WO2024106185A1 - Anode catalyst layer, water electrolytic cell, and water electrolytic cell stack - Google Patents

Anode catalyst layer, water electrolytic cell, and water electrolytic cell stack Download PDF

Info

Publication number
WO2024106185A1
WO2024106185A1 PCT/JP2023/038997 JP2023038997W WO2024106185A1 WO 2024106185 A1 WO2024106185 A1 WO 2024106185A1 JP 2023038997 W JP2023038997 W JP 2023038997W WO 2024106185 A1 WO2024106185 A1 WO 2024106185A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
catalyst layer
anode
iridium
anode catalyst
Prior art date
Application number
PCT/JP2023/038997
Other languages
French (fr)
Japanese (ja)
Inventor
篤 宇根本
Original Assignee
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京瓦斯株式会社 filed Critical 東京瓦斯株式会社
Publication of WO2024106185A1 publication Critical patent/WO2024106185A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • This disclosure relates to an anode catalyst layer, a water electrolysis cell, and a water electrolysis cell stack.
  • Water electrolysis (hereinafter sometimes referred to as “water electrolysis”) is a method of producing hydrogen and oxygen from water by electrolysis. For example, among technologies that use hydrogen as an energy source, water electrolysis is a promising technology for sustainable hydrogen production.
  • the water electrolysis cell used for water electrolysis is equipped with an anode separator, an anode gas diffusion layer, an anode catalyst, an electrolyte membrane, a cathode catalyst, a cathode gas diffusion layer, a cathode separator, etc.
  • anode catalyst and cathode catalyst catalysts suitable for water electrolysis are being considered.
  • JP 2018-519420 A discloses an oxygen evolution reaction electrode containing nanostructured whiskers, which has an oxygen evolution reaction electrocatalyst containing at least one layer on nanostructured whiskers, and each layer of the oxygen evolution reaction electrocatalyst contains at least 95 atomic percent Ir and 5 atomic percent or less Pt in total, based on the total content of cations and elemental metals in each layer.
  • Anode catalysts containing elements with anode activity have high catalytic activity. However, because the anode catalyst is exposed to a strong oxidizing atmosphere during water electrolysis, elements such as ruthenium and iridium are easily dissolved, and anode catalysts containing these elements are easily destabilized.
  • the objective of this disclosure is to provide an anode catalyst layer that exhibits high catalytic activity and can maintain stable catalytic activity, as well as a water electrolysis cell and a water electrolysis cell stack that include this anode catalyst layer.
  • the present disclosure includes the following aspects. ⁇ 1> an oxide catalyst having a perovskite structure, the A-site ions of which include alkaline earth metal ions, and the B-site ions of which include at least one selected from the group consisting of iridium ions and ruthenium ions and metal ions (excluding iridium ions and ruthenium ions); Ionomer and an anode catalyst layer comprising: ⁇ 2> The anode catalyst layer according to ⁇ 1>, wherein a logarithm of a mass ratio (log(X/Y)) of a content (X) of the ionomer to a total content (Y) of the iridium ions and the ruthenium ions contained in the B site ions is ⁇ 0.860 to 0.060.
  • ⁇ 3> The anode catalyst layer according to ⁇ 2>, wherein a logarithm of a mass ratio (log(X/Y)) of a content (X) of the ionomer to a total content (Y) of the iridium ions and the ruthenium ions contained in the B site ions is ⁇ 0.620 to ⁇ 0.090.
  • ⁇ 4> The anode catalyst layer according to ⁇ 3>, wherein a logarithm of a mass ratio (log(X/Y)) of a content (X) of the ionomer to a total content (Y) of the iridium ions and the ruthenium ions contained in the B site ions is ⁇ 0.500 to ⁇ 0.180.
  • the alkaline earth metal ion includes at least one selected from the group consisting of a calcium ion, a strontium ion, and a barium ion,
  • the metal ion includes at least one selected from the group consisting of a titanium ion, a zirconium ion, and a tin ion;
  • the anode catalyst layer according to any one of ⁇ 1> to ⁇ 4>, wherein a total molar concentration of the iridium ions and the ruthenium ions in the B site ions is 5 mol % or more and 67 mol % or less.
  • ⁇ 6> The anode catalyst layer according to any one of ⁇ 1> to ⁇ 5>, wherein the alkaline earth metal ions include strontium ions, and the metal ions include titanium ions.
  • ⁇ 7> The anode catalyst layer according to any one of ⁇ 1> to ⁇ 5>, wherein the alkaline earth metal ions include strontium ions, and the metal ions include zirconium ions.
  • ⁇ 8> ⁇ 8> The anode catalyst layer according to any one of ⁇ 1> to ⁇ 7>, wherein the ionomer contains a perfluorosulfonic acid group.
  • a water electrolysis cell comprising: an anode gas diffusion layer; the anode catalyst layer according to any one of ⁇ 1> to ⁇ 8>; an electrolyte membrane; a cathode catalyst layer; a cathode gas diffusion layer; and a separator.
  • a water electrolysis cell stack in which the water electrolysis cells according to ⁇ 9> are stacked.
  • the present disclosure provides an anode catalyst layer that exhibits high catalytic activity and can maintain stable catalytic activity, as well as a water electrolysis cell and a water electrolysis cell stack that include this anode catalyst layer.
  • FIG. 1 is a schematic cross-sectional view of a water electrolysis cell. 1 is a graph showing the relationship between log(X/Y) and log ⁇ current density per iridium mass at 1.8 V (A/mg-Ir) ⁇ .
  • a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower and upper limits.
  • the upper limit value described in a certain numerical range may be replaced with the upper limit value of another numerical range described in stages
  • the lower limit value described in a certain numerical range may be replaced with the lower limit value of another numerical range described in stages.
  • the upper limit value or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
  • the anode catalyst layer of the present disclosure includes an oxide catalyst having a perovskite structure, the A-site ions of which include alkaline earth metal ions, and the B-site ions of which include at least one selected from the group consisting of iridium ions and ruthenium ions and metal ions (excluding iridium ions and ruthenium ions).
  • the anode catalyst layer of the present disclosure also includes an ionomer.
  • the anode catalyst layer of the present disclosure can maintain stable catalytic activity by including an oxide catalyst having a perovskite structure. Furthermore, the anode catalyst layer includes at least one of iridium ions and ruthenium ions as B-site ions of the perovskite structure, and the A-site ions and B-site ions are the above ions, so that the current density of a water electrolysis cell including the anode catalyst layer can be increased, and high catalytic activity is exhibited. Furthermore, the anode catalyst layer includes an ionomer, which provides excellent ionic conductivity and high catalytic activity. From the above, it is presumed that the catalyst exhibits high catalytic activity and can maintain stable catalytic activity.
  • oxide catalyst having a perovskite structure
  • the oxide catalyst can be produced by a conventionally known method.
  • the oxide catalyst having the perovskite structure can be produced by a conventionally known solid-phase method, liquid-phase method, etc.
  • the solid-phase method includes a method of direct reaction of solid raw materials, and the liquid-phase method includes the Pezzini method, complex polymerization method, hydrothermal synthesis method, etc.
  • An oxide catalyst having a perovskite structure is generally represented by the chemical formula ABO3 .
  • Some oxide catalysts having a perovskite structure have oxygen instability. The amount of oxygen may be deficient or excessive compared to 3.
  • the A-site ions and B-site ions may be partially substituted with different elements.
  • the A-site ions of the perovskite structure include alkaline earth metal ions.
  • the alkaline earth metal ions include calcium ions, strontium ions, barium ions, and radium ions.
  • the alkaline earth metal ions preferably include at least one selected from the group consisting of calcium ions, strontium ions, and barium ions, and more preferably include strontium ions.
  • the A-site ions may be one type of alkaline earth metal ion or two or more types of alkaline earth metal ions.
  • the B-site ions of the perovskite structure include at least one selected from the group consisting of iridium ions and ruthenium ions.
  • the B-site ions may include either one of iridium ions or ruthenium ions, or may include both of them. It is preferable that the B-site ions include iridium ions.
  • the logarithm of the mass ratio (log(X/Y)) of the ionomer content (X) to the total content (Y) of iridium ions and ruthenium ions contained in the B site ions is preferably ⁇ 0.860 to 0.060, more preferably ⁇ 0.620 to ⁇ 0.090, and even more preferably ⁇ 0.500 to ⁇ 0.180.
  • the total molar concentration of iridium ions and ruthenium ions as B site ions in the anode catalyst layer of the present disclosure is preferably 5 mol% or more and 67 mol% or less, more preferably 7 mol% or more and 60 mol% or less, and even more preferably 10 mol% or more and 50 mol% or less, from the viewpoint of maintaining stable catalytic activity.
  • the total coating amount of the iridium ions and ruthenium ions is preferably 0.081 mg / cm 2 or more, more preferably 0.093 mg / cm 2 or more, and even more preferably 0.102 mg / cm 2 or more.
  • iridium + ruthenium coating amount is 0.081 mg / cm 2 or more, high catalytic activity can be obtained.
  • the upper limit of the iridium + ruthenium coating amount is not particularly limited, but is preferably 0.300 mg / cm 2 or less, more preferably 0.200 mg / cm 2 or less, and even more preferably 0.193 mg / cm 2 or less.
  • the B site ions of the perovskite structure include metal ions (excluding iridium ions and ruthenium ions).
  • metal ions include ions of metals such as titanium (Ti), zirconium (Zr), tin (Sn), scandium (Sc), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), indium (In), and antimony (Sb).
  • metal ions include ions of metals such as titanium (Ti), zirconium (Zr), tin (Sn), scandium (Sc), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese
  • the metal ions are stable elements, and from the viewpoint of being able to maintain stable catalytic activity of the anode catalyst layer, it is preferable to include at least one selected from the group consisting of titanium ions, zirconium ions, and tin ions, and it is more preferable to include at least one selected from the group consisting of titanium ions and zirconium ions.
  • the metal ions in the B site ions may be only one type of metal ion, or may be two or more types of metal ions.
  • alkaline earth metal ions in the A site ions and metal ions in the B site ions will be described.
  • the combination of alkaline earth metal ions and metal ions is not particularly limited, but from the viewpoint of maintaining stable catalytic activity of the anode catalyst layer, it is preferable to include strontium ions as the alkaline earth metal ions and titanium ions as the metal ions. Also, from the viewpoint of maintaining stable catalytic activity of the anode catalyst layer, it is preferable to include strontium ions as the alkaline earth metal ions and zirconium ions as the metal ions.
  • the molar concentration of metal ions contained in the A site ions, the molar concentration of metal ions contained in the B site ions, and the molar concentrations of iridium ions and ruthenium ions contained in the B site ions can be determined by analyzing the anode catalyst using inductively coupled plasma (ICP).
  • ICP inductively coupled plasma
  • the content of the oxide catalyst (oxide catalyst having a perovskite structure) in the anode catalyst layer of the present disclosure is not particularly limited, and is preferably 70 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and most preferably 100 mass% relative to the total amount of the anode catalyst layer.
  • the coating amount (catalyst coating amount) of the oxide catalyst is preferably 0.28 mg/cm 2 or more, more preferably 0.34 mg/cm 2 or more, and even more preferably 0.37 mg/cm 2 or more.
  • the catalyst coating amount is 0.28 mg/cm 2 or more, high catalytic activity can be obtained.
  • the upper limit of the catalyst coating amount is not particularly limited, but is preferably 1.00 mg/cm 2 or less, more preferably 0.70 mg/cm 2 or less, and even more preferably 0.68 mg/cm 2 or less.
  • An ionomer is, for example, a resin having an ionically crosslinked ethylene skeleton as a basic structure. From the viewpoint of obtaining excellent ion conduction, the ionomer preferably contains a perfluorosulfonic acid group in the skeleton.
  • a representative example of an ionomer containing perfluorosulfonic acid groups is the ionomer shown in formula (1) below.
  • the chemical structure of the ionomer can be evaluated by peeling the anode catalyst layer from the catalyst and using a combination of solid-state NMR (nuclear magnetic resonance) measurement and CHN analysis (carbon C, hydrogen H, nitrogen N atomic analysis).
  • the ratio of catalyst to ionomer can be evaluated by ICP (inductively coupled plasma) analysis.
  • the coating amount of the ionomer is preferably 0.0056 mg/cm 2 or more, more preferably 0.0068 mg/cm 2 or more, and even more preferably 0.0370 mg/cm 2 or more.
  • the upper limit of the catalyst coating amount is not particularly limited, but is preferably 0.5000 mg/cm 2 or less, more preferably 0.3500 mg/cm 2 or less, and even more preferably 0.3050 mg/cm 2 or less.
  • the mass ratio of the ionomer to the oxide catalyst is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.1 or more.
  • the upper limit of the ionomer/catalyst mass ratio is not particularly limited, but is preferably 0.8 or less, more preferably 0.6 or less, and even more preferably 0.5 or less.
  • the anode catalyst layer of the present disclosure may contain components other than an oxide catalyst having a perovskite structure, which contains an alkaline earth metal ion as an A site ion and at least one selected from the group consisting of an iridium ion and a ruthenium ion and a metal ion (excluding iridium ion and ruthenium ion) as a B site ion, and an ionomer.
  • such components include components having catalytic activity other than an oxide catalyst having a perovskite structure, unreacted components of the raw materials used to generate the oxide catalyst having a perovskite structure, side reaction components, and carriers.
  • carriers include titanium oxide and tin oxide, which are stable under water electrolysis conditions.
  • the water electrolysis cell according to the present disclosure includes an anode gas diffusion layer, the anode catalyst layer according to the present disclosure, an electrolyte membrane, a cathode catalyst layer, a cathode gas diffusion layer, and a separator. Water to be used for water electrolysis is injected into the water electrolysis cell according to the present disclosure.
  • the anode gas diffusion layer, electrolyte membrane, cathode catalyst layer, cathode gas diffusion layer and separator may be made of materials used in conventional water electrolysis cells.
  • the water electrolysis cell may further include other components.
  • the other components may be selected from known components of water electrolysis cells. Examples of the other components include gaskets, sealing materials, etc.
  • the anode gas diffusion layer and the cathode gas diffusion layer can each independently be made of a material that allows fluid to flow through the layer, such as a porous material, a powder sintered body, a fiber sintered body, a metal mesh, or felt.
  • the anode gas diffusion layer may be coated with a corrosion-resistant conductive material to prevent high resistance due to oxidation.
  • coating materials include platinum, gold, silver, titanium nitride, titanium carbide, and titanium carbonitride.
  • the electrolyte membrane may be selected from known electrolyte membranes (which may be ion exchange membranes) used in water electrolysis.
  • the electrolyte membrane preferably has a property of selectively permeating protons (H + ).
  • Examples of the electrolyte membrane include polymer electrolyte membranes (PEM).
  • Examples of the polymer electrolyte membrane include perfluorocarbon membranes having sulfonic acid groups.
  • Examples of the perfluorocarbon membranes having sulfonic acid groups include Nafion membranes.
  • the electrolyte membrane is a polymer that has proton conductivity due to the presence of ionic groups, and may be, for example, either a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte.
  • a fluoropolymer electrolyte refers to one in which most or all of the hydrogen atoms in the alkyl and/or alkylene groups in the polymer have been replaced with fluorine atoms.
  • Representative examples of fluoropolymer electrolytes having ionic groups include commercially available products such as "Nafion” (registered trademark) (manufactured by Chemours), "Aquivion” (registered trademark) (manufactured by Solvay), “Flemion” (registered trademark) (manufactured by AGC), and "Aciplex” (registered trademark) (manufactured by Asahi Kasei).
  • an aromatic hydrocarbon polymer having an aromatic ring in the main chain is preferable.
  • the aromatic ring may include not only a hydrocarbon aromatic ring consisting only of carbon atoms and hydrogen atoms, such as a benzene ring or a naphthalene skeleton, but also a heterocycle such as a pyridine ring, an imidazole ring, or a thiol ring.
  • some aliphatic units may constitute the polymer together with the aromatic ring units.
  • aromatic hydrocarbon polymers include polymers having a structure selected from polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene, polyarylene ketone, polyether ketone, polyarylene phosphine oxide, polyether phosphine oxide, polybenzoxazole, polybenzothiazole, polybenzimidazole, polyamide, polyimide, polyetherimide, and polyimide sulfone in the main chain together with an aromatic ring. Note that polysulfone, polyethersulfone, polyether ketone, etc.
  • Aromatic hydrocarbon polymers may have a plurality of these structures. Among these, aromatic hydrocarbon polymers, particularly polymers having a polyetherketone skeleton, i.e., polyetherketone polymers, are preferred.
  • the electrolyte membrane may be combined with a reinforcing material.
  • a reinforcing material for example, gas leaks and short circuits within the electrodes caused by damage to the membrane when joining the electrolyte membrane and electrodes by hot pressing are less likely to occur.
  • reinforcing materials include homogeneous porous membranes made of fluorine-based polymers such as PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), PVDF (polyvinylidene fluoride), and FEP (tetrafluoroethylene-hexafluoropropylene copolymer), thermoplastic resins such as PE (polyethylene) and PP (polypropylene), and engineering plastics such as PI (polyimide), PSF (polysulfone), PES (polyethersulfone), PEEK (polyetheretherketone), PPSS (polyphenylene sulfide sulfone), PPO (polyphenylene oxide), PEK (polyetherketone), PBI (polybenzimidazole), PPS (polyphenylene sulfide), PPP (polyparaphenylene), PPQ (polyren
  • the cathode catalyst may be selected from known catalysts used in water electrolysis.
  • catalyst components include platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, vanadium, and alloys and oxides thereof.
  • the catalyst may be in the form of particles.
  • the cathode catalyst may include a catalyst supported on a carrier. Examples of carriers include carbon black.
  • the water electrolysis cell includes an anode catalyst layer according to the present disclosure, which includes an oxide catalyst (anode catalyst, preferably oxide catalyst particles) and an ionomer.
  • the cell may also include a cathode catalyst layer, which includes a cathode catalyst (preferably cathode catalyst particles) and an ionomer. This increases the contact area between the catalyst and the ionomer in the catalyst layer, which tends to promote the reaction.
  • the primary particle diameter of the oxide catalyst is preferably 1 nm to 10 ⁇ m, more preferably 2 nm to 1 ⁇ m, and even more preferably 5 nm to 100 nm.
  • the primary particle diameter of the oxide catalyst is 1 nm or more, the mixing ratio of the ionomer required to increase the contact area is not too large, and many electron conduction paths can be secured inside the anode catalyst layer, so that the resistance tends to be difficult to increase.
  • the primary particle diameter of the anode catalyst is 10 ⁇ m or less, the decrease in the contact area with the ionomer is suppressed, so that the resistance tends to be difficult to increase.
  • the particle diameter of the catalyst can be evaluated using a scanning electron microscope or a transmission electron microscope.
  • the separator may be an anode separator arranged on the anode gas diffusion layer side, or a cathode separator arranged on the cathode gas diffusion layer side.
  • separator materials include titanium, stainless steel, and carbon. From the viewpoint of suppressing oxidation due to oxygen generated on the anode side, it is preferable that the anode separator contains titanium.
  • the anode separator may be coated with a corrosion-resistant conductive material to prevent high resistance due to oxidation.
  • coating materials include platinum, gold, silver, titanium nitride, titanium carbide, and titanium carbonitride.
  • each component in the water electrolysis cell may be determined with reference to known water electrolysis cells.
  • the electrolyte membrane is preferably located between the anode catalyst layer and the cathode catalyst layer.
  • the electrolyte membrane, the anode catalyst layer, and the cathode catalyst layer are preferably located between the anode gas diffusion layer and the cathode gas diffusion layer.
  • the electrolyte membrane, the anode catalyst layer, the cathode catalyst layer, and the anode gas diffusion layer and the cathode gas diffusion layer are preferably located between two separators.
  • FIG. 1 is a schematic cross-sectional view of a water electrolysis cell.
  • the water electrolysis cell 100 includes, from the top of Figure 1, an anode separator 60, an anode gas diffusion layer 20, an anode catalyst layer 12, an electrolyte membrane 11, a cathode catalyst layer 13, a cathode gas diffusion layer 30, and a cathode separator 70.
  • a gasket 40 is disposed between the anode separator 60 and the electrolyte membrane 11
  • a gasket 50 is disposed between the cathode separator 70 and the electrolyte membrane 11.
  • the water electrolysis device according to the present disclosure may be a water electrolysis cell stack formed by stacking a plurality of the above-described water electrolysis cells according to the present disclosure, or may be a device including the water electrolysis cell stack or the water electrolysis cell according to the present disclosure and other components.
  • the other components may be selected from known components of a water electrolysis device.
  • Examples of the other components include auxiliary equipment such as a power conditioner, a water pump, an ion exchange resin, a heat exchanger, and a dehumidifier.
  • Example 1 A catalyst powder containing an oxide having a perovskite structure in which iridium ions are incorporated into the B site of strontium titanate (SrTiO 3 ) was obtained by the Pezzini method.
  • the starting materials were strontium nitrate (Sr(NO 3 ) 2 ), titanium tetrabutoxide (C 16 H 36 O 4 Ti), and potassium hexachloroiridate (K 2 IrCl 6 ).
  • the mixed solution was then transferred to a zirconia crucible and heat-treated at 180° C. for 12 hours, 200° C. for 6 hours, 300° C. for 6 hours, 500° C. for 3 hours, and 600° C. for 6 hours.
  • the powder after the heat treatment was collected and put into a beaker together with 500 mL of a 1M aqueous hydrochloric acid solution and stirred for 6 hours or more to remove unreacted components.
  • the obtained mixed solution was washed with water using a suction filter, dried in an oven at 60° C., and then a catalyst powder was obtained.
  • a diffraction pattern derived from a perovskite structure was obtained.
  • the obtained powder was dissolved in aqua regia and analyzed by high-frequency inductively coupled plasma (ICP), which revealed that the molar concentration of iridium ions at the B site was 67 mol %.
  • ICP high-frequency inductively coupled plasma
  • a test anode catalyst layer for measuring current density was prepared using the synthesized catalyst powder. 10 g of the obtained catalyst powder and 5 mass % Nafion dispersion solution (Sigma-Aldrich, 70160) equivalent to the ionomer were weighed out so that log(X/Y) (logarithm of the mass ratio of the ionomer content (X) to the total content (Y) of iridium ions and ruthenium ions contained in the B site ions) was ⁇ 0.662, transferred to a glass container together with 2-propanol and pure water, and mixed with a homogenizer for 30 minutes or more to obtain an anode slurry.
  • log(X/Y) logarithm of the mass ratio of the ionomer content (X) to the total content (Y) of iridium ions and ruthenium ions contained in the B site ions
  • Pt/C platinum/carbon
  • Pt/C platinum/carbon
  • the cathode catalyst and the cathode slurry were sprayed onto a polytetrafluoroethylene (Teflon (registered trademark)) sheet with a length and width of 5 cm, respectively, and transferred onto the electrolyte membrane using a hot press to produce an electrolyte membrane with a catalyst layer.
  • Teflon polytetrafluoroethylene
  • the amount of anode catalyst was determined from the mass difference before and after application to the Teflon sheet, and the amount of iridium applied was calculated from the ratio of metal elements in the catalyst. When the mass of the Teflon sheet before and after the transfer was compared, the transfer rate of the anode catalyst layer was 100%.
  • the catalyst layer-attached electrolyte membrane thus prepared was cut into 2 cm squares, the anode catalyst was peeled off and scraped off with a spatula, and dissolved in aqua regia.
  • the catalyst composition and coating amount were analyzed by ICP (Hitachi High-Tech Science Corporation, PS3520VDDII) analysis, and the results were consistent with the composition and coating amount of the catalyst.
  • solid-state 19 F-NMR analysis (Bruker, AVANCE NEO400) was performed. The test was performed using a single pulse method, a spectrum width of 200 kHz, a pulse width of 2.4 ⁇ sec, and a sample rotation speed of 20 kHz to obtain a spectrum.
  • fluorine and sulfur components were analyzed by ion chromatography, and the structure of the ionomer was estimated, which was consistent with the composition of the ionomer in the coating. From the estimated ionomer structure and the results of elemental analysis by ion chromatography, the mass of the ionomer contained in the catalyst layer was estimated, and the coating amount of the ionomer per unit area was calculated, which was consistent with the coating amount in the coating.
  • a water electrolysis cell was prepared that includes an electrolyte membrane with a catalyst layer, an anode gas diffusion layer, an anode-side separator, a cathode gas diffusion layer, a cathode-side separator, an anode-side end plate, an anode-side current collector, an insulating sheet disposed between the anode-side end plate and the current collector, an end plate on the cathode side, a current collector on the cathode side, and an insulating sheet disposed between the cathode-side end plate and the current collector.
  • the anode-side separator was made of Pt-plated titanium, with the electrode installation section having a length and width of 5 cm, and 26 parallel flow paths with grooves and peaks of 1 mm each and a depth of 2 mm within a 5 cm side range.
  • the cathode-side separator was made of carbon, with the electrode installation section having a length and width of 5 cm, and 26 parallel flow paths with grooves and peaks of 1 mm each and a depth of 2 mm within a 5 cm side range.
  • the anode gas diffusion layer was made of Pt-plated titanium fiber sintered body.
  • the cathode gas diffusion layer was made of carbon material (manufactured by SGL Carbon Japan Co., Ltd.) and cut to a length and width of 5 cm.
  • the anode and cathode gaskets were made of polytetrafluoroethylene (Teflon (registered trademark)) sheets with the electrode installation portion cut out.
  • the electrode layer was placed on the portion where the electrode installation portion of the gasket was cut out, and the anode side separator, the anode gas diffusion layer, the electrolyte membrane with catalyst layer, the cathode gas diffusion layer, and the cathode side separator were laminated so that the electrode installation portion and the anode and cathode flow path portions overlap.
  • the anode side and cathode side separators were laminated in the order of the current collector plate, the insulating sheet, and the end plate, and fastened with bolts to prepare a water electrolysis cell.
  • the anode side separator was provided with a water inlet and a pipe for discharging the generated oxygen and unreacted water
  • the cathode side separator was provided with a pipe for discharging the generated hydrogen.
  • the current collectors on the anode side and the cathode side were each connected to an external power supply (PWR1201L, manufactured by Kikusui Electronics Co., Ltd.). After connecting an external power source to the water electrolysis cell, the temperature of the water electrolysis cell was raised to 60°C, and water was supplied to the water electrolysis cell at a flow rate of 100 ml/min.
  • Example 2 A catalyst powder containing an oxide having a perovskite structure was prepared in the same manner as in Example 1, except that the starting materials were 62.4 g of Sr( NO3 ) 2 , 11.9 g of K2IrCl6 , 4.2 g of C16H36O4Ti , 41.6 g of C6H8O7.H2O , 1500 mL of pure water, and 600 mL of C2H6O2 . The molar concentration of iridium ions at the B site was 33 mol%. Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was ⁇ 0.438 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 1.073.
  • Example 3 Except for adjusting log(X/Y) to be ⁇ 0.137, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was obtained in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 0.843.
  • Example 4 Except for adjusting log(X/Y) to 0.039, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 0.808.
  • Example 5 A catalyst powder containing an oxide having a perovskite structure was prepared in the same manner as in Example 1, except that Ba ( NO3 ) 2 , K2IrCl6 , and C16H36O4Ti were used as starting materials, Ba(NO3)2 was 58.7g, K2IrCl6 was 5.5g, C16H36O4Ti was 4.8g, C6H8O7.H2O was 19.3g , pure water was 700mL , and C2H6O2 was 300mL . The molar concentration of iridium ions at the B site was 45mol%.
  • Example 6 The starting materials were Sr(NO 3 ) 2 , K 2 IrCl 6 and zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O). 86.8 g of Sr(NO 3 ) 2 , 14.1 g of K 2 IrCl 6 , 14.4 g of ZrOCl 2 .8H 2 O, and 345 g of C 6 H 8 O 7 .H 2 O were weighed, and mixed with 600 mL of C 2 H 6 O 2 in 1500 mL of pure water and stirred at room temperature for more than 1 hour. Then, the mixture was stirred and mixed at 75 ° C for more than 3 hours using a hot stirrer.
  • the mixed solution was then transferred to a zirconia crucible and heat-treated for 12 hours at 180° C., 6 hours at 200° C., 6 hours at 300° C., 3 hours at 500° C., 6 hours at 600° C., and 6 hours at 700° C.
  • the powder after heat treatment was collected, and the subsequent operations were carried out in the same manner as in Example 1 to produce a catalyst powder.
  • the molar concentration of iridium ions at the B site was 40 mol%.
  • a Nafion dispersion solution was mixed so that log(X/Y) was ⁇ 0.459 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1.
  • the log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 1.049.
  • Example 7 Except for adjusting log(X/Y) to -0.158, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 0.792.
  • Example 8 Except for adjusting log(X/Y) to 0.018, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 0.732.
  • Example 9 Ba( NO3 ) 2 , K2IrCl6 and ZrOCl2.8H2O were used as starting materials, and 97.6g of Ba( NO3 ) 2 , 12.8g of K2IrCl6 , 8.5g of ZrOCl2.8H2O , and 315g of C6H8O7.H2O were weighed out and added to 1400mL of pure water together with 550mL of C2H6O2 to synthesize catalyst powder in the same manner as in Example 6. The molar concentration of iridium ions at the B site was 50mol % .
  • Example 10 The starting materials were calcium carbonate (CaCO 3 ), K 2 IrCl 6 and ZrOCl 2.8H 2 O, and 52.0 g of CaCO 3 , 16.0 g of K 2 IrCl 6 , 25.0 g of ZrOCl 2.8H 2 O, and 400 g of C 6 H 8 O 7.H 2 O were weighed out and added to 1700 mL of pure water together with 70 mL of nitric acid and 700 mL of C 2 H 6 O 2 , and the catalyst powder was synthesized in the same manner as in Example 6. The molar concentration of iridium ions at the B site was 50 mol%.
  • Example 11 Except for adjusting log(X/Y) to 0.261, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was ⁇ 0.398.
  • Example 12 Except for adjusting log(X/Y) to be ⁇ 1.137, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 0.146.
  • Example 13 Except for adjusting log(X/Y) to be ⁇ 1.158, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was 0.079.
  • Example 14> Except for adjusting log(X/Y) to 0.240, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ was ⁇ 0.523.
  • Example 2 A catalyst powder containing an oxide (SrTi 0.67 Ir 0.33 O 3 ) having a perovskite structure was prepared in the same manner as in Example 2. Next, polyvinylidene fluoride (PVdF) (Kureha Corporation, L#1120) dissolved in N-methylpyrrolidone (NMP) was used as a binder to obtain an anode slurry. The catalyst powder and PVdF were weighed out so that the mass ratio of the solid content was 95:5, and NMP was added to adjust the viscosity of the slurry to obtain an anode slurry.
  • PVdF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • An electrolyte membrane with a catalyst layer was obtained by the method described in Example 1, except that the anode slurry was applied to a Teflon sheet with a bar coater so that the total mass of the catalyst powder and the binder was 1.0 mg/cm 2 .
  • the log ⁇ current density per iridium mass (A/mg-Ir) at 1.8 V ⁇ was ⁇ 0.907.
  • Example 2 which had the largest log ⁇ current density per iridium mass at 1.8 V (A/mg-Ir) ⁇ among Examples 1 to 14, dissolution of the catalyst constituent elements into the electrolyte membrane as seen in Comparative Example 1 was not observed. This indicates that the catalyst having a perovskite structure is stable even at a high potential.
  • Examples 1 to 14 had a higher log ⁇ current density per mass of iridium at 1.8 V (A/mg-Ir) ⁇ than Comparative Example 2.
  • the catalyst layer contains an ionomer that allows protons to move and is necessary for forming active sites for the water electrolysis reaction
  • Comparative Example 2 contains PVdF as a binder in the catalyst layer, which does not contribute to the movement of protons or the formation of active sites for the water electrolysis reaction. For this reason, it is believed that in Comparative Example 2, no proton paths or active sites for the reaction are formed inside the anode catalyst layer, which is why the performance of the catalyst could not be brought out.
  • Electrolyte membrane 12 Anode catalyst layer 13: Cathode catalyst layer 20: Anode gas diffusion layer 30: Cathode gas diffusion layer 40: Gasket 50: Gasket 60: Anode separator 70: Cathode separator 100: Water electrolysis cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Provided is an anode catalyst layer comprising: an oxide catalyst having a perovskite structure, wherein the A site ion includes an alkaline earth metal ion and the B site ion includes at least one kind selected from the group consisting of an iridium ion and a ruthenium ion and a metal ion; and an ionomer.

Description

アノード触媒層、水電解セル、及び水電解セルスタックAnode catalyst layer, water electrolysis cell, and water electrolysis cell stack
 本開示は、アノード触媒層、水電解セル、及び水電解セルスタックに関する。 This disclosure relates to an anode catalyst layer, a water electrolysis cell, and a water electrolysis cell stack.
 水の電気分解(以下、「水電解」という場合がある。)は、電気分解によって水から水素及び酸素を生成する方法である。例えば、エネルギー源として水素を利用する技術において、水電解は、持続可能な水素生成のための有望な技術である。 Water electrolysis (hereinafter sometimes referred to as "water electrolysis") is a method of producing hydrogen and oxygen from water by electrolysis. For example, among technologies that use hydrogen as an energy source, water electrolysis is a promising technology for sustainable hydrogen production.
 水電解に用いる水電解セルは、アノードセパレータ、アノードガス拡散層、アノード触媒、電解質膜、カソード触媒、カソードガス拡散層、カソードセパレータ等を備えている。アノード触媒及びカソード触媒については、水電解に適した触媒が検討されている。 The water electrolysis cell used for water electrolysis is equipped with an anode separator, an anode gas diffusion layer, an anode catalyst, an electrolyte membrane, a cathode catalyst, a cathode gas diffusion layer, a cathode separator, etc. Regarding the anode catalyst and cathode catalyst, catalysts suitable for water electrolysis are being considered.
 例えば、特表2018-519420号(特許文献1)には、ナノ構造化ウィスカーの上に、少なくとも1つの層を含む酸素発生反応電解触媒を有し、前記酸素発生反応電解触媒のいずれの層も、各層のカチオン及び元素金属の総計含有量に対して、少なくとも95原子パーセントのIr及び5原子パーセント以下のPtを全体で含む、ナノ構造化ウィスカーを含む酸素発生反応電極が開示されている。 For example, JP 2018-519420 A (Patent Document 1) discloses an oxygen evolution reaction electrode containing nanostructured whiskers, which has an oxygen evolution reaction electrocatalyst containing at least one layer on nanostructured whiskers, and each layer of the oxygen evolution reaction electrocatalyst contains at least 95 atomic percent Ir and 5 atomic percent or less Pt in total, based on the total content of cations and elemental metals in each layer.
 イリジウム、ルテニウム等のアノード活性を有する元素を含むアノード触媒は高い触媒活性を有する。しかし、アノード触媒は水電解中に強酸化雰囲気に晒されるため、例えば、ルテニウム、イリジウム等の元素は溶解しやすく、当該元素を含むアノード触媒は不安定化しやすい。 Anode catalysts containing elements with anode activity, such as iridium and ruthenium, have high catalytic activity. However, because the anode catalyst is exposed to a strong oxidizing atmosphere during water electrolysis, elements such as ruthenium and iridium are easily dissolved, and anode catalysts containing these elements are easily destabilized.
 例えば、特許文献1のようなイリジウムを含む触媒ではイリジウムが溶解しやすく、当該触媒は不安定化するおそれがある。 For example, in a catalyst containing iridium such as that described in Patent Document 1, the iridium is easily dissolved, and there is a risk that the catalyst may become unstable.
 本開示の目的は、高い触媒活性を示し、かつ安定した触媒活性を持続できるアノード触媒層、並びに、このアノード触媒層を含む水電解セル及び水電解セルスタックを提供することである。 The objective of this disclosure is to provide an anode catalyst layer that exhibits high catalytic activity and can maintain stable catalytic activity, as well as a water electrolysis cell and a water electrolysis cell stack that include this anode catalyst layer.
 本開示は、以下の態様を含む。
<1>
Aサイトイオンにアルカリ土類金属イオンを含み、Bサイトイオンにイリジウムイオン及びルテニウムイオンからなる群より選択される少なくとも1種と金属イオン(但し、イリジウムイオン及びルテニウムイオンを除く)とを含む、ペロブスカイト型構造を有する酸化物触媒と、
 アイオノマーと、
 を含むアノード触媒層。
<2>
 前記アイオノマーの含有量(X)と、前記Bサイトイオンに含まれる前記イリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が-0.860~0.060である、<1>に記載のアノード触媒層。
<3>
 前記アイオノマーの含有量(X)と、前記Bサイトイオンに含まれる前記イリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が-0.620~-0.090である、<2>に記載のアノード触媒層。
<4>
 前記アイオノマーの含有量(X)と、前記Bサイトイオンに含まれる前記イリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が-0.500~-0.180である、<3>に記載のアノード触媒層。
<5>
 前記アルカリ土類金属イオンとして、カルシウムイオン、ストロンチウムイオン、及びバリウムイオンからなる群より選択される少なくとも1種を含み、
 前記金属イオンとして、チタンイオン、ジルコニウムイオン、及びスズイオンからなる群より選択される少なくとも1種を含み、
 前記Bサイトイオンにおける前記イリジウムイオン及びルテニウムイオンの合計モル濃度が5mol%以上67mol%以下である、<1>~<4>のいずれか1項に記載のアノード触媒層。
<6>
 前記アルカリ土類金属イオンとして、ストロンチウムイオンを含み、前記金属イオンとして、チタンイオンを含む、<1>~<5>のいずれか1項に記載のアノード触媒層。
<7>
 前記アルカリ土類金属イオンとして、ストロンチウムイオンを含み、前記金属イオンとしてジルコニウムイオンを含む、<1>~<5>のいずれか1項に記載のアノード触媒層。
<8>
 前記アイオノマーが、パーフルオロスルホン酸基を含む、<1>~<7>のいずれか1項に記載のアノード触媒層。
<9>
 アノードガス拡散層と、<1>~<8>のいずれか1項に記載のアノード触媒層と、電解質膜と、カソード触媒層と、カソードガス拡散層と、セパレータと、を備える水電解セル。
<10>
 <9>に記載の水電解セルが積層された水電解セルスタック。
The present disclosure includes the following aspects.
<1>
an oxide catalyst having a perovskite structure, the A-site ions of which include alkaline earth metal ions, and the B-site ions of which include at least one selected from the group consisting of iridium ions and ruthenium ions and metal ions (excluding iridium ions and ruthenium ions);
Ionomer and
an anode catalyst layer comprising:
<2>
The anode catalyst layer according to <1>, wherein a logarithm of a mass ratio (log(X/Y)) of a content (X) of the ionomer to a total content (Y) of the iridium ions and the ruthenium ions contained in the B site ions is −0.860 to 0.060.
<3>
The anode catalyst layer according to <2>, wherein a logarithm of a mass ratio (log(X/Y)) of a content (X) of the ionomer to a total content (Y) of the iridium ions and the ruthenium ions contained in the B site ions is −0.620 to −0.090.
<4>
The anode catalyst layer according to <3>, wherein a logarithm of a mass ratio (log(X/Y)) of a content (X) of the ionomer to a total content (Y) of the iridium ions and the ruthenium ions contained in the B site ions is −0.500 to −0.180.
<5>
The alkaline earth metal ion includes at least one selected from the group consisting of a calcium ion, a strontium ion, and a barium ion,
The metal ion includes at least one selected from the group consisting of a titanium ion, a zirconium ion, and a tin ion;
The anode catalyst layer according to any one of <1> to <4>, wherein a total molar concentration of the iridium ions and the ruthenium ions in the B site ions is 5 mol % or more and 67 mol % or less.
<6>
The anode catalyst layer according to any one of <1> to <5>, wherein the alkaline earth metal ions include strontium ions, and the metal ions include titanium ions.
<7>
The anode catalyst layer according to any one of <1> to <5>, wherein the alkaline earth metal ions include strontium ions, and the metal ions include zirconium ions.
<8>
<8> The anode catalyst layer according to any one of <1> to <7>, wherein the ionomer contains a perfluorosulfonic acid group.
<9>
A water electrolysis cell comprising: an anode gas diffusion layer; the anode catalyst layer according to any one of <1> to <8>; an electrolyte membrane; a cathode catalyst layer; a cathode gas diffusion layer; and a separator.
<10>
A water electrolysis cell stack in which the water electrolysis cells according to <9> are stacked.
 本開示によれば、高い触媒活性を示し、かつ安定した触媒活性を持続できるアノード触媒層、並びに、このアノード触媒層を含む水電解セル及び水電解セルスタックが提供される。 The present disclosure provides an anode catalyst layer that exhibits high catalytic activity and can maintain stable catalytic activity, as well as a water electrolysis cell and a water electrolysis cell stack that include this anode catalyst layer.
水電解セルの概略断面図である。FIG. 1 is a schematic cross-sectional view of a water electrolysis cell. log(X/Y)と、log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}との関係を示すグラフである。1 is a graph showing the relationship between log(X/Y) and log{current density per iridium mass at 1.8 V (A/mg-Ir)}.
 以下、本開示の実施形態について説明する。本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。 Below, an embodiment of the present disclosure will be described. The present disclosure is not limited to the following embodiment, and can be implemented with appropriate modifications within the scope of the purpose of the present disclosure. The dimensional ratios in the drawings do not necessarily represent the actual dimensional ratios.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In this disclosure, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower and upper limits.
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値は、他の段階的な記載の数値範囲の上限値に置き換えられてもよく、ある数値範囲で記載された下限値は、他の段階的な記載の数値範囲の下限値に置き換えられてもよい。本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えられてもよい。 In the numerical ranges described in stages in this disclosure, the upper limit value described in a certain numerical range may be replaced with the upper limit value of another numerical range described in stages, and the lower limit value described in a certain numerical range may be replaced with the lower limit value of another numerical range described in stages. In the numerical ranges described in stages in this disclosure, the upper limit value or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。 In this disclosure, a combination of two or more preferred aspects is a more preferred aspect.
<アノード触媒層>
 本開示のアノード触媒層は、Aサイトイオンにアルカリ土類金属イオンを含み、Bサイトイオンにイリジウムイオン及びルテニウムイオンからなる群より選択される少なくとも1種と金属イオン(但し、イリジウムイオン及びルテニウムイオンを除く)とを含む、ペロブスカイト型構造を有する酸化物触媒を含む。また、本開示のアノード触媒層は、アイオノマーを含む。
<Anode catalyst layer>
The anode catalyst layer of the present disclosure includes an oxide catalyst having a perovskite structure, the A-site ions of which include alkaline earth metal ions, and the B-site ions of which include at least one selected from the group consisting of iridium ions and ruthenium ions and metal ions (excluding iridium ions and ruthenium ions). The anode catalyst layer of the present disclosure also includes an ionomer.
 本開示によれば、高い触媒活性を示しかつ安定した触媒活性を持続できるアノード触媒層が得られる。この効果が奏される理由は、必ずしも明確ではないものの、以下のように推察される。
 本開示のアノード触媒層は、ペロブスカイト型構造を有する酸化物触媒を含むことで安定した触媒活性を持続することができる。さらに、ペロブスカイト型構造のBサイトイオンとしてイリジウムイオン及びルテニウムイオンの少なくとも一方を含み、Aサイトイオン及びBサイトイオンが上記のイオンであることで、当該アノード触媒層を備える水電解セルの電流密度を高めることが可能となり、高い触媒活性を示す。また、アイオノマーを含むことで優れたイオン伝導性が得られ、高い触媒活性を示す。
 以上により、高い触媒活性を示しかつ安定した触媒活性を持続できるものと推察される。
According to the present disclosure, it is possible to obtain an anode catalyst layer that exhibits high catalytic activity and is capable of maintaining stable catalytic activity. Although the reason why this effect is achieved is not necessarily clear, it is presumed as follows.
The anode catalyst layer of the present disclosure can maintain stable catalytic activity by including an oxide catalyst having a perovskite structure. Furthermore, the anode catalyst layer includes at least one of iridium ions and ruthenium ions as B-site ions of the perovskite structure, and the A-site ions and B-site ions are the above ions, so that the current density of a water electrolysis cell including the anode catalyst layer can be increased, and high catalytic activity is exhibited. Furthermore, the anode catalyst layer includes an ionomer, which provides excellent ionic conductivity and high catalytic activity.
From the above, it is presumed that the catalyst exhibits high catalytic activity and can maintain stable catalytic activity.
 (酸化物触媒)
 まず、Aサイトイオンにアルカリ土類金属イオンを含み、Bサイトイオンにイリジウムイオン及びルテニウムイオンからなる群より選択される少なくとも1種と金属イオンとを含む、ペロブスカイト型構造を有する酸化物触媒について説明する。
 酸化物触媒は、従来公知の方法により製造することができる。例えば、従来公知の固相法、液相法等により当該ペロブスカイト型構造を有する酸化物触媒を作製可能である。固相法としては、固体原料の直接反応による方法が挙げられ、液相法としては、ペッチーニ法、錯体重合法、水熱合成法等が挙げられる。
(Oxide catalyst)
First, an oxide catalyst having a perovskite structure will be described, which contains an alkaline earth metal ion as an A-site ion and a metal ion and at least one selected from the group consisting of an iridium ion and a ruthenium ion as a B-site ion.
The oxide catalyst can be produced by a conventionally known method. For example, the oxide catalyst having the perovskite structure can be produced by a conventionally known solid-phase method, liquid-phase method, etc. The solid-phase method includes a method of direct reaction of solid raw materials, and the liquid-phase method includes the Pezzini method, complex polymerization method, hydrothermal synthesis method, etc.
 ペロブスカイト型構造を有する酸化物触媒は、一般的にABOの化学式で表される。ペロブスカイト型構造の酸化物触媒は酸素不定性を有するものもある。酸素量が3より欠損、あるいは過剰となっていてもよい。また、AサイトイオンとBサイトイオンは、それぞれ別の元素に部分的に置換されていてもよい。 An oxide catalyst having a perovskite structure is generally represented by the chemical formula ABO3 . Some oxide catalysts having a perovskite structure have oxygen instability. The amount of oxygen may be deficient or excessive compared to 3. In addition, the A-site ions and B-site ions may be partially substituted with different elements.
 ・アルカリ土類金属イオン(Aサイトイオン)
 ペロブスカイト型構造のAサイトイオンは、アルカリ土類金属イオンを含む。アルカリ土類金属イオンとしては、例えばカルシウムイオン、ストロンチウムイオン、バリウムイオン、ラジウムイオン等が挙げられる。アルカリ土類金属イオンとしては、カルシウムイオン、ストロンチウムイオン、及びバリウムイオンからなる群より選択される少なくとも1種を含むことが好ましく、ストロンチウムイオンを含むことがより好ましい。Aサイトイオンは、1種のアルカリ土類金属イオンであってもよく、2種以上のアルカリ土類金属イオンであってもよい。
-Alkaline earth metal ions (A site ions)
The A-site ions of the perovskite structure include alkaline earth metal ions. Examples of the alkaline earth metal ions include calcium ions, strontium ions, barium ions, and radium ions. The alkaline earth metal ions preferably include at least one selected from the group consisting of calcium ions, strontium ions, and barium ions, and more preferably include strontium ions. The A-site ions may be one type of alkaline earth metal ion or two or more types of alkaline earth metal ions.
 ・イリジウムイオン及びルテニウムイオン(Bサイトイオン)
 ペロブスカイト型構造のBサイトイオンは、イリジウムイオン及びルテニウムイオンからなる群より選択される少なくとも1種を含む。イリジウムイオン及びルテニウムイオンは、いずれか一方のみを含んでも、両方を含んでもよい。なお、イリジウムイオンを含むことが好ましい。
- Iridium ions and ruthenium ions (B site ions)
The B-site ions of the perovskite structure include at least one selected from the group consisting of iridium ions and ruthenium ions. The B-site ions may include either one of iridium ions or ruthenium ions, or may include both of them. It is preferable that the B-site ions include iridium ions.
 アイオノマーの含有量(X)と、Bサイトイオンに含まれるイリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が、安定した触媒活性を持続できる観点から、-0.860~0.060であることが好ましく、-0.620~-0.090であることがより好ましく、-0.500~-0.180であることがさらに好ましい。
 ここで、セルの内部抵抗を低減して水電解反応の効率を高める観点から、アノード触媒層において、触媒粒子を高分散して反応面積を高める一方、イオン伝導を担うアイオノマーの量を適量に調整することが好ましい。イリジウムイオン及びルテニウムイオンに対するアイオノマーの比率を少な過ぎない範囲とすることで、イオン伝導パスが十分に得られセルの内部抵抗が低減され、水電解反応の効率を高められる。一方、イリジウムイオン及びルテニウムイオンに対するアイオノマーの比率を多過ぎない範囲とすることで、アイオノマーが触媒表面を覆って反応面積が少なくなることが抑制され、セルの内部抵抗が低減され、水電解反応の効率を高められる。
From the viewpoint of maintaining stable catalytic activity, the logarithm of the mass ratio (log(X/Y)) of the ionomer content (X) to the total content (Y) of iridium ions and ruthenium ions contained in the B site ions is preferably −0.860 to 0.060, more preferably −0.620 to −0.090, and even more preferably −0.500 to −0.180.
Here, from the viewpoint of reducing the internal resistance of the cell and increasing the efficiency of the water electrolysis reaction, it is preferable to highly disperse the catalyst particles in the anode catalyst layer to increase the reaction area, while adjusting the amount of the ionomer responsible for ion conduction to an appropriate amount. By setting the ratio of the ionomer to the iridium ions and the ruthenium ions in a range that is not too small, sufficient ion conduction paths are obtained, the internal resistance of the cell is reduced, and the efficiency of the water electrolysis reaction is improved. On the other hand, by setting the ratio of the ionomer to the iridium ions and the ruthenium ions in a range that is not too large, the ionomer is prevented from covering the catalyst surface and reducing the reaction area, the internal resistance of the cell is reduced, and the efficiency of the water electrolysis reaction is improved.
 本開示のアノード触媒層における、Bサイトイオンとしてのイリジウムイオン及びルテニウムイオンの合計モル濃度は、安定した触媒活性を持続できる観点から、5mol%以上67mol%以下であることが好ましく、7mol%以上60mol%以下であることがより好ましく、10mol%以上50mol%以下であることがさらに好ましい。 The total molar concentration of iridium ions and ruthenium ions as B site ions in the anode catalyst layer of the present disclosure is preferably 5 mol% or more and 67 mol% or less, more preferably 7 mol% or more and 60 mol% or less, and even more preferably 10 mol% or more and 50 mol% or less, from the viewpoint of maintaining stable catalytic activity.
 本開示のアノード触媒層における、前記イリジウムイオン及びルテニウムイオンの合計の塗布量(イリジウム+ルテニウム塗布量)は、0.081mg/cm以上であることが好ましく、0.093mg/cm以上であることがより好ましく、0.102mg/cm以上であることがさらに好ましい。イリジウム+ルテニウム塗布量が0.081mg/cm以上であることで、高い触媒活性が得られる。なお、前記イリジウム+ルテニウム塗布量の上限値は、特に限定されるものではないが、例えば0.300mg/cm以下であることが好ましく、0.200mg/cm以下であることがより好ましく、0.193mg/cm以下であることがさらに好ましい。 In the anode catalyst layer of the present disclosure, the total coating amount of the iridium ions and ruthenium ions (iridium + ruthenium coating amount) is preferably 0.081 mg / cm 2 or more, more preferably 0.093 mg / cm 2 or more, and even more preferably 0.102 mg / cm 2 or more. When the iridium + ruthenium coating amount is 0.081 mg / cm 2 or more, high catalytic activity can be obtained. The upper limit of the iridium + ruthenium coating amount is not particularly limited, but is preferably 0.300 mg / cm 2 or less, more preferably 0.200 mg / cm 2 or less, and even more preferably 0.193 mg / cm 2 or less.
 ・金属イオン(Bサイトイオン)
 ペロブスカイト型構造のBサイトイオンは、金属イオン(但し、イリジウムイオン及びルテニウムイオンを除く)を含む。金属イオンとしては、例えばチタン(Ti)、ジルコニウム(Zr)、スズ(Sn)、スカンジウム(Sc)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、アンチモン(Sb)等の金属のイオンが挙げられる。中でも、金属イオンは、安定な元素でありアノード触媒層の安定した触媒活性を持続できる観点から、チタンイオン、ジルコニウムイオン、及びスズイオンからなる群より選択される少なくとも1種を含むことが好ましく、チタンイオン、及びジルコニウムイオンからなる群より選択される少なくとも1種を含むことがより好ましい。Bサイトイオンにおける前記金属イオンは、1種の金属イオンのみであってもよく、2種以上の金属イオンであってもよい。
・Metal ions (B site ions)
The B site ions of the perovskite structure include metal ions (excluding iridium ions and ruthenium ions). Examples of metal ions include ions of metals such as titanium (Ti), zirconium (Zr), tin (Sn), scandium (Sc), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), indium (In), and antimony (Sb). Among them, the metal ions are stable elements, and from the viewpoint of being able to maintain stable catalytic activity of the anode catalyst layer, it is preferable to include at least one selected from the group consisting of titanium ions, zirconium ions, and tin ions, and it is more preferable to include at least one selected from the group consisting of titanium ions and zirconium ions. The metal ions in the B site ions may be only one type of metal ion, or may be two or more types of metal ions.
 Aサイトイオンにおけるアルカリ土類金属イオンと、Bサイトイオンにおける金属イオンと、の組み合わせについて説明する。アルカリ土類金属イオンと金属イオンとの組み合わせは、特に限定されるものではないが、アノード触媒層の安定した触媒活性を持続できる観点から、アルカリ土類金属イオンとしてストロンチウムイオンを含み、金属イオンとしてチタンイオンを含むことが好ましい。また、アノード触媒層の安定した触媒活性を持続できる観点から、アルカリ土類金属イオンとしてストロンチウムイオンを含み、金属イオンとしてジルコニウムイオンを含むことが好ましい。 The combination of alkaline earth metal ions in the A site ions and metal ions in the B site ions will be described. The combination of alkaline earth metal ions and metal ions is not particularly limited, but from the viewpoint of maintaining stable catalytic activity of the anode catalyst layer, it is preferable to include strontium ions as the alkaline earth metal ions and titanium ions as the metal ions. Also, from the viewpoint of maintaining stable catalytic activity of the anode catalyst layer, it is preferable to include strontium ions as the alkaline earth metal ions and zirconium ions as the metal ions.
 Aサイトイオンに含まれる金属イオンのモル濃度、Bサイトイオンに含まれる金属イオンのモル濃度、及びBサイトイオンに含まれるイリジウムイオンおよびルテニウムイオンのモル濃度は、高周波誘導結合プラズマ(ICP)によりアノード触媒を分析することで求めることができる。 The molar concentration of metal ions contained in the A site ions, the molar concentration of metal ions contained in the B site ions, and the molar concentrations of iridium ions and ruthenium ions contained in the B site ions can be determined by analyzing the anode catalyst using inductively coupled plasma (ICP).
 本開示のアノード触媒層における、上記酸化物触媒(ペロブスカイト型構造を有する酸化物触媒)の含有率は、特に限定されず、アノード触媒層の全量に対して、70質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、100質量%であることが最も好ましい。 The content of the oxide catalyst (oxide catalyst having a perovskite structure) in the anode catalyst layer of the present disclosure is not particularly limited, and is preferably 70 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and most preferably 100 mass% relative to the total amount of the anode catalyst layer.
 本開示のアノード触媒層における、前記酸化物触媒(ペロブスカイト型構造を有する酸化物触媒)の塗布量(触媒塗布量)は、0.28mg/cm以上であることが好ましく、0.34mg/cm以上であることがより好ましく、0.37mg/cm以上であることがさらに好ましい。触媒塗布量が0.28mg/cm以上であることで、高い触媒活性が得られる。なお、前記触媒塗布量の上限値は、特に限定されるものではないが、例えば1.00mg/cm以下であることが好ましく、0.70mg/cm以下であることがより好ましく、0.68mg/cm以下であることがさらに好ましい。 In the anode catalyst layer of the present disclosure, the coating amount (catalyst coating amount) of the oxide catalyst (oxide catalyst having a perovskite structure) is preferably 0.28 mg/cm 2 or more, more preferably 0.34 mg/cm 2 or more, and even more preferably 0.37 mg/cm 2 or more. When the catalyst coating amount is 0.28 mg/cm 2 or more, high catalytic activity can be obtained. The upper limit of the catalyst coating amount is not particularly limited, but is preferably 1.00 mg/cm 2 or less, more preferably 0.70 mg/cm 2 or less, and even more preferably 0.68 mg/cm 2 or less.
 (アイオノマー)
 次いで、アイオノマーについて説明する。
 アイオノマーとは、例えばイオン架橋されたエチレン骨格を基本構造にもつ樹脂である。アイオノマーとしては、優れたイオン伝導を得る観点から、パーフルオロスルホン酸基を骨格中に含むことが好ましい。
(Ionomer)
Next, the ionomer will be described.
An ionomer is, for example, a resin having an ionically crosslinked ethylene skeleton as a basic structure. From the viewpoint of obtaining excellent ion conduction, the ionomer preferably contains a perfluorosulfonic acid group in the skeleton.
 パーフルオロスルホン酸基を含むアイオノマーとしては、代表例として下記式(1)で示されるアイオノマーが挙げられる。 A representative example of an ionomer containing perfluorosulfonic acid groups is the ionomer shown in formula (1) below.

 
 

 
 
(式(1)中、mは0~10を、nは1~10を、xは1~20を、yは100以上を表す。) (In formula (1), m is 0 to 10, n is 1 to 10, x is 1 to 20, and y is 100 or more.)
 例えば、ナフィオン(登録商標)117は、式(1)において(m≧1、n=2、x=5~13.5、y=1000)の構造を有する。アイオノマーの化学構造は、触媒からアノード触媒層をはく離させ、固体NMR(核磁気共鳴)測定とCHN分析(炭素C、水素H、窒素N原子分析)を併用することで評価することができる。さらに、触媒とアイオノマーの比率は、ICP(誘導結合プラズマ)分析により評価することができる。 For example, Nafion (registered trademark) 117 has the structure (m≧1, n=2, x=5-13.5, y=1000) in formula (1). The chemical structure of the ionomer can be evaluated by peeling the anode catalyst layer from the catalyst and using a combination of solid-state NMR (nuclear magnetic resonance) measurement and CHN analysis (carbon C, hydrogen H, nitrogen N atomic analysis). Furthermore, the ratio of catalyst to ionomer can be evaluated by ICP (inductively coupled plasma) analysis.
 本開示のアノード触媒層における、前記アイオノマーの塗布量(アイオノマー塗布量)は、0.0056mg/cm以上であることが好ましく、0.0068mg/cm以上であることがより好ましく、0.0370mg/cm以上であることがさらに好ましい。アイオノマー塗布量が0.0056mg/cm以上であることで、高い触媒活性が得られる。なお、前記触媒塗布量の上限値は、特に限定されるものではないが、例えば0.5000mg/cm以下であることが好ましく、0.3500mg/cm以下であることがより好ましく、0.3050mg/cm以下であることがさらに好ましい。 In the anode catalyst layer of the present disclosure, the coating amount of the ionomer (ionomer coating amount) is preferably 0.0056 mg/cm 2 or more, more preferably 0.0068 mg/cm 2 or more, and even more preferably 0.0370 mg/cm 2 or more. When the ionomer coating amount is 0.0056 mg/cm 2 or more, high catalytic activity can be obtained. The upper limit of the catalyst coating amount is not particularly limited, but is preferably 0.5000 mg/cm 2 or less, more preferably 0.3500 mg/cm 2 or less, and even more preferably 0.3050 mg/cm 2 or less.
 本開示のアノード触媒層における、前記酸化物触媒に対する前記アイオノマーの質量比(アイオノマー/触媒質量比)は、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。アイオノマー/触媒質量比が0.01以上であることで、高い触媒活性が得られる。なお、前記アイオノマー/触媒質量比の上限値は、特に限定されるものではないが、例えば0.8以下であることが好ましく、0.6以下であることがより好ましく、0.5以下であることがさらに好ましい。 In the anode catalyst layer of the present disclosure, the mass ratio of the ionomer to the oxide catalyst (ionomer/catalyst mass ratio) is preferably 0.01 or more, more preferably 0.02 or more, and even more preferably 0.1 or more. By setting the ionomer/catalyst mass ratio to 0.01 or more, high catalytic activity can be obtained. The upper limit of the ionomer/catalyst mass ratio is not particularly limited, but is preferably 0.8 or less, more preferably 0.6 or less, and even more preferably 0.5 or less.
 本開示のアノード触媒層は、Aサイトイオンにアルカリ土類金属イオンを含み、Bサイトイオンにイリジウムイオン及びルテニウムイオンからなる群より選択される少なくとも1種と金属イオン(但し、イリジウムイオン及びルテニウムイオンを除く)とを含む、ペロブスカイト型構造を有する酸化物触媒、及びアイオノマー以外の成分を含んでいてもよい。例えば、ペロブスカイト型構造を有する酸化物触媒以外の触媒活性を有する成分、ペロブスカイト型構造を有する酸化物触媒の生成に用いた原料の未反応成分、副反応成分、担体等が挙げられる。担体には、水電解条件で安定な酸化チタンや酸化スズ等が挙げられる。 The anode catalyst layer of the present disclosure may contain components other than an oxide catalyst having a perovskite structure, which contains an alkaline earth metal ion as an A site ion and at least one selected from the group consisting of an iridium ion and a ruthenium ion and a metal ion (excluding iridium ion and ruthenium ion) as a B site ion, and an ionomer. Examples of such components include components having catalytic activity other than an oxide catalyst having a perovskite structure, unreacted components of the raw materials used to generate the oxide catalyst having a perovskite structure, side reaction components, and carriers. Examples of carriers include titanium oxide and tin oxide, which are stable under water electrolysis conditions.
<水電解セル>
 本開示の水電解セルは、アノードガス拡散層と、前述の本開示のアノード触媒層と、電解質膜と、カソード触媒層と、カソードガス拡散層と、セパレータと、を備える。なお、本開示の水電解セルには、水電解に用いられる水が注入される。
<Water electrolysis cell>
The water electrolysis cell according to the present disclosure includes an anode gas diffusion layer, the anode catalyst layer according to the present disclosure, an electrolyte membrane, a cathode catalyst layer, a cathode gas diffusion layer, and a separator. Water to be used for water electrolysis is injected into the water electrolysis cell according to the present disclosure.
 アノードガス拡散層、電解質膜、カソード触媒層、カソードガス拡散層及びセパレータとしては、従来公知の水電解セルにて使用される部材を適用してもよい。 The anode gas diffusion layer, electrolyte membrane, cathode catalyst layer, cathode gas diffusion layer and separator may be made of materials used in conventional water electrolysis cells.
 水電解セルは、他の構成要素を更に含んでいてもよい。他の構成要素は、公知の水電解セルの構成要素から選択されてもよい。他の構成要素としては、例えば、ガスケット、シール材等が挙げられる。 The water electrolysis cell may further include other components. The other components may be selected from known components of water electrolysis cells. Examples of the other components include gaskets, sealing materials, etc.
 例えば、アノードガス拡散層及びカソードガス拡散層としては、それぞれ独立に、多孔質体、粉末焼結体、繊維焼結体、金属メッシュ、フェルトなどの、層内を流体が流通可能とする物質を用いることができる。 For example, the anode gas diffusion layer and the cathode gas diffusion layer can each independently be made of a material that allows fluid to flow through the layer, such as a porous material, a powder sintered body, a fiber sintered body, a metal mesh, or felt.
 アノードガス拡散層は、酸化による高抵抗化を抑制する観点から、耐食性の導電性材料でコーティングされていてもよい。コーティング材としては、例えば、白金、金、銀、窒化チタン、炭化チタン、炭窒化チタン等が挙げられる。 The anode gas diffusion layer may be coated with a corrosion-resistant conductive material to prevent high resistance due to oxidation. Examples of coating materials include platinum, gold, silver, titanium nitride, titanium carbide, and titanium carbonitride.
 電解質膜は、水電解に使用される公知の電解質膜(イオン交換膜であってもよい)から選択されてもよい。電解質膜は、プロトン(H)を選択的に透過する性質を有することが好ましい。電解質膜としては、例えば、高分子電解質膜(PEM)が挙げられる。高分子電解質膜としては、例えば、スルホン酸基を有するパーフルオロカーボン膜等が挙げられる。スルホン酸基を有するパーフルオロカーボン膜としては、例えば、ナフィオン膜が挙げられる。 The electrolyte membrane may be selected from known electrolyte membranes (which may be ion exchange membranes) used in water electrolysis. The electrolyte membrane preferably has a property of selectively permeating protons (H + ). Examples of the electrolyte membrane include polymer electrolyte membranes (PEM). Examples of the polymer electrolyte membrane include perfluorocarbon membranes having sulfonic acid groups. Examples of the perfluorocarbon membranes having sulfonic acid groups include Nafion membranes.
 電解質膜は、イオン性基を有することによりプロトン伝導性を有するポリマーであり、例えば、フッ素系高分子電解質と炭化水素系高分子電解質のいずれであってもよい。 The electrolyte membrane is a polymer that has proton conductivity due to the presence of ionic groups, and may be, for example, either a fluorine-based polymer electrolyte or a hydrocarbon-based polymer electrolyte.
 ここで、フッ素系高分子電解質とは、ポリマー中のアルキル基及び/又はアルキレン基における水素の大部分又は全部がフッ素原子に置換されたものを意味する。イオン性基を有するフッ素系高分子電解質の代表例としては、“ナフィオン”(登録商標)(ケマーズ(株)製)、“アクイビオン”(登録商標)(ソルベイ社製)、“フレミオン”(登録商標)(AGC(株)製)及び“アシプレックス”(登録商標)(旭化成(株)製)などの市販品が挙げられる。 Here, a fluoropolymer electrolyte refers to one in which most or all of the hydrogen atoms in the alkyl and/or alkylene groups in the polymer have been replaced with fluorine atoms. Representative examples of fluoropolymer electrolytes having ionic groups include commercially available products such as "Nafion" (registered trademark) (manufactured by Chemours), "Aquivion" (registered trademark) (manufactured by Solvay), "Flemion" (registered trademark) (manufactured by AGC), and "Aciplex" (registered trademark) (manufactured by Asahi Kasei).
 炭化水素系電解質としては、主鎖に芳香環を有する芳香族炭化水素系ポリマーが好ましい。ここで、芳香環としては、ベンゼン環、ナフタレン骨格等の炭素原子と水素原子のみからなる炭化水素系芳香環だけでなく、ピリジン環、イミダゾール環、チオール環等のヘテロ環などを含んでいてもよい。また、芳香環ユニットと共に一部脂肪族系ユニットがポリマーを構成していてもよい。 As the hydrocarbon electrolyte, an aromatic hydrocarbon polymer having an aromatic ring in the main chain is preferable. Here, the aromatic ring may include not only a hydrocarbon aromatic ring consisting only of carbon atoms and hydrogen atoms, such as a benzene ring or a naphthalene skeleton, but also a heterocycle such as a pyridine ring, an imidazole ring, or a thiol ring. In addition, some aliphatic units may constitute the polymer together with the aromatic ring units.
 芳香族炭化水素系ポリマーの具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンオキシド、ポリエーテルホスフィンオキシド、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンから選択される構造を芳香環とともに主鎖に有するポリマーが挙げられる。なお、ここでいうポリスルホン、ポリエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合等を有している構造の総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含む。芳香族炭化水素系ポリマーは、これらの構造を複数有していてもよい。これらのなかでも、芳香族炭化水素系ポリマーとして特にポリエーテルケトン骨格を有するポリマー、すなわちポリエーテルケトン系ポリマーが好ましい。 Specific examples of aromatic hydrocarbon polymers include polymers having a structure selected from polysulfone, polyethersulfone, polyphenylene oxide, polyarylene ether, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene, polyarylene ketone, polyether ketone, polyarylene phosphine oxide, polyether phosphine oxide, polybenzoxazole, polybenzothiazole, polybenzimidazole, polyamide, polyimide, polyetherimide, and polyimide sulfone in the main chain together with an aromatic ring. Note that polysulfone, polyethersulfone, polyether ketone, etc. referred to here are general terms for structures having sulfone bonds, ether bonds, ketone bonds, etc. in the molecular chain, and include polyether ketone ketone, polyether ether ketone, polyether ether ketone ketone, polyether ketone ether ketone ketone, and polyether ketone sulfone. Aromatic hydrocarbon polymers may have a plurality of these structures. Among these, aromatic hydrocarbon polymers, particularly polymers having a polyetherketone skeleton, i.e., polyetherketone polymers, are preferred.
 電解質膜は、補強材と組み合わせてもよい。補強材を用いることで、例えば、ホットプレス法により電解質膜と電極を接合する際に膜が破損することによるガスのリーク、電極内の短絡等が生じにくくなる。 The electrolyte membrane may be combined with a reinforcing material. By using a reinforcing material, for example, gas leaks and short circuits within the electrodes caused by damage to the membrane when joining the electrolyte membrane and electrodes by hot pressing are less likely to occur.
 補強材の具体例としては、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体)、PVDF(ポリビニリデンフルオライド)、FEP(テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体)等のフッ素系高分子又はPE(ポリエチレン),PP(ポリプロピレン)等の熱可塑性樹脂、PI(ポリイミド)、PSF(ポリスルホン)、PES(ポリエーテルスルホン)、PEEK(ポリエーテルエーテルケトン)、PPSS(ポリフェニレンスルフィドスルホン)、PPO(ポリフェニレンオキシド)、PEK(ポリエーテルケトン)、PBI(ポリベンズイミダゾール)、PPS(ポリフェニレンスルフィド)、PPP(ポリパラフェニレン)、PPQ(ポリフェニルキノキサリン)、ポリベンゾオキサゾール(PBO)、ポリベンゾチアゾール(PBT)、ポリパラフェニレンテレフタルアミド(PPTA)等のエンジニアリングプラスチックなどからなる均質な多孔質膜が挙げられる。 Specific examples of reinforcing materials include homogeneous porous membranes made of fluorine-based polymers such as PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), PVDF (polyvinylidene fluoride), and FEP (tetrafluoroethylene-hexafluoropropylene copolymer), thermoplastic resins such as PE (polyethylene) and PP (polypropylene), and engineering plastics such as PI (polyimide), PSF (polysulfone), PES (polyethersulfone), PEEK (polyetheretherketone), PPSS (polyphenylene sulfide sulfone), PPO (polyphenylene oxide), PEK (polyetherketone), PBI (polybenzimidazole), PPS (polyphenylene sulfide), PPP (polyparaphenylene), PPQ (polyphenylquinoxaline), polybenzoxazole (PBO), polybenzothiazole (PBT), and polyparaphenylene terephthalamide (PPTA).
 カソード触媒は、水電解に使用される公知の触媒から選択されてもよい。触媒の成分としては、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、スズ、鉄、コバルト、ニッケル、モリブデン、タングステン、バナジウム及びこれらの合金、これらの酸化物等が挙げられる。触媒の形態は、粒子であってもよい。カソード触媒は、担体に担持された触媒を含んでいてもよい。担体としては、例えば、カーボンブラック等が挙げられる。 The cathode catalyst may be selected from known catalysts used in water electrolysis. Examples of catalyst components include platinum, gold, silver, palladium, iridium, rhodium, ruthenium, tin, iron, cobalt, nickel, molybdenum, tungsten, vanadium, and alloys and oxides thereof. The catalyst may be in the form of particles. The cathode catalyst may include a catalyst supported on a carrier. Examples of carriers include carbon black.
 水電解セルは、酸化物触媒(アノード触媒、好ましくは酸化物触媒粒子)及びアイオノマーを含む本開示に係るアノード触媒層を備える。また、カソード触媒(好ましくはカソード触媒粒子)及びアイオノマーを含むカソード触媒層を備えていてもよい。これにより、触媒層内での触媒とアイオノマーとの接触面積が増えるため、反応が促進される傾向にある。 The water electrolysis cell includes an anode catalyst layer according to the present disclosure, which includes an oxide catalyst (anode catalyst, preferably oxide catalyst particles) and an ionomer. The cell may also include a cathode catalyst layer, which includes a cathode catalyst (preferably cathode catalyst particles) and an ionomer. This increases the contact area between the catalyst and the ionomer in the catalyst layer, which tends to promote the reaction.
 酸化物触媒(アノード触媒)の一次粒子径は1nm~10μmであることが好ましく、2nm~1μmであることがより好ましく、5nm~100nmであることがさらに好ましい。酸化物触媒(アノード触媒)の一次粒子径が1nm以上であることにより、接触面積を増加させるために必要なアイオノマーの混合比が大きくなりすぎず、アノード触媒層内部での電子伝導パスを多く確保できるため、高抵抗化しにくくなる傾向にある。アノード触媒の一次粒子径が10μm以下であることにより、アイオノマーとの接触面積の低下が抑制されるため、高抵抗化しにくくなる傾向にある。触媒の粒子径は、走査電子顕微鏡や透過電子顕微鏡により評価できる。 The primary particle diameter of the oxide catalyst (anode catalyst) is preferably 1 nm to 10 μm, more preferably 2 nm to 1 μm, and even more preferably 5 nm to 100 nm. When the primary particle diameter of the oxide catalyst (anode catalyst) is 1 nm or more, the mixing ratio of the ionomer required to increase the contact area is not too large, and many electron conduction paths can be secured inside the anode catalyst layer, so that the resistance tends to be difficult to increase. When the primary particle diameter of the anode catalyst is 10 μm or less, the decrease in the contact area with the ionomer is suppressed, so that the resistance tends to be difficult to increase. The particle diameter of the catalyst can be evaluated using a scanning electron microscope or a transmission electron microscope.
 セパレータとしては、アノードガス拡散層側に配置されるアノードセパレータ、及びカソードガス拡散層側に配置されるカソードセパレータが挙げられる。セパレータの材質としては、例えば、チタン、ステンレス、カーボン等が挙げられる。アノード側に発生する酸素による酸化抑制の観点から、アノードセパレータは、チタンを含むことが好ましい。 The separator may be an anode separator arranged on the anode gas diffusion layer side, or a cathode separator arranged on the cathode gas diffusion layer side. Examples of separator materials include titanium, stainless steel, and carbon. From the viewpoint of suppressing oxidation due to oxygen generated on the anode side, it is preferable that the anode separator contains titanium.
 アノードセパレータは、酸化による高抵抗化を抑制するため、耐食性の導電性材料でコーティングされていてもよい。コーティング材としては、例えば、白金、金、銀、窒化チタン、炭化チタン、炭窒化チタン等が挙げられる。 The anode separator may be coated with a corrosion-resistant conductive material to prevent high resistance due to oxidation. Examples of coating materials include platinum, gold, silver, titanium nitride, titanium carbide, and titanium carbonitride.
 水電解セルにおける各構成要素の配置は、公知の水電解セルを参考に決定されてもよい。水電解セルにおいて、電解質膜は、アノード触媒層とカソード触媒層との間に位置することが好ましい。水電解セルにおいて、電解質膜並びにアノード触媒層及びカソード触媒層は、アノードガス拡散層とカソードガス拡散層との間に位置することが好ましい。水電解セルにおいて、電解質膜、アノード触媒層及びカソード触媒層並びにアノードガス拡散層及びカソードガス拡散層は、2つのセパレータの間に位置することが好ましい。 The arrangement of each component in the water electrolysis cell may be determined with reference to known water electrolysis cells. In the water electrolysis cell, the electrolyte membrane is preferably located between the anode catalyst layer and the cathode catalyst layer. In the water electrolysis cell, the electrolyte membrane, the anode catalyst layer, and the cathode catalyst layer are preferably located between the anode gas diffusion layer and the cathode gas diffusion layer. In the water electrolysis cell, the electrolyte membrane, the anode catalyst layer, the cathode catalyst layer, and the anode gas diffusion layer and the cathode gas diffusion layer are preferably located between two separators.
 水電解セルの一例を図1に示す。図1は、水電解セルの概略断面図である。図1に示すように、水電解セル100は、図1の上側から順にアノードセパレータ60と、アノードガス拡散層20と、アノード触媒層12と、電解質膜11と、カソード触媒層13と、カソードガス拡散層30と、カソードセパレータ70と、を備える。さらに、アノードセパレータ60と電解質膜11との間にガスケット40が配置されており、カソードセパレータ70と電解質膜11との間にガスケット50が配置されている。 An example of a water electrolysis cell is shown in Figure 1. Figure 1 is a schematic cross-sectional view of a water electrolysis cell. As shown in Figure 1, the water electrolysis cell 100 includes, from the top of Figure 1, an anode separator 60, an anode gas diffusion layer 20, an anode catalyst layer 12, an electrolyte membrane 11, a cathode catalyst layer 13, a cathode gas diffusion layer 30, and a cathode separator 70. In addition, a gasket 40 is disposed between the anode separator 60 and the electrolyte membrane 11, and a gasket 50 is disposed between the cathode separator 70 and the electrolyte membrane 11.
<水電解装置>
 本開示の水電解装置は、前述の本開示の水電解セルを複数積層してなる水電解セルスタックであってもよく、当該水電解セルスタック又は本開示の水電解セルと他の構成要素とを備える装置であってもよい。
<Water electrolysis device>
The water electrolysis device according to the present disclosure may be a water electrolysis cell stack formed by stacking a plurality of the above-described water electrolysis cells according to the present disclosure, or may be a device including the water electrolysis cell stack or the water electrolysis cell according to the present disclosure and other components.
 他の構成要素は、公知の水電解装置の構成要素から選択されてもよい。他の構成要素としては、例えば、パワーコンディショナー、水ポンプ、イオン交換樹脂、熱交換器及び除湿器などの補機類が挙げられる。 The other components may be selected from known components of a water electrolysis device. Examples of the other components include auxiliary equipment such as a power conditioner, a water pump, an ion exchange resin, a heat exchanger, and a dehumidifier.
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。以下の実施例に示される事項は、本開示の趣旨を逸脱しない範囲で適宜変更されてもよい。 Below, the present disclosure will be described in detail with reference to examples. However, the present disclosure is not limited to the following examples. The matters shown in the following examples may be modified as appropriate without departing from the spirit of the present disclosure.
<実施例1>
 ペッチーニ法により、イリジウムイオンをチタン酸ストロンチウム(SrTiO)のBサイトに組み込んだペロブスカイト型構造を有する酸化物を含む触媒粉末を得た。出発原料は、硝酸ストロンチウム(Sr(NO)、チタンテトラブトキシド(C1636Ti)及びヘキサクロロイリジウム酸カリウム(KIrCl)とした。Sr(NOを30.2g、KIrClを5.7g、クエン酸一水和物(C・HO)を20.1g、それぞれ秤量し、750mLの純水に投入して混合し、室温で1時間以上攪拌して溶解した。この混合溶液を溶液Aとした。C1636Tiを8.1g秤量して、300mLのエチレングリコール(C)とともに混合し、1時間以上攪拌して混合した。この混合溶液を溶液Bとした。溶液Aを溶液Bに投入した後、ホットスターラーを使用し、70℃で3時間以上攪拌混合した。その後、混合溶液をジルコニア製るつぼに移し、180℃で12時間、200℃で6時間、300℃で6時間、500℃で3時間、600℃で6時間熱処理した。熱処理後の粉末を回収し、濃度1Mの塩酸水溶液500mLとともにビーカーに投入して6時間以上攪拌し、未反応成分を取り除いた。得られた混合溶液は、吸引ろ過器を使用して水洗し、オーブンにて60℃で乾燥した後、触媒粉末を得た。合成した触媒粉末に対して、X線回折測定を実施したところ、ペロブスカイト型構造に由来する回折パターンが得られた。得られた粉末を王水に溶解し、高周波誘導結合プラズマ(ICP)により分析したところ、Bサイトのイリジウムイオンのモル濃度は67mol%であった。
Example 1
A catalyst powder containing an oxide having a perovskite structure in which iridium ions are incorporated into the B site of strontium titanate (SrTiO 3 ) was obtained by the Pezzini method. The starting materials were strontium nitrate (Sr(NO 3 ) 2 ), titanium tetrabutoxide (C 16 H 36 O 4 Ti), and potassium hexachloroiridate (K 2 IrCl 6 ). 30.2 g of Sr(NO 3 ) 2 , 5.7 g of K 2 IrCl 6 , and 20.1 g of citric acid monohydrate (C 6 H 8 O 7.H 2 O) were weighed, put into 750 mL of pure water, mixed, and dissolved by stirring at room temperature for more than 1 hour. This mixed solution was named solution A. C 16 H 36 O 4 Ti was weighed out at 8.1 g, mixed with 300 mL of ethylene glycol (C 2 H 6 O 2 ), and stirred for 1 hour or more. This mixed solution was designated as solution B. After adding solution A to solution B, the mixture was stirred and mixed at 70° C. for 3 hours or more using a hot stirrer. The mixed solution was then transferred to a zirconia crucible and heat-treated at 180° C. for 12 hours, 200° C. for 6 hours, 300° C. for 6 hours, 500° C. for 3 hours, and 600° C. for 6 hours. The powder after the heat treatment was collected and put into a beaker together with 500 mL of a 1M aqueous hydrochloric acid solution and stirred for 6 hours or more to remove unreacted components. The obtained mixed solution was washed with water using a suction filter, dried in an oven at 60° C., and then a catalyst powder was obtained. When an X-ray diffraction measurement was performed on the synthesized catalyst powder, a diffraction pattern derived from a perovskite structure was obtained. The obtained powder was dissolved in aqua regia and analyzed by high-frequency inductively coupled plasma (ICP), which revealed that the molar concentration of iridium ions at the B site was 67 mol %.
 合成した触媒粉末を用いて、電流密度測定用の試験用アノード触媒層を作製した。得られた触媒粉末を10g、アイオノマーに相当する5質量%ナフィオン分散溶液(Sigma-Aldrich社製、70160)を、log(X/Y)(アイオノマーの含有量(X)と、Bサイトイオンに含まれるイリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値)が-0.662となるよう秤量し、2-プロパノール、及び純水とともにガラス容器に移し、ホモジェナイザーにより30分以上混合してアノードスラリーを得た。
 カソード触媒には市販のPt/C(白金/カーボン)を用い、アイオノマーと混合してカソードスラリーを得た。
 アノードスラリーとカソードスラリーをそれぞれ縦と横の長さがいずれも5cmであるポリテトラフルオロエチレン(テフロン(登録商標))シート上に噴霧し、ホットプレスを用いて電解質膜上に転写することで触媒層付き電解質膜を作製した。テフロンシートへの塗布前後の質量差からアノード触媒量を決定し、触媒の金属元素の比率からイリジウム塗布量を計算した。転写前後のテフロンシートの質量を比較したところ、アノード触媒層の転写率は100%であった。
A test anode catalyst layer for measuring current density was prepared using the synthesized catalyst powder. 10 g of the obtained catalyst powder and 5 mass % Nafion dispersion solution (Sigma-Aldrich, 70160) equivalent to the ionomer were weighed out so that log(X/Y) (logarithm of the mass ratio of the ionomer content (X) to the total content (Y) of iridium ions and ruthenium ions contained in the B site ions) was −0.662, transferred to a glass container together with 2-propanol and pure water, and mixed with a homogenizer for 30 minutes or more to obtain an anode slurry.
Commercially available Pt/C (platinum/carbon) was used as the cathode catalyst, and was mixed with an ionomer to obtain a cathode slurry.
The anode slurry and the cathode slurry were sprayed onto a polytetrafluoroethylene (Teflon (registered trademark)) sheet with a length and width of 5 cm, respectively, and transferred onto the electrolyte membrane using a hot press to produce an electrolyte membrane with a catalyst layer. The amount of anode catalyst was determined from the mass difference before and after application to the Teflon sheet, and the amount of iridium applied was calculated from the ratio of metal elements in the catalyst. When the mass of the Teflon sheet before and after the transfer was compared, the transfer rate of the anode catalyst layer was 100%.
 作製した触媒層付き電解質膜を2cm角に切り取り、アノード触媒をヘラではがして掻き取り、王水中に溶解してICP(株式会社日立ハイテクサイエンス製、PS3520VDDII)分析することで、触媒の組成と塗布量を分析したところ、触媒の仕込みの組成および塗布量と一致していた。また、固体19F-NMR分析(Bruker社製・AVANCE NEO400)を実施した。試験は、シングルパルス法、スペクトル幅200kHz、パルス幅2.4μsec、試料回転数20kHzで実施してスペクトルを得た。さらに、イオンクロマトグラフィーによりフッ素と硫黄成分を分析し、アイオノマーの構造を推定したところ、仕込みのアイオノマーの組成と一致していた。推定されたアイオノマーの構造と、イオンクロマトグラフィーによる元素分析の結果から、触媒層に含まれるアイオノマーの質量を推定し、単位面積あたりのアイオノマー塗布量を計算したところ、仕込みの塗布量と一致していた。 The catalyst layer-attached electrolyte membrane thus prepared was cut into 2 cm squares, the anode catalyst was peeled off and scraped off with a spatula, and dissolved in aqua regia. The catalyst composition and coating amount were analyzed by ICP (Hitachi High-Tech Science Corporation, PS3520VDDII) analysis, and the results were consistent with the composition and coating amount of the catalyst. In addition, solid-state 19 F-NMR analysis (Bruker, AVANCE NEO400) was performed. The test was performed using a single pulse method, a spectrum width of 200 kHz, a pulse width of 2.4 μsec, and a sample rotation speed of 20 kHz to obtain a spectrum. Furthermore, fluorine and sulfur components were analyzed by ion chromatography, and the structure of the ionomer was estimated, which was consistent with the composition of the ionomer in the coating. From the estimated ionomer structure and the results of elemental analysis by ion chromatography, the mass of the ionomer contained in the catalyst layer was estimated, and the coating amount of the ionomer per unit area was calculated, which was consistent with the coating amount in the coating.
 触媒層付き電解質膜と、アノードガス拡散層と、アノード側のセパレータと、カソードガス拡散層と、カソード側のセパレータと、アノード側のエンドプレートと、アノード側の集電板と、アノード側のエンドプレートと集電板の間に配置する絶縁シートと、カソード側のエンドプレートと、カソード側の集電板と、カソード側のエンドプレートと集電板の間に配置する絶縁シートと、を備える水電解セルを作製した。アノード側のセパレータは、電極設置部の縦と横の長さがそれぞれ5cmであり、一辺5cmの範囲で溝と山の幅がそれぞれ1mm、深さが2mmである流路が26本並列で配置された、Ptめっき処理したチタン製のものを使用した。カソード側のセパレータは、電極設置部の縦と横の長さがそれぞれ5cmであり、一辺5cmの範囲で溝と山の幅がそれぞれ1mm、深さが2mmである流路が26本並列で配置されたカーボン製のものを使用した。アノードガス拡散層は、Ptめっき処理したチタン繊維焼結体を使用した。カソードガス拡散層は、カーボン材(SGLカーボンジャパン株式会社製)のものを使用し、縦と横の長さがそれぞれ5cmとなるよう切り取った。アノードとカソードのガスケットはそれぞれ、電極設置部を切り取ったポリテトラフルオロエチレン(テフロン(登録商標))のシートを使用した。ガスケットの電極設置部を切り取った部分に電極層が配置され、さらに電極設置部と、アノードとカソードの流路部分が重なるよう、アノード側のセパレータと、アノードガス拡散層と、触媒層付き電解質膜と、カソードガス拡散層と、カソード側のセパレータとを積層した。アノード側とカソード側のそれぞれのセパレータを、集電板と絶縁シートとエンドプレートの順に積層し、ボルトで締結することで水電解セルを作製した。アノード側のセパレータには水の入口と、発生した酸素と未反応の水が排出される配管を、カソード側のセパレータには発生した水素が排出される配管をそれぞれ設置した。アノード側とカソード側の集電板をそれぞれ外部電源(菊水電子工業株式会社製、PWR1201L)に接続した。
 水電解セルに外部電源を接続後、水電解セルの温度を60℃に昇温し、流量100ml/minで水を水電解セルに供給した。1.50Vから1.90Vまで、定電圧制御で0.1V刻みで2分ずつ保持し、1.90Vに到達後は、1.50Vまで0.1V刻みで2分ずつ保持した。これを1サイクルとし、合計10サイクルのコンディショニングを実施した。次いで、水電解セルの電圧を、定電圧制御で2.3Vで100時間保持し、その後、電圧1.8Vでの電流値を計測することで、log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}を計算したところ、0.891であった。
A water electrolysis cell was prepared that includes an electrolyte membrane with a catalyst layer, an anode gas diffusion layer, an anode-side separator, a cathode gas diffusion layer, a cathode-side separator, an anode-side end plate, an anode-side current collector, an insulating sheet disposed between the anode-side end plate and the current collector, an end plate on the cathode side, a current collector on the cathode side, and an insulating sheet disposed between the cathode-side end plate and the current collector. The anode-side separator was made of Pt-plated titanium, with the electrode installation section having a length and width of 5 cm, and 26 parallel flow paths with grooves and peaks of 1 mm each and a depth of 2 mm within a 5 cm side range. The cathode-side separator was made of carbon, with the electrode installation section having a length and width of 5 cm, and 26 parallel flow paths with grooves and peaks of 1 mm each and a depth of 2 mm within a 5 cm side range. The anode gas diffusion layer was made of Pt-plated titanium fiber sintered body. The cathode gas diffusion layer was made of carbon material (manufactured by SGL Carbon Japan Co., Ltd.) and cut to a length and width of 5 cm. The anode and cathode gaskets were made of polytetrafluoroethylene (Teflon (registered trademark)) sheets with the electrode installation portion cut out. The electrode layer was placed on the portion where the electrode installation portion of the gasket was cut out, and the anode side separator, the anode gas diffusion layer, the electrolyte membrane with catalyst layer, the cathode gas diffusion layer, and the cathode side separator were laminated so that the electrode installation portion and the anode and cathode flow path portions overlap. The anode side and cathode side separators were laminated in the order of the current collector plate, the insulating sheet, and the end plate, and fastened with bolts to prepare a water electrolysis cell. The anode side separator was provided with a water inlet and a pipe for discharging the generated oxygen and unreacted water, and the cathode side separator was provided with a pipe for discharging the generated hydrogen. The current collectors on the anode side and the cathode side were each connected to an external power supply (PWR1201L, manufactured by Kikusui Electronics Co., Ltd.).
After connecting an external power source to the water electrolysis cell, the temperature of the water electrolysis cell was raised to 60°C, and water was supplied to the water electrolysis cell at a flow rate of 100 ml/min. From 1.50 V to 1.90 V, the voltage was maintained at 0.1 V increments for 2 minutes each under constant voltage control, and after reaching 1.90 V, the voltage was maintained at 0.1 V increments for 2 minutes each up to 1.50 V. This constitutes one cycle, and a total of 10 cycles of conditioning were performed. Next, the voltage of the water electrolysis cell was maintained at 2.3 V under constant voltage control for 100 hours, and then the current value at a voltage of 1.8 V was measured to calculate log {current density per iridium mass at 1.8 V (A/mg-Ir)}, which was 0.891.
<実施例2>
 出発原料として、Sr(NOを62.4g、KIrClを11.9g、C1636Tiを4.2g、C・HOを41.6g、純水を1500mL、Cを600mLとした以外は、実施例1と同様にしてペロブスカイト型構造を有する酸化物を含む触媒粉末を作製した。Bサイトのイリジウムイオンのモル濃度は33mol%であった。
 さらに、log(X/Y)が-0.438となるよう、ナフィオン分散溶液を混合しアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、1.073であった。
Example 2
A catalyst powder containing an oxide having a perovskite structure was prepared in the same manner as in Example 1, except that the starting materials were 62.4 g of Sr( NO3 ) 2 , 11.9 g of K2IrCl6 , 4.2 g of C16H36O4Ti , 41.6 g of C6H8O7.H2O , 1500 mL of pure water, and 600 mL of C2H6O2 . The molar concentration of iridium ions at the B site was 33 mol%.
Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was −0.438 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 1.073.
<実施例3>
 log(X/Y)が-0.137となるよう調整した以外は、実施例2と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を得た。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、0.843であった。
Example 3
Except for adjusting log(X/Y) to be −0.137, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was obtained in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 0.843.
<実施例4>
 log(X/Y)が0.039となるよう調整した以外は、実施例2と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、0.808であった。
Example 4
Except for adjusting log(X/Y) to 0.039, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 0.808.
<実施例5>
 出発原料に、Ba(NO、KIrClおよびC1636Tiを用い、Ba(NOを58.7g、KIrClを5.5g、C1636Tiを4.8g、C・HOを19.3g、純水を700mL、Cを300mLとした以外は、実施例1と同様にしてペロブスカイト型構造を有する酸化物を含む触媒粉末を作製した。Bサイトのイリジウムイオンのモル濃度は45mol%であった。
 さらに、log(X/Y)が-0.463となるよう、ナフィオン分散溶液を混合しアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、1.037であった。
Example 5
A catalyst powder containing an oxide having a perovskite structure was prepared in the same manner as in Example 1, except that Ba ( NO3 ) 2 , K2IrCl6 , and C16H36O4Ti were used as starting materials, Ba(NO3)2 was 58.7g, K2IrCl6 was 5.5g, C16H36O4Ti was 4.8g, C6H8O7.H2O was 19.3g , pure water was 700mL , and C2H6O2 was 300mL . The molar concentration of iridium ions at the B site was 45mol%.
Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was −0.463 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 1.037.
<実施例6>
 出発原料を、Sr(NO、KIrClおよびオキシ塩化ジルコニウム八水和物(ZrOCl・8HO)とした。Sr(NOを86.8g、KIrClを14.1g、ZrOCl・8HOを14.4g、C・HOを345g、それぞれ秤量し、600mLのCとともに1500mLの純水に投入して混合し、室温で1時間以上攪拌した。その後、ホットスターラーを使用し、75℃で3時間以上攪拌混合した。その後、混合溶液をジルコニア製るつぼに移し、180℃で12時間、200℃で6時間、300℃で6時間、500℃で3時間、600℃で6時間、700℃で6時間熱処理した。熱処理後の粉末の回収し、それ以降の操作は実施例1と同様にして、触媒粉末を作製した。Bサイトのイリジウムイオンのモル濃度は40mol%であった。
 さらに、log(X/Y)が-0.459となるよう、ナフィオン分散溶液を混合しアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、1.049であった。
Example 6
The starting materials were Sr(NO 3 ) 2 , K 2 IrCl 6 and zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O). 86.8 g of Sr(NO 3 ) 2 , 14.1 g of K 2 IrCl 6 , 14.4 g of ZrOCl 2 .8H 2 O, and 345 g of C 6 H 8 O 7 .H 2 O were weighed, and mixed with 600 mL of C 2 H 6 O 2 in 1500 mL of pure water and stirred at room temperature for more than 1 hour. Then, the mixture was stirred and mixed at 75 ° C for more than 3 hours using a hot stirrer. The mixed solution was then transferred to a zirconia crucible and heat-treated for 12 hours at 180° C., 6 hours at 200° C., 6 hours at 300° C., 3 hours at 500° C., 6 hours at 600° C., and 6 hours at 700° C. The powder after heat treatment was collected, and the subsequent operations were carried out in the same manner as in Example 1 to produce a catalyst powder. The molar concentration of iridium ions at the B site was 40 mol%.
Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was −0.459 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 1.049.
<実施例7>
 log(X/Y)が-0.158となるよう調整した以外は、実施例6と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、0.792であった。
Example 7
Except for adjusting log(X/Y) to -0.158, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 0.792.
<実施例8>
 log(X/Y)が0.018となるよう調整した以外は、実施例6と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、0.732であった。
Example 8
Except for adjusting log(X/Y) to 0.018, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 0.732.
<実施例9>
 出発原料に、Ba(NO、KIrClおよびZrOCl・8HOを用い、Ba(NOを97.6g、KIrClを12.8g、ZrOCl・8HOを8.5g、C・HOを315g、それぞれ秤量し、550mLのCとともに1400mLの純水に投入し、実施例6と同様にして触媒粉末を合成した。Bサイトのイリジウムイオンのモル濃度は50mol%であった。
 さらに、log(X/Y)が-0.468となるよう、ナフィオン分散溶液を混合しアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、1.041であった。
<Example 9>
Ba( NO3 ) 2 , K2IrCl6 and ZrOCl2.8H2O were used as starting materials, and 97.6g of Ba( NO3 ) 2 , 12.8g of K2IrCl6 , 8.5g of ZrOCl2.8H2O , and 315g of C6H8O7.H2O were weighed out and added to 1400mL of pure water together with 550mL of C2H6O2 to synthesize catalyst powder in the same manner as in Example 6. The molar concentration of iridium ions at the B site was 50mol % .
Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was −0.468 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 1.041.
<実施例10>
 出発原料に、炭酸カルシウム(CaCO)、KIrClおよびZrOCl・8HOを用い、CaCOを52.0g、KIrClを16.0g、ZrOCl・8HOを25.0g、C・HOを400g、それぞれ秤量し、70mLの硝酸および700mLのCとともに1700mLの純水に投入し、実施例6と同様にして触媒粉末を合成した。Bサイトのイリジウムイオンのモル濃度は50mol%であった。
 さらに、log(X/Y)が-0.440となるよう、ナフィオン分散溶液を混合しアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、1.009であった。
Example 10
The starting materials were calcium carbonate (CaCO 3 ), K 2 IrCl 6 and ZrOCl 2.8H 2 O, and 52.0 g of CaCO 3 , 16.0 g of K 2 IrCl 6 , 25.0 g of ZrOCl 2.8H 2 O, and 400 g of C 6 H 8 O 7.H 2 O were weighed out and added to 1700 mL of pure water together with 70 mL of nitric acid and 700 mL of C 2 H 6 O 2 , and the catalyst powder was synthesized in the same manner as in Example 6. The molar concentration of iridium ions at the B site was 50 mol%.
Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was −0.440 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 1.009.
<実施例11>
 log(X/Y)が0.261となるよう調整した以外は、実施例2と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、-0.398であった。
Example 11
Except for adjusting log(X/Y) to 0.261, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was −0.398.
<実施例12>
 log(X/Y)が-1.137となるよう調整した以外は、実施例2と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、0.146であった。
Example 12
Except for adjusting log(X/Y) to be −1.137, an anode slurry was obtained in the same manner as in Example 2. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 0.146.
<実施例13>
 log(X/Y)が-1.158となるよう調整した以外は、実施例6と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、0.079であった。
Example 13
Except for adjusting log(X/Y) to be −1.158, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was 0.079.
<実施例14>
 log(X/Y)が0.240となるよう調整した以外は、実施例6と同様にしてアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を作製した。log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、-0.523であった。
<Example 14>
Except for adjusting log(X/Y) to 0.240, an anode slurry was obtained in the same manner as in Example 6. Thereafter, an electrolyte membrane with a catalyst layer was produced in the same manner as in Example 1. The log{current density per mass of iridium at 1.8 V (A/mg-Ir)} was −0.523.
<比較例1>
 アノード触媒に、市販のRuOを使用した。さらに、log(X/Y)が-1.000となるよう、ナフィオン分散溶液を混合しアノードスラリーを得た。その後、実施例1と同様にして、触媒層付き電解質膜を得た。log{1.8Vでのルテニウム質量あたりの電流密度(A/mg-Ru)}は、-0.843であった。
<Comparative Example 1>
Commercially available RuO2 was used as the anode catalyst. Furthermore, a Nafion dispersion solution was mixed so that log(X/Y) was -1.000 to obtain an anode slurry. Thereafter, an electrolyte membrane with a catalyst layer was obtained in the same manner as in Example 1. The log{current density per ruthenium mass at 1.8 V (A/mg-Ru)} was -0.843.
<比較例2>
 実施例2と同様にして、ペロブスカイト型構造を有する酸化物(SrTi0.67Ir0.33)を含む触媒粉末を作製した。次いで、アノードスラリーを得るにあたって、バインダーとしてN-メチルピロリドン(NMP)へ溶解させたポリフッ化ビニリデン(PVdF)(株式会社クレハ、L#1120)を使用した。触媒粉末とPVdFが固形分の質量比率で95:5となるよう秤量し、NMPを添加してスラリーの粘度を調整し、アノードスラリーを得た。アノードスラリーを、触媒粉末とバインダーの合計質量で1.0mg/cmとなるよう、テフロンシート上にバーコーターで塗布した以外は、実施例1に記載の方法で触媒層付き電解質膜を得た。
 log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}は、-0.907であった。
<Comparative Example 2>
A catalyst powder containing an oxide (SrTi 0.67 Ir 0.33 O 3 ) having a perovskite structure was prepared in the same manner as in Example 2. Next, polyvinylidene fluoride (PVdF) (Kureha Corporation, L#1120) dissolved in N-methylpyrrolidone (NMP) was used as a binder to obtain an anode slurry. The catalyst powder and PVdF were weighed out so that the mass ratio of the solid content was 95:5, and NMP was added to adjust the viscosity of the slurry to obtain an anode slurry. An electrolyte membrane with a catalyst layer was obtained by the method described in Example 1, except that the anode slurry was applied to a Teflon sheet with a bar coater so that the total mass of the catalyst powder and the binder was 1.0 mg/cm 2 .
The log{current density per iridium mass (A/mg-Ir) at 1.8 V} was −0.907.
 実施例1~14はいずれも、比較例1のlog{1.8Vでのルテニウム質量あたりの電流密度(A/mg-Ru)の値と比較して、log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}の値が大きかった。RuOは、高電位では溶出が進行することが知られている。このことから、2.3Vでの定電圧運転中に触媒が溶出して失活したことを示している。試験後に水電解セルを解体し、触媒層付き電解質膜の断面に対し走査電子顕微鏡とエネルギー分散型X線分光法を併用して微細構造と元素分析を実施したところ、アノード触媒層近傍の電解質内に、Ruを含む酸化物の析出物が存在することを確認した。これに対し、実施例1~14のなかで、log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}がもっとも大きかった実施例2では、比較例1で見られたような触媒の構成元素の電解質膜への溶出が見られていなかった。このことは、ペロブスカイト型構造を有する触媒は、高電位でも安定であることを示している。 In all of Examples 1 to 14, the value of log {current density per iridium mass at 1.8 V (A/mg-Ir)} was larger than the value of log {current density per ruthenium mass at 1.8 V (A/mg-Ru)} in Comparative Example 1. It is known that RuO 2 dissolution proceeds at high potential. This indicates that the catalyst was dissolved and deactivated during constant voltage operation at 2.3 V. After the test, the water electrolysis cell was disassembled, and microstructure and elemental analysis were performed on the cross section of the electrolyte membrane with the catalyst layer using a scanning electron microscope and energy dispersive X-ray spectroscopy in combination, confirming the presence of oxide precipitates containing Ru in the electrolyte near the anode catalyst layer. In contrast, in Example 2, which had the largest log {current density per iridium mass at 1.8 V (A/mg-Ir)} among Examples 1 to 14, dissolution of the catalyst constituent elements into the electrolyte membrane as seen in Comparative Example 1 was not observed. This indicates that the catalyst having a perovskite structure is stable even at a high potential.
 実施例1~14はいずれも、比較例2と比較してlog{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}が大きかった。実施例1~14では、触媒層にプロトンが移動することができ、水電解反応の活性サイトの形成に必要なアイオノマーを含んでいるのに対し、比較例2では、触媒層にプロトンの移動や、水電解反応の活性サイト形成に寄与しないPVdFをバインダーとして含んでいる。このことから、比較例2では、アノード触媒層内部にプロトンのパスや反応の活性サイトが形成されておらず、触媒の性能が引き出せなかったことが要因として考えられる。 All of Examples 1 to 14 had a higher log {current density per mass of iridium at 1.8 V (A/mg-Ir)} than Comparative Example 2. In Examples 1 to 14, the catalyst layer contains an ionomer that allows protons to move and is necessary for forming active sites for the water electrolysis reaction, whereas Comparative Example 2 contains PVdF as a binder in the catalyst layer, which does not contribute to the movement of protons or the formation of active sites for the water electrolysis reaction. For this reason, it is believed that in Comparative Example 2, no proton paths or active sites for the reaction are formed inside the anode catalyst layer, which is why the performance of the catalyst could not be brought out.
 実施例1~14では、log(X/Y)が-0.3より小さい範囲では、log(X/Y)が大きくなるにしたがってlog{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}が大きくなる傾向を示した。このことは、イリジウム質量あたりのアイオノマーの質量を大きくすることで、アノード触媒層内部にプロトンのパスが効率的に形成され、性能が良くなったことが考えられる。また、log(X/Y)が-0.3より大きい範囲では、log(X/Y)が小さくなるにしたがってlog{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}が大きくなる傾向を示した。イリジウム質量あたりのアイオノマーの量が多くなると、触媒表面をアイオノマーが覆い、その結果として水電解反応の活性サイトの量が少なくなることが考えられるが、この範囲では、log(X/Y)が小さくなるにしたがって過剰なアイオノマーが少なくなり、水電解反応の活性サイトがアノード触媒層内部に効率良く導入されて性能が良くなったと考えられる。 In Examples 1 to 14, when log(X/Y) was in the range smaller than -0.3, there was a tendency for log{current density per mass of iridium at 1.8 V (A/mg-Ir)} to increase as log(X/Y) increased. This is thought to be because by increasing the mass of ionomer per mass of iridium, a proton path was efficiently formed inside the anode catalyst layer, improving performance. Furthermore, when log(X/Y) was in the range larger than -0.3, there was a tendency for log{current density per mass of iridium at 1.8 V (A/mg-Ir)} to increase as log(X/Y) decreased. It is thought that when the amount of ionomer per mass of iridium increases, the catalyst surface is covered with the ionomer, resulting in a decrease in the amount of active sites for the water electrolysis reaction; however, within this range, as log(X/Y) decreases, the amount of excess ionomer decreases, and the active sites for the water electrolysis reaction are efficiently introduced into the anode catalyst layer, improving performance.
 また、図2に示すように、ペロブスカイト型構造を有するアノード触媒とアイオノマーとを含むアノード触媒層を備える水電解セルでは、log(X/Y)をPとし、log{1.8Vでのイリジウム質量あたりの電流密度(A/mg-Ir)}をQとすると、PとQの関係は、アノード触媒の構成元素や、Bサイトに含まれるイリジウムイオンの濃度に依らず、
  Q=-2.1232P-5.2892P-2.7969P+0.6662
で表されることが分かった。このことから、Pが-0.860以上0.060以下では、Qが0.5以上となり高性能な水電解セルであることがわかった。Pが-0.620以上-0.090以下では、Qが0.86以上となり、より高性能な水電解セルであることがわかった。さらに、Pが-0.500以上-0.180以下では、Qが1以上となり、より高性能な水電解セルであることがわかった。
Furthermore, as shown in FIG. 2 , in a water electrolysis cell including an anode catalyst layer containing an anode catalyst having a perovskite structure and an ionomer, when log(X/Y) is P and log{current density per mass of iridium at 1.8 V (A/mg-Ir)} is Q, the relationship between P and Q does not depend on the constituent elements of the anode catalyst or the concentration of iridium ions contained in the B site, and
Q = -2.1232P 3 -5.2892P 2 -2.7969P + 0.6662
It was found that the cell can be expressed by the formula: From this, it was found that when P is -0.860 or more and 0.060 or less, Q is 0.5 or more, which is a high-performance water electrolysis cell. It was found that when P is -0.620 or more and -0.090 or less, Q is 0.86 or more, which is an even higher-performance water electrolysis cell. Furthermore, it was found that when P is -0.500 or more and -0.180 or less, Q is 1 or more, which is an even higher-performance water electrolysis cell.
 なお、日本出願2022-182922の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Application No. 2022-182922 is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent application, or standard was specifically and individually indicated to be incorporated by reference.
 11:電解質膜
 12:アノード触媒層
 13:カソード触媒層
 20:アノードガス拡散層
 30:カソードガス拡散層
 40:ガスケット
 50:ガスケット
 60:アノードセパレータ
 70:カソードセパレータ
 100:水電解セル
11: Electrolyte membrane 12: Anode catalyst layer 13: Cathode catalyst layer 20: Anode gas diffusion layer 30: Cathode gas diffusion layer 40: Gasket 50: Gasket 60: Anode separator 70: Cathode separator 100: Water electrolysis cell

Claims (10)

  1.  Aサイトイオンにアルカリ土類金属イオンを含み、Bサイトイオンにイリジウムイオン及びルテニウムイオンからなる群より選択される少なくとも1種と金属イオン(但し、イリジウムイオン及びルテニウムイオンを除く)とを含む、ペロブスカイト型構造を有する酸化物触媒と、
     アイオノマーと、
     を含むアノード触媒層。
    an oxide catalyst having a perovskite structure, the A-site ions of which include alkaline earth metal ions, and the B-site ions of which include at least one selected from the group consisting of iridium ions and ruthenium ions and metal ions (excluding iridium ions and ruthenium ions);
    Ionomer and
    an anode catalyst layer comprising:
  2.  前記アイオノマーの含有量(X)と、前記Bサイトイオンに含まれる前記イリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が-0.860~0.060である、請求項1に記載のアノード触媒層。 The anode catalyst layer according to claim 1, wherein the logarithm (log(X/Y)) of the mass ratio between the content (X) of the ionomer and the total content (Y) of the iridium ions and ruthenium ions contained in the B site ions is -0.860 to 0.060.
  3.  前記アイオノマーの含有量(X)と、前記Bサイトイオンに含まれる前記イリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が-0.620~-0.090である、請求項2に記載のアノード触媒層。 The anode catalyst layer according to claim 2, wherein the logarithm (log(X/Y)) of the mass ratio of the ionomer content (X) to the total content (Y) of the iridium ions and ruthenium ions contained in the B site ions is -0.620 to -0.090.
  4.  前記アイオノマーの含有量(X)と、前記Bサイトイオンに含まれる前記イリジウムイオン及びルテニウムイオンの合計含有量(Y)と、の質量比の対数値(log(X/Y))が-0.500~-0.180である、請求項3に記載のアノード触媒層。 The anode catalyst layer according to claim 3, wherein the logarithm (log(X/Y)) of the mass ratio of the ionomer content (X) to the total content (Y) of the iridium ions and ruthenium ions contained in the B site ions is -0.500 to -0.180.
  5.  前記アルカリ土類金属イオンとして、カルシウムイオン、ストロンチウムイオン、及びバリウムイオンからなる群より選択される少なくとも1種を含み、
     前記金属イオンとして、チタンイオン、ジルコニウムイオン、及びスズイオンからなる群より選択される少なくとも1種を含み、
     前記Bサイトイオンにおける前記イリジウムイオン及びルテニウムイオンの合計モル濃度が5mol%以上67mol%以下である、請求項1に記載のアノード触媒層。
    The alkaline earth metal ion includes at least one selected from the group consisting of a calcium ion, a strontium ion, and a barium ion,
    The metal ion includes at least one selected from the group consisting of a titanium ion, a zirconium ion, and a tin ion;
    2. The anode catalyst layer according to claim 1, wherein a total molar concentration of the iridium ions and the ruthenium ions in the B site ions is 5 mol % or more and 67 mol % or less.
  6.  前記アルカリ土類金属イオンとして、ストロンチウムイオンを含み、前記金属イオンとして、チタンイオンを含む、請求項1に記載のアノード触媒層。 The anode catalyst layer according to claim 1, wherein the alkaline earth metal ions include strontium ions, and the metal ions include titanium ions.
  7.  前記アルカリ土類金属イオンとして、ストロンチウムイオンを含み、前記金属イオンとしてジルコニウムイオンを含む、請求項1に記載のアノード触媒層。 The anode catalyst layer according to claim 1, comprising strontium ions as the alkaline earth metal ions and zirconium ions as the metal ions.
  8.  前記アイオノマーが、パーフルオロスルホン酸基を含む、請求項1に記載のアノード触媒層。 The anode catalyst layer according to claim 1, wherein the ionomer contains perfluorosulfonic acid groups.
  9.  アノードガス拡散層と、請求項1に記載のアノード触媒層と、電解質膜と、カソード触媒層と、カソードガス拡散層と、セパレータと、を備える水電解セル。 A water electrolysis cell comprising an anode gas diffusion layer, the anode catalyst layer according to claim 1, an electrolyte membrane, a cathode catalyst layer, a cathode gas diffusion layer, and a separator.
  10.  請求項9に記載の水電解セルが積層された水電解セルスタック。 A water electrolysis cell stack in which the water electrolysis cells according to claim 9 are stacked.
PCT/JP2023/038997 2022-11-15 2023-10-27 Anode catalyst layer, water electrolytic cell, and water electrolytic cell stack WO2024106185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182922 2022-11-15
JP2022182922A JP2024072199A (en) 2022-11-15 2022-11-15 Water electrolysis cell and water electrolysis cell stack

Publications (1)

Publication Number Publication Date
WO2024106185A1 true WO2024106185A1 (en) 2024-05-23

Family

ID=91084382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038997 WO2024106185A1 (en) 2022-11-15 2023-10-27 Anode catalyst layer, water electrolytic cell, and water electrolytic cell stack

Country Status (2)

Country Link
JP (1) JP2024072199A (en)
WO (1) WO2024106185A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053193A (en) * 2006-08-28 2008-03-06 Daiki Ataka Engineering Co Ltd Electrocatalyst for hydrogen-air/polymer electrolyte version reversible cell and reversible cell using it
JP2016091878A (en) * 2014-11-07 2016-05-23 Jxエネルギー株式会社 Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
WO2016156599A1 (en) * 2015-04-02 2016-10-06 Universiteit Leiden Electrocatalysts for efficient water electrolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053193A (en) * 2006-08-28 2008-03-06 Daiki Ataka Engineering Co Ltd Electrocatalyst for hydrogen-air/polymer electrolyte version reversible cell and reversible cell using it
JP2016091878A (en) * 2014-11-07 2016-05-23 Jxエネルギー株式会社 Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
WO2016156599A1 (en) * 2015-04-02 2016-10-06 Universiteit Leiden Electrocatalysts for efficient water electrolysis

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO LIANG; LEI SHI; YIPU LIU; HUI CHEN; RUI SI; WENSHENG YAN; QI ZHANG; GUO‐DONG LI; LI YANG; XIAOXIN ZOU: "Activating Inert, Nonprecious Perovskites with Iridium Dopants for Efficient Oxygen Evolution Reaction under Acidic Conditions", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, HOBOKEN, USA, vol. 58, no. 23, 4 March 2019 (2019-03-04), Hoboken, USA, pages 7631 - 7635, XP072093060, ISSN: 1433-7851, DOI: 10.1002/anie.201900796 *
ZHANG, Qi et al. Identifying Key Structural Subunits and Their Synergism in Low-Iridium Triple Perovskites for Oxygen Evolution in Acidic Media. Chemistry of Materials. 29 April 2020, vol. 32, pages 3904-3910 *

Also Published As

Publication number Publication date
JP2024072199A (en) 2024-05-27

Similar Documents

Publication Publication Date Title
CN105073254B (en) Catalyst for fuel cell particle and its manufacture method
KR100728182B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same, and system for fuel cell comprising same
KR100668353B1 (en) Metal catalyst and a fuel cell employing an electrode including the same
US9343750B2 (en) Supporter for fuel cell, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same
US20140356761A1 (en) Catalysts
WO2021226119A1 (en) An anion exchange membrane electrolyzer having a platinum-group-metal free self-supported oxygen evolution electrode
JP2008176990A (en) Membrane electrode assembly for fuel cell, and fuel cell using it
WO2024058161A1 (en) Anode catalyst, water electrolysis cell, and water electrolysis cell stack
US20140342262A1 (en) Fuel Cell
KR101309159B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
GB2481309A (en) Improvements in or relating to catalysts for fuel cells
WO2023068246A1 (en) Membrane electrode assembly, and water electrolysis device
WO2024106185A1 (en) Anode catalyst layer, water electrolytic cell, and water electrolytic cell stack
JP7378005B1 (en) Anode catalyst, water electrolysis cell and water electrolysis cell stack
JP7357130B1 (en) Anode catalyst, water electrolysis cell and water electrolysis cell stack
JP7361236B1 (en) Anode catalyst, water electrolysis cell and water electrolysis cell stack
US20190296380A1 (en) Catalyst laminate, membrane electrode assembly, electrochemical cell, stack, water electrolyzer, and hydrogen utilizing system
JP6628122B2 (en) Conductive member, manufacturing method thereof, fuel cell separator and polymer electrolyte fuel cell using the same
JP2015035356A (en) Electrode catalyst particle for fuel batteries, electrode catalyst for fuel batteries arranged by use thereof, electrolyte-electrode assembly, fuel battery, and methods for manufacturing catalyst particle and catalyst
KR101492431B1 (en) Anode catalyst for fuel cell, method of manufacturing the same, anode including the same for fuel cell, assembly for fuel cell and fuel cell system comprising the same
KR20070105701A (en) Cathode catalyst for fuel cell, and membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR100814845B1 (en) Polymer electrolyte membrane for fuel cell, and membrane-electrode assembly and fuel cell system comprising same
KR100759450B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP2024042825A (en) Catalyst, method for producing catalyst, electrode catalyst layer, membrane electrode assembly, and water electrolysis device
JP2024059071A (en) Catalyst for fuel cell electrodes, method for producing same, and fuel cell including same