WO2024105046A1 - Procédé de production d'un arbre de rotor pour un moteur électrique - Google Patents

Procédé de production d'un arbre de rotor pour un moteur électrique Download PDF

Info

Publication number
WO2024105046A1
WO2024105046A1 PCT/EP2023/081780 EP2023081780W WO2024105046A1 WO 2024105046 A1 WO2024105046 A1 WO 2024105046A1 EP 2023081780 W EP2023081780 W EP 2023081780W WO 2024105046 A1 WO2024105046 A1 WO 2024105046A1
Authority
WO
WIPO (PCT)
Prior art keywords
measure
shaft
bearing ring
axial end
toothed shaft
Prior art date
Application number
PCT/EP2023/081780
Other languages
German (de)
English (en)
Inventor
Christoph Steinmetz
Original Assignee
Mahle International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International Gmbh filed Critical Mahle International Gmbh
Publication of WO2024105046A1 publication Critical patent/WO2024105046A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/083Structural association with bearings radially supporting the rotary shaft at both ends of the rotor

Definitions

  • the invention relates to a method for producing a rotor shaft.
  • Rotor shafts for electrical machines often comprise individual bodies that are pressed together during the manufacture of the rotor shaft. These individual bodies can represent complex geometries, which are then based, for example, on blanks that must be made of materials that are sometimes difficult to form but are necessary for the shaft to function. Such complex individual bodies can be manufactured from solid material, in particular from bar stock, depending on the geometric size of the rotor shaft, in particular the shaft diameter.
  • an improved manufacturing method for producing a rotor shaft is to be created which is characterized by reduced manufacturing costs compared to conventional methods.
  • the inventive method presented here proposes that the rotor shaft to be produced be made from three subcomponents, namely a tubular shaft body, a hollow cylindrical toothed shaft with external teeth or internal teeth, and a bearing ring.
  • This enables the respective individual component to be reduced to its function.
  • the function of the shaft body is to accommodate further functional subcomponents such as a rotor laminated core or elements for generating a magnetic field.
  • These include, in particular, permanent magnets or electrically energizable rotor coils, each of which can be arranged on the shaft body in a rotationally fixed manner.
  • the splined shaft can act as an output element by means of which the torque provided by the rotor shaft of the electric machine can be transmitted to external components not belonging to the electric machine.
  • the method according to the invention comprises five measures a) to e).
  • a hollow cylindrical shaft body is provided which is open on both of its axial end faces.
  • Such a shaft body can be a conventional tubular body.
  • a hollow cylindrical toothed shaft is provided which has an external toothing or an internal toothing.
  • a hollow cylindrical bearing ring is arranged on an outer peripheral side of the toothed shaft and is joined to the toothed shaft in a rotationally fixed manner.
  • the bearing ring is arranged together with the toothed shaft as a structural unit on the shaft body.
  • the bearing ring is finally connected to the shaft body in a rotationally fixed manner, thus completing the manufacture of the rotor shaft.
  • the shaft body and/or the toothed shaft can be a turned part, which means that the shaft body or the toothed shaft is manufactured by a turning process using a suitable lathe.
  • the toothed shaft and the bearing ring are joined together in a rotationally fixed manner by means of a welded connection.
  • a welded connection can be easily implemented before the toothed shaft is mounted with the bearing ring on the shaft body, which simplifies the manufacture of the entire rotor shaft and thus leads to cost advantages in the manufacture of the rotor shaft.
  • the toothed shaft provided in measure b) has an external toothing.
  • the bearing ring provided in measure c) has an internal toothing that is complementary to the external toothing of the toothed shaft.
  • the toothed shaft provided in measure b) has an internal toothing.
  • the toothed shaft provided with the internal toothing can thus function as an output element by connecting an external component not belonging to the rotor shaft in a rotationally fixed manner to the internal toothing of the toothed shaft.
  • an external shaft with external toothing that is designed to be complementary to the internal toothing of the toothed shaft, so that the external shaft with its external toothing can be pushed axially into the internal toothing of the toothed shaft.
  • An additional joining measure for example by means of a material connection such as a welded connection, can be dispensed with.
  • the toothed shaft and the bearing ring are joined together in a rotationally fixed manner in measure c) by means of a force-fit or material-fit connection.
  • the toothed shaft and the bearing ring can in particular be pressed together or welded together. Both measures can be carried out in a comparatively simple manner before the toothed shaft is mounted with the bearing ring on the shaft body. This simplifies the entire manufacturing process of the rotor shaft.
  • the bearing ring can be arranged on the outer peripheral side of the splined shaft in such a way that the splined shaft projects axially beyond the bearing ring towards the shaft body. This enables the splined shaft to be easily attached axially to the front of the shaft body.
  • the first axial end plate provided together with the shaft body in measure a) is or will be connected in a rotationally fixed manner to the first axial end face of the shaft body by means of a welded connection.
  • the toothed shaft is pushed into a first disk opening surrounded by the ring-shaped first axial end disk until the bearing ring rests axially against the first axial end disk.
  • the structural unit comprising the bearing ring and toothed shaft to be attached to the shaft body in a way that is easy to implement and yet mechanically stable.
  • a first end face of the bearing ring is welded to an opening edge that surrounds the (first) disk opening. This ensures a rotationally fixed connection between the structural unit comprising the bearing ring and toothed shaft and the shaft body.
  • a ring-shaped second axial end plate is provided on a second axial end face of the shaft body provided in measure a), which encloses a second plate opening.
  • a further bearing ring is brought into axial contact with the second axial end plate.
  • a front face of the further bearing ring facing the second axial end plate is welded axially to the second axial end plate. This makes it easy to implement a double bearing of the hollow shaft on an external component.
  • a ring opening surrounded by the additional bearing ring is closed with a closure element.
  • a closure element can in particular be designed as a closure cover.
  • FIG. 1-5 are representations illustrating the individual measures of the method according to the invention in the form of snapshots, whereby Figure 4 shows the completed rotor shaft.
  • Fig. 6 shows a rotor shaft also manufactured by means of the method according to the invention, in which the toothed shaft has an internal toothing, in contrast to, for example, Figures 1 to 5.
  • the method according to the invention is explained by way of example with reference to Figures 1 to 5.
  • the method according to the invention serves to produce a rotor shaft 1 for an electrical machine and comprises five measures a) to e).
  • Figure 1 shows a shaft body 2 whose central longitudinal axis M extends along an axial direction A.
  • a radial direction R extends perpendicular to the axial direction A away from the central longitudinal axis M.
  • a circumferential direction U runs perpendicular to the axial direction A and also perpendicular to the radial direction R around the central longitudinal axis M.
  • Figure 1 shows a longitudinal section along the axial direction A.
  • the shaft body 2 is designed as a hollow cylinder and is open on its two axial end faces 3a, 3b.
  • an annular first axial end disk 13a provided together with the shaft body 2, which encloses a first disk opening 14a, is connected in a rotationally fixed manner to the first axial end face 3a of the shaft body 2 by means of a first welded connection 6a.
  • a second axial end face 3b of the shaft body 2 can be connected in an analogous manner by means of a second welded connection 6b in a rotationally fixed manner to an annular second axial end disk 13b, which encloses a second disk opening 14b,
  • a hollow cylindrical toothed shaft 4 is provided, which extends along the axial direction A and which has a radially outwardly projecting external toothing 5 on its outer peripheral side 8.
  • Figure 2 like Figure 1, shows a longitudinal section along the axial direction A.
  • Both the shaft body 2 (see Figure 1 ) and the toothed shaft 4 (see Figure 2) are designed as turned parts in the example scenario, which means that they were manufactured using a lathe.
  • a hollow cylindrical bearing ring 7a is pushed onto the outer peripheral side 8 of the toothed shaft 4 (see arrow P1 in Figure 2) and is thereby joined to the toothed shaft 4 in a rotationally fixed manner as shown in the axial longitudinal section in Figure 3.
  • the bearing ring 7a has an internal toothing 11 that is complementary to the external toothing 5 of the toothed shaft 4.
  • the toothed shaft 4 and the bearing ring 7a are positively connected to one another by means of the two toothings 5, 11.
  • the bearing ring 7a can preferably be arranged on the outer peripheral side 8 of the toothed shaft 4 in such a way that the toothed shaft 4 projects axially beyond the bearing ring 7a as shown in Figure 3.
  • Figure 4 illustrates that in a fourth measure d) the bearing ring 7a is arranged together with the toothed shaft 4 as a structural unit 9 on the shaft body 2.
  • the toothed shaft 4 is then pushed axially (cf. arrow P2 in Figure 4) into the (first) disk opening 14a enclosed by the annular first axial end disk 13a until the bearing ring 7a rests axially on the first axial end disk 13 as shown in Figure 4.
  • a first end face 15a of the bearing ring 7a facing the shaft body 2 is welded to an opening edge 16a of the first axial end disk 13a which encloses the first disk opening 14a.
  • Such a welded connection 19 is indicated in Figure 4.
  • another bearing ring 7b can be brought into axial contact with the second axial end plate 13b.
  • a seventh measure g) carried out after measure f a second end face 15b of the further bearing ring 7b facing the second axial end plate 13b is welded axially to the second axial end plate 13b.
  • a ring opening 18 surrounded by the additional bearing ring 7b is closed with a closure element 17.
  • Figure 6 illustrates a variant of the method according to the invention, in which the toothed shaft 4 provided in measure b) does not have an external toothing 5 as in the example of Figures 1 to 5, but an internal toothing 21.
  • the toothed shaft 4 and the bearing 7a in measure c) are joined together in a rotationally fixed manner by means of a force-fitting or material-locking connection 12.
  • a welded connection 10 is conceivable as a material-locking connection, and a press connection (not shown) can be considered as a force-fitting connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

L'invention concerne un procédé de production d'un arbre de rotor (1) pour une machine électrique et comprend cinq mesures a) à e). Dans la mesure a), un corps d'arbre cylindrique creux (2), qui est ouvert au niveau de ses deux faces d'extrémité axiales (3a, 3b), est fourni. Dans la mesure b), un arbre cannelé cylindrique creux (4) est fourni qui présente une denture extérieure (5) ou une denture intérieure (6). Dans la mesure c), une bague de palier cylindrique creuse (7a) est disposée sur un côté périphérique externe (8) de l'arbre cannelé (4) et est assemblée à l'arbre cannelé (4) pour une rotation conjointe. Dans la mesure d), la bague de palier (7a) est disposée conjointement avec l'arbre cannelé (4) en tant qu'unité structurale (9) sur le corps d'arbre (2). Dans la mesure e), la bague de palier (7a) est soudée au corps d'arbre (2) et la production de l'arbre de rotor (1) est ainsi achevée.
PCT/EP2023/081780 2022-11-18 2023-11-14 Procédé de production d'un arbre de rotor pour un moteur électrique WO2024105046A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022212360.3 2022-11-18
DE102022212360.3A DE102022212360A1 (de) 2022-11-18 2022-11-18 Verfahren zum Herstellen einer Rotorwelle

Publications (1)

Publication Number Publication Date
WO2024105046A1 true WO2024105046A1 (fr) 2024-05-23

Family

ID=88921023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/081780 WO2024105046A1 (fr) 2022-11-18 2023-11-14 Procédé de production d'un arbre de rotor pour un moteur électrique

Country Status (2)

Country Link
DE (1) DE102022212360A1 (fr)
WO (1) WO2024105046A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090285517A1 (en) * 2008-05-15 2009-11-19 Ulrich Eckel Drive facility
US20190199152A1 (en) * 2016-08-25 2019-06-27 Thyssenkrupp Presta Teccenter Ag Assembled rotor shaft with an asymmetrical design, rotor, and method for producing the assembled rotor shaft and the rotor
DE102017122122B4 (de) 2016-09-26 2021-06-10 Hirschvogel Umformtechnik Gmbh Verfahren zur Herstellung einer Rotorwelle und Rotorwelle
US20210252962A1 (en) * 2020-02-18 2021-08-19 Honda Motor Co., Ltd. Vehicle driving apparatus
US20220131441A1 (en) * 2019-04-05 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft Rotor Shaft of an Electric Motor
EP4059630A1 (fr) * 2020-03-04 2022-09-21 Aisin Corporation Rotor et procédé de fabrication de rotor
CN115276352A (zh) * 2022-06-30 2022-11-01 华为数字能源技术有限公司 盘式电机及其组装方法、动力总成和车辆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114411A1 (de) 2018-06-15 2019-12-19 Volkswagen Aktiengesellschaft Verfahren zum Herstellen einer Flanschwelle, Flanschwelle und Rohling
DE102020111679A1 (de) 2020-04-29 2021-11-04 Valeo Siemens Eautomotive Germany Gmbh Welle, Umformwerkzeug, Herstellungsverfahren und Rotor für eine elektrische Maschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090285517A1 (en) * 2008-05-15 2009-11-19 Ulrich Eckel Drive facility
US20190199152A1 (en) * 2016-08-25 2019-06-27 Thyssenkrupp Presta Teccenter Ag Assembled rotor shaft with an asymmetrical design, rotor, and method for producing the assembled rotor shaft and the rotor
DE102017122122B4 (de) 2016-09-26 2021-06-10 Hirschvogel Umformtechnik Gmbh Verfahren zur Herstellung einer Rotorwelle und Rotorwelle
US20220131441A1 (en) * 2019-04-05 2022-04-28 Bayerische Motoren Werke Aktiengesellschaft Rotor Shaft of an Electric Motor
US20210252962A1 (en) * 2020-02-18 2021-08-19 Honda Motor Co., Ltd. Vehicle driving apparatus
EP4059630A1 (fr) * 2020-03-04 2022-09-21 Aisin Corporation Rotor et procédé de fabrication de rotor
CN115276352A (zh) * 2022-06-30 2022-11-01 华为数字能源技术有限公司 盘式电机及其组装方法、动力总成和车辆

Also Published As

Publication number Publication date
DE102022212360A1 (de) 2024-05-23

Similar Documents

Publication Publication Date Title
WO2020035240A1 (fr) Rotor pour machine synchrone à induit intérieur à excitation séparée, machine synchrone à induit intérieur, véhicule à moteur ainsi que procédé
EP2999895B1 (fr) Liaison arbre-moyeu et électroréducteur
DE10226572A1 (de) Verfahren zur Herstellung eines Rotors für einen Elektromotor sowie Rotor für einen Elektromotor
DE102012011002A1 (de) Rotorwelle für ein elektrisches Aggregat und Verfahren zur Herstellung einer solchen Rotorwelle
DE19536027C2 (de) Planetengetriebe-Geschwindigkeitsreduzierer und Herstellungsverfahren für einen Planetengetriebe-Haltestift für dasselbe
EP3316456B1 (fr) Motorwelle eines elektromotors sowie verfahren zu dessen herstellung
DE10228225B4 (de) Verfahren und Anordnung zur Montage einer Stromerzeugereinheit
WO2016142241A2 (fr) Ensemble roue destiné à une turbine, notamment un dispositif de recyclage de chaleur dissipée
EP2837083A2 (fr) Stator en plusieurs parties pour un moteur électrique et moteur électrique correspondant
EP2144350A2 (fr) Rotor pour un moteur électrique et son procédé de fabrication
WO2024105046A1 (fr) Procédé de production d'un arbre de rotor pour un moteur électrique
WO2011088862A1 (fr) Rotor d'une machine électrique et procédé de fabrication du rotor d'une machine électrique
DE102016010224A1 (de) Elektrische Maschine für ein Kraftfahrzeug, Herstellungsverfahren und Stanzwerkzeug
DE10227129A1 (de) Elektrische Maschine
DE102021213708A1 (de) Welle für einen Rotor einer elektrischen Maschine sowie Rotor und elektrische Maschine
EP1768228B1 (fr) Machine électrique avec fixation ameliorée d'un élément de reflux
DE102022117272A1 (de) Stator für eine elektrische Axialflussmaschine, Verfahren zum Herstellen eines solchen Stators und elektrische Axialflussmaschine mit einem solchen Stator
DE102020200549A1 (de) Rotorwelle eines Elektromotors
DE102022119546A1 (de) Gehäuse für eine elektrische Maschine und elektrische Maschine mit dem Gehäuse
DE102022131953A1 (de) Verfahren zur Herstellung eines metallischen Statorträgers, Statorträger einer elektrischen Maschine sowie elastisches, metallisches Übertragungselement eines Wellgetriebes
DE102022210193A1 (de) Rotorwelle für einen Rotor einer elektrischen Maschine
WO2021043365A1 (fr) Procédé de fabrication de rotor, rotor et moteur asynchrone
DE102022103861A1 (de) Verfahren zur Herstellung eines Rotors für eine elektrische Maschine
DE102021204304A1 (de) Verbesserte Möglichkeit zum Biegen von Leiterstäben einer Statorwicklung
DE102021124316A1 (de) Rotor mit einer Wellenvorrichtung, elektrische Maschine mit einem Rotor und Kraftfahrzeug