WO2024106055A1 - 組電池 - Google Patents

組電池 Download PDF

Info

Publication number
WO2024106055A1
WO2024106055A1 PCT/JP2023/036416 JP2023036416W WO2024106055A1 WO 2024106055 A1 WO2024106055 A1 WO 2024106055A1 JP 2023036416 W JP2023036416 W JP 2023036416W WO 2024106055 A1 WO2024106055 A1 WO 2024106055A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
block
battery pack
spacer
spacers
Prior art date
Application number
PCT/JP2023/036416
Other languages
English (en)
French (fr)
Inventor
辰夫 菅原
Original Assignee
ビークルエナジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビークルエナジージャパン株式会社 filed Critical ビークルエナジージャパン株式会社
Publication of WO2024106055A1 publication Critical patent/WO2024106055A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs

Definitions

  • This invention relates to a battery pack having multiple battery blocks each having multiple batteries.
  • aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries were the mainstream.
  • lead batteries nickel-cadmium batteries
  • nickel-hydrogen batteries were the mainstream.
  • lithium secondary batteries which have high energy density, and research, development, and commercialization of these batteries have progressed rapidly.
  • each battery cell must be held in place by sandwiching it between insulating spacers made of resin or other materials. Therefore, for a given number of battery cells, N, the number of insulating spacers required is always N+1, and the assembly method requires stacking the battery cells and insulating spacers alternately one by one.
  • Patent Document 1 describes a configuration for battery arrangement that prevents stress from being generated in each battery even if the battery positions shift when, for example, two battery blocks are secured with a common securing plate. In Patent Document 1, even when the securing plate is common to multiple battery blocks, the spacers between the batteries are separate parts for each battery block.
  • a combination of batteries and spacers is called a battery block, and a combination of battery blocks is called a battery pack.
  • a battery block is assembled by stacking battery cells and insulating spacers one by one in an alternating manner.
  • battery cells and insulating spacers are assembled by stacking them one by one in an alternating manner, so the more battery cells there are, the greater the labor hours and number of parts become. This therefore drives up manufacturing costs.
  • the objective of the present invention is to shorten and simplify the process of forming such a battery pack as a whole, and to realize a configuration that reduces the manufacturing costs of the battery pack.
  • the present invention aims to provide a secondary battery module that can suppress an increase in the number of associated insulating spacer parts and the labor required to assemble them, even if the number of battery cells used in the battery module is increased, in which two or more blocks of battery cells are used.
  • the present invention solves the problems described above, and is mainly comprised of the following: In other words, rather than assembling the battery blocks individually, multiple battery blocks are assembled simultaneously. Specifically, the spacers, end plates, and side plates for fastening the batteries that are placed between the batteries are common to each block that makes up the assembled battery. And by assembling the assembled battery not block by block, but multiple blocks at the same time, the labor hours are reduced.
  • the specific means of the present invention are as follows:
  • the battery pack described in (1) is characterized in that a first end plate is disposed at both ends of the first battery block in the first direction, a second end plate is disposed at both ends of the second battery block in the first direction, and the inter-block side rail presses the first battery block in the first direction via the first end plate and presses the second battery block in the first direction via the second end plate.
  • the battery pack described in (2) is characterized in that the first end plate and the second end plate are formed continuously via a second connecting portion, and the inter-block side rail is disposed at the second connecting portion.
  • multiple battery blocks are assembled simultaneously, which results in a significant reduction in the cost of the assembly process.
  • the insulating plates that hold the battery cells are connected and integrated between the blocks, rather than for each block, which also reduces the number of parts.
  • battery users can also reduce the labor required to connect the battery blocks, since they purchase multiple battery blocks already connected.
  • FIG. FIG. FIG. 13 is a plan view of a battery pack in which four battery blocks are arranged in a comparative example.
  • 1 is a plan view of a battery pack in which four battery blocks are arranged in a first embodiment of the present invention
  • 1 is an exploded perspective view of a battery pack in which four battery blocks are arranged according to a first embodiment of the present invention
  • FIG. 2 is a perspective view of a spacer according to the first embodiment.
  • FIG. 2 is a perspective view of an inter-block side rail of the first embodiment.
  • FIG. 13 is a perspective view showing another example of the spacer.
  • FIG. 13 is a perspective view showing still another example of the spacer.
  • FIG. 11 is a perspective view of a battery pack according to a second embodiment.
  • FIG. 11 is an exploded perspective view of a battery pack according to a second embodiment.
  • FIG. 11 is a perspective view of a battery pack according to a third embodiment.
  • FIG. 11 is an exploded perspective view of a battery pack according to a third embodiment.
  • FIG. 13 is a perspective view of a battery pack according to a fourth embodiment.
  • FIG. 13 is an exploded perspective view of a battery pack according to a fourth embodiment.
  • the present invention is characterized by its configuration that allows multiple battery blocks to be formed simultaneously, but first, as a comparative example, we will explain the assembly configuration for a conventional single block.
  • FIG. 1 is a perspective view of a battery cell 1.
  • the battery cell 1 has a battery can 2, a battery lid 3, a positive terminal 4, a negative terminal 5, a gas exhaust valve 6, an electrolyte, a charging/discharging element, and an insulating case (not shown).
  • a rechargeable secondary battery such as a lithium ion secondary battery is used for the battery cell 1.
  • the battery cell 1 of the first embodiment corresponds to a single cell of a battery pack according to one embodiment of the present invention.
  • the battery can 2 has a rectangular parallelepiped shape with one end of the internal space open, and is made of aluminum or an aluminum alloy.
  • the battery can 2 has a pair of opposing side plates 2a with a large area, a pair of opposing side plates 2b with a small area, and a bottom plate 2c on the opposite side to the opening.
  • the internal space of the battery can 2 contains a charging/discharging element covered by an insulating case, and an electrolyte is injected into it.
  • the positive electrode of the charging/discharging element is connected to the positive terminal 4, and the negative electrode of the charging/discharging element is connected to the negative terminal 5.
  • the battery lid 3 has the same rectangular flat plate shape as the bottom plate 2c, is made of aluminum or an aluminum alloy, and closes the opening of the battery can 2.
  • the battery lid 3 is joined to the opening of the battery can 2 by a joining means such as laser welding.
  • a gas exhaust valve 6 is provided in the center of the battery lid 3. When the battery cell 1 generates heat due to an abnormality such as overcharging, generating gas, and the pressure inside the battery can 2 rises and reaches a predetermined pressure, the gas exhaust valve 6 opens and releases the gas from inside the container, thereby reducing the pressure inside the battery can 2.
  • through holes are formed at one end and the other end of the battery cover 3, and a positive terminal 4 and a negative terminal 5 are attached to the holes.
  • the portions of the positive terminal 4 and the negative terminal 5 that are exposed to the outside from the battery cover 3 are each formed as a rectangular parallelepiped and have a flat top surface.
  • the power generated in the battery cell 1 is supplied to an external device via the positive terminal 4 and the negative terminal 5, or power generated externally is supplied to a charging/discharging element via the positive terminal 4 and the negative terminal 5 for charging.
  • FIG. 2 is an exploded perspective view of a battery block.
  • the battery block has a plurality of stacked battery cells 1 and spacers 20, a pair of end spaces 30, a pair of end plates 40, and a pair of side rails 50.
  • the spacers 20 are made of insulating synthetic resin, and as shown in FIG. 2, are sandwiched alternately between adjacent battery cells 1 and stacked together with the battery cells 1 in the x direction.
  • Each spacer 20 has a protrusion 21 extending in the x direction at its end, and holds the battery cell 1 in a recess formed by the protrusion 21, thereby regulating the y and Z directions. Note that in this specification, when the x direction is defined as the first direction, the second direction perpendicular to the x direction is sometimes referred to as the y direction.
  • the end spacer 30 basically has the same structure as the spacer 20. That is, it is made of insulating synthetic resin, and the outermost battery cell 1 is placed on the outside. Since the battery cell 1 is placed on only one side of the end spacer 30, the protrusion 31 is formed only on one side of the end spacer 30.
  • End plates 40 are arranged on the outside of the end spacers 30.
  • Side rails 50 press the end plates 40 on both sides in the x direction to fix the stack of battery cells 1 and spacers 20 in place.
  • the end plates may be made of metal or resin. In any case, they need to have the mechanical strength to stably fasten the stack of battery cells 1 and spacers 20.
  • holes 51 in the side rail 50 are aligned with holes 41 in the end plate, and the stack of battery cells 1 and spacers 20 is tightened and fixed in the x direction with screws 60.
  • the side rail 50 is usually made of metal.
  • a bus bar cover 200 made of an insulating material such as resin is arranged to correspond to the terminals 4, 5 formed on the battery cell 1.
  • the battery cells 1 are arranged so that the terminals of adjacent batteries are positive or negative.
  • the positive and negative electrodes 4, 5 of adjacent batteries are connected by a bus bar 210.
  • An end bus bar 220 is connected to the outermost terminal of each block, which is connected to other battery blocks or an external circuit.
  • Battery blocks are often used with multiple battery cells 1 connected in series, but there are cases where a sufficient output voltage cannot be obtained even with a series connection. In such cases, multiple battery blocks are used connected in series. If it is desired to increase the output current, the battery blocks are connected in parallel. This is a matter of terminal connection, and the present invention can be applied to either case.
  • the top diagram in Figure 3 is a plan view showing four battery blocks arranged side by side and connected in series.
  • each battery block is assembled separately.
  • battery cells 1 and spacers 20 are stacked in an alternating manner. Note that in Figure 3, the protrusions formed on the ends of the spacers 20 have been omitted to avoid complicating the illustration.
  • the stack of battery cells 1 and spacers 20 is sandwiched between end spacers 30 and end plates 40, and is pressed and fixed by side rails 50.
  • Adjacent batteries 1 are stacked in opposite directions so that the positive and negative terminals of the adjacent batteries 1 are adjacent to each other.
  • adjacent positive and negative terminals are connected by bus bars 210.
  • End bus bars 220 are connected to the terminals at the ends of each block. The end bus bars 220 are connected to the electrode terminals of the adjacent battery block or to the terminals of an external device.
  • the lower diagram in Figure 3 is a front view of each battery block.
  • the flange portion of the side rail 50 is stacked on the end plate 40, and the holes formed in the flange portion are aligned with the holes in the end plate, and the stack of battery cells 1 and spacers 20 is sandwiched and pressed together with screws 60 to secure them in place.
  • the four battery blocks are manufactured independently by the battery manufacturer. Therefore, the manufacturing cost is four times the manufacturing cost of each battery block. Furthermore, the four battery blocks must be connected by the user. This imposes a corresponding burden on the user.
  • FIG. 4 shows a plan view and a front view of a battery pack according to the first embodiment of the present invention.
  • the protrusions of the spacers 20 have been omitted to avoid complicating the drawing.
  • the feature of FIG. 4 is that four battery blocks are formed as a single unit at the same time.
  • the spacers 20 to be placed between the battery cells 1 are formed as a single unit of four.
  • the battery cells 1 are arranged four at a time between the spacers.
  • the end spacers 30 and end plates 40 that sandwich the battery cells 1 and spacers 20 from both sides are also formed as a single unit of four.
  • the spacer 20, the end spacer 30, and the end plate 40 have cutouts through which the extensions 71 of the inter-block side rails 70 pass.
  • the flanges 72 of the inter-block side rails 70 press the end plates 40 with screws 80 on the outside of the end plates 40, thereby pressing and fixing the battery blocks from both sides.
  • pressing is shown as tightening in FIG. 4 and FIG. 5, pressing is a broader concept than tightening. For example, pressing may be achieved by using swaging, etc., instead of using screws, etc.
  • each battery block i.e., in three locations.
  • the outside of the battery block located on the outside is secured by a side rail 50, as in FIG. 3.
  • the arrangement of the battery cells 1 is also the same as in FIG. 3. Therefore, the arrangement of the bus bars 210 and end bus bars 220 is basically the same as in FIG. 3.
  • the battery pack is composed of four battery blocks, but the only terminals that connect to the outside are the two end bus bars 220 located on the battery blocks at both ends.
  • FIG. 4 is a front view of the battery pack according to Example 1.
  • end plates 40 are formed integrally with four battery blocks.
  • End plates 40 have cutouts 42 formed at the boundaries of the battery blocks, and extensions 71 of inter-block side rails 70 are positioned in the cutouts 42.
  • Flanges 72 of inter-block side rails 70 come into contact with the outer surface of end plates 40 and are pressed by screws 80. When screws 80 are pressed, the two battery blocks are pressed and secured together by the end plates 40 and inter-block side rails 70.
  • connection portion 43 the portion of the end plate 40 where the notch 42 is formed has a narrower width. This portion is called the connection portion 43.
  • the connection portion 43 can also be called the linking portion 43.
  • the connection portion 43 has a smaller bending strength or section modulus than other portions of the end plate 40. Therefore, even if a dimensional error occurs between the battery blocks, stress is relieved at this connection portion 43.
  • FIG. 5 is an exploded perspective view of Example 1.
  • four battery blocks are integrally formed.
  • the battery cells 1 and spacers 20 are stacked alternately in the x direction (sometimes called the first direction).
  • the spacers 20 are smaller than the thickness of the battery cells 1, and are therefore depicted as a single sheet. Also, to avoid complicating the drawing, the protrusions 21 formed on the spacers 20 have been omitted.
  • the spacer 20 is formed in common for the four battery blocks.
  • a notch 22 is formed at the boundary between each block, and the extension 71 of the side rail 70 between the blocks is inserted through this notch 22.
  • the connection portion 23 where the notch 22 is formed has a smaller bending strength or section modulus than the other portions, so that even if a dimensional error occurs between the block batteries, the stress can be absorbed at this connection portion.
  • the end spacer 30 is formed in common to the four battery blocks, with a notch 32 formed at the boundary portion.
  • the width of the end spacer 30 where the notch 32 is formed is narrower, and the bending strength or section modulus is smaller than in other portions. Therefore, even if a dimensional error occurs between the block batteries, the stress can be absorbed at this connection portion 33.
  • the configuration of the end plate 40 is as described in FIG. 4.
  • the end plate 40 is basically the same as the spacer 20 and end spacer 30.
  • the extension portion 71 of the inter-block side rail 70 shown in FIG. 5 passes through the notch 22 of the spacer 20, the notch 32 of the end spacer 30, and the notch 42 of the end plate 40, and the flange portion 72 of the inter-block side rail 70 presses the two end plates 40 in the stacking direction (x direction), fixing the stacked structure of the battery cell 1 and the spacer.
  • the outside of the battery block on both sides in the y direction (sometimes called the direction perpendicular to the first direction) has two end plates 40 pressed by side rails 50, as in the conventional method, and the battery cells 1 and spacers 20 are fixed in the stacking direction.
  • the spacers 20, end spacers 30, and end plates 40 are the size of four battery cells 1, but because these materials are formed by molding resin, mass production is easy once the mold is designed, so the increased size does not result in a significant increase in costs. Rather, the reduced number of parts has the effect of reducing costs.
  • the end plates 40 are often made of metal, in which case they are press-molded or die-cast. In the case of press molding, mass production is easy once the press mold is manufactured once. Therefore, even when the end plates are made of metal, the cost savings from the reduced number of parts outweighs the increased costs from larger parts.
  • FIG 6 is a perspective view of a spacer 20 used in the present invention.
  • the spacer 20 in Figure 6 is a spacer that corresponds to four battery blocks.
  • the protrusions of the spacer 20 have been omitted in Figure 6.
  • a notch 22 is formed in the portion of the spacer 20 that corresponds to the boundary between the battery blocks.
  • An extension 71 of an inter-block side rail 70 is inserted into this notch 22, pressing and fixing the stack of battery cells 1 and spacers 20.
  • connection portion 23 the width of the spacer 20 is narrower where the notch 22 is formed, and this portion is referred to as the connection portion 23 in this specification.
  • this connection portion 23 is a mechanically weak portion, and even if slight dimensional errors occur between the battery blocks due to manufacturing errors, the stress is alleviated by deformation of this connection portion 23.
  • the connection portion 23 can be used as a mechanical buffer.
  • connection portion 23 can be configured to be actively used as a buffer.
  • One configuration is to make the plate thickness of the spacer at the connection portion 23 thinner than other portions in order to further reduce the mechanical strength of the connection portion 23. In other words, it is sufficient for the connection portion 23 to enable the spacer 20 to exist as a single unit when the battery cell 1 is assembled into the block, so there is no problem with the reliability of the mechanical strength of the connection portion 23 of the spacer 20.
  • connection portion 23 of the spacer 20 is, for example, to form only the connection portion of the spacer 20 from an elastic material such as rubber or polypropylene.
  • the portion that functions as the spacer 20 is then formed from an insulating resin.
  • This type of configuration can be formed, for example, using a technique known as two-tone molding. This type of configuration is also the same for the end spacer 30 and the end plate 40.
  • Figure 7 is a perspective view of an inter-block side rail 70 that passes through a cutout portion 22 of a spacer 20, etc.
  • an extension portion 71 of the inter-block side rail 70 passes through a cutout portion of a spacer 22, etc.
  • the flange portion 72 comes into contact with the end plate 40, and a screw 80 is inserted into a screw hole 73 formed in the flange portion 72 and a screw hole formed in the end plate 40, and pressure is applied to tighten the battery cell 1 and spacer 20, thereby fastening the stack of battery cells 1 and spacers 20.
  • the inter-block side rail 70 can be formed by various methods.
  • Figure 7 shows an example in which a single metal plate is formed by sheet metal processing. That is, a shape corresponding to the developed plane of the inter-block side rail 70 is created, for example, by pressing. Then, the shape shown in Figure 7 can be processed by bending the metal using sheet metal. Although the shape differs, the manufacturing process is basically the same as that of the side rail 50.
  • the inter-block side rail 70 shown in Figure 7 is an example, and there are many other variations. There is no need to insist on sheet metal processing, and the extension portion 71 and flange portion 72 of the inter-block side rail 70 can be manufactured separately and fixed by welding, screws, crimping, etc. Furthermore, the extension portion 71 can be fixed directly to the end plate 40 by welding, screws, crimping, etc.
  • FIG. 6 shows an example in which a notch 22 is formed on the upper side of the spacer 20.
  • the notch 22 may be formed on the lower side of the spacer 20 as shown in FIG. 8.
  • the connection portion 23 will be positioned on the upper side of the spacer, but the operation is basically the same as that described for FIG. 6.
  • a configuration similar to the inter-block side rail 70 of FIG. 7 can be used.
  • Figure 9 shows an example where a hole 25 is formed in the spacer 20 instead of a notch in the portion corresponding to the boundary of the battery blocks.
  • the inter-block side rail is inserted through this hole 25. Therefore, the same inter-block side rail as in Figure 7 cannot be used.
  • an extension 71 of a rod-shaped inter-block side rail 70 whose cross section is similar to the hole 25 of the spacer 20 is inserted, and a flange 72 is attached to the extension 71 of the inter-block side rail 70 on the outside of the end plate 40 by means of screwing, crimping, welding, or other means. This flange 72 is then used to press the stack of battery cells 1 and spacers 20 in the stacking direction.
  • connection portion 43 has been used as an example of a fastening portion of the present invention.
  • the end plates, spacers, and end spacers have a notched structure. Forming them as a single unit reduces the number of parts, which is preferable.
  • this portion can also be configured to connect multiple end plates, spacers, and end spacers with connecting members. Since parts corresponding to each battery block can be manufactured separately, this can be easily applied to battery packs with a different number of battery blocks.
  • Figure 10 is a perspective view of a battery pack of Example 2.
  • the configuration of Figure 10 differs from that of Example 1 in that the end plate and side rail are integrated into one part 100.
  • two battery blocks are arranged side by side instead of four.
  • the spacers and end spacers are integrated for two battery blocks, just like in Example 1.
  • the battery cells 1 and spacers 20 are stacked alternately in the stacking direction, but the spacers 20 are not visible. Instead, protrusions 21 that are part of the spacers 20 are visible at the ends of the blocks.
  • FIG. 10 there are two battery blocks, but as shown in FIG. 5 of Example 1, the spacers are integrated and the battery cells are assembled simultaneously for the two battery blocks. Each of the two battery blocks is sandwiched between two end spacers 30.
  • Example 1 The difference between FIG. 10 and Example 1 is that the end plate and the side rail are integrated into an integrated part 100. However, like Example 1, the integrated part 100 is also pressed and fastened in the stacking direction by the inter-block side rail 70. The two integrated parts 100 are connected by screws 101.
  • FIG. 11 is an exploded perspective view of FIG. 10.
  • the two end plates and two side rails are replaced by two U-shaped, plate-like integrated parts 100.
  • the integrated parts 100 have a simple shape, being simply a plate-like part bent. Therefore, they can be manufactured inexpensively.
  • the two integrated parts 100 are connected by screws 101.
  • the stacked structure of the battery cells 1 and spacers 20 is pressed in the stacking direction by the inter-block side rails 70, just like in Example 1. That is, the inter-block side rails pass through the cutouts of the spacers 20, end spacers 30, and integrated part 100, and press and secure the stacked structure from the outside of the integrated part 100.
  • FIG. 12 is a perspective view of the battery pack of Example 3
  • FIG. 13 is an exploded perspective view of the battery pack of Example 3.
  • the end plate and side rail form an integrated part 110.
  • the configuration of FIGS. 12 and 13 differs from FIG. 10 of Example 2 in the shape of the integrated part 110.
  • the two integrated parts 110 are connected by screws 80 on the flanges of the inter-block side rails 70.
  • Example 3 the structure of Example 3 can omit the screw fastening process using the screw 101 in FIG. 11.
  • the other configurations of Example 3 are the same as those described in Example 2.
  • Figure 14 is a perspective view of the battery pack of Example 4.
  • the end plates and side rails are also integrated into one piece.
  • the end plates and side rails are configured as two integrated pieces, in Example 4, it is made up of only one piece. That is, in Example 4, the integrated part 120 of the end plates and side rails is a rectangular plate-shaped frame, into which the stack of battery cells 1 and spacers 20 is inserted. And, like Examples 2 and 3, the stack of battery cells 1 and spacers 20 is pressed and secured by the inter-block side rails 70.
  • Figure 15 is an exploded perspective view of Example 4.
  • the integrated part 120 of the end plate and side rail is a plate-like rectangular frame.
  • notches 122 are formed in the parts corresponding to the notches in the spacer 20 and the end spacer 30.
  • Example 4 The inter-block side rail 70 is inserted through this cutout 122, and the stack of battery cells 1 and spacers 20 is pressed by screws 80 to fasten the battery block.
  • the rest of the configuration of Example 4 is the same as that described in Examples 2 and 3.
  • the end plate and side rail are formed from a single integrated part 120, which further reduces manufacturing costs.
  • 1...battery, 2...battery can, 3...battery cover, 4...positive terminal, 5...negative terminal, 6...gas exhaust valve, 20...spacer, 21...spacer end projection, 22...spacer notch, 23...spacer connection, 30...end spacer, 31...end spacer end projection, 32...end spacer notch, 33...end spacer connection, 40...end plate, 42...end plate notch, 43...end plate connection, 50...side rail, 60...screw, 7 0...Side rail between blocks, 71...Extension, 72...Flange, 73...Hole, 80...Screw, 100...Integrated part of end plate and side rail in Example 2, 101...Screw, 102...Notch, 110...Integrated part of end plate and side rail in Example 3, 101...Screw, 102...Notch, 120...Integrated part of end plate and side rail in Example 4, 122...Notch, 200...Busbar case, 210...Busbar, 220...End busbar

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

複数の電池ブロックを有する組電池を低コストで製造する。 本発明の具体的な構成の一例は次のとおりである。複数の第1の電池1と複数の第1のスペーサ20が交互に第1の方向に積層した構成を有する第1の電池ブロックと、複数の第2の電池1と複数の第2のスペーサ20が交互に前記第1の方向に積層した構成を有する第2の電池ブロックとが、前記第2の方向と直角方向に配置した組電池であって、前記第1のスペーサと前記第2のスペーサは、第1の連結部を介して一体で形成されており、前記第1の連結部22、23には、前記第1の電池ブロックと前記第2の電池ブロックを前記第1の方向に共通に押圧する、ブロック間サイドレール70が配置していることを特徴とする組電池。

Description

組電池
 この発明は、複数の電池を有する電池ブロックを複数有する組電池に関する。
 従来、再充電可能な二次電池の分野では、鉛電池、ニッケル-カドミウム電池ニッケル-水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれ、高エネルギー密度を有するリチウム二次電池が着目され、その研究、開発及び商品化が急速に進められた。
 一方、地球温暖化や枯渇燃料の問題から電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が各自動車メーカーで開発され、その電源として高容量で高出力な二次電池が求められるようになってきた。このような要求に合致する電源として、高電圧を有する非水溶液系のリチウム二次電池が注目されている。特に角形リチウム二次電池は、パック化した際の体積効率が優れているため、HEV用あるいはEV用として角形リチウム二次電池の開発への期待が高まっている。
 複数の二次電池をモジュール化する場合、各電池セルを樹脂等の絶縁スペーサで挟んで保持する必要がある。よって、電池セル数Nに対して、絶縁スペーサ数量は常に、N+1枚の絶縁スペーサを必要とし、組立て方法は1枚ずつ電池セルと絶縁スペーサを交互に積み重ねて組立てる必要がある。
 複数の電池は、積層方向に固縛されるが、固縛される前と固縛されたあとでは、各電池位置がずれる。特許文献1には、例えば、2個の電池ブロックを共通の固縛板で固縛する場合、電池の位置がずれても、各電池にストレスが発生しないようにする電池の配置についての構成が記載されている。特許文献1では、複数の電池ブロックにおいて、固縛板が共通の場合であっても、電池間のスペーサは、各電池ブロックにおいて別部品となっている。
特開2019-149227
 本発明では、電池とスペーサの組み合わせを電池ブロックと言い、電池ブロックを組み合わせたものを組電池という。電池ブロックの組み立ては、電池セルと絶縁スペーサを交互に1枚1枚重ねておこなう。特許文献1を含む従来技術では、電池セルと絶縁スペーサを交互に1枚1枚重ねて組立てを行うので、電池セル数が多くなるほど、作業工数及び部品点数が大きくなってしまう。したがって、製造コストを押し上げる。
 さらに、1個の電池ブロックでは、十分な出力電圧が得られない場合は、複数の電池ブロックをさらに接続し、組電池として使用する必要がある。このような場合、従来技術では、電池を使用する側、例えば、自動車メーカ等においては、購入した電池ブロックを自社でつなぎ合わせる作業を必要としていた。
 したがって、複数の電池を、スペーサを挟んで組み立てて電池ブロックを構成するための工程、このような電池ブロックを複数配置して組電池とする工程は、電池メーカ、電池を使用するユーザのいずれにも、製造コストの大きな負担となっていた。本発明の課題は、このような組電池を形成するための工程を、全体として短縮し、簡素化し、組電池の製造コストを低下させる構成実現することである。
 言い換えると、本発明は、電池セル2ブロック以上の複数ブロックが使用される電池モジュールにおいて、使用電池セル数が増えても、付随する絶縁スペーサの部品点数及びこれらを組み立てる際の作業工数の増加を抑制することが出来る二次電池モジュールを提供することを目的とする。
 本発明は、以上で述べたような課題を解決するものであり、主な構成は次のとおりである。すなわち、電池ブロックを個々に組み立てるのではなく、複数の電池ブロックを同時に組み立てることである。具体的には、電池と電池の間に配置するスペーサ、エンドプレート、固縛するためのサイドプレートを、組電池を構成するブロックごとに共通とする。そして、組電池をブロックごとではなく、複数のブロックを同時に組み立てることによって、作業工数を低減することである。本発明の具体的な手段は次のとおりである。
 (1)複数の第1の電池と複数の第1のスペーサが交互に第1の方向に積層した構成を有する第1の電池ブロックと、複数の第2の電池と複数の第2のスペーサが交互に前記第1の方向に積層した構成を有する第2の電池ブロックとが、前記第2の方向と直角方向に配置した組電池であって、前記第1のスペーサと前記第2のスペーサは、第1の連結部を介して一体で形成されており、前記第1の連結部には、前記第1の電池ブロックと前記第2の電池ブロックを前記第1の方向に共通に押圧する、ブロック間サイドレールが配置していることを特徴とする組電池。
 (2)前記第1の電池ブロックの前記第1の方向の両端部には第1のエンドプレートが配置し、前記第2の電池ブロックの前記第1の方向の両端部には第2のエンドプレートが配置し、前記ブロック間サイドレールは、前記第1のエンドプレートを介して前記第1の電池ブロックを前記第1の方向に押圧し、かつ、前記第2のエンドプレートを介して前記第2の電池ブロックを前記第1の方向に押圧していることを特徴とする(1)に記載の組電池。
 (3)前記第1のエンドプレートと前記第2のエンドプレートとは、第2の連結部を介して連続して形成され、前記第2の連結部には、前記ブロック間サイドレールが配置していることを特徴とする(2)に記載の組電池。
 本発明によれば、複数の電池ブロックを同時に組み立てるので、組み立て工程の大幅な原価低減になる。また、本発明によれば、電池セルを挟んで保持する絶縁板を、ブロック毎ではなく、ブロック間で繋げて一体化するので、部品点数も削減することが出来る。さらに、電池のユーザにおいても、複数の電池ブロックが、すでに接続された状態で購入するので、電池ブロックを接続するための工数を削減することが出来る。
電池の斜視図である。 電池ブロックの分解斜視図である。 比較例における、4個の電池ブロックを配置した組電池の平面図である。 本発明の実施例1における、4個の電池ブロックを配置した組電池の平面図である。 本発明の実施例1における、4個の電池ブロックを配置した組電池の分解斜視図である。 実施例1のスペーサの斜視図である。 実施例1のブロック間サイドレールの斜視図である。 スペーサの他の例を示す斜視図である。 スペーサのさらに他の例を示す斜視図である。 実施例2の組電池の斜視図である。 実施例2の組電池の分解斜視図である。 実施例3の組電池の斜視図である。 実施例3の組電池の分解斜視図である。 実施例4の組電池の斜視図である。 実施例4の組電池の分解斜視図である。
 以下、実施例により、本発明の内容を詳細に説明する。
 本発明は、複数の電池ブロックを同時に形成することが出来る構成であることに特徴があるが、まず、比較例として従来の単ブロックにおける組み立て構成について説明する。
 図1は電池セル1の斜視図である。電池セル1は、図1に示すように、電池缶2と、電池蓋3と、正極端子4と、負極端子5と、ガス排出弁6と、図示しない電解液、充放電要素および絶縁ケースとを有している。電池セル1には、リチウムイオン二次電池などの充放電可能な二次電池が用いられている。第1実施形態の電池セル1は、本発明の一実施形態に係る組電池の単電池に対応する。
 電池缶2は、内部空間の一端を開口する直方体の形状を有し、アルミニウムまたはアルミニウム合金からなる。電池缶2は、面積の大きい一対の対向する側板2aと、面積の小さい一対の対向する側板2bと、開口と反対側の底板2cとを有する。電池缶2の内部空間には、充放電要素が絶縁ケースに覆われた状態で収容されており、電解液が注入されている。充放電要素の正極電極は正極端子4に接続され、充放電要素の負極電極は負極端子5に接続されている。
 電池蓋3は、底板2cと同じ長方形の平板形状を有し、アルミニウムまたはアルミニウム合金からなり、電池缶2の開口部を閉塞している。電池蓋3は、レーザ溶接などの接合手段により電池缶2の開口部に接合されている。電池蓋3の中央部分には、ガス排出弁6が設けられている。ガス排出弁6は、電池セル1が過充電等の異常により発熱してガスが発生し、電池缶2の内部の圧力が上昇して所定圧力に達したときに開裂して、容器内部からガスを排出することで電池缶2の内部の圧力を低減させる。
 また、電池蓋3の一方側端部と他方側端部には、図示しない貫通孔が形成されており、正極端子4と負極端子5が取り付けられている。正極端子4および負極端子5は、電池蓋3から外側に露出している部分が、それぞれ直方体で形成され、平坦な頂面を有している。電池セル1で発電された電力は、正極端子4および負極端子5を介して外部機器に供給され、あるいは、正極端子4および負極端子5を介して外部で発電された電力が充放電要素に供給されて充電される。
 図2は、電池ブロックの分解斜視図である。図2に示すように、電池ブロックは、積層された複数の電池セル1およびスペーサ20と、一対のエンドスペー30と、一対のエンドプレート40と、一対のサイドレール50とを有している。
 スペーサ20は、絶縁性を有する合成樹脂からなり、図2に示すように、隣接する電池セル1の間に交互に挟み込まれて、電池セル1とともにx方向に積層されている。各スペーサ20は、端部にx方向に延在する突起部21を有しており、突起部21よって形成される凹部に電池セル1を保持しy方向およびZ方向を規制している。なお、本明細書では、x方向を第1の方向とした場合、x方向に直角な第2の方向をy方向ということもある。
 エンドスペーサ30は、基本的には、スペーサ20と同じ構成となっている。すなわち、絶縁性を有する合成樹脂からなり、最外部に位置する電池セル1を外側に配置する。エンドスペーサ30には片側にのみで電池セル1が配置するので、突起31は、エンドスペーサ30の片側にのみ形成されている。
 エンドスペーサ30の外側には、エンドプレート40が配置されている。サイドレール50によって、両側のエンドプレート40をx方向に押圧し、電池セル1とスペーサ20の積層体を固定する。エンドプレートは金属で形成しても良いし、樹脂で形成しても良い。いずれにせよ、電池セル1とスペーサ20の積層体を安定的に固縛するための、機械的な強度を有する必要がある。
 図2において、サイドレール50の孔51とエンドプレートの孔41を合わせてネジ60にて、電池セル1とスペーサ20の積層体をx方向に締めつけ、固定する。サイドレール50は、通常は金属で形成される。
 図2において、電池セル1に形成された端子4、5に対応して樹脂等の絶縁物で形成されたバスバカバー200が配置する。電池セル1は、隣り合う電池の端子が正極あるいは負極になるように配置されている。そして、隣り合う電池の正極4と負極5はバスバ210によって接続する。各ブロックの最外側の端子には、端バスバ220が接続し、他の電池ブロック、あるいは、外部回路と接続する。
 電池ブロックは、複数の電池セル1が直列に接続されて使用されることが多いが、直列接続しても十分な出力電圧が得られない場合がある。この場合は、電池ブロックを複数直列に接続して使用される。なお、出力電流を大きくしたい場合は、電池ブロックが並列に接続される。これは端子間接続の問題であり、本発明は、どちらにも適用可能である。
 図3の上の図は、4個の電池ブロックを並置して直列に接続した状態を示す平面図である。図3において、個々の電池ブロックは、別々に組み立てられる。図3において、電池セル1とスペーサ20が互い違い積層されている。なお、図3では、図を複雑にしないために、スペーサ20の端部に形成される突起は、省略されている。電池セル1とスペーサ20の積層体は、エンドスペーサ30及びエンドプレート40によって挟持され、サイドレール50によって押圧されて固定されている。
 図3の電池セル1において、正極端子4、負極端子5、ガス排出弁6、電解液注入孔及び栓7等は省略されている。隣同士の電池1の正極端子と負極端子が隣り合うように、隣同士の電池は、向きが逆方向になるように積層されている。図3において、隣り合った正極端子と負極端子がバスバ210によって接続されている。各ブロックの端部の端子には、端バスバ220が接続している。端バスバ220は、隣の電池ブロックの電極端子と接続するか、外部の機器の端子と接続する。
 図3の下側の図は、各電池ブロックの正面図である。図3において、サイドレール50のフランジ部がエンドプレート40に積層し、フランジ部に形成されたホールとエンドプレートのホールとを合わせ、ビス60によって、電池セル1とスペーサ20の積層体を挟んで押圧し、固定している。
 図3の構成は、4個の電池ブロックを、電池メーカにおいて、各々独立に製造している。したがって、製造コストは、1個当たりの電池ブロックの製造コストの4倍となる。また、4個の電池ブロックは、ユーザにおいて、接続作業が行われる。したがって、ユーザ側にも相応の負担が生ずる。
 図4は、本発明の実施例1による組電池の平面図と正面図である。図4においても、図を複雑にしないために、スペーサ20の突起は省略されている。図4の特徴は、4個の電池ブロックを一体として同時に形成することである。図4において、電池セル1間に配置するスペーサ20は、4個分一体として形成する。電池セル1は、スペーサ間に4個ずつ並べることになる。電池セル1及びスペーサ20を両側から挟みこむエンドスペーサ30もエンドプレート40も4個分一体として形成する。
 図4において、スペーサ20、エンドスペーサ30、エンドプレート40には切り欠きが形成され、この切り欠き部分をブロック間サイドレール70の延伸部71が通過している。ブロック間サイドレール70のフランジ部72は、エンドプレート40の外側において、ビス80にて、エンドプレート40を押圧することによって、電池ブロックを両側から押圧して固定する。なお、押圧は、図4及び図5等では、締め付けるという内容であるが、押圧は、締め付けるよりも広い概念である。例えば、ビス等を用いるかわりに、加締め等を利用して押圧してもよい。
 各電池ブロックの境界部分、すなわち、三箇所に同じ構造が形成される。外側に配置する電池ブロックの外側は、図3と同様、サイドレール50によって、固縛されている。また、電池セル1の配置方法は、図3と同じである。したがって、バスバ210、端バスバ220の配置は、基本的には、図3と同様である。図4において、組電池は、4個の電池ブロックから構成されるが、外部と接続する端子は、両端の電池ブロックに配置する2個の端バスバ220のみである。
 図4の下側の図は、実施例1による組電池の正面図である。図4の正面図において、エンドプレート40は4個の電池ブロックにつき、一体で形成されている。エンドプレート40は、電池ブロックの境界部分において、切り欠き42が形成され、この切り欠き42部分に、ブロック間サイドレール70の延伸部71が配置している。ブロック間サイドレール70のフランジ72がエンドプレート40の外面と接触し、ビス80によって、押圧されている。2個の電池ブロックはビス80を押圧するときに、エンドプレート40とブロック間サイドレール70によって押圧され、固縛される。
 図4の正面図において、エンドプレート40の切り欠き42が形成された部分は、幅が小さくなっている。この部分を接続部43と称する。接続部43は連結部43ということも出来る。接続部43は、エンドプレート40の他の部分に比べて、曲げ強度、あるいは、断面係数が小さくなっている。したがって、仮に、電池ブロック間において寸法誤差が生じた場合であっても、この接続部43において、ストレスが解消されることになる。
 図5は、実施例1の分解斜視図である。図5では、4個の電池ブロックが一体で形成されている。図5に示すように、電池セル1とスペーサ20はx方向(第1の方向と呼ぶこともある)に互い違いに積層されている。図5において、スペーサ20は、電池セル1の厚さよりも小さいので、1枚のシートとして記載されている。また、図を複雑にしないため、スペーサ20に形成された突起21は省略されている。
 図5において、スペーサ20は4個の電池ブロック共通に形成されている。スペーサ20において、各ブロックの境界部分には切り欠き22が形成されており、この切り欠き22部分をブロック間サイドレール70の延伸部71が挿通する。スペーサ20において、切り欠き22が形成された部分の接続部23は他の部分よりも、曲げ強度、あるいは、断面係数が小さくなっているので、仮に、ブロック電池間で寸法誤差が生じた場合にも、この接続部においてストレスを吸収することが出来る。
 この特徴は、エンドスペーサ30においても同様である。エンドスペーサ30は、4個の電池ブロックに共通で形成され、境界部分に切り欠き32が形成されている。切り欠き32が形成されている部分のエンドスペーサ30の幅は小さくなっており、曲げ強度、あるいは、断面係数が他の部分よりも小さくなっている。したがって、仮に、ブロック電池間で寸法誤差が生じた場合にも、この接続部33においてストレスを吸収することが出来る。
 エンドプレート40の構成は図4において説明したとおりである。エンドプレート40も、基本的には、スペーサ20、エンドスペーサ30と同じである。図5に示すブロック間サイドレール70の延伸部71がスペーサ20の切り欠き22、エンドスペーサ30の切り欠き32、エンドプレート40の切り欠き42を挿通し、ブロック間サイドレール70のフランジ部72によって、2枚のエンドプレート40を積層方向(x方向)に押圧し、電池セル1とスペーサの積層構造を固定する。
 図5において、y方向(第1の方向に直角な方向と呼ぶこともある)両側の電池ブロックの外側は、従来と同じように、サイドレール50によって2枚のエンドプレート40が押圧され、電池セル1とスペーサ20が積層方向に固定されている。図5において、スペーサ20、エンドスペーサ30、エンドプレート40は、電池セル1の4個分の大きさとなるが、これらの材料は、樹脂のモールドによって形成するので、一度モールドを設計すれば、量産は容易であるので、大きさが大きくなったからと言って、大幅なコストアップになるわけではない。むしろ、部品の数が減った分、コスト低減の効果がある。
 エンドプレート40は金属で形成されることが多いが、この場合は、プレス成型やダイキャスト成型される。プレス成型の場合も、プレス型を1回製造すれば、量産は容易である。したがって、エンドプレートを金属で形成する場合においても、部品が大きくなることによるコストアップの要因よりは、部品の数が減ることによるコスト低減の効果のほうが大きい。
 図6は、本発明で使用されるスペーサ20の斜視図である。図6のスペーサ20は4個の電池ブロックに対応するスペーサである。図6では、スペーサ20の突起は省略されている。図6において、スペーサ20の電池ブロックの境界部に対応する部分に切り欠き22が形成されている。この切り欠き22部分をブロック間サイドレール70の延伸部71が挿通して、電池セル1とスペーサ20の積層体を押圧して固定する。
 図6において、切り欠き22が形成された部分では、スペーサ20の幅が小さくなっており、この部分を本明細書では接続部23と称する。言い換えると、この接続部23は、機械的に弱い部分であり、仮に、電池ブロック間に製造誤差によって、若干の寸法誤差が生じても、この接続部23が変形することによって、ストレスが緩和される。すなわち、接続部23を機械的なバッファーとして使用することが出来る。
 接続部23を積極的にバッファーと使用するための構成とすることできる。構成の一つは、接続部23の機械的な強度をさらに小さくするために、接続部23におけるスペーサの板厚を他の部分よりも小さくすることが出来る。すなわち、接続部23は、電池セル1をブロックに組み込むときに、スペーサ20が一体として存在できるようにすれば、十分なので、スペーサ20の接続部分23の機械的な強度についての信頼性が問題になることはないからである。
 スペーサ20の接続部23をバッファーとして用いる他の手段としては、例えば、スペーサ20において、接続部分のみ、材料をゴム、ポリプロピレン等の弾性体で形成することである。そして、スペーサ20として働く部分は、絶縁性の樹脂で形成する。このような構成は、例えば、2色整形という手法を用いて形成することが出来る。このような構成は、エンドスペーサ30、エンドプレート40についても同様である。
 図7は、スペーサ20等の切り欠き部22を挿通するブロック間サイドレール70の斜視図である。図7において、ブロック間サイドレール70の延伸部71がスペーサ22等の切り欠き部を挿通する。フランジ部72がエンドプレート40に接触し、フランジ部72に形成されたネジ穴73とエンドプレート40に形成されたネジ穴にビス80を差し込んで、押圧し、電池セル1とスペーサ20を締めつけることによって、電池セル1とスペーサ20の積層体を固縛する。
 ブロック間サイドレール70は色々な方法によって形成することが出来る。図7は、1枚の金属板を板金加工で形成した例である。すなわち、ブロック間サイドレール70の展開平面に該当する形状を、例えばプレスによって作成する。その後は、板金による金属の曲げ加工によって、図7のような形状に加工することが出来る。形状は異なるが、サイドレール50の製造工程と基本的には同じである。
 図7に示すブロック間サイドレール70は例であり、他に色々なバリエーションが存在する。板金加工にこだわる必要は無く、ブロック間サイドレール70の延伸部71とフランジ部72を別々に製造し、これらを、溶接、ネジによる固定、加締めによる固定等の手段をとることも出来る。さらに、延伸部71の固定に、エンドプレート40に対して、直接、溶接、ネジによる固定、加締め等の手段によって取り付けても良い。
 図6は、スペーサ20の上側に切り欠き22を形成した例である。しかし、レイアウトの要請によっては、図8に示すように、切り欠き22をスペーサ20の下側に形成しても良い。この場合は、接続部分23がスペーサの上側に配置することになるが、作用は、基本的には、図6について説明したのと同様である。また、図8の構成においても、図7のブロック間サイドレール70と同様な構成を使用することが出来る。
 図9は、電池ブロックの境界部に対応する部分において、スペーサ20に切り欠きではなく孔を25形成した場合の例である。この場合は、ブロック間サイドレールがこの孔25を挿通することになる。したがって、ブロック間サイドレールは図7と同じものを使用することはできない。例えば、断面がスペーサ20の孔25と相似な形状の棒状のブロック間サイドレール70の延伸部71を挿通し、エンドプレート40の外側にて、ブロック間サイドレール70の延伸部71にフランジ72を、ねじ止め、加締め、あるいは、溶接等の手段によって取り付ける。そしてこのフランジ72を利用して電池セル1とスペーサ20の積層体を積層方向に押圧する。
 本実施例では4個の例を記載したが、これに限られるものではない。少なくとも2個の電池ブロックを用いて構成することができる。
 本発明の締結部の一例として、本実施例では接続部43を用いて説明した。本実施例では、エンドプレート、スペーサ、エンドスペーサについて、切欠き構造とした。一体で形成されることにより部品点数が少なくなり好ましい。一方、この部分を接続部材で複数のエンドプレート、スペーサ、エンドスペーサを繋げた構成にすることもできる。各々電池ブロックに対応する部品を個別に製造できるので電池ブロックの数が異なる組電池にも適用が容易となる。
 図10は実施例2の組電池の斜視図である。図10の構成が実施例1の構成と異なる点は、エンドプレートとサイドレールが一体化部品100となっていることである。図10では、電池ブロックが4個ではなく2個並置されている。但し、図10においても、スペーサ、エンドスペーサは、実施例1と同様、2個の電池ブロックについて一体化している。図10において、電池セル1とスペーサ20は積層方向に交互に積層されているが、スペーサ20は見えていない。代わりに、ブロックの端部において、スペーサ20の一部である突起21が見えている。
 図10においては、電池ブロックが2個であるが、実施例1の図5等に示すように、スペーサは一体化しており、電池セルは、2個の電池ブロックについて、同時に組み立てられる。2個の電池ブロックの各々は、2枚のエンドスペーサ30によって、挟まれている。
 図10が実施例1と異なる点は、エンドプレートとサイドレールが一体化部品100となっていることである。但し、一体化部品100もブロック間サイドレール70によって、積層方向に押圧されて固縛されていることは実施例1と同じである。2個の一体化部品100は、ビス101によって、接続されている。
 図11は、図10の分解斜視図である。図11において、2枚のエンドプレートと2枚のサイドレールは、2個のコの字型の板状の一体化部品100によって、代用されている。一体化部品100は板状の部品を曲げただけの単純な形状である。したがって、安価に製造することが出来る。2個の一体化部品100は、ビス101によって接続される。
 図11の構成においても、電池セル1とスペーサ20の積層構造は、ブロック間サイドレール70によって積層方向に押圧されていることは実施例1と同じである。すなわち、スペーサ20、エンドスペーサ30、一体化部品100の切り欠きをブロック間サイドレールが挿通し、一体化部品100の外側から、積層構造を押圧して、固縛している。
 図12は実施例3の組電池の斜視図であり、図13は実施例3の組電池の分解斜視図である。図12、図13においても、エンドプレートとサイドレールが一体化部品110となっている。図12、図13の構成が実施例2の図10と異なる点は、一体化部品110の形状である。図12、13においては、2個の一体化部品110は、ブロック間サイドレール70のフランジのビス80によって、接続している。
 すなわち、ビス80は、電池セル1とスペーサ20を積層方向に押圧すると同時に、一体化部品110を固定している。実施例3の構造は、実施例2の構造に比較して、図11におけるビス101を用いたビス止めの工程を省略することが出来る。実施例3のその他の構成は、実施例2で説明したのと同じである。
 図14は実施例4の組電池の斜視図である。図14においても、エンドプレートとサイドレールが一体化部品となっている。しかし、実施例2及び実施例3の構成では、エンドプレートとサイドレールが2個の一体化部品として構成されているが、実施例4では、1個のみの部品で成り立っている。すなわち、実施例4では、エンドプレートとサイドレールの一体化部品120は、4角形の板状の枠で、この枠内に、電池セル1とスペーサ20の積層体を挿入する。そして、ブロック間サイドレール70によって、電池セル1とスペーサ20の積層体が押圧されて固縛されることは実施例2、3と同じである。
 図15は、実施例4の分解斜視図である。図15に示すように、エンドプレートとサイドレールの一体化部品120は板状の矩形の枠体となっている。ただし、一体化部品120において、スペーサ20の切り欠き、エンドスペーサ30の切り欠きに対応する部分には、切り欠き122が形成されている。
 この切り欠き122部分をブロック間サイドレール70が挿通し、ビス80によって、電池セル1とスペーサ20の積層体を押圧し、電池ブロックを固縛している。実施例4のその他の構成は、実施例2及び実施例3で説明したのと同様である。実施例4では、エンドプレートとサイドレールを1個の一体化部品120で形成するので、さらに製造コストの低減が可能になる。
 1…電池、 2…電池缶、 3…電池蓋、 4…正極端子、 5…負極端子、 6…ガス排出弁、 20…スペーサ、 21…スペーサ端部の突起、 22…スペーサ切り欠き、 23…スペーサ接続部、 30…エンドスペーサ、 31…エンドスペーサ端部の突起、 32…エンドスペーサ切り欠き、 33…エンドスペーサ接続部、 40…エンドプレート、 42…エンドプレート切り欠き、 43…エンドプレート接続部、 50…サイドレール、 60…ビス、 70…ブロック間サイドレール、 71…延伸部、 72…フランジ部、 73…ホール、 80…ビス、 100…実施例2のエンドプレートとサイドレールの一体化部品、 101…ビス、 102…切り欠き、 110…実施例3のエンドプレートとサイドレールの一体化部品、 101…ビス、 102…切り欠き、 120…実施例4のエンドプレートとサイドレールの一体化部品、 122…切り欠き、 200…バスバケース、 210…バスバ、 220…端バスバ

Claims (15)

  1.  複数の第1の電池と複数の第1のスペーサが交互に第1の方向に積層した構成を有する第1の電池ブロックと、
     複数の第2の電池と複数の第2のスペーサが交互に前記第1の方向に積層した構成を有する第2の電池ブロックとが、前記第1の方向と直角方向に配置した組電池であって、
     前記第1のスペーサと前記第2のスペーサは、第1の連結部を介して一体で形成されており、
     前記第1の連結部には、前記第1の電池ブロックと前記第2の電池ブロックを前記第1の方向に共通に押圧する、ブロック間サイドレールが配置していることを特徴とする組電池。
  2.  前記第1の電池ブロックの前記第1の方向の両端部には第1のエンドプレートが配置し、
     前記第2の電池ブロックの前記第1の方向の両端部には第2のエンドプレートが配置し、
     前記ブロック間サイドレールは、前記第1のエンドプレートを介して前記第1の電池ブロックを前記第1の方向に押圧し、かつ、前記第2のエンドプレートを介して前記第2の電池ブロックを前記第1の方向に押圧していることを特徴とする請求項1に記載の組電池。
  3.  前記第1のエンドプレートと前記第2のエンドプレートとは、第2の連結部を介して連続して形成され、
     前記第2の連結部には、前記ブロック間サイドレールが配置していることを特徴とする請求項2に記載の組電池。
  4.  前記ブロック間サイドレールは、前記第1の方向に延在する延伸部と、前記第1の方向と直角方向に延在するフランジ部を有し、
     前記延伸部は、前記第1の連結部を挿通することを特徴とする請求項1に記載の組電池。
  5.  前記ブロック間サイドレールは、前記第1の方向に延在する延伸部と、
     前記延伸部の第1の端部に前記第1の方向と直角方向に延在する第1のフランジ部と、
     前記延伸部の前記第1の端部と逆側の第2の端部に、前記第1の方向と直角方向に延在する第2のフランジ部を有し、
     前記第1のフランジ部と前記第2のフランジ部によって、前記第1のエンドプレートを介して前記第1の電池ブロックを押圧し、
     前記第1のフランジ部と前記第2のフランジ部によって、前記第2のエンドプレートを介して前記第2の電池ブロックを押圧することを特徴とする請求項2に記載の組電池。
  6.  前記ブロック間サイドレールは、前記第1の方向に延在する延伸部と、
     前記延伸部の第1の端部に前記第1の方向と直角方向に延在する第1のフランジ部と、
     前記延伸部の前記第1の端部と逆側の第2の端部に、前記第1の方向と直角方向に延在する第2のフランジ部を有し、
     前記延伸部は、前記第2の連結部を挿通し、
     前記第1のフランジ部と前記第2のフランジ部によって、前記第1のエンドプレートを介して前記第1の電池ブロックを押圧し、
     前記第1のフランジ部と前記第2のフランジ部によって、前記第2のエンドプレートを介して前記第2の電池ブロックを押圧することを特徴とする請求項3に記載の組電池。
  7.  前記第1の連結部にはスリットが形成され、
     前記ブロック間サイドレールの前記延伸部は、前記スリットを挿通することを特徴とする請求項4乃至6のいずれか1項に記載の組電池。
  8.  前記第2の連結部にはスリットが形成され、
     前記ブロック間サイドレールの前記延伸部は、前記スリットを挿通することを特徴とする請求項3乃至6のいずれか1項に記載の組電池。
  9.  前記サイドレールは、1枚の金属板を曲げ加工することによって形成されていることを特徴とする請求項1乃至8のいずれか1項に記載の組電池。
  10.  前記フランジ部と前記延伸部は、溶接、加締め、またはネジ止めによって接続されていることを特徴とする請求項4乃至8のいずれか1項に記載の組電池。
  11.  前記第1の連結部の曲げ強度は、前記第1のスペーサ及び前記第2のスペーサの曲げ強度よりも小さいことを特徴とする請求項1乃至10のいずれか1項に記載の組電池。
  12.  前記第2の連結部の曲げ強度は、前記第1のエンドプレート及び前記第2のエンドプレートの曲げ強度よりも小さいことを特徴とする請求項2乃至10のいずれか1項に記載の組電池。
  13.  前記第1のスペーサ及び前記第2のスペーサは樹脂で形成されていることを特徴とする請求項1乃至12のいずれか1項に記載の組電池。
  14.  前記第1のエンドプレート及び前記第2のエンドプレートは金属又は樹脂で形成されていることを特徴とする請求項2乃至13のいずれか1項に記載の組電池。
  15.  前記組電池から外部に接続する端子は、2個のみであることを特徴とする請求項1乃至14のいずれか1項に記載の組電池。
PCT/JP2023/036416 2022-11-16 2023-10-05 組電池 WO2024106055A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022183045 2022-11-16
JP2022-183045 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106055A1 true WO2024106055A1 (ja) 2024-05-23

Family

ID=91084142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036416 WO2024106055A1 (ja) 2022-11-16 2023-10-05 組電池

Country Status (1)

Country Link
WO (1) WO2024106055A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131837A1 (ja) * 2011-03-25 2012-10-04 日立ビークルエナジー株式会社 電池ブロック及び電源装置
JP2013073843A (ja) * 2011-09-28 2013-04-22 Gs Yuasa Corp 電槽ケース、単電池及び組電池
CN112234284A (zh) * 2020-02-28 2021-01-15 蜂巢能源科技有限公司 电芯安装架、电池模组、电池包以及车辆
WO2022024284A1 (ja) * 2020-07-29 2022-02-03 株式会社 東芝 電池モジュール及び電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131837A1 (ja) * 2011-03-25 2012-10-04 日立ビークルエナジー株式会社 電池ブロック及び電源装置
JP2013073843A (ja) * 2011-09-28 2013-04-22 Gs Yuasa Corp 電槽ケース、単電池及び組電池
CN112234284A (zh) * 2020-02-28 2021-01-15 蜂巢能源科技有限公司 电芯安装架、电池模组、电池包以及车辆
WO2022024284A1 (ja) * 2020-07-29 2022-02-03 株式会社 東芝 電池モジュール及び電池システム

Similar Documents

Publication Publication Date Title
JP7315544B2 (ja) 溶接不良を防止することができる電池パックフレームを含む電池パック及びこれを製造するための押圧ジグ
US7556533B2 (en) Rechargeable battery module capable of managing the variation of intervals between unit batteries
CN108780861B (zh) 电源装置
JP6019125B2 (ja) 信頼性が向上した電池モジュールアセンブリ及びこれを含む中大型電池パック
JP5535794B2 (ja) 組電池
JP5357853B2 (ja) 電池モジュール
JP4974578B2 (ja) パック電池
JP5657273B2 (ja) 積層型電池、電池モジュール及び積層型電池の製造方法
JP6306431B2 (ja) 電池モジュール
US20100151299A1 (en) Battery module, and middle or large-sized battery pack containing the same
WO2012057322A1 (ja) 組電池及びこれを用いた車両
KR101326182B1 (ko) 외장부재와 카트리지를 포함하는 단위모듈에 기반한 전지모듈
JP5625294B2 (ja) 電池モジュール
US20170084885A1 (en) Energy storage apparatus
JP2007234369A (ja) 組電池
WO2020166182A1 (ja) 電池モジュール
WO2019163381A1 (ja) 電池モジュール
JP6715942B2 (ja) 電池モジュール、及び電池パック
JP7307069B2 (ja) 電池モジュールの固定構造
JP7466151B2 (ja) 蓄電装置および蓄電モジュール
WO2024106055A1 (ja) 組電池
JP6973180B2 (ja) 電池パック
CN111712940B (zh) 电池模块
US20230052085A1 (en) Electrical storage module
JP7149232B2 (ja) バッテリパック