WO2024104348A1 - 无刷电机和无刷电机转子位置检测方法 - Google Patents

无刷电机和无刷电机转子位置检测方法 Download PDF

Info

Publication number
WO2024104348A1
WO2024104348A1 PCT/CN2023/131563 CN2023131563W WO2024104348A1 WO 2024104348 A1 WO2024104348 A1 WO 2024104348A1 CN 2023131563 W CN2023131563 W CN 2023131563W WO 2024104348 A1 WO2024104348 A1 WO 2024104348A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
brushless motor
permanent magnet
hall sensor
magnetic flux
Prior art date
Application number
PCT/CN2023/131563
Other languages
English (en)
French (fr)
Inventor
谢小五
陈亮
张宏亮
江远
Original Assignee
广东肇庆爱龙威机电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东肇庆爱龙威机电有限公司 filed Critical 广东肇庆爱龙威机电有限公司
Publication of WO2024104348A1 publication Critical patent/WO2024104348A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • H02K1/2733Annular magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Definitions

  • the present invention relates to the field of brushless motors, and in particular to a brushless motor and a method for detecting the rotor position of a brushless motor.
  • the brushless motor is mainly composed of three parts: the stator assembly, the rotor assembly and the controller.
  • the stator assembly includes the stator core and the stator winding.
  • the stator core is usually made of laminated silicon steel sheets, and its inner surface is grooved for arranging the stator winding.
  • the rotor assembly of the brushless motor includes the rotor core and the permanent magnets arranged on the rotor core.
  • the current in the winding coil will generate a corresponding magnetic field, which interacts with the rotor permanent magnet to drive the rotor to rotate.
  • the rotor permanent magnet has a tendency to keep the direction of its internal magnetic flux lines consistent with the direction of the external magnetic flux lines as much as possible, that is, the N pole of the rotor permanent magnet has a tendency to align with the S pole of the energized winding, and the S pole of the rotor permanent magnet has a tendency to align with the N pole of the energized winding, a torque is formed on the rotor, and the rotor rotates under the action of the torque.
  • the direction of the magnetic field of the stator winding needs to be constantly adjusted according to the current position of the rotor.
  • the coils of the stator winding are energized in a certain order to generate a rotating magnetic field, thereby driving the rotor to rotate continuously.
  • the position of the rotor is usually detected by a position sensor, which detects the position of the rotor poles relative to the stator winding and generates a position sensing signal at a certain position. After conversion, the signal is used to control the current switching of the stator winding.
  • the key to controlling a brushless motor is to detect the position of the rotor. According to the rotor position information, the commutation point of the brushless motor is obtained.
  • the commonly used rotor position detection methods include Hall sensor detection and sensorless detection.
  • the sensor using the Hall effect is called a Hall sensor.
  • the Hall voltage When the current passes through the semiconductor perpendicular to the external magnetic field, the carriers are deflected, and an additional electric field is generated perpendicular to the direction of the current and the magnetic field, thereby generating a potential difference at both ends of the semiconductor. This potential difference is called the Hall voltage, and the phenomenon produced is called the Hall effect.
  • the Hall voltage changes with the change of the magnetic field strength. The stronger the magnetic field, the higher the voltage, and the weaker the magnetic field, the lower the voltage.
  • the rotor of the brushless motor is a permanent magnet, as long as the Hall sensor is installed in a suitable position, the change of the rotor magnetic field strength can be obtained through the change of the Hall voltage, and then the rotation position of the rotor can be obtained.
  • the rotor structure of the existing brushless motor is that the rotor permanent magnet and the stator core are designed to have the same height or the same axial size, and then an additional magnet is added to the rotor as a Hall sensor magnet to provide magnetic flux for the Hall sensor.
  • This method and structure have the following disadvantages: there is an angle deviation between the main magnetic flux on the rotor permanent magnet and the magnetic flux of the magnet that provides magnetic flux for the Hall sensor. These deviations will lead to reduced accuracy and precision of rotor position detection.
  • adding additional magnets to the rotor will lead to the complexity of the motor assembly process. In order to eliminate the installation angle deviation of the two magnets, the usual operation is to magnetize both at the same time, or to magnetize them separately and then perform angle compensation and calibration through electronic technology, which will affect the operability of the motor assembly and increase the complexity of the process.
  • the present invention provides a brushless motor and a brushless motor rotor position detection method, which not only reduces the complexity of magnetization and installation processes, but also improves the flux consistency of the rotor permanent magnet and improves the accuracy and precision of rotor position detection.
  • a brushless motor comprising a rotor assembly, a stator assembly and a Hall sensor, wherein the rotor assembly comprises a rotor core and a permanent magnet arranged on the rotor core, the stator assembly comprises a stator core and a stator winding, the Hall sensor is arranged facing the axial end face of the rotor assembly, and is characterized in that a portion of the permanent magnet is used to provide magnetic flux to the Hall sensor.
  • the axial dimension of the permanent magnet is greater than the axial dimensions of the stator core and the rotor core, and the excess portion is used to provide magnetic flux to the Hall sensor.
  • the size of the protruding portion is 2-8 mm.
  • the axial dimension of the rotor core is the same as the axial dimension of the stator core.
  • the permanent magnet is a circular magnetic ring, or other conventional arrangement modes other than a circular magnetic ring, such as a magnetic sheet type, a surface mounted type, an embedded type, or a built-in type.
  • the magnetization method of the permanent magnet is radial magnetization, and the leakage magnetic flux 2 mm away from the axial end face of the permanent magnet is not less than 200 Gauss.
  • the brushless motor is a three-phase brushless DC motor with an inner rotor structure.
  • the brushless motor includes a printed circuit board, and the Hall sensor is disposed on the printed circuit board.
  • the distance between the axial end surface of the protruding portion and the Hall sensor is 1-2.5 mm.
  • the stator core has a circular shape with an outer diameter of 20-60 mm and an inner diameter of 10-50 mm.
  • the stator core has a hexagonal shape, with opposite sides of the hexagon being 20-60 mm and an inner diameter of 10-50 mm.
  • the brushless motor of the present invention uses the rotor permanent magnet itself as the Hall sensor magnet to provide magnetic flux to the Hall sensor, replacing the traditional additional Hall sensor magnet, eliminating the process of uniformly magnetizing the Hall sensor magnet and the rotor permanent magnet, and adjusting the relative positions of the two magnets, thereby reducing process complexity.
  • the magnetic flux consistency of the rotor permanent magnet is greatly improved compared to the magnetic flux consistency of the two magnets, so the accuracy and precision of the rotor position detection are correspondingly improved.
  • the present invention also discloses a method for detecting the rotor position of a brushless motor, wherein the brushless motor comprises a rotor assembly, a stator assembly and a Hall sensor, wherein the rotor assembly comprises a rotor core and a permanent magnet arranged on the rotor core, and the stator assembly comprises a stator core and a stator winding.
  • the method is characterized in that the method comprises: arranging the Hall sensor facing the axial end surface of the rotor assembly; and using a portion of the permanent magnet to provide magnetic flux to the Hall sensor.
  • the axial dimension of the permanent magnet is set to be larger than the axial dimensions of the stator core and the rotor core, and the excess portion is used to provide magnetic flux for the Hall sensor.
  • the size of the protruding portion is 2-8 mm.
  • the axial dimension of the rotor core is the same as the axial dimension of the stator core.
  • the permanent magnet is a circular magnetic ring, or other conventional arrangement modes other than a circular magnetic ring, such as a magnetic sheet type, a surface mounted type, an embedded type, or a built-in type.
  • the magnetization method of the permanent magnet is radial magnetization, and the leakage magnetic flux 2 mm away from the axial end face of the permanent magnet is not less than 200 Gauss.
  • the brushless motor rotor position detection method of the present invention uses the rotor permanent magnet itself as the Hall sensor magnet to provide magnetic flux to the Hall sensor, replacing the traditional additional Hall sensor magnet, eliminating the process of uniformly magnetizing the Hall sensor magnet and the rotor permanent magnet and adjusting the relative position of the two magnets, thereby reducing process complexity.
  • the flux consistency of the two magnets is greatly improved, so the accuracy and precision of rotor position detection are correspondingly improved.
  • FIG1 is a schematic diagram of a brushless motor rotor structure and a rotor position detection method in the prior art
  • FIG. 2 is a schematic diagram of a brushless motor rotor structure and a rotor position detection method according to an embodiment of the present invention
  • FIG3 is an end view of the rotor magnetic ring in FIG2;
  • FIG. 4 is a schematic diagram showing the axial dimension relationship between the rotor core and the stator core of the brushless motor according to an embodiment of the present invention
  • FIG. 5 is an end view of a stator core of a brushless motor according to an embodiment of the present invention.
  • FIG. 6 is an end view of a stator core of a brushless motor according to another embodiment of the present invention.
  • FIG. 1 is a brushless motor rotor structure and rotor position detection method of the prior art Schematic diagram of the invention.
  • the rotor assembly includes a rotor shaft 1, a rotor core 2 disposed on the rotor shaft 1, and a rotor permanent magnet 3'.
  • the Hall sensor 5 is disposed on a printed circuit board 4, facing the axial end face of the rotor assembly.
  • an additional permanent magnet is provided on the rotor shaft 1 as a Hall sensor magnet 6, which is used to provide a magnetic flux to the Hall sensor 5.
  • a separator which is usually made of a material such as stainless steel, is provided between the rotor permanent magnet 3' and the Hall sensor magnet 6 to eliminate the mutual influence between the end face magnetic fields of the two magnets.
  • FIG. 2 is a schematic diagram showing the rotor structure and rotor position detection method of the brushless motor according to an embodiment of the present invention.
  • the rotor assembly includes a rotor shaft 1, a rotor core 2 and a rotor permanent magnet 3 arranged on the rotor shaft 1.
  • the rotor permanent magnet 3 is a magnetic ring arranged on the outer surface of the rotor core 2 and surrounding the rotor core 2.
  • the rotor magnetic ring is generally circular, with an outer diameter of 10-40 mm and an inner diameter of 8-38 mm.
  • the material of the rotor magnetic ring is generally bonded neodymium iron boron, and the thickness of the magnetic ring is generally 1-4 mm.
  • FIG3 shows an end view of the rotor permanent magnet 3.
  • the rotor permanent magnet 3 can also be other conventional settings besides the circular magnetic ring, such as magnetic sheet type, surface mount type, embedded type or built-in type.
  • the Hall sensor 5 is arranged on the printed circuit board 4, facing the axial end face of the rotor permanent magnet 3.
  • the rotor permanent magnet is arranged
  • the axial dimension of the rotor permanent magnet 3 is larger than the axial dimension of the rotor core 2 and the stator core.
  • the excess portion A replaces the Hall sensor magnet 6 of the prior art and provides the Hall sensor 5 with a magnetic flux for detecting the current position of the rotor. Since the Hall sensor magnet 6 is omitted, the process of uniform magnetization and adjusting the relative position of the two magnets is omitted, thereby reducing the process complexity.
  • the magnetic flux consistency of the rotor permanent magnet 3 is better than that of the two magnets, so the accuracy of rotor position detection is correspondingly improved. Since only one permanent magnet needs to be installed, the installation is also simplified.
  • the size of the excess portion A is 2-8 mm.
  • the distance B between the axial end surface of the excess portion A and the Hall sensor 5 is 1-2.5 mm.
  • the axial dimension of the rotor core 2 is the same as the axial dimension C of the stator core 7.
  • the shape of the stator core lamination can be circular, with an outer diameter dimension E of 20-60 mm and an inner diameter dimension D of 10-50 mm.
  • the shape of the stator core lamination can also be hexagonal, with a hexagonal opposite side dimension E' of 20-60 mm and an inner diameter dimension D' of 10-50 mm.
  • the permanent magnet 3 is magnetized in radial direction, and the leakage magnetic flux at a distance of 2 mm from the axial end surface of the permanent magnet 3 is not less than 200 Gauss.
  • the brushless motor is a three-phase brushless DC motor with an inner rotor structure.
  • the present invention also provides a method for detecting the rotor position of a brushless motor.
  • the implementation principle is similar to that of the above-mentioned brushless motor.
  • the brushless motor includes a rotor assembly, a stator assembly and a Hall sensor 5, the rotor assembly includes a rotor core 2 and a permanent magnet 3 arranged on the rotor core 2, the stator assembly includes a stator core 7 and a stator winding (not shown in the figure), and the method includes: arranging the Hall sensor 5 facing the axial end face of the rotor assembly; using a part of the permanent magnet 3 to provide magnetic flux to the Hall sensor 5.
  • the Hall sensor 5 is arranged on the printed circuit board 4, facing the axial end face of the rotor permanent magnet 3, and the rotor position is detected by using the leakage magnetic flux of the axial end face of the rotor permanent magnet 3.
  • the axial dimension of the rotor permanent magnet 3 is set to be larger than the axial dimensions of the rotor core 2 and the stator core, and the excess portion A replaces the Hall sensor magnet 6 of the prior art to provide the Hall sensor 5 with a magnetic flux for detecting the current position of the rotor.
  • the size of the excess portion A is 2-8 mm.
  • the axial dimension of the rotor core 2 is the same as the axial dimension C of the stator core 7 .
  • the rotor permanent magnet 3 is a circular magnetic ring, and can also be other conventional settings except for the circular magnetic ring, such as magnetic sheet type, surface mount type, embedded type or built-in type.
  • the rotor magnetic ring material is generally bonded neodymium iron boron, and the thickness of the magnetic ring is generally 1-4 mm.
  • the shape of the stator core lamination can be circular, with an outer diameter dimension E of 20-60 mm and an inner diameter dimension D of 10-50 mm.
  • the shape of the stator core lamination can also be hexagonal, with a hexagonal opposite side dimension E' of 20-60 mm and an inner diameter dimension D' of 10-50 mm.
  • the permanent magnet 3 is magnetized in radial direction, and the leakage magnetic flux at a distance of 2 mm from the axial end surface of the permanent magnet 3 is not less than 200 Gauss.
  • the brushless motor is a three-phase brushless DC motor with an inner rotor structure.
  • the brushless motor and the brushless motor rotor position detection method of the present invention use the rotor permanent magnet itself as the Hall sensor magnet to provide magnetic flux to the Hall sensor, replacing the two magnets of the traditional Hall sensor magnet and the rotor permanent magnet, eliminating the process of uniformly magnetizing the Hall sensor magnet and the rotor permanent magnet and adjusting the relative positions of the two magnets, reducing the process complexity, and greatly improving the magnetic flux consistency of the rotor permanent magnet compared with the two magnetic rings, so that the accuracy and precision of the rotor position detection are correspondingly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)

Abstract

本发明公开一种无刷电机和一种无刷电机转子位置检测方法,其中霍尔传感器面向转子组件的轴向端面设置,转子永磁体的一部分用于向霍尔传感器提供磁通。通过使用转子永磁体本身作为霍尔传感器磁体向霍尔传感器提供磁通,代替传统上的霍尔传感器磁体和转子永磁体两个磁体,省去了为霍尔传感器磁体和转子永磁体统一充磁、以及调整两个磁体相对位置的工序,减少了工艺复杂性,转子磁体的磁通一致性大大改善,因而转子位置检测准确性和精度相应提高。此外,由于仅需安装一个磁体,安装方便。

Description

无刷电机和无刷电机转子位置检测方法 技术领域
本发明涉及无刷电机领域,具体来说,涉及一种无刷电机以及一种无刷电机转子位置检测方法。
背景技术
无刷电机主要由定子组件、转子组件和控制器三部分组成。其中定子组件包括定子铁芯和定子绕组。定子铁芯通常由硅钢片叠压而成,其内圆表面开有槽,用于布置定子绕组。无刷电机的转子组件包括转子铁芯和设置在转子铁芯上的永磁体。
无刷电机的定子绕组接通电源后,绕组线圈中的电流会产生相应的磁场,该磁场与转子永磁体相互作用,可驱动转子进行旋转。简单来说,由于转子永磁体具有尽量使自己内部的磁感线方向与外磁感线方向保持一致的运动趋势,即,转子永磁体的N极与通电绕组的S极有对齐的运动趋势,转子永磁体的S极与通电绕组的N极有对齐的运动趋势,从而在转子上形成转动力矩,转子在该转动力矩的作用下转动。
为了驱动转子持续旋转,需要根据转子的当前位置不断地调整定子绕组的磁场方向。根据转子磁极相对于定子绕组的位置,按照一定的顺序给定子绕组的线圈通电可产生旋转磁场,从而驱动转子持续旋转。转子的位置通常由位置传感器检测,位置传感器检测转子磁极相对定子绕组的位置,并在确定的位置处产生位置传感信号,该信号经转换处理后用于控制定子绕组的电流切换。可见,无刷电机的控制,关键在于检测转子的位置,根 据转子的位置信息,获取无刷电机的换相点。
目前,常用的转子位置检测方法包括霍尔传感器检测和无传感器检测两种方式。利用霍尔效应的传感器称为霍尔传感器。当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一个附加电场,从而在半导体的两端产生电势差,这个电势差被称为霍尔电压,所产生的这种现象被称为霍尔效应。霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。由于无刷电机的转子是永磁体,因此,只要在合适的位置安装霍尔传感器,就能通过霍尔电压的变化获得转子磁场强度的变化,进而获得转子的旋转位置。
现有无刷电机的转子结构是转子永磁体和定子铁芯设计成同样高度或轴向尺寸相同,然后在转子上额外增加一个磁体作为霍尔传感器磁体为霍尔传感器提供磁通。这种方法和结构存在以下缺点:转子永磁体上的主磁通和为霍尔传感器提供磁通的磁体的磁通有角度偏差,这些偏差会导致转子位置检测准确性和精度降低。此外,额外在转子上增加磁体会导致电机组装工艺的复杂性。为了消除两种磁体的安装角度偏差,通常操作是二者同时充磁,或者单独充磁后通过电子技术进行角度补偿与校准,这样会影响电机组装的可操作性并增加工艺复杂性。
因此,需要一种工艺简单、操作方便且位置检测精度高的无刷电机和无刷电机转子位置检测方法。
发明内容
为解决上述问题,本发明提供一种无刷电机和无刷电机转子位置检测方法,不仅减少充磁和安装工艺的复杂性,而且改善转子永磁体的磁通一致性,提高转子位置检测准确性和精度。
本发明的目的通过以下技术方案实现:一种无刷电机,包括转子组件、定子组件和霍尔传感器,所述转子组件包括转子铁芯和设置在所述转子铁芯上的永磁体,所述定子组件包括定子铁芯和定子绕组,所述霍尔传感器面向所述转子组件的轴向端面设置,其特征在于,所述永磁体的一部分用于向所述霍尔传感器提供磁通。
根据本发明的一个方面,所述永磁体的轴向尺寸大于所述定子铁芯和所述转子铁芯的轴向尺寸,超出部分用于向所述霍尔传感器提供磁通。
根据本发明的一个方面,所述超出部分的尺寸为2-8毫米。
根据本发明的一个方面,所述转子铁芯的轴向尺寸与所述定子铁芯的轴向尺寸相同。
根据本发明的一个方面,所述永磁体为圆形磁环。也可以是除圆形磁环外的其它常规设置方式,例如磁片式、表贴式、埋入式或内置式等。
根据本发明的一个方面,所述永磁体的充磁方式为径向充磁,距离所述永磁体轴向端面2毫米处漏磁磁通不小于200高斯。
根据本发明的一个方面,所述无刷电机为内转子结构的三相无刷直流电机。
根据本发明的一个方面,所述无刷电机包括印刷电路板,所述霍尔传感器设置在所述印刷电路板上。
根据本发明的一个方面,所述超出部分的轴向端面距离所述霍尔传感器的距离为1-2.5毫米。
根据本发明的一个方面,所述定子铁芯的外形是圆形,外径尺寸为20-60毫米,内径尺寸为10-50毫米。
根据本发明的一个方面,所述定子铁芯的外形是六边形,六边形对边尺寸为20-60毫米,内径尺寸为10-50毫米。
本发明的无刷电机,使用转子永磁体本身作为霍尔传感器磁体向霍尔传感器提供磁通,代替传统上额外增设的霍尔传感器磁体,省去了为霍尔传感器磁体和转子永磁体统一充磁、以及调整两个磁体相对位置的工序,减少工艺复杂性。并且,转子永磁体的磁通一致性较两个磁体的磁通一致性大大改善,因而转子位置检测准确性和精度相应提高。此外,由于仅需安装一个磁体,安装方便。
本发明还公开一种无刷电机转子位置检测方法,所述无刷电机包括转子组件、定子组件和霍尔传感器,所述转子组件包括转子铁芯和设置在所述转子铁芯上的永磁体,所述定子组件包括定子铁芯和定子绕组,其特征在于,所述方法包括:面向所述转子组件的轴向端面设置所述霍尔传感器;将所述永磁体的一部分用于向所述霍尔传感器提供磁通。
根据本发明的一个方面,设置所述永磁体的轴向尺寸大于所述定子铁芯和所述转子铁芯的轴向尺寸,超出部分用于为所述霍尔传感器提供磁通。
根据本发明的一个方面,所述超出部分的尺寸为2-8毫米。
根据本发明的一个方面,所述转子铁芯的轴向尺寸与所述定子铁芯的轴向尺寸相同。
根据本发明的一个方面,所述永磁体为圆形磁环。也可以是除圆形磁环外的其它常规设置方式,例如磁片式、表贴式、埋入式或内置式等。
根据本发明的一个方面,所述永磁体的充磁方式为径向充磁,距离所述永磁体轴向端面2毫米处漏磁磁通不小于200高斯。
本发明的无刷电机转子位置检测方法,通过使用转子永磁体本身作为霍尔传感器磁体向霍尔传感器提供磁通,代替传统上额外增设的霍尔传感器磁体,省去了为霍尔传感器磁体和转子永磁体统一充磁、以及调整两个磁体相对位置的工序,减少工艺复杂性。此外,转子永磁体的磁通一致性 较两个磁体的磁通一致性大大改善,因而转子位置检测准确性和精度相应提高。
附图说明
图1为现有技术的无刷电机转子结构及转子位置检测方式的示意图;
图2为根据本发明实施例的无刷电机转子结构及转子位置检测方式的示意图;
图3为图2中转子磁环的端面图;
图4为示出根据本发明实施例的无刷电机转子铁芯和定子铁芯轴向尺寸关系的示意图;
图5为根据本发明实施例的无刷电机定子铁芯的端面图;
图6为根据本发明另一实施例的无刷电机定子铁芯的端面图。
具体实施方式
下面分别结合附图对本发明的无刷电机和无刷电机转子位置检测方法作进一步的详细说明,这些附图通过举例的方式示出本发明的实施例。
在下面的描述中,阐述了许多具体细节以便使所属技术领域的技术使用者更全面地了解本发明。但是,对于所属技术领域内的技术使用者明显的是,本发明的实现可不具有这些具体细节中的一些。此外,应当理解的是,本发明并不限于所介绍的特定实施例。相反,可以考虑用下面的特征和要素的任意组合来实施本发明,而无论它们是否涉及不同的实施例。因此,下面的方面、特征、实施例和优点仅作说明之用而不应被看作是权利要求的要素或限定,除非在权利要求中明确提出。
参照图1,图1为现有技术的无刷电机转子结构和转子位置检测方式 的示意图。其中转子组件包括转子轴1和设置在转子轴1上的转子铁芯2以及转子永磁体3’。霍尔传感器5设置在印刷电路板4上,面向转子组件的轴向端面。为了向霍尔传感器5提供用于检测转子当前位置的磁通,转子轴1上额外增设一个永磁体作为霍尔传感器磁体6,用于向霍尔传感器5提供磁通。在转子永磁体3’与霍尔传感器磁体6之间设有通常由不锈钢等材料制成的分隔件,以消除两个磁体的端面磁场之间的相互影响。
由于转子永磁体3’上的主磁通和为霍尔传感器5提供磁通的霍尔传感器磁体6的磁通有角度偏差,这些偏差会导致转子位置检测准确性和精度降低。为了消除两个磁体的安装角度偏差,通常操作是二者同时充磁,或者单独充磁后通过电子技术进行角度补偿与校准,这样会影响电机组装的可操作性并增加工艺复杂性。此外,额外在转子上增加磁体及分隔件会导致电机组装工艺的复杂性。
本发明的无刷电机可以很好地解决上述问题。具体参见图2,图2为示出根据本发明实施例的无刷电机转子结构和转子位置检测方式的示意图。其中转子组件包括转子轴1和设置在转子轴1上的转子铁芯2以及转子永磁体3。
作为一种具体的实施方式,转子永磁体3为设置于转子铁芯2外圆表面、包围转子铁芯2的磁环。转子磁环一般为圆形,磁环外径尺寸取10-40毫米,磁环内径尺寸取8-38毫米。转子磁环的材料一般是粘接钕铁硼,磁环厚度一般取1-4毫米。图3示出转子永磁体3的端面图。转子永磁体3也可以是除圆形磁环外的其它常规设置方式,例如磁片式、表贴式、埋入式或内置式等。
霍尔传感器5设置在印刷电路板4上,面向转子永磁体3的轴向端面。为了向霍尔传感器5提供用于检测转子当前位置的磁通,设置转子永磁体 3的轴向尺寸,使其大于转子铁芯2和定子铁芯的轴向尺寸,超出部分A代替现有技术的霍尔传感器磁体6,向霍尔传感器5提供用于检测转子当前位置的磁通。由于省去了霍尔传感器磁体6,省去了统一充磁、以及调整两个磁体相对位置的工序,减少了工艺复杂性。此外,转子永磁体3的磁通一致性优于两个磁体的磁通一致性,因而转子位置检测精度相应提高。由于仅需要安装一个永磁体,安装也随之简化。
作为一种具体的实施方式,超出部分A的尺寸为2-8毫米。超出部分A的轴向端面距离所述霍尔传感器5的距离B为1-2.5毫米。本领域技术人员知晓,可以根据无刷电机的尺寸以及转子永磁体3的充磁量,设置满足检测要求的超出部分A的尺寸以及超出部分A距离霍尔传感器5的距离B。
参见图4,图4示出根据本发明实施例的无刷电机转子铁芯和定子铁芯轴向尺寸关系的示意图。作为一种具体的实施方式,转子铁芯2的轴向尺寸与定子铁芯7的轴向尺寸C相同。
参见图5和图6,其示出根据本发明实施例的无刷电机定子铁芯的两种可选方式。如图5所示,定子铁芯叠片外形可以是圆形,外径尺寸E取值20-60毫米,内径尺寸D取10-50毫米。如图6所示,定子铁芯叠片外形也可以是六边形,六边形对边尺寸E’取20-60毫米,内径尺寸D’取10-50毫米。
作为一种具体的实施方式,所述永磁体3的充磁方式为径向充磁,且距离永磁体3轴向端面2毫米处的漏磁磁通不小于200高斯。
作为一种具体的实施方式,所述无刷电机为内转子结构的三相无刷直流电机。
基于相同的原理,本发明还提供一种无刷电机转子位置检测方法,其 实现原理与上述无刷电机的实现原理相似,具体可参见上述无刷电机部分的描述,相同之处不再赘述。
参见图2至图6,在本发明的无刷电机转子位置检测方法中,无刷电机包括转子组件、定子组件和霍尔传感器5,转子组件包括转子铁芯2和设置在所述转子铁芯2上的永磁体3,定子组件包括定子铁芯7和定子绕组(图中未示出),所述方法包括:面向所述转子组件的轴向端面设置所述霍尔传感器5;将所述永磁体3的一部分用于向所述霍尔传感器5提供磁通。作为一种具体的实施方式,霍尔传感器5设置在印刷电路板4上,面向转子永磁体3的轴向端面,利用所述转子永磁体3轴向端面的漏磁磁通检测转子位置。
作为一种具体的实施方式,设置转子永磁体3的轴向尺寸大于转子铁芯2和定子铁芯的轴向尺寸,超出部分A代替现有技术的霍尔传感器磁体6,向霍尔传感器5提供用于检测转子当前位置的磁通。
作为一种具体的实施方式,所述超出部分A的尺寸为2-8毫米。
作为一种具体的实施方式,转子铁芯2的轴向尺寸与定子铁芯7的轴向尺寸C相同。
作为一种具体的实施方式,所述转子永磁体3为圆形磁环,也可以是除圆形磁环外的其它常规设置方式,例如磁片式、表贴式、埋入式或内置式等。转子磁环材料一般是粘接钕铁硼,磁环厚度一般取1-4毫米。定子铁芯叠片外形可以是圆形,外径尺寸E取值20-60毫米,内径尺寸D取10-50毫米。定子铁芯叠片外形也可以是六边形,六边形对边尺寸E’取20-60毫米,内径尺寸D’取10-50毫米。
作为一种具体的实施方式,所述永磁体3的充磁方式为径向充磁,且距离永磁体3轴向端面2毫米处的漏磁磁通不小于200高斯。
作为一种具体的实施方式,所述无刷电机为内转子结构的三相无刷直流电机。
本发明的无刷电机和无刷电机转子位置检测方法,使用转子永磁体本身作为霍尔传感器磁体向霍尔传感器提供磁通,代替传统上的霍尔传感器磁体和转子永磁体两个磁体,省去了为霍尔传感器磁体和转子永磁体统一充磁、以及调整两个磁体相对位置的工序,减少工艺复杂性,转子永磁体的磁通一致性较两个磁环大大改善,因而转子位置检测准确性和精度相应提高。此外,由于仅需要安装一个磁体,安装方便。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术使用者,在不脱离本发明的精神和范围内所作的各种更动与修改,均应纳入本发明的保护范围,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (16)

  1. 一种无刷电机,包括转子组件、定子组件和霍尔传感器,所述转子组件包括转子铁芯和设置在所述转子铁芯上的永磁体,所述定子组件包括定子铁芯和定子绕组,所述霍尔传感器面向所述转子组件的轴向端面设置,其特征在于,所述永磁体的一部分用于向所述霍尔传感器提供磁通。
  2. 根据权利要求1所述的无刷电机,其特征在于,所述永磁体的轴向尺寸大于所述定子铁芯和所述转子铁芯的轴向尺寸,超出部分用于向所述霍尔传感器提供磁通。
  3. 根据权利要求2所述的无刷电机,其特征在于,所述超出部分的尺寸为2-8毫米。
  4. 根据权利要求1-3中任一项所述的无刷电机,其特征在于,所述转子铁芯的轴向尺寸与所述定子铁芯的轴向尺寸相同。
  5. 根据权利要求1-3中任一项所述的无刷电机,其特征在于,所述永磁体为圆形磁环。
  6. 根据权利要求1-3中任一项所述的无刷电机,其特征在于,所述永磁体的充磁方式为径向充磁,距离所述永磁体轴向端面2毫米处漏磁磁通不小于200高斯。
  7. 根据权利要求1-3中任一项所述的无刷电机,其特征在于,所述无刷电机为内转子结构的三相无刷直流电机。
  8. 根据权利要求1-3中任一项所述的无刷电机,其特征在于,所述无刷电机包括印刷电路板,所述霍尔传感器设置在所述印刷电路板上。
  9. 根据权利要求2-3中任一项所述的无刷电机,其特征在于,所述超出部分的轴向端面距离所述霍尔传感器的距离为1-2.5毫米。
  10. 根据权利要求1-3中任一项所述的无刷电机,其特征在于,所述 定子铁芯的外形是圆形或者六边形。
  11. 一种无刷电机转子位置检测方法,所述无刷电机包括转子组件、定子组件和霍尔传感器,所述转子组件包括转子铁芯和设置在所述转子铁芯上的永磁体,所述定子组件包括定子铁芯和定子绕组,其特征在于,所述方法包括:
    面向所述转子组件的轴向端面设置所述霍尔传感器;
    将所述永磁体的一部分用于向所述霍尔传感器提供磁通。
  12. 根据权利要求11所述的无刷电机转子位置检测方法,其特征在于,设置所述永磁体的轴向尺寸大于所述定子铁芯和所述转子铁芯的轴向尺寸,超出部分用于为所述霍尔传感器提供磁通。
  13. 根据权利要求12所述的无刷电机转子位置检测方法,其特征在于,所述超出部分的尺寸为2-8毫米。
  14. 根据权利要求11-13中任一项所述的无刷电机转子位置检测方法,其特征在于,所述转子铁芯的轴向尺寸与所述定子铁芯的轴向尺寸相同。
  15. 根据权利要求11-13中任一项所述的无刷电机转子位置检测方法,其特征在于,所述永磁体为圆形磁环。
  16. 根据权利要求11-13中任一项所述的无刷电机转子位置检测方法,其特征在于,所述永磁体的充磁方式为径向充磁,距离所述永磁体轴向端面2毫米处漏磁磁通不小于200高斯。
PCT/CN2023/131563 2022-11-15 2023-11-14 无刷电机和无刷电机转子位置检测方法 WO2024104348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211428875.2A CN115987030A (zh) 2022-11-15 2022-11-15 无刷电机和无刷电机转子位置检测方法
CN202211428875.2 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024104348A1 true WO2024104348A1 (zh) 2024-05-23

Family

ID=85971082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131563 WO2024104348A1 (zh) 2022-11-15 2023-11-14 无刷电机和无刷电机转子位置检测方法

Country Status (2)

Country Link
CN (1) CN115987030A (zh)
WO (1) WO2024104348A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115987030A (zh) * 2022-11-15 2023-04-18 广东肇庆爱龙威机电有限公司 无刷电机和无刷电机转子位置检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203537205U (zh) * 2013-10-11 2014-04-09 睿能机电有限公司 一种直流无刷电机磁路结构及其永磁体内嵌式转子
CN104578663A (zh) * 2013-10-11 2015-04-29 睿能机电有限公司 一种直流无刷电机磁路结构及其永磁体内嵌式转子
JP2016178751A (ja) * 2015-03-19 2016-10-06 三菱電機株式会社 ブラシレスモータ
CN108599512A (zh) * 2018-06-21 2018-09-28 广东威灵电机制造有限公司 无刷直流电机
CN208955839U (zh) * 2018-09-04 2019-06-07 沈阳华越汽车技术开发有限公司 一种无刷直流电机
CN218733797U (zh) * 2022-11-15 2023-03-24 广东肇庆爱龙威机电有限公司 无刷电机
CN115987030A (zh) * 2022-11-15 2023-04-18 广东肇庆爱龙威机电有限公司 无刷电机和无刷电机转子位置检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203537205U (zh) * 2013-10-11 2014-04-09 睿能机电有限公司 一种直流无刷电机磁路结构及其永磁体内嵌式转子
CN104578663A (zh) * 2013-10-11 2015-04-29 睿能机电有限公司 一种直流无刷电机磁路结构及其永磁体内嵌式转子
JP2016178751A (ja) * 2015-03-19 2016-10-06 三菱電機株式会社 ブラシレスモータ
CN108599512A (zh) * 2018-06-21 2018-09-28 广东威灵电机制造有限公司 无刷直流电机
CN208955839U (zh) * 2018-09-04 2019-06-07 沈阳华越汽车技术开发有限公司 一种无刷直流电机
CN218733797U (zh) * 2022-11-15 2023-03-24 广东肇庆爱龙威机电有限公司 无刷电机
CN115987030A (zh) * 2022-11-15 2023-04-18 广东肇庆爱龙威机电有限公司 无刷电机和无刷电机转子位置检测方法

Also Published As

Publication number Publication date
CN115987030A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN1064786C (zh) 直流无刷电动机和控制装置
US8294317B2 (en) Unidirectionally-energized brushless DC motor including AC voltage output winding and motor system
CN101552497B (zh) 混合励磁双凸极电机
WO2024104348A1 (zh) 无刷电机和无刷电机转子位置检测方法
US20210135520A1 (en) Consequent-pole type rotor, electric motor, compressor, blower, and air conditioner
US11342814B2 (en) Sensor magnet, motor, and air conditioner
JP2006174526A (ja) モータ
CN110581614B (zh) 一种伺服有限转角力矩电机
JP2012191690A (ja) 可変界磁回転電機
EP2493055B1 (en) Permanent-magnet type electric rotating machine
CN218733797U (zh) 无刷电机
JP4732930B2 (ja) 同期機
CN105515242A (zh) 一种内置式盘式电动机转子
CN108347113A (zh) 一种双层组合磁极的永磁无刷电机
JPWO2007083724A1 (ja) ギャップワインディング形モータ
JP2000333407A (ja) ホイールモーター
JP2012217250A (ja) 回転子および永久磁石電動機
JP2009065803A (ja) 磁石同期機
JP2012200053A (ja) 埋込磁石形回転電機
JP5272464B2 (ja) 回転界磁形同期機
JP2006238536A (ja) 単相ブラシレスdcモータ
US20230027139A1 (en) Rotor for an electric machine, electric machine, and method for operating an electric machine
JP2011103747A (ja) 永久磁石式回転電機
JP2006158034A (ja) Dcブラシレスモータ
JP4104727B2 (ja) プラスチックマグネットロータおよびその着磁方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890781

Country of ref document: EP

Kind code of ref document: A1