WO2024106129A1 - Method for producing electroformed spring - Google Patents
Method for producing electroformed spring Download PDFInfo
- Publication number
- WO2024106129A1 WO2024106129A1 PCT/JP2023/037899 JP2023037899W WO2024106129A1 WO 2024106129 A1 WO2024106129 A1 WO 2024106129A1 JP 2023037899 W JP2023037899 W JP 2023037899W WO 2024106129 A1 WO2024106129 A1 WO 2024106129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electroformed
- layer
- inorganic material
- spring
- material layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 102
- 239000011147 inorganic material Substances 0.000 claims abstract description 102
- 239000011162 core material Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims description 74
- 238000005323 electroforming Methods 0.000 claims description 32
- 238000007747 plating Methods 0.000 claims description 12
- 238000000227 grinding Methods 0.000 claims description 11
- 238000005520 cutting process Methods 0.000 claims description 10
- 239000000543 intermediate Substances 0.000 description 43
- 238000010586 diagram Methods 0.000 description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000007769 metal material Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000523 sample Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/361—Removing material for deburring or mechanical trimming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B19/00—Single-purpose machines or devices for particular grinding operations not covered by any other main group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C99/00—Subject matter not provided for in other groups of this subclass
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/02—Tubes; Rings; Hollow bodies
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/20—Separation of the formed objects from the electrodes with no destruction of said electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
Definitions
- the present invention relates to a method for manufacturing electroformed springs.
- Electroformed springs known as electroformed springs are known. These springs can be used in contact probes to perform electrical tests without applying excessive force to miniaturized electronic devices when they are brought into contact with the electronic device for electrical tests.
- Patent documents 1 and 2 disclose a method for manufacturing a contact for an electrical testing jig that includes such an electroformed spring.
- One object of the present invention is to provide a new method for manufacturing electroformed springs. Other objects of the present invention will become apparent from the description of this specification.
- One aspect of the present invention is forming an inorganic material layer on a conductive surface of a core material having a conductive surface; removing a portion of the inorganic material layer in a spiral shape to expose the conductive surface in a spiral shape; forming an electroforming layer on the spirally exposed conductive surface;
- the method for manufacturing an electroformed spring includes the steps of: removing the remaining inorganic material layer to obtain a spring-shaped electroformed layer on a core material; and separating the spring-shaped electroformed layer from the core material to obtain an electroformed spring.
- FIG. 1A is a diagram showing one pre-process step of one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 1B is a diagram showing one pre-process step of one embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 1C is a diagram showing one pre-process step of one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 2D1 is a diagram showing one step of a post-process in one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 2E1 is a diagram showing one step of a post-process in one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 1A is a diagram showing one pre-process step of one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 1B is a diagram showing one pre-process step of one embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 1C is a diagram showing one
- FIG. 2F1 is a diagram showing one step of a post-process in one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 2G1 is a diagram showing one post-process step of one embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 2H1 is a diagram showing one step of a post-process in one embodiment of a method for manufacturing an electroformed spring of the present invention.
- FIG. 3D2 is a diagram showing a post-process step of another embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 3E2 is a diagram showing a post-process step of another embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 3F2 is a diagram showing a post-process step of another embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 3G2 is a diagram showing a post-process step of another embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 3H2 is a diagram showing one post-process step of another embodiment of the method for manufacturing an electroformed spring of the present invention.
- FIG. 4 shows some steps of an embodiment in which a plurality of inorganic material layers 3b are left over the entire circumference with a predetermined width and arranged periodically with a predetermined length in the axial direction of the core material.
- FIGs. 1A to 1C are diagrams showing the front-end process of one embodiment of the method for manufacturing electroformed springs of the present invention.
- Each of Figs. 1A to 1C is composed of a side view showing the side of the core material 1 and each layer, and a cross-sectional view showing the cross-section of the core material 1 and each layer along the cutting lines A-A to C-C.
- the cross-sections along the cutting lines A-A to C-C are in the same position.
- Figs. 2D1 to 2H1 are diagrams showing the rear-end process of one embodiment of the method for manufacturing electroformed springs of the present invention.
- Figs. 1D1 to 2H1 are diagrams showing the rear-end process of one embodiment of the method for manufacturing electroformed springs of the present invention. Also, Figs.
- FIGS. 3D2 to 3H2 are diagrams showing the rear-end process of another embodiment of the method for manufacturing electroformed springs 10a, 10b of the present invention.
- Each of Figs. 2D1 to 2H1 and Figs. 3D2 to 3H2 is composed of a side view showing the side of the core material 1 and each layer, and a cross-sectional view showing the cross-section, similar to Figs. 1A to 1C, and the cutting lines are in the same position.
- a side view and a cross-sectional view are shown.
- the dimensions shown in the side view are drawn differently from the actual dimensions and dimensional ratios of each element for ease of viewing, and the cross-sectional views also do not accurately depict the dimensions of the cross-sections of the side views for ease of viewing.
- FIG. 1A shows a core material 1 having a conductive surface 2 obtained by forming the conductive surface 2 on the core material 1.
- the step of forming the conductive surface 2 on the core material 1 can be performed before the step of forming the inorganic material layer 3 on the core material 1 having the conductive surface 2. If the core material 1 is a conductive material with sufficient conductivity, this step does not need to be performed. However, this step is necessary if the inorganic material layer 3 is a metal plating layer such as copper, and the surface of the core material 1 does not have the conductivity required for the step of forming the metal plating layer 3 and/or does not have the conductivity required for the electroforming step of forming the electroforming layer 4. In an embodiment in which the conductive surface 2 is ultimately left on the electroformed spring 10 described later in FIG. 2 and FIG. 3, this step may be performed to give the electroformed spring 10 the conductivity required for use as a contact probe.
- the outer diameter of the core material 1 directly defines the inner diameter of the electroformed spring 10, so the diameter of the core material 1 can be selected depending on the diameter of the electroformed spring 10 to be manufactured.
- the core material 1 is usually a wire and has a diameter of, for example, 10 ⁇ m or more, 20 ⁇ m or more, 30 ⁇ m or more, 50 ⁇ m or more, or 100 ⁇ m or more, and may have a diameter of 1000 ⁇ m or less, 800 ⁇ m or less, 500 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less.
- the core material 1 may have a diameter of 10 ⁇ m or more and 1000 ⁇ m or less, or 20 ⁇ m or more and 500 ⁇ m or less.
- the material constituting the core material 1 is not particularly limited as long as it can be used for the processing steps of the present invention, and may be, for example, a metal material, an inorganic material such as a ceramic material, or an organic material such as a resin material. Among these, it is particularly preferable to use a metal material, and it is particularly preferable to use a metal material having an oxide film, and in particular stainless steel. A metal material having an oxide film does not have a high adhesion to other layers, and therefore can be easily pulled out when the core material 1 is pulled out.
- the conductive surface 2 can be formed on the core material 1 by various processes such as plating, vapor deposition, and thermal spraying before the process of forming the inorganic material layer 3 on the core material 1.
- plating is particularly preferred, and it is preferable to perform a metal plating process, such as gold plating, on a metal material having an oxide film.
- gold plating it is particularly advantageous when the inorganic material layer 3 is removed in a spiral shape with a laser, because the gold-plated conductive surface 2 can function as a shielding layer for the laser.
- FIG. 1B shows a first intermediate 11 obtained by forming an inorganic material layer 3 on a core material 1 having a conductive surface 2.
- the first intermediate 11 is a product in which the conductive surface 2 and the inorganic material layer 3 are laminated on the core material 1.
- the method for forming the inorganic material layer 3 is not particularly limited, but it can be formed on the conductive surface 2 by various processes such as plating, vapor deposition, and thermal spraying, and among these, it is particularly preferable that the inorganic material layer 3 is a metal layer formed by a plating process.
- on the conductive surface means that the inorganic material layer 3 can be formed on the outside of the conductive surface 2 within the scope of the manufacturing method of the present invention, and other layers may be formed between the conductive surface 2 and the inorganic material layer 3.
- the inorganic material layer 3 is not particularly limited as long as it can be removed in a spiral shape in a later process.
- such an inorganic material layer 3 can be a metal layer such as gold, silver, copper, iron, aluminum, chromium, nickel, tin, or an alloy containing one or more of these; or a ceramic layer such as silicon oxide, aluminum oxide, or zirconium oxide.
- the inorganic material layer 3 is a metal layer, particularly copper, that does not adversely affect the conductivity of the electroformed spring 10 even if it remains in the final electroformed spring 10.
- a portion of the inorganic material layer 3 is spirally removed. This process is part of the process of spirally exposing the conductive surface 2, and the electroforming layer 4 is later formed in the groove where the inorganic material layer 3 has been spirally removed.
- the process of removing the inorganic material layer 3 in a spiral shape is not particularly limited in terms of the means used, and can be performed by various means such as laser processing, lathe processing, milling, dicing, etc.
- FIG. 1C shows an example of a process for spirally removing the inorganic material layer 3, which is a metal layer, in which the inorganic material layer 3 of the first intermediate 11 is irradiated with a laser L in a spiral shape to remove a portion of the inorganic material layer 3.
- the inorganic material layer 3 can be processed into a spiral shape by irradiating the laser L at a certain location while rotating and moving the first intermediate 11 in the direction of the arrow.
- the method of irradiating the laser L is not limited to this as long as it can process the inorganic material layer 3 into a spiral shape. If the electroformed spring 10 is to be made into a spring up to its end, it is necessary to leave the inorganic material layer 3 up to the end of the first intermediate 11, and as shown in FIG. 2H1 and FIG. 3H2, if the end of the electroformed spring 10 is to be cylindrical, it is necessary to irradiate the laser L up to the end of the first intermediate 11.
- the laser L used is not particularly limited as long as it can remove the inorganic material layer 3, and examples thereof include a short-pulse laser.
- a short-pulse laser means one having a pulse width of nanoseconds (1 ⁇ 10 ⁇ 9 seconds) or less, and the pulse width of the short-pulse laser can be, for example, on the order of femtoseconds (10 ⁇ 15 seconds) to picoseconds (10 ⁇ 12 seconds).
- the laser light source is not particularly limited, and examples thereof include an excimer laser, an Nd:YAG laser, an Nd:YVO 4 laser, a semiconductor laser, and the like.
- FIG. 2D1 shows a second intermediate 12 obtained by spirally removing a portion of the inorganic material layer 3 of the first intermediate 11 to expose the conductive surface 2.
- the second intermediate 12 has the conductive surface 2 and the remaining inorganic material layer 3 laminated on a core material 1.
- the step of removing a portion of the inorganic material layer 3 may further include a step of leaving the inorganic material layer 3 over the entire circumference with a predetermined width.
- leaving the inorganic material layer 3 over the entire circumference means leaving the inorganic material layer 3 on the conductive surface 2 in a ring shape, not a spiral shape, without removing the inorganic material layer 3.
- Figure 3D2 shows a third intermediate 13 having inorganic material layer 3a remaining in a spiral shape without being removed from first intermediate 11, and inorganic material layer 3b remaining around the entire circumference at a predetermined width.
- inorganic material layer 3a remaining in a spiral shape and inorganic material layer 3b remaining around the entire circumference are not continuous, but are separated from each other.
- electroforming layer 4 is separated from each other on the left and right sides, with inorganic material layer 3b as the boundary.
- Third intermediate 13 is similar to second intermediate 12, except for inorganic material layer 3b remaining around the entire circumference at a predetermined width.
- the inorganic material layer 3b remains around the entire circumference in this way, it becomes possible to manufacture an electroformed spring 10 of a predetermined length by finally pulling out the core material 1 without performing a cutting process. Therefore, if the inorganic material layer 3b is left around the entire circumference depending on the length of the electroformed spring 10 to be manufactured, it becomes possible to manufacture the electroformed spring 10 without the need for a cutting process.
- inorganic material layer 3b remaining over the entire circumference with a specified width can be arranged periodically in a number of places with a specified length in the axial direction of the core material. This makes it possible to obtain a number of electroformed springs 10 with a specified length.
- inorganic material layer 3b remaining over the entire circumference with a specified width is provided in three places, and as a result, four electroformed springs 10a to 10d can ultimately be manufactured.
- FIG. 2E1 shows a fourth intermediate 14 obtained by forming an electroforming layer 4 on the spirally exposed conductive surface 2a of the second intermediate 12.
- an electroforming layer 4b is formed on the spirally exposed conductive surface 2a
- an electroforming layer 4a is also formed on the inorganic material layer 3a that has not been removed and remains in a spiral shape.
- FIG. 3E2 shows a fifth intermediate 15 obtained by forming an electroforming layer 4 on the spirally exposed conductive surface 2a of the third intermediate 13.
- the fifth intermediate 15 is similar to the fourth intermediate 14, except that an electroforming layer 4c is formed on the inorganic material layer 3b remaining around the entire circumference.
- electroforming layers 4b, 4a, and 4c are uniformly formed on the conductive surface 2a, the inorganic material layer 3a remaining in a spiral shape, and the inorganic material layer 3b remaining around the entire circumference, respectively.
- the thickness of the electroforming layer 4 can be changed at each location, and it is also possible to prevent the electroforming layer 4 from being substantially formed on the inorganic material layer 3.
- the electroforming layer 4b formed on the conductive surface 2a is the layer that will form the main body of the electroformed spring 10.
- the conditions of the electroforming process can be changed to select the thickness of the electroforming layer 4b depending on the wire diameter of the electroformed spring 10 to be manufactured.
- the electroforming process can be carried out under well-known conditions depending on the material and thickness of the electroforming layer 4b.
- the thickness of the electroforming layer 4b may be, for example, 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more, or 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less.
- the thickness of the electroforming layer 4b may be 1 ⁇ m or more and 300 ⁇ m or less, or 3 ⁇ m or more and 50 ⁇ m or less.
- the material of the electroformed layer 4 is not particularly limited as long as it has the physical properties required for the electroformed spring 10, and it is preferable that it has electrical conductivity, thermal stability, a high elastic modulus, and high strength.
- Such materials include nickel-based materials, such as nickel, nickel-phosphorus alloys, nickel-iron alloys, nickel-manganese alloys, nickel-tungsten alloys, and nickel-boron alloys.
- FIG. 2F1 shows a sixth intermediate 16 obtained by grinding the surface of the fourth intermediate 14.
- the electroforming layer 4b formed on the conductive surface 2a is not substantially ground away.
- the electroforming layer 4a on the remaining spiral inorganic material layer 3a that was present in the fourth intermediate 14 has been removed by grinding, exposing the spiral inorganic material layer 3a.
- FIG. 3F2 shows a seventh intermediate 17 obtained by grinding the surface of the fifth intermediate 15.
- the seventh intermediate 17 is similar to the sixth intermediate 16, except that the electroformed layer 4c on the inorganic material layer 3b that remained over the entire circumference has been removed by grinding.
- the grinding of the surface is performed to expose the remaining spiral inorganic material layer 3a and/or the remaining inorganic material layer 3b around the entire circumference, and does not need to be performed if these are exposed.
- the thickness of the electroformed layer 4b can also be made highly uniform by grinding the surface, the grinding process can be performed even if the remaining inorganic material layers 3a, 3b are exposed.
- the fact that the thickness of the electroformed layer 4b can also be made highly uniform is particularly advantageous, especially for micron-sized pieces such as the electroformed spring 10.
- grinding refers to any method that can remove the electroformed layer 4 to expose the remaining spiral inorganic material layer 3a and/or the remaining inorganic material layer 3b over the entire circumference, and includes removal methods such as cutting and polishing.
- FIG. 2G1 shows an eighth intermediate 18 obtained by removing the remaining inorganic material layer 3a exposed in a spiral shape from the sixth intermediate 16, and by removing the conductive surface 2 located below the remaining inorganic material layer 3a from the sixth intermediate 16.
- the remaining inorganic material layer 3a exposed in a spiral shape and the conductive surface 2 underneath it have been removed, and the conductive surface 2 and spring-shaped electroforming layer 4 are laminated on the core material 1 in the remaining area.
- the core material 1a is exposed in a spiral shape in the area where the inorganic material layer 3a and the conductive surface 2 underneath it have been removed.
- FIG. 3G2 shows a ninth intermediate 19 obtained by removing the remaining inorganic material layer 3a exposed in a spiral shape and the remaining inorganic material layer 3b around the entire circumference from the fifth intermediate 15, and by removing the conductive surface 2 located under the inorganic material layers 3a and 3b from the fifth intermediate.
- the ninth intermediate 19 is similar to the eighth intermediate 18, except that the inorganic material layer 3b and the conductive surface 2 underneath it have been removed around the entire circumference at a predetermined width, exposing the core material 1b around the entire circumference.
- the electroforming layer 4 may also be removed, but in these processes, it is preferable to reduce the amount of electroforming layer 4 removed so that the remaining inorganic material layers 3a, 3b can be selectively removed.
- the process of removing the remaining inorganic material layers 3a and 3b is not particularly limited as long as it is possible to selectively remove the inorganic material layers 3a and 3b without substantially removing the electroformed layer 4.
- a nickel-based material is used as the electroformed layer 4 and copper is used as the inorganic material layers 3a and 3b, they can be removed by chemical polishing using a basic solution such as ammonia water.
- the step of removing the conductive surfaces 2a, 2b can be carried out after or simultaneously with the step of removing the remaining inorganic material layers 3a, 3b, but this step does not have to be carried out.
- this step does not have to be carried out.
- the means for this step so long as it can remove the conductive surfaces 2a, 2b without substantially affecting other parts.
- the conductive surfaces 2a, 2b are gold plating layers, the conductive surfaces 2a, 2b can be removed by ultrasonic cleaning in heated pure water.
- FIG. 2H1 shows the electroformed spring 10 obtained by separating the core material 1 from the eighth intermediate 18
- FIG. 3H2 shows the electroformed springs 10a and 10b obtained by separating the core material 1 from the ninth intermediate 19.
- Figures 2H1 and 3H2 show an embodiment in which the conductive surface 2 remains on the inner diameter side, but the conductive surface 2 on the inner diameter side of the electroformed spring 10 may be removed as long as there is no problem with the physical properties of the resulting electroformed spring 10. If the conductive surface 2 is left on the final electroformed spring 10, the electroformed spring 10 can be given high conductivity, making it suitable for use as a contact probe.
- the method for separating the core material 1 is not particularly limited as long as it does not destroy the electroformed spring 10.
- the core material 1 is pulled from one side or both sides to deform it so that its cross-sectional area becomes smaller, forming a gap between the outer periphery of the core material 1 and the inner periphery of the conductive surface 2, allowing the core material 1 to be easily pulled out.
- the conductive surfaces 2a and 2b have been removed, a gap will be formed between the core material 1 and the electroformed spring 10, making it relatively easy to pull out the core material 1.
- the core material 1 can also be immersed in a dissolving solution and removed by dissolving it chemically or electrochemically. These methods can be selected according to the material of the core material 1, etc.
- the present invention may include a step of cutting the electroformed spring 10 to the desired length, in which case this step may be performed before or after the step of pulling out the core material 1. Also, as described above, in order to cut the electroformed spring 10 to the desired length, the inorganic material layer 3 may be left over a predetermined width around the entire circumference in the laser irradiation step.
- the electroformed spring 10 obtained thereby may have a length of, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.5 mm or more, or 1.0 mm or more, or may have a length of 10 mm or less, 8.0 mm or less, 5.0 mm or less, 3.0 mm or less, 2.0 mm or less, or 1.0 mm or less.
- the electroformed spring 10 may have a length of 0.1 mm or more and 10 mm or less, or 0.2 mm or more and 5.0 mm or less.
- Aspect 1 is a method for manufacturing an electroformed spring 10, including a step of forming an inorganic material layer 3 on a conductive surface 2 of a core material 1 having a conductive surface 2, a step of spirally removing a portion of the inorganic material layer 3 to expose the conductive surface 2 in a spiral shape, a step of forming an electroformed layer 4b on the spirally exposed conductive surface 2a, a step of removing the remaining inorganic material layer 3 to obtain a spring-shaped electroformed layer on the core material, and a step of separating the spring-shaped electroformed layer from the core material 1 to obtain an electroformed spring.
- the resist used in the conventional technology since the resist used in the conventional technology is not used, no resist residue remains on the final electroformed spring 10, and the resist does not affect the operation and/or electrical resistance of the electroformed spring obtained by manufacturing.
- the second embodiment includes a step of forming the conductive surface 2 by plating the core material prior to the step of forming the electroformed layer 3 on the core material 1 having the conductive surface 2 .
- the above aspect makes it easy to provide the core material with electrical conductivity for performing the electroforming process to form the electroformed layer 4b.
- the process of removing the inorganic material layer 3 in a spiral shape can be carried out relatively easily.
- the fourth embodiment further includes a step of grinding the surface of the electroformed layer 4 and/or the inorganic material layer 3 after the electroformed layer 4 is formed.
- the inorganic material layers 3a and 3b can be reliably exposed by grinding the surface, making the process of removing the inorganic material layers 3a and 3b easier and enabling the thickness of the electroforming layer 4b to be highly uniform.
- a fifth aspect includes a step of separating the spring-shaped electroformed layer from the core material 1 and then cutting the separated core material to a predetermined length.
- the process of exposing the electroforming layer 4 can be simplified compared to embodiment 6 below.
- the step of exposing the electroformed layer 4 in a spiral shape includes a step of exposing the electroformed layer 4 over the entire circumference with a predetermined width.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Springs (AREA)
- Measuring Leads Or Probes (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Micromachines (AREA)
- Laser Beam Processing (AREA)
Abstract
The present invention provides a novel method for producing an electroformed spring. A method for producing an electroformed spring according to the present invention comprises a step for forming an inorganic-material layer on an electroconductive surface provided to a core material, a step for removing part of the inorganic-material layer in a spiral shape to expose the electroconductive surface in a spiral shape, a step for forming an electroformed layer on the electroconductive surface exposed in a spiral shape, a step for removing the remainder of the inorganic-material layer to obtain a spring-shaped electroformed layer on the core material, and a step for separating the spring-shaped electroformed layer and the core material from each other to obtain an electroformed spring.
Description
本発明は、電鋳バネの製造方法に関する。
The present invention relates to a method for manufacturing electroformed springs.
電鋳バネと呼ばれる、ミクロンサイズの微小なバネが知られている。このようなバネは、小型化した電子デバイスに接触させて通電検査を行う際に、電子デバイスに過度な力を与えることなく通電検査をするためのコンタクトプローブに用いることができる。
Micron-sized springs known as electroformed springs are known. These springs can be used in contact probes to perform electrical tests without applying excessive force to miniaturized electronic devices when they are brought into contact with the electronic device for electrical tests.
特許文献1及び2は、そのような電鋳バネを備える通電検査治具用接触子の製造方法を開示している。
Patent documents 1 and 2 disclose a method for manufacturing a contact for an electrical testing jig that includes such an electroformed spring.
本発明の目的の一例は、電鋳バネの新規な製造方法を提供することにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
One object of the present invention is to provide a new method for manufacturing electroformed springs. Other objects of the present invention will become apparent from the description of this specification.
本発明の一態様は、
導電性表面を有する芯材の前記導電性表面上に無機材料層を形成する工程、
前記無機材料層の一部を螺旋状に除去して、前記導電性表面を螺旋状に露出する工程、
螺旋状に露出した前記導電性表面上に電鋳層を形成する工程、
残りの前記無機材料層を除去して、バネ形状の電鋳層を芯材上に得る工程、及び
前記バネ形状の電鋳層と前記芯材とを分離して電鋳バネを得る工程
を含む、電鋳バネの製造方法である。 One aspect of the present invention is
forming an inorganic material layer on a conductive surface of a core material having a conductive surface;
removing a portion of the inorganic material layer in a spiral shape to expose the conductive surface in a spiral shape;
forming an electroforming layer on the spirally exposed conductive surface;
The method for manufacturing an electroformed spring includes the steps of: removing the remaining inorganic material layer to obtain a spring-shaped electroformed layer on a core material; and separating the spring-shaped electroformed layer from the core material to obtain an electroformed spring.
導電性表面を有する芯材の前記導電性表面上に無機材料層を形成する工程、
前記無機材料層の一部を螺旋状に除去して、前記導電性表面を螺旋状に露出する工程、
螺旋状に露出した前記導電性表面上に電鋳層を形成する工程、
残りの前記無機材料層を除去して、バネ形状の電鋳層を芯材上に得る工程、及び
前記バネ形状の電鋳層と前記芯材とを分離して電鋳バネを得る工程
を含む、電鋳バネの製造方法である。 One aspect of the present invention is
forming an inorganic material layer on a conductive surface of a core material having a conductive surface;
removing a portion of the inorganic material layer in a spiral shape to expose the conductive surface in a spiral shape;
forming an electroforming layer on the spirally exposed conductive surface;
The method for manufacturing an electroformed spring includes the steps of: removing the remaining inorganic material layer to obtain a spring-shaped electroformed layer on a core material; and separating the spring-shaped electroformed layer from the core material to obtain an electroformed spring.
本発明を以下の実施形態を例として具体的に説明をするが、本発明はこれによって限定されるものではない。本明細書における各工程において用いられる装置、薬品、反応条件等の各手段について特に詳細な言及がない場合には、これらについては当業者であれば周知の手段を用いることができる。各実施形態は、当業者が通常の知識に基づいて組み合わせることが可能であり、各実施形態について特記していない構成については、他の実施形態と同じ構成又はその実施形態に適した構成を有することができる。
The present invention will be specifically described using the following embodiments as examples, but the present invention is not limited thereto. In the present specification, unless otherwise specified, a person skilled in the art can use known means such as the apparatus, chemicals, and reaction conditions used in each step. Each embodiment can be combined by a person skilled in the art based on ordinary knowledge, and the configurations not specified for each embodiment can have the same configuration as other embodiments or a configuration suitable for that embodiment.
図1A~図1Cは、本発明の電鋳バネの製造方法に1つの実施形態の前工程を示す図である。なお、図1A~図1Cの各々は、芯材1及び各層の側面を示す側面図と、芯材1及び各層において切断線A-A~切断線C-Cの断面を示す断面図から構成される。図1A~図1Cにおいて、切断線A-A~切断線C-Cの断面の位置は、同じ位置である。図2D1~図2H1は、本発明の電鋳バネの製造方法に1つの実施形態の後工程を示す図である。また、図3D2~図3H2は、本発明の電鋳バネ10a,10bの製造方法の他の1つの実施形態の後工程を示す図である。なお、図2D1~図2H1及び図3D2~図3H2の各々は、図1A~図1Cと同様に、芯材1及び各層の側面を示す側面図と、その断面を示す断面図から構成され、それらの切断線の位置は同じ位置である。各工程において、側面図と断面図を示す。なお、側面図で示されている寸法は見やすさのために実際の各要素の寸法及び寸法比とは異なって描かれており、また断面図においても、見やすさのために側面図の断面の寸法を正確に表現していない。
1A to 1C are diagrams showing the front-end process of one embodiment of the method for manufacturing electroformed springs of the present invention. Each of Figs. 1A to 1C is composed of a side view showing the side of the core material 1 and each layer, and a cross-sectional view showing the cross-section of the core material 1 and each layer along the cutting lines A-A to C-C. In Figs. 1A to 1C, the cross-sections along the cutting lines A-A to C-C are in the same position. Figs. 2D1 to 2H1 are diagrams showing the rear-end process of one embodiment of the method for manufacturing electroformed springs of the present invention. Also, Figs. 3D2 to 3H2 are diagrams showing the rear-end process of another embodiment of the method for manufacturing electroformed springs 10a, 10b of the present invention. Each of Figs. 2D1 to 2H1 and Figs. 3D2 to 3H2 is composed of a side view showing the side of the core material 1 and each layer, and a cross-sectional view showing the cross-section, similar to Figs. 1A to 1C, and the cutting lines are in the same position. In each step, a side view and a cross-sectional view are shown. In addition, the dimensions shown in the side view are drawn differently from the actual dimensions and dimensional ratios of each element for ease of viewing, and the cross-sectional views also do not accurately depict the dimensions of the cross-sections of the side views for ease of viewing.
図1Aは、芯材1に導電性表面2を形成することで得られた、導電性表面2を有する芯材1を示している。芯材1に導電性表面2を形成する工程は、導電性表面2を有する芯材1に無機材料層3を形成する工程の前に行うことができる。芯材1が、十分な導電性を有する導電性材料である場合には、この工程を行う必要はない。しかし、無機材料層3が例えば銅等の金属めっき層であり、芯材1の表面がその金属めっき層3を形成するための工程に必要な導電性を有していない場合、及び/又は電鋳層4を形成するための電鋳工程に必要な導電性を有していない場合には、この工程が必要になる。また、図2及び図3で後述する電鋳バネ10に導電性表面2を最終的に残す実施形態では、コンタクトプローブとして用いるための必要な導電性を電鋳バネ10に与えるためにこの工程を行ってもよい。
1A shows a core material 1 having a conductive surface 2 obtained by forming the conductive surface 2 on the core material 1. The step of forming the conductive surface 2 on the core material 1 can be performed before the step of forming the inorganic material layer 3 on the core material 1 having the conductive surface 2. If the core material 1 is a conductive material with sufficient conductivity, this step does not need to be performed. However, this step is necessary if the inorganic material layer 3 is a metal plating layer such as copper, and the surface of the core material 1 does not have the conductivity required for the step of forming the metal plating layer 3 and/or does not have the conductivity required for the electroforming step of forming the electroforming layer 4. In an embodiment in which the conductive surface 2 is ultimately left on the electroformed spring 10 described later in FIG. 2 and FIG. 3, this step may be performed to give the electroformed spring 10 the conductivity required for use as a contact probe.
芯材1は、最終の工程で引き抜かれた後に、芯材1の外径がそのまま電鋳バネ10の内径を構成することになるため、製造する電鋳バネ10の径の大きさに応じて、芯材1の径を選択することができる。
After the core material 1 is extracted in the final process, the outer diameter of the core material 1 directly defines the inner diameter of the electroformed spring 10, so the diameter of the core material 1 can be selected depending on the diameter of the electroformed spring 10 to be manufactured.
芯材1は、通常は、線材であり、例えば10μm以上、20μm以上、30μm以上、50μm以上、又は100μm以上の径を有しており、1000μm以下、800μm以下、500μm以下、300μm以下、200μm以下、又は100μm以下の径を有していてもよい。例えば、芯材1は、10μm以上1000μm以下、又は20μm以上500μm以下の径を有していてもよい。
The core material 1 is usually a wire and has a diameter of, for example, 10 μm or more, 20 μm or more, 30 μm or more, 50 μm or more, or 100 μm or more, and may have a diameter of 1000 μm or less, 800 μm or less, 500 μm or less, 300 μm or less, 200 μm or less, or 100 μm or less. For example, the core material 1 may have a diameter of 10 μm or more and 1000 μm or less, or 20 μm or more and 500 μm or less.
芯材1を構成する材料は、本発明の各工程の処理を行うことができるのであれば特に限定されず、例えば、金属材料、セラミック材料等の無機材料、樹脂材料等の有機材料であってもよい。この中でも特に、金属材料を用いることが好ましく、特に酸化皮膜を有する金属材料、特にステンレスを用いることが好ましい。酸化皮膜を有する金属材料は、他の層との密着性が高くないため、芯材1を引き抜く際に容易に引き抜くことができる。
The material constituting the core material 1 is not particularly limited as long as it can be used for the processing steps of the present invention, and may be, for example, a metal material, an inorganic material such as a ceramic material, or an organic material such as a resin material. Among these, it is particularly preferable to use a metal material, and it is particularly preferable to use a metal material having an oxide film, and in particular stainless steel. A metal material having an oxide film does not have a high adhesion to other layers, and therefore can be easily pulled out when the core material 1 is pulled out.
芯材1の表面には、後に電鋳層4が形成されるため、芯材1の表面が電鋳層4を形成するための電鋳工程に必要な導電性を有していない場合には、芯材1に無機材料層3を形成する工程の前に、芯材1に対して、例えば、めっき、蒸着、溶射等の様々な処理によって導電性表面2を形成することができる。この中でも特に、めっき処理が好ましく、例えば酸化皮膜を有する金属材料に、金属めっき処理、例えば金めっき処理を行うことが好ましい。金めっき処理を行った場合には特に、無機材料層3をレーザーで螺旋状に除去する場合に、金めっきである導電性表面2がレーザーのシールド層として機能させることができ非常に有利である。
Since the electroforming layer 4 will be formed later on the surface of the core material 1, if the surface of the core material 1 does not have the conductivity required for the electroforming process to form the electroforming layer 4, the conductive surface 2 can be formed on the core material 1 by various processes such as plating, vapor deposition, and thermal spraying before the process of forming the inorganic material layer 3 on the core material 1. Among these, plating is particularly preferred, and it is preferable to perform a metal plating process, such as gold plating, on a metal material having an oxide film. When gold plating is performed, it is particularly advantageous when the inorganic material layer 3 is removed in a spiral shape with a laser, because the gold-plated conductive surface 2 can function as a shielding layer for the laser.
図1Bは、導電性表面2を有する芯材1に無機材料層3を形成することによって得られた第1の中間物11を示している。第1の中間物11は、芯材1上に導電性表面2及び無機材料層3が積層されたものである。
FIG. 1B shows a first intermediate 11 obtained by forming an inorganic material layer 3 on a core material 1 having a conductive surface 2. The first intermediate 11 is a product in which the conductive surface 2 and the inorganic material layer 3 are laminated on the core material 1.
無機材料層3を形成する方法は特に限定されないが、例えばめっき、蒸着、溶射等の様々な処理によって導電性表面2上に形成することができ、この中でも特に無機材料層3は、めっき処理によって形成された金属層であることが好ましい。
The method for forming the inorganic material layer 3 is not particularly limited, but it can be formed on the conductive surface 2 by various processes such as plating, vapor deposition, and thermal spraying, and among these, it is particularly preferable that the inorganic material layer 3 is a metal layer formed by a plating process.
ここで、「導電性表面上に」とは、本発明の製造方法を実行できる範囲において、導電性表面2の外側に無機材料層3を形成できればよく、導電性表面2と無機材料層3との間に、他の層が形成されてもよい。
Here, "on the conductive surface" means that the inorganic material layer 3 can be formed on the outside of the conductive surface 2 within the scope of the manufacturing method of the present invention, and other layers may be formed between the conductive surface 2 and the inorganic material layer 3.
無機材料層3としては、後の工程において螺旋状に除去できるものであれば、特に限定されない。例えば、そのような無機材料層3としては、金、銀、銅、鉄、アルミニウム、クロム、ニッケル、スズ及びこれらを1種以上含む合金等の金属層;酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等のセラミック層を挙げることができ、好ましくは無機材料層3が最終の電鋳バネ10に残留したとしても電鋳バネ10の導電性に悪影響を与えない金属層、特に銅を挙げることができる。
The inorganic material layer 3 is not particularly limited as long as it can be removed in a spiral shape in a later process. For example, such an inorganic material layer 3 can be a metal layer such as gold, silver, copper, iron, aluminum, chromium, nickel, tin, or an alloy containing one or more of these; or a ceramic layer such as silicon oxide, aluminum oxide, or zirconium oxide. Preferably, the inorganic material layer 3 is a metal layer, particularly copper, that does not adversely affect the conductivity of the electroformed spring 10 even if it remains in the final electroformed spring 10.
無機材料層3を形成した後、無機材料層3の一部を螺旋状に除去する。この工程は、導電性表面2を螺旋状に露出する工程の一部であり、無機材料層3が螺旋状に除去された溝において後に電鋳層4が形成される。
After forming the inorganic material layer 3, a portion of the inorganic material layer 3 is spirally removed. This process is part of the process of spirally exposing the conductive surface 2, and the electroforming layer 4 is later formed in the groove where the inorganic material layer 3 has been spirally removed.
無機材料層3を螺旋状に除去する工程は、特にその手段は限定されず、例えばレーザー加工、旋盤加工、フライス加工、ダイシング等の様々な手段によって行うことができる。
The process of removing the inorganic material layer 3 in a spiral shape is not particularly limited in terms of the means used, and can be performed by various means such as laser processing, lathe processing, milling, dicing, etc.
図1Cは、金属層である無機材料層3を螺旋状に除去する工程の一例として、第1の中間物11の無機材料層3に螺旋状にレーザーLの照射を行なって無機材料層3の一部を除去する工程を示している。
FIG. 1C shows an example of a process for spirally removing the inorganic material layer 3, which is a metal layer, in which the inorganic material layer 3 of the first intermediate 11 is irradiated with a laser L in a spiral shape to remove a portion of the inorganic material layer 3.
図1Cに示すように、レーザーLを一定の場所に照射しながら、第1の中間物11を、回転させながら矢印方向に移動させることによって、無機材料層3を螺旋状に加工することができる。しかし、レーザーLの照射方法は、無機材料層3を螺旋状に加工することができるのであれば、これに限定されるものではない。なお、電鋳バネ10を端部までバネにする場合には、第1の中間物11の端部まで無機材料層3を残す必要があり、図2H1及び図3H2に示すように、電鋳バネ10の端部を円筒状にする場合には、第1の中間物11の端部までレーザーLを照射する必要がある。
As shown in FIG. 1C, the inorganic material layer 3 can be processed into a spiral shape by irradiating the laser L at a certain location while rotating and moving the first intermediate 11 in the direction of the arrow. However, the method of irradiating the laser L is not limited to this as long as it can process the inorganic material layer 3 into a spiral shape. If the electroformed spring 10 is to be made into a spring up to its end, it is necessary to leave the inorganic material layer 3 up to the end of the first intermediate 11, and as shown in FIG. 2H1 and FIG. 3H2, if the end of the electroformed spring 10 is to be cylindrical, it is necessary to irradiate the laser L up to the end of the first intermediate 11.
用いられるレーザーLとしては、無機材料層3を除去できれば特に限定されないが、例えば短パルスレーザーを挙げることができる。短パルスレーザーは、ナノ秒(1×10-9秒)以下のパルス幅を有するものを意味し、短パルスレーザーのパルス幅は、例えば、フェムト秒(10-15秒)オーダーからピコ秒(10-12秒)オーダーとすることができる。レーザー光源としては、特に制限されないが、例えば、エキシマレーザー、Nd:YAGレーザー、Nd:YVO4レーザー、半導体レーザー等を挙げることができる。
The laser L used is not particularly limited as long as it can remove the inorganic material layer 3, and examples thereof include a short-pulse laser. A short-pulse laser means one having a pulse width of nanoseconds (1×10 −9 seconds) or less, and the pulse width of the short-pulse laser can be, for example, on the order of femtoseconds (10 −15 seconds) to picoseconds (10 −12 seconds). The laser light source is not particularly limited, and examples thereof include an excimer laser, an Nd:YAG laser, an Nd:YVO 4 laser, a semiconductor laser, and the like.
図2D1は、第1の中間物11の無機材料層3の一部を螺旋状に除去して、導電性表面2を螺旋状に露出して得られた第2の中間物12を示している。第2の中間物12は、芯材1上に導電性表面2、及び残りの無機材料層3が積層されている。第2の中間物12の表面には、無機材料層3が除去されずに螺旋状に残っている無機材料層3aと、無機材料層3が除去された箇所において螺旋状に露出した導電性表面2aとが存在している。
FIG. 2D1 shows a second intermediate 12 obtained by spirally removing a portion of the inorganic material layer 3 of the first intermediate 11 to expose the conductive surface 2. The second intermediate 12 has the conductive surface 2 and the remaining inorganic material layer 3 laminated on a core material 1. On the surface of the second intermediate 12, there is an inorganic material layer 3a where the inorganic material layer 3 has not been removed and remains in a spiral shape, and a conductive surface 2a exposed in a spiral shape where the inorganic material layer 3 has been removed.
本発明の方法においては、無機材料層3の一部を除去する工程においては、所定の幅で全周にわたって無機材料層3を残す工程をさらに含んでもよい。ここで、全周にわたって無機材料層3を残すとは、無機材料層3を除去せずに、螺旋状ではなく環状に導電性表面2上に無機材料層3を残すことをいう。
In the method of the present invention, the step of removing a portion of the inorganic material layer 3 may further include a step of leaving the inorganic material layer 3 over the entire circumference with a predetermined width. Here, leaving the inorganic material layer 3 over the entire circumference means leaving the inorganic material layer 3 on the conductive surface 2 in a ring shape, not a spiral shape, without removing the inorganic material layer 3.
図3D2は、第1の中間物11から無機材料層3が除去されずに螺旋状に残っている無機材料層3aと、所定の幅で全周にわたって残っている無機材料層3bを有する第3の中間物13を示している。ここで、螺旋状に残っている無機材料層3aと全周にわたって残っている無機材料層3bとは連続しておらず、互いに分離している。また、無機材料層3bを境にして、電鋳層4は左右で互いに分離されている。第3の中間物13は、所定の幅で全周にわたって残った無機材料層3bがあること以外は、第2の中間物12と同様である。
Figure 3D2 shows a third intermediate 13 having inorganic material layer 3a remaining in a spiral shape without being removed from first intermediate 11, and inorganic material layer 3b remaining around the entire circumference at a predetermined width. Here, inorganic material layer 3a remaining in a spiral shape and inorganic material layer 3b remaining around the entire circumference are not continuous, but are separated from each other. Furthermore, electroforming layer 4 is separated from each other on the left and right sides, with inorganic material layer 3b as the boundary. Third intermediate 13 is similar to second intermediate 12, except for inorganic material layer 3b remaining around the entire circumference at a predetermined width.
このように一周にわたって残った無機材料層3bが存在すると、最終的に芯材1を引き抜く工程によって、切断工程を行うことなく、所定の長さを有する電鋳バネ10を製造することが可能になる。したがって、製造したい電鋳バネ10の長さに応じて、全周にわたる無機材料層3bを残せば、切断工程の必要なしに電鋳バネ10を製造することができるようになる。
If the inorganic material layer 3b remains around the entire circumference in this way, it becomes possible to manufacture an electroformed spring 10 of a predetermined length by finally pulling out the core material 1 without performing a cutting process. Therefore, if the inorganic material layer 3b is left around the entire circumference depending on the length of the electroformed spring 10 to be manufactured, it becomes possible to manufacture the electroformed spring 10 without the need for a cutting process.
図4に示すように、所定の幅で全周にわたって残された無機材料層3bは、芯材の軸方向に所定の長さで周期的に複数存在させることができる。それにより、所定の長さの電鋳バネ10を複数得ることができる。例えば、図4においては、所定の幅で全周にわたって残された無機材料層3bは、3箇所設けられており、その結果、最終的に4つの電鋳バネ10a~10dを製造することができる。
As shown in Figure 4, inorganic material layer 3b remaining over the entire circumference with a specified width can be arranged periodically in a number of places with a specified length in the axial direction of the core material. This makes it possible to obtain a number of electroformed springs 10 with a specified length. For example, in Figure 4, inorganic material layer 3b remaining over the entire circumference with a specified width is provided in three places, and as a result, four electroformed springs 10a to 10d can ultimately be manufactured.
図2E1は、第2の中間物12の螺旋状に露出した導電性表面2a上に電鋳層4を形成することによって得られる第4の中間物14を示している。第4の中間物14においては、螺旋状に露出した導電性表面2a上に電鋳層4bが形成されており、また除去されずに螺旋状に残っている無機材料層3a上にも電鋳層4aが形成されている。
FIG. 2E1 shows a fourth intermediate 14 obtained by forming an electroforming layer 4 on the spirally exposed conductive surface 2a of the second intermediate 12. In the fourth intermediate 14, an electroforming layer 4b is formed on the spirally exposed conductive surface 2a, and an electroforming layer 4a is also formed on the inorganic material layer 3a that has not been removed and remains in a spiral shape.
図3E2は、第3の中間物13の螺旋状に露出した導電性表面2a上に電鋳層4を形成することによって得られる第5の中間物15を示している。第5の中間物15は、全周にわたって残った無機材料層3b上に電鋳層4cが形成されていること以外は、第4の中間物14と同様である。
FIG. 3E2 shows a fifth intermediate 15 obtained by forming an electroforming layer 4 on the spirally exposed conductive surface 2a of the third intermediate 13. The fifth intermediate 15 is similar to the fourth intermediate 14, except that an electroforming layer 4c is formed on the inorganic material layer 3b remaining around the entire circumference.
これらの図では、導電性表面2a、螺旋状に残っている無機材料層3a、全周にわたって残っている無機材料層3b上に、それぞれ電鋳層4b,4a,4cが一様に形成されているが、導電性表面2aと無機材料層3との電気伝導率の差等によって、電鋳層4の厚みをそれぞれの場所で変えることができ、無機材料層3の上に電鋳層4を実質的に形成させないようにすることもできる。
In these figures, electroforming layers 4b, 4a, and 4c are uniformly formed on the conductive surface 2a, the inorganic material layer 3a remaining in a spiral shape, and the inorganic material layer 3b remaining around the entire circumference, respectively. However, depending on the difference in electrical conductivity between the conductive surface 2a and the inorganic material layer 3, the thickness of the electroforming layer 4 can be changed at each location, and it is also possible to prevent the electroforming layer 4 from being substantially formed on the inorganic material layer 3.
導電性表面2a上に形成される電鋳層4bは、電鋳バネ10の本体を構成することになる層である。製造する電鋳バネ10の線径の大きさに応じて、電鋳処理の条件を変更して、電鋳層4bの厚みを選択することができる。電鋳処理は、電鋳層4bの材料及び厚み等に応じて、周知の条件によって行うことができる。
The electroforming layer 4b formed on the conductive surface 2a is the layer that will form the main body of the electroformed spring 10. The conditions of the electroforming process can be changed to select the thickness of the electroforming layer 4b depending on the wire diameter of the electroformed spring 10 to be manufactured. The electroforming process can be carried out under well-known conditions depending on the material and thickness of the electroforming layer 4b.
電鋳層4bの厚みは、例えば1μm以上、3μm以上、5μm以上、10μm以上、又は20μm以上であってもよく、300μm以下、200μm以下、100μm以下、50μm以下、30μm以下、又は20μm以下であってもよい。例えば、電鋳層4bの厚みは、1μm以上300μm以下、又は3μm以上50μm以下であってもよい。
The thickness of the electroforming layer 4b may be, for example, 1 μm or more, 3 μm or more, 5 μm or more, 10 μm or more, or 20 μm or more, or 300 μm or less, 200 μm or less, 100 μm or less, 50 μm or less, 30 μm or less, or 20 μm or less. For example, the thickness of the electroforming layer 4b may be 1 μm or more and 300 μm or less, or 3 μm or more and 50 μm or less.
電鋳層4の材料としては、電鋳バネ10に求められる物性を有する材料であれば特に限定されず、電気伝導性、熱的安定性、高弾性率、かつ高強度を有することが好ましい。そのような材料としては、ニッケル系材料を挙げることができ、例えばニッケル、ニッケル-リン合金、ニッケル-鉄合金、ニッケル-マンガン合金、ニッケル-タングステン合金、ニッケル-ホウ素合金等の材料を挙げることができる。
The material of the electroformed layer 4 is not particularly limited as long as it has the physical properties required for the electroformed spring 10, and it is preferable that it has electrical conductivity, thermal stability, a high elastic modulus, and high strength. Such materials include nickel-based materials, such as nickel, nickel-phosphorus alloys, nickel-iron alloys, nickel-manganese alloys, nickel-tungsten alloys, and nickel-boron alloys.
図2F1は、第4の中間物14の表面を研削することによって得られる第6の中間物16を示している。第6の中間物16においては、導電性表面2a上に形成されている電鋳層4bについては実質的に研削されていない。一方、第6の中間物16においては、第4の中間物14に存在していた螺旋状の残りの無機材料層3a上の電鋳層4aが研削によって除去されており、螺旋状の無機材料層3aが露出している。
FIG. 2F1 shows a sixth intermediate 16 obtained by grinding the surface of the fourth intermediate 14. In the sixth intermediate 16, the electroforming layer 4b formed on the conductive surface 2a is not substantially ground away. On the other hand, in the sixth intermediate 16, the electroforming layer 4a on the remaining spiral inorganic material layer 3a that was present in the fourth intermediate 14 has been removed by grinding, exposing the spiral inorganic material layer 3a.
図3F2は、第5の中間物15の表面を研削することによって得られる第7の中間物17を示している。第7の中間物17においては、全周にわたって残った無機材料層3b上の電鋳層4cが研削によって除去されていること以外は、第6の中間物16と同様である。
FIG. 3F2 shows a seventh intermediate 17 obtained by grinding the surface of the fifth intermediate 15. The seventh intermediate 17 is similar to the sixth intermediate 16, except that the electroformed layer 4c on the inorganic material layer 3b that remained over the entire circumference has been removed by grinding.
表面の研削は、螺旋状の残りの無機材料層3a及び/又は全周にわたる残りの無機材料層3bを露出するために行われ、これらが露出している場合には行う必要がない。一方、表面の研削によって、電鋳層4bの厚みも高度に均一化することができるため、残りの無機材料層3a,3bが露出していたとしても研削工程を行うことができる。電鋳層4bの厚みも高度に均一化できることは、特に電鋳バネ10のようなミクロンサイズのものに対しては、特に有利である。
The grinding of the surface is performed to expose the remaining spiral inorganic material layer 3a and/or the remaining inorganic material layer 3b around the entire circumference, and does not need to be performed if these are exposed. On the other hand, since the thickness of the electroformed layer 4b can also be made highly uniform by grinding the surface, the grinding process can be performed even if the remaining inorganic material layers 3a, 3b are exposed. The fact that the thickness of the electroformed layer 4b can also be made highly uniform is particularly advantageous, especially for micron-sized pieces such as the electroformed spring 10.
ここで、「研削」とは、電鋳層4を除去して、螺旋状の残りの無機材料層3a及び/又は全周にわたる残りの無機材料層3bを露出することができれば、特にその方法は限定されず、切削、研磨等の除去方法も含む。
Here, "grinding" refers to any method that can remove the electroformed layer 4 to expose the remaining spiral inorganic material layer 3a and/or the remaining inorganic material layer 3b over the entire circumference, and includes removal methods such as cutting and polishing.
図2G1は、螺旋状に露出した残りの無機材料層3aを第6の中間物16から除去すること、及びその残りの無機材料層3aの下に位置していた導電性表面2を第6の中間物16から除去すること、によって得られた第8の中間物18を示している。第8の中間物18は、螺旋状に露出していた残りの無機材料層3a及びその下の導電性表面2が除去されており、残りの箇所において芯材1上に導電性表面2及びバネ形状の電鋳層4が積層されている。第8の中間物18は、無機材料層3a及びその下の導電性表面2が除去されている箇所において、芯材1aが螺旋状に露出している。
FIG. 2G1 shows an eighth intermediate 18 obtained by removing the remaining inorganic material layer 3a exposed in a spiral shape from the sixth intermediate 16, and by removing the conductive surface 2 located below the remaining inorganic material layer 3a from the sixth intermediate 16. In the eighth intermediate 18, the remaining inorganic material layer 3a exposed in a spiral shape and the conductive surface 2 underneath it have been removed, and the conductive surface 2 and spring-shaped electroforming layer 4 are laminated on the core material 1 in the remaining area. In the eighth intermediate 18, the core material 1a is exposed in a spiral shape in the area where the inorganic material layer 3a and the conductive surface 2 underneath it have been removed.
図3G2は、螺旋状に露出した残りの無機材料層3a及び全周にわたる残りの無機材料層3bを第5の中間物15から除去すること、及びそれらの無機材料層3a,3bの下に位置していた導電性表面2を第5の中間物から除去すること、によって得られた第9の中間物19を示している。第9の中間物19は、所定の幅で全周にわたって無機材料層3b及びその下の導電性表面2が除去されていることで、芯材1bが全周にわたって露出していること以外は、第8の中間物18と同様である。
FIG. 3G2 shows a ninth intermediate 19 obtained by removing the remaining inorganic material layer 3a exposed in a spiral shape and the remaining inorganic material layer 3b around the entire circumference from the fifth intermediate 15, and by removing the conductive surface 2 located under the inorganic material layers 3a and 3b from the fifth intermediate. The ninth intermediate 19 is similar to the eighth intermediate 18, except that the inorganic material layer 3b and the conductive surface 2 underneath it have been removed around the entire circumference at a predetermined width, exposing the core material 1b around the entire circumference.
螺旋状に露出した残りの無機材料層3aを除去する工程、及び/又は所定の幅で全周にわたる残りの無機材料層3bを除去する工程においては、電鋳層4も除去される場合があるが、これらの工程では、電鋳層4の除去量を少なくして残りの無機材料層3a,3bを選択的に除去できることが好ましい。
In the process of removing the remaining inorganic material layer 3a exposed in a spiral shape and/or the process of removing the remaining inorganic material layer 3b over the entire circumference with a predetermined width, the electroforming layer 4 may also be removed, but in these processes, it is preferable to reduce the amount of electroforming layer 4 removed so that the remaining inorganic material layers 3a, 3b can be selectively removed.
残りの無機材料層3a,3bを除去する工程は、電鋳層4を実質的に除去することなく、無機材料層3a,3bを選択的に除去できれば特にその手段は限定されないが、例えば、電鋳層4として、ニッケル系材料を使用し、無機材料層3a,3bとして、銅を用いる場合には、アンモニア水等の塩基性溶液を用いて化学研磨によって除去することができる。
The process of removing the remaining inorganic material layers 3a and 3b is not particularly limited as long as it is possible to selectively remove the inorganic material layers 3a and 3b without substantially removing the electroformed layer 4. For example, if a nickel-based material is used as the electroformed layer 4 and copper is used as the inorganic material layers 3a and 3b, they can be removed by chemical polishing using a basic solution such as ammonia water.
導電性表面2a,2bを除去する工程は、残りの無機材料層3a,3bを除去する工程の後又は同時に行うことができるが、この工程は行わなくてもよい。この工程は、他の部分に実質的に影響を与えることなく導電性表面2a,2bを除去できるのであれば、特にその手段は限定されないが、例えば導電性表面2a,2bが金めっき層であれば、加温した純水中で超音波洗浄を行うことによって、導電性表面2a,2bを除去することができる。
The step of removing the conductive surfaces 2a, 2b can be carried out after or simultaneously with the step of removing the remaining inorganic material layers 3a, 3b, but this step does not have to be carried out. There are no particular limitations on the means for this step, so long as it can remove the conductive surfaces 2a, 2b without substantially affecting other parts. For example, if the conductive surfaces 2a, 2b are gold plating layers, the conductive surfaces 2a, 2b can be removed by ultrasonic cleaning in heated pure water.
図2H1は、第8の中間物18から芯材1を分離することによって得られた電鋳バネ10を示しており、図3H2は、第9の中間物19から芯材1を分離することによって得られた電鋳バネ10a,10bを示している。
FIG. 2H1 shows the electroformed spring 10 obtained by separating the core material 1 from the eighth intermediate 18, and FIG. 3H2 shows the electroformed springs 10a and 10b obtained by separating the core material 1 from the ninth intermediate 19.
図2H1及び図3H2においては、内径側に導電性表面2を残す実施形態を示しているが、得られた電鋳バネ10の物性等に問題がない限り、電鋳バネ10の内径側の導電性表面2を除去してもよい。導電性表面2を最終の電鋳バネ10に残す場合、電鋳バネ10に高い導電性を与える事ができるため、コンタクトプローブとして好適に用いることができる。
Figures 2H1 and 3H2 show an embodiment in which the conductive surface 2 remains on the inner diameter side, but the conductive surface 2 on the inner diameter side of the electroformed spring 10 may be removed as long as there is no problem with the physical properties of the resulting electroformed spring 10. If the conductive surface 2 is left on the final electroformed spring 10, the electroformed spring 10 can be given high conductivity, making it suitable for use as a contact probe.
芯材1を分離する方法は、電鋳バネ10を破壊しないようにすれば特に限定されないが、例えば、導電性表面2を電鋳層4の内側に残したまま芯材1を除去するには、芯材1を一方又は両方から引っ張って断面積が小さくなるように変形させることで、芯材1の外周と、導電性表面2の内周との間に隙間が形成され、芯材1を容易に引き抜くことができる。また、導電性表面2a,2bを除去していた場合には、芯材1と電鋳バネ10との間に隙間ができるため、芯材1を比較的容易に引き抜くことが可能となる。さらに、溶解液中に芯材1を浸漬し、化学的又は電気化学的に芯材を溶解させて除去することもできる。これらは、芯材1等の材料に応じて選択することができる。
The method for separating the core material 1 is not particularly limited as long as it does not destroy the electroformed spring 10. For example, to remove the core material 1 while leaving the conductive surface 2 inside the electroformed layer 4, the core material 1 is pulled from one side or both sides to deform it so that its cross-sectional area becomes smaller, forming a gap between the outer periphery of the core material 1 and the inner periphery of the conductive surface 2, allowing the core material 1 to be easily pulled out. Furthermore, if the conductive surfaces 2a and 2b have been removed, a gap will be formed between the core material 1 and the electroformed spring 10, making it relatively easy to pull out the core material 1. Furthermore, the core material 1 can also be immersed in a dissolving solution and removed by dissolving it chemically or electrochemically. These methods can be selected according to the material of the core material 1, etc.
本発明では、電鋳バネ10を切断して所望の長さとする工程を含んでもよく、この場合、この工程を、芯材1を引き抜く工程の前に行ってもよく、芯材1を引き抜く工程の後に行ってもよい。また、上述のとおり、電鋳バネ10を所望の長さとするために、レーザー照射の工程において、所定の幅で全周にわたって無機材料層3を残してもよい。
The present invention may include a step of cutting the electroformed spring 10 to the desired length, in which case this step may be performed before or after the step of pulling out the core material 1. Also, as described above, in order to cut the electroformed spring 10 to the desired length, the inorganic material layer 3 may be left over a predetermined width around the entire circumference in the laser irradiation step.
これによって得られる電鋳バネ10は、例えば、0.1mm以上、0.2mm以上、0.3mm以上、0.5mm以上、又は1.0mm以上の長さを有していてもよく、10mm以下、8.0mm以下、5.0mm以下、3.0mm以下、2.0mm以下、又は1.0mm以下の長さを有していてもよい。例えば、電鋳バネ10は、0.1mm以上10mm以下、又は0.2mm以上5.0mm以下の長さを有していてもよい。
The electroformed spring 10 obtained thereby may have a length of, for example, 0.1 mm or more, 0.2 mm or more, 0.3 mm or more, 0.5 mm or more, or 1.0 mm or more, or may have a length of 10 mm or less, 8.0 mm or less, 5.0 mm or less, 3.0 mm or less, 2.0 mm or less, or 1.0 mm or less. For example, the electroformed spring 10 may have a length of 0.1 mm or more and 10 mm or less, or 0.2 mm or more and 5.0 mm or less.
本明細書によれば、以下の態様の電鋳バネの製造方法が提供される。
(態様1)
態様1は、導電性表面2を有する芯材1の前記導電性表面2上に無機材料層3を形成する工程、前記無機材料層3の一部を螺旋状に除去して、前記導電性表面2を螺旋状に露出する工程、螺旋状に露出した前記導電性表面2a上に電鋳層4bを形成する工程、残りの前記無機材料層3を除去して、バネ形状の電鋳層を芯材上に得る工程、及び前記バネ形状の電鋳層と前記芯材1とを分離して電鋳バネを得る工程を含む、電鋳バネ10の製造方法である。 According to the present specification, there is provided a method for manufacturing an electroformed spring having the following features.
(Aspect 1)
Aspect 1 is a method for manufacturing an electroformed spring 10, including a step of forming an inorganic material layer 3 on a conductive surface 2 of a core material 1 having a conductive surface 2, a step of spirally removing a portion of the inorganic material layer 3 to expose the conductive surface 2 in a spiral shape, a step of forming an electroformed layer 4b on the spirally exposed conductive surface 2a, a step of removing the remaining inorganic material layer 3 to obtain a spring-shaped electroformed layer on the core material, and a step of separating the spring-shaped electroformed layer from the core material 1 to obtain an electroformed spring.
(態様1)
態様1は、導電性表面2を有する芯材1の前記導電性表面2上に無機材料層3を形成する工程、前記無機材料層3の一部を螺旋状に除去して、前記導電性表面2を螺旋状に露出する工程、螺旋状に露出した前記導電性表面2a上に電鋳層4bを形成する工程、残りの前記無機材料層3を除去して、バネ形状の電鋳層を芯材上に得る工程、及び前記バネ形状の電鋳層と前記芯材1とを分離して電鋳バネを得る工程を含む、電鋳バネ10の製造方法である。 According to the present specification, there is provided a method for manufacturing an electroformed spring having the following features.
(Aspect 1)
上記の態様によれば、従来技術で用いられるレジストを用いていないため、最終の電鋳バネ10にレジスト残渣が残ることはなく、製造して得られる電鋳バネの動作及び/又は電気抵抗にレジストの影響が出ない。
According to the above embodiment, since the resist used in the conventional technology is not used, no resist residue remains on the final electroformed spring 10, and the resist does not affect the operation and/or electrical resistance of the electroformed spring obtained by manufacturing.
(態様2)
態様2は、導電性表面2を有する芯材1に電鋳層3を形成する工程の前に、芯材にめっき処理を行うことによって導電性表面2を形成する工程を含む。 (Aspect 2)
The second embodiment includes a step of forming theconductive surface 2 by plating the core material prior to the step of forming the electroformed layer 3 on the core material 1 having the conductive surface 2 .
態様2は、導電性表面2を有する芯材1に電鋳層3を形成する工程の前に、芯材にめっき処理を行うことによって導電性表面2を形成する工程を含む。 (Aspect 2)
The second embodiment includes a step of forming the
上記の態様によれば、電鋳層4bを形成するための電鋳工程を行うための電気伝導性を芯材に与えることが容易になる。
The above aspect makes it easy to provide the core material with electrical conductivity for performing the electroforming process to form the electroformed layer 4b.
(態様3)
態様3は、無機材料層3の螺旋状の除去が、レーザー照射Lによって行われる。 (Aspect 3)
In the third embodiment, the spiral removal of theinorganic material layer 3 is performed by laser irradiation L.
態様3は、無機材料層3の螺旋状の除去が、レーザー照射Lによって行われる。 (Aspect 3)
In the third embodiment, the spiral removal of the
上記の態様によれば、無機材料層3を螺旋状に除去する工程を比較的容易に行うことができる。
According to the above embodiment, the process of removing the inorganic material layer 3 in a spiral shape can be carried out relatively easily.
(態様4)
態様4は、電鋳層4を形成した後に、前記電鋳層4及び/又は前記無機材料層3の表面を研削する工程をさらに含む。 (Aspect 4)
The fourth embodiment further includes a step of grinding the surface of the electroformed layer 4 and/or theinorganic material layer 3 after the electroformed layer 4 is formed.
態様4は、電鋳層4を形成した後に、前記電鋳層4及び/又は前記無機材料層3の表面を研削する工程をさらに含む。 (Aspect 4)
The fourth embodiment further includes a step of grinding the surface of the electroformed layer 4 and/or the
上記の態様によれば、表面の研削によって、無機材料層3a,3bを確実に表出させることができるため無機材料層3a,3bを除去する工程が容易となり、また電鋳層4bの厚みを高度に均一化することができる。
According to the above embodiment, the inorganic material layers 3a and 3b can be reliably exposed by grinding the surface, making the process of removing the inorganic material layers 3a and 3b easier and enabling the thickness of the electroforming layer 4b to be highly uniform.
(態様5)
態様5は、前記バネ形状の電鋳層と芯材1とを分離した後に、所定の長さに切断する工程を含む。 (Aspect 5)
A fifth aspect includes a step of separating the spring-shaped electroformed layer from thecore material 1 and then cutting the separated core material to a predetermined length.
態様5は、前記バネ形状の電鋳層と芯材1とを分離した後に、所定の長さに切断する工程を含む。 (Aspect 5)
A fifth aspect includes a step of separating the spring-shaped electroformed layer from the
上記の態様によれば、下記の態様6と比較して、電鋳層4を露出する工程が簡略化することができる。
According to the above embodiment, the process of exposing the electroforming layer 4 can be simplified compared to embodiment 6 below.
(態様6)
態様6は、電鋳層4を螺旋状に露出する工程が、所定の幅で全周にわたって電鋳層4を露出する工程を含む。 (Aspect 6)
In the sixth aspect, the step of exposing the electroformed layer 4 in a spiral shape includes a step of exposing the electroformed layer 4 over the entire circumference with a predetermined width.
態様6は、電鋳層4を螺旋状に露出する工程が、所定の幅で全周にわたって電鋳層4を露出する工程を含む。 (Aspect 6)
In the sixth aspect, the step of exposing the electroformed layer 4 in a spiral shape includes a step of exposing the electroformed layer 4 over the entire circumference with a predetermined width.
上記の態様によれば、切断工程を行う必要がない。
According to the above embodiment, there is no need to perform a cutting process.
10,10a~10d…電鋳バネ
1…芯材
1a…螺旋状に露出している芯材
1b…全周にわたって露出している芯材
2…導電性表面
2a…螺旋状に露出している導電性表面
3…無機材料層
3a…螺旋状の残りの無機材料層
3b…全周にわたる残りの無機材料層
4…電鋳層
4a…無機材料層3b上に形成された電鋳層
4b…導電性表面2a上に形成された電鋳層
4c…無機材料層3b上に形成された電鋳層
11~19:第1~第9の中間物
L…レーザー
10, 10a to 10d...electroformed spring 1... core material 1a... core material 1b exposed in a spiral shape... core material 2 exposed over the entire circumference... conductive surface 2a... conductive surface 3 exposed in a spiral shape... inorganic material layer 3a... remaining inorganic material layer 3b in a spiral shape... remaining inorganic material layer 4 over the entire circumference... electroformed layer 4a... electroformed layer 4b formed on inorganic material layer 3b... electroformed layer 4c formed on conductive surface 2a... electroformed layers 11 to 19 formed on inorganic material layer 3b: 1st to 9th intermediates L... laser
1…芯材
1a…螺旋状に露出している芯材
1b…全周にわたって露出している芯材
2…導電性表面
2a…螺旋状に露出している導電性表面
3…無機材料層
3a…螺旋状の残りの無機材料層
3b…全周にわたる残りの無機材料層
4…電鋳層
4a…無機材料層3b上に形成された電鋳層
4b…導電性表面2a上に形成された電鋳層
4c…無機材料層3b上に形成された電鋳層
11~19:第1~第9の中間物
L…レーザー
10, 10a to 10d...
Claims (6)
- 導電性表面を有する芯材の前記導電性表面上に無機材料層を形成する工程、
前記無機材料層の一部を螺旋状に除去して、前記導電性表面を螺旋状に露出する工程、
螺旋状に露出した前記導電性表面上に電鋳層を形成する工程、
残りの前記無機材料層を除去して、バネ形状の電鋳層を芯材上に得る工程、及び
前記バネ形状の電鋳層と前記芯材とを分離して電鋳バネを得る工程
を含む、電鋳バネの製造方法。 forming an inorganic material layer on a conductive surface of a core material having a conductive surface;
removing a portion of the inorganic material layer in a spiral shape to expose the conductive surface in a spiral shape;
forming an electroforming layer on the spirally exposed conductive surface;
removing the remaining inorganic material layer to obtain a spring-shaped electroformed layer on a core material; and separating the spring-shaped electroformed layer from the core material to obtain an electroformed spring. - 導電性表面を有する芯材に無機材料層を形成する工程の前に、芯材にめっき処理を行うことによって導電性表面を形成する工程を含む、請求項1に記載の電鋳バネの製造方法。 The method for manufacturing the electroformed spring according to claim 1 includes a step of forming a conductive surface by plating the core material before the step of forming an inorganic material layer on the core material having a conductive surface.
- 前記無機材料層の螺旋状の除去が、レーザー照射によって行われる、請求項1に記載の電鋳バネの製造方法。 The method for manufacturing an electroformed spring according to claim 1, wherein the spiral removal of the inorganic material layer is performed by laser irradiation.
- 前記電鋳層を形成した後に、前記電鋳層及び/又は前記無機材料層の表面を研削する工程をさらに含む、請求項1に記載の電鋳バネの製造方法。 The method for manufacturing an electroformed spring according to claim 1, further comprising a step of grinding the surface of the electroformed layer and/or the inorganic material layer after forming the electroformed layer.
- 前記バネ形状の電鋳層と前記芯材とを分離した後に、所定の長さに切断する工程を含む、請求項1に記載の電鋳バネの製造方法。 The method for manufacturing an electroformed spring according to claim 1, further comprising a step of cutting the spring-shaped electroformed layer and the core material to a predetermined length after the electroformed layer and the core material are separated.
- 前記導電性表面を螺旋状に露出する工程が、所定の幅で全周にわたって前記無機材料層を残す工程を含む、請求項1に記載の電鋳バネの製造方法。
The method for manufacturing an electroformed spring according to claim 1 , wherein the step of exposing the conductive surface in a spiral shape includes the step of leaving the inorganic material layer over the entire circumference with a predetermined width.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022182192A JP2024071312A (en) | 2022-11-14 | 2022-11-14 | Method for manufacturing electroformed spring |
JP2022-182192 | 2022-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106129A1 true WO2024106129A1 (en) | 2024-05-23 |
Family
ID=91084187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/037899 WO2024106129A1 (en) | 2022-11-14 | 2023-10-19 | Method for producing electroformed spring |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024071312A (en) |
TW (1) | TW202419879A (en) |
WO (1) | WO2024106129A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091878A (en) * | 2002-09-02 | 2004-03-25 | Japan Science & Technology Corp | Method for forming tree-dimensional fine structure by plating |
JP2010281607A (en) * | 2009-06-02 | 2010-12-16 | Luzcom:Kk | Probe and tool for substrate inspection |
JP2010286253A (en) * | 2009-06-09 | 2010-12-24 | Sumitomo Electric Ind Ltd | Method for manufacturing contact probe and contact probe |
JP2012032264A (en) * | 2010-07-30 | 2012-02-16 | Nidec-Read Corp | Contact piece and method of manufacturing contact piece |
JP2012251837A (en) * | 2011-06-01 | 2012-12-20 | Nidec-Read Corp | Connection terminal, method of manufacturing connection terminal, and micro spring |
WO2013072954A1 (en) * | 2011-11-15 | 2013-05-23 | 株式会社Leap | Production method for transfer mold, transfer mold produced using same, and component produced using said transfer mold |
WO2022158357A1 (en) * | 2021-01-21 | 2022-07-28 | 富士フイルム株式会社 | Master mold, and method for producing metal molded article |
-
2022
- 2022-11-14 JP JP2022182192A patent/JP2024071312A/en active Pending
-
2023
- 2023-10-19 WO PCT/JP2023/037899 patent/WO2024106129A1/en unknown
- 2023-11-14 TW TW112143900A patent/TW202419879A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091878A (en) * | 2002-09-02 | 2004-03-25 | Japan Science & Technology Corp | Method for forming tree-dimensional fine structure by plating |
JP2010281607A (en) * | 2009-06-02 | 2010-12-16 | Luzcom:Kk | Probe and tool for substrate inspection |
JP2010286253A (en) * | 2009-06-09 | 2010-12-24 | Sumitomo Electric Ind Ltd | Method for manufacturing contact probe and contact probe |
JP2012032264A (en) * | 2010-07-30 | 2012-02-16 | Nidec-Read Corp | Contact piece and method of manufacturing contact piece |
JP2012251837A (en) * | 2011-06-01 | 2012-12-20 | Nidec-Read Corp | Connection terminal, method of manufacturing connection terminal, and micro spring |
WO2013072954A1 (en) * | 2011-11-15 | 2013-05-23 | 株式会社Leap | Production method for transfer mold, transfer mold produced using same, and component produced using said transfer mold |
WO2022158357A1 (en) * | 2021-01-21 | 2022-07-28 | 富士フイルム株式会社 | Master mold, and method for producing metal molded article |
Also Published As
Publication number | Publication date |
---|---|
JP2024071312A (en) | 2024-05-24 |
TW202419879A (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102753980B (en) | Manufacturing method for contact for current inspection jig, contact for current inspection jig manufactured using said method, and current inspection jig provided with said contact | |
US9533376B2 (en) | Methods of forming parts using laser machining | |
US11999016B2 (en) | Methods of forming parts using laser machining | |
JPWO2019208216A1 (en) | Cylindrical body and method for manufacturing the same | |
WO2024106129A1 (en) | Method for producing electroformed spring | |
JP2008126375A (en) | Manufacturing method for three-dimensional microstructure | |
WO2024106128A1 (en) | Method for producing electroformed spring, and electroformed spring | |
JP2008025833A (en) | Nickel electrocasting coiled ultrafine spring and nickel electrocasting pipe equipped with coiled spring structure partly | |
TWI775857B (en) | touch probe | |
WO2012176289A1 (en) | Spiral probe and manufacturing method for same | |
US441884A (en) | Island | |
CN101799486A (en) | Method for manufacturing probe and probe array thereof | |
JP2003177143A (en) | Manufacturing method of pencil-type probe for probe card, and pencil-type probe | |
JP2008116284A (en) | Contact probe, and method for manufacturing the same | |
JP4257676B2 (en) | Forming of three-dimensional microstructures by plating | |
JP5089107B2 (en) | Manufacturing method of fine parts | |
KR20040110905A (en) | Ultra-fine pin holder of which inner and outer diameters are processed at high precision, and on inner part of which conductive metal layer is coated, and method for manufacturing the same | |
KR20050005947A (en) | Ultra-minute pin holder and the same manufacturing method | |
TW202231386A (en) | Semi-finished pipe, method for producing semi-finished pipe, pipe, and method for producing pipe | |
WO2004067811A1 (en) | The manufacturing method of cut electro-forming member whitch have stepped form, and cut electro-forming member whitch have stepped form made by it | |
JPH06179983A (en) | Production of thin-walled three-dimensional hollow structure | |
JP4173878B2 (en) | Barrel plating method | |
KR0165523B1 (en) | Method for fabricating a fine hole structure | |
WO2004067805A1 (en) | Ultrafine pipe by electroforming and method for manufacturing the same | |
JP2005106690A (en) | Junction-type probe for electrical characteristics measurement, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891285 Country of ref document: EP Kind code of ref document: A1 |