WO2024104309A1 - 一种基于外部时钟的自主变参通信同步方法及系统 - Google Patents

一种基于外部时钟的自主变参通信同步方法及系统 Download PDF

Info

Publication number
WO2024104309A1
WO2024104309A1 PCT/CN2023/131388 CN2023131388W WO2024104309A1 WO 2024104309 A1 WO2024104309 A1 WO 2024104309A1 CN 2023131388 W CN2023131388 W CN 2023131388W WO 2024104309 A1 WO2024104309 A1 WO 2024104309A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
time
parameter
variable parameter
data packet
Prior art date
Application number
PCT/CN2023/131388
Other languages
English (en)
French (fr)
Inventor
邹玉龙
方子木
林致贤
储钟淼
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Publication of WO2024104309A1 publication Critical patent/WO2024104309A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7156Arrangements for sequence synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention belongs to the technical field of wireless communications, and in particular relates to an autonomous variable parameter communication synchronization method and system based on an external clock.
  • the cognitive frequency hopping system is based on spectrum sensing technology, which organically combines spectrum allocation results with frequency hopping communication.
  • the system adjusts the transmission parameters in real time so that the system's transmission scheme can adapt to changes in the external environment.
  • cognitive frequency hopping introduces cognitive units, it adjusts the transmission strategy and updates the frequency table and communication strategy of the next frame to avoid interference, thereby improving the system's anti-interference ability.
  • cognitive frequency hopping technology only targets changes in single signal characteristic parameters at the frequency point, and gradually cannot meet the requirements of anti-interference performance.
  • the communicating parties need to sense and adapt to the complex electromagnetic environment and change a variety of signal characteristic parameters (variable parameters) to improve the anti-interference performance.
  • signal characteristic parameters variable parameters
  • the packet loss rate will increase, and in severe cases, communication will be interrupted.
  • the variable parameter communication system performs variable parameter communication between the two parties based on the local device clock, the time error between the two parties will gradually accumulate.
  • variable parameter synchronization method based on an external clock to reduce the synchronization error between the communicating parties, eliminate the long-term accumulation of errors, make up for the defects of the autonomous variable parameter communication system in synchronization, and thus improve the anti-interference performance of the system.
  • the technical problem to be solved by the present invention is: to provide an autonomous variable parameter communication synchronization method and system based on an external clock, through which the communicating parties autonomously establish a two-way communication link, perform variable parameter sending and receiving, and implement interference detection on the receiving frequency point, complete the clock correction or maintenance, reduce the synchronization error between the communicating parties, eliminate the long-term accumulation of errors, and improve the anti-interference performance of the system.
  • the present invention proposes an autonomous variable parameter communication synchronization method based on an external clock, comprising the following steps:
  • Both communicating parties obtain the same external clock source signal and assign it to their respective device timestamps, so that the local clocks of both communicating parties are synchronized.
  • the communicating parties Based on the synchronous clock, the communicating parties independently establish a two-way communication link.
  • the communicating parties use the receiving verification mechanism to perform interference detection on the receiving frequency to determine the legitimacy of the received data packet.
  • the communicating parties each compare the difference between their local receiving time and the other party's variable parameter sending time. When the difference is greater than a preset threshold, the local clock is corrected; if the difference is less than the preset threshold, the current synchronous clock is maintained.
  • the transmission data packet fields sent by the communicating parties include: caller identification CID, responder identification RID, variable parameter sending time TIME, waiting time WAIT, variable parameter time DUR, sending data DATA and feature parameter set NTFS.
  • the calling party identification CID and the answering party identification RID are used to verify the identities of both communicating parties.
  • the parameter change time TIME is the time when the parameter change is sent, and is used for calibrating the synchronous clocks of both parties.
  • the waiting time WAIT is the waiting time for link establishment, which is determined by the responding party and is used by both communicating parties to determine the start time of variable parameter communication.
  • the parameter change duration DUR is the waiting time for the next parameter change, and is used by both communicating parties to achieve synchronization of autonomous parameter change communication.
  • the sent data DATA is the information content to be transmitted by the communicating parties.
  • the characteristic parameter set NTFS is used for autonomously changing signal characteristic parameters, including characteristic parameters of the signal frequency, bandwidth, waveform and modulation method, and freely combining the above characteristic parameters according to requirements.
  • step S1 the communicating parties obtain the signal from the external clock source, assign it to their respective device timestamps, and complete the initialization clock synchronization.
  • the local clock is used as the synchronization clock for the communicating parties, and the synchronization clock will be timed locally; the synchronization clocks of the communicating parties will remain highly consistent and have the function of real-time correction; when the communicating parties independently establish a two-way link and change system parameters, they all use the synchronization clock as a reference.
  • step S2 the specific steps of establishing a two-way communication link are:
  • the caller autonomously generates characteristic parameter sets NTFSct and NTFScr through spectrum sensing, wherein NTFSct is used as the characteristic parameter set of the signal sent by the caller, and sets the parameters of the sent signal; the characteristic parameter set NTFScr and the sending time TIMEct are encapsulated into a data packet for sending.
  • the responder autonomously identifies the characteristic parameter set NTFSct through spectrum sensing and matches the received data packet containing the characteristic parameter set NTFScr and the sending time TIMEct, parses the received data packet to obtain the characteristic parameter set NTFScr, and uses it as the characteristic parameter set of the responder's sending signal and the characteristic parameter set of the sending signal at the start time of the variable parameter communication; at the same time, the responder autonomously generates the characteristic parameter set NTFSrr through spectrum sensing, and uses NTFSrr as the characteristic parameter set of the responder's received signal.
  • the responder encapsulates the characteristic parameter set NTFSrr, the sending time TIMErt and the waiting time WAIT into a data packet and sends it; the responder determines the parameters of the signal sent at the starting time of the variable parameter communication through NTFScr, and determines the parameters of the signal received at the starting time of the variable parameter communication through the characteristic parameter set NTFSrr.
  • the caller receives and parses the data packet in step S203 using the characteristic parameter set NTFScr to obtain the characteristic parameter set NTFSrr, the responder's sending time TIMErt and the waiting time WAIT; the caller determines the parameters of the signal sent at the start time of the variable parameter communication through NTFSrr, and determines the parameters of the signal received at the start time of the variable parameter communication through the characteristic parameter set NTFScr.
  • the communicating parties determine the variable parameter communication starting time TIMEs by TIMErt and WAIT, which is the sum of TIMErt and WAIT. Both communicating parties use TIMEs as the variable parameter communication starting time of the transmitter and the receiver. At this point, the communication parties have completed link establishment.
  • step S3 the specific steps for the communicating parties to send and receive variable parameters are as follows:
  • the communicating parties encapsulate the current parameter change time of their transmitter, the parameter change duration of the receiver and the characteristic parameter set of the received signal into a data packet and send it for use when both parties change parameters.
  • variable parameter communication dynamically update NTFS to perform autonomous parameter change
  • the caller's sending signal parameters and the answerer's receiving signal parameters at the start of the variable parameter communication are the NTFSrr generated during the link establishment process
  • the caller's receiving signal parameters and the answerer's sending signal parameters at the start of the variable parameter communication are the NTFScr generated during the link establishment process
  • the communicating parties autonomously generate their own receiving signal characteristic parameter set NTFS at the next variable parameter moment through spectrum sensing, and the other party uses the NTFS to update its characteristic parameter set of the signal sent at the next variable parameter moment, and the communicating parties change the system parameters based on this signal characteristic parameter set.
  • the transmitter of the own party records the current parameter change time as TIMEt(i), and calculates the next parameter change time of the transmitter of the own party according to the parameter change duration DURt(i) in the received data packet.
  • TIMEt(i+1) TIMEt(i)+DURt(i)
  • TIMEr(j+1) TIMEr(j)+DURr(j)
  • TIMEr(0) represents the start time of the variable parameter communication of the own receiver, and its value is TIMEs in step S205.
  • step S4 the specific content of step S4 is: performing multiple consecutive reception checks based on the CID in the received data packet, that is, receiving and parsing the received data packet, and determining whether the CID in the data packet is equal to the locally set RID; if they are equal, the received data packet is determined to be a legal data packet, and step S5 is entered; otherwise, it means that no legal data packet has been received through multiple reception checks, and it is determined that there is interference at the current receiving frequency, and the process returns to step S2 to re-establish the two-way communication link.
  • step S5 the specific content of real-time correction of the synchronization clock is as follows: each time the receivers of the two communicating parties change parameters, they will record the local reception time of the other party's data packet, and parse the received data packet to obtain the other party's variable parameter sending time, and calculate the difference between their own local reception time and the other party's variable parameter sending time; when the difference is greater than the preset threshold, the local clock is corrected according to the external clock signal; if the difference is less than the preset threshold, the current synchronization clock is maintained.
  • step S5 is completed, return to step S3 to perform variable parameter communication again.
  • the setting of the preset threshold depends on the hardware and software conditions and operating environment of the autonomous variable parameter communication system.
  • an autonomous variable parameter communication synchronization system based on an external clock comprising:
  • the local clock synchronization module is used to obtain the same external clock source signal from both communicating parties and assign it to their respective device timestamps, so that the local clocks of the two communicating parties are synchronized.
  • the two-way communication link establishment module is used for the two communicating parties to autonomously establish a two-way communication link based on the synchronous clock.
  • variable parameter sending and receiving module is used for sending and receiving variable parameters by both communicating parties based on the synchronous clock.
  • the interference detection module is used by both communicating parties to implement interference detection on the receiving frequency point using the receiving verification mechanism to determine the legitimacy of the received data packet.
  • the clock correction or maintenance module is used for the communicating parties to compare the difference between their own local receiving time and the other party's variable parameter sending time. When the difference is greater than the preset threshold, the local clock is corrected; if the difference is less than the preset threshold, the current synchronous clock is maintained.
  • the present invention also proposes an electronic device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the steps of the autonomous variable parameter communication synchronization method based on an external clock as described above when executing the computer program.
  • the present invention also proposes a computer-readable storage medium, which stores a computer program, and is characterized in that when the computer program is run by a processor, it executes the steps of the autonomous variable parameter communication synchronization method based on an external clock.
  • the present invention adopts the above technical solution, and compared with the prior art, its significant technical effects are as follows:
  • variable parameter communication synchronization method based on an external clock source can improve the anti-interference ability of the wireless communication system by ensuring that the nodes use spectrum sensing technology and real-time generation and autonomous update of signal characteristic parameter sets.
  • the introduction of an external clock source provides a high-precision, high-stability synchronous clock to solve the synchronization problem in variable parameter communication. This effectively solves the problem of high packet loss rate caused by the error in the parameter change time between the two communicating parties based on the local clock, and significantly improves the reliability of the wireless communication system.
  • FIG1 is a schematic diagram showing an overall implementation of the method of the present invention.
  • FIG. 2 is a specific communication flow chart of a communication calling party and a communication responding party in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the system structure of the present invention.
  • the present invention proposes an autonomous variable parameter communication synchronization method based on an external clock, which is applied to a wireless communication system composed of multiple communication nodes and potential interference nodes.
  • the entire system communication process includes the user call answering autonomous link establishment process and the real-time autonomous variable parameter anti-interference process, as shown in Figures 1 and 2, including:
  • each node in the system is in a full-band scanning silent reception state without locking the GPS signal.
  • the caller independently selects the characteristic parameter set according to the real-time status of the wireless spectrum environment.
  • the responder matches the reception by autonomously identifying the characteristic parameter set of the signal through full-band perception.
  • the communicating parties autonomously establish a link through the call answering mechanism.
  • Both parties in communication use the GPS signal receiving antenna to lock the GPS signal, add one second to the acquired GPS time at the rising edge of the PPS signal, and assign a timestamp to the device at the rising edge of the next PPS signal to complete a correction of the synchronous clocks of both parties in communication.
  • the local clock is used as the synchronous clock for both parties in communication, and the synchronous clock will be timed locally; the synchronous clocks of both parties in communication will remain highly consistent and have the function of real-time correction; when both parties in communication independently establish a two-way link and change system parameters, they all use the synchronous clock as the reference.
  • the communication nodes send or receive data packets, and the fields of the data packets include: caller ID CID, answerer ID RID, variable parameter time TIME, waiting time WAIT, variable parameter time DUR, transmission data DATA and feature parameter set NTFS.
  • the calling party identification CID and the answering party identification RID are used to verify the identities of both communicating parties;
  • the parameter change time TIME is the time when the parameter change is sent, which is used for the correction of the synchronous clocks of both parties;
  • the waiting time WAIT is the link establishment waiting time, which is used by both parties to determine the starting time of variable parameter communication
  • the parameter change duration DUR is the waiting time for the next parameter change, which is used by both communicating parties to achieve synchronization of autonomous parameter change communication;
  • the sent data DATA is the information content to be transmitted by both parties of the communication;
  • the characteristic parameter set NTFS is used for autonomously changing signal characteristic parameters, including signal frequency, bandwidth, waveform, modulation mode and other characteristic parameters, and the above characteristic parameters can be freely combined according to system requirements.
  • S201 Silent reception: At the beginning of the communication system, the initialization silent reception program is entered. By default, all communication nodes are in silent reception state after powering on. In this state, full-band frequency scanning (CHa) is performed in the frequency range of [800MHz, 820MHz] set by the system. Once the full-band perception autonomously identifies data packets sent by other legitimate users or the system state changes to the call initiation state (dial-up paging), it proceeds to the next call initiation step.
  • CHa full-band frequency scanning
  • S202 initiate a call:
  • the communication node acts as the caller; the CID of the caller is set to 100 and the RID is set to 200.
  • the caller quickly senses the spectrum within the frequency band range of [800MHz, 820MHz] set by the system, obtains spectrum information (i.e., the frequency point energy distribution of the spectrum, also known as spectrum amplitude), and uses the sensed spectrum information to generate characteristic parameter sets NTFSct: 801MHz and NTFScr: 805MHz.
  • spectrum information i.e., the frequency point energy distribution of the spectrum, also known as spectrum amplitude
  • NTFSct is the characteristic parameter set of the signal sent by the caller
  • the characteristic parameter set NTFScr is encapsulated into the NTFS of the data packet sent by the caller
  • the caller's sending time TIMEct: 2023/201708 11:18:09.029 is encapsulated into the TIME in the data packet for sending, and then the caller switches to full-band sweep reception. If the answering party refuses to establish a communication link, the system returns a busy prompt message to the other party, and then automatically turns to step S201.
  • the communication responder is in a silent receiving state, with its CID set to 200 and RID set to 100.
  • the responder autonomously identifies the characteristic parameter set NTFSct of the signal sent by the caller through full-band perception and performs matching reception, parses the received data packet to obtain the data packet header information, and verifies whether the RID field in the data packet header information is 200 to confirm that the other party is calling itself.
  • the system will pop up an option for the user to choose whether to answer or hang up: If the user chooses to answer, the responder parses the data packet to obtain the characteristic parameter set NTFScr field in the NTFS field, and uses it as the characteristic parameter set of the responder's signal, and at the same time performs rapid spectrum perception on the spectrum within the [800MHz, 820MHz] frequency band range set by the system.
  • the responder autonomously generates the characteristic parameter set NTFSrr:803MHz through spectrum perception, and uses NTFSrr as the characteristic parameter set of the responder's received signal.
  • the responder encapsulates the characteristic parameter set NTFSrr, the sending time TIMErt:2023/201708 11:18:16.201 and the waiting time WAIT:10(s) into a data packet for sending. Then the responder proceeds to step S204, otherwise it proceeds to step S201.
  • the communication caller receives the known characteristic parameter set NTFScr, parses the received data packet to obtain the characteristic parameter set NTFSrr and the receiver's sending time TIMErt and waiting time WAIT.
  • the communicating parties determine the variable parameter communication start time TIMEs by TIMErt and waiting time WAIT. The time can be set to the sum of TIMErt and WAIT, and TIMEs is 2023/05/08 11:18:26.201. Both communicating parties use TIMEs as the variable parameter communication start time of the transmitter and receiver. This also indicates that the calling party and the answering party have successfully established a two-way communication link.
  • the two communicating parties After the calling party and the communication responding party successfully establish a two-way communication link, the two communicating parties begin autonomous parameter-changing communication.
  • the receivers of the calling party and the answering party independently generate the characteristic parameter set NTFS of their received signals at the next parameter change time according to the real-time status of the wireless spectrum environment, and then notify the other party's transmitter to use the NTFS to update the characteristic parameter set of its transmitted signal at the next parameter change time.
  • the communicating parties use the receiving verification mechanism to perform interference detection on the receiving frequency to determine the legitimacy of the received data packet.
  • the receivers of both communicating parties use the real-time interference detection mechanism to monitor the current frequency point, and at the same time, through rapid spectrum sensing, a new NTFS is generated in real time every variable parameter duration DURr:15s, and the transmitter of the other party is notified to use the NTFS to send the signal at the next variable parameter moment.
  • the potential interference node after the communication caller and the responder find that the working frequency point is interfered with through the real-time interference detection module, they use the frequency point fast search algorithm to randomly obtain an idle frequency point to replace the interfered frequency point, and autonomously update other characteristic parameters of the signal to avoid interference, which significantly improves the anti-interference ability of the wireless communication system.
  • this characteristic parameter set will still be autonomously updated after a variable parameter duration DURr, ensuring that even if the interfering party perceives the frequency point information used this time, it cannot interfere with the subsequent communication in time by interfering with the variable parameter characteristic parameter set used in the previous communication.
  • the real-time autonomous variable parameter anti-interference process is as follows:
  • variable parameter communication the communication caller uses the received characteristic parameter set NTFSrr to send, and uses the characteristic parameter set NTFScr to receive, and performs a legality check after each data packet is received. If the check passes, it proceeds to the characteristic update step, otherwise the communication parties obtain the data packet through full-band scanning and proceed to S2;
  • feature update the communication caller performs a fast spectrum sensing every variable parameter duration DURr, and autonomously generates a feature parameter set 811MHz for the next variable parameter moment based on the sensed spectrum information and writes it into the NTFS field in the data packet to notify the communication partner, who then uses the feature parameter set to send signals and then enters the variable parameter synchronization step.
  • variable parameter synchronization Use the synchronous clock to achieve precise synchronization of the variable parameter sending and receiving time of the communicating parties.
  • the variable parameter duration encapsulated in the sending data packet is DURr
  • the variable parameter duration in the parsed receiving data packet is DURt: 30s.
  • synchronization correction The communicating parties decide whether to lock the GPS signal again to correct the synchronization clock and improve the synchronization rate according to the error between the two parties at the time of parameter change.
  • the specific method is to add the parameter change time TIME field in the data packet to save the time when the variable parameter is sent and send it.
  • the synchronization clock error the other party's variable parameter sending time 2023/201708 11:18:26.201-the corresponding data packet receiving time 2023/201708 11:18:26.389.
  • the GPS signal will be locked and the GPS clock will be used to calibrate the synchronization clock.
  • the setting of the preset threshold depends on the hardware and software conditions and operating environment of the autonomous variable parameter communication system.
  • the calling party and the answering party communicate using the above-mentioned communication method.
  • the modulation mode, waveform, IQ sampling rate, transmission gain, and reception gain are set, and the method is compared with the same type of method.
  • the test process is carried out 1000 times, and 564 data packets are sent and received each time. The specific results are shown in Table 1.
  • Table 1 compares the performance of autonomous variable parameter communication synchronization methods with and without external clocks
  • An embodiment of the present invention also proposes an autonomous variable parameter communication synchronization system based on an external clock, including a local clock synchronization module, a two-way communication link establishment module, a variable parameter sending and receiving module, an interference detection module, a clock correction or maintenance module and a computer program that can be run on a processor.
  • a wireless communication system consisting of multiple sending nodes, receiving nodes and potential interference nodes is built by using software radio equipment USRP-2920 and LabVIEW software.
  • This system is completely distributed, that is, the system consists of a series of communication nodes that can be moved arbitrarily.
  • the nodes are dynamic and arbitrarily distributed.
  • the two nodes are equal in position and do not need other pre-installed network facilities. They can establish links and conduct autonomous variable parameter communication at any time and any place.
  • the system consists of communication nodes (USRP-A is the communication responder and USRP-B is the communication caller).
  • Each node has the ability to send and receive, and can be used as a sending node or a receiving node.
  • GPS receiving signal antenna A and GPS receiving signal antenna B serve as external clock signal receivers for USRP-A and USRP-B respectively.
  • USRP-C serves as an interference node.
  • each module in the above system corresponds to the specific steps of the method provided in the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the method provided in the embodiment of the present invention please refer to the method provided in the embodiment of the present invention.
  • the embodiment of the present invention also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor. It should be noted that the electronic device corresponds to the specific steps of the method provided in the embodiment of the present invention, and has the functional modules and beneficial effects corresponding to the execution method. For technical details not described in detail in this embodiment, please refer to the method provided in the embodiment of the present invention.
  • the embodiment of the present invention further provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program.
  • the above storage medium corresponds to the specific steps of the method provided in the embodiment of the present invention, and has the functional modules and beneficial effects corresponding to the execution method.
  • the method provided in the embodiment of the present invention please refer to the method provided in the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于外部时钟的自主变参通信同步方法及系统,属于无线通信技术领域。该方法包括:首先,通信双方获取同一外部时钟源信号,据此对本地时间进行校正;其次,通信呼叫方通过呼叫应答机制与通信应答方自主建立双向通信链路;然后,通信双方进入自主变参通信阶段,根据同步时钟改变各自的系统发送和接收参数;与此同时,通信双方实时比较变参时刻的时间差值,在差值大于预设阈值时校正本地时钟,保持双方本地时钟的一致性。本发明提出的方法能够降低通信双方变参时刻的同步误差,在实现变参通信抗干扰的同时保持传输可靠性。

Description

一种基于外部时钟的自主变参通信同步方法及系统 技术领域
本发明属于无线通信技术领域,尤其涉及一种基于外部时钟的自主变参通信同步方法及系统。
背景技术
认知跳频系统以频谱感知技术为基础,将频谱分配结果与跳频通信有机结合在一起,系统在传输的过程中通过实时的调整传输参数,使系统的传输方案能与外界环境的变化相适应。认知跳频引入认知单元后,通过对传输策略的调整,更新下一帧的频率表和通信策略,实现了对干扰的规避,因此提高了系统的抗干扰能力。然而,认知跳频技作为常见的认知抗干扰技术之一,只针对于频点的单一信号特征参数变化,渐渐无法满足抗干扰性能的需求。
通信双方需要感知适应复杂的电磁环境,变化多种信号特征参数(变参),来实现抗干扰性能的提升。对于使用本地时钟进行同步的传统的系统而言,由于本地时钟的差异性和误差累积性,难以应对通信时间长,变参时长短,同步要求高的情况。双方无法精确同步时会造成丢包率的上升,严重时会造成通信中断。此外,变参通信系统基于本地设备时钟进行双方变参通信时,双方的时间误差会逐渐累加。因此,需要提出一种基于外部时钟的变参同步方法,缩减通信双方的同步误差,消除误差的长期累积,弥补自主变参通信系统在同步方面的缺陷,进而提高系统的抗干扰性能。
发明内容
本发明所要解决的技术问题:提供一种基于外部时钟的自主变参通信同步方法及系统,通过通信双方自主建立双向通信链路,进行变参发送和接收,并对接收频点实施干扰检测,完成时钟的校正或保持,缩减通信双方的同步误差,消除误差的长期累积,提高系统的抗干扰性能。
本发明为解决以上技术问题而采用以下技术方案:
本发明提出的一种基于外部时钟的自主变参通信同步方法,包括以下步骤:
S1、通信双方获取同一外部时钟源信号,将其赋予到各自的设备时间戳,使得通信双方的本地时钟同步。
S2、以同步时钟为基准,通信双方自主建立双向通信链路。
S3、以同步时钟为基准,通信双方进行变参发送和接收。
S4、通信双方利用接收校验机制,对接收频点实施干扰检测,判断接收数据包的合法性。
S5、通信双方各自比较己方本地接收时刻与对方变参发送时刻的差值,差值大于预设阈值时,则校正本地时钟;若差值小于预设阈值时,则保持当前的同步时钟。
进一步的,通信双方发送的传输数据包字段包括:呼叫方标识CID、应答方标识RID、变参发送时刻TIME、等待时长WAIT、变参时长DUR、发送数据DATA以及特征参数集NTFS。
呼叫方标识CID和应答方标识RID用于通信双方身份的校验。
变参时刻TIME为变参发送时刻,用于双方同步时钟的校正。
等待时长WAIT为建链等待时长,由应答方决定,用于通信双方确定变参通信起始时刻。
变参时长DUR为进行下一次变参的等待时长,用于通信双方实现自主变参通信的同步。
发送数据DATA为通信双方所要传输的信息内容。
特征参数集NTFS用于自主变化的信号特征参数,包括信号的频点、带宽、波形和调制方式的特征参数,并根据需求对上述特征参数进行自由组合。
进一步的,步骤S1中,通信双方获取外部时钟源的信号,将其赋予到各自的设备时间戳,完成初始化时钟同步,此时本地时钟作为同步时钟供通信双方使用,同步时钟将在本地进行计时;通信双方的同步时钟将保持高度一致且具有实时校正的功能;通信双方自主建立双向链路和变化系统参数时,都以同步时钟为基准。
进一步的,步骤S2中,建立双向通信链路的具体步骤为:
S201、呼叫方通过频谱感知自主生成特征参数集NTFSct和NTFScr,其中NTFSct作为呼叫方发送信号的特征参数集,设置发送信号的参数;将特征参数集NTFScr和发送时刻TIMEct封装到数据包中进行发送。
S202、应答方通过频谱感知自主识别特征参数集NTFSct并匹配接收包含特征参数集NTFScr和发送时刻TIMEct的数据包,解析接收到的数据包获取特征参数集NTFScr,并将其作为应答方发送信号的特征参数集和变参通信起始时刻的发送信号特征参数集;同时,应答方通过频谱感知自主生成特征参数集NTFSrr,将NTFSrr作为应答方接收信号的特征参数集。
S203、应答方将特征参数集NTFSrr、发送时刻TIMErt以及等待时长WAIT封装到数据包中进行发送;应答方通过NTFScr确定变参通信起始时刻发送信号的参数,通过特征参数集NTFSrr确定变参通信起始时刻接收信号的参数。
S204、呼叫方利用特征参数集NTFScr接收步骤S203中的数据包并解析,获取特征参数集NTFSrr、应答方发送时刻TIMErt和等待时长WAIT;呼叫方通过NTFSrr确定变参通信起始时刻发送信号的参数,通过特征参数集NTFScr确定变参通信起始时刻接收信号的参数。
S205、通信双方由TIMErt和WAIT确定变参通信起始时刻TIMEs,该时刻为TIMErt和WAIT之和;通信双方均以TIMEs作为发送机和接收机的变参通信起始时刻,至此,通信双方建链完成。
进一步的,步骤S3中,通信双方进行变参发送和接收的具体步骤为:
S301、通信双方将己方发送机的当前变参时刻、接收机变参时长和接收信号的特征参数集封装到数据包中进行发送,供双方变参时使用。
S302、变参通信时,动态更新NTFS进行自主变参;变参通信起始时刻的呼叫方发送信号参数与应答方接收信号参数即为建链过程中产生的NTFSrr,变参通信起始时刻的呼叫方接收信号参数与应答方发送信号参数即为建链过程中产生的NTFScr;通信双方通过频谱感知自主生成下一变参时刻的己方接收信号特征参数集NTFS,对方利用该NTFS更新其下一变参时刻发送信号的特征参数集,通信双方基于此信号特征参数集变化系统参数。
S303、通信双方进行第i次(i=0,1,2,…,N)发送机变参时,己方发送机将当前变参时刻记录为TIMEt(i),根据接收数据包中的变参时长DURt(i),计算己方发送机的下一个变参时刻,具体公式为:
TIMEt(i+1)=TIMEt(i)+DURt(i),
其中,TIMEt(0)表示己方发送机的变参通信起始时刻,其取值为步骤S205中的TIMEs;同理,通信双方进行第j次(j=0,1,2,…,N)接收机变参时,己方接收机将当前变参时刻记录为TIMEr(j),根据发送数据包中的变参时长DURr(j),计算己方接收机的下一个变参时刻,具体公式为:
TIMEr(j+1)=TIMEr(j)+DURr(j),
其中,TIMEr(0)表示己方接收机的变参通信起始时刻,其取值为步骤S205中的TIMEs。
使得通信双方在同一变参时刻进行同步变参通信。
进一步的,步骤S4的具体内容为:根据接收数据包中的CID进行连续多次的接收校验,即接收并且解析接收数据包,判断数据包中的CID与本地设定的RID是否相等;若相等,则将接收到的数据包判定为合法数据包,此时进入步骤S5;反之说明多次的接收校验均未接收到合法数据包,则判定当前接收频点处存在干扰,返回步骤S2重新建立双向通信链路。
进一步的,步骤S5中,实时校正同步时钟的具体内容为:通信双方接收机每次变参时会记录对方数据包的本地接收时刻,并从接收数据包解析获取对方的变参发送时刻,计算己方本地接收时刻与对方变参发送时刻的差值;当差值大于预设阈值时,则根据外部时钟信号对本地时钟进行校正;若差值小于预设阈值时,则保持当前的同步时钟。步骤S5完成后,返回步骤S3再次进行变参通信。预设阈值的设置取决于自主变参通信系统的软硬件条件及运行环境。
进一步的,本发明还提出了一种基于外部时钟的自主变参通信同步系统,包括
本地时钟同步模块,用于通过通信双方获取同一外部时钟源信号,将其赋予到各自的设备时间戳,使得通信双方的本地时钟同步。
双向通信链路建立模块,用于以同步时钟为基准,通信双方自主建立双向通信链路。
变参发送和接收模块,用于以同步时钟为基准,通信双方进行变参发送和接收。
干扰检测模块,用于通信双方利用接收校验机制,对接收频点实施干扰检测,判断接收数据包的合法性。
时钟校正或保持模块,用于通信双方各自比较己方本地接收时刻与对方变参发送时刻的差值,差值大于预设阈值时,则校正本地时钟;若差值小于预设阈值时,则保持当前的同步时钟。
进一步的,本发明还提出了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现前文所述的基于外部时钟的自主变参通信同步方法的步骤。
进一步的,本发明还提出了一种计算机可读的存储介质,所述计算机可读的存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行所述的基于外部时钟的自主变参通信同步方法的步骤。
本发明采用以上技术方案,与现有技术相比,其显著技术效果如下:
本发明提出的基于外部时钟源的变参通信同步方法,可在保证节点通过频谱感知技术和信号特征参数集的实时生成与自主更新来提高无线通信系统的抗干扰能力的同时,通过 引入外部时钟源,提供具有高精度、高稳定度的同步时钟来解决变参通信中的同步问题。有效解决了通信双方基于本地时钟进行变参造成双方变参时刻的误差进而导致丢包率较高的问题,显著提高了无线通信系统的可靠性。
附图说明
图1为本发明的方法整体实施示意图。
图2为本发明实施例中通信呼叫方和通信应答方的具体通信流程图。
图3为本发明的系统结构组成示意图。
具体实施方式
下面结合说明书附图和具体实施方式对本发明做进一步详细描述。
为实现上述目的,本发明提出了一种基于外部时钟的自主变参通信同步方法,所述方法应用于由多个通信节点和潜在干扰节点组成的无线通信系统。整个系统通信流程包括用户呼叫应答自主建链过程和实时自主变参抗干扰过程,具体内容如图1和图2所示,包括:
系统各节点默认处于未锁定GPS信号的全频段扫频静默接收状态,呼叫方根据无线频谱环境的实时状态自主选择特征参数集,应答方通过全频段感知自主识别信号的特征参数集来匹配接收,通信双方通过呼叫应答机制进行自主建链。
S1、通信双方利用GPS信号接收天线锁定GPS信号,在PPS信号的上升沿时刻将获取到的GPS时间加一秒,在下一个PPS信号的上升沿时刻赋予设备时间戳,完成通信双方同步时钟的一次校正。此时本地时钟作为同步时钟供通信双方使用,同步时钟将在本地进行计时;通信双方的同步时钟将保持高度一致且具有实时校正的功能;通信双方自主建立双向链路和变化系统参数时,都以同步时钟为基准。
在通信过程中通信节点之间发送或接收的是数据包,数据包的字段包括:呼叫方标识CID、应答方标识RID、变参时刻TIME、等待时长WAIT、变参时长DUR、发送数据DATA和特征参数集NTFS。其中,
呼叫方标识CID和应答方标识RID用于通信双方身份的校验;
变参时刻TIME为变参发送时刻,用于双方同步时钟的校正;
等待时长WAIT为建链等待时长,用于通信双方确定变参通信起始时刻;
变参时长DUR为进行下一次变参的等待时长,用于通信双方实现自主变参通信的同步;
发送数据DATA为通信双方所要传输的信息内容;
特征参数集NTFS用于自主变化的信号特征参数,包括信号的频点、带宽、波形和调制方式等特征参数,并根据系统需求可对上述特征参数进行自由组合。
S2、以同步时钟为基准,通信双方自主建立双向通信链路,进行变参发送和接收,具体步骤为:
S201、静默接收:在通信系统开始时,进入初始化静默接收程序,默认所有通信节点开机后均处于静默接收状态,在这个状态下,在系统设定的[800MHz,820MHz]频点范围进行全频段扫频(CHa),一旦通过全频段感知自主识别到其他合法用户发来数据包或者本系统状态转变为发起呼叫状态(拨号寻呼),则转入下一个发起呼叫步骤。
S202、发起呼叫:当用户按下通信节点的发送键改变系统状态为发起呼叫状态时,此通信节点就作为呼叫方;呼叫方的CID设置为100,RID设置为200。呼叫方对系统设定的[800MHz,820MHz]频段范围内的频谱进行快速频谱感知,获得频谱信息(即频谱的频点能量分布,也称为频谱幅值),利用感知的频谱信息生成特征参数集NTFSct:801MHz和NTFScr:805MHz。其中,NTFSct为呼叫方发送信号的特征参数集,将特征参数集NTFScr封装至呼叫方发送数据包的NTFS并将呼叫方发送时刻TIMEct:2023/05/08 11:18:09.029封装到数据包中的TIME进行发送,然后呼叫方转入全频段扫频接收。若应答方拒绝建立通信链路,那么系统返回对方忙提示信息,然后自动转向步骤S201。
S203、匹配应答:所述通信应答方处于静默接收状态,其CID设置为200,RID设置为100。应答方通过全频段感知自主识别呼叫方发送信号的特征参数集NTFSct并进行匹配接收,解析接收到的数据包获得数据包头信息,并校验数据包头信息中的RID字段是否为200以确认对方在呼叫自己。此时,系统会弹出选项供用户选择是接听还是挂断:若用户选择接听,则应答方解析数据包后获得其中NTFS字段中特征参数集NTFScr字段,并将其作为应答方发送信号的特征参数集,同时对系统设定的[800MHz,820MHz]频段范围内的频谱进行快速频谱感知。应答方通过频谱感知自主生成特征参数集NTFSrr:803MHz,将NTFSrr作为应答方接收信号的特征参数集。在此之后,应答方将特征参数集NTFSrr、发送时刻TIMErt:2023/05/08 11:18:16.201以及等待时长WAIT:10(s)封装到数据包中进行发送。然后应答方进入步骤S204,否则转入步骤S201。
S204、状态转移:所述通信呼叫方利用已知特征参数集NTFScr的进行接收,解析接收到的数据包获得其中的特征参数集NTFSrr和接收方发送时刻TIMErt以及等待时长WAIT。通信双方由TIMErt和等待时长WAIT确定变参通信起始时刻TIMEs,该时刻可设置为TIMErt和WAIT之和,TIMEs为2023/05/08 11:18:26.201。通信双方均以TIMEs作为发送机和接收机的变参通信起始时刻。这也标志着呼叫方和应答方成功建立双向通信链路。
所述呼叫方和通信应答方成功建立双向通信链路后,通信双方开始自主变参通信。呼 叫方和应答方等通信双方的接收机根据无线频谱环境的实时状态自主生成下一变参时刻己方接收信号的特征参数集NTFS,然后通告对方的发送机利用该NTFS更新其下一变参时刻发送信号的特征参数集。
S3、通信双方利用接收校验机制,对接收频点实施干扰检测,判断接收数据包的合法性。
具体地,通信双方的接收机利用实时干扰检测机制监测当前频点,同时通过快速频谱感知每隔一个变参时长DURr:15s实时生成一个新的NTFS并通告对方的发送机在下一个变参时刻采用该NTFS来发送信号。在潜在干扰节点的作用下,通信呼叫方和应答方通过实时干扰检测模块发现工作频点被干扰后,采用频点快速搜索算法随机获得一个空闲频点替换被干扰频点,并自主更新信号的其他特征参数以躲避干扰,显著提高了无线通信系统的抗干扰能力。即使此频点未被干扰,在一个变参时长DURr后仍会自主更新此特征参数集,确保干扰方即使感知到此次使用的频点信息,也无法及时在后续通信过程中通过干扰上次通信使用的变参特征参数集来干扰后续的通信。
进入自主变参通信阶段后,通信双方的地位等同,所进行的操作也相同,以通信呼叫方为例,实时自主变参抗干扰过程具体如下:
S301、变参通信:通信呼叫方利用接收到的特征参数集NTFSrr进行发送,并利用特征参数集NTFScr的进行接收,每次接收数据包后进行合法性校验,若校验通过,则转入特征更新步骤,否则通信双方通过全频段扫频获得数据包转入S2;
S302、特征更新:通信呼叫方每隔一个变参时长DURr进行一次快速频谱感知,根据感知的频谱信息自主生成下一变参时刻的特征参数集811MHz并写入数据包中的NTFS字段通告通信对方,然后通信对方采用该特征参数集来发送信号,然后转入变参同步步骤。
S303、变参同步:使用同步时钟对通信双方的变参发送和接收时刻达到精确同步,我方封装到发送数据包中的变参时长为DURr,解析接收数据包中的变参时长为DURt:30s。则可知我方下一变参接收时刻=我方当前变参接收时刻2023/05/08 11:18:26.201+发送数据包中的变参时长DURr=2023/05/08 11:18:41.201,我方下一变参发送时刻=我方当前变参发送时刻2023/05/08 11:18:26.201+解析接收数据包中的变参时长DURt=2023/05/0811:18:56.201。以此方法使得通信双方可实现在同一变参时刻进行同步变参。
S304、同步校正:通信双方根据双方变参时刻的误差决定是否再次锁定GPS信号来校正同步时钟,提高同步率。
具体方法是在数据包中加入变参时刻TIME字段,用于保存己方变参发送时刻并发送 给对方,对方成功接收到对应的数据包以后将记录下当前接收时刻与对方变参发送时刻做比较。即同步时钟误差=对方变参发送时刻2023/05/08 11:18:26.201-对应数据包接收时刻2023/05/08 11:18:26.389。当同步时钟误差大于预设阈值时,将锁定GPS信号使用GPS时钟对同步时钟进行校正同步。预设阈值的设置取决于自主变参通信系统的软硬件条件及运行环境。
呼叫方和应答方采用上述的通信方法进行通信。
此外,在本实施例中,设定了调制方式、波形、IQ采样率,发射增益,接收增益,将本方法与同类型的方法进行了比较测试。测试过程进行了1000次,每次收发564个数据包。具体结果如表1所示。
表1比较有无外部时钟的自主变参通信同步方法的性能
依据表1,可从实验结果看出自变参同步误差明显下降,丢包率显著降低。相较于无外部时钟的方案,具有外部时钟同步的方案具有明显优势,大大提升了变参通信系统的抗干扰能力,增强了通信的传输可靠性。
本发明实施例还提出一种基于外部时钟的自主变参通信同步系统,包括本地时钟同步模块、双向通信链路建立模块、变参发送和接收模块、干扰检测模块、时钟校正或保持模块及可在处理器上运行的计算机程序。
如图3所示,通过软件无线电设备USRP-2920和LabVIEW软件搭建出由多个发送节点、接收节点和潜在干扰节点组成的无线通信系统,此系统是完全分布式的,即系统由一系列可任意移动的通信节点组成,节点动态且任意分布,系统中无控制中心,所有节点地 位平等,无需其他预置的网络设施,可以在任何时刻任何地点进行自主建链并开展自主变参通信。系统构成为:通信节点(USRP-A为通信应答方、USRP-B为通信呼叫方),每个节点都有发送和接收的能力,均可作为发送节点或接收节点。GPS接收信号天线A和GPS接收信号天线B分别作为USRP-A和USRP-B的外部时钟信号接收器。USRP-C作为干扰节点。
需要说明的是,上述系统中的各个模块对应本发明实施例所提供的方法的具体步骤,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
本发明实施例还提出了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。需要说明的是,上述电子设备对应本发明实施例所提供的方法的具体步骤,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
本发明实施例还提出了一种计算机可读的存储介质,所述计算机可读的存储介质存储有计算机程序。需要说明的是,上述存储介质对应本发明实施例所提供的方法的具体步骤,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (9)

  1. 一种基于外部时钟的自主变参通信同步方法,其特征在于,包括以下步骤:
    S1、通信双方获取同一外部时钟源信号,将其赋予到各自的设备时间戳,保证通信双方的本地时钟同步;
    S2、以同步时钟为基准,通信双方自主建立双向通信链路;
    S3、以同步时钟为基准,通信双方进行变参发送和接收;
    S4、通信双方利用接收校验机制,对接收频点实施干扰检测,判断接收数据包的合法性;
    S5、通信双方各自计算己方本地接收时刻与对方变参发送时刻的差值,将其与预设阈值作比较,判断时钟情况;
    S6、返回步骤S3再次进行变参通信,直到主动停止通信为止。
  2. 根据权利要求1所述的基于外部时钟的自主变参通信同步方法,其特征在于,通信双方发送的传输数据包字段包括:呼叫方标识CID、应答方标识RID、变参发送时刻TIME、等待时长WAIT、变参时长DUR、发送数据DATA和特征参数集NTFS;
    呼叫方标识CID和应答方标识RID用于通信双方身份的校验;
    变参时刻TIME表示变参发送时刻,用于双方同步时钟的校正;
    等待时长WAIT表示建链等待时长,由应答方决定,用于通信双方确定变参通信起始时刻;
    变参时长DUR表示进行下一次变参的等待时长,用于通信双方实现自主变参通信的同步;
    发送数据DATA表示通信双方所要传输的信息内容;
    特征参数集NTFS用于自主变化的信号特征参数,包括信号的频点、带宽、波形和调制方式的特征参数,并根据需求对上述特征参数进行自由组合。
  3. 根据权利要求1所述的基于外部时钟的自主变参通信同步方法,其特征在于,步骤S2中,建立双向通信链路的具体步骤为:
    S201、呼叫方通过频谱感知自主生成特征参数集NTFSct和NTFScr,其中NTFSct作为呼叫方发送信号的特征参数集,设置发送信号的参数;将特征参数集NTFScr和发送时刻TIMEct封装到数据包中进行发送;
    S202、应答方通过频谱感知自主识别特征参数集NTFSct并匹配接收步骤S201中的数据包,解析数据包,将特征参数集NTFScr作为应答方发送信号的特征参数集和变参通信起始时刻的发送信号特征参数集;应答方通过频谱感知自主生成特征参数集NTFSrr,将NTFSrr作为应答方接收信号的特征参数集;
    S203、应答方通过NTFScr确定变参通信起始时刻发送信号的参数,通过特征参数集NTFSrr确定变参通信起始时刻接收信号的参数,并将特征参数集NTFSrr、发送时刻TIMErt以及等待时长WAIT封装到数据包中进行发送;
    S204、呼叫方利用特征参数集NTFScr接收步骤S203中的数据包并解析;呼叫方通过特征参数集NTFSrr确定变参通信起始时刻发送信号的参数,通过特征参数集NTFScr确定变参通信起始时刻接收信号的参数;
    S205、通信双方由TIMErt和WAIT确定变参通信起始时刻TIMEs,该时刻为TIMErt和WAIT之和;通信双方均以TIMEs作为发送机和接收机的变参通信起始时刻。
  4. 根据权利要求3所述的基于外部时钟的自主变参通信同步方法,其特征在于,步骤S3中,通信双方进行变参发送和接收的具体步骤为:
    S301、通信双方将己方发送机的当前变参时刻、接收机变参时长和接收信号的特征参数集封装到数据包中进行发送,供双方变参时使用;
    S302、变参通信时,动态更新NTFS进行自主变参;变参通信起始时刻的呼叫方发送信号参数与应答方接收信号参数为建链过程中产生的NTFSrr,变参通信起始时刻的呼叫方接收信号参数与应答方发送信号参数为建链过程中产生的NTFScr;通信双方通过频谱感知自主生成下一变参时刻的己方接收信号特征参数集NTFS,对方利用该NTFS更新其下一变参时刻发送信号的特征参数集,通信双方基于此信号特征参数集变换系统参数;
    S303、通信双方进行第i次发送机变参时,其中i=0,1,2,…,N,己方发送机将当前变参时刻记录为TIMEt(i),根据接收数据包中的变参时长DURt(i),计算己方发送机的下一个变参时刻,具体公式为:
    TIMEt(i+1)=TIMEt(i)+DURt(i);
    其中,TIMEt(0)表示己方发送机的变参通信起始时刻,其取值为步骤S205中的TIMEs;
    通信双方进行第j次接收机变参时,其中j=0,1,2,…,N,己方接收机将当前变参时刻记录为TIMEr(j),根据发送数据包中的变参时长DURr(j),计算己方接收机的下一个变参时刻,具体公式为:
    TIMEr(j+1)=TIMEr(j)+DURr(j);
    其中,TIMEr(0)表示己方接收机的变参通信起始时刻,其取值为步骤S205中的TIMEs;
    通信双方在同一变参时刻进行同步变参通信。
  5. 根据权利要求1所述的基于外部时钟的自主变参通信同步方法,其特征在于,步骤S4的具体内容为:根据接收数据包中的CID进行连续多次的接收校验,即接收并且解析接收数据包,判断数据包中的CID与本地设定的RID是否相等;若相等,则将接收到的数据包判定为合法数据包,此时进入步骤S5;反之说明多次的接收校验均未接收到合法数据包,则判定当前接收频点处存在干扰,返回步骤S2重新建立双向通信链路。
  6. 根据权利要求1所述的基于外部时钟的自主变参通信同步方法,其特征在于,步骤S5中,实时校正同步时钟的具体内容为:通信双方接收机每次变参时记录对方数据包的本地接收时刻,并从接收数据包解析获取对方的变参发送时刻,计算己方本地接收时刻与对方变参发送时刻的差值;当差值大于预设阈值时,则根据外部时钟信号对本地时钟进行校正;若差值小于预设阈值时,则保持当前的同步时钟。
  7. 一种基于外部时钟的自主变参通信同步系统,其特征在于,包括
    本地时钟同步模块,用于通过通信双方获取同一外部时钟源信号,将其赋予到各自的设备时间戳,使得通信双方的本地时钟同步;
    双向通信链路建立模块,用于以同步时钟为基准,通信双方自主建立双向通信链路;
    变参发送和接收模块,用于以同步时钟为基准,通信双方进行变参发送和接收;
    干扰检测模块,用于通信双方利用接收校验机制,对接收频点实施干扰检测,判断接收数据包的合法性;
    时钟校正或保持模块,用于通信双方各自比较己方本地接收时刻与对方变参发送时刻的差值,差值大于预设阈值时,则校正本地时钟;若差值小于预设阈值时,则保持当前的同步时钟。
  8. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至6中任一项所述方法的步骤。
  9. 一种计算机可读的存储介质,所述计算机可读的存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行所述权利要求1至6中任一项所述的方法。
PCT/CN2023/131388 2023-07-03 2023-11-14 一种基于外部时钟的自主变参通信同步方法及系统 WO2024104309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310802058.7 2023-07-03
CN202310802058.7A CN116527078B (zh) 2023-07-03 2023-07-03 一种基于外部时钟的自主变参通信同步方法及系统

Publications (1)

Publication Number Publication Date
WO2024104309A1 true WO2024104309A1 (zh) 2024-05-23

Family

ID=87405109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131388 WO2024104309A1 (zh) 2023-07-03 2023-11-14 一种基于外部时钟的自主变参通信同步方法及系统

Country Status (2)

Country Link
CN (1) CN116527078B (zh)
WO (1) WO2024104309A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116527078B (zh) * 2023-07-03 2023-09-26 南京邮电大学 一种基于外部时钟的自主变参通信同步方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178917A (zh) * 2011-12-26 2013-06-26 中国移动通信集团公司 一种协作通信的时钟同步方法、系统以及信息汇集节点
CN112039719A (zh) * 2020-07-20 2020-12-04 河北汉光重工有限责任公司 一种用于linux系统的PTP时钟同步精度测试方法
US20210076390A1 (en) * 2018-05-22 2021-03-11 Nanjing University Of Posts And Telecommunications Intelligent frequency-shift anti-interference autonomous communication method based on electromagnetic environment learning
CN112994739A (zh) * 2021-04-20 2021-06-18 南京邮电大学 无公共控制信道的自主建链与变频一体化通信方法及系统
CN116527078A (zh) * 2023-07-03 2023-08-01 南京邮电大学 一种基于外部时钟的自主变参通信同步方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178917A (zh) * 2011-12-26 2013-06-26 中国移动通信集团公司 一种协作通信的时钟同步方法、系统以及信息汇集节点
US20210076390A1 (en) * 2018-05-22 2021-03-11 Nanjing University Of Posts And Telecommunications Intelligent frequency-shift anti-interference autonomous communication method based on electromagnetic environment learning
CN112039719A (zh) * 2020-07-20 2020-12-04 河北汉光重工有限责任公司 一种用于linux系统的PTP时钟同步精度测试方法
CN112994739A (zh) * 2021-04-20 2021-06-18 南京邮电大学 无公共控制信道的自主建链与变频一体化通信方法及系统
CN116527078A (zh) * 2023-07-03 2023-08-01 南京邮电大学 一种基于外部时钟的自主变参通信同步方法及系统

Also Published As

Publication number Publication date
CN116527078B (zh) 2023-09-26
CN116527078A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN107769834B (zh) 一种LoRaWAN物联网信号中继方法
US9774418B2 (en) Method and system for managing modulation and coding scheme
JP5275257B2 (ja) 無線通信のアップリンク電力制御のための装置および方法
EP3942876B1 (en) Method and apparatus for beam management, and ue
WO2024104309A1 (zh) 一种基于外部时钟的自主变参通信同步方法及系统
WO2013097473A1 (zh) Prach的发射功率的确定方法及装置
WO2019214730A1 (zh) 通信方法和通信装置
US20240349256A1 (en) Method and Apparatus for Determining Time-Frequency Resource for MSG1 Repeated-Transmission, and Terminal
US20230354217A1 (en) Electronic device transmitting uplink signal and operating method thereof
CN102884848A (zh) 载波聚合的无线网络中用于定时提前的方法和装置
US20230421340A1 (en) Implicit update of activated tci states
JP2022554221A (ja) 情報伝送方法及び機器
WO2020030117A1 (zh) 功率控制参数的确定方法及装置、存储介质、电子设备
US11895644B2 (en) Information transmission method, base station and terminal
WO2024037038A1 (zh) 下行帧长的处理方法及装置、存储介质、电子装置
EP4404681A1 (en) Method for establishing slb connection, electronic device, and communication system
WO2024032488A1 (zh) 发送功率确定方法、终端及存储介质
CN117651266A (zh) 通信锚点变更方法、装置、设备、系统及存储介质
WO2024099091A1 (zh) 波束预测方法、装置、终端、网络侧设备及存储介质
WO2013037213A1 (zh) 功率校准方法及装置
WO2022188681A1 (zh) Pa的非线性校准方法和设备
EP4266711A1 (en) Wireless communication method and system
RU2791031C1 (ru) Способ и устройство передачи сообщения произвольного доступа и носитель информации
CN116939789A (zh) 发射功率确定方法、装置、终端、网络侧设备及存储介质
CN117641236A (zh) 一种数字钥匙超带宽测距方法、系统以及测距响应方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890742

Country of ref document: EP

Kind code of ref document: A1