on light intensity data in which the influence of the scattering medium is dominant, it is determined that the detection data is data in which the influence of the scattering medium is dominant.
  • the detected data is determined to be data that is influenced by the heterogeneous part.
  • the frequency distribution diagram Bt is based on light intensity data in which the influence of the heterogeneous portion is dominant, it is determined that the detection data is data in which the influence of the heterogeneous portion is dominant, and in the case of mismatch, 39. It is determined that the detection data is data in which the influence of the scattering medium is dominant.
  • the scatterer inside detection apparatus described in 1.
  • the analysis means creates a frequency distribution map from a plurality of light intensity data, sets a threshold value for distinguishing data in which the influence of the scattering medium is dominant and data in which the influence of the heterogeneous portion is dominant, and based on the threshold
  • the frequency distribution diagram Bt of the light intensity data in which the influence of the scattering medium or the extraneous portion is dominant is created by extracting only the data in which the influence of the scattering medium or the extraneous portion is dominant from the plurality of light intensity data.
  • the scatterer internal detection device according to any one of Illumination means capable of scanning the scatterer surface; Comprising a detection means comprising a plurality of detection elements; The inside of the scatterer is characterized in that detection is performed by a detection element capable of detecting an area at a certain distance from the illumination area as the illumination area irradiated with light by the illumination means moves by scanning of the illumination means. Detection device.
  • the scatterer internal detection device according to any one of A scatterer internal detection device, comprising: presentation means for displaying a determination result at a desired position of the scatterer on the position of the scatterer.
  • the scatterer internal detection device according to any one of Detection means comprising a plurality of detection elements; Storage means for storing light intensity data detected by the detection means together with a relative position between a detection area where the light intensity data is detected and an illumination area irradiated with light by the illumination means; The scatterer internal detection device, wherein the analysis by the analysis means is performed for each group of light intensity data having the same distance between the detection region and the illumination region.
  • the scatterer internal detection device according to claim 1, The scatterer inside detection apparatus characterized by including the illumination means which can scan the said scatterer surface.
  • the scatterer internal detection device A monitor for displaying the determination result by the analyzing means; The result of the analysis performed for each group is imaged based on the relative position between the detection area and the illumination area stored in the storage means and presented to the monitor. Detection device.
  • a scatterer internal detection method for detecting a heterogeneous part inside a scatterer Irradiating the scatterer with light having different optical properties between the scattering medium constituting the scatterer and the extraneous portion; and Detecting backscattered light of the irradiated light; Storing light intensity data of the detected backscattered light; Creating frequency distribution information from a plurality of the stored light intensity data, and determining, based on the information, whether the inside of the scatterer at a desired position is a scattering medium or a heterogeneous part; Displaying the determination result;
  • a method comprising the steps of:
  • the step of determining includes Creating a frequency distribution diagram Bt of light intensity data in which the influence of the scattering medium or the heterogeneous portion is dominant from the plurality of light intensity data; Detecting light intensity data continuously at arbitrary measurement points on the scatterer surface, and creating a frequency distribution diagram Dt from the obtained detection data; Comparing the frequency distribution chart Bt and the frequency distribution chart Dt based on a statistical test process; When the frequency distribution diagram Bt is based on light intensity data in which the influence of the scattering medium is dominant, it is determined that the detection data is data in which the influence of the scattering medium is dominant.
  • the detected data is determined to be data that is influenced by the heterogeneous part,
  • the frequency distribution diagram Bt is based on light intensity data in which the influence of the heterogeneous portion is dominant, it is determined that the detection data is data in which the influence of the heterogeneous portion is dominant, and in the case of mismatch, Determining that the detection data is data in which the influence of the scattering medium is dominant; 48. characterized by comprising: The scatterer inside detection method as described in any one of Claims 1-3.
  • the step of creating the frequency distribution chart Bt includes: Creating a frequency distribution map from a plurality of light intensity data and setting a threshold value for distinguishing between data in which the influence of the scattering medium is dominant and data in which the influence of the heterogeneous part is dominant; And 49. extracting only data in which the influence of a scattering medium or a heterogeneous part is dominant from the plurality of light intensity data based on the threshold value, and creating a frequency distribution diagram.
  • the scatterer inside detection method as described in any one of Claims 1-3.
  • the frequency distribution diagram Bt is updated by incorporating detection data determined to be data in which the influence of a scattering medium or a heterogeneous portion is dominant in the determination step.
  • the scatterer inside detection method as described in any one of Claims 1-3.
  • a scatterer internal detection method according to any one of In the step of detecting the backscattered light of the irradiated light, A method of detecting a backscattered light in a region at a certain distance from a region irradiated with the light as the light irradiated onto the scatterer is moved, and the irradiated light moves.
  • a scatterer internal detection method according to any one of Detecting backscattered light of the irradiated light by a plurality of detection elements; The light intensity data obtained by each of the plurality of detection elements is grouped for each data in which the distance between the area detected by each detection element and the area irradiated with the light is the same, The method of determining, wherein the determining step is performed for each group.
  • the scatterer internal detection method according to claim 1 The result of the determination made for each group is associated with a value obtained by reducing the amount of information, and the value is displayed on the monitor according to the distance between the region where the light intensity data is detected and the region irradiated with the light.
  • the method characterized by making it display.
  • Ranging means 2050 ... Two-dimensional image, 2051 ... Pixel region, 2052 ... Light irradiation position, 2060 ... Scattering body internal observation device, 2061 ... Bar member, 2070 ... Imaging region, 2071 ... Backscattering Light detection area, 2072 ... Backscattered light detection area, 2073 ... Backscattered light detection area, 2091 ... Index, 2110 ... Photographing Element 2120 ... Light irradiation means 2130 ... Light irradiation means 2140 ... Light irradiation means 3100 ... Scatterer internal observation device 3101 ... Illumination means 3102 ... Detection means 3103 ... Analysis / control unit 3104 ... Illumination range 3105 ...
  • detection range 3106 ... detection region, 3107 ... image processing unit, 3108 ... display unit, 3109 ... input unit, 3110 ... scatterer internal observation device, 3111, 3211, 3212 ... scan mirror, 3200 ... scatterer internal observation device, 3201... Illumination means 3202 ... Detection means 3203 ... Control / analysis section 3207 ... Image processing section 3208 ... Display section 3209 ... Input section 3213 ... Scanning control section 3300 ... Scatterer internal observation device 3301 ... Illumination Means 3302 ... Detection means 3303 ... Analysis / control part 3307 ... Image processing part 3308 ... Display part 3309 ... input unit, 3311 ... scan mirror, 3313 ... scanning control unit, 3314 ... half mirror.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The scatterer interior observation device (1) is equipped with a light irradiation means (10) that irradiates the surface of a scatterer, which includes an object being observed inside a scattering medium, using light with different optical characteristics in the object being observed and the scattering medium, a detection means (11) that detects, as a two-dimensional image, the back-scattered light from optical irradiation means (10) with which any optical irradiation position on the surface of the aforementioned scatterer is irradiated, and an analysis means (12) that confirms whether the aforementioned object being observed is present in the two-dimensional image data collected by the detection means (11) and that finds position information, including the depth of the object being observed in the scatterer, based on the distance between the light irradiation position in the two-dimensional image and the position where the object being observed is confirmed.

Description

散乱体内部観察装置および散乱体内部観察方法Scatterer internal observation apparatus and scatterer internal observation method
 本発明は、光を用いる非侵襲方法で散乱体内部を計測する散乱体内部計測装置(すなわち散乱体内部観察装置)及び計測方法(すなわち観察方法)に関する。 The present invention relates to a scatterer internal measurement device (that is, a scatterer internal observation device) and a measurement method (that is, an observation method) that measure the inside of a scatterer by a non-invasive method using light.
 生体等の散乱体の内部を計測するには様々な手法がある。その一つである光を用いた計測は、用いる光の波長を選択することにより特定の対象を計測できるという利点を有している。この手法では、測定対象に吸収される波長の光を散乱体に照射し、その後方散乱光強度を計測することにより、散乱体内部にある測定対象の位置と深度情報が得られる。後方散乱光は、照射位置と計測位置との距離が大きくなるほど、散乱体のより深部を通ってきた光であることが知られている。 There are various methods for measuring the inside of a scatterer such as a living body. One of the measurements using light has the advantage that a specific object can be measured by selecting the wavelength of the light to be used. In this method, the position and depth information of the measurement target in the scatterer can be obtained by irradiating the scatterer with light having a wavelength absorbed by the measurement target and measuring the intensity of the backscattered light. It is known that the backscattered light is light that has passed deeper in the scatterer as the distance between the irradiation position and the measurement position increases.
 特許文献1には、光照射手段の位置から順次遠ざかる位置に複数の光検出手段を備えた構成を有する生体光計測装置が開示されている。また、該装置による計測結果に基づいて、生体の断層画像を再構成する手段も開示されている。 Patent Document 1 discloses a biological light measurement device having a configuration in which a plurality of light detection means are provided at positions sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
 特許文献2には、光照射部から同心円状等のような所定の間隔で配置された複数の光検出部を備えた構成を有する生体光計測装置が開示されている。
特開2006-200943号公報 特開2007-20735号公報
Patent Document 2 discloses a biological light measurement device having a configuration including a plurality of light detection units arranged at predetermined intervals such as concentric circles from a light irradiation unit.
JP 2006-200943 JP 2007-20735 JP
〔発明が解決しようとする課題〕
 上記のような従来の装置では光照射手段と光検出手段が一体に構成されているために、照射位置と検出位置との距離が固定されている。従って、照射位置から任意の距離の位置で検出を行うことができないという問題がある。
[Problems to be Solved by the Invention]
In the conventional apparatus as described above, since the light irradiation means and the light detection means are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, there is a problem that detection cannot be performed at a position at an arbitrary distance from the irradiation position.
 また、所望の深度での断層画像を得るためには、多くの測定点で測定を行わなければならず、断層画像を取得するのに多くの時間を要するという問題がある。 In addition, in order to obtain a tomographic image at a desired depth, measurement must be performed at many measurement points, and there is a problem that it takes a lot of time to acquire a tomographic image.
 また、より深部の情報を取得するためには照射位置と検出位置との距離をより大きくしなければならないが、上記のような従来装置でそのような構成をとると、装置のサイズが大きくなるという問題がある。 Further, in order to acquire deeper information, the distance between the irradiation position and the detection position must be increased. However, when such a configuration is used in the conventional apparatus as described above, the size of the apparatus increases. There is a problem.
 またさらに、計測される後方散乱光は、照射位置と検出位置との間の中点の位置において最も深部を通る。即ち、観察される情報のうち最深部の情報は、照射位置と検出位置との中点の位置におけるものである。そのため、特許文献2のように検出部が光照射部から順次離れた位置に配置された装置では、計測される最深部のx、y方向の位置が、光照射部と検出部の距離が大きくなるにつれて、照射位置から遠くなってゆく。従って、ある特定の位置において、深度(z方向)を変化させた情報を得ることができないという問題がある。 Furthermore, the backscattered light to be measured passes through the deepest part at the midpoint position between the irradiation position and the detection position. That is, the deepest information in the observed information is at the midpoint position between the irradiation position and the detection position. For this reason, in an apparatus in which the detection unit is sequentially arranged away from the light irradiation unit as in Patent Document 2, the position of the deepest portion to be measured in the x and y directions is large in the distance between the light irradiation unit and the detection unit. As it becomes, it becomes far from the irradiation position. Therefore, there is a problem in that information with varying depth (z direction) cannot be obtained at a specific position.
〔課題を解決するための手段〕
 上記問題に鑑み、本発明は、散乱体内部の測定対象(すなわち観察対象)の情報を取得する散乱体内部計測装置(すなわち散乱体内部観察装置)であって、前記測定対象と前記散乱体とで光学特性の異なる光を前記散乱体に照射する照明手段(すなわち光照射手段)と、前記照明手段により照射された光の後方散乱光を2次元画像として検出する検出手段と、前記検出手段により取得された2次元画像データにおいて前記測定対象の存在の有無を確認し、前記2次元画像上における前記照射位置と前記測定対象が確認された位置との距離から、前記散乱体における前記測定対象の深度を含めた位置情報を求める解析手段とを備え、前記照明手段と前記検出手段が前記散乱体に非接触で計測が行われることを特徴とする散乱体内部計測装置並びに該装置を用いた計測方法を提供する。
[Means for solving the problems]
In view of the above problems, the present invention provides a scatterer internal measurement device (that is, a scatterer internal observation device) that acquires information on a measurement target (that is, an observation target) inside the scatterer, and the measurement target, the scatterer, The illumination means for irradiating the scatterer with light having different optical characteristics (that is, the light irradiation means), the detection means for detecting the backscattered light of the light emitted by the illumination means as a two-dimensional image, and the detection means The presence or absence of the measurement target is confirmed in the acquired two-dimensional image data, and the measurement target in the scatterer is determined from the distance between the irradiation position on the two-dimensional image and the position where the measurement target is confirmed. A scatterer internal measuring device array, comprising: an analyzing means for obtaining position information including depth, wherein the illuminating means and the detecting means perform measurement without contact with the scatterer. It provides a measurement method using the apparatus.
〔発明の効果〕
 本発明によれば、後方散乱光を2次元画像として検出することにより、照射位置から所望の距離に位置するデータを任意に解析することができる。よって、所望の位置及び深度の情報を容易に取得することができる。
〔The invention's effect〕
According to the present invention, it is possible to arbitrarily analyze data located at a desired distance from the irradiation position by detecting the backscattered light as a two-dimensional image. Therefore, information on a desired position and depth can be easily acquired.
 さらに照射位置を移動させることにより、多くの情報を簡便且つ短時間で取得することができ、容易に断層画像を作成することができる。 Further, by moving the irradiation position, a lot of information can be acquired easily and in a short time, and a tomographic image can be easily created.
図1は、第1の実施形態に係る散乱体内部計測装置のブロック構成図である。FIG. 1 is a block configuration diagram of the scatterer internal measurement device according to the first embodiment. 図2は、本発明に係る散乱体内部計測装置の動作を表したフローチャートである。FIG. 2 is a flowchart showing the operation of the scatterer internal measurement device according to the present invention. 図3は、散乱体内部の光の伝搬の様子を表す概念図である。FIG. 3 is a conceptual diagram showing a state of light propagation inside the scatterer. 図4は、第1の実施形態に係る散乱体内部計測装置により得られる2次元画像データの模式図である。FIG. 4 is a schematic diagram of two-dimensional image data obtained by the scatterer internal measurement device according to the first embodiment. 図5は、照射位置を変えて測定したときの2次元画像データの模式図である。FIG. 5 is a schematic diagram of two-dimensional image data when measurement is performed by changing the irradiation position. 図6は、照射位置を変えて測定したときの等深度データの軌跡を示す模式図である。FIG. 6 is a schematic diagram showing a locus of equal depth data when measurement is performed by changing the irradiation position. 図7は、第1の実施形態に係る散乱体内部計測装置の変形例である。FIG. 7 is a modification of the scatterer internal measurement device according to the first embodiment. 図8は、第1の実施形態に係る散乱体内部計測装置の変形例である。FIG. 8 is a modification of the scatterer internal measurement device according to the first embodiment. 図9は、第1の実施形態に係る散乱体内部計測装置の変形例である。FIG. 9 is a modified example of the scatterer internal measurement device according to the first embodiment. 図10は、第2の実施形態に係る散乱体内部計測装置のブロック構成図である。FIG. 10 is a block configuration diagram of the scatterer internal measurement device according to the second embodiment. 図11は、第3の実施形態に係る散乱体内部計測装置のブロック構成図である。FIG. 11 is a block diagram of a scatterer internal measurement device according to the third embodiment. 図12は、散乱体内部観測装置のブロック構成図である。FIG. 12 is a block diagram of the scatterer internal observation device. 図13は、側面1の散乱体内部観測装置を適用した硬性鏡の模式図及び散乱体内部及び表面における光の伝搬の様子を表す概念図である。FIG. 13 is a schematic diagram of a rigid mirror to which the scatterer internal observation device of the side surface 1 is applied, and a conceptual diagram showing a state of light propagation inside and on the surface of the scatterer. 図14は、照明の走査の様子を表す概念図である。FIG. 14 is a conceptual diagram showing how illumination is scanned. 図15は、照射位置の走査による等深度領域の軌跡を示す模式図である。FIG. 15 is a schematic diagram showing the locus of the equal depth region by scanning the irradiation position. 図16は、斜めに入射した場合の散乱体内部及び表面における光の伝搬の様子を表す概念図である。FIG. 16 is a conceptual diagram showing how light propagates inside and on the surface of a scatterer when incident obliquely. 側面2に係る散乱体内部観察装置のブロック構成図Block diagram of scatterer internal observation device according to side surface 2 散乱体内部の光の伝播の様子を表す概念図。The conceptual diagram showing the mode of the propagation of the light inside a scatterer. 側面2の散乱体内部観察装置により検出される後方散乱光および得られる2次元画像データの模式図。The schematic diagram of the backscattered light detected by the scatterer inside observation apparatus of the side surface 2, and the two-dimensional image data obtained. 図20は、側面2の第1態様に係る散乱体内部観察装置のブロック構成図である。FIG. 20 is a block configuration diagram of the scatterer internal observation device according to the first mode of the side surface 2. 図21は、側面2の第1態様に係る散乱体内部観察装置により得られる2次元画像を示す概念図である。FIG. 21 is a conceptual diagram illustrating a two-dimensional image obtained by the scatterer internal observation device according to the first aspect of the side surface 2. 図22は、側面2の第1態様に係る散乱体内部観察装置の変形例のブロック構成図である。FIG. 22 is a block configuration diagram of a modified example of the scatterer internal observation device according to the first aspect of the side surface 2. 図23は、光照射位置を変化させて測定したときの2次元画像データの模式図である。FIG. 23 is a schematic diagram of two-dimensional image data when measurement is performed by changing the light irradiation position. 図24は、光照射位置を変えて測定したときの等深度データの奇跡を示す模式図である。FIG. 24 is a schematic diagram showing a miracle of equi-depth data when measurement is performed by changing the light irradiation position. 図25は、側面2の第2態様に係る散乱体内部観察装置のブロック構成図である。FIG. 25 is a block configuration diagram of the scatterer internal observation device according to the second mode of the side surface 2. 図26は、側面2の第2態様に係る散乱体内部観察装置により得られる2次元画像を示す概念図である。FIG. 26 is a conceptual diagram illustrating a two-dimensional image obtained by the scatterer internal observation device according to the second aspect of the side surface 2. 図27は、レーザービームの強度プロファイルを示す図である。FIG. 27 is a diagram showing a laser beam intensity profile. 図28は、側面2の散乱体内部観察装置の変形例を示す図である。FIG. 28 is a diagram illustrating a modification of the scatterer internal observation device on the side surface 2. 図29は、側面2の散乱体内部観察装置の変形例を示す図である。FIG. 29 is a diagram showing a modification of the scatterer internal observation device on the side surface 2. 図30は、側面2の散乱体内部観察装置の変形例を示す図である。FIG. 30 is a diagram illustrating a modified example of the scatterer internal observation device on the side surface 2. 図31は、第1実施形態に係る散乱体内部観測装置のブロック構成図である。FIG. 31 is a block configuration diagram of the scatterer internal observation device according to the first embodiment. 図32は、散乱体表面の検出範囲を示す模式図である。FIG. 32 is a schematic diagram showing the detection range of the scatterer surface. 図33は、第2実施形態に係る散乱体内部観測装置のブロック構成図である。FIG. 33 is a block configuration diagram of the scatterer internal observation device according to the second embodiment. 図34は、第3実施形態に係る散乱体内部観測装置のブロック構成図である。FIG. 34 is a block configuration diagram of the scatterer internal observation device according to the third embodiment. 図35は、第4実施形態に係る散乱体内部観測装置のブロック構成図である。FIG. 35 is a block configuration diagram of the scatterer internal observation device according to the fourth embodiment. 図36は、第4実施形態の変形例に係る散乱体内部観測装置のブロック構成図である。FIG. 36 is a block configuration diagram of a scatterer internal observation device according to a modification of the fourth embodiment. 図37は、検出領域と検出範囲を示す模式図である。FIG. 37 is a schematic diagram showing a detection area and a detection range. 図38は、検出範囲の決定方法を示す概念図である。FIG. 38 is a conceptual diagram illustrating a detection range determination method. 図39は、ノイズ除去方法の第1の方法を示す概念図である。FIG. 39 is a conceptual diagram showing a first method of noise removal method. 図40は、ノイズ除去方法の第2の方法を示す概念図である。FIG. 40 is a conceptual diagram showing a second method of noise removal method. 図41は、ノイズ除去方法の第3の方法を示す概念図である。FIG. 41 is a conceptual diagram showing a third method of noise removal. 図42は、側面4の1例を示すブロック図である。FIG. 42 is a block diagram illustrating an example of the side surface 4. 図43は、側面4の1例を示すブロック図である。FIG. 43 is a block diagram illustrating an example of the side surface 4. 図44は、側面4の1例を示すブロック図である。FIG. 44 is a block diagram illustrating an example of the side surface 4. 図45は、側面4の1例を示すブロック図である。FIG. 45 is a block diagram showing an example of the side surface 4. 図46は、側面4の1例を示すブロック図である。FIG. 46 is a block diagram illustrating an example of the side surface 4. 図47は、側面4の1例を示すブロック図である。FIG. 47 is a block diagram showing an example of the side surface 4. 図48は、側面4の装置を用いた測定の例を示す図である。FIG. 48 is a diagram illustrating an example of measurement using the apparatus of the side surface 4. 図49は、内部に異質部分が存在する散乱体の例を示す図である。FIG. 49 is a diagram showing an example of a scatterer having a heterogeneous portion inside. 図50は、散乱媒質による後方散乱光を検出し、その光強度データを取得する様子を示す模式図である。FIG. 50 is a schematic diagram showing how backscattered light from a scattering medium is detected and the light intensity data is acquired. 図51は、第1の実施形態に係る散乱体内部検出装置の概略機能ブロック図である。FIG. 51 is a schematic functional block diagram of the scatterer internal detection device according to the first embodiment. 図52は、提示手段によるマークの1実施例を示す図である。FIG. 52 is a diagram showing an example of a mark by the presenting means. 図53は、第1の実施形態の散乱体内部検出装置の変形例の概略機能ブロック図である。FIG. 53 is a schematic functional block diagram of a modification of the scatterer internal detection device according to the first embodiment. 図54は、第1の実施形態の散乱体内部検出装置の提示手段の変形例を示す概略ブロック図である。FIG. 54 is a schematic block diagram showing a modification of the presenting means of the scatterer internal detection device according to the first embodiment. 図55は、第1の実施形態の散乱体内部検出装置の概略動作フロー図である。FIG. 55 is a schematic operation flowchart of the scatterer internal detection device of the first embodiment. 図56は、生体Sの表面上を走査して光強度信号を検出する様子を示す模式図である。FIG. 56 is a schematic diagram showing a state in which the light intensity signal is detected by scanning the surface of the living body S. 図57は、光強度信号の頻度分布図である。FIG. 57 is a frequency distribution diagram of the light intensity signal. 図58は、閾値の設定とデータの抽出を示す模式図である。FIG. 58 is a schematic diagram illustrating threshold setting and data extraction. 図59は、散乱媒質検出信号データの抽出処理フロー図である。FIG. 59 is a flow chart of processing for extracting scattering medium detection signal data. 図60は、第2の実施形態に係る散乱体内部検出装置の概略機能ブロック図である。FIG. 60 is a schematic functional block diagram of the scatterer internal detection device according to the second embodiment. 図61は、第2の実施形態に係る散乱体内部検出装置の検出体5212の実施例を示す図である。FIG. 61 is a diagram illustrating an example of the detector 5212 of the scatterer inside detection device according to the second embodiment. 図62は、第2の実施形態において、照明領域、検出素子(d1~d6)、各検出領域(e1~e6)の配置を表す模式図である。FIG. 62 is a schematic diagram showing the arrangement of illumination areas, detection elements (d1 to d6), and detection areas (e1 to e6) in the second embodiment. 図63は、第2の実施形態の散乱体内部検出装置の概略動作フロー図である。FIG. 63 is a schematic operation flowchart of the scatterer internal detection device of the second embodiment. 図64は、照明-検出距離が同等な4つのグループ(g1~g4)についての頻度分布図である。FIG. 64 is a frequency distribution diagram for four groups (g1 to g4) having the same illumination-detection distance. 図65は、図64の各グループについて作成された頻度分布図Btgである。FIG. 65 is a frequency distribution diagram Btg created for each group in FIG. 図66は、第2の実施形態における判定結果の例を示す図である。FIG. 66 is a diagram illustrating an example of a determination result in the second embodiment. 図67は、第2の実施形態における判定結果の表示例を示す図である。FIG. 67 is a diagram illustrating a display example of the determination result in the second embodiment.
 以下、本発明の散乱体内部計測装置について説明する。本発明において、散乱体とは、散乱媒質で構成される任意のものを意味し、その例として生体が挙げられる。本発明の散乱体内部計測装置は、散乱体内部の散乱媒質中に存在する測定対象について計測するものである。本発明における測定対象とは、例えば血管などであってよいがこれに限定されない。 Hereinafter, the scatterer internal measurement device of the present invention will be described. In the present invention, the scatterer means an arbitrary one composed of a scattering medium, and examples thereof include a living body. The scatterer internal measurement device of the present invention measures a measurement object existing in a scattering medium inside the scatterer. The measurement object in the present invention may be, for example, a blood vessel, but is not limited thereto.
 以下、本発明の実施形態を図面に従って説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。  
 (第1の実施形態)  
 図1は本発明の第1の実施形態に係る散乱体内部計測装置1のブロック構成図である。同図に示すように、散乱体内部計測装置1は、可動性の光照射部10、検出部11、制御/解析部12、メモリ13、表示部14、入力部15を具備している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
(First embodiment)
FIG. 1 is a block diagram of a scatterer internal measurement device 1 according to the first embodiment of the present invention. As shown in the figure, the scatterer internal measurement device 1 includes a movable light irradiation unit 10, a detection unit 11, a control / analysis unit 12, a memory 13, a display unit 14, and an input unit 15.
 光照射部10は、散乱体8内部の測定対象7とその周囲の散乱媒質6とで光学特性の異なる光を照射する照明手段である。光照射部には例えばLDなどを用いることができるがこれらに限定されない。この光照射部10から照射される光には、例えば、測定対象には吸収されるが散乱媒質には吸収されない波長の光を使用することができる。光照射部10は、制御/解析部12からの制御信号に基づいて光を散乱体8に向けて照射する。 The light irradiation unit 10 is an illumination unit that irradiates light having different optical characteristics between the measurement object 7 inside the scatterer 8 and the surrounding scattering medium 6. For example, an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto. As the light emitted from the light irradiation unit 10, for example, light having a wavelength that is absorbed by the measurement target but not absorbed by the scattering medium can be used. The light irradiation unit 10 irradiates light toward the scatterer 8 based on a control signal from the control / analysis unit 12.
 検出部11は、光照射部10によって照射された光が、散乱体8の散乱媒質6と測定対象7により、反射、散乱、吸収され、散乱体表面から出射された後方散乱光強度を検出するものである。本実施形態においては、検出部11に光信号を2次元画像データとして検出できる撮像素子を用いる。例えばCCDを用いることができるがこれに限定されない。検出部11は、制御/解析部12からの制御に基づいて後方散乱光を検出する。 The detection unit 11 detects the intensity of the backscattered light that is reflected, scattered, or absorbed by the scattering medium 6 of the scatterer 8 and the measurement object 7 and emitted from the scatterer surface. Is. In the present embodiment, an image sensor that can detect an optical signal as two-dimensional image data is used as the detection unit 11. For example, a CCD can be used, but is not limited thereto. The detection unit 11 detects backscattered light based on the control from the control / analysis unit 12.
 上記の光照射部10、検出部11、表示部14及び入力部15は、電気信号が伝送される信号回路によって制御/解析部12に接続される。 The light irradiation unit 10, the detection unit 11, the display unit 14, and the input unit 15 are connected to the control / analysis unit 12 by a signal circuit through which an electric signal is transmitted.
 制御/解析部12は、光照射部10、検出部11の動作を制御すると共に、検出部11によって検出された2次元画像データを解析し、測定対象7が散乱体8の内部に存在しているか否かを確認する。散乱体8の内部に測定対象7が存在している場合、2次元画像データ上での光の照射位置と測定対象7が確認された位置との距離などから、散乱体8において測定対象7が実際に存在する位置や深度が解析される。また制御/解析部12は、検出されたデータを記憶するメモリ13を備える。 The control / analysis unit 12 controls the operations of the light irradiation unit 10 and the detection unit 11, analyzes the two-dimensional image data detected by the detection unit 11, and the measurement object 7 exists inside the scatterer 8. Check if it exists. When the measurement object 7 exists inside the scatterer 8, the measurement object 7 in the scatterer 8 is determined from the distance between the light irradiation position on the two-dimensional image data and the position where the measurement object 7 is confirmed. The actual position and depth are analyzed. The control / analysis unit 12 includes a memory 13 for storing detected data.
 本実施形態においては検出部11として2次元画像データを取得できる撮像素子を用いるが、撮像素子の光学系の画角の観点から、検出部11が散乱体8に接触せずに離れているほうが広い領域を計測できる。そこで、本実施形態における光照射部10及び検出部11は、散乱体に接触せずに一定距離を隔てて照射及び検出を行う。これにより、検出部11は散乱体の広い領域を一度に計測することができる。この検出部11により一度に検出される領域をここでは計測領域と称する。 In the present embodiment, an image pickup device that can acquire two-dimensional image data is used as the detection unit 11. However, from the viewpoint of the angle of view of the optical system of the image pickup device, the detection unit 11 is far away without being in contact with the scatterer 8. A wide area can be measured. Therefore, the light irradiation unit 10 and the detection unit 11 in this embodiment perform irradiation and detection at a certain distance without contacting the scatterer. Thereby, the detection part 11 can measure the wide area | region of a scatterer at once. The region detected at once by the detection unit 11 is referred to as a measurement region here.
 次に、本実施形態に係る散乱体内部計測装置1の作用を説明する。 Next, the operation of the scatterer internal measurement device 1 according to this embodiment will be described.
 図2は本発明に係る散乱体内部計測装置1の動作を表したフローチャートである。S1において、散乱体に光を照射する位置を決定する。S2において、光照射部10により散乱体に光を照射する。S3において、検出部11により、散乱体8内部の散乱媒質6により反射、散乱、吸収され、再度散乱体表面に戻ってきた後方散乱光強度を2次元画像として検出する。検出されたデータはS4においてメモリ13中に記憶される。S5において、測定が終了か否か判断し、終了でなければS1に戻って測定を続ける。終了の場合はS6へ移行する。 FIG. 2 is a flowchart showing the operation of the scatterer internal measurement device 1 according to the present invention. In S1, the position at which the scatterer is irradiated with light is determined. In S2, the light irradiating unit 10 irradiates the scatterer with light. In S3, the detection unit 11 detects the backscattered light intensity reflected, scattered, and absorbed by the scattering medium 6 inside the scatterer 8 and returning to the scatterer surface again as a two-dimensional image. The detected data is stored in the memory 13 in S4. In S5, it is determined whether or not the measurement is finished. If not finished, the process returns to S1 and the measurement is continued. In the case of termination, the process proceeds to S6.
 S6において、制御/解析部12がメモリ13に記憶されたデータを解析する。解析結果はS7において表示部14に表示される。S8において計測を終了するか否かを判断し、終了でなければ、S1に戻って計測を続けるかS6に戻って解析を続ける。 In S6, the control / analysis unit 12 analyzes the data stored in the memory 13. The analysis result is displayed on the display unit 14 in S7. In S8, it is determined whether or not to end the measurement. If not, the process returns to S1 to continue the measurement or returns to S6 and the analysis is continued.
 S6における解析は、以下のような解析手法により行われる。  
 一つの解析方法として、得られた2次元画像データから、測定対象の位置と深度が解析される。  
 図3は散乱体内部の光の伝搬の様子を表す概念図である。一般的に散乱体に照射された光は、散乱体内部で散乱を繰り返すうちに散乱の異方性が失われて等方散乱に近づく。この結果、平均的な光経路の断面はバナナ状になることが知られている。
The analysis in S6 is performed by the following analysis method.
As one analysis method, the position and depth of the measurement target are analyzed from the obtained two-dimensional image data.
FIG. 3 is a conceptual diagram showing a state of light propagation inside the scatterer. In general, light irradiated to a scatterer loses its scattering anisotropy while repeating scattering inside the scatterer and approaches isotropic scattering. As a result, it is known that the cross section of the average optical path becomes a banana shape.
 図3において、光の照射位置から近い位置I1では散乱体の表面近くを伝搬してきた光が多く検出される。一方、照射位置から離れた位置I2では散乱体のより深部を伝搬してきた光が多く検出される。このように、光の照射位置から検出位置までの距離に応じて、検出された光が伝播してきた深度が変化する。この性質を利用して、測定対象が散乱体内部のいずれの深度に存在するかを解析する。 In FIG. 3, a large amount of light propagating near the surface of the scatterer is detected at a position I 1 close to the light irradiation position. On the other hand, a large amount of light propagating deeper in the scatterer is detected at the position I 2 away from the irradiation position. Thus, the depth at which the detected light has propagated changes according to the distance from the light irradiation position to the detection position. Using this property, it is analyzed at which depth in the scatterer the measurement object exists.
 例えば、図3(a)において測定対象は検出位置I1とI2の間の表面近くにある。この場合、検出位置I1とI2における検出光には変化が見られない。一方、図3(b)において測定対象は検出位置I1とI2の間のより深い位置にある。このとき、検出位置I1における検出光には変化が見られないが、検出位置I2における検出光は減弱する。これによって、測定対象の位置と深度が決定される。 For example, in FIG. 3A, the measurement object is near the surface between the detection positions I 1 and I 2 . In this case, no change is seen in the detection light at the detection positions I 1 and I 2 . On the other hand, in FIG. 3B, the measurement object is at a deeper position between the detection positions I 1 and I 2 . At this time, no change is seen in the detection light at the detection position I 1, but the detection light at the detection position I 2 is attenuated. As a result, the position and depth of the measurement target are determined.
 このように、2次元画像データ上で後方散乱光強度の弱いポイントが見出された場合、そのポイントと光照射位置との距離を基に解析を行い、深度と位置を算出する。 In this way, when a point with low backscattered light intensity is found on the two-dimensional image data, analysis is performed based on the distance between the point and the light irradiation position, and the depth and position are calculated.
 また他の解析方法として、得られた2次元画像データから、一定深度での断層画像が作成される(すなわち画像構築)。  
 図4に、計測領域で計測される後方散乱光の模式図を示した。光照射部10から散乱体上に光が照射された位置をバツ印で示し、検出部11によって撮像される計測領域40を点線で示した。散乱体8によって反射、散乱、吸収され、散乱体表面から出射された後方散乱光は、図に示すように照射位置を中心とする同心円状になる。ここで、図4(a)に示すように、同心円の直径が大きくなるほど、散乱体のより深部を通ってきた光である。図4(b)においては同心円領域41、42及び43は、それぞれが略同じ深度の情報を有すると見なすことができる。またその深度は照射位置からその同心円までの距離に対応するため、同心円領域41、42及び43の順に深度が深い。よって、2次元画像データから、同心円領域の画像データを抽出することにより、一定の深度における画像データを選択的に取り出すことができ、選択されたデータから該深度での断層画像を作成することができる。
As another analysis method, a tomographic image at a certain depth is created from the obtained two-dimensional image data (that is, image construction).
In FIG. 4, the schematic diagram of the backscattered light measured in a measurement area | region was shown. A position where light is irradiated on the scatterer from the light irradiation unit 10 is indicated by a cross, and a measurement region 40 imaged by the detection unit 11 is indicated by a dotted line. The backscattered light reflected, scattered and absorbed by the scatterer 8 and emitted from the scatterer surface becomes concentric with the irradiation position as the center as shown in the figure. Here, as shown in FIG. 4A, as the diameter of the concentric circles increases, the light travels deeper in the scatterer. In FIG. 4B, the concentric regions 41, 42 and 43 can be regarded as having information of substantially the same depth. Further, since the depth corresponds to the distance from the irradiation position to the concentric circle, the depth is deeper in the order of the concentric circular regions 41, 42 and 43. Therefore, by extracting the image data of the concentric circle region from the two-dimensional image data, the image data at a certain depth can be selectively extracted, and a tomographic image at the depth can be created from the selected data. it can.
 なお、上記の解析方法は、光照射部10の位置を変化させて計測を行うことにより、解析に使用できる情報を簡便により多く取得することができる。  
 図5は、光照射部10による照射位置を変化させて測定した様子を示す。検出部11は固定されており、計測領域50も移動しない。しかし、光照射部10によって照射する位置を変動させることにより、上述したような同心円領域が移動する。この様子を図6に示す。
Note that the above analysis method can easily acquire more information that can be used for analysis by changing the position of the light irradiation unit 10 and performing measurement.
FIG. 5 shows a state where measurement is performed by changing the irradiation position by the light irradiation unit 10. The detection unit 11 is fixed, and the measurement region 50 does not move. However, the concentric region as described above moves by changing the position irradiated by the light irradiation unit 10. This is shown in FIG.
 図6(a)~(c)は、同心円領域51、52及び53のそれぞれが移動した軌跡を示す模式図である。それぞれの同心円領域は同じ深度の情報を有している。従って、複数の計測結果を図6に示すように重ね合わせることにより、その深度での断層画像を作成することができる。なお、データを重ね合わせる際に重複する部分が生じるが、重複するデータから任意のデータを選択的に用いるか、重複するデータの平均値を用いればよい。 6 (a) to 6 (c) are schematic diagrams showing the trajectories of the concentric circular regions 51, 52, and 53, respectively. Each concentric region has the same depth information. Therefore, by superimposing a plurality of measurement results as shown in FIG. 6, a tomographic image at that depth can be created. Note that overlapping portions occur when the data are superimposed, but arbitrary data may be selectively used from the overlapping data, or an average value of the overlapping data may be used.
 このように、照射位置を移動させることにより、より多くの情報を簡便に取得することができる。なお、照射位置を移動させる場合、光照射部10が可動可能なように構成される。光照射部10は、それ自体が自由に移動できる構成であってもよく、また或いは光を照射する角度を変動させて照射位置を移動させる構成であってもよい。 Thus, by moving the irradiation position, more information can be easily acquired. In addition, when moving an irradiation position, the light irradiation part 10 is comprised so that it can move. The light irradiation unit 10 may be configured to move freely, or may be configured to move the irradiation position by changing the light irradiation angle.
 光照射部10のみを移動させることにより、散乱体内部計測装置自体を移動させることなく、複数の2次元画像データを容易に取得することができ、断層画像作成に必要な検出データを効率よく取得することができる。これにより、測定時間を短縮することが出来る。 By moving only the light irradiation unit 10, a plurality of two-dimensional image data can be easily acquired without moving the scatterer internal measurement device itself, and detection data necessary for creating a tomographic image can be efficiently acquired. can do. Thereby, the measurement time can be shortened.
 さらに他の解析方法として、得られた2次元画像データから、所望の位置の任意の深度における情報を得ることができる。 As another analysis method, information at an arbitrary depth at a desired position can be obtained from the obtained two-dimensional image data.
 上述したように、光照射部10の位置を変化させて計測を行うことにより、解析に使用できる多くの情報を容易に取得することができる。さらに、検出されるデータが2次元画像であるため、画像中の所望の位置におけるデータを任意に使用することがきる。従って、上記のように得られた複数の2次元画像データ上で、所望の位置と前記照射位置との間の距離と等しい距離だけ前記所望の位置から離れた位置におけるデータを解析することにより、前記所望の位置の任意の深度における情報を簡便に得ることができる。この場合、情報を得たい深度に応じて、所望の位置と、照射位置並びに解析するデータの位置との距離が決定される。 As described above, by performing measurement while changing the position of the light irradiation unit 10, a lot of information that can be used for analysis can be easily acquired. Furthermore, since the detected data is a two-dimensional image, data at a desired position in the image can be arbitrarily used. Therefore, on the plurality of two-dimensional image data obtained as described above, by analyzing data at a position away from the desired position by a distance equal to the distance between the desired position and the irradiation position, Information at an arbitrary depth of the desired position can be easily obtained. In this case, the distance between the desired position, the irradiation position, and the position of data to be analyzed is determined according to the depth at which information is desired.
 なお、上述した各解析方法においては、図2のデータ解析工程S6において、照射位置と検出位置との距離を求める際、検出部11の光学系の焦点距離や倍率などを考慮に入れる。さらに、内視鏡などの検出手段で用いられる撮像系の場合、歪曲収差がおこることがある。この場合は、あらかじめ格子チャートなどで歪曲収差の影響の大きさを求めておき、照射位置と検出位置との距離を求める際に考慮に入れる。 In each analysis method described above, the focal length and magnification of the optical system of the detection unit 11 are taken into consideration when obtaining the distance between the irradiation position and the detection position in the data analysis step S6 of FIG. Furthermore, in the case of an imaging system used by a detection means such as an endoscope, distortion may occur. In this case, the magnitude of the influence of distortion is obtained in advance using a lattice chart or the like, and this is taken into account when obtaining the distance between the irradiation position and the detection position.
 図7~9は、本第1の実施形態に係る散乱体内部計測装置1の変形例を表すブロック図である。図7は、スポット状の照明光を発する光照射部70が複数備えられた装置である。図8は、ライン状の照明光を発する光照射部80が備えられた装置である。図9は、ライン状の照明光を発する光照射部90が複数備えられた装置である。これらの変形例によれば、一度の測定で多くのデータを検出することができ、測定時間をより短縮することが出来る。なお、ライン状の照明光は光強度が均一であることが好ましい。或いは、光の強度に応じて補正を行う手段を備えることが好ましい。また、光照射部が複数備えられる場合、各光照射部は、それぞれの光によって得られる検出データが互いに干渉しない程度離れた位置に配置される。 7 to 9 are block diagrams showing modifications of the scatterer internal measurement device 1 according to the first embodiment. FIG. 7 shows an apparatus including a plurality of light irradiation units 70 that emit spot-like illumination light. FIG. 8 shows an apparatus provided with a light irradiation unit 80 that emits line-shaped illumination light. FIG. 9 shows an apparatus provided with a plurality of light irradiation units 90 that emit linear illumination light. According to these modified examples, a large amount of data can be detected by one measurement, and the measurement time can be further shortened. The line-shaped illumination light preferably has a uniform light intensity. Alternatively, it is preferable to provide means for performing correction according to the light intensity. When a plurality of light irradiating units are provided, the light irradiating units are arranged at positions separated from each other so that detection data obtained by the respective lights do not interfere with each other.
 以上説明したように、本実施形態では、計測されるデータが2次元画像データであるため、照射位置から任意の距離だけ離れた位置のデータを自由に選択することが出来る。それ故、照射位置及び検出位置を設定する際の自由度が高い。また、2次元画像データであるため一度の計測でより多くの情報を取得することができる。その上、散乱体と非接触で計測を行うため、より広い領域を一度に計測することができ、深部の情報も簡便に取得できる。そのため装置を大型化する必要がない。さらに、照射位置及び検出位置の自由度が高いため、所望の位置の任意の深度における情報を容易に得ることができる。 As described above, in the present embodiment, since the measured data is two-dimensional image data, data at a position separated from the irradiation position by an arbitrary distance can be freely selected. Therefore, the degree of freedom in setting the irradiation position and the detection position is high. Moreover, since it is two-dimensional image data, more information can be acquired by one measurement. In addition, since measurement is performed in a non-contact manner with the scatterer, a wider area can be measured at a time, and deep information can be easily acquired. Therefore, it is not necessary to enlarge the apparatus. Furthermore, since the degree of freedom of the irradiation position and the detection position is high, information at an arbitrary depth at a desired position can be easily obtained.
 (第2の実施形態)
 次に、本発明の第2の実施形態を説明する。図10は、第2の実施形態に係る散乱体内部計測装置100のブロック構成図である。本散乱体内部計測装置100においては、光照明部109が可動可能に備えられる。また、検出部101は光検出素子107を複数具備する。光検出素子107は、散乱体8の表面に沿って光照射部109から遠ざかる一方向に沿って配列されてもよく、或いは、散乱体8の表面に沿って二次元マトリックス状に配列されてもよい。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 10 is a block configuration diagram of the scatterer internal measurement device 100 according to the second embodiment. In the scatterer internal measurement device 100, the light illumination unit 109 is movably provided. The detection unit 101 includes a plurality of light detection elements 107. The light detection elements 107 may be arranged along one direction away from the light irradiation unit 109 along the surface of the scatterer 8, or may be arranged in a two-dimensional matrix along the surface of the scatterer 8. Good.
 このような第2の実施形態に係る散乱体内部計測装置100によれば、光照射部109を可動させ、所望の位置を中心として、照射位置と対称となる位置にある光検出素子107によって取得されたデータを解析することにより、所望の位置における任意の深度の情報を容易に得ることができる。 According to the scatterer internal measurement device 100 according to the second embodiment as described above, the light irradiation unit 109 is moved, and acquired by the light detection element 107 that is symmetric with respect to the irradiation position around the desired position. By analyzing the obtained data, information of an arbitrary depth at a desired position can be easily obtained.
 (第3の実施形態)
 次に、本発明の第3の実施形態を説明する。図11は、第3の実施形態に係る散乱体内部計測装置110のブロック構成図である。本散乱体内部計測装置110においては、光照明部119及び検出部120が可動可能に備えられる。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 11 is a block configuration diagram of the scatterer internal measurement device 110 according to the third embodiment. In the scatterer internal measurement device 110, the light illumination unit 119 and the detection unit 120 are movably provided.
 このような第3の実施形態に係る散乱体内部計測装置110によれば、光照射部119と検出部120を可動させ、所望の位置を中心として、等距離となる位置にそれぞれを配置する。これにより、所望の位置における任意の深度の情報を得ることができる。得られる情報の深度は、所望の位置と光照射部119及び検出部120との距離を適宜調節することによって容易に変化させることができる。 According to the scatterer internal measurement device 110 according to the third embodiment as described above, the light irradiation unit 119 and the detection unit 120 are moved, and each is arranged at an equidistant position with a desired position as a center. Thereby, information of an arbitrary depth at a desired position can be obtained. The depth of information to be obtained can be easily changed by appropriately adjusting the distance between the desired position and the light irradiation unit 119 and the detection unit 120.
 本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 上述した発明の他の側面として、以下に示す側面1~5が考えられる。 As other aspects of the invention described above, the following aspects 1 to 5 are conceivable.
 <側面1>
 側面1は、散乱体による後方散乱光を計測することにより散乱体内部を観測する装置及び方法に関する。
<Side 1>
The side surface 1 relates to an apparatus and a method for observing the inside of the scatterer by measuring backscattered light from the scatterer.
〔背景技術〕
 生体等の散乱体の内部を観測するには様々な手法がある。その一つである光を用いた観測は、用いる光の波長を選択することにより特定の対象を観測できるという利点を有している。この手法では、特定の対象(すなわち異質部分)に吸収される波長の光を散乱体に照射し、その後方散乱光強度を計測することにより、散乱体内部に存在する異質部分の位置と深度情報を得ることができる。後方散乱光は、照射位置と計測位置との距離が大きくなるほど、散乱体のより深部を通ってきた光であることが知られている。
[Background Technology]
There are various methods for observing the inside of a scatterer such as a living body. One of the observations using light has the advantage that a specific object can be observed by selecting the wavelength of the light to be used. This method irradiates a scatterer with light of a wavelength that is absorbed by a specific target (that is, a heterogeneous part), and measures the backscattered light intensity to determine the position and depth information of the heterogeneous part present in the scatterer. Can be obtained. It is known that the backscattered light is light that has passed deeper in the scatterer as the distance between the irradiation position and the measurement position increases.
 またさらに、異質部分の位置と深度の情報を得るだけでなく、照射位置と計測位置との距離が同じである後方散乱光のデータを集めることにより、その深度での断層画像を作製することができる。 Furthermore, it is possible not only to obtain information on the position and depth of a heterogeneous part, but also to create a tomographic image at that depth by collecting backscattered light data in which the distance between the irradiation position and the measurement position is the same. it can.
 特開2006-200943号公報には、光照射手段の位置から順次遠ざかる位置に複数の光検出手段を備えた構成を有する生体光観測装置が開示されている。また、該装置による計測結果に基づいて、生体の断層画像を再構成する手段も開示されている。 Japanese Unexamined Patent Application Publication No. 2006-200943 discloses a biological light observation apparatus having a configuration in which a plurality of light detection means are provided at positions that are sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
 特開2007-20735号公報には、光照射部から同心円状等のような所定の間隔で配置された複数の光検出部を備えた構成を有する生体光観測装置が開示されている。 Japanese Unexamined Patent Application Publication No. 2007-20735 discloses a living body light observation apparatus having a configuration including a plurality of light detection units arranged at predetermined intervals such as concentric circles from a light irradiation unit.
〔発明が解決しようとする課題〕
 上記のような従来の装置では光照射手段と光検出手段が一体に構成されているために、照射位置と検出位置との距離が固定されている。そのため、観測できる深度が決まっており、一定の深度でしか断層画像を作製できないという問題がある。
[Problems to be Solved by the Invention]
In the conventional apparatus as described above, since the light irradiation means and the light detection means are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, the depth that can be observed is determined, and there is a problem that a tomographic image can be created only at a certain depth.
 また、断層画像を得るためには、多くの測定点で測定を行わなければならず、断層画像を取得するのに多くの時間を要するという問題がある。 In addition, in order to obtain a tomographic image, measurement must be performed at many measurement points, and there is a problem that it takes a lot of time to acquire a tomographic image.
 上記問題に鑑み、側面1は、異質部分が存在する深度における断層画像を効率的に取得することが可能な散乱体内部観測装置を提供することを目的とする。 In view of the above problems, an object of the side surface 1 is to provide a scatterer internal observation device that can efficiently acquire a tomographic image at a depth at which a heterogeneous portion exists.
〔課題を解決するための手段〕
 側面1によれば、散乱体内部の異質部分(すなわち観察対象)の情報を取得する散乱体内部観測装置(すなわち散乱体内部観察装置)であって、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段(すなわち光照射手段)と、前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化手段(すなわち画像構築手段)と、前記作製された複数の断層画像から、前記異質部分が表示された断層画像を選択する解析手段(すなわち選択手段)と、前記選択された断層画像を表示する表示手段を備えることを特徴とする散乱体内部観測装置並びに該装置を用いた散乱体内部観測方法が提供される。
[Means for solving the problems]
According to aspect 1, there is a scatterer internal observation device (that is, a scatterer internal observation device) that acquires information on a heterogeneous portion (that is, an observation target) inside the scatterer, and the scattering medium that constitutes the scatterer and the foreign material Illuminating means (that is, light irradiating means) for irradiating the scatterer with light having at least a wavelength different in optical characteristics from the portion, and detecting backscattered light of the light irradiated by the illuminating means, Detection means for acquiring light intensity data, imaging means for analyzing the acquired light intensity data and generating a plurality of tomographic images each having a different depth (that is, an image construction means), and the plurality of generated tomograms A scatterer comprising: analysis means (that is, selection means) for selecting a tomographic image in which the heterogeneous portion is displayed from an image; and display means for displaying the selected tomographic image. Scattering medium observation method using the part observation apparatus and the apparatus is provided.
 側面1の他の態様によれば、散乱体内部の異質部分の情報を取得する散乱体内部観測装置であって、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段と、前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化手段と、作製された断層画像を表示する表示手段と、前記表示された複数の断層画像から、所望の断層画像を選択して表示させる入力手段とを備えることを特徴とする散乱体内部観測装置並びに該装置を用いた散乱体内部観測方法が提供される。 According to another aspect of the first aspect, the scatterer internal observation device acquires information on the extraneous portion inside the scatterer, and has different wavelengths of optical characteristics between the scattering medium constituting the scatterer and the extraneous portion. Illuminating means for irradiating the scatterer with light including at least, detecting means for detecting backscattered light of light irradiated by the illuminating means, and acquiring light intensity data of the backscattered light, and the acquired light Analyzing intensity data, imaging means for producing a plurality of tomographic images each having a different depth, display means for displaying the produced tomographic images, and selecting a desired tomographic image from the displayed plurality of tomographic images And a scatterer internal observation device using the device, and an scatterer internal observation method using the device.
 一つの態様において、上記散乱体内部観測装置は、前記照明手段によって照射される照明範囲(すなわち照射範囲)の形状を認識する照明範囲認識手段(すなわち照射範囲認識手段)と、前記照明範囲認識手段によって認識された照明範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する抽出位置決定手段とを含む画像化手段を具備する。 In one aspect, the scatterer internal observation device includes an illumination range recognition unit (that is, an irradiation range recognition unit) that recognizes a shape of an illumination range (that is, an irradiation range) irradiated by the illumination unit, and the illumination range recognition unit. Imaging means including extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the illumination range recognized by.
〔発明の効果〕
 側面1によれば、異質部分が存在する深度における断層画像を効率的に取得することが可能な散乱体内部観測装置を提供するができる。
〔The invention's effect〕
According to the aspect 1, it is possible to provide a scatterer internal observation device that can efficiently acquire a tomographic image at a depth at which a heterogeneous portion exists.
〔発明を実施するための最良の形態〕
 側面1において、散乱体とは、主に散乱媒質から構成される物体を指し、例として生体が挙げられる。散乱媒質とは、少なくとも光を散乱する性質を示し、吸収よりも散乱のほうが支配的であるものである。
[Best Mode for Carrying Out the Invention]
In the side surface 1, a scatterer refers to an object mainly composed of a scattering medium, and a living body can be mentioned as an example. The scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
 側面1の散乱体内部観測装置は、散乱体内部の散乱媒質中に存在する異質部分を観測するための装置である。側面1において異質部分とは、透過率、屈折率、反射率、散乱係数、吸収係数などの光学特性が散乱媒質と異なるものである。例として血管が挙げられるが、これに限定されない。 The side 1 scatterer internal observation device is a device for observing a heterogeneous portion present in the scattering medium inside the scatterer. The heterogeneous portion in the side surface 1 is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
 以下、側面1の実施形態を図面に従って説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。  
 図12は側面1の一つの実施形態に係る散乱体内部観測装置1001のブロック構成図である。同図に示すように、散乱体内部観測装置1001は、光照射部1010、検出部1011、制御部1012、表示部1014、入力部1015を具備している。
Hereinafter, embodiments of the side surface 1 will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
FIG. 12 is a block diagram of a scatterer internal observation device 1001 according to one embodiment of the side surface 1. As shown in the figure, the scatterer internal observation device 1001 includes a light irradiation unit 1010, a detection unit 1011, a control unit 1012, a display unit 1014, and an input unit 1015.
 光照射部1010は、散乱体1008内部の異質部分1007とその周囲の散乱媒質1006とで光学特性の異なる波長を少なくとも含む光を照射する照明手段である。光照射部には例えばLDなどを用いることができるがこれらに限定されない。この光照射部1010から照射される光には、例えば、異質部分には吸収されるが散乱媒質には吸収されない波長を少なくとも含む光を使用することができる。光学特定の異なる波長を少なくとも含む光は、例えば、生体中の散乱特性が異なる異質物質が血管の場合、ヘモグロビンに吸収を持つ近赤外領域の波長を含む光が好適に用いられる。光照射部1010は、制御部1012からの制御信号に基づいて光を散乱体1008に向けて照射する。 The light irradiation unit 1010 is an illuminating unit that irradiates light including at least wavelengths having different optical characteristics between the heterogeneous portion 1007 inside the scatterer 1008 and the surrounding scattering medium 1006. For example, an LD or the like can be used for the light irradiation unit, but the light irradiation unit is not limited thereto. As the light irradiated from the light irradiation unit 1010, for example, light including at least a wavelength that is absorbed by a foreign portion but not absorbed by a scattering medium can be used. For example, in the case where a foreign substance having different scattering characteristics in the living body is a blood vessel, light including a wavelength in the near infrared region having absorption in hemoglobin is preferably used as the light including at least a different optically specific wavelength. The light irradiation unit 1010 irradiates light toward the scatterer 1008 based on a control signal from the control unit 1012.
 検出部1011は、光照射部1010によって照射された光が、散乱体1008の散乱媒質1006と異質部分1007により、反射、散乱、吸収され、散乱体表面から出射された後方散乱光強度を検出し、該後方散乱光の光強度データを取得するものである。本実施形態においては、検出部1011に光信号を2次元画像データとして検出できる撮像素子を用いる。例えばCCDを用いることができるがこれに限定されない。検出部1011は、制御部1012からの制御に基づいて後方散乱光を検出する。 The detection unit 1011 detects the intensity of the backscattered light that is reflected, scattered, and absorbed by the scattering medium 1006 and the extraneous portion 1007 of the scatterer 1008 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 1010. The light intensity data of the backscattered light is acquired. In the present embodiment, an image sensor that can detect an optical signal as two-dimensional image data is used for the detection unit 1011. For example, a CCD can be used, but is not limited thereto. The detection unit 1011 detects backscattered light based on the control from the control unit 1012.
 制御部1012は、光照射部1010、検出部1011の動作を制御すると共に、検出部1011によって検出された2次元画像データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化手段1016と、作製された複数の断層画像から、異質部分が表示された断層画像を選択する解析手段1017とを含む。解析手段によって選択された断層画像は、表示部1014によって表示されることができる。 The control unit 1012 controls the operations of the light irradiation unit 1010 and the detection unit 1011, analyzes the two-dimensional image data detected by the detection unit 1011, and creates imaging means 1016 that creates a plurality of tomographic images having different depths. And analysis means 1017 for selecting a tomographic image in which a heterogeneous portion is displayed from a plurality of produced tomographic images. The tomographic image selected by the analysis unit can be displayed by the display unit 1014.
 上記の光照射部1010、検出部1011、表示部1014及び入力部1015は、電気信号が伝送される信号回路によって制御部1012に接続される。 The light irradiation unit 1010, the detection unit 1011, the display unit 1014, and the input unit 1015 are connected to the control unit 1012 by a signal circuit that transmits an electrical signal.
 次に、本実施形態に係る散乱体内部観測装置1001の作用を説明する。 Next, the operation of the scatterer internal observation device 1001 according to this embodiment will be described.
 まず、光照射部1010により散乱体1008に光が照射される。次いで、散乱体1008内部の散乱媒質1006により反射、散乱、吸収され、再度散乱体表面に戻ってきた後方散乱光強度が、検出部1011により2次元画像として検出される。 First, light is irradiated to the scatterer 1008 by the light irradiation unit 1010. Next, the backscattered light intensity reflected, scattered and absorbed by the scattering medium 1006 inside the scatterer 1008 and returning to the scatterer surface again is detected by the detection unit 1011 as a two-dimensional image.
 次に、画像化手段1016において、得られた2次元画像データが解析され、それぞれ深度が異なる断層画像が作製される。ここで、断層画像の作製原理について説明する。 Next, in the imaging means 1016, the obtained two-dimensional image data is analyzed, and tomographic images having different depths are produced. Here, the principle of producing a tomographic image will be described.
 図13(a)は、側面1の散乱体内部観測装置を適用した硬性鏡1100の模式図である。硬性鏡1100は、照明部1102及び検出部1101を備え、また図示されない制御部及び表示部を備える。図13(b)は散乱体の断面模式図を示し、図13(c)は散乱体の表面を上面から見た模式図である。図13(c)では、光照射部1102から散乱体1008上に光が照射された位置をバツ印で示し、検出部1101によって後方散乱光が検出される検出範囲1050を点線で示した。 FIG. 13A is a schematic diagram of a rigid endoscope 1100 to which the scatterer internal observation device on the side surface 1 is applied. The rigid endoscope 1100 includes an illumination unit 1102 and a detection unit 1101, and includes a control unit and a display unit (not shown). FIG. 13B is a schematic cross-sectional view of the scatterer, and FIG. 13C is a schematic view of the surface of the scatterer as viewed from above. In FIG. 13C, a position where light is irradiated from the light irradiation unit 1102 onto the scatterer 1008 is indicated by a cross, and a detection range 1050 where the backscattered light is detected by the detection unit 1101 is indicated by a dotted line.
 光照射部1102から散乱体1008に照射された光の後方散乱光は、図13(b)に示すように伝播し、これを散乱体表面上からみると図13(c)に示すように照射位置を中心とした同心円状となる。この同心円の直径が大きいほど、散乱体のより深部を通ってきた後方散乱光である。例えば符号1051、1052及び1053で示されるリング状領域のように、同心円領域はそれぞれが略同じ深度を通ってきた後方散乱光であり、その同心円領域での光強度データを抽出することにより、その深度における断層画像を作製することができる。 The back scattered light of the light irradiated from the light irradiation unit 1102 to the scatterer 1008 propagates as shown in FIG. 13B, and when viewed from above the scatterer surface, it is irradiated as shown in FIG. 13C. Concentric circles centered on the position. The larger the diameter of this concentric circle, the more backscattered light has passed through the deeper part of the scatterer. For example, like the ring-shaped regions indicated by reference numerals 1051, 1052, and 1053, the concentric circular regions are backscattered light that has passed through substantially the same depth, and by extracting light intensity data in the concentric circular regions, A tomographic image at a depth can be created.
 また、照射位置から同心円領域までの距離は、深度に対応するため、照射位置から同心円領域までの距離を変化させることにより、所望の深度の断層画像を得ることができる。 Further, since the distance from the irradiation position to the concentric area corresponds to the depth, a tomographic image having a desired depth can be obtained by changing the distance from the irradiation position to the concentric area.
 さらに、側面1の一つの態様における走査可能な照明手段を具備する散乱体内部観測装置の場合、図14に示すように、検出範囲1050中で照明点が移動される。このとき、照明点の移動に伴って同心円領域も移動する。そのため、常に照明点から一定距離にある同心円領域での光強度データを抽出することにより、同じ深度の情報を得ることができる。これについて図15を参照して説明する。 Furthermore, in the case of the scatterer internal observation device including the scanable illumination means in one aspect of the side surface 1, the illumination point is moved in the detection range 1050 as shown in FIG. At this time, the concentric region moves as the illumination point moves. Therefore, information of the same depth can be obtained by always extracting light intensity data in a concentric circle region that is at a fixed distance from the illumination point. This will be described with reference to FIG.
 図15(a)は、各走査点における同心円領域1051、1052及び1053を重ね合わせた図である。換言すれば、同心円領域1051、1052及び1053のそれぞれが移動した軌跡を示す図である。それぞれの同心円領域は同じ深度の情報を有している。従って、複数の検出結果を図15(a)に示すように重ね合わせることにより、図15(b)に示すように、その深度での断層画像を作製することができる。 FIG. 15A is a diagram in which concentric regions 1051, 1052, and 1053 at the respective scanning points are overlaid. In other words, each of the concentric circular regions 1051, 1052, and 1053 is a diagram showing a trajectory moved. Each concentric region has the same depth information. Therefore, by superimposing a plurality of detection results as shown in FIG. 15A, a tomographic image at that depth can be created as shown in FIG. 15B.
 なお、データを重ね合わせる際に重複する部分が生じるが、重複するデータから任意のデータを選択的に用いるか、重複するデータの平均値を用いればよい。 It should be noted that although overlapping portions are generated when the data are overlapped, arbitrary data is selectively used from the overlapping data, or an average value of the overlapping data may be used.
 図14及び15に示すように、照明を走査して検出を行うことにより、多くの光強度データを取得することができ、より精度の高い断層画像を得ることができる。 As shown in FIGS. 14 and 15, by performing detection by scanning illumination, a large amount of light intensity data can be acquired, and a tomographic image with higher accuracy can be obtained.
 上記で説明した原理に基づいて、深度の異なる複数の断層画像が作製されると、次に、解析手段1017により、例えば図15(c)に示すように、異質部分が表示された断層画像が選択される。この選択は、所定のコントラスト条件を満たす断層画像を決定することにより行われる。 When a plurality of tomographic images having different depths are created based on the principle described above, the tomographic image on which the heterogeneous portion is displayed is then displayed by the analyzing unit 1017, for example, as shown in FIG. Selected. This selection is performed by determining a tomographic image that satisfies a predetermined contrast condition.
 断層画像に異質部分が存在する場合、画像中の光強度に変化が生じる。即ち、画像が均質でなくなり、コントラストが生じる。このとき、画面上にコントラストが生じたと判定する条件を「コントラスト条件」と称する。解析手段1017は、各断層画像がコントラスト条件を満たすかどうかを判断し、コントラスト条件を満たす断層画像を異質部分が存在する断層画像であると決定する。 When there is a heterogeneous part in the tomographic image, the light intensity in the image changes. That is, the image is not homogeneous and contrast is generated. At this time, a condition for determining that contrast has occurred on the screen is referred to as a “contrast condition”. The analysis unit 1017 determines whether each tomographic image satisfies the contrast condition, and determines that the tomographic image satisfying the contrast condition is a tomographic image in which a heterogeneous portion exists.
 断層画像がコントラスト条件を満たすかどうかを判断する方法には、次の(1)~(4)の方法を用いることができるが、これらに限定されず、種々の方法を用いることができる。 The following methods (1) to (4) can be used as a method for determining whether or not a tomographic image satisfies a contrast condition. However, the present invention is not limited to these, and various methods can be used.
(1)断層画像の画面をいくつかに分割し、それぞれの区分で平均強度を算出する。次いで、この区分間の平均強度に一定以上の相違があるかどうかを判断する。この場合、相違があると見なす条件がコントラスト条件である。 (1) The tomographic image screen is divided into several sections, and the average intensity is calculated for each section. Next, it is determined whether there is a certain difference or more in the average intensity between the sections. In this case, the condition that is considered to be different is the contrast condition.
(2)断層画像の画面における各画像の光強度を比較し、画素間で光強度に一定以上の相違があるかどうかを判断する。この場合、相違があると見なす条件がコントラスト条件である。 (2) The light intensity of each image on the tomographic image screen is compared, and it is determined whether there is a certain difference in light intensity between pixels. In this case, the condition that is considered to be different is the contrast condition.
(3)深度の異なる断層画像同士を比較し、光強度が異なる部分を検出する。各断層画像間で強度変化が同じ箇所はノイズと見なすことができる。断層画像間で、光強度の変化に相違がある場合は、異質部分が存在すると見なすことができる。この場合、断層画像間で光強度の変化に相違があると見なす条件がコントラスト条件である。 (3) The tomographic images having different depths are compared to detect a portion having different light intensity. A portion having the same intensity change between the tomographic images can be regarded as noise. If there is a difference in light intensity change between tomographic images, it can be considered that a heterogeneous portion exists. In this case, the condition for regarding the difference in the light intensity between the tomographic images is the contrast condition.
(4)取得された光強度データから、空間的な光強度分布データ画像を作製し、光強度の変化をみる。例えば、画像上の任意の点を通るライン上において、光強度が大きく減少した箇所は異質部分であるとみなすことができる。また、光強度の減少の程度が小さければ、ノイズであると判断できる。 (4) A spatial light intensity distribution data image is created from the acquired light intensity data, and changes in the light intensity are observed. For example, on a line passing through an arbitrary point on the image, a portion where the light intensity greatly decreases can be regarded as a heterogeneous portion. Further, if the degree of decrease in light intensity is small, it can be determined that noise is present.
 以上に説明した何れかの方法によって、異質部分が表示された断層画像が選択されると、その断層画像は表示部1014によって表示される。このとき、選択された断層画像のみを表示してもよく、選択された断層画像を他の画像より大きく表示するなどして他の断層画像とともに表示してもよい。 When a tomographic image displaying a heterogeneous portion is selected by any of the methods described above, the tomographic image is displayed by the display unit 1014. At this time, only the selected tomographic image may be displayed, or the selected tomographic image may be displayed together with other tomographic images, for example, by displaying it larger than the other images.
 なお、上記した一連の工程は、散乱体の観測の間、繰り返し連続的に行われ、表示される断層画像は逐次更新される。 Note that the series of steps described above are repeated continuously during the observation of the scatterer, and the displayed tomographic images are sequentially updated.
 以上説明したように、側面1の態様によれば、2次元画像として光強度データを取得することにより、任意の深度の断層画像を容易に得ることができ、さらに、異質部分が存在する深度における断層画像を自動で選択することにより、簡便且つ効率的に、散乱体内部を観測することができる。 As described above, according to the aspect of the side surface 1, it is possible to easily obtain a tomographic image at an arbitrary depth by acquiring light intensity data as a two-dimensional image, and at a depth at which a heterogeneous portion exists. By automatically selecting the tomographic image, the inside of the scatterer can be observed simply and efficiently.
 次に、側面1の他の態様について説明する。本態様における散乱体内部観測装置は、画像化手段により作製された複数の断層画像を表示し、使用者が所望の断層画像を選択することができる構成を有する。 Next, another aspect of the side surface 1 will be described. The scatterer internal observation device in this aspect has a configuration in which a plurality of tomographic images created by the imaging unit are displayed, and the user can select a desired tomographic image.
 本態様における散乱体内部観測装置は、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段と、前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化手段と、作製された断層画像を表示する表示手段と、前記表示された複数の断層画像から、所望の断層画像を選択して表示させる入力手段とを備える。本態様で用いられる照明手段及び検出手段は、上記の散乱体内部観測装置1001と同様である。 The scatterer internal observation device according to this aspect is irradiated by the illuminating unit, the illuminating unit that irradiates the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion. Detecting means for detecting backscattered light of the obtained light and acquiring light intensity data of the backscattered light, and imaging means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having different depths And a display means for displaying the produced tomographic image, and an input means for selecting and displaying a desired tomographic image from the displayed plurality of tomographic images. The illumination means and detection means used in this aspect are the same as those in the above-described scatterer internal observation device 1001.
 表示手段は、画像化手段により作製された複数の断層画像を同時に表示することができ、さらに、使用者によって選択された断層画像を拡大して表示するか、或いは選択された断層画像のみを拡大して表示することができる。例えばモニター画面などが好適に用いられるがこれに限定されない。 The display means can simultaneously display a plurality of tomographic images produced by the imaging means, and further enlarges the tomographic image selected by the user or enlarges only the selected tomographic image. Can be displayed. For example, a monitor screen is preferably used, but is not limited thereto.
 入力手段は、表示された複数の断層画像から使用者が所望の断層画像を選択し、その結果を入力するためのものである。例えば、選択画像を指示するキーボードなどであってもよく、或いは、表示された画像にタッチしたり、入力ペンで囲むなどして指示したりする、タッチパネルを用いたモニターなどであってもよいが、これらに限定されず、種々の入力手段が用いられ得る。 The input means is for the user to select a desired tomographic image from the displayed tomographic images and to input the result. For example, a keyboard or the like that indicates a selected image may be used, or a monitor that uses a touch panel that indicates an image by touching the displayed image or surrounding it with an input pen may be used. However, the present invention is not limited to these, and various input means can be used.
 本態様における散乱体内部観測装置を用いる場合、
 照明手段によって、散乱体に光を照射し、検出手段によって該照射された光の後方散乱光を検出し、後方散乱光の光強度データを取得する。次いで、画像が手段によって、取得された光強度データが解析され、それぞれ深度が異なる複数の断層画像が作製される。
When using the scatterer internal observation device in this aspect,
The illuminating unit irradiates the scatterer with light, the detecting unit detects the backscattered light of the irradiated light, and acquires light intensity data of the backscattered light. Next, the acquired light intensity data is analyzed by means of the image, and a plurality of tomographic images having different depths are produced.
 次いで、表示手段によって、作製された複数の断層画像を表示される。複数の断層画像の全てを同時に表示してもよく、或いは幾つかを同時に表示してもよい。 Next, a plurality of produced tomographic images are displayed by the display means. All of a plurality of tomographic images may be displayed simultaneously, or some may be displayed simultaneously.
 次いで、表示された複数の断層画像から、使用者が所望の画像を選択し、その結果を入力手段を用いて入力する。表示部は、入力された指示に基づいて、選択された断層画像を表示する。 Next, the user selects a desired image from the displayed tomographic images, and inputs the result using the input means. The display unit displays the selected tomographic image based on the input instruction.
 上記した一連の工程は、散乱体の観測の間、繰り返し連続的に行われ、表示される断層画像は逐次更新される。断層画像の選択は使用者が定期的に行ってもよいが、使用者により選択された断層画像の条件を記憶し、その後の選択は該条件に従って自動で行ってもよい。ここで、断層画像の条件とは、例えば深度などである。 The series of steps described above are continuously repeated during the observation of the scatterer, and the displayed tomographic images are sequentially updated. The selection of the tomographic image may be performed periodically by the user, but the condition of the tomographic image selected by the user may be stored, and the subsequent selection may be automatically performed according to the condition. Here, the condition of the tomographic image is, for example, depth.
 以上に説明した各態様における散乱体内部観測装置は、さらに、画像化手段に、照明手段によって照射される照明範囲の形状を認識する照明範囲認識手段と、該照明範囲認識手段によって認識された照明範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する抽出位置決定手段とを含むことができる。 In the scatterer internal observation device in each aspect described above, the imaging unit further includes an illumination range recognition unit that recognizes the shape of the illumination range irradiated by the illumination unit, and the illumination recognized by the illumination range recognition unit. Extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the range can be included.
 図16に示すように、散乱体に斜めに光を入射した場合、散乱体から出射される後方散乱光は、同心円状にならず、歪んだ円形状になる。このため、照明点から同心円上での光強度データを元に断層画像を作製することができない。 As shown in FIG. 16, when light is incident obliquely on the scatterer, the backscattered light emitted from the scatterer is not concentric but is distorted. For this reason, a tomographic image cannot be produced based on light intensity data on a concentric circle from the illumination point.
 従って、断層画像の作製に先立って、光強度データを抽出する位置を検討する必要がある。そこで、まず、照明範囲認識手段によって照明範囲の形状を認識する。まず、撮像された後方散乱光の2次元画像において、照明点から近い場所で後方散乱光を検出する。ここで照明範囲には、ごく浅い深度からの後方散乱光と表面反射光の両方が含まれる。 Therefore, it is necessary to consider the position where the light intensity data is extracted prior to the preparation of the tomographic image. Therefore, first, the shape of the illumination range is recognized by the illumination range recognition means. First, backscattered light is detected at a location near the illumination point in the captured two-dimensional image of backscattered light. Here, the illumination range includes both backscattered light and surface reflected light from a very shallow depth.
 次いで、照明点を含むライン上で光強度をプロットしグラフを作成する。グラフ上において、照明点を挟んで強度が同じ2点が、同じ深度からの後方散乱光が出射される位置と見なすことができる。このプロットと解析を繰り返し行うことにより、照明範囲の形状を認識することができる。例えば、照明点を中心としてプロットするラインの角度を変更しながら行う。 Next, a graph is created by plotting the light intensity on the line including the illumination point. On the graph, two points having the same intensity across the illumination point can be regarded as positions where backscattered light from the same depth is emitted. By repeating this plot and analysis, the shape of the illumination range can be recognized. For example, it is performed while changing the angle of the line plotted with the illumination point as the center.
 上記のように照明範囲の形状が認識されると、次いで、抽出位置決定手段により、その形状に基づいて断層画像を作製するために光強度データを抽出する位置が決定される。これは例えば、照明範囲の形状を順次拡大することにより決定することができる。 When the shape of the illumination range is recognized as described above, the position for extracting light intensity data is then determined by the extraction position determining means based on the shape in order to produce a tomographic image. This can be determined, for example, by sequentially expanding the shape of the illumination range.
 以上にように、画像化手段が照明範囲認識手段と抽出位置決定手段とを含み、照射範囲の形状を認識し、光強度データを抽出する位置を決定した上で、断層画像を作製することにより、精度が向上した断層画像を取得することができる。 As described above, the imaging unit includes the illumination range recognition unit and the extraction position determination unit, recognizes the shape of the irradiation range, determines the position where the light intensity data is extracted, and then creates the tomographic image. A tomographic image with improved accuracy can be acquired.
 なお、上記の散乱体内部観測装置では、照明手段として、スポット状の照明光を発する光照射部を単独で用いた例を説明したが、これに限定されず、スポット状の照明光を発する光照射部が複数備えられてもよい。或いは、ライン状の照明光を発する光照射部が備えられてもよい。これらの変形例によれば、一度の測定で多くのデータを検出することができ、測定時間をより短縮することが出来る。なお、ライン状の照明光は光強度が均一であることが好ましい。或いは、光の強度に応じて補正を行う手段を備えることが好ましい。また、光照射部が複数備えられる場合、各光照射部は、それぞれの光によって得られる検出データが互いに干渉しない程度離れた位置に配置される。 In the above scatterer internal observation device, the example in which the light irradiation unit that emits the spot-like illumination light is used alone as the illumination means has been described. However, the present invention is not limited to this, and the light that emits the spot-like illumination light is used. A plurality of irradiation units may be provided. Or the light irradiation part which emits a linear illumination light may be provided. According to these modified examples, a large amount of data can be detected by one measurement, and the measurement time can be further shortened. The line-shaped illumination light preferably has a uniform light intensity. Alternatively, it is preferable to provide means for performing correction according to the light intensity. When a plurality of light irradiating units are provided, the light irradiating units are arranged at positions separated from each other so that detection data obtained by the respective lights do not interfere with each other.
 以上説明したように、側面1によれば、散乱体の断層画像を効率的且つ高精度に取得することができる。また、異質部分が存在する断層画像を簡便に選択、表示することができ、実用の際の便宜を向上させることができる。 As described above, according to the aspect 1, the tomographic image of the scatterer can be acquired efficiently and with high accuracy. In addition, it is possible to easily select and display a tomographic image in which a heterogeneous portion exists, and it is possible to improve convenience in practical use.
 側面1は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 Side 1 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 以上の説明によれば、側面1は以下に示すように表現される発明であると理解できる。 According to the above description, it can be understood that the aspect 1 is an invention expressed as shown below.
 1.散乱体内部の異質部分の情報を取得する散乱体内部観測装置であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段と、
 前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、
 前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化手段と、
 前記作製された複数の断層画像から、前記異質部分が表示された断層画像を選択する解析手段と、
 前記選択された断層画像を表示する表示手段を備えることを特徴とする、散乱体内部観測装置。
1. A scatterer internal observation device that acquires information on a heterogeneous part inside a scatterer,
Illuminating means for irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
Detecting means for detecting backscattered light of the light irradiated by the illuminating means, and obtaining light intensity data of the backscattered light;
An imaging means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having a different depth;
Analyzing means for selecting a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images;
A scatterer internal observation device comprising display means for displaying the selected tomographic image.
 2.前記異質部分が表示された断層画像が、所定のコントラスト条件を満たす断層画像である、前記1.に記載の散乱体内部観測装置。 2. The tomographic image in which the heterogeneous portion is displayed is a tomographic image satisfying a predetermined contrast condition. The scatterer internal observation device described in 1.
 3.散乱体内部の異質部分の情報を取得する散乱体内部観測装置であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段と、
 前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、
 前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像化手段と、
 作製された断層画像を表示する表示手段と、
 前記表示された複数の断層画像から、所望の断層画像を選択して表示させる入力手段とを備えることを特徴とする、散乱体内部観測装置。
3. A scatterer internal observation device that acquires information on a heterogeneous part inside a scatterer,
Illuminating means for irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
Detecting means for detecting backscattered light of the light irradiated by the illuminating means, and obtaining light intensity data of the backscattered light;
An imaging means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having a different depth;
Display means for displaying the produced tomographic image;
An scatterer internal observation device, comprising: an input unit that selects and displays a desired tomographic image from the plurality of displayed tomographic images.
 4.前記画像化手段が、
 前記照明手段によって照射される照明範囲の形状を認識する照明範囲認識手段と、
 前記照明範囲認識手段によって認識された照明範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する抽出位置決定手段と、
を備えることを特徴とする、前記1.~3.の何れか一に記載の散乱体内部観測装置。
4). The imaging means;
Illumination range recognition means for recognizing the shape of the illumination range irradiated by the illumination means;
Extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the illumination range recognized by the illumination range recognition means;
The above-described 1. is characterized by comprising: ~ 3. The scatterer internal observation apparatus as described in any one of.
 5.前記光学特定の異なる波長を少なくとも含む光が、ヘモグロビンに吸収を持つ近赤外領域の波長を含む光である、前記1.~4.の何れか一に記載の散乱体内部観測装置。 5. The light including at least the optically specific different wavelength is light including a wavelength in a near infrared region having absorption in hemoglobin. ~ 4. The scatterer internal observation apparatus as described in any one of.
 6.散乱体内部の異質部分を観測する散乱体内部観測方法であって、
 (a) 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する工程と、
 (b) 前記照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
 (c) 前記工程により取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する工程と、
 (d) 前記作製された複数の断層画像から、前記異質部分が表示された断層画像を選択する工程と、
 (e) 前記工程により選択された断層画像を表示する工程と、
を含むことを特徴とする方法。
6). A scatterer internal observation method for observing a heterogeneous part inside a scatterer,
(a) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
(b) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light;
(c) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth;
(d) selecting a tomographic image in which the heterogeneous portion is displayed from the plurality of produced tomographic images;
(e) displaying the tomographic image selected by the step;
A method comprising the steps of:
 7.前記工程(d)が、作製された断層画像が所定のコントラスト条件を満たすかどうかを判定する工程を含み、所定のコントラスト条件を満たす断層画像を異質部分が表示された断層画像として選択することを特徴とする、前記6.に記載の方法。 7. The step (d) includes a step of determining whether the produced tomographic image satisfies a predetermined contrast condition, and selecting a tomographic image satisfying a predetermined contrast condition as a tomographic image on which a heterogeneous portion is displayed. The above-mentioned 6. The method described in 1.
 8.前記工程(a)~(e)が繰り返し行われ、表示される断層画像が更新されることを特徴とする前記6.又は7.に記載の方法。 8. 5. The step (a) to (e) is repeatedly performed, and the displayed tomographic image is updated. Or 7. The method described in 1.
 9.散乱体内部の異質部分を観測する散乱体内部観測方法であって、
 (a) 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する工程と、
 (b) 前記照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
 (c) 前記工程により取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する工程と、
 (d) 前記作製された断層画像を表示する工程と、
 (e)前記表示された複数の断層画像から、所望の画像を選択して表示させる工程と、
を含むことを特徴とする方法。
9. A scatterer internal observation method for observing a heterogeneous part inside a scatterer,
(a) irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
(b) detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light;
(c) analyzing the light intensity data acquired by the step, and creating a plurality of tomographic images each having a different depth;
(d) displaying the produced tomographic image;
(e) selecting and displaying a desired image from the displayed plurality of tomographic images;
A method comprising the steps of:
 10.前記工程(a)~(d)が繰り返し行われ、
 前記工程(e)において選択された断層画像と同じ条件の断層画像が選択されて表示が更新されることを特徴とする前記9.に記載の方法。
10. Steps (a) to (d) are repeated,
8. The tomographic image having the same condition as the tomographic image selected in the step (e) is selected and the display is updated. The method described in 1.
 11.(C1) 前記工程(b)において照射された光が、散乱体表面上で形成する照明範囲の形状を認識する工程と、
 (C2) 前記工程において認識された形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する工程と、
を含むことを特徴とする、前記6.~10.の何れか一に記載の方法。
11. (C1) the step of recognizing the shape of the illumination range formed on the scatterer surface, the light irradiated in the step (b);
(C2) determining a light intensity data extraction position for producing a tomographic image based on the shape recognized in the step;
The above-mentioned 6. ~ 10. The method as described in any one of.
〔産業上の利用可能性〕
 側面1の散乱体内部観測装置は、例えば内視鏡や硬性鏡などに好適に適用される。
[Industrial applicability]
The scatterer internal observation device on the side surface 1 is preferably applied to, for example, an endoscope or a rigid endoscope.
<側面2>
 側面2は、光を用いる非侵襲方法で散乱体内部を観察する散乱体内部観察装置および観察方法に関する。
<Side 2>
The side surface 2 relates to a scatterer internal observation device and an observation method for observing the inside of the scatterer by a non-invasive method using light.
〔背景技術〕
 生体等の散乱体の内部を観察するには様々な手法がある。その1つである光を用いた観察は、用いる光の波長を選択することにより特定の対象を観察できるという利点を有している。この手法では、観察対象に吸収される波長の光を散乱体に照射し、その後方散乱光強度を計測することにより、散乱体内部にある観察対象の位置と深度情報が得られる。後方散乱光は、照射位置と検出位置との距離が大きくなるほど、散乱体のより深部を通ってきた光を多く含むことが知られている。
[Background Technology]
There are various methods for observing the inside of a scatterer such as a living body. One of the observations using light has an advantage that a specific object can be observed by selecting the wavelength of the light to be used. In this method, the position and depth information of the observation target in the scatterer can be obtained by irradiating the scatterer with light having a wavelength absorbed by the observation target and measuring the intensity of the backscattered light. It is known that the backscattered light contains more light that has passed through the deeper part of the scatterer as the distance between the irradiation position and the detection position increases.
 特開2006-200943号公報には、光照射手段の位置から順次遠ざかる位置に複数の光検出手段を備えた構成を有する生体光計測装置が開示されている。また、該装置による計測結果に基づいて、生体の断層画像を再構成する手段も開示されている。 Japanese Unexamined Patent Application Publication No. 2006-200903 discloses a biological light measurement apparatus having a configuration in which a plurality of light detection means are provided at positions that are sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
 特開2007-20735号公報には、光照射部から同心円状等のような所定の間隔で配置された複数の光検出部を備えた構成を有する生体光計測装置が開示されている。 Japanese Unexamined Patent Application Publication No. 2007-20735 discloses a biological light measurement device having a configuration including a plurality of light detection units arranged at predetermined intervals such as concentric circles from a light irradiation unit.
 上記のような従来の装置では、光照射手段と光検出手段が一体に構成されているために、照射位置と検出位置との距離が固定されている。従って、照射位置から任意の距離の位置で検出を行うことができないという問題がある。 In the conventional apparatus as described above, since the light irradiation means and the light detection means are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, there is a problem that detection cannot be performed at a position at an arbitrary distance from the irradiation position.
 また、所望の深度での断層画像を得るためには、多くの測定点で測定を行わなければならず、断層画像を取得するのに多くの時間を要するという問題点がある。 Further, in order to obtain a tomographic image at a desired depth, it is necessary to perform measurement at many measurement points, and there is a problem that it takes a lot of time to acquire a tomographic image.
 また、より深部の情報を取得するためには照射位置と検出位置との距離をより大きくしなければならないが、上記のような従来装置でそのような構成をとると、装置のサイズが大きくなるという問題がある。 Further, in order to acquire deeper information, the distance between the irradiation position and the detection position must be increased. However, when such a configuration is used in the conventional apparatus as described above, the size of the apparatus increases. There is a problem.
 またさらに、計測される後方散乱光は、照射位置と検出位置との間の中点の位置において最も深部を通る。即ち、観察される情報のうち最深部の情報は、照射位置と検出位置との中点の位置におけるものである。そのため、特開2007-20735号公報のように検出部が光照射部から順次離れた位置に配置された装置では、計測される最深部のx、y方向の位置が、光照射部と検出部の距離が大きくなるにつれて、照射位置から遠くなってゆく。従って、ある特定の位置において、深度(z方向)を変化させた情報を得ることができないという問題がある。 Furthermore, the backscattered light to be measured passes through the deepest part at the midpoint position between the irradiation position and the detection position. That is, the deepest information in the observed information is at the midpoint position between the irradiation position and the detection position. Therefore, in an apparatus in which the detection unit is sequentially arranged away from the light irradiation unit as disclosed in Japanese Patent Application Laid-Open No. 2007-20735, the position of the deepest portion to be measured in the x and y directions is the light irradiation unit and the detection unit. As the distance increases, the distance from the irradiation position increases. Therefore, there is a problem in that information with varying depth (z direction) cannot be obtained at a specific position.
 上記問題を解決する装置として、特願2008-169459には、散乱体内部の観察対象の情報を取得するための散乱体内部計測装置が開示されている。特願2008-169459に記載の装置は、後方散乱光を2次元画像として検出することにより、照射位置から所望の距離に位置するデータを任意に解析できることを特徴とする。 As a device for solving the above problem, Japanese Patent Application No. 2008-169459 discloses a scatterer internal measurement device for acquiring information on an observation target inside a scatterer. The device described in Japanese Patent Application No. 2008-169459 is characterized in that data located at a desired distance from the irradiation position can be arbitrarily analyzed by detecting backscattered light as a two-dimensional image.
 光走査および検出により深部情報画像を得る場合には、所望の深度に対応する適切な画素領域を選択する必要がある。しかしながら、特願2008-169459に記載の装置では、撮像されている範囲または散乱体までの距離が通常の画像からでは判断困難であり、常に最適な画素領域を用いて画像を構築することが難しいという問題が新たに生じる。 When obtaining a depth information image by optical scanning and detection, it is necessary to select an appropriate pixel region corresponding to a desired depth. However, in the apparatus described in Japanese Patent Application No. 2008-169459, it is difficult to determine the range being captured or the distance to the scatterer from a normal image, and it is difficult to always construct an image using an optimal pixel region. A new problem arises.
〔発明が解決しようとする課題〕
 側面2の目的は、後方散乱光を利用して散乱体内部の観察対象の情報を取得する際に複数の画素で撮像される2次元画像において、所望の深度に対応する適切な画素領域を選択できるようにすることにある。
[Problems to be Solved by the Invention]
The purpose of the side surface 2 is to select an appropriate pixel region corresponding to a desired depth in a two-dimensional image captured by a plurality of pixels when acquiring information on an observation target inside the scatterer using backscattered light. There is to be able to do it.
〔課題を解決するための手段〕
 側面2によると、散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、前記光照射手段により前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を、複数の画素を含んでなる撮像面を用いて2次元画像として撮像する撮像手段(すなわち検出手段)と、前記散乱体の表面において前記光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光を前記撮像手段により検出するために、前記後方散乱光検出領域から放出された散乱光が入射する前記撮像面上の画素で構成される画素領域を、前記2次元画像において決定する画素領域決定手段と、前記画素領域を構成する各画素からの光強度情報から、前記散乱体内部の断層画像を構築する画像構築手段とを備える散乱体内部観察装置が提供される。
[Means for solving the problems]
According to the side surface 2, the light irradiating means for irradiating the surface of the scatterer including the observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium, and the scatterer by the light irradiation means. An imaging unit (that is, a detection unit) that captures backscattered light of a light irradiated to an arbitrary light irradiation position on the surface as a two-dimensional image using an imaging surface including a plurality of pixels, and a surface of the scatterer In order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position in the imaging means, the scattered light emitted from the backscattered light detection region is incident A tomographic image inside the scatterer is obtained from pixel area determining means for determining a pixel area composed of pixels on the imaging surface in the two-dimensional image and light intensity information from each pixel constituting the pixel area. Scattering medium observation device and an image construction unit that built are provided.
 側面2によると、散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、前記光照射手段により前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を、複数の画素を含んでなる撮像面を用いて2次元画像として撮像する工程と、前記散乱体の表面において前記光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光を前記撮像手段により検出するために、前記後方散乱光検出領域から放出された散乱光が入射する前記撮像面上の画素で構成される画素領域を、前記2次元画像において決定する工程と、前記画素領域を構成する各画素からの光強度情報から、前記散乱体内部の断層画像を構築する工程とを含む散乱体内部観察方法が提供される。 According to the side surface 2, the surface of the scatterer including the observation target inside the scattering medium is irradiated with light having different optical characteristics between the observation target and the scattering medium, and the light irradiation means Imaging a back-scattered light of a light irradiated to an arbitrary light irradiation position as a two-dimensional image using an imaging surface including a plurality of pixels, and a predetermined distance from the light irradiation position on the surface of the scatterer In order to detect the backscattered light emitted from the backscattered light detection region in a positional relationship by the imaging means, the image pickup unit is configured by pixels on the imaging surface on which the scattered light emitted from the backscattered light detection region is incident. A scatterer internal observation method comprising: determining a pixel area to be determined in the two-dimensional image; and constructing a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel area. It is subjected.
〔発明の効果〕
 側面2によると、後方散乱光を利用して散乱体内部の観察対象の情報を取得する際に複数の画素で撮像される2次元画像において、所望の深度に対応する適切な画素領域を選択することが可能になる。
〔The invention's effect〕
According to the side surface 2, an appropriate pixel region corresponding to a desired depth is selected in a two-dimensional image captured by a plurality of pixels when acquiring information on an observation target inside the scatterer using backscattered light. It becomes possible.
〔発明を実施するための最良の形態〕
 以下、側面2の散乱体内部観察装置について説明する。側面2において、散乱体とは、散乱媒質で構成される任意のものを意味し、その例として生体が挙げられる。散乱体は、散乱媒質の内部に観察対象を含んでなる。側面2の散乱体内部観察装置は、散乱体の表面に光を照射することにより、散乱体内部に存在する観察対象についての情報を得るためのものである。側面2における観察対象とは、観察装置の観察領域に分布する光散乱成分について異質の散乱特性を有するような成分から成る物質を指し、特に生体においては例えば血管などであってよいがこれに限定されない。ここで、散乱特性が異質である、という用語は、他の部分に対し光散乱度が有意に異なることを意味するので、観察対象の光散乱度がその周囲の部分と有意に異なるような光を用いる。特に生体内部は光散乱度が高いので、観察対象において光吸収度が大きい波長の光を用いることにより、観察対象における光散乱度を低くし、S/N比を向上することができる。観察対象が血管の場合、ヘモグロビンに特異的な光吸収を示す近赤外領域の波長の光を用いるのが好ましい。
[Best Mode for Carrying Out the Invention]
Hereinafter, the scatterer internal observation device on the side surface 2 will be described. In the side surface 2, the scatterer means an arbitrary object composed of a scattering medium, and examples thereof include a living body. The scatterer includes an observation target inside the scattering medium. The scatterer internal observation device on the side surface 2 is for obtaining information about the observation target existing inside the scatterer by irradiating the surface of the scatterer with light. The observation object in the side surface 2 refers to a substance composed of components having different scattering characteristics with respect to the light scattering component distributed in the observation region of the observation apparatus. Not. Here, the term that the scattering property is heterogeneous means that the light scattering degree is significantly different from other parts, so that the light scattering degree of the observation object is significantly different from the surrounding parts. Is used. In particular, since the light scattering degree is high inside the living body, the light scattering degree in the observation object can be lowered and the S / N ratio can be improved by using light of a wavelength having a large light absorption in the observation object. When the observation target is a blood vessel, it is preferable to use light having a wavelength in the near-infrared region that exhibits light absorption specific to hemoglobin.
 以下、側面2の態様について、図面を参照しながら詳細に説明する。なお、各図において、同様又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する説明は省略する。 Hereinafter, the aspect of the side surface 2 will be described in detail with reference to the drawings. In addition, in each figure, the same referential mark is attached | subjected to the component which exhibits the same or similar function, and the overlapping description is abbreviate | omitted.
 図17は、側面2に係る散乱体内部観察装置のブロック構成図である。同図に示すように、散乱体内部観察装置2001は、光照射手段2010、検出部(すなわち検出手段)2011、制御/解析部2012、メモリ2013、表示部2014、入力部2015を具備している。 FIG. 17 is a block configuration diagram of the scatterer internal observation device according to the side surface 2. As shown in the figure, the scatterer internal observation device 2001 includes a light irradiation unit 2010, a detection unit (that is, a detection unit) 2011, a control / analysis unit 2012, a memory 2013, a display unit 2014, and an input unit 2015. .
 光照射手段2010は、散乱体2008内部の観察対象2007とその周囲の散乱媒質2006とで光学特性の異なる光を照射する照明手段である。前記光照射手段2010には、例えばレーザーダイオード(LD)などを用いることができるが、これらに限定されない。この光照射手段2010から照射される光には、例えば、観察対象には吸収されるが散乱媒質には吸収されない波長の光を使用することができる。光照射手段2010は、制御/解析部2012からの制御信号に基づいて光を散乱体2008に向けて照射する。光照射手段2010は、可動性であってよい。 The light irradiation means 2010 is an illumination means for irradiating light having different optical characteristics between the observation object 2007 inside the scatterer 2008 and the surrounding scattering medium 2006. For example, a laser diode (LD) can be used as the light irradiation means 2010, but is not limited thereto. As light irradiated from the light irradiation means 2010, for example, light having a wavelength that is absorbed by the observation target but not absorbed by the scattering medium can be used. The light irradiation unit 2010 irradiates light toward the scatterer 2008 based on a control signal from the control / analysis unit 2012. The light irradiation means 2010 may be movable.
 検出部2011は、光照射手段2010によって照射された光が、散乱体2008の散乱媒質2006と観察対象2007により、反射、散乱、吸収され、散乱体表面から出射された後方散乱光強度を検出するものである。検出部2011としては、光信号を2次元画像データとして検出できる撮像素子を用いることができる。例えばCCDを用いることができるが、これに限定されない。検出部2011は、制御/解析部2012からの制御に基づいて後方散乱光を検出する。検出部2011は、可動性であってよい。 The detection unit 2011 detects the intensity of the backscattered light that is reflected, scattered, and absorbed by the scattering medium 2006 of the scatterer 2008 and the observation target 2007 and emitted from the scatterer surface by the light irradiated by the light irradiation unit 2010. Is. As the detection unit 2011, an image sensor that can detect an optical signal as two-dimensional image data can be used. For example, a CCD can be used, but is not limited thereto. The detection unit 2011 detects backscattered light based on the control from the control / analysis unit 2012. The detection unit 2011 may be movable.
 上記の光照射手段2010、検出部2011、表示部2014および入力部2015は、電気信号が伝送される信号回路によって制御/解析部2012に接続される。 The light irradiation means 2010, the detection unit 2011, the display unit 2014, and the input unit 2015 are connected to the control / analysis unit 2012 by a signal circuit that transmits an electrical signal.
 制御/解析部2012は、光照射手段2010、検出部2011の動作を制御すると共に、検出部2011によって検出された2次元画像データを解析し、観察対象2007が散乱体2008の内部に存在しているか否かを確認する。また、制御/解析部2012は、検出されたデータを記憶するメモリ2013を備える。記憶された複数の2次元画像データを基に、所望の深度における断層画像を作成することができる。 The control / analysis unit 2012 controls the operation of the light irradiation unit 2010 and the detection unit 2011, analyzes the two-dimensional image data detected by the detection unit 2011, and the observation target 2007 exists inside the scatterer 2008. Check if it exists. In addition, the control / analysis unit 2012 includes a memory 2013 that stores detected data. A tomographic image at a desired depth can be created based on a plurality of stored two-dimensional image data.
 側面2においては、検出部2011として2次元画像データを取得できる撮像素子を用いることができるが、撮像素子の光学系の画角の観点から、検出部2011が散乱体2008に接触せずに離れている方が広い領域を計測できる。そこで、側面2における光照射手段2010および検出部2011は、散乱体2008に接触せずに照射および検出を行う。これにより、検出部2011は散乱体2008の広い領域を一度に計測することができる。 In the side surface 2, an image sensor that can acquire two-dimensional image data can be used as the detection unit 2011. However, the detection unit 2011 is not in contact with the scatterer 2008 from the viewpoint of the angle of view of the optical system of the image sensor. A wider area can be measured. Therefore, the light irradiation means 2010 and the detection unit 2011 on the side surface 2 perform irradiation and detection without contacting the scatterer 2008. Thereby, the detection part 2011 can measure the wide area | region of the scatterer 2008 at once.
 次に、側面2の散乱体内部観察装置の作用を説明する。 Next, the operation of the scatterer internal observation device on the side surface 2 will be described.
 図18は、散乱体内部の光の伝播の様子を表す概念図である。一般的には散乱体に照射された光は、散乱体内部で散乱を繰り返すうちに散乱の異方性が失われて等方散乱に近づく。この結果、平均的な光経路の断面はバナナ状になることが知られている。 FIG. 18 is a conceptual diagram showing a state of light propagation inside the scatterer. In general, the light irradiated to the scatterer loses its scattering anisotropy while repeating scattering inside the scatterer and approaches isotropic scattering. As a result, it is known that the cross section of the average optical path becomes a banana shape.
 図18において、光の照射位置から近い位置Iでは散乱体の表面近くを伝播してきた光が多く検出される。一方、照射位置から離れた位置Iでは散乱体のより深部を伝播してきた光が多く検出される。このように、光の照射位置から検出位置までの距離に応じて、検出された光が伝播してきた深度が変化する。 In FIG. 18, a large amount of light propagating near the surface of the scatterer is detected at a position I 1 close to the light irradiation position. On the other hand, a large amount of light propagating deeper in the scatterer is detected at the position I 2 away from the irradiation position. Thus, the depth at which the detected light has propagated changes according to the distance from the light irradiation position to the detection position.
 例えば、図18(a)において、観察対象は検出位置IとIの間の表面近くにある。この場合、検出位置IとIにおける検出光にはほとんど変化が見られない。一方、図18(b)においては、観察対象は検出位置IとIの間のより深い位置にある。このとき、検出位置Iにおける検出光にはほとんど変化が見られないが、検出位置Iにおける検出光は減弱する。 For example, in FIG. 18 (a), the observation target is close to the surface between the detection positions I 1 and I 2. In this case, the detection light at the detection positions I 1 and I 2 hardly changes. On the other hand, in FIG. 18 (b), the observation target is in the deeper position between the detection positions I 1 and I 2. At this time, the detection light at the detection position I 1 hardly changes, but the detection light at the detection position I 2 is attenuated.
 この性質を利用して、2次元画像データ上で後方散乱光強度の弱いポイントが見出された場合、そのポイントと光照射位置との距離から観察対象の深度と位置を算出することができる。また、得られた2次元画像データから、一定深度での断層画像を作成することもできる。 Using this property, when a point with low backscattered light intensity is found on the two-dimensional image data, the depth and position of the observation target can be calculated from the distance between the point and the light irradiation position. In addition, a tomographic image at a certain depth can be created from the obtained two-dimensional image data.
 図19は、側面2の散乱体内部観察装置により検出される後方散乱光および得られる2次元画像データの模式図である。光照射手段2010から散乱体2008上に光が照射された位置をバツ印で示し、撮像素子2110によって撮像される撮像領域2030を点線で示した。ここで、撮像領域2030とは、撮像素子2110により一度に撮像される散乱体2008上の領域を意味する。散乱体2008によって反射、散乱、吸収され、散乱体表面から出射された後方散乱光は、通常、図に示すように照射位置を中心とする同心円状になる。本明細書において、光照射位置から一定の位置関係にある後方散乱光が検出される領域を後方散乱光検出領域と表す。前記領域は、必ずしも同心円状でなくてよい。 FIG. 19 is a schematic diagram of backscattered light detected by the scatterer internal observation device on the side surface 2 and the obtained two-dimensional image data. A position where light is irradiated on the scatterer 2008 from the light irradiation unit 2010 is indicated by a cross, and an imaging region 2030 imaged by the imaging element 2110 is indicated by a dotted line. Here, the imaging region 2030 means a region on the scatterer 2008 that is imaged at once by the imaging element 2110. The backscattered light reflected, scattered and absorbed by the scatterer 2008 and emitted from the scatterer surface is usually concentric with the irradiation position as the center as shown in the figure. In this specification, an area where backscattered light having a fixed positional relationship from the light irradiation position is detected is referred to as a backscattered light detection area. The region need not necessarily be concentric.
 ここで、図19(a)に示すように、後方散乱光検出領域の同心円の直径が大きくなるほど、散乱体2008のより深部を通ってきた光を多く検出する。図19(b)においては、後方散乱光検出領域2031、2032および2033で検出される光は、それぞれの領域において略同じ深度の情報を有するとみなすことができる。またその深度は照射位置からその後方散乱光検出領域までの距離に対応するため、後方散乱光検出領域2031、2032および2033の順に深度が深い。よって、2次元画像データから所定の後方散乱光検出領域の画像データを抽出することにより、一定の深度における画像データを選択的に取り出すことができ、選択されたデータから該深度での断層画像を作成することができる。 Here, as shown in FIG. 19 (a), the greater the diameter of the concentric circle in the backscattered light detection region, the more light that has passed through the deeper part of the scatterer 2008 is detected. In FIG. 19B, the light detected in the backscattered light detection regions 2031, 2032, and 2033 can be regarded as having substantially the same depth information in each region. Further, since the depth corresponds to the distance from the irradiation position to the backscattered light detection region, the depth is deeper in the order of the backscattered light detection regions 2031, 2032, and 2033. Therefore, by extracting image data of a predetermined backscattered light detection region from the two-dimensional image data, image data at a certain depth can be selectively extracted, and a tomographic image at the depth can be extracted from the selected data. Can be created.
 以下、側面2の具体的な態様について説明する。 Hereinafter, specific modes of the side surface 2 will be described.
 図20は、側面2の第1態様に係る散乱体内部観察装置のブロック構成図である。同図に示すように、本散乱体内部観察装置2004は測距手段2041を具備することを特徴とする。 FIG. 20 is a block configuration diagram of the scatterer internal observation device according to the first mode of the side surface 2. As shown in the figure, the scatterer internal observation device 2004 includes a distance measuring means 2041.
 測距手段2041は、撮像素子2110先端から散乱体2008表面までの距離zを測定するためのものである。撮像素子2110の画角θは一定であるため、撮像素子2110先端から散乱体2008表面までの距離zを測定することにより、前記画角θとの関係から撮像領域2040を算出することが可能となる。 The distance measuring means 2041 is for measuring the distance z from the tip of the image sensor 2110 to the surface of the scatterer 2008. Since the angle of view θ of the imaging element 2110 is constant, the imaging region 2040 can be calculated from the relationship with the angle of view θ by measuring the distance z from the tip of the imaging element 2110 to the surface of the scatterer 2008. Become.
 測距手段2041としては、当該分野で使用される種々の手段を用いることができるが、例えば、三角法を用いる方法、超音波の反射を用いる方法等が挙げられる。三角法を用いる方法は、発光素子からの光を投射レンズ系に通して散乱体に照射し、前記散乱体からの反射光を受光レンズ系に通して前記受光素子にスポット状に集光させることにより測定する方法である。前記集光位置と前記受光レンズ系の光軸との間の距離をd、前記受光レンズ系の焦点距離をf、前記受光レンズ系と前記投射レンズ系の光軸間距離をLとすると、距離z=Lf/dである。超音波の反射を用いる方法は、散乱体に超音波信号を照射し、戻ってくる超音波信号を受信して距離を演算する方法である。 As the distance measuring means 2041, various means used in this field can be used, and examples thereof include a method using trigonometry and a method using ultrasonic reflection. The method using the trigonometric method is to irradiate the scatterer with the light from the light emitting element through the projection lens system, and to collect the reflected light from the scatterer in a spot shape on the light receiving element through the light receiving lens system. It is the method of measuring by. If the distance between the condensing position and the optical axis of the light receiving lens system is d, the focal length of the light receiving lens system is f, and the distance between the optical axes of the light receiving lens system and the projection lens system is L, the distance z = Lf / d. The method using ultrasonic reflection is a method of irradiating an ultrasonic signal to a scatterer, receiving a returning ultrasonic signal, and calculating a distance.
 検出部としては、撮像素子2110を使用する。撮像素子2110は、光照射手段により散乱体表面の任意の光照射位置に照射された光の後方散乱光を、複数の画素を含んでなる撮像面を用いて2次元画像として撮像する。 An image sensor 2110 is used as the detection unit. The imaging element 2110 captures backscattered light of light irradiated to an arbitrary light irradiation position on the surface of the scatterer by the light irradiation unit as a two-dimensional image using an imaging surface including a plurality of pixels.
 撮像領域2040内で光を走査することにより、多数の2次元画像データを一度に得ることができる。これらのデータはメモリ2013に記憶される。制御/解析部2012は、測距手段2041と協働することにより、所望の後方散乱光検出領域に対応する画素領域を2次元画像において決定する。ここで、画素領域とは、散乱体の表面において光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光が入射する撮像面上の画素で構成される2次元画像上の領域をいう。前記画素領域を構成する各画素からの光強度情報に基づいて、散乱体内部の断層画像を構築することができる。 A large number of two-dimensional image data can be obtained at a time by scanning light within the imaging region 2040. These data are stored in the memory 2013. The control / analysis unit 2012 cooperates with the distance measuring unit 2041 to determine a pixel region corresponding to a desired backscattered light detection region in the two-dimensional image. Here, the pixel region is a two-dimensional image composed of pixels on the imaging surface on which the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer is incident. Refers to the upper area. A tomographic image inside the scatterer can be constructed based on light intensity information from each pixel constituting the pixel region.
 図21は、側面2の第1態様に係る散乱体内部観察装置により得られる2次元画像を示す概念図である。2次元画像2050を解析するためには、散乱体上の所望の後方散乱光検出領域に対応する2次元画像2050上の画素領域2051を決定する必要がある。上述したように、側面2の第1態様に係る散乱体内部観察装置は測距手段を具備するため、撮像領域を算出することが可能である。算出された撮像領域と得られた2次元画像を比較することにより、散乱体上の所望の後方散乱光検出領域に対応した適切な画素領域2051を2次元画像において選択することが可能になる。すなわち、撮像素子先端から散乱体表面までの距離zから散乱体上での撮像領域を決定し、その撮像領域中の光照射位置および所望の後方散乱光検出領域の位置に基づいて、その後方散乱光検出領域に対応する画素領域2051を2次元画像上で決定することができる。図21において、前記画素領域2051はr1およびr2により特定される。 FIG. 21 is a conceptual diagram showing a two-dimensional image obtained by the scatterer internal observation device according to the first mode of the side surface 2. In order to analyze the two-dimensional image 2050, it is necessary to determine a pixel region 2051 on the two-dimensional image 2050 corresponding to a desired backscattered light detection region on the scatterer. As described above, since the scatterer internal observation device according to the first aspect of the side surface 2 includes the distance measuring unit, the imaging region can be calculated. By comparing the calculated imaging region with the obtained two-dimensional image, it is possible to select an appropriate pixel region 2051 corresponding to a desired backscattered light detection region on the scatterer in the two-dimensional image. That is, the imaging region on the scatterer is determined from the distance z from the tip of the imaging device to the surface of the scatterer, and the backscattering is performed based on the light irradiation position in the imaging region and the position of the desired backscattered light detection region. A pixel region 2051 corresponding to the light detection region can be determined on the two-dimensional image. In FIG. 21, the pixel region 2051 is specified by r1 and r2.
 上記解析方法を利用することにより、撮像範囲内で光を走査して複数の2次元画像を得た場合、異なる撮影距離で撮像された画像であっても、一定の深度における画像データをそれぞれ選択的に取り出すことが可能になる。結果として、撮影距離に合わせた画像処理が可能となる。従って、撮影距離が同一でなくても、一定深度における断層画像を作成することができる。 By using the above analysis method, when scanning a light within the imaging range to obtain a plurality of two-dimensional images, even if the images are taken at different shooting distances, image data at a certain depth is selected. Can be taken out automatically. As a result, it is possible to perform image processing in accordance with the shooting distance. Therefore, a tomographic image at a fixed depth can be created even if the photographing distance is not the same.
 上記方法を逆に利用することにより、着目した画素領域から散乱体における後方散乱光検出領域を決定することもできる。決定された後方散乱光検出領域と光照射位置との距離から、観察対象の深度を含めた位置情報を解析することができる。 By using the above method in reverse, the backscattered light detection region in the scatterer can be determined from the focused pixel region. The position information including the depth of the observation target can be analyzed from the determined distance between the backscattered light detection region and the light irradiation position.
 図22は、側面2の第1態様に係る散乱体内部観察装置の変形例のブロック構成図である。図22に示すように、撮像素子2110先端から散乱体2008表面までの距離zを固定して光照射を行ってもよい。距離を固定する手段としては、例えば、側面2の第1態様に係る散乱体内部観察装置に棒部材2061を具備させることが考えられる。散乱体2008に棒部材2061の先端が接触するようにして検出を行うことにより、撮像素子2110先端から散乱体2008表面までの距離zを固定して複数の画像データを得ることができる。棒部材2061を移動可能に設置することにより、目的に応じて距離zを調節することも可能である。 FIG. 22 is a block configuration diagram of a modified example of the scatterer internal observation device according to the first mode of the side surface 2. As shown in FIG. 22, light irradiation may be performed with a fixed distance z from the tip of the image sensor 2110 to the surface of the scatterer 2008. As a means for fixing the distance, for example, it can be considered that the scatterer internal observation device according to the first aspect of the side surface 2 is provided with the rod member 2061. By performing detection so that the tip of the rod member 2061 is in contact with the scatterer 2008, the distance z from the tip of the imaging element 2110 to the surface of the scatterer 2008 can be fixed to obtain a plurality of image data. By installing the rod member 2061 so as to be movable, the distance z can be adjusted according to the purpose.
 このように撮像素子先端から散乱体表面までの距離zを固定した場合、所望の後方散乱光検出領域に対応する画素領域の大きさも固定される。すなわち、上述した解析方法により決定される撮像領域が常に一定の大きさになるため、前記撮像領域中の光照射位置および後方散乱光検出領域から決定されるr1およびr2の大きさも固定される。r1およびr2が一度決定されれば、同一の手段で撮像する限り、他の画像においても同一のr1およびr2を利用して同一深度の情報が得られるという利点を有する。 When the distance z from the front end of the image sensor to the scatterer surface is thus fixed, the size of the pixel region corresponding to the desired backscattered light detection region is also fixed. That is, since the imaging region determined by the analysis method described above always has a constant size, the sizes of r1 and r2 determined from the light irradiation position and the backscattered light detection region in the imaging region are also fixed. Once r1 and r2 are determined, there is an advantage that information of the same depth can be obtained using the same r1 and r2 in other images as long as the same means is used for imaging.
 図23は、光照射位置を変化させて測定したときの2次元画像データの模式図を示す。散乱体内部の深さ方向の断層画像を得たい場合、光を走査して複数の2次元画像を得る必要がある。図23の場合、撮像素子2110先端から散乱体表面までの距離は固定されており、撮像領域2070も移動しない。しかし、光照射手段2010によって照射する位置を変動させることにより、後方散乱光検出領域が移動する。この様子を図24に示す。 FIG. 23 is a schematic diagram of two-dimensional image data when measurement is performed by changing the light irradiation position. In order to obtain a tomographic image in the depth direction inside the scatterer, it is necessary to obtain a plurality of two-dimensional images by scanning light. In the case of FIG. 23, the distance from the tip of the image sensor 2110 to the scatterer surface is fixed, and the imaging region 2070 does not move. However, the backscattered light detection region moves by changing the position irradiated by the light irradiation means 2010. This is shown in FIG.
 図24は、光照射位置を変えて測定したときの等深度データの奇跡を示す模式図である。図24(a)~(c)は、後方散乱光検出領域2071、2072および2073のそれぞれが移動した軌跡を示す。それぞれの後方散乱光検出領域は、同じ深度の情報を有している。従って、複数の検出結果を図24に示すように重ね合わせることにより、その深度での断層画像を作成することができる。なお、データを重ね合わせる際に重複する部分が生じるが、重複するデータから任意のデータを選択的に用いるか、重複するデータの平均値を用いればよい。 FIG. 24 is a schematic diagram showing a miracle of equi-depth data when measurement is performed by changing the light irradiation position. FIGS. 24A to 24C show the trajectories of the backscattered light detection areas 2071, 2072, and 2073, respectively. Each backscattered light detection area has information of the same depth. Therefore, by superimposing a plurality of detection results as shown in FIG. 24, a tomographic image at that depth can be created. Note that overlapping portions occur when the data are superimposed, but arbitrary data may be selectively used from the overlapping data, or an average value of the overlapping data may be used.
 上述したように、側面2の第1態様に係る散乱体内部観察装置は測距手段を備えている。従って、撮像素子先端から散乱体表面までの距離が固定されておらず、撮像領域が異なる場合であっても、複数の画像データの中から同じ深度のデータを選択的に用いることが可能になる。得られたデータを図23および図24に示すように利用して、散乱体内の断層画像を構築することができる。 As described above, the scatterer internal observation device according to the first aspect of the side surface 2 includes the distance measuring means. Therefore, even when the distance from the front end of the imaging device to the scatterer surface is not fixed and the imaging region is different, it is possible to selectively use data of the same depth from among a plurality of image data. . The obtained data can be used as shown in FIGS. 23 and 24 to construct a tomographic image in the scatterer.
 このように、照射位置を移動させることにより、より多くの情報を簡便に取得することができる。なお、光照射手段2010は、移動可能に設置されてよい。光照射手段2010は、それ自体が自由に移動できる構成であってもよく、あるいは光を照射する角度を変動させて照射位置を移動させる構成であってもよい。 Thus, by moving the irradiation position, more information can be easily acquired. In addition, the light irradiation means 2010 may be installed so that movement is possible. The light irradiation means 2010 may be configured so as to be freely movable, or may be configured to move the irradiation position by changing the angle of light irradiation.
 なお、上述した各解析方法においては、照射位置と検出位置との距離を求める際、検出部の光学系の焦点距離や倍率などを考慮に入れる。さらに、内視鏡などの検出手段で用いられる撮像系の場合、歪曲収差が起こることがある。この場合は、予め格子チャートなどで歪曲収差の影響の大きさを求めておき、照射位置と検出位置との距離を求める際に考慮に入れる。 In each analysis method described above, the focal length and magnification of the optical system of the detection unit are taken into consideration when determining the distance between the irradiation position and the detection position. Further, in the case of an imaging system used by a detection unit such as an endoscope, distortion may occur. In this case, the magnitude of the influence of distortion is obtained in advance using a lattice chart or the like, and this is taken into account when obtaining the distance between the irradiation position and the detection position.
 図25は、側面2の第2態様に係る散乱体内部観察装置のブロック構成図である。本態様では、撮像領域内に指標2091を配置し、その像の大きさに基づいて画素領域が決定されることを特徴とする。 FIG. 25 is a block configuration diagram of the scatterer internal observation device according to the second mode of the side surface 2. In this aspect, an index 2091 is arranged in the imaging region, and the pixel region is determined based on the size of the image.
 指標2091は、実際の指標の大きさと撮像された2次元画像中での指標の大きさとの関係に基づいて、散乱体2008上の所望の後方散乱光検出領域に対応した適切な画素領域を2次元画像上で選択できるようにするために使用される。従って、指標2091は、後方散乱光検出領域と共に同一の2次元画像に撮像される必要があり、そのためには撮像領域内に配置される必要がある。指標としては、例えば、予め大きさが測定された処置具の一部または測距用の治具を使用することができる。 Based on the relationship between the actual size of the index and the size of the index in the captured two-dimensional image, the index 2091 is an appropriate pixel area corresponding to a desired backscattered light detection area on the scatterer 2008. Used to allow selection on a dimensional image. Therefore, the indicator 2091 needs to be imaged in the same two-dimensional image together with the backscattered light detection region, and for that purpose, it needs to be arranged in the imaging region. As the index, for example, a part of a treatment instrument whose size is measured in advance or a jig for distance measurement can be used.
 図26は、側面2の第2態様に係る散乱体内部観察装置により得られる2次元画像を示す概念図である。図26(b)は、図26(a)よりも撮像素子と散乱体との距離が短く、撮像領域が狭い場合の図である。図26(b)のように撮像領域が狭い場合、指標は大きく写され、同一の後方散乱光検出領域を示す画素領域も大きくなる。このように撮像素子と散乱体との距離が一定でない画像が得られた場合であっても、指標の実際の大きさと画像中の像の大きさとの関係に基づいて、所望の後方散乱光検出領域に対応する適切な画素領域を2次元画像上で選択することができる。また、画像間の指標の大きさを比較することにより、撮像領域が異なる複数の画像が得られた場合であっても、同一深度の情報を示す画素領域を選択することができる。結果として、撮影距離に合わせた画像処理が可能となる。すなわち、異なる撮影距離で撮像された画像であっても、一定の深度における画像データをそれぞれ選択的に取り出すことができ、一定深度における断層画像を作成することができる。 FIG. 26 is a conceptual diagram showing a two-dimensional image obtained by the scatterer internal observation device according to the second mode of the side surface 2. FIG. 26B is a diagram in the case where the distance between the imaging element and the scatterer is shorter than that in FIG. When the imaging area is narrow as shown in FIG. 26B, the index is enlarged, and the pixel area indicating the same backscattered light detection area is also enlarged. Even when an image with a non-constant distance between the image sensor and the scatterer is obtained in this way, the desired backscattered light detection is performed based on the relationship between the actual size of the index and the size of the image in the image. An appropriate pixel region corresponding to the region can be selected on the two-dimensional image. Further, by comparing the size of the index between images, even when a plurality of images having different imaging areas are obtained, pixel areas indicating information of the same depth can be selected. As a result, it is possible to perform image processing in accordance with the shooting distance. That is, even for images taken at different shooting distances, image data at a certain depth can be selectively extracted, and a tomographic image at a certain depth can be created.
 また、予め大きさが測定された指標を使用することにより、2次元画像データ上の特定の画素領域を基に、対応する散乱体上の後方散乱光検出領域を解析することも可能である。その後方散乱光検出領域と光照射位置との距離から、観察対象の位置情報を解析することができる。 Also, by using an index whose size is measured in advance, it is possible to analyze the backscattered light detection region on the corresponding scatterer based on a specific pixel region on the two-dimensional image data. The position information of the observation target can be analyzed from the distance between the backward scattered light detection region and the light irradiation position.
 他の解析手段として、照射される光の画像内での強度分布の情報に基づいて画素領域を決定することもできる。 As another analysis means, the pixel region can be determined based on the information of the intensity distribution in the image of the irradiated light.
 例えば、レーザー光をある一定の対象に照射した場合、図27に示すような強度プロファイルを示すことが既知である。図27において、グラフの縦軸はレーザー光の強度を示す。すなわち、光の強さはビーム中心で最も高く、外側に移動するにつれて弱くなり、裾野が広がった釣り鐘状の強度分布をなす。このような分布は、ガウシアン分布と呼ばれ、レーザーの空間強度分布として標準的なものである。 For example, when a certain target is irradiated with laser light, it is known to show an intensity profile as shown in FIG. In FIG. 27, the vertical axis of the graph indicates the intensity of the laser beam. In other words, the intensity of light is highest at the center of the beam, becomes weaker as it moves outward, and forms a bell-shaped intensity distribution with an expanded base. Such a distribution is called a Gaussian distribution and is a standard laser spatial intensity distribution.
 本態様においては、図27のように、予めビーム強度が分かっている光源を利用して点照射画像の強度プロファイルを作成しておく。i1/i0およびi2/i0が常に一定になるようにr1およびr2を決定して画素領域を定めることにより、複数の画像を解析する場合であっても同じ深度の画像を切り出すことができる。この手法を用いることで、撮影距離が不明であっても適切な画素領域を選択することができ、一定深度における断層画像を作成することが可能になる。 In this embodiment, as shown in FIG. 27, an intensity profile of a point irradiation image is created using a light source whose beam intensity is known in advance. By determining r1 and r2 and determining a pixel region so that i1 / i0 and i2 / i0 are always constant, an image with the same depth can be cut out even when analyzing a plurality of images. By using this method, it is possible to select an appropriate pixel region even when the photographing distance is unknown, and it is possible to create a tomographic image at a constant depth.
 側面2の散乱体内部観察装置は、より効率的に検出を行うために、以下のように変形することも可能である。図28~30においては省略するが、いずれの装置も、測距手段を備えるか、指標を使用するか、または光の強度分布を利用して解析を行うものとする。 The scatterer internal observation device on the side surface 2 can be modified as follows in order to perform detection more efficiently. Although not shown in FIGS. 28 to 30, all the devices are provided with distance measuring means, use an index, or perform analysis using light intensity distribution.
 図28~30は、側面2に係る散乱体内部観察装置の変形例を表すブロック図である。図28は、スポット状の照明光を発する光照射手段2120が複数備えられた装置である。図29は、ライン状の照明光を発する光照射手段2130が備えられた装置である。図30は、ライン上の照明光を発する光照射手段2140が複数備えられた装置である。これらの変形例によれば、一度の測定で多くのデータを検出することができ、測定時間をより短縮することができる。なお、ライン状の照明光は光強度が均一であることが好ましい。あるいは、光の強度に応じて補正を行う手段を備えることが好ましい。また、光照射手段が複数備えられる場合、各光照射手段は、それぞれの光によって得られる検出データが互いに干渉しない程度離れた位置に配置される。 28 to 30 are block diagrams showing modifications of the scatterer internal observation device according to the side surface 2. FIG. 28 shows an apparatus provided with a plurality of light irradiation means 2120 for emitting spot-like illumination light. FIG. 29 shows an apparatus provided with light irradiation means 2130 that emits line-shaped illumination light. FIG. 30 shows an apparatus provided with a plurality of light irradiation means 2140 for emitting illumination light on the line. According to these modified examples, a large amount of data can be detected by one measurement, and the measurement time can be further shortened. The line-shaped illumination light preferably has a uniform light intensity. Alternatively, it is preferable to provide means for performing correction according to the light intensity. When a plurality of light irradiating means are provided, the light irradiating means are arranged at positions separated so that detection data obtained by the respective lights do not interfere with each other.
 以上説明したように、側面2では検出されるデータが2次元画像データであるため、照射位置から任意の距離だけ離れた位置のデータを自由に選択することができる。それ故、照射位置および検出位置を設定する際の自由度が高い。また、一度の計測でより多くの情報を取得することができる。測距手段を備えている、指標を使用する、または光強度分布を利用することにより、得られた2次元画像データの中から、散乱体上の所望の後方散乱光検出領域に対応した適切な画素領域を選択することが可能である。その上、散乱体と非接触で計測を行うため、より広い領域を一度に計測することができ、深部の情報も簡便に取得することができる。そのため装置を大型化する必要がない。さらに、照射位置および検出位置の自由度が高いため、所望の位置の任意の深度における情報を容易に得ることができる。 As described above, since the data detected on the side surface 2 is two-dimensional image data, data at a position separated from the irradiation position by an arbitrary distance can be freely selected. Therefore, the degree of freedom when setting the irradiation position and the detection position is high. Moreover, more information can be acquired by one measurement. By providing a distance measuring means, using an index, or utilizing a light intensity distribution, an appropriate one corresponding to a desired backscattered light detection region on the scatterer is obtained from the obtained two-dimensional image data. It is possible to select a pixel region. In addition, since measurement is performed in a non-contact manner with the scatterer, a wider area can be measured at a time, and deep information can be easily obtained. Therefore, it is not necessary to enlarge the apparatus. Furthermore, since the degree of freedom of the irradiation position and the detection position is high, information at an arbitrary depth at a desired position can be easily obtained.
 側面2は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The side surface 2 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 以上の説明によれば、側面2は以下に示すように表現される発明であると理解できる。 According to the above description, it can be understood that the side surface 2 is an invention expressed as shown below.
 12.散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、
 前記光照射手段により前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を、複数の画素を含んでなる撮像面を用いて2次元画像として撮像する撮像手段と、
 前記散乱体の表面において前記光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光を前記撮像手段により検出するために、前記後方散乱光検出領域から放出された散乱光が入射する前記撮像面上の画素で構成される画素領域を、前記2次元画像において決定する画素領域決定手段と、
 前記画素領域を構成する各画素からの光強度情報から、前記散乱体内部の断層画像を構築する画像構築手段とを備える散乱体内部観察装置。
12 A light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium;
Imaging means for imaging backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface by the light irradiation means as a two-dimensional image using an imaging surface including a plurality of pixels;
Scattering emitted from the backscattered light detection region in order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer by the imaging means. Pixel area determination means for determining a pixel area composed of pixels on the imaging surface on which light is incident in the two-dimensional image;
A scatterer internal observation device comprising: image construction means for constructing a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel region.
 13.前記画素領域決定手段は、撮像素子先端から散乱体までの距離を測定する測距手段により測定された距離に基づいて画素領域が決定されることを特徴とする、前記12.に記載の散乱体内部観察装置。 13. 12. The pixel region is determined based on a distance measured by a distance measuring unit that measures a distance from the front end of the image sensor to a scatterer. The scatterer internal observation apparatus as described in 1 ..
 14.前記画素領域決定手段は、前記撮像手段で撮像される範囲内に配置された指標の像の大きさに基づいて画素領域が決定されることを特徴とする、前記12.に記載の散乱体内部観察装置。 14. 12. The pixel area determining unit is configured to determine a pixel area based on a size of an index image arranged within a range imaged by the imaging unit. The scatterer internal observation apparatus as described in 1 ..
 15.前記指標は処置具の一部である、前記14.に記載の散乱体内部観察装置。 15. 14. The indicator is a part of a treatment instrument. The scatterer internal observation apparatus as described in any one of.
 16.前記画素領域決定手段は、照射される光の画像内での強度分布の情報に基づいて前記画素領域が決定されることを特徴とする、前記12.に記載の散乱体内部観察装置。 16. 12. The pixel region determination unit, wherein the pixel region is determined based on information on an intensity distribution in an image of irradiated light. The scatterer internal observation apparatus as described in any one of.
 17.散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、
 前記光照射手段により前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を、複数の画素を含んでなる撮像面を用いて2次元画像として撮像する工程と、
 前記散乱体の表面において前記光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光を前記撮像手段により検出するために、前記後方散乱光検出領域から放出された散乱光が入射する前記撮像面上の画素で構成される画素領域を、前記2次元画像において決定する工程と、
 前記画素領域を構成する各画素からの光強度情報から、前記散乱体内部の断層画像を構築する工程とを含む散乱体内部観察方法。
17. Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium;
Imaging the backscattered light of the light irradiated to an arbitrary light irradiation position on the scatterer surface by the light irradiation means as a two-dimensional image using an imaging surface including a plurality of pixels;
Scattering emitted from the backscattered light detection region in order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer by the imaging means. Determining, in the two-dimensional image, a pixel region composed of pixels on the imaging surface on which light is incident;
A scatterer internal observation method including a step of constructing a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel region.
<側面3>
 側面3は、散乱体による後方散乱光を計測することにより散乱体内部を観測する装置及び方法に関する。
<Side 3>
The side surface 3 relates to an apparatus and a method for observing the inside of the scatterer by measuring backscattered light from the scatterer.
〔背景技術〕
 生体等の散乱体の内部を観測するには様々な手法がある。その一つである光を用いた観測は、用いる光の波長を選択することにより特定の対象を観測できるという利点を有している。この手法では、特定の対象(異質部分)に吸収される波長の光を散乱体に照射し、その後方散乱光強度を計測することにより、散乱体内部に存在する異質部分の位置と深度情報を得ることができる。後方散乱光は、照射位置と計測位置との距離が大きくなるほど、散乱体のより深部を通ってきた光であることが知られている。
[Background Technology]
There are various methods for observing the inside of a scatterer such as a living body. One of the observations using light has the advantage that a specific object can be observed by selecting the wavelength of the light to be used. This method irradiates the scatterer with light of a wavelength that is absorbed by a specific target (heterogeneous portion), and measures the intensity of the backscattered light to obtain the position and depth information of the alien portion present inside the scatterer. Obtainable. It is known that the backscattered light is light that has passed deeper in the scatterer as the distance between the irradiation position and the measurement position increases.
 特開2006-200943号公報には、光照射手段の位置から順次遠ざかる位置に複数の光検出手段を備えた構成を有する生体光観測装置が開示されている。また、該装置による計測結果に基づいて、生体の断層画像を再構成する手段も開示されている。 Japanese Unexamined Patent Application Publication No. 2006-200943 discloses a biological light observation apparatus having a configuration in which a plurality of light detection means are provided at positions that are sequentially away from the position of the light irradiation means. Also disclosed is a means for reconstructing a tomographic image of a living body based on a measurement result obtained by the apparatus.
〔発明が解決しようとする課題〕
 上記のような従来の装置では光照射手段と光検出手段が一体に構成されているために、照射位置と検出位置との距離が固定されている。そのため、任意の深度で観測を行うことができないという問題がある。また、従来は不必要な後方散乱光をも検出しており、検出データに無駄が多いという問題がある。
[Problems to be Solved by the Invention]
In the conventional apparatus as described above, since the light irradiation means and the light detection means are integrally formed, the distance between the irradiation position and the detection position is fixed. Therefore, there is a problem that observation cannot be performed at an arbitrary depth. Further, conventionally, unnecessary backscattered light is also detected, and there is a problem that detection data is wasteful.
 上記問題に鑑み、側面3では、任意の深度からの後方散乱光を効率的に取得することが可能な散乱体内部観測装置及び方法を提供すること目的とする。 In view of the above problems, an object of the side surface 3 is to provide a scatterer internal observation device and method capable of efficiently acquiring backscattered light from an arbitrary depth.
〔課題を解決するための手段〕
 側面3によれば、散乱体内部の異質部分(すなわち観察対象)の情報を取得する散乱体内部観測装置であって、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段(すなわち光照射手段)と、前記散乱体を撮像する撮像素子と、該撮像素子が撮像する検出範囲を限定する撮像光学系と、該検出範囲に所望の領域が含まれるように調節する検出範囲可変機構を含み、前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、前記検出手段により取得された光強度データを解析し、前記検出範囲可変機構を制御する解析/制御手段と、前記検出手段により取得された光強度データから、前記散乱体内部の任意の深度における断層画像を作製する画像処理手段(すなわち画像構築手段)とを具備することを特徴とする散乱体内部観測装置(すなわち散乱体内部観察装置)、並びに、該装置を用いた散乱体内部観測方法(すなわち散乱体内部観察方法)が提供される。
[Means for solving the problems]
According to the aspect 3, it is a scatterer internal observation device that acquires information on a heterogeneous portion (that is, an observation target) inside the scatterer, and has different optical characteristics between the scattering medium constituting the scatterer and the heterogeneous portion. Illuminating means for irradiating the scatterer with light containing at least light (i.e., light irradiating means), an imaging element that images the scatterer, an imaging optical system that limits a detection range captured by the imaging element, and the detection range A detection range variable mechanism that adjusts so that a desired region is included, detecting back scattered light of the light irradiated by the illumination unit, and obtaining light intensity data of the back scattered light, and Analyzing the light intensity data acquired by the detecting means and controlling the detection range variable mechanism, and from the light intensity data acquired by the detecting means to an arbitrary depth inside the scatterer A scatterer internal observation device (that is, a scatterer internal observation device), and an scatterer internal observation method using the device. (That is, a scatterer internal observation method) is provided.
〔発明の効果〕
 側面3によれば、後方散乱光を2次元画像として検出し、さらに、後方散乱光を検出する範囲を調節することにより、任意の深度の情報を簡便且つ効率良く取得することができる。
〔The invention's effect〕
According to the side surface 3, by detecting the backscattered light as a two-dimensional image and further adjusting the range in which the backscattered light is detected, information at an arbitrary depth can be acquired easily and efficiently.
〔発明を実施するための最良の形態〕
 以下、側面3の散乱体内部観測装置及び該装置を用いた観測方法について説明する。側面3において、散乱体とは、主に散乱媒質から構成される物体を指し、例として生体が挙げられる。散乱媒質とは、少なくとも光を散乱する性質を示し、吸収よりも散乱のほうが支配的であるものである。
[Best Mode for Carrying Out the Invention]
Hereinafter, a scatterer internal observation device on the side surface 3 and an observation method using the device will be described. In the side surface 3, a scatterer refers to an object mainly composed of a scattering medium, and a living body can be mentioned as an example. The scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
 側面3の散乱体内部観測装置は、散乱体内部の散乱媒質中に存在する異質部分を観測するための装置である。側面3において異質部分とは、透過率、屈折率、反射率、散乱係数、吸収係数などの光学特性が散乱媒質と異なるものである。例として血管が挙げられるが、これに限定されない。 The scatterer internal observation device on the side surface 3 is a device for observing a heterogeneous portion existing in a scattering medium inside the scatterer. The heterogeneous portion in the side surface 3 is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
 以下、側面3の実施形態を図面に従って説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。  
 (第1実施形態)  
 図31は側面3の第1実施形態に係る散乱体内部観測装置3100の概略機能ブロック図である。同図に示すように、散乱体内部観測装置3100は、照明手段3101、検出手段3102、解析/制御部3103、画像処理部3107を備える。
Hereinafter, an embodiment of the side surface 3 will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
(First embodiment)
FIG. 31 is a schematic functional block diagram of the scatterer internal observation device 3100 according to the first embodiment of the side surface 3. As shown in the drawing, the scatterer internal observation device 3100 includes an illumination unit 3101, a detection unit 3102, an analysis / control unit 3103, and an image processing unit 3107.
 照明手段3101は、散乱媒質と異質部分とで光学特性の異なる波長を少なくとも含む光を発生し、散乱体に照射する手段である。本実施形態の散乱体内部観測装置3100は、図31に示すように、光源3101aと、発生された光を導光するための光ファイバーを用いた導光体3101bと、光ファイバーにより伝播され射出される発散光を限定された領域に照射するために細い平行の光束に変換する集光体3101cによって構成される照明手段3101を具備する。この時、集光体3101cにより、光束を細い平行状にすることに限らず、狭い範囲を照明するために集光しても良いし、広い範囲を照明するための集光体を用意しても良い。照明手段3101は解析/制御部3103からの制御信号に基づいて光を散乱体Sに向けて照射する。なお、集光体3101cによって光が照射される散乱体表面上の領域を照明範囲と称し、図31では符合3104の矢印で示される範囲である。 The illumination unit 3101 is a unit that generates light including at least wavelengths having different optical characteristics between the scattering medium and the extraneous portion and irradiates the scatterer. As shown in FIG. 31, the scatterer internal observation device 3100 of the present embodiment is propagated and emitted by a light source 3101a, a light guide 3101b using an optical fiber for guiding generated light, and the optical fiber. An illuminating unit 3101 configured by a condensing body 3101c that converts a divergent light into a narrow parallel light beam in order to irradiate a limited area is provided. At this time, the light collecting body 3101c is not limited to making the light beam into a thin parallel shape, but may be condensed to illuminate a narrow range, or a light collecting body for illuminating a wide range is prepared. Also good. The illumination unit 3101 irradiates light toward the scatterer S based on a control signal from the analysis / control unit 3103. Note that an area on the surface of the scatterer irradiated with light by the condenser 3101c is referred to as an illumination range, and is a range indicated by an arrow 3104 in FIG.
 光源3101aには、散乱媒質と異質部分で光学特性の異なる波長の光を発生するものが用いられる。この時、散乱媒質や異質部分の光学特性が分かっており、上記特性を有する特性の波長が特定できている場合は、その波長に急峻なピークを持つような波長分布を取る光源3101aを選択することが最も望ましいが、これに限定されず、散乱媒質と異質部分で光学特性が異なることが特定できた波長を含めば、波長幅の広い光源を用いても良い。一方、散乱媒質や異質部分の光学特性が分かっていない場合には、散乱媒質と異質部分で光学特性が異なる波長をなるべく含むようにより波長幅の広い光源を選択すると良い。導光体3101bには、光ファイバーが好適に用いられるが、これに限定されず、リレーレンズによって構成することもできる。集光体3101cにはレンズが好適に用いられるがこれに限定されず、ミラーによって構成してもよい。或いは、プリズムや回折格子で構成してもよい。 As the light source 3101a, a light source that generates light having a wavelength different from that of the scattering medium and a different part is used. At this time, when the optical characteristics of the scattering medium and the extraneous portion are known and the wavelength having the characteristics described above can be specified, the light source 3101a having a wavelength distribution having a sharp peak at the wavelength is selected. However, the present invention is not limited to this, and a light source having a wide wavelength range may be used as long as it includes a wavelength that can be specified to have different optical characteristics between a scattering medium and a heterogeneous portion. On the other hand, when the optical characteristics of the scattering medium and the extraneous portion are not known, it is preferable to select a light source having a wider wavelength width so as to include wavelengths having different optical characteristics between the scattering medium and the extraneous portion as much as possible. An optical fiber is preferably used for the light guide 3101b, but the light guide 3101b is not limited to this, and may be configured by a relay lens. Although a lens is suitably used for the light condensing body 3101c, it is not limited to this, You may comprise by a mirror. Or you may comprise with a prism or a diffraction grating.
 或いは、光源として予め光束を絞ったレーザ光等を使用し、集光体3101cを用いなくともよい。また或いは、集光体3101cを用いる代わりにマスク等により、照明範囲を限定してもよい。 Alternatively, it is not necessary to use a condensing body 3101c by using a laser beam or the like with a light beam focused in advance as a light source. Alternatively, the illumination range may be limited by a mask or the like instead of using the light collector 3101c.
 検出手段3102は、照明手段3101により発せられる光の波長を含む波長帯に感度を有し、散乱体表面上から出射される後方散乱光を検出して、その光強度データを取得する手段である。本実施形態の散乱体内部観測装置3100は、光源3101aより発せられる光の波長を含む波長帯域に感度を有し、散乱体の表面から出射される後方散乱光を撮像する撮像素子3102aと、該撮像素子が撮像する検出範囲3105を限定する撮像光学系3102bと、該検出範囲3105に所望の領域3106が含まれるように調節する検出範囲可変機構3102cによって構成される検出手段3102を具備する。 The detection means 3102 is a means having sensitivity in a wavelength band including the wavelength of light emitted by the illumination means 3101, detecting backscattered light emitted from the scatterer surface, and acquiring the light intensity data. . The scatterer internal observation device 3100 of the present embodiment is sensitive to a wavelength band including the wavelength of light emitted from the light source 3101a, and has an imaging element 3102a that images backscattered light emitted from the surface of the scatterer, An imaging optical system 3102b that limits a detection range 3105 captured by the image sensor and a detection means 3102 that includes a detection range variable mechanism 3102c that adjusts the detection range 3105 to include a desired region 3106 are provided.
 所望の領域3106とは、所望の深度についての後方散乱光が出射される散乱体表面上の領域を意味し、検出領域とも称する。その模式図を図32に示す。図32は、散乱体Sの表面を上面から見た図である。照明手段3101から発せられた光は散乱体Sの表面上の照明範囲3104を照射し、照明された光は散乱体内を伝播して散乱体表面から射出する。照明手段に点照明が用いられる場合、後方散乱光は一般に同心円状に伝播する。例えば、ある深度の断層画像を作製しようとする場合、照明位置からその深度と対応する距離を隔てた位置において後方散乱光を検出する必要がある。従って、後方散乱光を検出する領域は、図32符合3106で示す斜線領域のようにリング形状となる。 Desired region 3106 means a region on the scatterer surface where backscattered light with a desired depth is emitted, and is also referred to as a detection region. A schematic diagram thereof is shown in FIG. FIG. 32 is a view of the surface of the scatterer S as viewed from above. The light emitted from the illumination means 3101 illuminates the illumination range 3104 on the surface of the scatterer S, and the illuminated light propagates through the scatterer and exits from the scatterer surface. When point illumination is used for the illumination means, the backscattered light generally propagates concentrically. For example, when a tomographic image of a certain depth is to be produced, it is necessary to detect backscattered light at a position separated from the illumination position by a distance corresponding to the depth. Therefore, the region for detecting the backscattered light has a ring shape like a hatched region indicated by reference numeral 3106 in FIG.
 そこで、側面3の観測装置に具備される検出範囲可変機構3102cは、検出範囲3105が所望の領域3106を無駄なく含むように調節する。検出範囲可変機構3102cは、例えば光学系であってよく、ズームレンズなどであってよいが、これらに限定されない。検出範囲可変機構3102cによって、検出範囲が調節されることにより、不要な後方散乱光の検出が減少され、検出やデータ解析の効率を向上させることができる。 Therefore, the detection range variable mechanism 3102c included in the observation device on the side surface 3 adjusts so that the detection range 3105 includes the desired region 3106 without waste. The detection range variable mechanism 3102c may be, for example, an optical system or a zoom lens, but is not limited thereto. By adjusting the detection range by the detection range variable mechanism 3102c, detection of unnecessary backscattered light is reduced, and the efficiency of detection and data analysis can be improved.
 本実施形態の散乱体内部観測装置において、撮像素子3102aには、複数点を同時に検出するCCD等のような撮像素子を用いることができる。また、撮像光学系3102bには、例えばレンズ等を用いることができる。 In the scatterer internal observation apparatus of the present embodiment, an image sensor such as a CCD that simultaneously detects a plurality of points can be used as the image sensor 3102a. For the imaging optical system 3102b, for example, a lens or the like can be used.
 解析/制御部3103は、検出手段3102により取得された光強度データを解析し、解析結果に基づいて、撮像素子3102a及び検出範囲可変機構3102cを制御する手段である。解析/制御部3103は、解析のための適宜のソフトウェアが予めインストールされているコンピュータ等の制御装置が好適に用いられる。なお、図31では、解析/制御部3103は、撮像素子3102a及び検出範囲可変機構3102cの両者を制御するように構成されているが、これに限定されず、検出範囲可変機構3102cを制御するための第2制御部を備え、解析/制御部3103からこの第2制御部に信号が伝達され、それに基づいて、第2制御部が検出範囲可変機構3102cを制御する構成であってもよい。 The analysis / control unit 3103 is a unit that analyzes the light intensity data acquired by the detection unit 3102 and controls the image sensor 3102a and the detection range variable mechanism 3102c based on the analysis result. As the analysis / control unit 3103, a control device such as a computer in which appropriate software for analysis is installed in advance is preferably used. In FIG. 31, the analysis / control unit 3103 is configured to control both the image sensor 3102a and the detection range variable mechanism 3102c, but is not limited thereto, and controls the detection range variable mechanism 3102c. The second control unit may be configured such that a signal is transmitted from the analysis / control unit 3103 to the second control unit, and the second control unit controls the detection range variable mechanism 3102c based on the signal.
 画像処理部3107は、検出手段3102により取得された光強度データに基づいて、散乱体内部の任意の深度における断層画像を作製する手段である。 The image processing unit 3107 is a unit that creates a tomographic image at an arbitrary depth inside the scatterer based on the light intensity data acquired by the detection unit 3102.
 本実施形態に係る散乱体内部観測装置3100はさらに、表示部3108及び入力部3109を備えることができる。表示部3108は、撮像素子3102aによって撮像された光強度データの2次元画像や、画像処理部3107によって作製された断層画像を表示する手段であり、例えばモニターなどを用いることができる。入力部3109は、照明、検出または表示方法などの指令を入力する手段であり、例えばキーボードなどが用いられるがこれに限定されない。 The scatterer internal observation device 3100 according to the present embodiment may further include a display unit 3108 and an input unit 3109. The display unit 3108 is a means for displaying a two-dimensional image of light intensity data captured by the image sensor 3102a and a tomographic image created by the image processing unit 3107. For example, a monitor or the like can be used. The input unit 3109 is a means for inputting commands such as illumination, detection, or display method. For example, a keyboard is used, but the present invention is not limited thereto.
 上記の照明手段3101、検出手段3102、解析/制御部3103、画像処理部3107、表示部3108及び入力部3109は、電気信号が伝送される信号回路によって互いに接続されてよい。図31において、表示部3108は画像処理部3107と接続され、入力部3109は解析/制御部3103と接続されているが、これに限定されず、接続関係は適宜変更可能である。 The illumination unit 3101, the detection unit 3102, the analysis / control unit 3103, the image processing unit 3107, the display unit 3108, and the input unit 3109 may be connected to each other by a signal circuit that transmits an electrical signal. In FIG. 31, the display unit 3108 is connected to the image processing unit 3107, and the input unit 3109 is connected to the analysis / control unit 3103. However, the present invention is not limited to this, and the connection relationship can be changed as appropriate.
 本実施形態に係る散乱体内部観測装置3100の作用を説明する。 The operation of the scatterer internal observation device 3100 according to this embodiment will be described.
 まず、照明手段3101から散乱体に光を照射する。この照射光は散乱体S内部の散乱媒質により反射、散乱、吸収され、後方散乱光となる。この後方散乱光を検出手段3102が2次元画像として検出し、光強度データを取得する。 First, light is irradiated from the illumination means 3101 to the scatterer. This irradiation light is reflected, scattered and absorbed by the scattering medium inside the scatterer S, and becomes backscattered light. The detection means 3102 detects this backscattered light as a two-dimensional image, and acquires light intensity data.
 次いで、取得された光強度データを解析し、散乱体表面上の所望の領域(検出領域)3106を決定する。検出領域の決定は、後述するように、予め解析/制御部3103に記憶された設定に基づいて自動で行われてもよく、或いは、表示部3108に光強度データの2次元画像を表示させ、使用者がその場で領域を決定してもよい。検出領域3106は、観測したい深度や、得られる断層画像の精度などによって決定される。 Next, the obtained light intensity data is analyzed to determine a desired region (detection region) 3106 on the scatterer surface. As will be described later, the detection area may be automatically determined based on the setting stored in the analysis / control unit 3103 in advance, or the display unit 3108 may display a two-dimensional image of the light intensity data, The user may determine the area on the spot. The detection area 3106 is determined by the depth to be observed, the accuracy of the tomographic image obtained, and the like.
 検出領域3106が決定されると、その結果に基づいた信号が解析/制御部3103から検出範囲可変機構3102cに送信される。検出範囲可変機構3102cは信号に基づいて検出範囲3105を調節する。その結果、検出領域3106は検出範囲3105を無駄なく含むように調節される。 When the detection region 3106 is determined, a signal based on the result is transmitted from the analysis / control unit 3103 to the detection range variable mechanism 3102c. The detection range variable mechanism 3102c adjusts the detection range 3105 based on the signal. As a result, the detection area 3106 is adjusted to include the detection range 3105 without waste.
 次いで、決定された検出範囲内3105において、再び後方散乱光を検出し、光強度データを取得する。これにより取得された光強度データを解析し、画像処理部3107において、断層画像が作製される。作製された断層画像は、表示部3108により表示される。 Next, backscattered light is detected again within the determined detection range 3105, and light intensity data is acquired. The acquired light intensity data is analyzed, and a tomographic image is created in the image processing unit 3107. The produced tomographic image is displayed on the display unit 3108.
 以上説明したように、側面3の散乱体内部観測装置によれば、所望の検出領域を含む検出範囲を決定し、その範囲内で検出を行うことにより、効率的にデータを取得することができる。また、解析するデータ量が低減されるため、解析時間を短縮することもできる。 As described above, according to the scatterer internal observation device on the side surface 3, it is possible to efficiently acquire data by determining a detection range including a desired detection region and performing detection within that range. . Further, since the amount of data to be analyzed is reduced, the analysis time can be shortened.
 (第2実施形態)  
 次に、側面3の第2実施形態を説明する。図33は、第2実施形態に係る散乱体内部観測3110の概略機能ブロック図である。本実施形態に係る散乱体内部観測装置3110は、上記第1実施形態の散乱体内部観測装置3100と同様の構成に加えて、さらに、検出部3102にスキャンミラー3111を備える。
(Second Embodiment)
Next, a second embodiment of the side surface 3 will be described. FIG. 33 is a schematic functional block diagram of the scatterer internal observation 3110 according to the second embodiment. The scatterer internal observation device 3110 according to this embodiment includes a scan mirror 3111 in the detection unit 3102 in addition to the same configuration as the scatterer internal observation device 3100 of the first embodiment.
 スキャンミラー3111は、解析/制御部3103からの信号に基づき、散乱体表面上の検出範囲3105を移動させる。本実施形態に係る散乱体内部観測装置3110は、スキャンミラー3111を備えることにより、検出範囲3105を撮像素子の視野内の任意の位置に移動させることができる。 The scan mirror 3111 moves the detection range 3105 on the scatterer surface based on the signal from the analysis / control unit 3103. The scatterer internal observation device 3110 according to the present embodiment includes the scan mirror 3111 and can move the detection range 3105 to an arbitrary position within the field of view of the image sensor.
 (第3実施形態)  
 次に、側面3の第3実施形態を説明する。図34は、第3実施形態に係る散乱体内部観測3200の概略機能ブロック図である。第3実施形態に係る散乱体内部観測3200は、上記第1実施形態に係る散乱体内部観測装置と基本的に同様の構成を有し、照明手段3201、検出手段3202、解析/制御部3203、画像処理部3207、表示部3208及び入力部3209を備える。
(Third embodiment)
Next, a third embodiment of the side surface 3 will be described. FIG. 34 is a schematic functional block diagram of the scatterer internal observation 3200 according to the third embodiment. The scatterer internal observation 3200 according to the third embodiment has basically the same configuration as the scatterer internal observation device according to the first embodiment, and includes an illumination unit 3201, a detection unit 3202, an analysis / control unit 3203, An image processing unit 3207, a display unit 3208, and an input unit 3209 are provided.
 本実施形態に係る散乱体内部観測装置3200は上記構成に加えて、照明手段に照明用スキャンミラー(すなわち照射用スキャンミラー)3212が備えられ、検出手段に検出用スキャンミラー3211が備えられる。 In addition to the above configuration, the scatterer internal observation device 3200 according to the present embodiment includes an illumination scan mirror (that is, an irradiation scan mirror) 3212 in the illumination unit, and a detection scan mirror 3211 in the detection unit.
 さらに、本実施形態に係る散乱体内部観測装置3200は、スキャンミラー3211及び3212を制御するための走査制御部3213を備える。 Furthermore, the scatterer internal observation device 3200 according to this embodiment includes a scan control unit 3213 for controlling the scan mirrors 3211 and 3212.
 スキャンミラーは、ミラーの角度を変化させることにより、検出範囲や照明範囲を散乱体表面上で任意に移動させることができる。本実施形態に係る散乱体内部観測装置3200は、スキャンミラーを備えることにより、検出範囲3105が検出領域3106を含むように、検出範囲3105を移動させることができると共に、照明範囲3104や検出範囲3105を走査させることができる。 The scan mirror can arbitrarily move the detection range and illumination range on the scatterer surface by changing the angle of the mirror. The scatterer internal observation device 3200 according to the present embodiment includes a scan mirror so that the detection range 3105 can be moved so that the detection range 3105 includes the detection region 3106, and the illumination range 3104 and the detection range 3105 are also included. Can be scanned.
 本実施形態に係る散乱体内部観測装置3200は、照明範囲3104及び検出範囲3105が走査可能であるため、観測装置本体を動かすことなく、多数の測定点で検出を行うことができる。よって、より簡便に多くの光強度データを取得することができ、簡便且つ短時間で断層画像を得ることができる。 Since the scatterer internal observation device 3200 according to the present embodiment can scan the illumination range 3104 and the detection range 3105, detection can be performed at a large number of measurement points without moving the observation device body. Therefore, more light intensity data can be acquired more easily, and a tomographic image can be acquired easily and in a short time.
 照明用スキャンミラー3212及び検出用スキャンミラー3211は、走査制御部3213によって制御される。走査制御部3213は、解析/制御部3103からの信号に基づいて、それぞれのスキャンミラーを制御する。走査制御部3213は、好ましくは、照明範囲3104と検出範囲3105が散乱体表面上で一定の位置関係を維持したまま走査されるように、両スキャンミラーを連動して制御する。両スキャンミラーを連動して制御することにより、走査の間、一定の条件で検出を行うことができる。 The scanning mirror 3212 for illumination and the scanning mirror 3211 for detection are controlled by a scanning control unit 3213. The scan control unit 3213 controls each scan mirror based on the signal from the analysis / control unit 3103. The scan control unit 3213 preferably controls both the scan mirrors so that the illumination range 3104 and the detection range 3105 are scanned while maintaining a certain positional relationship on the scatterer surface. By controlling both scan mirrors in conjunction with each other, detection can be performed under certain conditions during scanning.
 スキャンミラーは、走査用に通常使用されるミラーを用いればよく、例えば、ガルバノミラー、ポリゴンミラー、MEMSミラーなどを用いることができる。ガルバノミラーやポリゴンミラーのように2枚のミラーを用いるスキャンミラーは、安価であり、制御が容易である。一方、MEMSミラーは制御が難しいが、構成を単純化できる。 As the scan mirror, a mirror usually used for scanning may be used. For example, a galvano mirror, a polygon mirror, a MEMS mirror, or the like can be used. A scan mirror using two mirrors such as a galvano mirror or a polygon mirror is inexpensive and easy to control. On the other hand, the MEMS mirror is difficult to control, but the configuration can be simplified.
 本実施形態に係る散乱体内部観測装置3200の作用を説明する。 The operation of the scatterer internal observation device 3200 according to this embodiment will be described.
 まず、上記第1実施形態について説明したように、検出領域を決定する。その結果に基づき、解析/制御部3203がスキャンミラー3211及び検出範囲可変機構3202cを制御し、該検出領域が含まれるように検出範囲を調節する。 First, as described in the first embodiment, a detection area is determined. Based on the result, the analysis / control unit 3203 controls the scan mirror 3211 and the detection range variable mechanism 3202c to adjust the detection range so that the detection region is included.
 以上の工程によって、検出手段が検出範囲3105を捉えると、照明用スキャンミラー3212と検出用スキャンミラー3211の角度を変化させて走査しながら、後方散乱光の検出を行う。走査は、解析/制御部3203からの信号に従って、走査制御部3213がスキャンミラー3211及び3212を制御し、照明範囲3104と検出範囲3105を移動させることによって行われる。走査の際には、照明範囲3104と検出範囲3105が散乱体表面で一定の位置関係を維持されように、照明用スキャンミラー3212と検出用スキャンミラー3211が連動して制御される。 When the detection means captures the detection range 3105 through the above steps, the backscattered light is detected while scanning while changing the angles of the illumination scan mirror 3212 and the detection scan mirror 3211. The scanning is performed by the scanning control unit 3213 controlling the scan mirrors 3211 and 3212 and moving the illumination range 3104 and the detection range 3105 in accordance with a signal from the analysis / control unit 3203. During scanning, the illumination scan mirror 3212 and the detection scan mirror 3211 are controlled in conjunction so that the illumination range 3104 and the detection range 3105 maintain a fixed positional relationship on the scatterer surface.
 次いで、画像処理部3207において、取得された光強度データから散乱体内部の任意の深度における断層画像が作製される。 Next, the image processing unit 3207 creates a tomographic image at an arbitrary depth inside the scatterer from the acquired light intensity data.
 本実施形態にかかる散乱体内部観測装置3200によれば、照明範囲及び検出範囲が走査されることにより、より簡便に多くの光強度データを取得することができ、簡便且つ短時間で断層画像を得ることができる。 According to the scatterer internal observation device 3200 according to the present embodiment, a large amount of light intensity data can be acquired more easily by scanning the illumination range and the detection range, and a tomographic image can be obtained easily and in a short time. Obtainable.
 なお、照明用スキャンミラー3212と検出用スキャンミラー3211を、必要であれば、それぞれ独立して制御及び走査してもよい。 The illumination scan mirror 3212 and the detection scan mirror 3211 may be controlled and scanned independently if necessary.
 (第4実施形態)  
 次に、側面3の第4実施形態を説明する。図35は、第4実施形態に係る散乱体内部観測装置3300の概略機能ブロック図である。同図に示すように、散乱体内部観測装置3300は、照明手段3301、検出手段3302、解析/制御部3303、画像処理部3307、さらに、ハーフミラー3314、スキャンミラー3311、及び走査制御部3313を備える。また任意に、表示部3308及び入力部3309を備えることができる。検出手段3302は、撮像素子3302aと、撮像光学系3302bと、検出範囲可変機構3102cを含む。照明手段3301は、光源3301aと、光学系3301bを含む。
(Fourth embodiment)
Next, a fourth embodiment of the side surface 3 will be described. FIG. 35 is a schematic functional block diagram of a scatterer internal observation device 3300 according to the fourth embodiment. As shown in the figure, the scatterer internal observation device 3300 includes an illumination unit 3301, a detection unit 3302, an analysis / control unit 3303, an image processing unit 3307, a half mirror 3314, a scan mirror 3311, and a scan control unit 3313. Prepare. Optionally, a display unit 3308 and an input unit 3309 can be provided. The detection means 3302 includes an image sensor 3302a, an image pickup optical system 3302b, and a detection range variable mechanism 3102c. The illumination unit 3301 includes a light source 3301a and an optical system 3301b.
 本実施形態に係る散乱体内部観測装置3300は、照明手段と検出手段が、それらの光軸が同軸となるように配置された構成を有する。ハーフミラー3314は、照明手段と検出手段の光軸を同軸にするために備えられ、撮像素子3302aと、撮像光学系3302bとの間に配置される。 The scatterer internal observation device 3300 according to the present embodiment has a configuration in which illumination means and detection means are arranged so that their optical axes are coaxial. The half mirror 3314 is provided to make the optical axes of the illumination unit and the detection unit coaxial, and is disposed between the imaging element 3302a and the imaging optical system 3302b.
 照明手段に含まれる光学系3301bは、光源3301aとハーフミラー3314の間に備えられ、撮像光学系3302bと相俟って、照明光を照明範囲3104に照射する光束に変換する役割を果たすものである。光学系3301bには、例えばレンズなどが用いられる。 The optical system 3301b included in the illumination unit is provided between the light source 3301a and the half mirror 3314, and in combination with the imaging optical system 3302b, plays a role of converting illumination light into a light beam that irradiates the illumination range 3104. is there. For example, a lens or the like is used for the optical system 3301b.
 スキャンミラー3311は、照明範囲と検出範囲の両方を走査するために備えられ、ハーフミラー3311と撮像光学系3302bとの間に配置される。 The scan mirror 3311 is provided for scanning both the illumination range and the detection range, and is disposed between the half mirror 3311 and the imaging optical system 3302b.
 本実施形態に係る散乱体内部観測装置3300は、上記構成を有することにより、照明範囲と検出範囲の走査を同じスキャンミラーで行うことができる。即ち、散乱体内部観測装置に備えられるスキャンミラーを一組にすることができる。 The scatterer internal observation device 3300 according to this embodiment can scan the illumination range and the detection range with the same scan mirror by having the above configuration. That is, a set of scan mirrors provided in the scatterer internal observation device can be provided.
 上記第3実施形態のように、二組のスキャンミラーを連動させて制御することは困難である。本実施形態に係る散乱体内部観測装置3300では、照明範囲と検出範囲を一つのスキャンミラーで走査可能であり、スキャンミラーの制御を容易にすることができると共に、装置の構成を単純化することもできる。 As in the third embodiment, it is difficult to control the two sets of scan mirrors in conjunction with each other. In the scatterer internal observation device 3300 according to the present embodiment, the illumination range and the detection range can be scanned with one scan mirror, the scan mirror can be easily controlled, and the configuration of the device is simplified. You can also.
 図36は、第4実施形態の変形例に係る散乱体内部観測装置3310の概略機能ブロック図である。この散乱体内部観測装置3310では、スキャンミラー3318を備える。本変形例では、1枚のミラーでスキャンを行うMEMSミラーを用いる。MEMSミラーを用いる場合、例えば図36に示すように、光源3301a、光学系3301b、ハーフミラー3314及びスキャンミラー3318までが、撮像光学系3302bと直角に配置され、ハーフミラー3314から、照明手段3301と直角方向に撮像素子3302aが配置されるが、これに限定されず、種々の配置をとることができる。本変形例では、MEMSミラーを用いることにより、装置の構成を単純化することができる。 FIG. 36 is a schematic functional block diagram of a scatterer internal observation device 3310 according to a modification of the fourth embodiment. This scatterer internal observation device 3310 includes a scan mirror 3318. In this modification, a MEMS mirror that performs scanning with a single mirror is used. When the MEMS mirror is used, for example, as shown in FIG. 36, the light source 3301a, the optical system 3301b, the half mirror 3314, and the scan mirror 3318 are arranged at right angles to the imaging optical system 3302b. Although the imaging element 3302a is arranged in the perpendicular direction, the present invention is not limited to this, and various arrangements can be taken. In this modification, the configuration of the apparatus can be simplified by using the MEMS mirror.
 以上に説明した各実施形態における散乱体内部観測装置は、さらに、所望の領域を決定する検出領域決定手段を含むことができる。該検出領域決定手段は、例えば、解析/制御手段に含まれることができるが、これに限定されない。 The scatterer internal observation device in each of the embodiments described above can further include a detection region determination unit that determines a desired region. The detection area determination means can be included in the analysis / control means, for example, but is not limited thereto.
 検出領域決定手段は、取得された光強度データを解析し、散乱体表面上の所望の領域(検出領域)3106を決定する手段である。検出領域の決定は、予め解析/制御部などに記憶された設定に基づいて自動で行われてもよく、或いは、表示部に光強度データの2次元画像を表示させ、使用者がその場で領域を決定してもよい。 The detection area determination means is means for analyzing the acquired light intensity data and determining a desired area (detection area) 3106 on the scatterer surface. The detection area may be automatically determined based on settings stored in advance in the analysis / control unit or the like, or a two-dimensional image of light intensity data is displayed on the display unit, and the user can change the detection area on the spot. The region may be determined.
 またさらに、散乱体内部観測装置は、所望の領域を決定するための設定を入力する入力手段(すなわち設定入力手段)を備えることができる。入力手段は、例えば、予め解析/制御部などに設定を入力するためのキーボードなどであってもよく、或いは、表示部に表示された2次元画像上で領域を指示するタッチパネル形式の操作盤などであってもよい。 Furthermore, the scatterer internal observation device can be provided with input means (that is, setting input means) for inputting a setting for determining a desired region. The input means may be, for example, a keyboard for inputting settings to the analysis / control unit in advance, or a touch panel type operation panel that indicates an area on a two-dimensional image displayed on the display unit. It may be.
 ここで、検出領域の例を図37を参照して説明する。 Here, an example of the detection area will be described with reference to FIG.
 図37に、照明範囲3104と検出領域3105の関係を例示する。図37(a)及び(b)に示すように、照明が点照明の場合、後方散乱光は同心円状に伝播する。検出領域は、観測したい深度に基づいて決定される。よって、観測したい深度を決定すると、照明範囲3104と検出領域3106との距離が決定される。このとき、後方散乱光はリング形状であるので、検出領域3106の幅も決定する必要がある。検出領域3106の幅は、観測情報の所望の精度に依存して適宜決定することができる。これによって、検出領域3106が決定される。 FIG. 37 illustrates the relationship between the illumination range 3104 and the detection region 3105. As shown in FIGS. 37A and 37B, when the illumination is point illumination, the backscattered light propagates concentrically. The detection area is determined based on the depth to be observed. Therefore, when the depth to be observed is determined, the distance between the illumination range 3104 and the detection region 3106 is determined. At this time, since the backscattered light has a ring shape, the width of the detection region 3106 needs to be determined. The width of the detection region 3106 can be appropriately determined depending on the desired accuracy of the observation information. Thereby, the detection area 3106 is determined.
 次に、検出範囲3105が検出領域3106のどの部分を含むかが決定される。図37(a)に示すように、リング形状の検出領域3106の一部を含める場合と、図37(b)に示すように、リング形状の検出領域3106の全体を含める方法がある。 Next, it is determined which part of the detection area 3106 the detection range 3105 includes. As shown in FIG. 37A, there are a method of including a part of the ring-shaped detection region 3106 and a method of including the entire ring-shaped detection region 3106 as shown in FIG.
 図37(a)のように、一部を含める場合は、検出工程の際に走査点が多くなるが、撮像する範囲が小さいため、拡大して撮像することができ、高画素数で撮像することができる。よって、細かい領域が観察でき、分解能が高いという利点がある。一方、図37(b)のように、全体を設定する場合は、解像度は低いが、走査点が少なくてすみ、簡便且つ短時間で断層画像を作製することができるという利点がある。 As shown in FIG. 37 (a), when a part is included, the number of scanning points increases during the detection process, but since the imaging range is small, it is possible to enlarge and take an image with a high number of pixels. be able to. Therefore, there is an advantage that a fine region can be observed and the resolution is high. On the other hand, as shown in FIG. 37 (b), when the whole is set, the resolution is low, but there is an advantage that a tomographic image can be produced easily and in a short time with a small number of scanning points.
 なお、図37(a)及び(b)に示したような点照明以外の照明を用いることもできる。図37(c)はライン状の照明の例である。また、図37(d)に示すように、複数の点照明を用いることもできる。これらの場合も、検出領域は適宜決定することができる。ライン照明や多点照明を用いることにより、一度の測定で多くのデータを検出することができ、測定時間をより短縮することが出来る。なお、ライン状の照明光は光強度が均一であることが好ましい。或いは、光の強度に応じて補正を行う手段を備えることが好ましい。また、複数の点照明を用いる場合、各照明は、それぞれの光によって得られる検出データが互いに干渉しない程度離れた位置に配置されることが好ましい。 It should be noted that illumination other than point illumination as shown in FIGS. 37 (a) and (b) can also be used. FIG. 37 (c) shows an example of line-shaped illumination. Also, as shown in FIG. 37 (d), a plurality of point illuminations can be used. Also in these cases, the detection region can be determined as appropriate. By using line illumination or multi-point illumination, a large amount of data can be detected by one measurement, and the measurement time can be further shortened. The line-shaped illumination light preferably has a uniform light intensity. Alternatively, it is preferable to provide means for performing correction according to the light intensity. Moreover, when using a some point illumination, it is preferable that each illumination is arrange | positioned in the position away so that the detection data obtained by each light may not mutually interfere.
 検出領域の決定と、検出領域の何れの部分を検出範囲に含めるかは、種々の条件を鑑みて、技術者が適宜設定することができる。 The determination of the detection area and which part of the detection area is included in the detection range can be appropriately set by an engineer in consideration of various conditions.
 上記のような検出領域及び検出範囲の設定は、使用者が手動で行うこともできるが、自動で決定することもできる。次に、検出領域を自動で決定する実施形態を説明する。 The detection area and detection range as described above can be set manually by the user or automatically. Next, an embodiment in which the detection area is automatically determined will be described.
 まず、後方散乱光を検出して光強度データを取得する。取得された光強度データを、解析/制御手段により解析し、図38(a)に示すような空間的な光強度分布データを作製する。 First, light intensity data is acquired by detecting backscattered light. The acquired light intensity data is analyzed by the analysis / control means to produce spatial light intensity distribution data as shown in FIG.
 次に、図38(a)に示したような空間的な光強度分布データ画像において、光の強度情報と位置情報を得る。そして、最大強度点、即ち、照明点のX,Y座標を決定する。照明点の決定に続いて、該照明点を通るライン上における光強度の変化をプロットすると、図38(b)に示すようなグラフが得られる。例えば検出領域の全体を検出範囲に含める場合、このグラフにおいて、立ち上がり点と収束点を決定し、その座標を求めることにより、図38(a)に示す空間的な光強度分布データ画像において範囲を決定することができる。或いは、図38(b)に示すようなグラフにおいて中心点を決定し、統計的処理によってグラフの裾野部分を切り捨てることにより、範囲を定めることもできる。また或いは、図38(b)に示すようなグラフを基に光強度の累積グラフを作製し、その傾きから立ち上がり点と収束点を算出して座標を求めてもよい。 Next, in the spatial light intensity distribution data image as shown in FIG. 38 (a), light intensity information and position information are obtained. Then, the maximum intensity point, that is, the X and Y coordinates of the illumination point are determined. When the change of the light intensity on the line passing through the illumination point is plotted following the determination of the illumination point, a graph as shown in FIG. 38B is obtained. For example, when the entire detection area is included in the detection range, in this graph, the rising point and the convergence point are determined, and the coordinates are obtained, whereby the range in the spatial light intensity distribution data image shown in FIG. Can be determined. Alternatively, the range can be determined by determining the center point in the graph as shown in FIG. 38 (b) and truncating the bottom of the graph by statistical processing. Alternatively, a coordinate graph may be obtained by preparing a cumulative graph of light intensity based on a graph as shown in FIG. 38 (b) and calculating a rising point and a convergence point from the inclination.
 照明点を通るラインをX,Y座標上の角度を変えながら、この工程を繰り返し行うことにより、検出領域を決定することができる。検出領域が決定されると、図38(c)に示すように、不要な部分が排除され、検出範囲がほぼ所望の領域のみを含むようにすることができる。 The detection area can be determined by repeating this process while changing the angle on the X and Y coordinates of the line passing through the illumination point. When the detection area is determined, as shown in FIG. 38 (c), unnecessary portions can be excluded, and the detection range can include only a desired area.
 なお、上記の説明では、照明点を通るライン上における光強度の変化をプロットしたが、これに限定されず、例えば、X,Y座標軸に平行なライン上でプロットしてもよい。その場合、図38(a)に示す空間的な光強度分布データ画像において、ラインを少しずつ移動させながらプロットを行う。また、リング状の検出領域の一部を検出範囲とする場合は、観測したい深度と精度から算定した照明-検出間距離と幅に基づいて、図38(b)のグラフ上の該当部分を決定する。 In the above description, the change in light intensity on the line passing through the illumination point is plotted. However, the present invention is not limited to this. For example, the light intensity may be plotted on a line parallel to the X and Y coordinate axes. In this case, plotting is performed while moving the line little by little in the spatial light intensity distribution data image shown in FIG. When a part of the ring-shaped detection area is set as the detection range, the corresponding part on the graph of FIG. 38 (b) is determined based on the illumination-detection distance and width calculated from the depth and accuracy to be observed. To do.
 以上の実施形態によれば、検出領域を自動で設定することができ、散乱体内部の観測をより簡便、迅速且つ効率的に行うことができる。 According to the above embodiment, the detection region can be set automatically, and observation inside the scatterer can be performed more simply, quickly and efficiently.
 次に、側面3の他の態様に従って提供される、散乱体の表層付近から生じるノイズを除去する機能を備えた散乱体内部観測装置を説明する。 Next, a scatterer internal observation device having a function of removing noise generated from the vicinity of the surface of the scatterer provided according to another aspect of the side surface 3 will be described.
 本態様における散乱体内部観測装置は、散乱体の表面や表層付近によるノイズを除去した、深部処理画像を作製するものである。検出手段によって検出される後方散乱光には、散乱体の表面からの反射光も含まれている。散乱体の表面には、微小な凹凸が存在するため、反射光が散乱して強弱を生じ、断層画像を作製する際のノイズとなり得る。また、検出される後方散乱光には比較的浅い深度からの後方散乱光も含まれており、深部からの後方散乱光によって断層画像を作製する際にはこれもノイズとなる。 The scatterer internal observation device in this aspect is for producing a deep processing image from which noise due to the surface of the scatterer and the vicinity of the surface layer is removed. The backscattered light detected by the detection means includes reflected light from the surface of the scatterer. Since there are minute irregularities on the surface of the scatterer, the reflected light scatters and produces strength, which can be noise when creating a tomographic image. The detected backscattered light also includes backscattered light from a relatively shallow depth, and this also becomes noise when a tomographic image is produced by backscattered light from a deep part.
 そこで、本態様における散乱体内部観測装置は、ノイズが除去された断層画像を提供することを可能にするものである。 Therefore, the scatterer internal observation device according to this aspect makes it possible to provide a tomographic image from which noise has been removed.
 ノイズが除去された断層画像は、以下の(1)~(3)のいずれかの方法によって作製することができる。 The tomographic image from which noise has been removed can be produced by any of the following methods (1) to (3).
 (1)表層断層画像と深部断層画像を別々に作製し、深部断層画像から表層断層画像を減算する。ここで、表層断層画像とは、散乱体の比較的浅い部分からの後方散乱光と、散乱体の表面からの反射光とから作製される断層画像である。一方、深部断層画像とは、所望の深度の断層画像であるが、これには表層からの後方散乱光も含まれている。 (1) A surface tomographic image and a deep tomographic image are created separately, and the surface tomographic image is subtracted from the deep tomographic image. Here, the surface layer tomographic image is a tomographic image prepared from backscattered light from a relatively shallow portion of the scatterer and reflected light from the surface of the scatterer. On the other hand, the deep tomographic image is a tomographic image having a desired depth, and includes backscattered light from the surface layer.
 表層断層画像と深部断層画像を別々に作製するために、本方法では、図39に示すように、照明手段と検出手段の距離を変化させる。表層断層画像を作製する際には、図39(a)に示すように、αの位置で検出する。すると、図39(b)に示すような表層断層画像Xが得られる。また、深部断層画像を作製する際には、図39(c)に示すように、βの位置で検出する。すると、図39(d)に示すような深部断層画像Yが得られる。 In this method, as shown in FIG. 39, the distance between the illumination means and the detection means is changed in order to separately produce the surface layer tomographic image and the deep part tomographic image. When creating a surface tomographic image, detection is performed at the position of α as shown in FIG. Then, a surface layer tomographic image X as shown in FIG. 39 (b) is obtained. Further, when creating a deep tomographic image, detection is performed at the position β, as shown in FIG. 39 (c). As a result, a deep tomographic image Y as shown in FIG. 39 (d) is obtained.
 なお、図39(a)及び(c)では、説明のために、照明手段と検出手段の距離を変化させたが、これに限定されず、検出手段によって取得された光強度データを解析する際、表層画像を作製するためにデータを抽出する点の距離を、深部断層画像を作製するためにデータを抽出する点の距離よりも短くすることにより簡便にそれぞれの断層画像を得ることができる。 In FIGS. 39A and 39C, the distance between the illumination unit and the detection unit is changed for the sake of explanation. However, the present invention is not limited to this, and the light intensity data obtained by the detection unit is analyzed. Each tomographic image can be easily obtained by making the distance of the point from which data is extracted to create the surface layer image shorter than the distance of the point from which data is extracted to create the deep tomographic image.
 次に、図39(e)に示すように、深部断層画像Yから表層断層画像Xを減算する。これにより、表層のノイズが除去された深部処理画像Zを得ることができる。なお、表層断層画像Xは、深部断層画像Yよりも光強度が大きいため、表層断層画像Xに定数nを掛けて光強度を調節する。定数nは、表層断層画像Xと深部断層画像Yの光強度の平均が同程度になるように決定すればよい。 Next, the surface layer tomographic image X is subtracted from the deep tomographic image Y as shown in FIG. Thereby, the deep part processed image Z from which the noise of the surface layer was removed can be obtained. Since the surface tomographic image X has a light intensity higher than that of the deep tomographic image Y, the light intensity is adjusted by multiplying the surface layer tomographic image X by a constant n. The constant n may be determined so that the average light intensity of the surface tomographic image X and the deep tomographic image Y is approximately the same.
 演算方法は、例えば作製された画像上の画素毎に、光強度を演算することにより行うことができる。或いは、撮像素子上の画素毎に、光強度を演算することにより行うことができる。また複数の画素の光強度の平均を算出し、その平均値を用いて演算してもよいが、これらに限定されず、適切な方法を選択することができる。 The calculation method can be performed, for example, by calculating the light intensity for each pixel on the produced image. Alternatively, it can be performed by calculating the light intensity for each pixel on the image sensor. Moreover, although the average of the light intensity of several pixels may be calculated and it may calculate using the average value, it is not limited to these, An appropriate method can be selected.
 (2)上記(1)の方法と同様に、表層断層画像と深部断層画像を別々に作製する。本方法では、各断層画像を作製するために、異なる波長の光を照明として用いる。例えば、図40(a)に示すように、表層断層画像を作製する場合は、波長λ1の光を照射する光源1を用いる。すると、図40(b)に示すような表層断層画像Xが得られる。また、深部断層画像を作製する際には、図40(c)に示すように、波長λ2の光を照射する光源2を用いる。すると、図40(d)に示すような深部断層画像Yが得られる。表層断層画像を作製する際には、より散乱の強い光、即ち、波長の短い光を用いる。反対に、深部断層画像を作製する際には、より散乱の弱い光を用いる。 (2) Similar to the method (1) above, a surface layer tomographic image and a deep tomographic image are prepared separately. In this method, in order to produce each tomographic image, light of different wavelengths is used as illumination. For example, as shown in FIG. 40 (a), when producing a surface layer tomographic image, a light source 1 that emits light of wavelength λ1 is used. Then, a surface layer tomographic image X as shown in FIG. 40 (b) is obtained. Further, when creating a deep tomographic image, as shown in FIG. 40 (c), a light source 2 that irradiates light having a wavelength λ2 is used. Then, a deep tomographic image Y as shown in FIG. 40 (d) is obtained. When a surface layer tomographic image is produced, light having a higher scattering, that is, light having a short wavelength is used. On the other hand, when producing a deep tomographic image, light with less scattering is used.
 次いで、図40(e)に示すように、深部断層画像Yから表層断層画像Xを減算する。断層画像の演算方法は上記方法(1)と同様である。これにより、表層のノイズが除去された断層画像Zを得ることができる。 Next, as shown in FIG. 40 (e), the surface tomographic image X is subtracted from the deep tomographic image Y. The calculation method of the tomographic image is the same as the method (1). Thereby, the tomographic image Z from which the noise on the surface layer is removed can be obtained.
 (3)図41(a)に示すように、通常の通りに後方散乱光の検出を行い、図41(b)に示すような深部断層画像Yを作製する。この深部断層画像Yを2次元フーリエ変換すると、図41(c)に示すような、横軸に深部断層画像Yの水平方向周波数、縦軸に深部断層画像Yの垂直方向周波数をとり、フーリエ変換後の振幅スペクトルを輝度値として表した画像が得られる。なお、ここでの周波数とは、画像上の周波数であり、これは空間周波数とも称する。 (3) As shown in FIG. 41 (a), backscattered light is detected as usual to create a deep tomographic image Y as shown in FIG. 41 (b). When this deep tomographic image Y is two-dimensionally Fourier transformed, as shown in FIG. 41 (c), the horizontal axis represents the horizontal frequency of the deep tomographic image Y, and the vertical axis represents the vertical frequency of the deep tomographic image Y. An image representing the later amplitude spectrum as a luminance value is obtained. In addition, the frequency here is a frequency on an image, and this is also called a spatial frequency.
 図41(c)に示す画像において、深部断層画像Yの空間周波数の低周波成分は図41(c)に示す画像の中心部に対応し、高周波成分は図41(c)に示す画像の周辺部に対応する。画像において、高周波数部分は、散乱体の表面及び表層から得られるノイズ成分に対応する。反対に、低周波数部分は、散乱体の深部から得られる成分に対応する。 In the image shown in FIG. 41 (c), the low frequency component of the spatial frequency of the deep tomographic image Y corresponds to the center of the image shown in FIG. 41 (c), and the high frequency component is the periphery of the image shown in FIG. 41 (c). Corresponding to the part. In the image, the high frequency portion corresponds to the noise component obtained from the surface and surface layer of the scatterer. Conversely, the low frequency part corresponds to the component obtained from the deep part of the scatterer.
 このフーリエ変換後の画像において、低周波数部分のみを選択し、逆フーリエ変換することにより、ノイズが除去された深部処理画像Zを得ることができる。 In the image after the Fourier transform, only the low frequency part is selected and the inverse Fourier transform is performed to obtain the deep processed image Z from which noise has been removed.
 また或いは、図41(d)に示すように、深部断層画像Yから、高周波数成分を逆フーリエ変換して得られた表層断層画像Xを減算することによって、深部処理画像Zを得ることもできる。 Alternatively, as shown in FIG. 41 (d), the deep processing image Z can be obtained by subtracting the surface layer tomographic image X obtained by inverse Fourier transform of the high frequency component from the deep tomographic image Y. .
 なお、高周波数と低周波数を区切る閾値は、観察対象の異質部分のサイズや位置によって、適宜設定することができる。 In addition, the threshold value which divides high frequency and low frequency can be set suitably according to the size and position of the heterogeneous part to be observed.
 以上に説明した方法は、上記第1~4実施形態にかかる散乱体内部観測装置によって実施することができる。例えば、深部断層画像と表層断層画像は、画像処理手段によって行い、演算は解析/処理手段によって行うことができる。 The method described above can be implemented by the scatterer internal observation device according to the first to fourth embodiments. For example, the deep tomographic image and the surface layer tomographic image can be performed by an image processing unit, and the calculation can be performed by an analysis / processing unit.
 或いは、画像化手段、演算手段を含む制御手段を備えてもよく、構成は適宜選択することができる。 Alternatively, control means including imaging means and calculation means may be provided, and the configuration can be selected as appropriate.
 側面3は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The side surface 3 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 以上の説明によれば、側面3は以下に示すように表現される発明であると理解できる。 According to the above description, it can be understood that the side surface 3 is an invention expressed as shown below.
 18.散乱体内部の異質部分の情報を取得する散乱体内部観測装置であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する照明手段と、
 前記散乱体を撮像する撮像素子と、該撮像素子が撮像する検出範囲を限定する撮像光学系と、該検出範囲に所望の領域が含まれるように調節する検出範囲可変機構を含み、前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、
 前記検出手段により取得された光強度データを解析し、前記検出範囲可変機構を制御する解析/制御手段と、
 前記検出手段により取得された光強度データから、前記散乱体内部の任意の深度における断層画像を作製する画像処理手段とを具備することを特徴とする散乱体内部観測装置。
18. A scatterer internal observation device that acquires information on a heterogeneous part inside a scatterer,
Illuminating means for irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
An illuminating unit including: an imaging element that images the scatterer; an imaging optical system that limits a detection range captured by the imaging element; and a detection range variable mechanism that adjusts the detection range to include a desired region. Detecting means for detecting the backscattered light of the light emitted by, and obtaining light intensity data of the backscattered light;
Analysis / control means for analyzing the light intensity data acquired by the detection means and controlling the detection range variable mechanism;
An scatterer internal observation device, comprising: an image processing unit that creates a tomographic image at an arbitrary depth inside the scatterer from the light intensity data acquired by the detection unit.
 19.前記検出手段がさらに、前記検出範囲を移動させ得るスキャンミラーを備えることを特徴とする、前記18.に記載の散乱体内部観測装置。 19. 18. The detection unit further includes a scan mirror capable of moving the detection range. The scatterer internal observation device described in 1.
 20.前記照明手段が照明用スキャンミラーを備え、
 前記検出手段が検出用スキャンミラーを備え、
 両スキャンミラーを制御して、前記照明手段によって照明される照明範囲と前記検出範囲を散乱体表面上で走査させる走査制御手段をさらに備えることを特徴とする前記18.に記載の散乱体内部観測装置。
20. The illumination means comprises an illumination scan mirror;
The detecting means includes a scanning mirror for detection;
18. The scanning control means for controlling both scanning mirrors to scan the illumination range illuminated by the illumination means and the detection range on the surface of the scatterer. The scatterer internal observation device described in 1.
 21.前記照明手段及び前記検出手段が、それらの光路が同軸になるように配置され、
 前記照明手段によって照明される照明範囲及び前記検出範囲を散乱体表面上で走査させるスキャンミラーを備えることを特徴とする前記18.に記載の散乱体内部観測装置。
21. The illumination means and the detection means are arranged such that their optical paths are coaxial,
18. A scan mirror that scans the illumination range illuminated by the illumination means and the detection range on the surface of a scatterer. The scatterer internal observation device described in 1.
 22.前記所望の領域を決定する検出領域決定手段をさらに含むことを特徴とする、前記18.~21.の何れか一に記載の散乱体内部観測装置。 22. 18. The detection area determining means for determining the desired area is further included. 21. The scatterer internal observation apparatus as described in any one of.
 23.前記所望の領域を決定するための設定を入力する入力手段をさらに備える、前記22.に記載の散乱体内部観測装置。 23. The above-described 22 .. further comprising input means for inputting settings for determining the desired area. The scatterer internal observation device described in 1.
 24.散乱体内部の異質部分を観測する散乱体内部観測方法であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる波長を少なくとも含む光を前記散乱体に照射する工程と、
 前記照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
 前記工程により取得された光強度データを解析し、散乱体表面における検出領域を決定する工程と、
 前記工程により決定された検出領域の後方散乱光を検出し、光強度データを取得する工程と、
 前記工程により取得された光強度データから、前記散乱体の断層画像を作製する画像処理工程を含むことを特徴とする方法。
24. A scatterer internal observation method for observing a heterogeneous part inside a scatterer,
Irradiating the scatterer with light including at least wavelengths having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion; and
Detecting backscattered light of the irradiated light and obtaining light intensity data of the backscattered light;
Analyzing the light intensity data acquired by the step, and determining a detection region on the scatterer surface;
Detecting the backscattered light of the detection region determined by the step, obtaining light intensity data;
A method comprising an image processing step of creating a tomographic image of the scatterer from the light intensity data acquired by the step.
 25.前記後方散乱光の検出が行われる検出範囲に、前記決定された検出領域が含まれるように調節する工程を含む、前記24.に記載の方法。 25. Adjusting the detection range in which the detection of the backscattered light is performed to include the determined detection region. The method described in 1.
 26.前記散乱体に光が照射される照明範囲と、前記検出範囲を、散乱体表面上で一定の位置関係を維持したまま走査させて後方散乱光を検出し、光強度データを取得する工程をさらに含む、前記25.に記載の方法。 26. A step of scanning the illumination range in which light is applied to the scatterer and the detection range while maintaining a fixed positional relationship on the surface of the scatterer to detect backscattered light and acquiring light intensity data; Including the 25. The method described in 1.
 27.前記検出領域を決定する工程が自動で行われることを特徴とする、前記24.~26.の何れか一に記載の方法。 27. 24. The step of determining the detection area is automatically performed. 26. The method as described in any one of.
〔産業上の利用可能性〕
 側面3は、生体を観測する装置として利用することができ、特に内視鏡や硬性鏡などにおいて利用することができる。
[Industrial applicability]
The side surface 3 can be used as an apparatus for observing a living body, and can be used particularly in an endoscope or a rigid endoscope.
<側面4>
 側面4は、生体内を観測するための装置に関する。
<Side 4>
The side surface 4 relates to a device for observing the inside of a living body.
〔背景技術〕
 近年、医療用内視鏡分野において、様々な特殊観察手法が提案されている。例えば、特表2007-525248号公報に開示される関節強検査装置は深部散乱光を収集することにより、血管壁内における不安定性プラークを検出するための装置である。
[Background Technology]
In recent years, various special observation techniques have been proposed in the field of medical endoscopes. For example, the joint strength inspection apparatus disclosed in JP-T-2007-525248 is an apparatus for detecting unstable plaque in a blood vessel wall by collecting deep scattered light.
 また、走査機能を持たせた内視鏡として、内視鏡先端部に走査機構を設けているものもある。例えば、特開2008-116922号公報は、電磁石コイルと磁石によりファイバを振動させることにより走査する走査機構を具備する内視鏡を開示する。 Some endoscopes having a scanning function are provided with a scanning mechanism at the distal end portion of the endoscope. For example, Japanese Patent Application Laid-Open No. 2008-116922 discloses an endoscope including a scanning mechanism that performs scanning by vibrating a fiber with an electromagnet coil and a magnet.
 外科用内視鏡は1症例毎に滅菌を行う必要があるために、先端の走査機構は密閉するなど、滅菌器環境下に耐えられる構成としなくてはならない。また、従来においては、走査観察専用内視鏡として、通常観察用と別途に用意する必要がある。 Surgical endoscopes need to be sterilized for each case, so the scanning mechanism at the tip must be sealed, so that it can withstand sterilization environments. Further, conventionally, it is necessary to prepare an endoscope dedicated for scanning observation separately from that for normal observation.
〔発明が解決しようとする課題〕
 上記の状況に鑑み、側面4の目的は、効率的な観察が可能な走査観察用の生体内観測装置を提供することである。更なる側面4の目的は、容易に洗浄や滅菌処理を行うことが可能な構成の走査観察用の生体内観測装置を提供することである。側面4の更なる目的は、特殊観察と通常観察とが1つの装置において可能な生体内観測装置を提供することである。
[Problems to be Solved by the Invention]
In view of the above situation, the purpose of the side surface 4 is to provide an in-vivo observation device for scanning observation that enables efficient observation. A further object of the side surface 4 is to provide an in-vivo observation device for scanning observation that can be easily cleaned and sterilized. A further object of the side surface 4 is to provide an in-vivo observation device capable of special observation and normal observation in one device.
〔課題を解決するための手段〕
 上記目的を解決するための手段は、
 照明光を走査する機能を有する生体内観測装置(すなわち生体内観察装置)において、走査機能を実現する走査手段を、生体内へ挿入される挿入部ではない部位に配置することを特徴とする生体内観測装置
である。
[Means for solving the problems]
Means for solving the above object are as follows:
In an in-vivo observation device (that is, an in-vivo observation device) having a function of scanning illumination light, a scanning means that realizes a scanning function is disposed at a site that is not an insertion portion that is inserted into the living body. This is an in-vivo observation device.
〔発明の効果〕
 側面4によれば、効率的な観察が可能な走査観察用の生体内観測装置が提供される。また、容易に洗浄や滅菌処理を行うことが可能な構成の走査観察用の生体内観測装置が提供される。更に、特殊観察と通常観察とが1つの装置において可能な生体内観測装置が提供される。
〔The invention's effect〕
According to the side surface 4, an in-vivo observation device for scanning observation capable of efficient observation is provided. In addition, an in-vivo observation device for scanning observation having a configuration that can be easily cleaned and sterilized is provided. Furthermore, an in-vivo observation device capable of special observation and normal observation in one device is provided.
〔発明を実施するための最良の形態〕
 以下、側面4の態様および実施形態を図面に従って説明する。なお、以下の説明において、ほぼ同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
[Best Mode for Carrying Out the Invention]
Hereinafter, the aspect and embodiment of the side surface 4 are demonstrated according to drawing. In the following description, components having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description will be given only when necessary.
 側面4の一態様に従う生体内観測装置4010を図42に示す。当該生体内観測装置4010は、少なくとも、供給される光を走査しながら伝達する走査手段4002と、前記走査手段4002からの光を当該被写体に伝達する照明用イメージガイド4003と、前記被写体からの光を伝達する撮像用イメージガイド4004と、前記撮像用イメージガイド4004からの光をイメージとして検出するための撮像素子(すなわち検出手段)4005とを具備する。 FIG. 42 shows an in-vivo observation device 4010 according to one aspect of the side surface 4. The in-vivo observation device 4010 includes at least a scanning unit 4002 that transmits while scanning supplied light, an illumination image guide 4003 that transmits light from the scanning unit 4002 to the subject, and light from the subject. An imaging image guide 4004 for transmitting the image, and an imaging device (that is, detection means) 4005 for detecting light from the imaging image guide 4004 as an image.
 側面4における「生体内観測装置」とは、内視鏡、例えば、外科用硬性鏡、消化器内視鏡、耳鼻科用内視鏡、泌尿器科用内視鏡、手術用顕微鏡、医療用撮像機器など、生体内を観測するための装置であればよい。 The “in-vivo observation apparatus” in the side surface 4 is an endoscope, for example, a surgical rigid endoscope, a digestive organ endoscope, an otolaryngological endoscope, a urological endoscope, a surgical microscope, and a medical imaging. Any device such as a device for observing the inside of a living body may be used.
 走査手段4002に光を供給する照明光源4001は、当該生体内観測装置4010内に具備されてもよく、或いは、生体内観測装置4010外に配置されて所望の光を供給してもよい。照明光源4001は、使用する光を供給することが可能なそれ自身公知の何れかの光源であればよい。例えば、散乱光を用いて血管の観測をする場合などには、近赤外線を照射可能なレーザーであることが好ましい。 The illumination light source 4001 that supplies light to the scanning unit 4002 may be provided in the in-vivo observation device 4010 or may be disposed outside the in-vivo observation device 4010 to supply desired light. The illumination light source 4001 may be any light source known per se that can supply light to be used. For example, when a blood vessel is observed using scattered light, a laser capable of irradiating near infrared rays is preferable.
 また、走査される照明光の入射時の形状や大きさも任意であってよく、例えば、点状でも線状(即ち、ラインスキャン)であってもよい。 Also, the shape and size of incident illumination light to be scanned may be arbitrary, and may be, for example, a dot shape or a linear shape (that is, a line scan).
 当該性体内観測装置4010は、更に、更なる光学系を具備してもよい。即ち、走査手段4002と照明用イメージガイド4003との間に光学系4006aを、照明用イメージガイド4003の被写体側に隣接して光学系4006bを、撮像用イメージガイド4004の被写体側に隣接して光学系4006cを、撮像用イメージガイド4004と撮像素子4005との間に光学系4006dを具備してもよい。光学系4006a~4006dは、少なくとも1のレンズおよび/またはミラーであればよい。 The sexual body observation apparatus 4010 may further include a further optical system. That is, the optical system 4006a is provided between the scanning unit 4002 and the illumination image guide 4003, the optical system 4006b is adjacent to the subject side of the illumination image guide 4003, and the optical system 4006b is adjacent to the subject side of the imaging image guide 4004. The system 4006c may include an optical system 4006d between the imaging image guide 4004 and the imaging element 4005. The optical systems 4006a to 4006d may be at least one lens and / or mirror.
 走査手段4002は、光を走査しながら伝達することが可能なそれ自身公知の何れかの走査手段であればよい。例えば、ガルバノミラースキャナーなどのスキャンミラー系、ポリゴンミラー、回転ミラー、振動ミラーを用いたスキャンミラー系、ニポウディスクを用いたスキャン系および光ファイバを振動させるスキャン系などを使用してよい。 The scanning unit 4002 may be any scanning unit known per se that can transmit light while scanning. For example, a scan mirror system such as a galvanometer mirror scanner, a polygon mirror, a rotating mirror, a scan mirror system using a vibration mirror, a scan system using a Nipow disk, and a scan system that vibrates an optical fiber may be used.
 照明用イメージガイド4003は、走査手段4002から出た光を被写体に伝達する。被写体に伝達された光は、撮像用イメージガイド4004により伝達され、撮像素子4005によりイメージとして検出される。照明用イメージガイド4003および撮像用イメージガイド4004は、リレーレンズであっても光ファイバであってもよい。 The illumination image guide 4003 transmits the light emitted from the scanning unit 4002 to the subject. The light transmitted to the subject is transmitted by the imaging image guide 4004 and detected as an image by the imaging device 4005. The illumination image guide 4003 and the imaging image guide 4004 may be relay lenses or optical fibers.
 撮像素子4005は、それ自身公知の何れかのイメージセンサであればよく、例えば、CCDイメージセンサまたはCMOSイメージセンサであってよい。 The image sensor 4005 may be any image sensor known per se, for example, a CCD image sensor or a CMOS image sensor.
 当該生体内観測装置4010は、更に、照明光源4001、走査手段4002、撮像素子4005を制御するための制御ユニット4007を具備してもよい。制御ユニット4007は、プロセッサと記憶手段に記憶されたソフトウェアで構築されればよく、所望の制御を行うためのソフトウェアが予めインストールされているコンピュータなどの制御装置であってもよい。また、制御ユニット4007に、更に、表示部(図示せず)および/または入力部(図示せず)が機能可能に接続されていてもよい。 The in-vivo observation device 4010 may further include a control unit 4007 for controlling the illumination light source 4001, the scanning unit 4002, and the image sensor 4005. The control unit 4007 only needs to be constructed by software stored in a processor and storage means, and may be a control device such as a computer in which software for performing desired control is installed in advance. Further, a display unit (not shown) and / or an input unit (not shown) may be operably connected to the control unit 4007.
 側面4に従うと、以上説明した構成要素は、ユニット毎に纏まって配置され、当該生体内観測装置4010に具備される。更に具体的に側面4の装置について説明する。 According to the side surface 4, the above-described constituent elements are arranged for each unit and provided in the in-vivo observation device 4010. More specifically, the apparatus of the side surface 4 will be described.
 <第1の実施形態>
 図43(A)~図44(B)に第1の実施形態を示す。図43(A)を参照されたい。第1の実施形態において、生体内観測装置4010は、照射された光を走査しながら伝達する走査部4031と、生体内に挿入されて当該光を伝達する挿入部4022と、被写体からの光を検出する撮像部4032を具備する。走査部4031は、照明光源4001および操作手段2を具備する。挿入部4022は、光学系4006a、照明用イメージガイド4003、光学系4006b、光学系4006c、撮像用イメージガイド4004および光学系4006dを具備する。撮像部4032は、撮像素子4005を具備する。更に、照明光源4001、走査手段4002および撮像素子4005は、当該生体内観測装置4010の外部に設けられた制御ユニット4007により制御される。また、図示はしないが、更に表示部および/または入力部が制御ユニット4007に機能可能に接続されてもよい。
<First Embodiment>
43A to 44B show the first embodiment. Refer to FIG. In the first embodiment, the in-vivo observation device 4010 includes a scanning unit 4031 that transmits irradiated light while scanning, an insertion unit 4022 that is inserted into the living body and transmits the light, and light from the subject. An imaging unit 4032 for detection is provided. The scanning unit 4031 includes an illumination light source 4001 and an operation unit 2. The insertion unit 4022 includes an optical system 4006a, an illumination image guide 4003, an optical system 4006b, an optical system 4006c, an imaging image guide 4004, and an optical system 4006d. The imaging unit 4032 includes an imaging element 4005. Further, the illumination light source 4001, the scanning unit 4002, and the image sensor 4005 are controlled by a control unit 4007 provided outside the in-vivo observation device 4010. Although not shown, a display unit and / or an input unit may be operatively connected to the control unit 4007.
 図43(A)に示す生体内観測装置4010をユニット毎に表すと図47(B)に示すような構成となる。この場合の観測は次のように行われる。 43. When the in-vivo observation device 4010 shown in FIG. 43A is represented for each unit, a configuration as shown in FIG. 47B is obtained. The observation in this case is performed as follows.
 (1)オペレータの指示に従い、制御ユニット4007が照射光源4001に照射を指示し、照射が開始される。(2)照射光源4001からの光は、走査部4031において走査手段4002により走査され、挿入部4022の照明用イメージガイド4003に伝達される。(3)照明用イメージガイド4003に伝達された光は、挿入部4022の先端から照射光として、連続する点または不連続の点として被写体のスキャン範囲に照射される。(4)挿入部4022の先端から所望の撮影範囲についての光情報が取り込まれ、挿入部4022内の撮像用イメージガイド4004を通り撮像部4032の撮像素子4005により検出される。(5)検出されたイメージは、必要に応じて制御ユニット4007において処理され、表示部24に表示される。 (1) In accordance with an instruction from the operator, the control unit 4007 instructs the irradiation light source 4001 to perform irradiation, and irradiation is started. (2) Light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 4031 and transmitted to the illumination image guide 4003 in the insertion unit 4022. (3) The light transmitted to the illumination image guide 4003 is irradiated from the distal end of the insertion portion 4022 as irradiation light to the scan range of the subject as a continuous point or a discontinuous point. (4) Optical information about a desired imaging range is captured from the distal end of the insertion unit 4022 and is detected by the imaging element 4005 of the imaging unit 4032 through the imaging image guide 4004 in the insertion unit 4022. (5) The detected image is processed in the control unit 4007 as necessary and displayed on the display unit 24.
 このような生体内観測装置4010は、走査部4031と挿入部4022および撮像部4032とが着脱可能に接続されてもよい。その場合、走査部4031と挿入部4022および撮像部4032との接続は、それ自身公知の嵌合機構により達成されればよい。着脱可能な構成により、当該生体内観測装置4010は、使用後に挿入部4022および撮像部4032のみを洗浄および/または滅菌することが可能である。これにより走査ユニットについては、滅菌操作などにおいて要求される密閉性を必要とされない。また、走査部4031を他の所望の光源系、例えば、白色光源照射部36などと交換可能としてもよい。そのような構成とすることにより、観測中または観測毎に、光源を交換することが可能である。それにより複数種類の観測および/または観察を1つの装置により行うことが可能である。 In such an in-vivo observation device 4010, the scanning unit 4031, the insertion unit 4022, and the imaging unit 4032 may be detachably connected. In that case, the connection between the scanning unit 4031 and the insertion unit 4022 and the imaging unit 4032 may be achieved by a known fitting mechanism. With the detachable configuration, the in-vivo observation device 4010 can wash and / or sterilize only the insertion unit 4022 and the imaging unit 4032 after use. As a result, the scanning unit is not required to have the hermeticity required in the sterilization operation or the like. The scanning unit 4031 may be exchangeable with another desired light source system, for example, the white light source irradiation unit 36. With such a configuration, the light source can be exchanged during observation or every observation. Thereby, a plurality of types of observations and / or observations can be performed by one apparatus.
 また、当該生体内観測装置4010によれば、走査手段4002により走査され、被写体に照射された点状または線状の光情報は、撮像素子4005により所望のエリアについてのイメージとして検出される。これにより、効率的に走査観察を行うことが可能である。 In addition, according to the in-vivo observation device 4010, the dot-like or linear light information scanned by the scanning unit 4002 and applied to the subject is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
 図47(B)に示す生体内観測装置4010は、走査部4031と共に、撮像部4032と挿入部4022が着脱可能に接続されてもよい。その場合、走査部4031と撮像部4032は、着脱可能に接続されてもよく、或いは着脱不可能であってもよい。 47B, the imaging unit 4032 and the insertion unit 4022 may be detachably connected together with the scanning unit 4031. In the in-vivo observation device 4010 illustrated in FIG. In that case, the scanning unit 4031 and the imaging unit 4032 may be detachably connected or may not be detachable.
  図43(A)に示す生体内観測装置4010は、図43(B)に示すように変更されてもよい。図43(B)に示す生体内観測装置4010は、光学系4006aが、走査部4031に具備され、光学系4006dが、撮像部4032に具備されること以外は図43(A)に示す装置と同様であってよい。 The in-vivo observation device 4010 shown in FIG. 43 (A) may be changed as shown in FIG. 43 (B). The in-vivo observation device 4010 illustrated in FIG. 43B is the same as the device illustrated in FIG. 43A except that the optical system 4006a is included in the scanning unit 4031 and the optical system 4006d is included in the imaging unit 4032. It may be the same.
 また、図43(A)に示す生体内観測装置4010は、図44(A)に示すように、走査ユニット21に、走査部4031と撮像部4032が具備される構成であってもよい。 In addition, the in-vivo observation device 4010 illustrated in FIG. 43A may have a configuration in which the scanning unit 21 includes a scanning unit 4031 and an imaging unit 4032 as illustrated in FIG. 44A.
 図44(A)に示すような構造は、図47(A)に示すような構成と解されてよい。この場合、生体内観測装置4010における観測は、次のように行われる。(1)オペレータの指示に従い、制御ユニット4007が照射光源4001に照射を指示し、照射が開始される。(2)照射光源4001からの光は、走査ユニット21内の走査手段4002により走査され、挿入部4022内の照明用イメージガイド4003に伝達される。(3)照明用イメージガイド4003に伝達された光は、挿入部4022の先端から照射光4025、例えば、照射用レーザー光4025として、連続する点または不連続の点として被写体のスキャン範囲4027に照射される。(4)挿入部4022の先端から、所望の撮影範囲4028についての光情報が取り込まれ、挿入部4022内の撮像用イメージガイド4004を通り走査ユニット21に具備される撮像素子4005により検出される。(5)検出されたイメージは、必要に応じて制御ユニット4007において処理され、表示部24に表示される。 The structure as shown in FIG. 44 (A) may be interpreted as the structure as shown in FIG. 47 (A). In this case, observation in the in-vivo observation device 4010 is performed as follows. (1) In accordance with an instruction from the operator, the control unit 4007 instructs the irradiation light source 4001 to perform irradiation, and irradiation is started. (2) The light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 21 and transmitted to the illumination image guide 4003 in the insertion unit 4022. (3) The light transmitted to the illumination image guide 4003 is irradiated to the subject scan range 4027 as a continuous point or a discontinuous point as irradiation light 4025, for example, irradiation laser light 4025, from the tip of the insertion portion 4022. Is done. (4) Optical information about a desired imaging range 4028 is taken from the distal end of the insertion unit 4022 and is detected by the imaging device 4005 provided in the scanning unit 21 through the imaging image guide 4004 in the insertion unit 4022. (5) The detected image is processed in the control unit 4007 as necessary and displayed on the display unit 24.
 このような生体内観測装置4010は、走査ユニット21と挿入部4022が着脱可能に接続されてもよい。その場合、走査ユニット21と挿入部4022の接続は、それ自身公知の嵌合機構により達成されればよい。着脱可能な構成により、当該生体内観測装置4010は、使用後に挿入部4022のみを洗浄および/または滅菌することが可能である。従って、走査ユニットについては、滅菌操作などにおいて要求される密閉性を必要とされない。 In such an in-vivo observation device 4010, the scanning unit 21 and the insertion unit 4022 may be detachably connected. In that case, the connection between the scanning unit 21 and the insertion portion 4022 may be achieved by a well-known fitting mechanism. With the detachable configuration, the in-vivo observation device 4010 can wash and / or sterilize only the insertion portion 4022 after use. Therefore, the scanning unit is not required to have a sealing property required in a sterilization operation or the like.
 また、当該生体内観測装置4010によれば、走査手段4002により走査され、被写体に照射された点状または線状の光情報は、撮像素子4005により所望のエリアについてのイメージとして検出される。これにより、効率的に走査観察を行うことが可能である。 In addition, according to the in-vivo observation device 4010, the dot-like or linear light information scanned by the scanning unit 4002 and applied to the subject is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
 図44(A)に示す生体内観測装置4010は、図44(B)に示すように変更してもよい。図44(B)に示す生体内観測装置4010は、光学系4006aおよび4006dが、走査ユニット21に具備されること以外は図44(A)に示す装置と同様であってよい。 The in-vivo observation device 4010 shown in FIG. 44 (A) may be modified as shown in FIG. 44 (B). The in-vivo observation device 4010 shown in FIG. 44 (B) may be the same as the device shown in FIG. 44 (A) except that the optical systems 4006a and 4006d are provided in the scanning unit 21.
 <第2の実施形態>
 第2の実施形態を図45(A)および(B)に示す。図45(A)を参照されたい。当該生体内観測装置4010は、走査ユニット21と、挿入部4022とを具備する。走査ユニット21は、照明光源4001と走査手段4002を具備する。従って、この態様においては、走査ユニット21は走査部と解されてもよい。挿入部4022は、光学系4006aと、照射用イメージガイド3と、光学系4006bと、光学系4006cと撮像用イメージガイド4004と撮像素子4005を具備する。
<Second Embodiment>
A second embodiment is shown in FIGS. 45 (A) and (B). Refer to FIG. The in-vivo observation device 4010 includes a scanning unit 21 and an insertion unit 4022. The scanning unit 21 includes an illumination light source 4001 and scanning means 4002. Therefore, in this aspect, the scanning unit 21 may be interpreted as a scanning unit. The insertion unit 4022 includes an optical system 4006a, an irradiation image guide 3, an optical system 4006b, an optical system 4006c, an imaging image guide 4004, and an imaging element 4005.
 照明光源4001、走査手段4002および撮像素子4005は、当該生体内観測装置4010の外部に設置された制御ユニット4007により制御される。 The illumination light source 4001, the scanning unit 4002, and the image sensor 4005 are controlled by a control unit 4007 installed outside the in-vivo observation device 4010.
 このような生体内観測装置4010は、走査ユニット21と挿入部4022が着脱可能に接続されてもよい。当該接続は、それ自身公知の嵌合機構により達成される。 In such an in-vivo observation device 4010, the scanning unit 21 and the insertion unit 4022 may be detachably connected. This connection is achieved by a fitting mechanism known per se.
 当該生体内観測装置4010における観測は、次のように行われる。(1)オペレータの指示に従い、制御ユニット4007が走査ユニット21の照射光源4001に照射を指示し、照射が開始される。(2)照射光源4001からの光は、走査ユニット21において走査手段4002により走査され、挿入部4022の照明用イメージガイド4003に伝達される。(3)照明用イメージガイド4003に伝達された光は、挿入部4022の先端から照射光として、連続する点または不連続の点として被写体のスキャン範囲に照射される。(4)挿入部4022の先端から、所望の撮影範囲についての光情報が取り込まれ、挿入部4022内の撮像用イメージガイド4004を通り、撮像素子4005に送られて検出される。(5)検出されたイメージは、必要に応じて制御ユニット4007において処理され、表示部24に表示される。 Observation in the in-vivo observation device 4010 is performed as follows. (1) In accordance with an operator instruction, the control unit 4007 instructs the irradiation light source 4001 of the scanning unit 21 to perform irradiation, and irradiation is started. (2) Light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 21 and transmitted to the illumination image guide 4003 of the insertion unit 4022. (3) The light transmitted to the illumination image guide 4003 is irradiated from the distal end of the insertion portion 4022 as irradiation light to the scan range of the subject as a continuous point or a discontinuous point. (4) Optical information about a desired imaging range is taken from the distal end of the insertion unit 4022, passes through the imaging image guide 4004 in the insertion unit 4022, is sent to the imaging device 4005 and is detected. (5) The detected image is processed in the control unit 4007 as necessary and displayed on the display unit 24.
 図45(A)に示される生体内観測装置4010は、図45(B)に示すように変更してもよい。図45(B)に示される生体内観測装置4010は、光学系4006aが、走査ユニット21に具備されること以外は図45(A)に示す装置と同様である。 The in-vivo observation device 4010 shown in FIG. 45 (A) may be modified as shown in FIG. 45 (B). The in-vivo observation device 4010 shown in FIG. 45 (B) is the same as the device shown in FIG. 45 (A) except that the optical system 4006a is provided in the scanning unit 21.
 当該生体内観測装置4010によれば、走査手段4002により走査され、被写体に照射された点状または線状の光情報は、撮像素子4005により所望のエリアについてのイメージとして検出される。これにより、効率的に走査観察を行うことが可能である。 According to the in-vivo observation device 4010, the dot-like or linear light information scanned by the scanning unit 4002 and irradiated on the subject is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
 また、当該生体内観測装置4010は、使用後に挿入部4022のみを洗浄および/または滅菌することが可能である。これにより走査ユニットについては、滅菌走査などにおいて要求される密閉性を必要とされない。また、走査ユニット21を、他の所望の光源系と交換可能とすることにより、観測中または観測毎に、光源を交換することが可能である。それにより、複数の観測および/または観察を1つの装置により行うことが可能である。 In addition, the in-vivo observation device 4010 can wash and / or sterilize only the insertion portion 4022 after use. As a result, the scanning unit is not required to have the hermeticity required for sterilization scanning or the like. Further, by making the scanning unit 21 exchangeable with another desired light source system, the light source can be exchanged during observation or for each observation. Thereby, a plurality of observations and / or observations can be performed by one apparatus.
 <第3の実施形態>
 第2の実施形態を図46(A)および(B)に示す。図46(A)を参照されたい。当該生体観測装置4010は、走査ユニット21と、挿入部4022とを具備する。走査ユニット21は、照明光源4001と走査手段4002を具備する。従って、この態様においては、走査ユニット21は走査部と解されてもよい。挿入部4022は、光学系4006aと、照射用イメージガイド3と、光学系4006bと光学系4006cと撮像素子4005を具備する。
<Third Embodiment>
A second embodiment is shown in FIGS. 46 (A) and 46 (B). Refer to FIG. The biological observation apparatus 4010 includes a scanning unit 21 and an insertion unit 4022. The scanning unit 21 includes an illumination light source 4001 and scanning means 4002. Therefore, in this aspect, the scanning unit 21 may be interpreted as a scanning unit. The insertion unit 4022 includes an optical system 4006a, an irradiation image guide 3, an optical system 4006b, an optical system 4006c, and an image sensor 4005.
 照明光源4001、走査手段4002および撮像素子4005は、当該生体内観測装置4010の外部に設置された制御ユニット4007により制御される。 The illumination light source 4001, the scanning unit 4002, and the image sensor 4005 are controlled by a control unit 4007 installed outside the in-vivo observation device 4010.
 このような生体内観測装置4010は、走査ユニット21と挿入部4022が着脱可能に接続されてもよい。当該接続は、それ自身公知の嵌合機構により達成される。 In such an in-vivo observation device 4010, the scanning unit 21 and the insertion unit 4022 may be detachably connected. This connection is achieved by a fitting mechanism known per se.
 当該生体内観測装置4010における観察は、次のように行われる。(1)オペレータの指示に従い、制御ユニット4007が走査ユニット21の照射光源4001に照射を指示し、照射が開始される。(2)照射光源4001からの光は、走査ユニット21において走査手段4002により走査され、挿入部4022の照明用イメージガイド4003に伝達される。(3)照明用イメージガイド4003に伝達された光は、挿入部4022の先端から照射光として、連続する点または不連続の点として被写体のスキャン範囲に照射される。(4)挿入部4022の先端から所望の撮影範囲についての光情報が取り込まれ、撮像素子4005に送られ検出される。(5)検出されたイメージは、必要に応じて制御ユニット4007において処理され、表示部(図示せず)に表示される。 Observation in the in-vivo observation apparatus 4010 is performed as follows. (1) In accordance with an operator instruction, the control unit 4007 instructs the irradiation light source 4001 of the scanning unit 21 to perform irradiation, and irradiation is started. (2) Light from the irradiation light source 4001 is scanned by the scanning unit 4002 in the scanning unit 21 and transmitted to the illumination image guide 4003 of the insertion unit 4022. (3) The light transmitted to the illumination image guide 4003 is irradiated from the distal end of the insertion portion 4022 as irradiation light to the scan range of the subject as a continuous point or a discontinuous point. (4) Optical information about a desired imaging range is captured from the distal end of the insertion unit 4022, and sent to the image sensor 4005 to be detected. (5) The detected image is processed in the control unit 4007 as necessary and displayed on a display unit (not shown).
 当該生体内観測装置4010によれば、走査手段4002により走査され、被写体に照射され点状または線状の光情報は、撮像素子4005により所望のエリアについてのイメージとして検出される。これにより、効率的に走査観察を行うことが可能である。 According to the in-vivo observation device 4010, the light information that is scanned by the scanning unit 4002 and is irradiated onto the subject and that is dotted or linear is detected as an image of a desired area by the image sensor 4005. Thereby, it is possible to perform scanning observation efficiently.
 また、当該生体内観測装置4010は、走査ユニット21と挿入部4022とが着脱可能に接続されてもよい。その場合、走査ユニット21と挿入部4022との接続は、それ自身公知の嵌合機構により達成されればよい。着脱可能な構成により、当該生体内観測装置4010は、使用後に挿入部4022のみを洗浄および/または滅菌することが可能である。これにより走査ユニットについては、滅菌走査などにおいて要求される密閉性を必要とされない。また、走査ユニット21を他の所望の光源系と交換可能としてもよい。このような構成により、観測中または観測毎に光源を交換することが可能である。それにより複数種類の観測および/または観察を1つの装置で行うことができる。 Further, in the in-vivo observation device 4010, the scanning unit 21 and the insertion unit 4022 may be detachably connected. In that case, the connection between the scanning unit 21 and the insertion portion 4022 may be achieved by a known fitting mechanism. With the detachable configuration, the in-vivo observation device 4010 can wash and / or sterilize only the insertion portion 4022 after use. As a result, the scanning unit is not required to have the hermeticity required for sterilization scanning or the like. Further, the scanning unit 21 may be exchangeable with another desired light source system. With such a configuration, the light source can be exchanged during observation or every observation. Thereby, a plurality of types of observations and / or observations can be performed with one apparatus.
 更に、図46(A)に示す装置を、図46(B)に示すように変更してもよい。図46(B)に示す生体内観測装置4010は、光学系4006aが、走査ユニット21に具備されること以外は、図46(A)に示す装置と同様であってよい。 Furthermore, the apparatus shown in FIG. 46 (A) may be changed as shown in FIG. 46 (B). The in-vivo observation device 4010 shown in FIG. 46 (B) may be the same as the device shown in FIG. 46 (A) except that the optical system 4006a is provided in the scanning unit 21.
 <第4の実施形態>
 第4の実施形態を以下に説明する。この実施形態は、第1の実施形態に示した生体内観測装置4010を用いて、特殊観測のための特殊光、例えば、近赤外線を使用し、散乱画像を撮像して観測を行う装置である。
<Fourth Embodiment>
A fourth embodiment will be described below. This embodiment is an apparatus that uses the in-vivo observation device 4010 shown in the first embodiment to perform observation by using a special light for special observation, for example, near infrared rays, and capturing a scattered image. .
 図48は、散乱媒質を介した後方散乱光を検出し、その光強度データを取得する様子を示す模式図である。図48(a)は、散乱体Sの内部に散乱媒質101よりも吸収が大きい異質部分(すなわち観察対象)102が存在する場合を示す。照射光源4201により照射された光は、異質部分102の影響で減衰し、減衰された後方散乱光4401が検出手段4204により検出され、その光強度データが取得される。ここにおいては、図48(a)に示すような場合に検出される光強度データを異質部分の影響が支配的なデータ、又は異質部分検出信号と称する。一方、図48(b)は、散乱体Sの内部に異質部分102が存在しない場合を示す図である。この場合、照射光源4201により照射された光は減衰せず、散乱媒質101で散乱された後方散乱光4402が検出手段4204により検出され、その光強度データが取得される。ここでは、図48(b)に示すような場合に検出される光強度データを、散乱媒質の影響が支配的なデータ、又は散乱媒質検出信号と称する。 FIG. 48 is a schematic diagram showing a state in which backscattered light passing through the scattering medium is detected and its light intensity data is acquired. FIG. 48A shows a case where a heterogeneous portion (that is, an observation target) 102 having larger absorption than the scattering medium 101 exists inside the scatterer S. FIG. The light emitted from the irradiation light source 4201 is attenuated by the influence of the heterogeneous portion 102, the attenuated backscattered light 4401 is detected by the detection means 4204, and the light intensity data is acquired. Here, the light intensity data detected in the case shown in FIG. 48A is referred to as data in which the influence of the foreign portion is dominant, or the foreign portion detection signal. On the other hand, FIG. 48B is a diagram showing a case where the heterogeneous portion 102 does not exist inside the scatterer S. In this case, the light irradiated by the irradiation light source 4201 is not attenuated, and the backscattered light 4402 scattered by the scattering medium 101 is detected by the detection unit 4204, and the light intensity data is acquired. Here, the light intensity data detected in the case shown in FIG. 48B is referred to as data in which the influence of the scattering medium is dominant, or the scattering medium detection signal.
 例えば、図48(a)および(b)のような散乱体Sを連続して検出する場合、図48(c)で示すような光強度のグラフが得られる。このグラフでは、散乱媒質101の影響が支配的な光強度データ4402と、異質部分の影響が支配的な光強度データ4401とが存在するので、強度の異なるデータが検出される。このような強度の違いを利用して、散乱体S中の異質部分102の存在を検出することが可能である。 For example, when the scatterer S as shown in FIGS. 48 (a) and 48 (b) is continuously detected, a light intensity graph as shown in FIG. 48 (c) is obtained. In this graph, the light intensity data 4402 in which the influence of the scattering medium 101 is dominant and the light intensity data 4401 in which the influence of the heterogeneous portion is dominant exist, so that data having different intensities are detected. It is possible to detect the presence of the heterogeneous portion 102 in the scatterer S using such a difference in intensity.
 特に散乱光による検出を行う場合には、照射光を走査した際に被写体の入射点から放射状に浸透して広がった散乱光が、撮像素子の受光面によって被写体内の深さに応じた広がりのある受光データを走査点毎に一度に検出することになるので、検出効率を非常に高くすることができる。また、被写体において照射光が入射する位置から離れた位置から出射される光を検出することとなるが、被写体内部の異質物質(102)の位置が未知の場合や、内視鏡のように挿入部と被写体の距離が変わり易い場合では、同じ入射位置から入射した照射光であっても撮像素子における受光位置が変わってしまうので、撮像素子のような2次元的に広がりを持った面で受光することは検出ミスを防止できる点でも非常に都合がよい。 In particular, when performing detection using scattered light, scattered light that spreads radially from the incident point of the subject when the irradiation light is scanned spreads according to the depth in the subject by the light receiving surface of the image sensor. Since certain light reception data is detected at a time for each scanning point, the detection efficiency can be very high. In addition, light emitted from a position away from the position where the irradiated light is incident on the subject is detected. However, when the position of the foreign substance (102) inside the subject is unknown or inserted like an endoscope In the case where the distance between the subject and the subject is easily changed, the light receiving position in the image sensor changes even if the incident light is incident from the same incident position, so that the light is received on a two-dimensionally wide surface like the image sensor. This is also very convenient in that a detection error can be prevented.
 以上のような後方散乱光を利用した特殊観測により、例えば、散乱体Sとしての筋または脂肪などの組織中の血管やリンパ管や神経を異質部分として検出することが可能である。 By special observation using backscattered light as described above, for example, blood vessels, lymphatic vessels, and nerves in tissues such as muscles or fats as the scatterer S can be detected as extraneous portions.
 側面3は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The side surface 3 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 以上の説明によれば、側面4は以下に示すように表現される発明であると理解できる。 According to the above description, it can be understood that the side surface 4 is an invention expressed as shown below.
 28.照明光を走査する機能を有する生体内観測装置において、走査機能を実現する走査手段を、生体内へ挿入される挿入部ではない部位に配置することを特徴とする生体内観測装置。 28. An in-vivo observation apparatus having a function of scanning illumination light, wherein the in-vivo observation apparatus is configured such that a scanning unit that realizes a scanning function is arranged at a portion that is not an insertion portion to be inserted into the living body.
 29.前記28.に記載の生体内観測装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドと、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子とを具備し、前記走査手段と撮像素子とが走査ユニット内に配置され、前記走査ユニットに接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドとが配置されることを特徴とする生体内観測装置。 29. 28. The in-vivo observation device according to claim 1, further comprising an illumination image guide that transmits light from the scanning unit to the subject, an imaging image guide that transmits light from the subject, and the imaging image guide An image sensor for detecting light from the image as an image, the scanning means and the image sensor are disposed in a scanning unit, and the image guide for irradiation and the image capturing are in an insertion portion connected to the scanning unit. An in-vivo observation device characterized in that an image guide is arranged.
 30.前記28.に記載の生体内観測装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光をイメージとして検出するための撮像素子とを具備し、前記走査手段が走査ユニット内に配置され、前記走査ユニットに接続された挿入部内に前記照射用イメージガイドと撮像素子とが配置されることを特徴とする生体内観測装置。 30. 28. The in-vivo observation device according to claim 1, further comprising an illumination image guide that transmits light from the scanning unit to the subject, and an imaging device for detecting light from the subject as an image, The in-vivo observation apparatus, wherein the scanning unit is disposed in a scanning unit, and the irradiation image guide and the imaging element are disposed in an insertion portion connected to the scanning unit.
 31.更に、前記走査手段に光を供給するための照明光源を当該走査ユニット内に具備する前記28.~30.の何れか1に記載の生体内観測装置。 31. Further, the light source for supplying light to the scanning means is provided in the scanning unit. 30. The in-vivo observation apparatus according to any one of the above.
 32.前記供給される光がレーザー光であり、前記被写体からの光が散乱光であることを特徴とする前記28.から31.の何れか1に記載の生体内観測装置。 32. 28. The light according to claim 28, wherein the supplied light is laser light, and light from the subject is scattered light. To 31. The in-vivo observation apparatus according to any one of the above.
 33.前記走査ユニットから前記挿入部が着脱可能である前記28.から32.の何れか1に記載の生体内観測装置。 33. 28. The insertion unit is detachable from the scanning unit. To 32. The in-vivo observation apparatus according to any one of the above.
 34.前記28.に記載の生体内観測装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドと、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子とを具備し、前記走査手段が走査部内に配置され、前記走査部に接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドと撮像素子とが配置されることを特徴とする生体内観測装置。 34. 28. The in-vivo observation device according to claim 1, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; an imaging image guide that transmits light from the subject; and the imaging image guide An image sensor for detecting light from the image as an image, wherein the scanning means is disposed in a scanning section, and the image guide for irradiation, the image guide for imaging, and the image sensor in an insertion section connected to the scanning section And an in-vivo observation device.
 35.前記28.に記載の生体内観測装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドと、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子とを具備し、前記走査手段が走査部内に配置され、前記撮像素子が撮像部内に配置され、前記走査部および撮像部に接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドとが配置されることを特徴とする生体内観測装置。 35. 28. The in-vivo observation device according to claim 1, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; an imaging image guide that transmits light from the subject; and the imaging image guide An image sensor for detecting light from the image as an image, the scanning means is disposed in the scanning unit, the image sensor is disposed in the imaging unit, and the scanning unit and the insertion unit connected to the imaging unit An in-vivo observation apparatus, wherein the irradiation image guide and the imaging image guide are arranged.
 36.更に、前記走査手段に光を供給するための照明光源を当該走査部内に具備する前記34.または35.の何れか1に記載の生体内観測装置。 36. Further, the light source for supplying light to the scanning means is provided in the scanning section. Or 35. The in-vivo observation apparatus according to any one of the above.
 37.前記走査部が着脱可能であることを特徴とする前記34.から36.の何れか1に記載の生体内観測装置。 37. The 34. the scanning unit is detachable. To 36. The in-vivo observation apparatus according to any one of the above.
 38.供給される光がレーザー光であり、前記被写体からの光が散乱光であることを特徴とする前記34.から37.の何れか1に記載の生体内観測装置。 38. 34. The light according to claim 34, wherein the supplied light is laser light, and the light from the subject is scattered light. To 37. The in-vivo observation apparatus according to any one of the above.
<側面5>
 側面5は、散乱体からの後方散乱光を計測することにより、散乱体内部の異質部分の位置を正確かつ迅速に検出できる装置及び方法に関する。
<Side 5>
The side surface 5 relates to an apparatus and method that can accurately and quickly detect the position of a heterogeneous portion inside the scatterer by measuring the backscattered light from the scatterer.
〔背景技術〕
 生体内部の異質部分、例えば血管などの位置を正確に知ることは困難である。そのため、特開2006-102029号公報に示されるような、生体組織内部の血管の位置を認識する装置が開示されている。特開2006-102029号公報に開示された装置は、医師又は看護師が患者の腕等に対して静脈注射や点滴を行うための血管位置提示装置である。
[Background Technology]
It is difficult to accurately know the position of a foreign part inside a living body, such as a blood vessel. Therefore, an apparatus for recognizing the position of a blood vessel inside a living tissue as disclosed in JP-A-2006-102029 is disclosed. The device disclosed in Japanese Patent Laid-Open No. 2006-102029 is a blood vessel position presentation device for a doctor or nurse to perform intravenous injection or infusion on a patient's arm or the like.
 その概要を説明すると、血管内血液により吸収が顕著な740~950nmの光を生体に照射することにより、血管と脂肪部位で異なる強度の信号を得ている。特開2006-102029号公報では、血管識別のために検出信号強度の閾値を設定し、信号が所定の閾値より大きいか小さいかで血管を識別している。 Describing the outline, signals with different intensities are obtained in blood vessels and fat sites by irradiating a living body with light of 740 to 950 nm, which is significantly absorbed by blood in blood vessels. In Japanese Patent Laid-Open No. 2006-102029, a threshold value of detection signal intensity is set for identifying a blood vessel, and the blood vessel is identified based on whether the signal is larger or smaller than a predetermined threshold value.
 また特開2006-102029号公報には、生体表面をライン状に走査することにより、血管を識別する第一ステップSと、識別結果に基づいて再度ライン状に走査しながら血管位置をマークする第二ステップSとを具備する方法が開示されている。 Japanese Patent Laid-Open No. 2006-102029 discloses a first step S for identifying a blood vessel by scanning the surface of a living body in a line, and a step for marking a blood vessel position while scanning in a line again based on the identification result. A method comprising two steps S is disclosed.
〔発明が解決しようとする課題〕
 しかし、上記特開2006-102029号公報に記載の装置を用いて散乱体内部の異質部分の位置を検出する場合、次のような問題がある。第一に、閾値の設定基準があいまいである。第二に、散乱体内部の異質部分の位置が深部になればなるほど、異質部分による光の減衰が顕著になり、ノイズの影響が大きくなる。そのため、閾値を一意に与える方法では正確な判定が困難である。第三に、閾値を一意で与えるために散乱媒質及び異質部分の不均質性に対応できない。第四に、照明部と検出部が固定されているため、装置を静止した状態で観察したい場合には適用できない。このため、使用範囲が限られる。第五に、血管を検出する工程と血管位置をマークする工程が別工程であるため、操作に時間がかかる。さらに、1ラインスキャンに対して1点しかマークできず、広範囲の観察には適さない。第六に、点検出であるために異質部分の形状が確認できない。
[Problems to be Solved by the Invention]
However, when the position of a heterogeneous portion inside the scatterer is detected using the apparatus described in the above Japanese Patent Application Laid-Open No. 2006-102029, there are the following problems. First, the threshold setting criteria are ambiguous. Secondly, the deeper the position of the extraneous portion inside the scatterer, the more pronounced the attenuation of light by the extraneous portion, and the greater the influence of noise. Therefore, accurate determination is difficult with a method that uniquely assigns a threshold value. Third, in order to uniquely give a threshold value, it cannot cope with the heterogeneity of the scattering medium and the heterogeneous portion. Fourthly, since the illumination unit and the detection unit are fixed, it is not applicable when it is desired to observe the apparatus in a stationary state. For this reason, the use range is limited. Fifth, since the step of detecting the blood vessel and the step of marking the blood vessel position are separate steps, the operation takes time. Furthermore, only one point can be marked per line scan, which is not suitable for wide-area observation. Sixth, the shape of the heterogeneous part cannot be confirmed because of point detection.
〔課題を解決するための手段〕
 上記問題に鑑み、側面5は、散乱体内部の異質部分(すなわち観察対象)を検出する散乱体内部検出装置(すなわち散乱体内部観察装置)であって、前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる光を前記散乱体に照射する照明手段(すなわち光照射手段)と、前記照明手段により照射された光の後方散乱光を検出する検出手段と、前記検出手段により検出された後方散乱光の光強度データを記憶する記憶手段と、前記記憶手段に記憶された複数の光強度データの頻度分布情報を作成し、該情報に基づいて、前記散乱体の所望の位置における内部が散乱媒質であるか或いは異質部分であるかを判定する解析手段(すなわち判定手段)と、前記解析手段による判定結果を表示する提示手段とを具備することを特徴とする散乱体内部検出装置を提供する。
[Means for solving the problems]
In view of the above problem, the side surface 5 is a scatterer internal detection device (that is, a scatterer internal observation device) that detects a heterogeneous portion (that is, an observation target) inside the scatterer, and the scattering medium that constitutes the scatterer and the Illumination means for irradiating the scatterer with light having different optical characteristics from different parts (that is, light irradiation means), detection means for detecting backscattered light of the light emitted by the illumination means, and detection by the detection means Storage means for storing the light intensity data of the backscattered light, and frequency distribution information of a plurality of light intensity data stored in the storage means, and based on the information, at a desired position of the scatterer An analysis unit (that is, a determination unit) that determines whether the inside is a scattering medium or a heterogeneous part, and a presentation unit that displays a determination result by the analysis unit are provided. Providing a body portion detection apparatus.
〔発明の効果〕
 側面5によれば、検出された光強度データの頻度分布情報を作成し、該情報に基づいて判定を行うために、散乱媒質と異質部分とを正確に判定することが可能であり、さらに不均質な部分でも正確に判定することができる。
〔The invention's effect〕
According to the aspect 5, in order to create frequency distribution information of the detected light intensity data and make a determination based on the information, it is possible to accurately determine the scattering medium and the extraneous portion. Even a homogeneous portion can be accurately determined.
〔発明を実施するための最良の形態〕
 以下、側面5の散乱体内部検出装置及び該装置を用いた検出方法について説明する。側面5において、散乱体とは、主に散乱媒質から構成される物体を指し、例として生体が挙げられる。散乱媒質とは、少なくとも光を散乱する性質を示し、吸収よりも散乱のほうが支配的であるものである。
[Best Mode for Carrying Out the Invention]
Hereinafter, the scatterer inside detection apparatus of the side surface 5 and a detection method using the apparatus will be described. In the side surface 5, the scatterer refers to an object mainly composed of a scattering medium, and examples thereof include a living body. The scattering medium indicates at least the property of scattering light, and scattering is more dominant than absorption.
 側面5の散乱体内部検出装置は、散乱体内部の散乱媒質中に存在する異質部分を検出するための装置である。側面5において異質部分とは、透過率、屈折率、反射率、散乱係数、吸収係数などの光学特性が散乱媒質と異なるものである。例として血管が挙げられるが、これに限定されない。 The scatterer internal detection device on the side surface 5 is a device for detecting a heterogeneous portion present in the scattering medium inside the scatterer. The heterogeneous portion in the side surface 5 is different from the scattering medium in optical characteristics such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. Examples include, but are not limited to, blood vessels.
 内部に異質部分が存在する散乱体の例を図49に示す。図49(a)では観察範囲となる領域を観測領域5103として示している。 FIG. 49 shows an example of a scatterer having a heterogeneous portion inside. In FIG. 49A, an area that is an observation range is shown as an observation area 5103.
散乱体の大部分を構成する散乱媒質5101の深部に異質部分5102が存在している。この異質部分5102は散乱体の表面からは見えない。図49(b)は、図49(a)の一点鎖線における断面図である。図49の例では、紐状の異質部分が走行するような形状を示したが、これに限定されず、塊状やループ状の異質部分も存在する。 An extraneous portion 5102 exists in the deep part of the scattering medium 5101 constituting most of the scatterer. This extraneous portion 5102 is not visible from the surface of the scatterer. FIG. 49B is a cross-sectional view taken along the alternate long and short dash line in FIG. In the example of FIG. 49, a shape in which a string-like heterogeneous portion travels is shown, but the present invention is not limited to this, and there are lump-like or loop-like heterogeneous portions.
 側面5の散乱体内部検出装置では、散乱媒質と異質部分とで光学特性の異なる光を散乱体に照射する。散乱媒質と異質部分とで光学特性の異なる光とは、透過率、屈折率、反射率、散乱係数、吸収係数などの光学特性が、散乱媒質中と異質部分中とで異なる波長の光を意味する。 In the scatterer internal detection device on the side surface 5, the scatterer is irradiated with light having different optical characteristics between the scattering medium and the heterogeneous portion. Light with different optical properties between the scattering medium and the heterogeneous part means light with different wavelengths in the scattering medium and in the extraneous part, such as transmittance, refractive index, reflectance, scattering coefficient, and absorption coefficient. To do.
 図50は散乱媒質による後方散乱光を検出し、その光強度データを取得する様子を示す模式図である。図50(a)は、散乱体Sの内部に散乱媒質5101よりも吸収が大きい異質部分5102が存在する場合である。照明手段5201により照明された光は異質部分5102の影響で減衰し、減衰された後方散乱光5401が検出手段5204により検出され、その光強度データが取得される。側面5においては、このような場合に検出される光強度データを、異質部分の影響が支配的なデータ、又は異質部分検出信号と称する。一方、図50(b)は、散乱体Sの内部に異質部分5102が存在しない場合である。この場合、照明手段5201により照明された光は減衰せず、散乱媒質5101で散乱された後方散乱光5402が検出手段5204により検出され、その光強度データが取得される。側面5においては、このような場合に検出される光強度データを、散乱媒質の影響が支配的なデータ、又は散乱媒質検出信号と称する。 FIG. 50 is a schematic diagram showing how the backscattered light from the scattering medium is detected and the light intensity data is acquired. FIG. 50A shows a case where a foreign portion 5102 having larger absorption than the scattering medium 5101 exists inside the scatterer S. FIG. The light illuminated by the illumination unit 5201 is attenuated by the influence of the extraneous portion 5102, the attenuated backscattered light 5401 is detected by the detection unit 5204, and the light intensity data is acquired. In the side surface 5, the light intensity data detected in such a case is referred to as data in which the influence of the foreign portion is dominant or the foreign portion detection signal. On the other hand, FIG. 50B shows a case where the heterogeneous portion 5102 does not exist inside the scatterer S. In this case, the light illuminated by the illumination unit 5201 is not attenuated, the backscattered light 5402 scattered by the scattering medium 5101 is detected by the detection unit 5204, and the light intensity data is acquired. In the side surface 5, the light intensity data detected in such a case is referred to as data in which the influence of the scattering medium is dominant, or the scattering medium detection signal.
 例えば図49(b)のような散乱体を図49(a)の一点鎖線に沿って検出する場合、図50(c)で示すような光強度のグラフが得られる。このグラフでは、散乱媒質の影響が支配的な光強度データ5402と異質部分の影響が支配的な光強度データ5401として、強度の異なるデータが検出される。側面5では、このように得られたデータを後述するように解析することにより、散乱媒質と異質部分を判定する。 For example, when a scatterer as shown in FIG. 49 (b) is detected along the one-dot chain line in FIG. 49 (a), a graph of light intensity as shown in FIG. 50 (c) is obtained. In this graph, data having different intensities are detected as light intensity data 5402 in which the influence of the scattering medium is dominant and light intensity data 5401 in which the influence of the heterogeneous portion is dominant. In the side surface 5, the scattering medium and the extraneous portion are determined by analyzing the data thus obtained as described later.
 なお、図50(c)の例では、異質部分5102の影響が支配的な光強度は、散乱媒質5101の影響が支配的な光強度よりも小さくなっているが、この関係が逆転している場合でも側面5を適用することができる。 In the example of FIG. 50 (c), the light intensity dominant in the influence of the heterogeneous portion 5102 is smaller than the light intensity dominant in the influence of the scattering medium 5101, but this relationship is reversed. Even in this case, the side surface 5 can be applied.
 (第1実施形態)
 以下、側面5の実施形態を図面に従って説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
(First embodiment)
Hereinafter, embodiments of the side surface 5 will be described with reference to the drawings. In the following description, components having substantially the same function and configuration are denoted by the same reference numerals, and redundant description will be given only when necessary.
 図51は側面5の第1の実施形態に係る散乱体内部検出装置5100の概略機能ブロック図である。同図に示すように、散乱体内部検出装置5100は、照明手段5201、検出手段5204、記憶手段5207、解析手段5208、及び提示手段5209を備える。 FIG. 51 is a schematic functional block diagram of the scatterer internal detection device 5100 according to the first embodiment of the side surface 5. As shown in the figure, the scatterer internal detection device 5100 includes an illumination unit 5201, a detection unit 5204, a storage unit 5207, an analysis unit 5208, and a presentation unit 5209.
 照明手段5201は、散乱媒質中と異質部分中とで光学特性の異なる光を発生し、散乱体に照射する手段である。本実施形態の散乱体内部検出装置5100は、図51(a)に示すように、光源5201aと、発生された光を導光するための光ファイバーを用いた導光体5201bと、光ファイバーにより伝播され射出される発散光を限定された検出領域に照射するため、細い平行の光速に変換する集光体5201cによって構成される照明手段5201を具備する。 The illumination unit 5201 is a unit that generates light having different optical characteristics in the scattering medium and in the heterogeneous portion and irradiates the scatterer. As shown in FIG. 51A, the scatterer internal detection device 5100 of this embodiment is propagated by a light source 5201a, a light guide 5201b using an optical fiber for guiding generated light, and the optical fiber. In order to irradiate the emitted divergent light to a limited detection region, an illuminating unit 5201 configured by a condensing body 5201c that converts to a thin parallel light speed is provided.
 光源5201aには、散乱媒質と異質部分で光学特性の異なる波長の光を発生するものが用いられる。導光体5201bには、光ファイバーが好適に用いられるが、これに限定されず、リレーレンズによって構成することもできる。集光体5201cにはレンズが好適に用いられるがこれに限定されず、ミラーによって構成してもよい。或いは、プリズムや回折格子で構成してもよい。 As the light source 5201a, a light source that generates light having a wavelength different from that of the scattering medium in a different part is used. An optical fiber is preferably used for the light guide 5201b, but the light guide 5201b is not limited to this, and may be configured by a relay lens. Although a lens is suitably used for the light condensing body 5201c, it is not limited to this, You may comprise by a mirror. Or you may comprise with a prism or a diffraction grating.
 或いは、光源として予め光束を絞ったレーザ光等を使用し、集光体5201cを用いなくともよい。また或いは、集光体5201cを用いる代わりにマスク等により、照明光が当たる検出領域を限定してもよい。検出領域とは、照明手段5201によって光が照射される散乱体表面上の領域を意味し、図51(a)では符号a1で示される。 Alternatively, it is possible to use a laser beam or the like with a light beam focused in advance as the light source and not use the light collector 5201c. Alternatively, instead of using the light collector 5201c, a detection region to which the illumination light hits may be limited by a mask or the like. The detection region means a region on the surface of the scatterer irradiated with light by the illumination unit 5201, and is indicated by reference sign a1 in FIG.
 検出手段5204は、照明手段5201により発せられる光の波長を含む波長帯に感度を有し、散乱体表面上から出射される後方散乱光を検出して電気信号に変える手段である。本実施形態の散乱体内部検出装置5100は、光源5201aより発せられる光の波長を含む波長帯域に感度を有する少なくとも一つの検出素子5204aと、検出素子5204aが検出した光強度信号を伝播する信号伝達部5204bと、光強度信号を光データに変換する処理部5204cによって構成される検出手段5204を具備する。 The detection means 5204 is a means having sensitivity in a wavelength band including the wavelength of light emitted by the illumination means 5201, and detecting backscattered light emitted from the scatterer surface and converting it into an electrical signal. The scatterer internal detection device 5100 of this embodiment has at least one detection element 5204a having sensitivity in a wavelength band including the wavelength of light emitted from the light source 5201a, and signal transmission for propagating a light intensity signal detected by the detection element 5204a. A detecting unit 5204 including a unit 5204b and a processing unit 5204c that converts the light intensity signal into optical data.
 検出素子5204aには、一般的な光検出素子が用いられる。フォトディテクター、光電子増倍管等を用いることができるがこれに限定されない。また或いは、複数点を同時に検出するCCD等のような撮像素子を用いてもよい。信号伝達部5204bには電線を用いてもよく、処理部5204cには受光電流を電圧に変換するフォトディテクターアンプを用いることができるがこれらに限定されない。 A general light detection element is used for the detection element 5204a. Although a photodetector, a photomultiplier tube, etc. can be used, it is not limited to this. Alternatively, an image sensor such as a CCD that detects a plurality of points simultaneously may be used. An electric wire may be used for the signal transmission unit 5204b, and a photodetector amplifier that converts a received light current into a voltage may be used for the processing unit 5204c, but is not limited thereto.
 図51(b)は、散乱体内部検出装置5100によって光が照射及び検出される散乱体の表面部分を上面から見た図である。図に示すように、照明手段5201から発せられた光(a1)は散乱体Sの表面上の照明領域a2を照射し、照明された光は散乱体内を伝播して散乱体表面の検出領域a3から射出する。射出された光(a4)は検出手段5204により検出され、光強度データに変換される。ここで検出領域とは検出手段、特に検出素子によって後方散乱光が検出される領域であり、照明領域とは照明手段によって光が照射される領域を指す。 FIG. 51 (b) is a view of the surface portion of the scatterer, which is irradiated and detected by the scatterer internal detection device 5100, as viewed from above. As shown in the figure, the light (a1) emitted from the illumination means 5201 irradiates the illumination area a2 on the surface of the scatterer S, and the illuminated light propagates through the scatterer to detect the detection area a3 on the scatterer surface. Ejected from. The emitted light (a4) is detected by the detecting means 5204 and converted into light intensity data. Here, the detection region is a region where backscattered light is detected by the detection means, particularly the detection element, and the illumination region is a region irradiated with light by the illumination unit.
 記憶手段5207は、検出手段5204により検出されて変換された光強度データを記憶する手段であり、メモリが好適に用いられる。 Storage means 5207 is means for storing the light intensity data detected and converted by the detection means 5204, and a memory is preferably used.
 解析手段5208は、記憶手段5207に記憶された光強度データを解析する手段であり、解析のための適宜のソフトウェアが予めインストールされているコンピュータ等の制御装置が好適に用いられる。 The analyzing means 5208 is means for analyzing the light intensity data stored in the storage means 5207, and a control device such as a computer in which appropriate software for analysis is installed in advance is preferably used.
 提示手段5209は、解析手段5208によって解析された結果を表示する手段である。提示手段5209は、例えば、観測領域内の検出領域と検出領域を含むように散乱体表面上をマークする可視光を照射し、判別結果に基づいてマークを切り替える手段を用いる。可視光を用いた方法であれば、マークの方法の自由度が高く、また切り替えも光源のオンオフで実現でき容易であるため、迅速に判別結果の通知を行うことができる。また、散乱体表面を走査中に、その検出位置において結果を提示できるので迅速に結果を提示することができる。また、照明手段と同じ導光体を利用すれば小型化した構成を実現することもできる。 The presenting means 5209 is a means for displaying the result analyzed by the analyzing means 5208. The presenting unit 5209 uses, for example, a unit that irradiates visible light that marks the surface of the scatterer so as to include the detection region and the detection region in the observation region, and switches the mark based on the determination result. If the method uses visible light, the degree of freedom of the mark method is high, and switching can be easily realized by turning on and off the light source, so that the determination result can be notified promptly. In addition, since the result can be presented at the detection position during scanning of the scatterer surface, the result can be presented quickly. Further, if the same light guide as that of the illumination means is used, a downsized configuration can be realized.
 本実施形態の散乱体内部検出装置5100は、可視光を発生する光源5209aと、発生された光を導光するものとして光ファイバーを用いた導光体5209bと、光ファイバーにより伝播され射出される発散光を、照明領域(a2)と検出領域(a3)を含む測定領域(a5)に集光する表示用集光部5209cによって構成される提示手段5209を具備する。解析結果の表示は、散乱媒質検出時と異質部分検出時で異なるマークを照射することにより行う。図52に示すように円状マーク1801をオンとオフとで切り替えてもよく、或いは、丸印とバツ印を切り替えるなど、様々なマークの切り替え方法を取ることができる。 The scatterer internal detection device 5100 of this embodiment includes a light source 5209a that generates visible light, a light guide 5209b that uses an optical fiber as a light guide for the generated light, and divergent light that is propagated and emitted by the optical fiber. Is provided with a display means 5209 configured by a display condensing unit 5209c that condenses the light on the measurement area (a5) including the illumination area (a2) and the detection area (a3). The analysis result is displayed by irradiating different marks when the scattering medium is detected and when the foreign portion is detected. As shown in FIG. 52, the circular mark 1801 may be switched between on and off, or various mark switching methods such as switching between a round mark and a cross mark may be taken.
 本実施形態の散乱体内部検出装置5100では、導光体5201b、集光体5201c、検出素子5204a及び信号伝達部5204bがホルダー5210の内部に配置される。集光体5201cと検出素子5204aがホルダー5210に固定されることによって、照明領域a2と検出領域a3が特定の距離に保持される。本実施形態では、このホルダー5210を移動させることによって観測領域内を走査することができる。 In the scatterer internal detection device 5100 of this embodiment, the light guide 5201b, the light collector 5201c, the detection element 5204a, and the signal transmission unit 5204b are arranged inside the holder 5210. By fixing the condenser 5201c and the detection element 5204a to the holder 5210, the illumination area a2 and the detection area a3 are held at a specific distance. In this embodiment, the observation area can be scanned by moving the holder 5210.
 さらに、ホルダー5210の先端には、集光体5201c及び検出素子5204aを保護するための保護部5211を取り付けることができる。保護部5211を介してホルダー5210を散乱体表面に押し当てて検出することにより、散乱体表面から照明手段5201及び検出手段5204までの距離を一定に保つことができる。保護部5211は、照明手段5201により照射される光の波長に吸収の少ない材質から作製されることが好ましい。 Furthermore, a protection part 5211 for protecting the light collector 5201c and the detection element 5204a can be attached to the tip of the holder 5210. By detecting the holder 5210 by pressing the holder 5210 against the surface of the scatterer via the protection unit 5211, the distance from the scatterer surface to the illumination means 5201 and the detection means 5204 can be kept constant. The protection portion 5211 is preferably made of a material that absorbs less light at the wavelength of light irradiated by the illumination unit 5201.
 図51cは、ホルダー5210を先端部から見た正面模式図である。提示手段の表示用集光部5209cは、集光部5201c及び検出部5204aからずらして配置する。なお、図51cでは集光部5201c、検出部5204a及び表示用集光部5209cが三角形の配置に示されているが、側面5の提示手段5209が検出位置をマークする趣旨を逸脱しない限りいかようにも配置させることが可能である。 FIG. 51c is a schematic front view of the holder 5210 as seen from the tip. The display condensing unit 5209c of the presenting means is arranged so as to be shifted from the condensing unit 5201c and the detecting unit 5204a. In FIG. 51c, the condensing unit 5201c, the detecting unit 5204a, and the display condensing unit 5209c are shown in a triangular arrangement. However, the presenting means 5209 on the side surface 5 does not deviate from the purpose of marking the detection position. Can also be arranged.
 次に、上記第1の実施形態における散乱体内部検出装置5100の変形例を図53に示す。本変形例では、散乱体表面を走査可能な照明手段と複数の検出素子を具備する検出手段を備える。図53(b)に示すように、検出部5204a'は複数の検出素子5206を有する。説明のため複数の検出素子5206を順にd1~dnとして表す。 Next, FIG. 53 shows a modification of the scatterer internal detection device 5100 in the first embodiment. In this modification, an illuminating unit capable of scanning the scatterer surface and a detecting unit including a plurality of detecting elements are provided. As shown in FIG. 53 (b), the detection unit 5204a ′ includes a plurality of detection elements 5206. For the sake of explanation, a plurality of detection elements 5206 are represented in order as d1 to dn.
 本変形例では、図53cに示すように、集光部5201cのみを移動させることにより、ホルダー5210を動かすことなく照明領域を移動させる。このとき、集光部5201cの移動に伴って、光の検出に用いる検出素子5206を変更させ、照明領域と検出領域の距離を一定に維持する。これにより、照明領域と検出領域が特定の距離に保たれ、同じ深度の情報を得ることができる。なお、図53には提示手段5209は図示していないが、図51と同様の構成で提示手段を備えることができる。 In this modification, as shown in FIG. 53c, the illumination area is moved without moving the holder 5210 by moving only the light condensing unit 5201c. At this time, the detection element 5206 used for light detection is changed with the movement of the light collecting unit 5201c, and the distance between the illumination area and the detection area is kept constant. Thereby, the illumination area and the detection area are kept at a specific distance, and information of the same depth can be obtained. In addition, although the presentation means 5209 is not shown in FIG. 53, a presentation means can be provided with the same structure as FIG.
 図54は、上記第1の実施形態の散乱体内部検出装置5100における提示手段5209の変形例を示す図である。図54(a)は、照明手段5201が、解析結果を表示するための可視光を散乱体表面に照射する機能をさらに備える変形例である。提示手段5209の他の変形例として、モニターを用いて表示する形態(図54(b))や、音によって解析結果を提示する形態(図54(c))を用いることもできる。 FIG. 54 is a diagram showing a modification of the presenting means 5209 in the scatterer internal detection device 5100 of the first embodiment. FIG. 54A is a modification in which the illumination unit 5201 further has a function of irradiating the scatterer surface with visible light for displaying the analysis result. As other modified examples of the presenting means 5209, a form of displaying using a monitor (FIG. 54 (b)) or a form of presenting an analysis result by sound (FIG. 54 (c)) can be used.
 次に、図51に示す散乱体内部検出装置5100を用いて、散乱体の内部の異質部分を検出する動作について説明する。図55に、第1の実施形態の散乱体内部検出装置5100の概略動作フローを示す。 Next, an operation for detecting a heterogeneous portion inside the scatterer using the scatterer inside detection device 5100 shown in FIG. 51 will be described. FIG. 55 shows a schematic operation flow of the scatterer internal detection device 5100 of the first embodiment.
 図55のステップS801で処理フローを開始する。ステップS802では、処理のスウィッチがオンであるか否かを判定し、オンであるときステップS804以降の処理を実行し、オフであるときステップS803において処理フロー動作を中断又は終了する。なお、スウィッチがオフかどうかの判断は随時行われており、オフの場合は終了する。 The processing flow starts in step S801 in FIG. In step S802, it is determined whether or not the process switch is on. When the switch is on, the processes after step S804 are executed. When the switch is off, the process flow operation is interrupted or terminated in step S803. Note that whether or not the switch is off is determined at any time, and if it is off, the process ends.
 処理スウィッチがオンである場合は、ステップS804で生体表面を走査し光強度信号を取得する。図56に示すように、照明手段5201と検出手段5204を有するホルダー5210を用いて、生体Sの表面上(観測領域内)をランダムに走査し、観測領域5103内の様々な位置で後方散乱光の光強度信号を検出する。検出された光強度信号は光強度データに変換されて、一定時間間隔で記憶手段5207に記憶される。 If the processing switch is on, the surface of the living body is scanned in step S804 to obtain a light intensity signal. As shown in FIG. 56, using the holder 5210 having the illumination means 5201 and the detection means 5204, the surface of the living body S (in the observation area) is randomly scanned, and the backscattered light at various positions in the observation area 5103. The light intensity signal is detected. The detected light intensity signal is converted into light intensity data and stored in the storage means 5207 at regular time intervals.
 次に、ステップS805において、取得された光強度データが頻度分布情報を作成するのに十分か否かを判定する。十分ではない場合、ステップS806で再び光強度データを取得し、十分である場合はステップS807へ進む。ステップS806では、取得した光強度データをスウィッチがオンである限り、ステップS804において記憶手段に記憶する。 Next, in step S805, it is determined whether or not the acquired light intensity data is sufficient to create frequency distribution information. If not, the light intensity data is acquired again in step S806, and if sufficient, the process proceeds to step S807. In step S806, the acquired light intensity data is stored in the storage means in step S804 as long as the switch is on.
 ステップS807では、記憶手段に記憶された光強度データを用いて頻度分布情報を作成する。光強度データの頻度分布情報とは、光強度の頻度をとったヒストグラムのことである。 In step S807, frequency distribution information is created using the light intensity data stored in the storage means. The frequency distribution information of the light intensity data is a histogram taking the frequency of the light intensity.
 ここで、側面5における解析方法の原理について説明する。検出した光強度に基づいた頻度分布は、散乱媒質の影響が支配的な光強度データの分布と、異質部分の影響が支配的な光強度データの分布の足し合わせになる。それぞれノイズによる幅を持った分布であるために、足し合わせると分布の裾の重なった多峰の分布となる。この例を図57に示す。 Here, the principle of the analysis method in the side surface 5 will be described. The frequency distribution based on the detected light intensity is the sum of the distribution of the light intensity data in which the influence of the scattering medium is dominant and the distribution of the light intensity data in which the influence of the heterogeneous portion is dominant. Since each distribution has a width due to noise, when added together, it becomes a multimodal distribution with overlapping distribution tails. An example of this is shown in FIG.
 図57は、散乱媒質を検出した信号の頻度が異質部分を検出した信号の頻度よりも高い場合の頻度分布の例である。分布5602が散乱媒質検出信号、分布5601が異質部分検出信号である。図57に示すように、散乱媒質検出信号5602と異質部分検出信号5601に由来する分布は、それぞれピークと幅を持つ二峰性の頻度分布を示す。よって、頻度分布情報に基づいて、両者の分布を区別することができる。 FIG. 57 shows an example of the frequency distribution when the frequency of the signal detecting the scattering medium is higher than the frequency of the signal detecting the heterogeneous portion. A distribution 5602 is a scattering medium detection signal, and a distribution 5601 is a foreign portion detection signal. As shown in FIG. 57, the distribution derived from the scattering medium detection signal 5602 and the heterogeneous part detection signal 5601 shows a bimodal frequency distribution having a peak and a width, respectively. Therefore, both distributions can be distinguished based on the frequency distribution information.
 図49に示したように散乱媒質の部位が異質部分の部位よりも大部分を占める場合、観測領域内をランダムに走査すると、散乱媒質が検出される頻度が高くなる。この性質を利用することにより、頻度分布情報から、どちらの分布が散乱媒質検出信号であるかを区別できる。即ち、散乱媒質が観測領域内の大部分を占める場合、頻度の高い信号を散乱媒質の影響が支配的な信号とみなすことが出来る。反対に、異質部分が大部分を占める場合は、頻度の高い信号を異質部分の影響が支配的な信号とみなすことが出来る。 As shown in FIG. 49, when the part of the scattering medium occupies a larger part than the part of the heterogeneous part, when the observation area is scanned randomly, the frequency of detection of the scattering medium increases. By using this property, it is possible to distinguish which distribution is the scattering medium detection signal from the frequency distribution information. That is, when the scattering medium occupies most of the observation area, a high-frequency signal can be regarded as a signal in which the influence of the scattering medium is dominant. On the other hand, when the heterogeneous portion occupies most, a high-frequency signal can be regarded as a signal in which the influence of the heterogeneous portion is dominant.
 図55に戻って、ステップS807で頻度分布情報が作成されると、ステップS808では、該頻度分布情報に基づいて閾値を設定する。ここで閾値とは、図58に示したように、散乱媒質信号と異質部分検出信号を区分する値である。閾値は、ステップS807で作成された頻度分布情報から、散乱媒質検出信号分布と異質部分検出信号分布の間の谷の部位から設定する。 Referring back to FIG. 55, when frequency distribution information is created in step S807, a threshold is set based on the frequency distribution information in step S808. Here, as shown in FIG. 58, the threshold value is a value that distinguishes the scattering medium signal and the heterogeneous portion detection signal. The threshold value is set from the valley portion between the scattering medium detection signal distribution and the heterogeneous part detection signal distribution from the frequency distribution information created in step S807.
 閾値が設定されると、ステップS809では、設定された閾値に基づいて、図58に斜線で示した領域に該当する散乱媒質検出信号のデータのみを選択的に抽出する。そして、抽出されたデータに基づいて、散乱媒質検出信号の頻度分布データセットBtを作成する。 When the threshold value is set, in step S809, based on the set threshold value, only the data of the scattering medium detection signal corresponding to the area indicated by the oblique lines in FIG. 58 is selectively extracted. Based on the extracted data, a frequency distribution data set Bt of the scattering medium detection signal is created.
 図59に、散乱媒質検出信号データの抽出処理フローを示す。図59(a)は、分布に正規分布をフィッティングさせる方法の処理フローである。この方法では、ステップS901で生体表面Sを走査して取得した後方散乱光強度を記憶し、ステップS902で頻度分布情報を作成する。ステップS903で、この頻度分布を二つの正規曲線でフィッティングする。これにより、二つの正規曲線の交点が明確になり、この交点を閾値とすることができる(S904)。続いて、ステップS905において、この閾値より強度の大きなデータを散乱媒質検出信号として抽出する。 FIG. 59 shows an extraction process flow of scattering medium detection signal data. FIG. 59 (a) is a processing flow of a method for fitting a normal distribution to a distribution. In this method, the backscattered light intensity acquired by scanning the biological surface S in step S901 is stored, and frequency distribution information is created in step S902. In step S903, the frequency distribution is fitted with two normal curves. Thereby, the intersection of two normal curves becomes clear and this intersection can be made into a threshold value (S904). Subsequently, in step S905, data having an intensity greater than this threshold is extracted as a scattering medium detection signal.
 図59(b)は、分布の山と谷を抽出して谷の部分を閾値とする方法の処理フローである。この方法では、ステップS901で生体表面Sを走査して取得した後方散乱光強度を記憶し、ステップS902で頻度分布情報を作成する。ステップS906で頻度分布の山のピーク値2点とそれにはさまれる谷のピーク値1点を抽出し、ステップS907で谷のピーク値を閾値とする。続いて、ステップS907において、この閾値より強度の大きいデータを散乱媒質検出信号として抽出する。 FIG. 59 (b) is a processing flow of a method of extracting the peaks and valleys of the distribution and setting the valleys as threshold values. In this method, the backscattered light intensity acquired by scanning the biological surface S in step S901 is stored, and frequency distribution information is created in step S902. In step S906, two peak values of the peak of the frequency distribution and one peak value of the valley between them are extracted, and in step S907, the peak value of the valley is set as a threshold value. Subsequently, in step S907, data having an intensity greater than this threshold is extracted as a scattering medium detection signal.
 図55に戻って、ステップS809では、上記のように抽出された散乱媒質検出信号から、頻度分布データセットBtを作成する。 Referring back to FIG. 55, in step S809, a frequency distribution data set Bt is created from the scattering medium detection signal extracted as described above.
 続いて、ステップS810では、散乱体表面上の任意の測定点において連続的に光強度を検出し、光強度データセットDtを作成する。このとき検出した光強度データを検出データと称することとする。任意の測定点において連続的に光強度を検出するとは、同一の位置で複数回(n回)検出を行い、nの光強度データを得ることを意味する。検出するデータ数nは次の工程でt検定を行うために、n=4以上が望ましく、n=10以下で十分である。 Subsequently, in step S810, the light intensity is continuously detected at arbitrary measurement points on the scatterer surface, and a light intensity data set Dt is created. The light intensity data detected at this time is referred to as detection data. Detecting the light intensity continuously at an arbitrary measurement point means that detection is performed a plurality of times (n times) at the same position to obtain n light intensity data. The number n of data to be detected is preferably n = 4 or more, and n = 10 or less is sufficient in order to perform t-test in the next step.
 続いて、ステップS811において、上記ステップS810で作成した光強度データセットDtと、上記ステップS809で作成した頻度分布データセットBtとが、同じ分布に基づくものか否かを統計的な検定処理に基づいて比較する。 Subsequently, in step S811, whether or not the light intensity data set Dt created in step S810 and the frequency distribution data set Bt created in step S809 are based on the same distribution is based on a statistical test process. Compare.
 このとき、統計的な検定処理としてt検定(分布の平均値の差の検定)を行う。t検定を実行すると、DtがBtの分布と同一母集団から生成された分布である確率を、p値というパラメータで表すことができる。p値は0~1の値を取り、p値が1に近いほど、DtとBtは同一母集団に由来する分布である確率が高いことを示し、p値が0に近いほど、DtとBtは別の母集団に由来する分布である確率が高いことを意味する。本実施形態の例では、p値が0に近いほど、Dtは散乱媒質検出信号データBtとは異なる集合、つまり異質部分検出信号であることを示す。 At this time, t test (test of difference of mean value of distribution) is performed as statistical test processing. When the t-test is executed, the probability that Dt is a distribution generated from the same population as the distribution of Bt can be expressed by a parameter called p-value. The p value ranges from 0 to 1. The closer the p value is to 1, the higher the probability that Dt and Bt are distributions from the same population. The closer the p value is to 0, the more Dt and Bt Means that there is a high probability that the distribution is derived from another population. In the example of the present embodiment, the closer the p value is to 0, the more the Dt is a set different from the scattering medium detection signal data Bt, that is, a foreign portion detection signal.
 次に、ステップS812において、上記の統計的性質により算出されたp値が所定の閾値thpよりも小さいときに、現在のデータDtが異質部分検出信号であると判定する。閾値thpは判定の信頼性に影響し、所望する信頼性に依存して適宜設定することができる。閾値thpを高く設定すると、信頼性は低いが高ノイズデータでも判定結果を出すことができる。閾値thpを低く設定すると、信頼性は高いが高ノイズデータで平均値の差が顕著に見えないときには判定結果を出すことができない場合もある。閾値Thpは0.1以下且つ0.01以上の値が望ましく、例えば0.05、0.1などを設定することができる。 Next, in step S812, when the p value calculated by the above statistical property is smaller than a predetermined threshold thp, it is determined that the current data Dt is a foreign portion detection signal. The threshold thp affects the reliability of determination and can be set as appropriate depending on the desired reliability. If the threshold value thp is set high, the determination result can be obtained even with high noise data although the reliability is low. If the threshold value thp is set low, the reliability may be high, but there may be a case where the determination result cannot be obtained when the difference in the average value is not noticeable with high noise data. The threshold value Thp is preferably a value not more than 0.1 and not less than 0.01. For example, 0.05, 0.1, etc. can be set.
 ステップS812で、p値が閾値thpよりも小さかった場合は、異質部分が検出されたと判定し、ステップS813で提示手段によりその旨を通知する。また、p値が閾値thpよりも大きかった場合は、散乱媒質が検出されたと判定し、ステップS814で提示手段によりその旨を通知する。 If it is determined in step S812 that the p-value is smaller than the threshold thp, it is determined that a heterogeneous portion has been detected, and in step S813 this is notified by the presenting means. If the p-value is larger than the threshold thp, it is determined that a scattering medium has been detected, and that is notified by the presenting means in step S814.
 判定結果を表示した後は、ステップS802に戻り、スウィッチがオフでない限り、S804~S814の処理を繰り返す。 After displaying the determination result, the process returns to step S802, and the processes of S804 to S814 are repeated unless the switch is turned off.
 なお、以上の処理フローでは、データの取得と頻度分布の作成は随時行われる。特に、本実施形態では、散乱媒質検出信号であると判定されたデータを、ステップS809での頻度分布データセットBtを作成するためのデータに組込み、頻度分布図Btを適宜更新する。 In the above processing flow, data acquisition and frequency distribution creation are performed as needed. In particular, in this embodiment, the data determined to be the scattering medium detection signal is incorporated into the data for creating the frequency distribution data set Bt in step S809, and the frequency distribution diagram Bt is updated as appropriate.
 これにより、観測領域内の散乱媒質又は異質部分の光学特性が位置によって変化しても、散乱媒質と異質部分とで後方散乱光強度に与える影響の力関係が変わらなければ、観測領域内の走査される位置により適切な閾値を設定できる。ここで、散乱媒質と異質部分の後方散乱光強度に与える影響の力関係が変わらないとは、散乱媒質により光が減衰される度合いと異質部分により光が減衰される度合いの大小関係が維持されるということである。 As a result, even if the optical characteristics of the scattering medium or extraneous part in the observation region change depending on the position, the scanning within the observation region will not change if the influence of the influence on the backscattered light intensity does not change between the scattering medium and the extraneous part. An appropriate threshold can be set according to the position to be set. Here, the relationship between the influence of the scattering medium and the influence of the extraneous part on the intensity of the backscattered light does not change means that the magnitude relationship between the degree of attenuation of light by the scattering medium and the degree of attenuation of light by the extraneous part is maintained. That is.
 次に、図53に示した散乱体内部検出装置5100の変形例を用いて、散乱体の内部の異質部分を検出する動作について説明する。  
 図53に示す散乱体内部検出装置5100を用いる場合、照明を走査させて後方散乱光を検出する。そして、照明領域の移動に伴って、異なる検出素子により検出を行う。即ち、照明領域と一定の距離だけ離れた検出領域を有する検出素子により検出された信号データを解析に用いる。
Next, an operation for detecting a heterogeneous portion inside the scatterer will be described using a modification of the scatterer inside detection device 5100 shown in FIG.
When the scatterer inside detection device 5100 shown in FIG. 53 is used, the backscattered light is detected by scanning the illumination. And it detects with a different detection element with the movement of an illumination area | region. That is, signal data detected by a detection element having a detection region that is separated from the illumination region by a certain distance is used for analysis.
 照明領域-検出領域の距離が等しい光強度データを取得することにより、異なる検出素子によって取得されたデータ同士を比較することができ、頻度分布情報に基づいた処理を行うことができる。 By acquiring light intensity data having the same illumination area-detection area distance, data acquired by different detection elements can be compared with each other, and processing based on frequency distribution information can be performed.
 なお、照明の走査は、少なくとも検出領域が観測領域内を走査できればよく、ホルダー内で集光体5201cのみを移動させて行ってもよく、また集光体5201cの角度を変化させて照明領域を移動させてもよい。 Note that the illumination scanning may be performed as long as at least the detection region can scan the observation region, and may be performed by moving only the light collector 5201c in the holder, or the angle of the light collector 5201c is changed to change the illumination region. It may be moved.
 以上説明したように、本実施形態では、頻度分布情報を利用し統計的処理に基づいて判定を行うために、散乱媒質と異質部分を区分する閾値を、設定基準が曖昧なままで予め設定しておく必要がなく、検出された光強度データに基づいて適切な閾値が設定される。 As described above, in the present embodiment, in order to make a determination based on statistical processing using frequency distribution information, a threshold value for distinguishing a scattering medium and a heterogeneous portion is set in advance while the setting criteria remain ambiguous. An appropriate threshold value is set based on the detected light intensity data.
 また、散乱媒質の影響が支配的な光強度データと検出データとを統計的な検定処理に基づいて比較することにより、ノイズを含む検出データであっても正確な判定を行うことが可能である。 Further, by comparing the light intensity data, which is dominantly influenced by the scattering medium, with the detection data based on a statistical test process, it is possible to perform accurate determination even for detection data including noise. .
 また、判定を継続しながら頻度分布情報を更新し、その都度閾値が更新されるため、散乱媒質や異質部分の不均質性に対応することができ、より正確且つ適応性の高い検出を行うことが可能である。 In addition, the frequency distribution information is updated while continuing the determination, and the threshold value is updated each time. Therefore, it is possible to cope with the heterogeneity of the scattering medium and the heterogeneous portion, and to perform more accurate and highly adaptable detection. Is possible.
 また、照明手段のみを移動させて検出を行うことができるため、装置を静止した状態での検出にも適用できる。また、検出及び判定と判定結果の提示を同時に行うことができるため、操作が簡便且つ短時間であり、広範囲の観察にも適用できるとともに、異質部分の形状を容易に確認することができる。 Moreover, since detection can be performed by moving only the illumination means, it can be applied to detection in a state where the apparatus is stationary. In addition, since detection and determination and presentation of the determination result can be performed at the same time, the operation is simple and short, it can be applied to a wide range of observations, and the shape of the heterogeneous portion can be easily confirmed.
 なお、上記実施形態では異質部分が散乱媒質よりも吸収が大きい場合を例にして説明したが、異質部分が散乱媒質よりも散乱係数が十分に大きい場合や反射が大きい場合等であっても、側面5を適用できることは明らかである。 In the above embodiment, the case where the extraneous part has a larger absorption than the scattering medium has been described as an example.However, even when the extraneous part has a sufficiently large scattering coefficient than the scattering medium or when the reflection is large, It is clear that side 5 can be applied.
 また、散乱媒質との光学特性がそれぞれ異なる複数の異質部分を内在する散乱媒質に対しても頻度分布情報に基づいた閾値の決定及び検定処理が適用できる。 Also, threshold determination and test processing based on the frequency distribution information can be applied to a scattering medium having a plurality of different parts having different optical characteristics from the scattering medium.
 本実施形態ではt検定を用いたが、他の統計的手法を用いることも可能である。また、上記の実施形態では、予め散乱媒質の影響が支配的なデータを抽出し、その情報と検出データを比較する場合を示したが、異質部分の影響が支配的なデータを予め抽出し、その情報と検出データを比較する方法であってもよいことは理解されるであろう。 In this embodiment, t-test is used, but other statistical methods can also be used. Further, in the above-described embodiment, the case where data in which the influence of the scattering medium is dominant is extracted in advance and the information is compared with the detection data has been shown. It will be understood that there may be a way to compare the information with the detection data.
 (第2実施形態)
 次に、側面5の第2実施形態を説明する。図60は、第2の実施形態に係る散乱体内部検出装置5200の概略機能ブロック図である。同図に示すように、散乱体内部検出装置5200は、照明手段5201、検出手段5204、記憶手段5207、解析手段5208、及び提示手段5209を備える。
(Second embodiment)
Next, a second embodiment of the side surface 5 will be described. FIG. 60 is a schematic functional block diagram of a scatterer internal detection device 5200 according to the second embodiment. As shown in the figure, the scatterer internal detection device 5200 includes an illumination unit 5201, a detection unit 5204, a storage unit 5207, an analysis unit 5208, and a presentation unit 5209.
 本実施形態に係る散乱体内部検出装置5200では、照明手段5201、記憶手段5207及び解析手段5208は、上記第1実施形態と同様である。一方、検出手段5204は、散乱体表面Sから射出される後方散乱光を撮像するための撮像光学系5214と、光源5201aより発せられる光の波長を含む波長帯域に感度を持つ複数の検出素子5206(図示せず)から構成される検出体5212と、検出素子5206が検出した光強度信号を伝播する信号伝達部5204bと、光強度信号を光データに変換する処理部5204cを備える。 In the scatterer internal detection device 5200 according to the present embodiment, the illumination unit 5201, the storage unit 5207, and the analysis unit 5208 are the same as those in the first embodiment. On the other hand, the detection means 5204 has an imaging optical system 5214 for imaging backscattered light emitted from the scatterer surface S and a plurality of detection elements 5206 having sensitivity in a wavelength band including the wavelength of light emitted from the light source 5201a. A detection body 5212 composed of (not shown), a signal transmission unit 5204b that propagates the light intensity signal detected by the detection element 5206, and a processing unit 5204c that converts the light intensity signal into optical data are provided.
 さらに、本実施形態に係る散乱体内部検出装置5200は、解析手段5208によって解析された結果を画像化して表示する提示手段5213を備える。 Furthermore, the scatterer internal detection device 5200 according to the present embodiment includes a presentation unit 5213 that displays an image of the result analyzed by the analysis unit 5208.
 本実施形態に係る散乱体内部検出装置5200では、導光体5201b、集光体5201c、撮像光学系5214、検出体5212、及び信号伝達部5204bは、ホルダー5210の内部に固定されて配置される。但し、集光体5201cはその角度を適宜変更することができ、照射する光の角度を変えることで検出領域を走査することができる。撮像光学系5214にはマイクロレンズアレイを含むレンズを用いることができるがこれに限定されない。 In the scatterer internal detection device 5200 according to the present embodiment, the light guide 5201b, the light collector 5201c, the imaging optical system 5214, the detector 5212, and the signal transmission unit 5204b are fixedly disposed inside the holder 5210. . However, the angle of the light collector 5201c can be changed as appropriate, and the detection region can be scanned by changing the angle of the light to be irradiated. The imaging optical system 5214 can be a lens including a microlens array, but is not limited to this.
 本実施形態の散乱体内部検出装置5200における検出体5212は、複数の検出素子5206を備えるため、検出手体5212を動かすことなく観測領域全域を検出することができる。よって、ホルダー5210を走査せずとも観測領域内を走査できる。 Since the detection body 5212 in the scatterer internal detection device 5200 of the present embodiment includes a plurality of detection elements 5206, the entire observation region can be detected without moving the detection hand 5212. Therefore, the inside of the observation area can be scanned without scanning the holder 5210.
 図61は検出体5212の実施例を示す正面図である。図のように検出素子5206が平面に複数配置される。図61(a)のような正方形形状や図61(b)のような円形状など、任意に適切な形状の検出体5212を用いることができる。側面5の要旨を逸脱しない範囲において様々な変形が施されてよい。 61 is a front view showing an example of the detection body 5212. FIG. As shown in the figure, a plurality of detection elements 5206 are arranged on a plane. A detector 5212 having an appropriate shape such as a square shape as shown in FIG. 61 (a) or a circular shape as shown in FIG. 61 (b) can be used. Various modifications may be made without departing from the gist of the side surface 5.
 次に、図60に示す散乱体内部検出装置5200を用いて、散乱体の内部の異質部分を検出する動作について説明する。 Next, an operation of detecting a heterogeneous portion inside the scatterer using the scatterer inside detection device 5200 shown in FIG. 60 will be described.
 まず初めに、本実施形態におけるデータ処理方法について説明する。図62は、集光体5201cとその照明領域(c1)、検出体5212を構成する検出素子(d1~d6)とそれぞれの検出領域(e1~e6)の配置を表す模式図である。便宜的に、検出体5212内に配置される検出素子5206を6つとし、それぞれd1~d6とする。 First, the data processing method in this embodiment will be described. FIG. 62 is a schematic diagram showing the arrangement of the condenser 5201c, its illumination area (c1), the detection elements (d1 to d6) constituting the detection body 5212, and the respective detection areas (e1 to e6). For convenience, six detection elements 5206 are arranged in the detection body 5212, which are d1 to d6, respectively.
 集光体5201cから発せられた光は散乱体表面上の検出領域c1を照明する。検出部d1~d6はそれぞれ対応する検出領域e1~e6から射出する後方散乱光を検出する。ここで、照明領域と検出領域の距離を照明-検出距離と称することとし、図中に両矢印で示してある。 The light emitted from the condenser 5201c illuminates the detection area c1 on the scatterer surface. The detection units d1 to d6 detect backscattered light emitted from the corresponding detection areas e1 to e6, respectively. Here, the distance between the illumination area and the detection area is referred to as an illumination-detection distance, and is indicated by a double arrow in the figure.
 図62(a)に示すように、集光体5201cが真直ぐに射出する場合、照明-検出距離が同等であるものを分類すると、[(c1-e1)(c1-e3)]のグループ、[(c1-e4)(c1-e6)]のグループ、及びそれ以外に分けることができる。 As shown in FIG. 62 (a), when the light collecting body 5201c is emitted straight, if the illumination-detection distances are classified, a group of [(c1-e1) (c1-e3)], [ (c1-e4) (c1-e6)] and other groups.
 次に、図62(b)に示すように、集光体5201cを斜めにした場合、検出領域c1が走査され、検出領域c2となる。このとき、照明-検出距離が同等であるものを分類すると、[(c1-e1)(c1-e3)(c2-e4)(c2-e6)]のグループ、[(c1-e2)(c2-e5)]のグループ、[(c1-e4)(c1-e6)]のグループ、[(c1-e5)]、[(c2-e1)(c2-e3)]のグループ、[(c2-e2)]となる。 Next, as shown in FIG. 62 (b), when the condenser 5201c is inclined, the detection region c1 is scanned to become the detection region c2. At this time, if the illumination-detection distances are equal, the group of [(c1-e1) (c1-e3) (c2-e4) (c2-e6)], [(c1-e2) (c2- e5)] group, [(c1-e4) (c1-e6)] group, [(c1-e5)], [(c2-e1) (c2-e3)] group, [(c2-e2) It becomes.
 本実施形態ではこのように、照明領域を走査するとともに複数の検出素子を用いて検出することにより、観測領域内の異なる位置における光強度データを多く取得することができる。さらに、得られたデータは照明-検出距離が同等であるデータにグループ化することにより、解析を容易にすることができる。これは検出素子を6つ以上備える検出体であっても同様である。 In this embodiment, by scanning the illumination area and using a plurality of detection elements in this way, a large amount of light intensity data at different positions in the observation area can be acquired. Furthermore, analysis can be facilitated by grouping the obtained data into data having the same illumination-detection distance. The same applies to a detection body having six or more detection elements.
 なお、図62(b)に示すように、集光体5201cから射出する光の角度を変えた時、散乱体表面上に光束が斜めに入るために散乱体表面上の検出領域のサイズが変わるが、集光レンズを動かす等して照明領域のサイズを変え、検出領域の大きさが常に維持されるようにすることもできる。これにより、照明の角度が変わっても照明-検出距離が同等となるように調整することができる。 As shown in FIG. 62 (b), when the angle of the light emitted from the light collector 5201c is changed, the size of the detection region on the scatterer surface changes because the light beam enters obliquely on the scatterer surface. However, it is possible to change the size of the illumination area by moving the condenser lens or the like so that the size of the detection area is always maintained. Thereby, even if the angle of illumination changes, it can adjust so that illumination-detection distance may become equivalent.
 次に、図60に示す散乱体内部検出装置5200を用いて、散乱体の内部の異質部分を検出する動作について説明する。図63に、第2の実施形態の散乱体内部検出装置5200の概略動作フローを示す。 Next, an operation of detecting a heterogeneous portion inside the scatterer using the scatterer inside detection device 5200 shown in FIG. 60 will be described. FIG. 63 shows a schematic operation flow of the scatterer internal detection device 5200 of the second embodiment.
 ステップS1701で処理フローを開始する。ステップS1702では、処理のスウィッチがオンであるか否かを判定し、オンであるときステップS1704以降の処理を実行し、オフであるときステップS1703で処理フロー動作を中断又は終了する。 In step S1701, the processing flow starts. In step S1702, it is determined whether or not the processing switch is on. When it is on, the processing after step S1704 is executed, and when it is off, the processing flow operation is interrupted or terminated in step S1703.
 処理スウィッチがオンである場合は、ステップS1706で生体表面を走査し光強度信号を取得する。本実施例では、照明手段5201が射出する光の角度を変化させることにより照明領域を移動させ、観測領域の全領域の光強度信号を取得する。得られた光強度信号は光強度データに変換されて、一定時間間隔で記憶手段5207に記憶される。このとき、各光強度データが得られた検出領域と照明領域との距離も同時に記憶しておく。 If the processing switch is on, the surface of the living body is scanned in step S1706 to obtain a light intensity signal. In this embodiment, the illumination area is moved by changing the angle of the light emitted by the illumination means 5201, and the light intensity signal of the entire observation area is acquired. The obtained light intensity signal is converted into light intensity data and stored in the storage means 5207 at regular time intervals. At this time, the distance between the detection area where each light intensity data is obtained and the illumination area is also stored.
 次に、ステップS1705において、取得された光強度データが頻度分布情報を作成するのに十分か否かを判定する。十分ではない場合、ステップS1706で再び光強度データを取得し、十分である場合はステップS1707へ進む。ステップS1706では、取得した光強度データをスウィッチがオンである限り、ステップS1704において記憶手段に記憶する。 Next, in step S1705, it is determined whether or not the acquired light intensity data is sufficient to create frequency distribution information. If it is not sufficient, light intensity data is acquired again in step S1706. If it is sufficient, the process proceeds to step S1707. In step S1706, the acquired light intensity data is stored in the storage means in step S1704 as long as the switch is on.
 続いて、ステップS1707において、記憶手段に記憶された光強度データを、照明-検出距離によって分類し、照明-検出距離が同じデータをグループ化する。以下の工程では、このグループ毎に解析を行うこととなる。照明-検出距離が異なる光強度データ同士は、異なる深さの光強度データであるため比較できない。よって、照明-検出間距離が同等である光強度データを用いて比較を行う。グループの数は検出素子の数より少なく、一つのグループ内の照明-検出距離が略同等となるように設定することができる。 Subsequently, in step S1707, the light intensity data stored in the storage means is classified according to the illumination-detection distance, and data having the same illumination-detection distance is grouped. In the following steps, analysis is performed for each group. Light intensity data with different illumination-detection distances cannot be compared because they are light intensity data with different depths. Therefore, the comparison is performed using light intensity data having the same illumination-detection distance. The number of groups is less than the number of detection elements, and the illumination-detection distance in one group can be set to be approximately equal.
 次に、ステップS1708において、ステップS1707でグループ化したグループ毎に光強度データの頻度分布情報を作成する。頻度分布情報の作成手順は、上記第1実施形態と同様に行う。図64に、照明-検出距離が同等な4つのグループ(g1~g4)について、光強度データの頻度分布を作成した様子を示す。図64に示すように、グループによって頻度分布は異なる。 Next, in step S1708, frequency distribution information of light intensity data is created for each group grouped in step S1707. The procedure for creating frequency distribution information is performed in the same manner as in the first embodiment. FIG. 64 shows how the frequency distribution of light intensity data is created for four groups (g1 to g4) having the same illumination-detection distance. As shown in FIG. 64, the frequency distribution varies depending on the group.
 図63に戻って、ステップS1708で頻度分布情報が作成されると、ステップS1709では、該頻度分布情報に基づいて、グループ毎に閾値を設定する。閾値の設定は、上記第1実施形態と同様に行う。設定された閾値の位置を図64では一点鎖線により表している。 63, when frequency distribution information is created in step S1708, a threshold value is set for each group based on the frequency distribution information in step S1709. The threshold value is set in the same manner as in the first embodiment. In FIG. 64, the position of the set threshold value is represented by a one-dot chain line.
 閾値が設定されると、ステップS1710では、設定された閾値に基づいて、散乱媒質検出信号のデータのみを選択的に抽出する。そして、抽出されたデータに基づいて、散乱媒質検出信号の頻度分布データセットBtgを作成する。この工程はグループ毎に行う。作成された頻度分布データセットBtgは記憶手段5207に記憶する。図65に、各グループについて作成された頻度分布図Btgを示す。散乱媒質検出信号データの抽出処理と頻度分布図Btgの作成は、上記第1実施形態と同様に行う。 When the threshold value is set, in step S1710, only the data of the scattering medium detection signal is selectively extracted based on the set threshold value. Based on the extracted data, a frequency distribution data set Btg of the scattering medium detection signal is created. This process is performed for each group. The created frequency distribution data set Btg is stored in the storage unit 5207. FIG. 65 shows a frequency distribution diagram Btg created for each group. The extraction process of the scattering medium detection signal data and the creation of the frequency distribution diagram Btg are performed in the same manner as in the first embodiment.
 続いて図63のステップS1711において、観測領域全域の光強度を検出する。このとき検出した光強度データを検出データDtgと称することとする。 Subsequently, in step S1711 in FIG. 63, the light intensity in the entire observation region is detected. The light intensity data detected at this time is referred to as detection data Dtg.
 次に、ステップS1712において、ステップS1711で取得した検出データDtgと、上記ステップS1710で作成した頻度分布図Btgとが、同じ分布に基づくものか否かを統計的な検定処理に基づいて比較する。ここで比較に用いられる頻度分布図Btgは、その検出データの照明-検出距離と同等の照明-検出距離を有するグループについてのものである。 Next, in step S1712, whether or not the detection data Dtg acquired in step S1711 and the frequency distribution chart Btg created in step S1710 are based on the same distribution is compared based on statistical test processing. The frequency distribution diagram Btg used for comparison here is for a group having an illumination-detection distance equivalent to the illumination-detection distance of the detection data.
 ステップS1712における統計的な検定はt検定により行う。t検定を実行すると、DtgがBtgの分布と同一母集団から生成された分布である確率をp値というパラメータで表すことができる。p値は0~1の値を取り、p値が1に近いほど、DtgとBtgは同一母集団に由来する分布である確率が高いことを示し、p値が0に近いほど、DtgとBtgは別の母集団に由来する分布である確率が高いことを意味する。p値が0に近いほど、Dtgは散乱媒質検出信号データBtgとは異なる集合、つまり異質部分検出信号であることを示す。 The statistical test in step S1712 is performed by t test. When t-test is executed, the probability that Dtg is a distribution generated from the same population as the distribution of Btg can be expressed by a parameter called p-value. The p value ranges from 0 to 1. The closer the p value is to 1, the higher the probability that Dtg and Btg are from the same population. The closer the p value is to 0, the more Dtg and Btg Means that there is a high probability that the distribution is derived from another population. As the p value is closer to 0, Dtg is a set different from the scattering medium detection signal data Btg, that is, a heterogeneous partial detection signal.
 上記検定の結果、算出されたp値が所定の閾値thpよりも小さいときに、その検出データDtgが異質部分検出信号であると判定する。p値が閾値thpよりも大きかった場合は、散乱媒質検出信号であると判定する。閾値thpは、所望する信頼性に依存して適宜設定することができ、例えば0.1以下且つ0.01以上の値が望ましく、より好ましくは0.05、0.1などである。 As a result of the above test, when the calculated p value is smaller than the predetermined threshold thp, it is determined that the detection data Dtg is a foreign portion detection signal. When the p value is larger than the threshold value thp, it is determined as a scattering medium detection signal. The threshold thp can be set as appropriate depending on the desired reliability. For example, a value of 0.1 or less and 0.01 or more is desirable, and more preferably 0.05 or 0.1.
 図66に判定結果の例を示す。例えば、図62(a)の照明範囲で観測領域全域の光強度データを取得し、検出素子d1~d6によりそれぞれ光強度データf1~f6を得たとする。これらの光強度データf1~f6は、それぞれの照明-検出距離に応じて検定処理され、散乱媒質検出信号か異質部分検出信号かを判定される。この判定により、図66に示すような結果が得られ、ここではf3、f5は異質部分検出信号であり、f1、f2、f4、f6は散乱媒質検出信号である。 FIG. 66 shows an example of the determination result. For example, it is assumed that light intensity data of the entire observation region is acquired in the illumination range of FIG. 62 (a), and light intensity data f1 to f6 are obtained by the detection elements d1 to d6, respectively. These light intensity data f1 to f6 are subjected to a test process according to the respective illumination-detection distances, and it is determined whether the signal is a scattering medium detection signal or a foreign part detection signal. With this determination, a result as shown in FIG. 66 is obtained, where f3 and f5 are foreign portion detection signals, and f1, f2, f4, and f6 are scattering medium detection signals.
 図63に戻って、ステップS1713では、上記判定結果に対し、情報量を落とした値を対応付ける。そして、光強度データが検出された領域と前記光が照射された領域との距離に従って、その対応値をモニター上に画像化して表示する。 Referring back to FIG. 63, in step S1713, the determination result is associated with a value obtained by reducing the information amount. Then, according to the distance between the region where the light intensity data is detected and the region irradiated with the light, the corresponding value is imaged and displayed on the monitor.
 より詳細に説明すると、例えば、散乱媒質検出信号に0、異質部分検出信号に1を割り当てる。図66の例ではf1、f2、f4、f6が0に相当し、f3、f5が1に相当する。 More specifically, for example, 0 is assigned to the scattering medium detection signal, and 1 is assigned to the foreign portion detection signal. In the example of FIG. 66, f1, f2, f4, and f6 correspond to 0, and f3 and f5 correspond to 1.
 続いて、S1714では、各検出データの検出領域の位置関係に応じて、割り当てた値に基づいて画像化し表示手段により表示する。例えば、図67に示すように、値0は白で表示し、値1は黒で表示し、各光強度データ(例えばf1~f6)の表示を、対応する検出領域(例えばe1~e6)の位置関係に対応するように配置する。 Subsequently, in S1714, an image is formed based on the assigned value in accordance with the positional relationship of the detection area of each detection data and displayed by the display means. For example, as shown in FIG. 67, the value 0 is displayed in white, the value 1 is displayed in black, and the display of each light intensity data (for example, f1 to f6) is displayed in the corresponding detection area (for example, e1 to e6). Arrange so as to correspond to the positional relationship.
 このように、判定結果を、情報量を落とした値に対応付け、さらに検出領域の配置と対応付けて配置して表示することにより、異質部分の形状を強調表示することができる。 Thus, the shape of the heterogeneous portion can be highlighted by displaying the determination result in association with the value with the reduced amount of information and further in association with the arrangement of the detection area.
 なお、本実施形態では、散乱媒質検出信号に0、異質部分検出信号に1を割り当てたが、他の値を割り当てても良いし、散乱媒質検出信号に0~1、異質部分検出信号に1~2のように幅を持たせて値を与えても良い。 In this embodiment, 0 is assigned to the scattering medium detection signal and 1 is assigned to the foreign portion detection signal. However, other values may be assigned, 0 to 1 are set to the scattering medium detection signal, and 1 is assigned to the foreign portion detection signal. A value may be given with a width as in ~ 2.
 また、散乱体内部に光学特性の異なる複数の異質部分が存在する場合は、それぞれの異質部分に対して値を割り当てることができる。これにより、各異質部分を色分けして表示することもできる。 Also, when there are a plurality of different parts having different optical characteristics inside the scatterer, a value can be assigned to each of the different parts. Thereby, each heterogeneous part can also be displayed in different colors.
 図63のステップS1714で判定結果を表示した後は、ステップS1702に戻り、スウィッチがオフでない限り、S1704~S1714の処理を繰り返す。 63. After the determination result is displayed in step S1714 of FIG. 63, the process returns to step S1702, and the processing of S1704 to S1714 is repeated unless the switch is turned off.
 以上説明したように、本実施形態では、複数の検出素子から構成される検出体で検出を行うことにより、簡便且つ短時間で多くの光強度データを得ることができる。ここにおいて、得られた光強度データを、各検出素子の検出領域と照明領域との距離によってグループ化して統計処理を行うことにより、多くのデータを簡便に効率よく解析することができる。さらに、判定結果を画像表示することにより、異質部分の形状が一見して確認できるという利点を有する。 As described above, in this embodiment, a large amount of light intensity data can be obtained easily and in a short time by performing detection with a detection body composed of a plurality of detection elements. Here, the obtained light intensity data is grouped according to the distance between the detection region of each detection element and the illumination region, and statistical processing is performed, so that a lot of data can be easily and efficiently analyzed. Further, displaying the determination result as an image has an advantage that the shape of the heterogeneous portion can be confirmed at a glance.
 側面5は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において様々な変形や変更が可能である。また、上記実施形態に開示されている複数の構成要素を適宜組合せることも可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The side surface 5 is not limited to the above embodiment, and various modifications and changes can be made without departing from the scope of the invention. In addition, it is possible to appropriately combine a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 以上の説明によれば、側面5は以下に示すように表現される発明であると理解できる。 According to the above description, it can be understood that the side surface 5 is an invention expressed as shown below.
 39.散乱体内部の異質部分を検出する散乱体内部検出装置であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる光を前記散乱体に照射する照明手段と、
 前記照明手段により照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、
 前記検出手段により検出された後方散乱光の光強度データを記憶する記憶手段と、
 前記記憶手段に記憶された複数の光強度データの頻度分布情報を作成し、該情報に基づいて、前記散乱体の所望の位置における内部が散乱媒質であるか或いは異質部分であるかを判定する解析手段と、
 前記解析手段による判定結果を表示する提示手段と、
を具備することを特徴とする散乱体内部検出装置。
39. A scatterer internal detection device for detecting a heterogeneous part inside a scatterer,
Illumination means for irradiating the scatterer with light having different optical characteristics between the scattering medium constituting the scatterer and the extraneous portion;
Detecting means for detecting backscattered light of the light irradiated by the illuminating means, and obtaining light intensity data of the backscattered light;
Storage means for storing light intensity data of backscattered light detected by the detection means;
Frequency distribution information of a plurality of light intensity data stored in the storage means is created, and based on the information, it is determined whether the inside of the scatterer at a desired position is a scattering medium or a heterogeneous part. Analysis means;
Presenting means for displaying the determination result by the analyzing means;
A scatterer internal detection device comprising:
 40.前記解析手段が、
 前記記憶手段に記憶された複数の光強度データから、散乱媒質又は異質部分の影響が支配的な光強度データの頻度分布図Btを作成し、
 前記散乱体表面上の任意の測定点において連続的に検出された光強度の検出データから頻度分布図Dtを作成し、
 前記頻度分布図Btと前記頻度分布図Dtを統計的な検定処理に基づいて比較し、
  前記頻度分布図Btが散乱媒質の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが散乱媒質の影響が支配的なデータであると判定し、不一致の場合は前記検出データが異質部分の影響が支配的なデータであると判定し、
  前記頻度分布図Btが異質部分の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが異質部分の影響が支配的なデータであると判定し、不一致の場合は前記検出データが散乱媒質の影響が支配的なデータであると判定することを特徴とする、前記39.に記載の散乱体内部検出装置。
40. The analysis means is
From the light intensity data stored in the storage means, create a frequency distribution diagram Bt of the light intensity data in which the influence of the scattering medium or the heterogeneous portion is dominant,
A frequency distribution diagram Dt is created from detection data of light intensity continuously detected at an arbitrary measurement point on the scatterer surface,
Comparing the frequency distribution chart Bt and the frequency distribution chart Dt based on a statistical test process;
When the frequency distribution diagram Bt is based on light intensity data in which the influence of the scattering medium is dominant, it is determined that the detection data is data in which the influence of the scattering medium is dominant. The detected data is determined to be data that is influenced by the heterogeneous part,
When the frequency distribution diagram Bt is based on light intensity data in which the influence of the heterogeneous portion is dominant, it is determined that the detection data is data in which the influence of the heterogeneous portion is dominant, and in the case of mismatch, 39. It is determined that the detection data is data in which the influence of the scattering medium is dominant. The scatterer inside detection apparatus described in 1.
 41.前記解析手段が、複数の光強度データから頻度分布図を作成して散乱媒質の影響が支配的なデータと異質部分の影響が支配的なデータを区分する閾値を設定し、該閾値に基づいて、前記複数の光強度データから散乱媒質又は異質部分の影響が支配的なデータのみを抽出することにより、散乱媒質又は異質部分の影響が支配的な光強度データの頻度分布図Btを作成することを特徴とする、前記40.に記載の散乱体内部検出装置。 41. The analysis means creates a frequency distribution map from a plurality of light intensity data, sets a threshold value for distinguishing data in which the influence of the scattering medium is dominant and data in which the influence of the heterogeneous portion is dominant, and based on the threshold The frequency distribution diagram Bt of the light intensity data in which the influence of the scattering medium or the extraneous portion is dominant is created by extracting only the data in which the influence of the scattering medium or the extraneous portion is dominant from the plurality of light intensity data. 40. The scatterer inside detection apparatus described in 1.
 42.前記解析手段が、前記比較の結果として散乱媒質又は異質部分の影響が支配的なデータであると判定された検出データを組込んで頻度分布図Btを更新することを特徴とする、前記40.又は41.に記載の散乱体内部検出装置。 42. 40. The frequency distribution diagram Bt described above, wherein the analysis means incorporates detection data determined to be data in which the influence of a scattering medium or a heterogeneous portion is dominant as a result of the comparison. Or 41. The scatterer inside detection apparatus described in 1.
 43.前記39.~42.の何れか一に記載の散乱体内部検出装置であって、
 前記散乱体表面を走査可能な照明手段と、
 複数の検出素子を具備する検出手段を備え、
 前記照明手段によって光が照射される照明領域が照明手段の走査によって移動するのに伴い、前記照明領域から一定の距離の領域を検出できる検出素子によって検出が行われることを特徴とする散乱体内部検出装置。
43. 39. ~ 42. The scatterer internal detection device according to any one of
Illumination means capable of scanning the scatterer surface;
Comprising a detection means comprising a plurality of detection elements;
The inside of the scatterer is characterized in that detection is performed by a detection element capable of detecting an area at a certain distance from the illumination area as the illumination area irradiated with light by the illumination means moves by scanning of the illumination means. Detection device.
 44.前記39.~43.の何れか一に記載の散乱体内部検出装置であって、
 前記散乱体の所望の位置における判定結果を、前記散乱体の該位置上に表示する提示手段を備えることを特徴とする散乱体内部検出装置。
44. 39. ~ 43. The scatterer internal detection device according to any one of
A scatterer internal detection device, comprising: presentation means for displaying a determination result at a desired position of the scatterer on the position of the scatterer.
 45.前記39.~42.の何れか一に記載の散乱体内部検出装置であって、
 複数の検出素子を具備する検出手段と、
 前記検出手段により検出された光強度データを、該光強度データが検出された検出領域と前記照明手段によって光が照射された照明領域との相対位置と共に記憶する記憶手段を備え、
 前記解析手段による解析が、前記検出領域と前記照明領域との距離が同等な光強度データのグループ毎に行われることを特徴とする散乱体内部検出装置。
45. 39. ~ 42. The scatterer internal detection device according to any one of
Detection means comprising a plurality of detection elements;
Storage means for storing light intensity data detected by the detection means together with a relative position between a detection area where the light intensity data is detected and an illumination area irradiated with light by the illumination means;
The scatterer internal detection device, wherein the analysis by the analysis means is performed for each group of light intensity data having the same distance between the detection region and the illumination region.
 46.前記45.に記載の散乱体内部検出装置であって、
 前記散乱体表面を走査可能な照明手段を備えることを特徴とする散乱体内部検出装置。
46. 45. The scatterer internal detection device according to claim 1,
The scatterer inside detection apparatus characterized by including the illumination means which can scan the said scatterer surface.
 47.前記45.又は46.に記載の散乱体内部検出装置であって、
 前記解析手段による判定結果を表示するモニターを備え、
 前記グループ毎に行われた解析の結果が、前記記憶手段に記憶された前記検出領域と照明領域との相対位置に基づいて画像化されて前記モニターに提示されることを特徴とする散乱体内部検出装置。
47. 45. Or 46. The scatterer internal detection device according to claim 1,
A monitor for displaying the determination result by the analyzing means;
The result of the analysis performed for each group is imaged based on the relative position between the detection area and the illumination area stored in the storage means and presented to the monitor. Detection device.
 48.散乱体内部の異質部分を検出する散乱体内部検出方法であって、
 前記散乱体を構成する散乱媒質と前記異質部分とで光学特性の異なる光を前記散乱体に照射する工程と、
 前記照射された光の後方散乱光を検出する工程と、
 前記検出された後方散乱光の光強度データを記憶する工程と、
 複数の前記記憶された光強度データから頻度分布情報を作成し、該情報に基づいて、前記散乱体の所望の位置における内部が散乱媒質であるか或いは異質部分であるかを判定する工程と、
 前記判定結果を表示する工程と、
を具備することを特徴とする方法。
48. A scatterer internal detection method for detecting a heterogeneous part inside a scatterer,
Irradiating the scatterer with light having different optical properties between the scattering medium constituting the scatterer and the extraneous portion; and
Detecting backscattered light of the irradiated light;
Storing light intensity data of the detected backscattered light;
Creating frequency distribution information from a plurality of the stored light intensity data, and determining, based on the information, whether the inside of the scatterer at a desired position is a scattering medium or a heterogeneous part;
Displaying the determination result;
A method comprising the steps of:
 49.前記判定する工程が、
 複数の光強度データから、散乱媒質又は異質部分の影響が支配的な光強度データの頻度分布図Btを作成する工程と、
 前記散乱体表面上の任意の測定点において連続的に光強度データを検出し、得られた検出データから頻度分布図Dtを作成する工程と、
 前記頻度分布図Btと前記頻度分布図Dtを統計的な検定処理に基づいて比較し、
  前記頻度分布図Btが散乱媒質の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが散乱媒質の影響が支配的なデータであると判定し、不一致の場合は前記検出データが異質部分の影響が支配的なデータであると判定し、
  前記頻度分布図Btが異質部分の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが異質部分の影響が支配的なデータであると判定し、不一致の場合は前記検出データが散乱媒質の影響が支配的なデータであると判定する工程と、
を具備することを特徴とする、前記48.に記載の散乱体内部検出方法。
49. The step of determining includes
Creating a frequency distribution diagram Bt of light intensity data in which the influence of the scattering medium or the heterogeneous portion is dominant from the plurality of light intensity data;
Detecting light intensity data continuously at arbitrary measurement points on the scatterer surface, and creating a frequency distribution diagram Dt from the obtained detection data;
Comparing the frequency distribution chart Bt and the frequency distribution chart Dt based on a statistical test process;
When the frequency distribution diagram Bt is based on light intensity data in which the influence of the scattering medium is dominant, it is determined that the detection data is data in which the influence of the scattering medium is dominant. The detected data is determined to be data that is influenced by the heterogeneous part,
When the frequency distribution diagram Bt is based on light intensity data in which the influence of the heterogeneous portion is dominant, it is determined that the detection data is data in which the influence of the heterogeneous portion is dominant, and in the case of mismatch, Determining that the detection data is data in which the influence of the scattering medium is dominant;
48. characterized by comprising: The scatterer inside detection method as described in any one of Claims 1-3.
 50.前記頻度分布図Btを作成する工程が、
 複数の光強度データから頻度分布図を作成して散乱媒質の影響が支配的なデータと異質部分の影響が支配的なデータを区分する閾値を設定する工程と、
 該閾値に基づいて、前記複数の光強度データから散乱媒質又は異質部分の影響が支配的なデータのみを抽出して頻度分布図を作成する工程と
を具備することを特徴とする、前記49.に記載の散乱体内部検出方法。
50. The step of creating the frequency distribution chart Bt includes:
Creating a frequency distribution map from a plurality of light intensity data and setting a threshold value for distinguishing between data in which the influence of the scattering medium is dominant and data in which the influence of the heterogeneous part is dominant;
And 49. extracting only data in which the influence of a scattering medium or a heterogeneous part is dominant from the plurality of light intensity data based on the threshold value, and creating a frequency distribution diagram. The scatterer inside detection method as described in any one of Claims 1-3.
 51.前記頻度分布図Btが、前記判定する工程において、散乱媒質又は異質部分の影響が支配的なデータであると判定された検出データを組込んで更新されることを特徴とする、前記49.又は50.に記載の散乱体内部検出方法。 51. 49. The frequency distribution diagram Bt is updated by incorporating detection data determined to be data in which the influence of a scattering medium or a heterogeneous portion is dominant in the determination step. Or 50. The scatterer inside detection method as described in any one of Claims 1-3.
 52.前記48.~51.の何れか一に記載の散乱体内部検出方法であって、
 前記照射された光の後方散乱光を検出する工程において、
 前記散乱体に照射する光を移動させ、前記照射された光が移動するのに伴い、該光が照射する領域から一定の距離の領域において後方散乱光を検出することを特徴とする方法。
52. 48. ~ 51. A scatterer internal detection method according to any one of
In the step of detecting the backscattered light of the irradiated light,
A method of detecting a backscattered light in a region at a certain distance from a region irradiated with the light as the light irradiated onto the scatterer is moved, and the irradiated light moves.
 53.前記48.~52.の何れか一に記載の散乱体内部検出方法であって、
 前記照射された光の後方散乱光を複数の検出素子によって検出し、
 前記複数の検出素子のそれぞれによって得られた光強度データを、それぞれの検出素子が検出した領域と前記光が照射された領域との距離が同じデータ毎にグループ化し、
 前記判定する工程が、前記グループ毎に行われることを特徴とする方法。
53. 48. ~ 52. A scatterer internal detection method according to any one of
Detecting backscattered light of the irradiated light by a plurality of detection elements;
The light intensity data obtained by each of the plurality of detection elements is grouped for each data in which the distance between the area detected by each detection element and the area irradiated with the light is the same,
The method of determining, wherein the determining step is performed for each group.
 54.前記53.に記載の散乱体内部検出方法であって、
 前記グループ毎に行われた判定の結果を、情報量を落とした値に対応付け、光強度データが検出された領域と前記光が照射された領域との距離に従って、前記値をモニター上に画像化して表示することを特徴とする方法。
54. 53. The scatterer internal detection method according to claim 1,
The result of the determination made for each group is associated with a value obtained by reducing the amount of information, and the value is displayed on the monitor according to the distance between the region where the light intensity data is detected and the region irradiated with the light. The method characterized by making it display.
〔符号の説明〕
 1…散乱体内部計測装置、6…散乱媒質、7…測定対象、8…散乱体、10…光照射部、11…検出部、12…制御/解析部、13…メモリ、14…表示部、15…入力部、40…計測領域、41…同心円領域、42…同心円領域、43…同心円領域、50…計測領域、51…同心円領域、52…同心円領域、53…同心円領域、70…光照射部、71…検出部、72…制御/解析部、73…メモリ、80…光照射部、81…検出部、82…制御/解析部、83…メモリ、90…光照射部、91…検出部、92…制御/解析部、93…メモリ、100…散乱体内部計測装置、101…検出部、102…制御/解析部、103…メモリ、104…表示部、105…入力部、107…光検出素子、109…光照射部、110…散乱体内部計測装置、112…制御/解析部、113…メモリ、114…表示部、115…入力部、119…光照射部、120…検出部
 1001…散乱体内部観測装置、1006…散乱媒質、1007…異質部分、1008…散乱体、1010…光照射部、1011…検出部、1012…制御部、1014…表示部、1015…入力部、1016…画像化手段、1017…解析手段、1050…検出範囲、1051…同心円領域、1052…同心円領域、1053…同心円領域、1100…硬性鏡、1101…検出部、1102…照明部、
 2001…散乱体内部観察装置、2004…散乱体内部観察装置、2006…散乱媒質、2007…観察対象、2008…散乱体、2009…散乱体内部観察装置、2010…光照射手段、2011…検出部、2012…制御/解析部、2013…メモリ、2014…表示部、2015…入力部、2030…撮像領域、2031…後方散乱光検出領域、2032…後方散乱光検出領域、2033…後方散乱光検出領域、2040…撮像領域、2041…測距手段、2050…2次元画像、2051…画素領域、2052…光照射位置、2060…散乱体内部観察装置、2061…棒部材、2070…撮像領域、2071…後方散乱光検出領域、2072…後方散乱光検出領域、2073…後方散乱光検出領域、2091…指標、2110…撮像素子、2120…光照射手段、2130…光照射手段、2140…光照射手段
 3100…散乱体内部観測装置、3101…照明手段、3102…検出手段、3103…解析/制御部、3104…照明範囲、3105…検出範囲、3106…検出領域、3107…画像処理部、3108…表示部、3109…入力部、3110…散乱体内部観測装置、3111、3211、3212…スキャンミラー、3200…散乱体内部観測装置、3201…照明手段、3202…検出手段、3203…制御/解析部、3207…画像処理部、3208…表示部、3209…入力部、3213…走査制御部、3300…散乱体内部観測装置、3301…照明手段、3302…検出手段、3303…解析/制御部、3307…画像処理部、3308…表示部、3309…入力部、3311…スキャンミラー、3313…走査制御部、3314…ハーフミラー。
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Scattering body internal measurement apparatus, 6 ... Scattering medium, 7 ... Measuring object, 8 ... Scattering body, 10 ... Light irradiation part, 11 ... Detection part, 12 ... Control / analysis part, 13 ... Memory, 14 ... Display part, DESCRIPTION OF SYMBOLS 15 ... Input part, 40 ... Measurement area | region, 41 ... Concentric circle area | region, 42 ... Concentric circle area | region, 43 ... Concentric circle area | region, 50 ... Measurement area | region, 51 ... Concentric circle area | region, 52 ... Concentric circle area | region, 53 ... Concentric circle area | region, 70 ... Light irradiation part 71 ... detection unit 72 ... control / analysis unit 73 ... memory 80 ... light irradiation unit 81 ... detection unit 82 ... control / analysis unit 83 ... memory 90 ... light irradiation unit 91 ... detection unit DESCRIPTION OF SYMBOLS 92 ... Control / analysis part, 93 ... Memory, 100 ... Scattering body internal measurement apparatus, 101 ... Detection part, 102 ... Control / analysis part, 103 ... Memory, 104 ... Display part, 105 ... Input part, 107 ... Photodetection element , 109 ... light irradiation unit, 110 ... scatterer internal measurement device DESCRIPTION OF SYMBOLS 112 ... Control / analysis part, 113 ... Memory, 114 ... Display part, 115 ... Input part, 119 ... Light irradiation part, 120 ... Detection part 1001 ... Scattering body inside observation apparatus, 1006 ... Scattering medium, 1007 ... Extraneous part, 1008 ... scatterer, 1010 ... light irradiation part, 1011 ... detection part, 1012 ... control part, 1014 ... display part, 1015 ... input part, 1016 ... imaging means, 1017 ... analysis means, 1050 ... detection range, 1051 ... concentric region , 1052 ... Concentric circular region, 1053 ... Concentric circular region, 1100 ... Rigid endoscope, 1101 ... Detection unit, 1102 ... Illumination unit,
2001 ... Scattering body internal observation device, 2004 ... Scattering body internal observation device, 2006 ... Scattering medium, 2007 ... Observation object, 2008 ... Scattering body, 2009 ... Scattering body internal observation device, 2010 ... Light irradiation means, 2011 ... Detection part, 2012 ... Control / analysis unit, 2013 ... Memory, 2014 ... Display unit, 2015 ... Input unit, 2030 ... Imaging region, 2031 ... Backscattered light detection region, 2032 ... Backscattered light detection region, 2033 ... Backscattered light detection region, 2040 ... Imaging region, 2041 ... Ranging means, 2050 ... Two-dimensional image, 2051 ... Pixel region, 2052 ... Light irradiation position, 2060 ... Scattering body internal observation device, 2061 ... Bar member, 2070 ... Imaging region, 2071 ... Backscattering Light detection area, 2072 ... Backscattered light detection area, 2073 ... Backscattered light detection area, 2091 ... Index, 2110 ... Photographing Element 2120 ... Light irradiation means 2130 ... Light irradiation means 2140 ... Light irradiation means 3100 ... Scatterer internal observation device 3101 ... Illumination means 3102 ... Detection means 3103 ... Analysis / control unit 3104 ... Illumination range 3105 ... detection range, 3106 ... detection region, 3107 ... image processing unit, 3108 ... display unit, 3109 ... input unit, 3110 ... scatterer internal observation device, 3111, 3211, 3212 ... scan mirror, 3200 ... scatterer internal observation device, 3201... Illumination means 3202 ... Detection means 3203 ... Control / analysis section 3207 ... Image processing section 3208 ... Display section 3209 ... Input section 3213 ... Scanning control section 3300 ... Scatterer internal observation device 3301 ... Illumination Means 3302 ... Detection means 3303 ... Analysis / control part 3307 ... Image processing part 3308 ... Display part 3309 ... input unit, 3311 ... scan mirror, 3313 ... scanning control unit, 3314 ... half mirror.
 4001…照明光源、4002…走査手段、4003…照明用イメージガイド、4004…撮像用イメージガイド、4005…撮像素子、4006…光学系、4007…制御ユニット、4010…生体内観測装置、4021…走査ユニット、4022…挿入部、4024…表示部、4026…被写体、4027…スキャン範囲、4028…撮影範囲、4031…走査部、4032…撮像部、4036…白色光源照射部
 S…散乱体、5100…散乱体内部検出装置、5103…観測領域、5101…散乱媒質、5102…異質部分、5201…照明手段、5204…検出手段、5206…検出素子、5207…記憶手段、5208…解析手段、5209…提示手段、5210…ホルダー、5211…保護部、5212…検出体、5213…提示手段、5214…撮像光学系、1801…円状マーク。
4001 ... Illumination light source, 4002 ... Scanning means, 4003 ... Illumination image guide, 4004 ... Imaging image guide, 4005 ... Imaging element, 4006 ... Optical system, 4007 ... Control unit, 4010 ... In-vivo observation device, 4021 ... Scanning unit , 4022 ... Insertion unit, 4024 ... Display unit, 4026 ... Subject, 4027 ... Scanning range, 4028 ... Imaging range, 4031 ... Scanning unit, 4032 ... Imaging unit, 4036 ... White light source irradiation unit S ... Scattering body, 5100 ... Scattering body Internal detection device 5103... Observation region 5101. Scattering medium 5102. ... Holder, 5211 ... Protection part, 5212 ... Detector, 5213 ... Presentation Means, 5214... Imaging optical system, 1801.

Claims (83)

  1.  散乱体内部の観察対象の情報を取得する散乱体内部観察装置であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、
     前記光照射手段により前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を2次元画像として検出する検出手段と、
     前記検出手段により取得された2次元画像データにおいて前記観察対象の存在の有無を確認し、前記2次元画像上における前記光照射位置と前記観察対象が確認された位置との距離から、前記散乱体における前記観察対象の深度を含めた位置情報を求める解析手段とを備えたことを特徴とする、散乱体内部観察装置。
    A scatterer internal observation device that acquires information on an observation target inside the scatterer,
    A light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium;
    Detecting means for detecting, as a two-dimensional image, backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface by the light irradiation means;
    The presence or absence of the observation target is confirmed in the two-dimensional image data acquired by the detection means, and the scatterer is calculated from the distance between the light irradiation position on the two-dimensional image and the position where the observation target is confirmed. An scatterer internal observation device, comprising: analysis means for obtaining position information including the depth of the observation object in FIG.
  2.  複数の照射位置において取得された複数の2次元画像データを記憶する記憶手段と、
     前記記憶手段により記憶された複数の2次元画像データを基に、所望の深度における断層画像を作成する画像構築手段と
     前記解析手段による解析結果および/または前記画像構築手段による断層画像を表示する表示手段と、
    をさらに備えたことを特徴とする、請求項1に記載の散乱体内部観察装置。
    Storage means for storing a plurality of two-dimensional image data acquired at a plurality of irradiation positions;
    An image construction unit that creates a tomographic image at a desired depth based on a plurality of two-dimensional image data stored by the storage unit, and a display that displays an analysis result by the analysis unit and / or a tomographic image by the image construction unit Means,
    The scatterer internal observation device according to claim 1, further comprising:
  3.  前記光照射手段が、一以上の点状又は線状の光を照射する手段である、請求項1に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 1, wherein the light irradiation means is a means for irradiating one or more spot-like or linear lights.
  4.  前記解析手段が、前記記憶手段により記憶された複数の2次元画像データ上で、所望の位置と前記光照射位置との間の距離と等しい距離だけ前記所望の位置から離れた位置におけるデータを解析することにより、前記所望の位置の任意の深度における情報を得ることを特徴とする、請求項2に記載の散乱体内部観察装置。 The analysis unit analyzes data at a position separated from the desired position by a distance equal to the distance between the desired position and the light irradiation position on the plurality of two-dimensional image data stored by the storage unit. The scatterer internal observation apparatus according to claim 2, wherein information at an arbitrary depth of the desired position is obtained.
  5.  散乱体内部の観察対象の情報を取得する散乱体内部観察装置であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、
     前記光照射手段により照射された光の後方散乱光を検出する複数の検出手段と、
     深度情報を得たい所望の位置を中心として、前記照射位置と対称となる位置にある検出手段によって取得されたデータを解析することにより、前記所望の位置の任意の深度における情報を得る解析手段とを備えることを特徴とする、散乱体内部観察装置。
    A scatterer internal observation device that acquires information on an observation target inside the scatterer,
    A light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium;
    A plurality of detection means for detecting backscattered light of the light irradiated by the light irradiation means;
    Analyzing means for obtaining information at an arbitrary depth of the desired position by analyzing data acquired by a detecting means at a position symmetrical to the irradiation position with a desired position where depth information is desired as the center; A scatterer internal observation device comprising:
  6.  散乱体内部の観察対象の情報を取得する散乱体内部観察装置であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、
     前記光照射手段により照射された光の後方散乱光を検出する検出手段と、
     前記検出手段により取得された後方散乱光強度のデータから、所望の位置の任意の深度における情報を得る解析手段とを備え、
     前記光照射手段と前記検出手段とが、前記所望の位置を中心として等距離に配置されることを特徴とする、散乱体内部観察装置。
    A scatterer internal observation device that acquires information on an observation target inside the scatterer,
    A light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium;
    Detection means for detecting backscattered light of the light irradiated by the light irradiation means;
    An analysis means for obtaining information at an arbitrary depth at a desired position from the backscattered light intensity data acquired by the detection means;
    The scatterer internal observation device, wherein the light irradiating means and the detecting means are arranged equidistantly around the desired position.
  7.  請求項2に記載の装置において、前記検出手段は、前記散乱体表面の任意の光照射位置に照射された光の後方散乱光の光強度データを検出し、前記画像構築手段は、前記検出手段により取得した光強度データを基に、所望の深度における断層画像を作成することを特徴とする散乱体内部観察装置。 The apparatus according to claim 2, wherein the detection unit detects light intensity data of backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface, and the image construction unit includes the detection unit. A scatterer internal observation device, which creates a tomographic image at a desired depth based on the light intensity data acquired by the above.
  8.  前記観察対象が表示された断層画像が、所定のコントラスト条件を満たす断層画像である、請求項7に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 7, wherein the tomographic image on which the observation target is displayed is a tomographic image satisfying a predetermined contrast condition.
  9.  請求項7に記載の装置において、前記作成した断層画像の中から、観察対象が表示された断層画像を選択する選択手段をさらに備えたことを特徴とする散乱体内部観察装置。 8. The scatterer internal observation device according to claim 7, further comprising selection means for selecting a tomographic image on which an observation target is displayed from the created tomographic images.
  10.  前記選択は所望の断層画像を選択して入力することにより行われる、請求項9に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 9, wherein the selection is performed by selecting and inputting a desired tomographic image.
  11.  前記画像構築手段が、
     前記光照射手段によって光が照射される照射範囲の形状を認識する照射範囲認識手段と、
     前記照射範囲認識手段によって認識された照射範囲の形状に基づいて、断層画像を作成するための光強度データの抽出位置を決定する抽出位置決定手段と、
    を備えることを特徴とする、請求項7に記載の散乱体内部観察装置。
    The image construction means
    Irradiation range recognition means for recognizing the shape of the irradiation range irradiated with light by the light irradiation means;
    Extraction position determination means for determining the extraction position of light intensity data for creating a tomographic image based on the shape of the irradiation range recognized by the irradiation range recognition means;
    The scatterer internal observation device according to claim 7, comprising:
  12.  前記観察対象と散乱媒質とで光学特性の異なる光が、ヘモグロビンに吸収を持つ近赤外領域の波長を含む光である、請求項7に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 7, wherein the light having different optical characteristics between the observation object and the scattering medium is light including a wavelength in a near infrared region having absorption in hemoglobin.
  13.  請求項7に記載の装置において、
     前記散乱体の表面において前記光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光を前記検出手段により検出するために、前記後方散乱光検出領域から放出された散乱光が入射する撮像面上の画素で構成される画素領域を、前記2次元画像において決定する画素領域決定手段をさらに備え、
     前記画像構築手段は、前記画素領域を構成する各画素からの光強度情報から、前記散乱体内部の断層画像を構築することを特徴とする散乱体内部観察装置。
    The apparatus of claim 7.
    Scattering emitted from the backscattered light detection region in order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer by the detecting means. A pixel region determining means for determining in the two-dimensional image a pixel region composed of pixels on the imaging surface on which light is incident;
    The scatterer internal observation device, wherein the image construction means constructs a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel region.
  14.  前記画素領域決定手段は、撮像素子先端から散乱体までの距離を測定する測距手段により測定された距離に基づいて画素領域を決定することを特徴とする、請求項13に記載の散乱体内部観察装置。 The scatterer interior according to claim 13, wherein the pixel region determining unit determines the pixel region based on a distance measured by a distance measuring unit that measures a distance from the distal end of the imaging device to the scatterer. Observation device.
  15.  前記画素領域決定手段は、前記検出手段で検出される範囲内に配置された指標の像の大きさに基づいて画素領域を決定することを特徴とする、請求項13に記載の散乱体内部観察装置。 The scatterer internal observation according to claim 13, wherein the pixel region determining unit determines the pixel region based on a size of an index image arranged within a range detected by the detecting unit. apparatus.
  16.  前記指標は処置具の一部である、請求項15に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 15, wherein the index is a part of a treatment instrument.
  17.  前記画素領域決定手段は、照射される光の画像内での強度分布の情報に基づいて前記画素領域を決定することを特徴とする、請求項13に記載の散乱体内部観察装置。 14. The scatterer internal observation device according to claim 13, wherein the pixel region determining means determines the pixel region based on information on an intensity distribution in an image of irradiated light.
  18.  請求項7に記載の装置において、
     前記検出手段は、前記散乱体を撮像する撮像素子と、該撮像素子が撮像する検出範囲を限定する撮像光学系と、該検出範囲に所望の領域が含まれるように調節する検出範囲可変機構を含み、
     前記検出範囲可変機構を制御する制御手段をさらに備えたことを特徴とする散乱体内部観察装置。
    The apparatus of claim 7.
    The detection means includes: an imaging element that images the scatterer; an imaging optical system that limits a detection range captured by the imaging element; and a detection range variable mechanism that adjusts the detection range to include a desired area. Including
    A scatterer internal observation device, further comprising a control means for controlling the detection range variable mechanism.
  19.  前記検出手段がさらに、前記検出範囲を移動させ得るスキャンミラーを備えることを特徴とする、請求項18に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 18, wherein the detection means further includes a scan mirror capable of moving the detection range.
  20.  前記光照射手段が照射用スキャンミラーを備え、
     前記検出手段が検出用スキャンミラーを備え、
     両スキャンミラーを制御して、前記光照射手段によって光が照射される照射範囲と前記検出範囲を散乱体表面上で走査させる走査制御手段をさらに備えることを特徴とする、請求項18に記載の散乱体内部観察装置。
    The light irradiation means comprises an irradiation scan mirror;
    The detecting means includes a scanning mirror for detection;
    The scanning control unit according to claim 18, further comprising: a scanning control unit that controls both scanning mirrors to scan an irradiation range irradiated with light by the light irradiation unit and the detection range on a scatterer surface. Scatterer internal observation device.
  21.  前記光照射手段及び前記検出手段が、それらの光路が同軸になるように配置され、
     前記光照射手段によって光が照射される照射範囲及び前記検出範囲を散乱体表面上で走査させるスキャンミラーを備えることを特徴とする請求項18に記載の散乱体内部観察装置。
    The light irradiation means and the detection means are arranged such that their optical paths are coaxial,
    19. The scatterer internal observation device according to claim 18, further comprising a scan mirror that scans an irradiation range irradiated with light by the light irradiation unit and the detection range on a scatterer surface.
  22.  前記所望の領域を決定する検出領域決定手段をさらに含むことを特徴とする、請求項18に記載の散乱体内部観察装置。 19. The scatterer internal observation device according to claim 18, further comprising detection region determination means for determining the desired region.
  23.  前記所望の領域を決定するための設定を入力する設定入力手段をさらに備える、請求項22に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 22, further comprising setting input means for inputting a setting for determining the desired region.
  24.  請求項2に記載の装置において、光の照射を走査により行う場合に、走査機能を実現する走査手段を、生体内へ挿入される挿入部ではない部位に配置したことを特徴とする散乱体内部観察装置。 3. The scatterer according to claim 2, wherein when the light irradiation is performed by scanning, a scanning unit that realizes a scanning function is disposed at a portion that is not an insertion portion that is inserted into a living body. Observation device.
  25.  請求項24に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドとを具備し、前記走査手段と前記検出手段とが走査ユニット内に配置され、前記走査ユニットに接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドとが配置され、
     前記検出手段は、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    25. The apparatus according to claim 24, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; and an imaging image guide that transmits light from the subject. Means and the detection means are disposed in the scanning unit, the irradiation image guide and the imaging image guide are disposed in the insertion portion connected to the scanning unit,
    The scatterer internal observation device, wherein the detection means includes an image pickup device for detecting light from the image pickup image guide as an image.
  26.  請求項24に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドを具備し、前記走査手段が走査ユニット内に配置され、前記走査ユニットに接続された挿入部内に前記照射用イメージガイドと前記検出手段とが配置され、
     前記検出手段は、前記被写体からの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    25. The apparatus according to claim 24, further comprising an illumination image guide for transmitting light from the scanning means to the subject, wherein the scanning means is disposed in the scanning unit and connected to the scanning unit. The irradiation image guide and the detection means are arranged in the inserted portion,
    The scatterer internal observation device, wherein the detection means includes an image sensor for detecting light from the subject as an image.
  27.  更に、前記走査手段に光を供給するための照明光源を当該走査ユニット内に具備する請求項25に記載の散乱体内部観察装置。 26. The scatterer internal observation device according to claim 25, further comprising an illumination light source for supplying light to the scanning means in the scanning unit.
  28.  前記走査手段からの光がレーザー光であり、前記被写体からの光が散乱光であることを特徴とする請求項25に記載の散乱体内部観察装置。 26. The scatterer internal observation device according to claim 25, wherein the light from the scanning means is laser light, and the light from the subject is scattered light.
  29.  前記走査ユニットから前記挿入部が着脱可能である請求項25に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 25, wherein the insertion portion is detachable from the scanning unit.
  30.  請求項24に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドとを具備し、前記走査手段が走査部内に配置され、前記走査部に接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドと検出手段とが配置され、
     前記検出手段は、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    25. The apparatus according to claim 24, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; and an imaging image guide that transmits light from the subject. Means is disposed in the scanning unit, and the irradiation image guide, the imaging image guide, and the detection unit are disposed in the insertion unit connected to the scanning unit,
    The scatterer internal observation device, wherein the detection means includes an image pickup device for detecting light from the image pickup image guide as an image.
  31.  請求項24に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドとを具備し、前記走査手段が走査部内に配置され、前記検出手段が撮像部内に配置され、前記走査部および撮像部に接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドとが配置され、
     前記検出手段は、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    25. The apparatus according to claim 24, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; and an imaging image guide that transmits light from the subject. Means are disposed in the scanning unit, the detection unit is disposed in the imaging unit, and the irradiation image guide and the imaging image guide are disposed in the scanning unit and the insertion unit connected to the imaging unit,
    The scatterer internal observation device, wherein the detection means includes an image pickup device for detecting light from the image pickup image guide as an image.
  32.  更に、前記走査手段に光を供給するための照明光源を当該走査部内に具備する請求項30に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 30, further comprising an illumination light source for supplying light to the scanning means in the scanning unit.
  33.  前記走査部が着脱可能であることを特徴とする請求項30に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 30, wherein the scanning unit is detachable.
  34.  前記走査手段からの光がレーザー光であり、前記被写体からの光が散乱光であることを特徴とする請求項30に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 30, wherein light from the scanning means is laser light, and light from the subject is scattered light.
  35.  請求項2に記載の装置において、
     前記検出手段は、前記散乱体表面の任意の光照射位置に照射された光の後方散乱光の光強度データを検出し、前記記憶手段は、該検出された光強度データを記憶することを特徴とし、さらに、
     前記記憶手段に記憶された複数の光強度データの頻度分布情報を作成し、該情報に基づいて、前記散乱体の所望の位置における内部が散乱媒質であるか或いは観察対象であるかを判定する判定手段を具備したことを特徴とする散乱体内部観察装置。
    The apparatus of claim 2.
    The detection means detects light intensity data of backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface, and the storage means stores the detected light intensity data. And then
    Frequency distribution information of a plurality of light intensity data stored in the storage means is created, and based on the information, it is determined whether the inside of the scatterer at a desired position is a scattering medium or an observation target A scatterer internal observation device comprising a determination means.
  36.  前記判定手段が、
     前記記憶手段に記憶された複数の光強度データから、散乱媒質又は観察対象の影響が支配的な光強度データの頻度分布図Btを作成し、
     前記散乱体表面上の任意の測定点において連続的に検出された光強度の検出データから頻度分布図Dtを作成し、
     前記頻度分布図Btと前記頻度分布図Dtを統計的な検定処理に基づいて比較し、
      前記頻度分布図Btが散乱媒質の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが散乱媒質の影響が支配的なデータであると判定し、不一致の場合は前記検出データが観察対象の影響が支配的なデータであると判定し、
      前記頻度分布図Btが観察対象の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが観察対象の影響が支配的なデータであると判定し、不一致の場合は前記検出データが散乱媒質の影響が支配的なデータであると判定することを特徴とする、請求項35に記載の散乱体内部観察装置。
    The determination means is
    A frequency distribution diagram Bt of light intensity data in which the influence of the scattering medium or the observation object is dominant is created from the plurality of light intensity data stored in the storage means,
    A frequency distribution diagram Dt is created from detection data of light intensity continuously detected at an arbitrary measurement point on the scatterer surface,
    Comparing the frequency distribution chart Bt and the frequency distribution chart Dt based on a statistical test process;
    When the frequency distribution diagram Bt is based on light intensity data in which the influence of the scattering medium is dominant, it is determined that the detection data is data in which the influence of the scattering medium is dominant. The detected data is determined to be the data whose influence of the observation target is dominant,
    When the frequency distribution diagram Bt is based on light intensity data in which the influence of the observation target is dominant, it is determined that the detection data is data in which the influence of the observation target is dominant. 36. The scatterer internal observation device according to claim 35, wherein the detection data is determined to be data in which the influence of the scattering medium is dominant.
  37.  前記判定手段が、複数の光強度データから頻度分布図を作成して散乱媒質の影響が支配的なデータと観察対象の影響が支配的なデータを区分する閾値を設定し、該閾値に基づいて、前記複数の光強度データから散乱媒質又は観察対象の影響が支配的なデータのみを抽出することにより、散乱媒質又は観察対象の影響が支配的な光強度データの頻度分布図Btを作成することを特徴とする、請求項36に記載の散乱体内部観察装置。 The determination means creates a frequency distribution map from a plurality of light intensity data, sets a threshold value for distinguishing data in which the influence of the scattering medium is dominant and data in which the influence of the observation object is dominant, and based on the threshold The frequency distribution diagram Bt of the light intensity data in which the influence of the scattering medium or the observation object is dominant is created by extracting only the data in which the influence of the scattering medium or the observation object is dominant from the plurality of light intensity data. The scatterer internal observation device according to claim 36, wherein:
  38.  前記判定手段が、前記比較の結果として散乱媒質又は観察対象の影響が支配的なデータであると判定された検出データを組込んで頻度分布図Btを更新することを特徴とする、請求項36に記載の散乱体内部観察装置。 37. The frequency distribution diagram Bt is updated by the determination means incorporating detection data determined to be data in which the influence of the scattering medium or the observation target is dominant as a result of the comparison. The scatterer internal observation apparatus as described in any one of.
  39.  請求項35に記載の散乱体内部観察装置であって、
     前記光照射手段は、前記散乱体表面を走査可能であり、
     前記検出手段は、複数の検出素子を具備し、
     前記光照射手段によって光が照射される照明領域が光照射手段の走査によって移動するのに伴い、前記照明領域から一定の距離の領域を検出できる検出素子によって検出が行われることを特徴とする散乱体内部観察装置。
    The scatterer internal observation device according to claim 35, wherein
    The light irradiation means can scan the scatterer surface,
    The detection means comprises a plurality of detection elements,
    Scattering characterized in that detection is performed by a detection element capable of detecting a region at a certain distance from the illumination region as the illumination region irradiated with light by the light irradiation unit moves by scanning of the light irradiation unit. Body internal observation device.
  40.  請求項35に記載の散乱体内部観察装置であって、
     前記検出手段は、複数の検出素子を具備し、
     前記記憶手段は、前記検出手段により検出された光強度データを、該光強度データが検出された検出領域と前記光照射手段によって光が照射された照明領域との相対位置と共に記憶し、
     前記判定手段による判定が、前記検出領域と前記照明領域との距離が同等な光強度データのグループ毎に行われることを特徴とする散乱体内部観察装置。
    The scatterer internal observation device according to claim 35, wherein
    The detection means comprises a plurality of detection elements,
    The storage means stores the light intensity data detected by the detection means together with a relative position between a detection area where the light intensity data is detected and an illumination area irradiated with light by the light irradiation means,
    The scatterer internal observation device, wherein the determination by the determination unit is performed for each group of light intensity data having the same distance between the detection region and the illumination region.
  41.  請求項40に記載の装置であって、
     前記光照射手段は、前記散乱体表面を走査可能であることを特徴とする散乱体内部観察装置。
    41. The apparatus of claim 40, wherein
    The scatterer internal observation device, wherein the light irradiation means is capable of scanning the scatterer surface.
  42.  請求項40に記載の散乱体内部観察装置であって、
     前記判定手段による判定結果を表示するモニターをさらに備え、
     前記グループ毎に行われた解析の結果が、前記記憶手段に記憶された前記検出領域と照明領域との相対位置に基づいて画像化されて前記モニターに提示されることを特徴とする散乱体内部観察装置。
    The scatterer internal observation device according to claim 40, wherein
    A monitor for displaying a determination result by the determination unit;
    The result of the analysis performed for each group is imaged based on the relative position between the detection area and the illumination area stored in the storage means and presented to the monitor. Observation device.
  43.  散乱体内部の観察対象の情報を取得する散乱体内部観察装置であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、
     前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、
     前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像構築手段と、
     前記作製された複数の断層画像から、前記観察対象が表示された断層画像を選択する選択手段と、
     前記選択された断層画像を表示する表示手段とを備えることを特徴とする、散乱体内部観察装置。
    A scatterer internal observation device that acquires information on an observation target inside the scatterer,
    A light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium;
    Detecting means for detecting backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface, and acquiring light intensity data of the backscattered light;
    Image construction means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having a different depth;
    A selection means for selecting a tomographic image on which the observation target is displayed from the plurality of produced tomographic images;
    A scatterer internal observation device comprising: display means for displaying the selected tomographic image.
  44.  前記観察対象が表示された断層画像が、所定のコントラスト条件を満たす断層画像である、請求項43に記載の散乱体内部観察装置。 44. The scatterer internal observation device according to claim 43, wherein the tomographic image on which the observation target is displayed is a tomographic image satisfying a predetermined contrast condition.
  45.  散乱体内部の観察対象の情報を取得する散乱体内部観察装置であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する光照射手段と、
     前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する検出手段と、
     前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する画像構築手段と、
     前記作製された断層画像を表示する表示手段と、
     前記表示された複数の断層画像から、所望の断層画像を選択して表示させる入力手段とを備えることを特徴とする、散乱体内部観察装置。
    A scatterer internal observation device that acquires information on an observation target inside the scatterer,
    A light irradiating means for irradiating the surface of a scatterer comprising an observation target inside the scattering medium with light having different optical characteristics between the observation target and the scattering medium;
    Detecting means for detecting backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface, and acquiring light intensity data of the backscattered light;
    Image construction means for analyzing the acquired light intensity data and creating a plurality of tomographic images each having a different depth;
    Display means for displaying the produced tomographic image;
    An scatterer internal observation device comprising: input means for selecting and displaying a desired tomographic image from the displayed tomographic images.
  46.  前記画像構築手段が、
     前記光照射手段によって光が照射される照射範囲の形状を認識する照射範囲認識手段と、
     前記照射範囲認識手段によって認識された照射範囲の形状に基づいて、断層画像を作製するための光強度データの抽出位置を決定する抽出位置決定手段と、
    を備えることを特徴とする、請求項43に記載の散乱体内部観察装置。
    The image construction means
    Irradiation range recognition means for recognizing the shape of the irradiation range irradiated with light by the light irradiation means;
    An extraction position determining means for determining an extraction position of light intensity data for producing a tomographic image based on the shape of the irradiation range recognized by the irradiation range recognition means;
    44. The scatterer internal observation device according to claim 43, comprising:
  47.  前記観察対象と散乱媒質とで光学特性の異なる光が、ヘモグロビンに吸収を持つ近赤外領域の波長を含む光である、請求項43に記載の散乱体内部観察装置。 44. The scatterer internal observation device according to claim 43, wherein the light having different optical characteristics between the observation object and the scattering medium is light including a wavelength in a near infrared region having absorption in hemoglobin.
  48.  請求項43に記載の装置において、
     前記検出手段は、前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を2次元画像として検出することを特徴とし、
     前記散乱体の表面において前記光照射位置から一定の位置関係にある後方散乱光検出領域から放出される後方散乱光を前記検出手段により検出するために、前記後方散乱光検出領域から放出された散乱光が入射する撮像面上の画素で構成される画素領域を、前記2次元画像において決定する画素領域決定手段をさらに備え、
     前記画像構築手段は、前記画素領域を構成する各画素からの光強度情報から、前記散乱体内部の断層画像を構築することを特徴とする散乱体内部観察装置。
    44. The apparatus of claim 43.
    The detecting means detects backscattered light of light irradiated on an arbitrary light irradiation position on the scatterer surface as a two-dimensional image,
    Scattering emitted from the backscattered light detection region in order to detect the backscattered light emitted from the backscattered light detection region having a fixed positional relationship from the light irradiation position on the surface of the scatterer by the detecting means. A pixel region determining means for determining in the two-dimensional image a pixel region composed of pixels on the imaging surface on which light is incident;
    The scatterer internal observation device, wherein the image construction means constructs a tomographic image inside the scatterer from light intensity information from each pixel constituting the pixel region.
  49.  前記画素領域決定手段は、撮像素子先端から散乱体までの距離を測定する測距手段により測定された距離に基づいて画素領域を決定することを特徴とする、請求項48に記載の散乱体内部観察装置。 49. The inside of the scatterer according to claim 48, wherein the pixel region determining unit determines the pixel region based on a distance measured by a distance measuring unit that measures a distance from the distal end of the imaging device to the scatterer. Observation device.
  50.  前記画素領域決定手段は、前記検出手段で検出される範囲内に配置された指標の像の大きさに基づいて画素領域を決定することを特徴とする、請求項48に記載の散乱体内部観察装置。 49. The scatterer internal observation according to claim 48, wherein the pixel region determining unit determines the pixel region based on a size of an index image arranged within a range detected by the detecting unit. apparatus.
  51.  前記指標は処置具の一部である、請求項50に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 50, wherein the index is a part of a treatment tool.
  52.  前記画素領域決定手段は、照射される光の画像内での強度分布の情報に基づいて前記画素領域を決定することを特徴とする、請求項48に記載の散乱体内部観察装置。 49. The scatterer internal observation device according to claim 48, wherein the pixel region determining means determines the pixel region based on information of an intensity distribution in an image of irradiated light.
  53.  請求項43に記載の装置において、
     前記検出手段は、前記散乱体を撮像する撮像素子と、該撮像素子が撮像する検出範囲を限定する撮像光学系と、該検出範囲に所望の領域が含まれるように調節する検出範囲可変機構を含み、
     前記検出範囲可変機構を制御する制御手段をさらに備えたことを特徴とする散乱体内部観察装置。
    44. The apparatus of claim 43.
    The detection means includes: an imaging element that images the scatterer; an imaging optical system that limits a detection range captured by the imaging element; and a detection range variable mechanism that adjusts the detection range to include a desired area. Including
    A scatterer internal observation device, further comprising a control means for controlling the detection range variable mechanism.
  54.  前記検出手段がさらに、前記検出範囲を移動させ得るスキャンミラーを備えることを特徴とする、請求項53に記載の散乱体内部観察装置。 54. The scatterer internal observation device according to claim 53, wherein the detection means further includes a scan mirror capable of moving the detection range.
  55.  前記光照射手段が照射用スキャンミラーを備え、
     前記検出手段が検出用スキャンミラーを備え、
     両スキャンミラーを制御して、前記光照射手段によって光が照射される照射範囲と前記検出範囲を散乱体表面上で走査させる走査制御手段をさらに備えることを特徴とする、請求項53に記載の散乱体内部観察装置。
    The light irradiation means comprises an irradiation scan mirror;
    The detecting means includes a scanning mirror for detection;
    The scanning control unit according to claim 53, further comprising a scanning control unit that controls both scanning mirrors to scan an irradiation range irradiated with light by the light irradiation unit and the detection range on a scatterer surface. Scatterer internal observation device.
  56.  前記光照射手段及び前記検出手段が、それらの光路が同軸になるように配置され、
     前記光照射手段によって光が照射される照射範囲及び前記検出範囲を散乱体表面上で走査させるスキャンミラーを備えることを特徴とする請求項53に記載の散乱体内部観察装置。
    The light irradiation means and the detection means are arranged such that their optical paths are coaxial,
    54. The scatterer internal observation device according to claim 53, further comprising a scan mirror that scans an irradiation range irradiated with light by the light irradiation unit and the detection range on a scatterer surface.
  57.  前記所望の領域を決定する検出領域決定手段をさらに含むことを特徴とする、請求項53に記載の散乱体内部観察装置。 54. The scatterer internal observation device according to claim 53, further comprising detection region determination means for determining the desired region.
  58.  前記所望の領域を決定するための設定を入力する設定入力手段をさらに備える、請求項57に記載の散乱体内部観察装置。 58. The scatterer internal observation device according to claim 57, further comprising setting input means for inputting a setting for determining the desired region.
  59.  請求項43に記載の装置において、光の照射を走査により行う場合に、走査機能を実現する走査手段を、生体内へ挿入される挿入部ではない部位に配置したことを特徴とする散乱体内部観察装置。 44. The scatterer according to claim 43, wherein when light irradiation is performed by scanning, scanning means for realizing a scanning function is disposed at a portion that is not an insertion portion that is inserted into a living body. Observation device.
  60.  請求項59に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドとを具備し、前記走査手段と前記検出手段とが走査ユニット内に配置され、前記走査ユニットに接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドとが配置され、
     前記検出手段は、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    60. The apparatus according to claim 59, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; and an imaging image guide that transmits light from the subject. Means and the detection means are disposed in the scanning unit, the irradiation image guide and the imaging image guide are disposed in the insertion portion connected to the scanning unit,
    The scatterer internal observation device, wherein the detection means includes an image pickup device for detecting light from the image pickup image guide as an image.
  61.  請求項59に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドを具備し、前記走査手段が走査ユニット内に配置され、前記走査ユニットに接続された挿入部内に前記照射用イメージガイドと前記検出手段とが配置され、
     前記検出手段は、前記被写体からの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    60. The apparatus according to claim 59, further comprising an illumination image guide for transmitting light from the scanning means to the subject, wherein the scanning means is disposed in the scanning unit and connected to the scanning unit. The irradiation image guide and the detection means are arranged in the inserted portion,
    The scatterer internal observation device, wherein the detection means includes an image sensor for detecting light from the subject as an image.
  62.  更に、前記走査手段に光を供給するための照明光源を当該走査ユニット内に具備する請求項60に記載の散乱体内部観察装置。 61. The scatterer internal observation device according to claim 60, further comprising an illumination light source for supplying light to the scanning means in the scanning unit.
  63.  前記走査手段からの光がレーザー光であり、前記被写体からの光が散乱光であることを特徴とする請求項60に記載の散乱体内部観察装置。 61. The scatterer internal observation device according to claim 60, wherein the light from the scanning means is laser light, and the light from the subject is scattered light.
  64.  前記走査ユニットから前記挿入部が着脱可能である請求項60に記載の散乱体内部観察装置。 61. The scatterer internal observation device according to claim 60, wherein the insertion portion is detachable from the scanning unit.
  65.  請求項59に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドとを具備し、前記走査手段が走査部内に配置され、前記走査部に接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドと検出手段とが配置され、
     前記検出手段は、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    60. The apparatus according to claim 59, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; and an imaging image guide that transmits light from the subject. Means is disposed in the scanning unit, and the irradiation image guide, the imaging image guide, and the detection unit are disposed in the insertion unit connected to the scanning unit,
    The scatterer internal observation device, wherein the detection means includes an image pickup device for detecting light from the image pickup image guide as an image.
  66.  請求項59に記載の装置であって、更に、前記走査手段からの光を当該被写体に伝達する照明用イメージガイドと、前記被写体からの光を伝達する撮像用イメージガイドとを具備し、前記走査手段が走査部内に配置され、前記検出手段が撮像部内に配置され、前記走査部および撮像部に接続された挿入部内に前記照射用イメージガイドと撮像用イメージガイドとが配置され、
     前記検出手段は、前記撮像用イメージガイドからの光をイメージとして検出するための撮像素子を具備したことを特徴とする散乱体内部観察装置。
    60. The apparatus according to claim 59, further comprising: an illumination image guide that transmits light from the scanning unit to the subject; and an imaging image guide that transmits light from the subject. Means are disposed in the scanning unit, the detection unit is disposed in the imaging unit, and the irradiation image guide and the imaging image guide are disposed in the scanning unit and the insertion unit connected to the imaging unit,
    The scatterer internal observation device, wherein the detection means includes an image pickup device for detecting light from the image pickup image guide as an image.
  67.  更に、前記走査手段に光を供給するための照明光源を当該走査部内に具備する請求項65に記載の散乱体内部観察装置。 66. The scatterer internal observation device according to claim 65, further comprising an illumination light source for supplying light to the scanning means in the scanning unit.
  68.  前記走査部が着脱可能であることを特徴とする請求項65に記載の散乱体内部観察装置。 The scatterer internal observation device according to claim 65, wherein the scanning unit is detachable.
  69.  前記走査手段からの光がレーザー光であり、前記被写体からの光が散乱光であることを特徴とする請求項65に記載の散乱体内部観察装置。 66. The scatterer internal observation device according to claim 65, wherein the light from the scanning means is laser light, and the light from the subject is scattered light.
  70.  請求項43に記載の装置において、さらに、
     前記検出手段により検出された後方散乱光の光強度データを記憶する記憶手段と、
     前記記憶手段に記憶された複数の光強度データの頻度分布情報を作成し、該情報に基づいて、前記散乱体の所望の位置における内部が散乱媒質であるか或いは観察対象であるかを判定する判定手段と、
     前記判定手段による判定結果を表示する提示手段と
    をさらに具備したことを特徴とする散乱体内部観察装置。
    44. The apparatus according to claim 43, further comprising:
    Storage means for storing light intensity data of backscattered light detected by the detection means;
    Frequency distribution information of a plurality of light intensity data stored in the storage means is created, and based on the information, it is determined whether the inside of the scatterer at a desired position is a scattering medium or an observation target A determination means;
    A scatterer internal observation device, further comprising: a presentation unit that displays a determination result by the determination unit.
  71.  前記判定手段が、
     前記記憶手段に記憶された複数の光強度データから、散乱媒質又は観察対象の影響が支配的な光強度データの頻度分布図Btを作成し、
     前記散乱体表面上の任意の測定点において連続的に検出された光強度の検出データから頻度分布図Dtを作成し、
     前記頻度分布図Btと前記頻度分布図Dtを統計的な検定処理に基づいて比較し、
      前記頻度分布図Btが散乱媒質の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが散乱媒質の影響が支配的なデータであると判定し、不一致の場合は前記検出データが観察対象の影響が支配的なデータであると判定し、
      前記頻度分布図Btが観察対象の影響が支配的な光強度データに基づくときに、一致する場合は前記検出データが観察対象の影響が支配的なデータであると判定し、不一致の場合は前記検出データが散乱媒質の影響が支配的なデータであると判定することを特徴とする、請求項70に記載の散乱体内部観察装置。
    The determination means is
    A frequency distribution diagram Bt of light intensity data in which the influence of the scattering medium or the observation object is dominant is created from the plurality of light intensity data stored in the storage means,
    A frequency distribution diagram Dt is created from detection data of light intensity continuously detected at an arbitrary measurement point on the scatterer surface,
    Comparing the frequency distribution chart Bt and the frequency distribution chart Dt based on a statistical test process;
    When the frequency distribution diagram Bt is based on light intensity data in which the influence of the scattering medium is dominant, it is determined that the detection data is data in which the influence of the scattering medium is dominant. The detected data is determined to be the data whose influence of the observation target is dominant,
    When the frequency distribution diagram Bt is based on light intensity data in which the influence of the observation target is dominant, it is determined that the detection data is data in which the influence of the observation target is dominant. The scatterer internal observation device according to claim 70, wherein the detection data is determined to be data in which the influence of the scattering medium is dominant.
  72.  前記判定手段が、複数の光強度データから頻度分布図を作成して散乱媒質の影響が支配的なデータと観察対象の影響が支配的なデータを区分する閾値を設定し、該閾値に基づいて、前記複数の光強度データから散乱媒質又は観察対象の影響が支配的なデータのみを抽出することにより、散乱媒質又は観察対象の影響が支配的な光強度データの頻度分布図Btを作成することを特徴とする、請求項71に記載の散乱体内部観察装置。 The determination means creates a frequency distribution map from a plurality of light intensity data, sets a threshold value for distinguishing data in which the influence of the scattering medium is dominant and data in which the influence of the observation object is dominant, and based on the threshold The frequency distribution diagram Bt of the light intensity data in which the influence of the scattering medium or the observation object is dominant is created by extracting only the data in which the influence of the scattering medium or the observation object is dominant from the plurality of light intensity data. 72. The scatterer internal observation device according to claim 71, wherein:
  73.  前記判定手段が、前記比較の結果として散乱媒質又は観察対象の影響が支配的なデータであると判定された検出データを組込んで頻度分布図Btを更新することを特徴とする、請求項71に記載の散乱体内部観察装置。 72. The frequency distribution diagram Bt is updated by the detection means incorporating detection data determined to be data in which the influence of the scattering medium or the observation target is dominant as a result of the comparison. The scatterer internal observation apparatus as described in any one of.
  74.  請求項70に記載の散乱体内部観察装置であって、
     前記光照射手段は、前記散乱体表面を走査可能であり、
     前記検出手段は、複数の検出素子を具備し、
     前記光照射手段によって光が照射される照明領域が光照射手段の走査によって移動するのに伴い、前記照明領域から一定の距離の領域を検出できる検出素子によって検出が行われることを特徴とする散乱体内部観察装置。
    The scatterer internal observation device according to claim 70, wherein
    The light irradiation means can scan the scatterer surface,
    The detection means comprises a plurality of detection elements,
    Scattering characterized in that detection is performed by a detection element capable of detecting a region at a certain distance from the illumination region as the illumination region irradiated with light by the light irradiation unit moves by scanning of the light irradiation unit. Body internal observation device.
  75.  請求項70に記載の散乱体内部観察装置であって、前記提示手段は、前記散乱体の所望の位置における判定結果を、前記散乱体の該位置上に表示することを特徴とする散乱体内部観察装置。 The scatterer internal observation device according to claim 70, wherein the presenting unit displays a determination result at a desired position of the scatterer on the position of the scatterer. Observation device.
  76.  請求項70に記載の散乱体内部観察装置であって、
     前記検出手段は、複数の検出素子を具備し、
     前記記憶手段は、前記検出手段により検出された光強度データを、該光強度データが検出された検出領域と前記光照射手段によって光が照射された照明領域との相対位置と共に記憶し、
     前記判定手段による判定が、前記検出領域と前記照明領域との距離が同等な光強度データのグループ毎に行われることを特徴とする散乱体内部観察装置。
    The scatterer internal observation device according to claim 70, wherein
    The detection means comprises a plurality of detection elements,
    The storage means stores the light intensity data detected by the detection means together with a relative position between a detection area where the light intensity data is detected and an illumination area irradiated with light by the light irradiation means,
    The scatterer internal observation device, wherein the determination by the determination unit is performed for each group of light intensity data having the same distance between the detection region and the illumination region.
  77.  請求項76に記載の装置であって、
     前記光照射手段は、前記散乱体表面を走査可能であることを特徴とする散乱体内部観察装置。
    77. The apparatus of claim 76, comprising:
    The light irradiating means is capable of scanning the surface of the scatterer.
  78.  請求項76に記載の散乱体内部観察装置であって、
     前記判定手段による判定結果を表示するモニターをさらに備え、
     前記グループ毎に行われた解析の結果が、前記記憶手段に記憶された前記検出領域と照明領域との相対位置に基づいて画像化されて前記モニターに提示されることを特徴とする散乱体内部観察装置。
    The scatterer internal observation device according to claim 76,
    A monitor for displaying a determination result by the determination unit;
    The result of the analysis performed for each group is imaged based on the relative position between the detection area and the illumination area stored in the storage means and presented to the monitor. Observation device.
  79.  散乱体内部の観察対象の情報を取得する散乱体内部観察方法であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、
     前記光照射工程により前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を2次元画像として検出する工程と、
     前記検出工程により取得された2次元画像データにおいて前記観察対象の存在の有無を確認し、前記2次元画像上における前記光照射位置と前記観察対象が確認された位置との距離から、前記散乱体における前記観察対象の深度を含めた位置情報を求める工程とを備えたことを特徴とする、散乱体内部観察方法。
    A method for observing the inside of a scatterer to acquire information on an observation target inside the scatterer,
    Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium;
    Detecting the backscattered light of the light irradiated to any light irradiation position on the surface of the scatterer by the light irradiation step as a two-dimensional image;
    The presence or absence of the observation target is confirmed in the two-dimensional image data acquired by the detection step, and the scatterer is determined from the distance between the light irradiation position on the two-dimensional image and the position where the observation target is confirmed. And a step of obtaining position information including the depth of the observation target in the method.
  80.  散乱体内部の観察対象の情報を取得する散乱体内部観察方法であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、
     前記光照射工程により照射された光の後方散乱光を検出する工程と、
     深度情報を得たい所望の位置を中心として、前記照射位置と対称となる位置にある検出手段によって取得されたデータを解析することにより、前記所望の位置の任意の深度における情報を得る工程とを備えることを特徴とする、散乱体内部観察方法。
    A method for observing the inside of a scatterer to acquire information on an observation target inside the scatterer,
    Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium;
    Detecting the backscattered light of the light irradiated by the light irradiation step;
    Obtaining information at an arbitrary depth of the desired position by analyzing the data acquired by the detection means located at a position symmetrical to the irradiation position with the desired position where depth information is desired as a center. A scatterer internal observation method, comprising:
  81.  散乱体内部の観察対象の情報を取得する散乱体内部観察方法であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、
     前記光照射工程により照射された光の後方散乱光を検出する工程と、
     前記検出工程により取得された後方散乱光強度のデータから、所望の位置の任意の深度における情報を得る工程とを備え、
     前記光照射工程に使用される光照射手段と前記検出工程に使用される検出手段とが、前記所望の位置を中心として等距離に配置されることを特徴とする、散乱体内部観察方法。
    A method for observing the inside of a scatterer to acquire information on an observation target inside the scatterer,
    Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium;
    Detecting the backscattered light of the light irradiated by the light irradiation step;
    Obtaining information at an arbitrary depth of a desired position from the backscattered light intensity data acquired by the detection step,
    The scatterer internal observation method, wherein the light irradiating means used in the light irradiating step and the detecting means used in the detecting step are arranged equidistantly around the desired position.
  82.  散乱体内部の観察対象の情報を取得する散乱体内部観察方法であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、
     前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
     前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する工程と、
     前記作製された複数の断層画像から、前記観察対象が表示された断層画像を選択する工程と、
     前記選択された断層画像を表示する工程とを備えることを特徴とする、散乱体内部観察方法。
    A method for observing the inside of a scatterer to acquire information on an observation target inside the scatterer,
    Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium;
    Detecting the backscattered light of the light irradiated to any light irradiation position on the scatterer surface, obtaining the light intensity data of the backscattered light; and
    Analyzing the acquired light intensity data, producing a plurality of tomographic images each having a different depth; and
    A step of selecting a tomographic image in which the observation object is displayed from the prepared plurality of tomographic images;
    And a step of displaying the selected tomographic image.
  83.  散乱体内部の観察対象の情報を取得する散乱体内部観察方法であって、
     散乱媒質の内部に観察対象を含んでなる散乱体の表面に、観察対象と散乱媒質とで光学特性の異なる光を照射する工程と、
     前記散乱体表面の任意の光照射位置に照射された光の後方散乱光を検出し、該後方散乱光の光強度データを取得する工程と、
     前記取得された光強度データを解析し、それぞれ深度が異なる複数の断層画像を作製する工程と、
     前記作製された断層画像を表示する工程と、
     前記表示された複数の断層画像から、所望の断層画像を選択して表示させる工程とを備えることを特徴とする、散乱体内部観察方法。
    A method for observing the inside of a scatterer to acquire information on an observation target inside the scatterer,
    Irradiating the surface of a scatterer comprising an observation object inside the scattering medium with light having different optical characteristics between the observation object and the scattering medium;
    Detecting the backscattered light of the light irradiated to any light irradiation position on the scatterer surface, obtaining the light intensity data of the backscattered light; and
    Analyzing the acquired light intensity data, producing a plurality of tomographic images each having a different depth; and
    Displaying the produced tomographic image;
    And a step of selecting and displaying a desired tomographic image from the displayed plurality of tomographic images.
PCT/JP2009/055486 2008-06-27 2009-03-19 Scatterer interior observation device and scatterer interior observation method WO2009157229A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/978,932 US9055866B2 (en) 2008-06-27 2010-12-27 Internal observation device for object having light scattering properties, internal body observation device, endoscope for internal observation and internal observation method
US14/708,654 US20150238089A1 (en) 2008-06-27 2015-05-11 Internal observation device for object having light scattering properties, internal body observation device, endoscope for internal observation and internal observation method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2008-169459 2008-06-27
JP2008-169460 2008-06-27
JP2008169460A JP2010008287A (en) 2008-06-27 2008-06-27 Inside detector of scattering object and inside detecting method of scattering object
JP2008169459A JP5451991B2 (en) 2008-06-27 2008-06-27 Scatterer internal measurement device and scatterer internal measurement method
JP2008223957A JP2010060330A (en) 2008-09-01 2008-09-01 Scatterer interior observation device and scatterer interior observation method
JP2008-223960 2008-09-01
JP2008-223958 2008-09-01
JP2008-223957 2008-09-01
JP2008223959A JP5188909B2 (en) 2008-09-01 2008-09-01 Scatterer internal observation device and scatterer internal observation method
JP2008223960A JP2010060332A (en) 2008-09-01 2008-09-01 Apparatus and method for observing scatterer interior
JP2008223958A JP2010057566A (en) 2008-09-01 2008-09-01 In-vivo observation apparatus
JP2008-223959 2008-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/978,932 Continuation-In-Part US9055866B2 (en) 2008-06-27 2010-12-27 Internal observation device for object having light scattering properties, internal body observation device, endoscope for internal observation and internal observation method

Publications (1)

Publication Number Publication Date
WO2009157229A1 true WO2009157229A1 (en) 2009-12-30

Family

ID=41444301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055486 WO2009157229A1 (en) 2008-06-27 2009-03-19 Scatterer interior observation device and scatterer interior observation method

Country Status (1)

Country Link
WO (1) WO2009157229A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081141A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method
JP2012125370A (en) * 2010-12-15 2012-07-05 Hitachi Ltd Biological measurement apparatus
JP2013545543A (en) * 2010-11-11 2013-12-26 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Dynamic optical tomography imaging apparatus, method and system
US9055866B2 (en) 2008-06-27 2015-06-16 Olympus Corporation Internal observation device for object having light scattering properties, internal body observation device, endoscope for internal observation and internal observation method
JP2016206175A (en) * 2015-04-27 2016-12-08 パナソニックIpマネジメント株式会社 Optical sensing device and optical sensing method
US11172826B2 (en) 2016-03-08 2021-11-16 Enspectra Health, Inc. Non-invasive detection of skin disease
US11633149B2 (en) 2017-04-28 2023-04-25 Enspectra Health, Inc. Systems and methods for imaging and measurement of sarcomeres

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105191A (en) * 1999-10-27 2000-04-11 Hitachi Ltd Absorption substance concentration space distribution image device
JP2001324444A (en) * 2000-05-12 2001-11-22 Shimadzu Corp Light-measuring apparatus
JP2002502654A (en) * 1998-02-13 2002-01-29 ノン−インヴェイシヴ テクノロジイ,インク. Cross-abdominal examination, monitoring and imaging of tissue
JP2002515277A (en) * 1998-05-18 2002-05-28 アボット・ラボラトリーズ Non-invasive optical sensor with control of tissue temperature
JP2002531846A (en) * 1998-12-07 2002-09-24 レア メディツィンテクニック ゲーエムベーハー Detection probe for depth-resolved optical spectroscopy and spectrometry
JP2003010189A (en) * 2001-07-04 2003-01-14 Communication Research Laboratory Organism function information imaging device
JP2004528542A (en) * 2001-03-06 2004-09-16 フォーリノーバ、アクティーゼルスカブ Method and arrangement for measurement of optical properties of multilayer tissue
JP2005538752A (en) * 2002-03-19 2005-12-22 デイヴィッド アール ミラー Sensor for transcutaneous measurement of vascular access blood flow
WO2007105495A1 (en) * 2006-03-13 2007-09-20 Olympus Medical Systems Corp. Scattering medium inside observing device, imaging system, imaging method, and endoscope
JP2007330381A (en) * 2006-06-13 2007-12-27 Hitachi Medical Corp Biological light measuring instrument
JP2008510586A (en) * 2004-08-24 2008-04-10 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for imaging blood vessel segments

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502654A (en) * 1998-02-13 2002-01-29 ノン−インヴェイシヴ テクノロジイ,インク. Cross-abdominal examination, monitoring and imaging of tissue
JP2002515277A (en) * 1998-05-18 2002-05-28 アボット・ラボラトリーズ Non-invasive optical sensor with control of tissue temperature
JP2002531846A (en) * 1998-12-07 2002-09-24 レア メディツィンテクニック ゲーエムベーハー Detection probe for depth-resolved optical spectroscopy and spectrometry
JP2000105191A (en) * 1999-10-27 2000-04-11 Hitachi Ltd Absorption substance concentration space distribution image device
JP2001324444A (en) * 2000-05-12 2001-11-22 Shimadzu Corp Light-measuring apparatus
JP2004528542A (en) * 2001-03-06 2004-09-16 フォーリノーバ、アクティーゼルスカブ Method and arrangement for measurement of optical properties of multilayer tissue
JP2003010189A (en) * 2001-07-04 2003-01-14 Communication Research Laboratory Organism function information imaging device
JP2005538752A (en) * 2002-03-19 2005-12-22 デイヴィッド アール ミラー Sensor for transcutaneous measurement of vascular access blood flow
JP2008510586A (en) * 2004-08-24 2008-04-10 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for imaging blood vessel segments
WO2007105495A1 (en) * 2006-03-13 2007-09-20 Olympus Medical Systems Corp. Scattering medium inside observing device, imaging system, imaging method, and endoscope
JP2007330381A (en) * 2006-06-13 2007-12-27 Hitachi Medical Corp Biological light measuring instrument

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055866B2 (en) 2008-06-27 2015-06-16 Olympus Corporation Internal observation device for object having light scattering properties, internal body observation device, endoscope for internal observation and internal observation method
JP2015077415A (en) * 2009-12-28 2015-04-23 オリンパス株式会社 Scanning type internal observation device and method of obtaining observation image using the same
WO2011081141A1 (en) * 2009-12-28 2011-07-07 オリンパス株式会社 Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method
JP5658171B2 (en) * 2009-12-28 2015-01-21 オリンパス株式会社 Internal observation device
US9492089B2 (en) 2010-11-11 2016-11-15 The Trustees Of Columbia University In The City Of New York Dynamic optical tomographic imaging devices methods and systems
JP2013545543A (en) * 2010-11-11 2013-12-26 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Dynamic optical tomography imaging apparatus, method and system
US10178967B2 (en) 2010-11-11 2019-01-15 The Trustees Of Columbia University In The City Of New York Dynamic optical tomographic imaging devices methods and systems
US11033207B2 (en) 2010-11-11 2021-06-15 The Trustees Of Columbia University In The City Of New York Dynamic optical tomographic imaging devices methods and systems
JP2012125370A (en) * 2010-12-15 2012-07-05 Hitachi Ltd Biological measurement apparatus
JP2016206175A (en) * 2015-04-27 2016-12-08 パナソニックIpマネジメント株式会社 Optical sensing device and optical sensing method
US11172826B2 (en) 2016-03-08 2021-11-16 Enspectra Health, Inc. Non-invasive detection of skin disease
US11877826B2 (en) 2016-03-08 2024-01-23 Enspectra Health, Inc. Non-invasive detection of skin disease
US11633149B2 (en) 2017-04-28 2023-04-25 Enspectra Health, Inc. Systems and methods for imaging and measurement of sarcomeres

Similar Documents

Publication Publication Date Title
WO2009157229A1 (en) Scatterer interior observation device and scatterer interior observation method
JP3842101B2 (en) Endoscope device
US6527708B1 (en) Endoscope system
JP4577504B2 (en) Diagnostic imaging equipment
JP5836760B2 (en) Acoustic wave acquisition apparatus and acoustic wave acquisition method
JP5259374B2 (en) Optical structure observation apparatus and structure information processing method thereof
JP2010068865A (en) Diagnostic imaging apparatus
WO2011081141A1 (en) Internal observation device, intravital observation device, and internal observation endoscope for use on a light-scattering subject, and internal observation method
JP6745889B2 (en) Photoacoustic image generator
JP2006204430A (en) Tomographic image acquisition device
US20110082335A1 (en) Optical structure observation apparatus, structure information processing method of the same and endoscope apparatus including optical structure observation apparatus
WO2016171274A1 (en) Endoscope device
JP2006026015A (en) Optical tomographic image acquisition system
JP2016053482A (en) Photoacoustic wave measuring apparatus and photoacoustic wave measuring method
JP2010060332A (en) Apparatus and method for observing scatterer interior
JP2005328990A (en) Biological information measuring apparatus and endoscope apparatus
JP2008067889A (en) Optical coherence tomography probe for linear-scanning endoscope
JP2010223770A (en) Scatterer inside observation device, and scatterer inside observation method
JP5779461B2 (en) Optical coherence tomographic image processing apparatus and operating method thereof
WO2011158849A1 (en) Apparatus and method for tomographic image processing, and optical coherence tomographic image diagnosing apparatus
JP2012010776A (en) Tomographic image processing apparatus and method, and optical interference tomographic image diagnostic apparatus
JP2012013432A (en) Tomographic image processing device and method, and optical coherence tomographic image diagnosing device
JP5748281B2 (en) Optical coherence tomographic image processing method and apparatus
JP5809823B2 (en) Internal observation device
JP5752538B2 (en) Optical coherence tomographic image processing method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769939

Country of ref document: EP

Kind code of ref document: A1