WO2024037038A1 - 下行帧长的处理方法及装置、存储介质、电子装置 - Google Patents

下行帧长的处理方法及装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2024037038A1
WO2024037038A1 PCT/CN2023/091307 CN2023091307W WO2024037038A1 WO 2024037038 A1 WO2024037038 A1 WO 2024037038A1 CN 2023091307 W CN2023091307 W CN 2023091307W WO 2024037038 A1 WO2024037038 A1 WO 2024037038A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink frame
frame length
optical
gateway
compressed
Prior art date
Application number
PCT/CN2023/091307
Other languages
English (en)
French (fr)
Inventor
王鹏
杨巧顺
蔡立勇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024037038A1 publication Critical patent/WO2024037038A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and specifically, to a downlink frame length processing method and device, a storage medium, and an electronic device.
  • F5G fifth-generation fixed communications
  • F5G home private network is based on optical fiber to the home, extending optical fiber to the room, realizing all-optical networking in the home, and combining 10G PON (Passive Optical Network, passive optical network) and Wi-Fi6 technology to achieve full-optical networking.
  • House Gigabit coverage solves problems such as insufficient home Wi-Fi signal coverage and substandard speed, and achieves safe and reliable Gigabit coverage throughout the house.
  • All-optical network FTTR (Fiber To The Room) is divided into two technical solutions: P2P (Point to Point) and P2MP (Point to Multi Point).
  • P2P Point to Point
  • P2MP Point to Multi Point
  • the P2MP networking method is as follows , the uplink optical port of the P2MP optical gateway is generally 10G PON, and the downlink optical port can be GPON (Gigabit-Capable PON, broadband passive optical integrated access technology based on the ITU-TG.984.x standard) or 10G PON, through optical splitting Optical routers are connected to the device for networking.
  • the P2MP technical solution has the advantages of many connected devices, easy expansion, and single-point speed measurement can exceed Gigabit.
  • P2MP technology currently reuses GPON series standards, such as GPON standard G.984.3, XGPON standard G.987.3, and
  • the BWMap domain of the downlink frame performs burst burst that is, the uplink DBA (Dynamic Bandwidth Assignment) scheduling period is at least 125us, as shown in Table 1.
  • Table 1 provides data on the uplink rate, downlink frame length and other data under the above standards; It may not be applicable to some scenarios with high latency requirements.
  • the P2MP optical gateway centrally schedules the wireless resources or cache resources of the optical router.
  • the latency usually needs to be less than 125us. Excessive latency will cause the wireless or cache resources of the optical router to be lost. When packets are lost due to timely scheduling, the user's valid data is lost and the business experience deteriorates.
  • the existing technology has not yet provided an effective solution to the problem that the optical gateway cannot compress the downlink frame length.
  • Embodiments of the present disclosure provide a downlink frame length processing method and device, a storage medium, and an electronic device to at least solve the problem in the related art that optical gateways cannot compress the downlink frame length.
  • a method for processing downlink frame length including: an optical gateway compresses the downlink frame length according to a target parameter, wherein the target parameter includes at least one of the following: Service type, used to determine centralized scheduling parameters; the optical gateway sends the compressed downlink frame length to the optical router.
  • a downlink frame length processing device including: a compression module configured to enable the optical gateway to compress the downlink frame length according to target parameters, wherein: The target parameters include at least one of the following: the service type of the optical router, used to determine parameters for centralized scheduling; the sending module, configured so that the optical gateway sends the compressed downlink frame length to the optical router.
  • a computer-readable storage medium is also provided.
  • a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the above methods when running. Steps in Examples.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Steps in method embodiments.
  • the optical gateway compresses the downlink frame length according to the service type including the optical router, and the optical router is set to determine the target parameter of at least one of the centralized scheduling parameters; to obtain the compressed downlink frame length, Finally, the optical gateway sends the compressed downlink frame length to the optical router; using the above solution, the problem that the optical gateway cannot compress the downlink frame length in related technologies is solved, and the technical effect of compressing the downlink frame length is achieved.
  • Figure 1 is a hardware structure block diagram of a computer terminal according to a downlink frame length processing method according to an embodiment of the present disclosure
  • Figure 2 is a flow chart of a downlink frame length processing method according to an embodiment of the present disclosure.
  • Figure 3 is a schematic diagram of an optional downlink frame length adjustment in the G.984.3 standard according to an embodiment of the present disclosure
  • Figure 4 is a schematic diagram of another optional downlink frame length adjustment in the G.984.3 standard according to an embodiment of the present disclosure
  • Figure 5 is a schematic diagram of an optional downlink frame length adjustment in the G.987.3/G.9807.1/G.9804.2 standard according to an embodiment of the present disclosure
  • Figure 6 is a schematic diagram of another optional downlink frame length adjustment in the G.987.3/G.9807.1/G.9804.2 standard according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of an optional downlink frame length notification method in the G.984.3 standard according to an embodiment of the present disclosure
  • Figure 8 is a schematic diagram of another optional downlink frame length notification method in the G.987.3/G.9807.1/G.9804.2 standard according to an embodiment of the present disclosure
  • Figure 9 is a schematic diagram of an optional all-optical network low-latency communication method according to an embodiment of the present disclosure.
  • Figure 10 is a structural block diagram of an optional downlink frame length processing method according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structure block diagram of a computer terminal of a downlink frame length processing method according to an embodiment of the present disclosure.
  • the computer terminal may include one or more (only one is shown in Figure 1) processors 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 configured to store data, wherein the above-mentioned computer terminal may also include a transmission device 106 for communication functions and an input and output device 108.
  • processors 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a memory 104 configured to store data
  • the above-mentioned computer terminal may also include a transmission device 106 for communication functions and an input and output device 108.
  • Figure 1 is only illustrative, and it does not limit the structure of the above-mentioned computer terminal.
  • the computer terminal may also include more or fewer components than shown in FIG. 1 , or have a different configuration than shown in FIG. 1 .
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the downlink frame length processing method in the embodiment of the present disclosure.
  • the processor 102 executes the computer program stored in the memory 104 , thereby executing various functional applications and data processing, that is, implementing the above method.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the computer terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the transmission device 106 is configured to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the computer terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 1 is a flow chart of the method for processing the downlink frame length according to an embodiment of the present disclosure. As shown in Figure 2, the process includes follows these steps:
  • Step S202 The optical gateway compresses the downlink frame length according to target parameters, where the target parameters include at least one of the following: the service type of the optical router, used to determine parameters for centralized scheduling;
  • Step S204 The optical gateway sends the compressed downlink frame length to the optical router.
  • the optical gateway usually has multiple optical routers attached to it, and the downlink optical port can be GPON (Gigabit-Capable PON, a broadband passive optical fiber router based on the ITU-TG.984.x standard). Integrated access technology) or 10G PON, which may evolve to 50G PON in the future, but usually the downlink frame length is fixed at 125us, and downlink PLOAM (Physical Layer Operations, Administration and Maintenance, physical layer operation management and maintenance) or OMCI (physical layer operation management and maintenance) cannot be realized.
  • GPON Gigabit-Capable PON, a broadband passive optical fiber router based on the ITU-TG.984.x standard.
  • 10G PON which may evolve to 50G PON in the future, but usually the downlink frame length is fixed at 125us, and downlink PLOAM (Physical Layer Operations, Administration and Maintenance, physical layer operation management and maintenance) or OMCI (physical layer operation management and maintenance) cannot be realized.
  • 0NU Management and Control Interface Optical Network Unit Management and Control Interface
  • DBA Dynamic Bandwidth Allocation dynamic bandwidth allocation
  • G.984.3 standard downlink frame includes PCBd domain and GTC payload domain, PCBd domain remains unchanged, GTC payload is compressed to reduce downlink frame delay;
  • G.987.3 standard, G.9807.1 standard, G.9804.2 standard downlink frame includes PSBd domain and PHY payload domain, PHY payload domain Contains the XGTC/FS header field and XGTC/FS payload field. The PSBd field and XGTC/FS header field remain unchanged. The XGTC/FS payload is compressed to reduce the downlink frame delay.
  • the PCBd domain is a field in the frame data, which is usually used by switches or routers to determine the target processor board for operation when forwarding data packets on an Ethernet network.
  • the PSBd field represents the starting boundary delimiter of the data packet. For frame data that is divided into multiple small data packets to optimize transmission and save bandwidth, the PSBd field identifies the starting position of each small data packet so that the receiver can This information correctly assembles the complete frame data.
  • the PHY payload field is the physical layer responsible for transmitting user data.
  • the XGTC/FS header field represents the downlink control information and frame header part, including synchronization sequence, channel encoding method and other information; the XGTC/FS payload field represents the actual uplink data or downlink data.
  • the optical gateway compresses the downlink frame length according to the service type including the optical router, and the optical router is set to determine the target parameter of at least one of the centralized scheduling parameters; to obtain the compressed downlink frame length, Finally, the optical gateway sends the compressed downlink frame length to the optical router; using the above solution, the problem that the optical gateway cannot compress the downlink frame length in related technologies is solved, and the technical effect of compressing the downlink frame length is achieved.
  • the parameters used to determine centralized scheduling include: wireless resources or cache resources of the optical router.
  • the optical gateway Before performing the above compression step S204: before the optical gateway compresses the downlink frame length according to the target parameters, the The method also includes at least one of the following: the optical gateway determines the service type of the optical router according to the message protocol type sent by the optical router; the optical gateway manages and maintains PLOAM messages according to physical layer operations, or manages and The control interface OMCI message determines the wireless resources or cache resources of the optical router.
  • the optical gateway can identify the service type of the optical router through the protocol type of the message sent by the optical router. For example, if the optical router sends HART messages (Highway Addressable Remote Transducer, addressable remote sensor), the optical gateway can identify that the user is conducting transactions through the optical router. VR interaction; for example, if an optical router sends a multicast join message, the optical gateway can recognize that the user is watching IPTV (Interactive Internet Television) video through the optical router; if the optical router sends a SIP message (Session Initiation Protocol), the optical gateway The gateway can recognize that the user is making a voice call through the optical router. The optical gateway can also obtain the parameters used by the optical router to determine centralized scheduling through PLOAM messages or OMCI message interactions, that is, obtain the wireless resources or cache resources of the optical router.
  • HART messages Highway Addressable Remote Transducer, addressable remote sensor
  • VR interaction for example, if an optical router sends a multicast join message, the optical gateway can recognize that the user is watching IPTV (
  • the optical gateway compresses the downlink frame length according to the target parameters, which can be achieved through the following steps, including: when it is determined that the service type of the optical router is a delay-sensitive service Next, the optical gateway compresses the downlink frame length to a first length range.
  • the optical gateway dynamically adjusts the downlink frame length according to the service type of the optical router and the parameters used to determine centralized scheduling.
  • the parameters used to determine centralized scheduling include the wireless resources or cache resources of the optical router.
  • the optical gateway identifies that the router has delay-sensitive services. If delay-sensitive services require a delay of less than 80us, the optical gateway can adjust the downlink frame length to the first length range, such as 62.5us, or shorter to adapt to the business scenario.
  • the parameters used to determine centralized scheduling include: wireless resources or cache resources of the optical router.
  • the optical gateway can adjust the downlink frame length to the second length range, such as 15.625us or shorter. Centralized scheduling and management of optical router resources.
  • the optical gateway identifies that the optical router has no delay-sensitive services or does not need to centrally schedule optical router resources, the downlink frame length can be restored to 125us.
  • the optical gateway sends the compressed downlink frame length to the optical gateway.
  • Router including the following steps: the optical gateway sends the compressed downlink frame length to the optical router through a target message to instruct the optical router to deframe the target message to obtain the compressed downlink frame long; wherein, the target message includes one of the following: standard downlink frame PLend field, downlink frame PON-ID field, physical layer operation management and maintenance PLOAM message, management and control interface OMCI message.
  • the optical router searches the downlink frame synchronization field for downlink frame synchronization. After synchronization, it can obtain the compressed frame length information of the downlink frame based on the PLend field field of the downlink frame header or the Frame length of the PON-ID field, and perform GTC payload or XGTC based on the frame length information.
  • the /FS payload domain deframes and reorganizes, and at the same time performs uplink burst burst control based on the BWmap domain bandwidth information; you can also obtain the compressed frame length information of the downlink frame and the superframe count information of the downlink frame length switching based on the PLOAM or OMCI management message.
  • the master gateway and the slave gateway switch the downlink frame length and downlink frame deframing algorithm at the same time.
  • the method further includes: when the target message includes the PLend field of the standard downlink frame, indicating the compressed downlink through the ATM length indication bit in the PLend field of the standard downlink frame. Frame length.
  • the optical gateway can notify the optical router of the adjusted downlink frame length, that is, the compressed downlink frame length, through the ATM length in the G984.3 standard downlink detection PLend field.
  • the PLend field represents the end position of the Payload, that is, by specifying the end bit of the data packet with different types and lengths, it indicates when the receiving end stops reading the transmission and starts processing the next data packet.
  • the method further includes: in the case where the target message includes the PON-ID field of the downlink frame, indicating the requested message through the Admintive label (administrator label) indication bit in the PON-ID field of the downlink frame. Describes the compressed downlink frame length.
  • the optical gateway can also notify the optical router of the adjusted downlink frame length, that is, the compressed downlink frame length, through the Admintive label in the PON-ID field of the G987.3 standard, G9807.1 standard, and G9804.2 standard downlink frame.
  • the above method of notifying the optical router of the compressed downlink frame length may also include: notifying the optical router of the adjusted downlink frame length through a PLOAM message or an OMCI message; however, notification through a PLOAM message or an OMCI message is less real-time. long, and at the same time, the gateway needs to be informed of the superframe count value for adjusting the downlink frame length and switching the downlink frame length.
  • the optical gateway compresses the downlink frame length according to target parameters, including at least one of the following: compressing the downlink frame length according to a preset ratio; compressing all downlink frame lengths according to the application scenario.
  • the downlink frame length is compressed.
  • the downlink frame can be compressed proportionally or the compression algorithm can be selected according to the application scenario.
  • the 125us downlink frame can be divided into n subframes.
  • the frame length of each subframe after proportional compression is 125/n (us).
  • the minimum DBA scheduling period is 12.5us; each subframe can also be compressed not proportionally, and is designed according to the actual application scenario.
  • the first subframe has a frame length of n1 (us) after compression
  • the second subframe has a length of n1 (us) after compression.
  • the optical gateway compresses the downlink frame length according to the target parameters, including: for a standard downlink frame including the PCBd domain and the GTC payload domain, the optical gateway maintains the PCBd domain. No change, compress the GTC payload domain.
  • Embodiment 1 is explained below with reference to Figures 3 and 4.
  • Figure 3 is a schematic diagram of an optional downlink frame length adjustment in the G.984.3 standard according to an embodiment of the present disclosure.
  • Figure 4 is a schematic diagram of an optional downlink frame length adjustment according to an embodiment of the present disclosure.
  • G.984.3 standard downlink frame includes PCBd field and GTC payload field.
  • PCBd When downlink frame length is compressed, PCBd The field remains unchanged, and the GTC payload field is compressed to reduce the downlink frame delay.
  • the compression algorithm is proportional compression, and the compressed frame length is 125/n (us).
  • the G.984.3 standard downlink frame includes the PCBd domain and the GTC payload domain.
  • the PCBd domain remains unchanged when the downlink frame length is compressed.
  • the GTC payload domain is compressed to reduce the downlink frame delay.
  • the compression algorithm is based on actual application scenarios. Design, compressed frame length n1 (us), n2 (us), etc.
  • the above solution is based on the downlink frame length adjustment method under the G.984.3 standard: the adjustment schematic diagrams of compression according to proportion and selection of compression algorithm according to application scenarios are respectively.
  • the optical gateway compresses the downlink frame length according to target parameters, including: for standards including the PSBd domain, the first XGTC/FS header domain and the second XGTC/FS payload domain.
  • target parameters including: for standards including the PSBd domain, the first XGTC/FS header domain and the second XGTC/FS payload domain.
  • the optical gateway keeps the PSBd field and the first XGTC/FS header field unchanged, and compresses the second XGTC/FS payload field.
  • Figure 5 is a schematic diagram of an optional downlink frame length adjustment in the G.987.3/G.9807.1/G.9804.2 standard according to an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of an optional downlink frame length adjustment according to the present disclosure.
  • Another optional downlink frame length adjustment schematic diagram in the G.987.3/G.9807.1/G.9804.2 standard is disclosed in the embodiment.
  • the G.987.3/G.9807.1/G.9804.2 standard downlink frame includes the PSBd field, the XGTC/FS header field and the XGTC/FS payload field.
  • the PSBd field and the XGTC/FS header field remain unchanged during downlink frame length compression. No change, the XGTC/FS payload field is compressed to reduce downlink frame delay.
  • the compression algorithm is proportional compression, and the compressed frame length is 125/n (us).
  • the G.987.3/G.9807.1/G.9804.2 standard downlink frame includes the PSBd field, the XGTC/FS header field and the XGTC/FS payload field.
  • the PSBd field and the XGTC/FS header field remain unchanged during downlink frame length compression. Remain unchanged, the XGTC/FS payload field is compressed to reduce downlink frame delay.
  • the compression algorithm is designed according to actual application scenarios.
  • the compressed frame length is n1 (us), n2 (us), etc.
  • the above is the adjustment method of the downlink frame length based on the G.987.3/G.9807.1/G.9804.2 standard: respectively, the adjustment schematic diagrams of compression according to the ratio and selection of the compression algorithm according to the application scenario.
  • inventions also provides an optional downlink frame length notification method, as shown in Figure 7.
  • Figure 7 is an optional downlink frame length notification in the G.984.3 standard according to the embodiment of the present disclosure.
  • the G.984.3 standard PLend field includes the BWmap length indicator bit, the ATM length indicator bit and the CRC check bit.
  • the ATM length indicator bit is replaced by the downlink frame length indicator bit, that is, Frame length, which is used to notify the optical router of the downlink frame length. information.
  • the embodiment of the present disclosure also provides a schematic diagram of another optional downlink frame length notification method, as shown in Figure 8.
  • Figure 8 is another optional G.987.3/G method according to the embodiment of the present disclosure. Schematic diagram of the downlink frame length notification method of the .9807.1/G.9804.2 standard;
  • the G.987.3/G.9807.1/G.9804.2 standard PON-ID field includes the Admintive label indicator bit and the DWLCHID indicator bit, where the Admintive label is shortened from 36bits to 24bits, and the downlink frame length indicator bit, namely Frame length, is inserted. Notify the optical router of the downlink frame length information.
  • Figure 9 is a schematic diagram of an optional all-optical network low-latency communication method according to an embodiment of the present disclosure. As shown in Figure 9, it specifically includes the following steps:
  • the optical gateway identifies the service type of the optical router and obtains wireless resources and cache resources;
  • step S904 Determine whether there is a delay-sensitive service. If so, proceed to step S910. If not, proceed to step S906;
  • step S906 Determine whether centralized scheduling of optical router resources is required. If so, proceed to step S910. If not Enter step S908;
  • the optical gateway keeps the downlink frame length unchanged or restores the downlink frame length to 125us;
  • the optical gateway compresses downlink frames proportionally or selects a compression algorithm based on the application scenario
  • the optical router searches the synchronization domain and deframes the frame according to the frame header or management message.
  • the optical gateway first identifies the service type of the optical router and obtains wireless resources and cache resources; the optical gateway identifies whether there is a delay-sensitive service in the optical router. If there is a delay-sensitive service, the optical gateway compresses the downlink frame in proportion or selects compression according to the application scenario. Algorithm; if it does not exist, determine whether the optical gateway needs to centrally schedule the wireless resources and cache resources of the optical router; if necessary, the optical gateway compresses the downlink frames in proportion or selects a compression algorithm according to the application scenario. If not, the optical gateway keeps the downlink frames.
  • the length remains unchanged or the downlink frame length is restored to 125us; finally, the optical router searches the synchronization domain and deframes the frame according to the frame header or management message; using the above solution, the problem that the optical gateway cannot compress the downlink frame length in related technologies is solved, achieving The technical effect of compressing the downlink frame length is achieved.
  • the method according to the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a second node device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present disclosure.
  • This embodiment also provides a downlink frame length processing device, which is used to implement the above embodiments and preferred implementations. What has already been described will not be described again.
  • the term "module” may be a combination of software and/or hardware that implements a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, implementation in hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG 10 is a structural block diagram of an optional downlink frame length processing device according to an embodiment of the present disclosure. As shown in Figure 10, the device includes:
  • the compression module 1002 is configured for the optical gateway to compress the downlink frame length according to target parameters, where the target parameters include at least one of the following: the service type of the optical router, used to determine parameters for centralized scheduling;
  • the sending module 1004 is configured for the optical gateway to send the compressed downlink frame length to the optical router.
  • the optical gateway compresses the downlink frame length according to the service type including the optical router, and the optical router is set to determine the target parameter of at least one of the centralized scheduling parameters; to obtain the compressed downlink frame length, and finally The optical gateway sends the compressed downlink frame length to the optical router; using the above solution, the problem in related technologies that the optical gateway cannot compress the downlink frame length is solved, and the technical effect of compressing the downlink frame length is achieved.
  • the above compression module 1002 is also configured to perform at least one of the following methods before the optical gateway compresses the downlink frame length according to the target parameters: the optical gateway performs at least one of the following methods according to the message protocol sent by the optical router.
  • the type determines the service type of the optical router; the optical gateway determines the wireless resources or cache resources of the optical router according to the physical layer operation management and maintenance PLOAM message, or the management and control interface OMCI message.
  • the optical gateway can identify the service type of the optical router through the protocol type of the message sent by the optical router. For example, if the optical router sends HART messages (Highway Addressable Remote Transducer, addressable remote sensor), the optical gateway can identify that the user is conducting transactions through the optical router. VR interaction; if the optical router sends a multicast join message, the optical gateway can recognize that the user is watching IPTV video through the optical router; if the optical router sends a SIP message (Session Initiation Protocol, session initialization protocol), the optical gateway can recognize that the user is watching Make voice calls through an optical router. Optical gateway The parameters used by the optical router to determine centralized scheduling can also be obtained interactively through PLOAM messages or OMCI messages, that is, the wireless resources or cache resources of the optical router can be obtained.
  • HART messages Highway Addressable Remote Transducer, addressable remote sensor
  • the compression module 1002 is further configured to compress the downlink frame length to a first length range by the optical gateway when it is determined that the service type of the optical router is a delay-sensitive service.
  • the optical gateway dynamically adjusts the downlink frame length according to the service type of the optical router and the parameters used to determine centralized scheduling.
  • the parameters used to determine centralized scheduling include the wireless resources or cache resources of the optical router.
  • the optical gateway identifies that the router has delay-sensitive services. If delay-sensitive services require a delay of less than 80us, the optical gateway can adjust the downlink frame length to the first length range, such as 62.5us, or shorter to adapt to the business scenario.
  • the compression module 1002 is further configured to adjust the downlink frame length to the second length range by the optical gateway when the wireless resources or cache resources of the optical router need to be scheduled centrally.
  • the optical gateway can adjust the downlink frame length to the second length range, such as 15.625us or shorter. Centralized scheduling and management of optical router resources.
  • the above-mentioned sending module 1004 is also configured for the optical gateway to send the compressed downlink frame length to the optical router through the target message, so as to instruct the optical router to deframe the target message to obtain the The compressed downlink frame length; wherein, the target message includes one of the following: standard downlink frame PLend field, downlink frame PON-ID field, physical layer operation management and maintenance PLOAM message, management and control interface OMCI message.
  • the optical router searches the downlink frame synchronization field for downlink frame synchronization. After synchronization, it can obtain the compressed frame length information of the downlink frame based on the PLend field field of the downlink frame header or the Frame length of the PON-ID field, and perform GTC payload or XGTC based on the frame length information.
  • the /FS payload domain deframes and reorganizes, and at the same time performs uplink burst burst control based on the BWmap domain bandwidth information; you can also obtain the compressed frame length information of the downlink frame and the superframe count information of the downlink frame length switching based on the PLOAM or OMCI management message.
  • the master gateway and the slave gateway switch the downlink frame length and downlink frame deframing algorithm at the same time.
  • the above compression module 1002 is also configured to indicate the compressed length through the ATM length indication bit in the PLend field of the standard downlink frame when the target message includes the PLend field of the standard downlink frame.
  • the length of the downlink frame is also configured to indicate the compressed length through the ATM length indication bit in the PLend field of the standard downlink frame when the target message includes the PLend field of the standard downlink frame.
  • the optical gateway can notify the optical router of the adjusted downlink frame length, that is, the compressed downlink frame length, through the ATM length in the G984.3 standard downlink detection PLend field.
  • the above compression module 1002 is also configured to indicate the compressed message through the Admintive label indication bit in the PON-ID field of the downlink frame when the target message includes the PON-ID field of the downlink frame.
  • the length of the downlink frame is also configured to indicate the compressed message through the Admintive label indication bit in the PON-ID field of the downlink frame when the target message includes the PON-ID field of the downlink frame.
  • the optical gateway can also notify the optical router of the adjusted downlink frame length, that is, the compressed downlink frame length, through the Admintive label in the PON-ID field of the G987.3 standard, G9807.1 standard, and G9804.2 standard downlink frame.
  • the above compression module 1002 is also configured to compress the downlink frame length through at least one of the following methods: compression according to a preset ratio, compression according to application scenarios.
  • the downlink frame can be compressed proportionally or the compression algorithm can be selected according to the application scenario.
  • the 125us downlink frame can be divided into n subframes.
  • the frame length of each subframe after proportional compression is 125/n (us).
  • the minimum DBA scheduling period is 12.5us; each subframe can also be compressed not proportionally, and is designed according to the actual application scenario.
  • the first subframe has a frame length of n1 (us) after compression
  • the second subframe has a length of n1 (us) after compression.
  • the DBA scheduling period matches the compressed frame length.
  • the above-mentioned compression module 1002 is also configured so that for a standard downlink frame including a PCBd domain and a GTC payload domain, the optical gateway keeps the PCBd domain unchanged and compresses the GTC payload domain.
  • the G.984.3 standard downlink frame includes the PCBd field and the GTC payload field.
  • the PCBd field remains unchanged when the downlink frame length is compressed.
  • the GTC payload field is compressed to reduce the downlink frame delay.
  • the compression algorithm is proportional compression.
  • the compressed frame length 125/n (us); or, the G.984.3 standard downlink frame includes the PCBd field and the GTC payload field.
  • the PCBd field remains unchanged when the downlink frame length is compressed.
  • the GTC payload field is compressed to reduce the downlink frame delay.
  • the compression algorithm is based on The actual application scenario is designed, and the compressed frame length is n1 (us), n2 (us), etc.
  • the above compression module 1002 is also configured to maintain the PSBd domain and the second XGTC/FS payload domain for standard downlink frames including the PSBd domain, the first XGTC/FS header domain and the second XGTC/FS payload domain.
  • the first XGTC/FS header field remains unchanged, and the second XGTC/FS payload field is compressed.
  • the G.987.3/G.9807.1/G.9804.2 standard downlink frame includes the PSBd field, XGTC/FS header field and XGTC/FS payload field.
  • the PSBd field and XGTC/FS header field remain unchanged during downlink frame length compression.
  • the FS payload field is compressed to reduce downlink frame delay.
  • the compression algorithm is proportional compression.
  • the compressed frame length is 125/n (us), or the G.987.3/G.9807.1/G.9804.2 standard downlink frame includes the PSBd field. , XGTC/FS header field and XGTC/FS payload field.
  • When downlink frame length is compressed the PSBd field and XGTC/FS header field remain unchanged.
  • the XGTC/FS payload field is compressed to reduce the downlink frame delay.
  • the compression algorithm is based on actual applications. The scene is designed, and the compressed frame length is n1 (us), n2 (us), etc.
  • each of the above modules can be implemented through software or hardware.
  • it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination.
  • the forms are located in different processors.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the above-mentioned storage medium may be configured to store a computer program for performing the following steps:
  • the optical gateway compresses the downlink frame length according to target parameters, where the target parameters include at least one of the following: the service type of the optical router, which is used to determine the parameters for centralized scheduling;
  • the optical gateway sends the compressed downlink frame length to the optical router.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned processor may be configured to perform the following steps through a computer program:
  • the optical gateway compresses the downlink frame length according to target parameters, where the target parameters include at least one of the following: the service type of the optical router, which is used to determine the parameters for centralized scheduling;
  • the optical gateway sends the compressed downlink frame length to the optical router.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present disclosure can be implemented using general-purpose computing devices, and they can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供了一种下行帧长的处理方法及装置、存储介质、电子装置,上述方法包括:光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;所述光网关将压缩后的下行帧长发送至所述光路由器;通过本公开,解决了相关技术中光网关无法对下行帧长进行压缩的问题,达到了压缩下行帧长的技术效果。

Description

下行帧长的处理方法及装置、存储介质、电子装置
本公开要求于2022年08月16日提交中国专利局、申请号为202210984160.9、发明名称“下行帧长的处理方法及装置、存储介质、电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种下行帧长的处理方法及装置、存储介质、电子装置。
背景技术
随着光网络的不断发展,带宽网络服务正迈向以10G PON(Passive Optical Network,无源光纤网络)和Wi-Fi6(原称为IEEE 802.11.ax,第六代无线网络技术)为主流的第五代固定通信(F5G)时代,相比前几代固定接入技术,F5G具有超高网络接入速率、全光联接、优秀网络体验等一系列优良特性。F5G家庭专网是在光纤到户的基础上,将光纤向房间延伸,在家庭内实现全光组网,并结合10G PON(Passive Optical Network,无源光纤网络)、Wi-Fi6技术,实现全屋千兆覆盖,解决家庭Wi-Fi信号覆盖不足、速率不达标等问题,实现全屋安全可靠的千兆覆盖。
全光网络FTTR(光纤到房间,Fiber To The Room)分为P2P(点到点,Point to Point)和P2MP(点到多点,Point to Multi Point)两种技术方案,其中P2MP组网方式如下,P2MP光网关上联光口一般为10G PON,下联光口可以是GPON(Gigabit-Capable PON,基于ITU-TG.984.x标准的宽带无源光综合接入技术)或者10G PON,通过分光器下挂光路由器进行组网,P2MP技术方案具有下挂设备多,扩容方便,单点测速可以超千兆等优点。
P2MP技术目前复用GPON系列标准,如GPON标准G.984.3、XGPON标准G.987.3、XGSPON标准G.9807.1,未来有可能复用50GPON标准G.9804.2,GPON系列标准下行帧长固定125us,上行根据下行帧BWMap域进行burst突发,即上行DBA(动态带宽分配,Dynamic Bandwidth Assignment)调度周期最小125us,如表1所示,表1提供了关于上述标准下的上行速率、下行帧长等数据;对于一些时延要求比较高的场景可能无法适用,如P2MP光网关对光路由器无线资源或者缓存资源进行集中调度,时延通常需要小于125us,时延过大会导致光路由器无线或者缓存资源因得不到及时调度而丢包,用户有效数据丢失,业务体验变差。
表1
针对相关技术中,现有技术,光网关无法对下行帧长进行压缩的问题,尚未提供有效的解决方案。
发明内容
本公开实施例提供了一种下行帧长的处理方法及装置、存储介质、电子装置,以至少解决相关技术中光网关无法对下行帧长进行压缩的问题。
根据本公开的一个实施例,提供了一种下行帧长的处理方法,包括:光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;所述光网关将压缩后的下行帧长发送至所述光路由器。
根据本公开的另一个实施例,应用于光网关,还提供了一种下行帧长的处理装置,包括:压缩模块,设置为光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;发送模块,设置为所述光网关将压缩后的下行帧长发送至所述光路由器。
根据本公开的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
通过本公开,该光网关根据包括光路由器的业务类型,所述光路由器设置为确定集中调度的参数至少之一的目标参数对所述下行帧长进行压缩;以得到压缩后的下行帧长,最后光网关将压缩后的下行帧长发送给该光路由器;采用上述方案,解决了相关技术中光网关无法对下行帧长进行压缩的问题,达到了压缩下行帧长的技术效果。
附图说明
图1是根据本公开实施例的一种下行帧长的处理方法的计算机终端的硬件结构框图;
图2是根据本公开实施例的一种下行帧长的处理方法的流程图
图3是根据本公开实施例的一种可选的在G.984.3标准的下行帧长的调整示意图;
图4是根据本公开实施例的另一种可选的在G.984.3标准的下行帧长的调整示意图;
图5是根据本公开实施例的一种可选的在G.987.3/G.9807.1/G.9804.2标准的下行帧长调整示意图;
图6是根据本公开实施例的另一种可选的在G.987.3/G.9807.1/G.9804.2标准的下行帧长调整示意图;
图7是根据本公开实施例的一种可选的在G.984.3标准的下行帧长的通知方法示意图;
图8是根据本公开实施例的另一种可选的在G.987.3/G.9807.1/G.9804.2标准的下行帧帧长通知方法示意图;
图9是根据本公开实施例的一种可选的全光网络低时延通信方法示意图;
图10是根据本公开实施例的一种可选的下行帧长的处理方法的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等 是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例中所提供的方法实施例可以在计算机终端或者类似的运算装置中执行。以运行在计算机终端上为例,图1是本公开实施例的一种下行帧长的处理方法的计算机终端的硬件结构框图。如图1所示,计算机终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104,其中,上述计算机终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述计算机终端的结构造成限定。例如,计算机终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的下行帧长的处理方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至计算机终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备106设置为经由一个网络接收或者发送数据。上述的网络具体实例可包括计算机终端的通信供应商提供的无线网络。在一个实例中,传输设备106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述计算机终端的下行帧长的处理方法,图2是根据本公开实施例的下行帧长的处理方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;
步骤S204,所述光网关将压缩后的下行帧长发送至所述光路由器。
需要说明的是,FTTR家庭或者企业组网中,光网关通常会下挂多个光路由器,下联光口可以是GPON(Gigabit-Capable PON,基于ITU-TG.984.x标准的宽带无源光综合接入技术)或者10G PON,未来有可能会演进到50G PON,但通常下行帧长固定为125us,无法实现下行PLOAM(Physical Layer Operations,Administration and Maintenance,物理层操作管理和维护)或者OMCI(0NU Management and Control Interface,光网络单元管理控制接口)管理消息以及DBA(Dynamic Bandwidth Allocation动态带宽分配)调度周期时延降低,因此需要对下行帧长进行压缩,实现下联光口低时延通信,以适配低时延业务场景。
需要说明的是,上述对下行帧长进行压缩的过程中,下行帧长压缩帧头保持不变,通过对帧负载进行压缩实现下行帧长时延降低,例如:G.984.3标准下行帧包括PCBd域和GTC payload域,PCBd域保持不变,对GTC payload进行压缩降低下行帧时延;G.987.3标准、G.9807.1标准、G.9804.2标准下行帧包括PSBd域和PHY payload域,PHY payload域包含XGTC/FS header域和XGTC/FS payload域,PSBd域和XGTC/FS header域保持不变,对XGTC/FS payload进行压缩降低下行帧时延。
其中,PCBd域是帧数据中的一个字段,通常用于交换机或者路由器在以太网网络上转发数据包时确定目标处理器板进行操作。PSBd域表示数据包起始边界分隔符,对于被分为多个小的数据包以优化传输和节省带宽的帧数据,PSBd域标识了每个小数据包的起始位置,以便接收方能够根据该信息正确组装完整的帧数据。PHY payload域是负责传输的用户数据的物理层,XGTC/FS header域表示下行控制信息和帧头部分,包含同步序列、通道编码方式等信息;XGTC/FS payload域则表示实际的上行数据或下行数据。
通过上述步骤,该光网关根据包括光路由器的业务类型,所述光路由器设置为确定集中调度的参数至少之一的目标参数对所述下行帧长进行压缩;以得到压缩后的下行帧长,最后光网关将压缩后的下行帧长发送给该光路由器;采用上述方案,解决了相关技术中光网关无法对下行帧长进行压缩的问题,达到了压缩下行帧长的技术效果。
可选的,所述用于确定集中调度的参数包括:所述光路由器的无线资源或缓存资源,执行上述压缩步骤S204:所述光网关根据目标参数对所述下行帧长进行压缩之前,所述方法还包括以下至少之一:所述光网关根据所述光路由器发送的报文协议类型确定所述光路由器的业务类型;所述光网关根据物理层操作管理和维护PLOAM消息,或管理和控制接口OMCI消息确定所述光路由器的无线资源或缓存资源。
光网关可以通过光路由器发送的报文协议类型识别光路由器的业务类型,如光路由器发送HART报文(Highway Addressable Remote Transducer,可寻址远程传感器),光网关可以识别为用户正在通过光路由器进行VR互动;如光路由器发送组播加入报文,光网关可以识别为用户正在通过光路由器观看IPTV(交互式网络电视)视频;光路由器发送SIP报文(Session Initiation Protocol,会话初始协议),光网关可以识别为用户正在通过光路由器进行语音通话。光网关也可以通过PLOAM消息或者OMCI消息交互获取光路由器用于确定集中调度的参数,即获取光路由器的无线资源或缓存资源。
可选的,上述压缩步骤S204:所述光网关根据目标参数对所述下行帧长进行压缩,可以通过以下步骤来实现,包括:在确定所述光路由器的业务类型为时延敏感业务的情况下,所述光网关将所述下行帧长压缩到第一长度范围。
光网关根据光路由器业务类型、用于确定集中调度的参数进行下行帧长动态调整,用于确定集中调度的参数包括光路由器的无线资源或缓存资源,例如光网关识别路由器有时延敏感业务,时延敏感业务对时延要求小于80us,则光网关可以将下行帧长调整到第一长度范围,如62.5us,或者更短以适应该业务场景。
可选的,所述用于确定集中调度的参数包括:所述光路由器的无线资源或缓存资源,上述压缩步骤S204:所述光网关根据目标参数对所述下行帧长进行压缩,还可以通过以下步骤来实现,包括:在所述光路由器的无线资源或缓存资源需要进行集中调度的情况下,所述光网关将所述下行帧长调整到第二长度范围。
若光网关需要对光路由器的无线资源和缓存资源进行集中调度,而集中调度的时延要求小于20us,则光网关可以将下行帧长调整到第二长度范围,如15.625us或者更短以进行光路由器资源集中调度管理。
需要说明的是,上述方案中,若光网关识别光路由器没有时延敏感业务或者不需要对光路由器资源进行集中调度时,可以恢复下行帧长至125us。
基于上述步骤,执行上述压缩步骤S204:所述光网关将压缩后的下行帧长发送至所述光 路由器,包括以下步骤:所述光网关通过目标消息将压缩后的下行帧长发送至所述光路由器,以指示所述光路由器对所述目标消息进行解帧,得到所述压缩后的下行帧长;其中,所述目标消息包括以下之一:标准下行帧PLend field域,下行帧PON-ID域,物理层操作管理和维护PLOAM消息,管理和控制接口OMCI消息。
光路由器搜索下行帧同步域进行下行帧同步,同步后可以根据下行帧帧头PLend field域或者PON-ID域的Frame length获取下行帧压缩后的帧长信息,根据帧长信息进行GTC payload或者XGTC/FS payload域解帧重组,同时根据BWmap域带宽信息进行上行burst突发控制;也可以根据PLOAM或者OMCI管理消息获取下行帧压缩后的帧长信息以及下行帧长切换的超帧计数信息,当超帧计数时间到达时,主网关和从网关同时进行下行帧长切换和下行帧解帧算法切换。
可选的,所述方法还包括:在所述目标消息包括所述标准下行帧PLend field域的情况下,通过所述标准下行帧PLend field域中的ATM length指示位指示所述压缩后的下行帧长。
光网关可以通过G984.3标准下行侦PLend field域中的ATM length通知光路由器调整后的下行帧长,即压缩后的下行帧长。
其中,PLend field表示Payload的结束位置,即通过指定带有不同类型和长度的数据包的结束位来指示接收端何时停止读取传输并开始处理下一个数据包。
可选的,所述方法还包括:在所述目标消息包括所述下行帧PON-ID域的情况下,通过所述下行帧PON-ID域中的Admintive label(管理员标签)指示位指示所述压缩后的下行帧长。
光网关也可以通过G987.3标准、G9807.1标准、G9804.2标准下行帧PON-ID域中的Admintive label通知光路由器调整后的下行帧长,即压缩后的下行帧长。
需要说明的是,上述通知光路由器压缩后的下行帧长的方法还可以包括:通过PLOAM消息或者OMCI消息通知光路由器调整后的下行帧长;但通过PLOAM消息或者OMCI消息进行通知的实时性较长,且同时需要告知从网关下行帧长调整至和下行帧长切换的超帧计数值。
可选的,执行上述压缩步骤S204:所述光网关根据目标参数对所述下行帧长进行压缩,至少包括以下之一:对所述下行帧长按照预设比例进行压缩;按照应用场景对所述下行帧长进行压缩。
下行帧可以按比例压缩或者根据应用场景选择压缩算法,如125us下行帧可以分为n个子帧,每个子帧按比例压缩后帧长125/n(us),n=8时,子帧帧长125/8=15.625us,DBA调度周期最小12.5us;每个子帧也可以不按比例压缩,根据实际应用场景进行设计,如第一个子帧压缩后帧长n1(us),第二个子帧压缩后帧长n2(us)......,n1+n2+...=125us,n=8时,子帧帧长可以为n1=12us,n2=13us,n3=14us,n4=15us,n5=16us,n6=17us,n7=18us,n8=20us或者其它组合,DBA调度周期和压缩后的帧长匹配。
可选的,执行上述压缩步骤S204:所述光网关根据目标参数对所述下行帧长进行压缩,包括:对于包括PCBd域和GTC payload域的标准下行帧,所述光网关保持所述PCBd域不变,对所述GTC payload域进行压缩。
以下结合图3和图4对实施例1进行解释说明,图3是根据本公开实施例的一种可选的在G.984.3标准的下行帧长的调整示意图,图4是根据本公开实施例的另一种可选的在G.984.3标准的下行帧长的调整示意图。
如图3所示:G.984.3标准下行帧包括PCBd域和GTC payload域,下行帧长压缩时PCBd 域保持不变,对GTC payload域进行压缩以降低下行帧时延,压缩算法为按比例压缩,压缩后的帧长125/n(us)。
如图4所示:G.984.3标准下行帧包括PCBd域和GTC payload域,下行帧长压缩时PCBd域保持不变,对GTC payload域进行压缩以降低下行帧时延,压缩算法根据实际应用场景进行设计,压缩后的帧长n1(us),n2(us)等。
即上述方案是基于G.984.3标准下的下行帧长的调整方法:分别为根据比例进行压缩和根据应用场景选择压缩算法的调整示意图。
可选的,执行上述压缩步骤S204:所述光网关根据目标参数对所述下行帧长进行压缩,包括:对于包括PSBd域、第一XGTC/FS header域和第二XGTC/FS payload域的标准下行帧,所述光网关保持所述PSBd域和所述第一XGTC/FS header域不变,对所述第二XGTC/FS payload域进行压缩。
以下结合图5和图6进行解释说明,图5是根据本公开实施例的一种可选的在G.987.3/G.9807.1/G.9804.2标准的下行帧长调整示意图,图6是根据本公开实施例的另一种可选的在G.987.3/G.9807.1/G.9804.2标准的下行帧长调整示意图。
如图5所示,G.987.3/G.9807.1/G.9804.2标准下行帧包括PSBd域、XGTC/FS header域和XGTC/FS payload域,下行帧长压缩时PSBd域和XGTC/FS header域保持不变,对XGTC/FS payload域进行压缩以降低下行帧时延,压缩算法为按比例压缩,压缩后的帧长125/n(us)。
如图6所示,G.987.3/G.9807.1/G.9804.2标准下行帧包括PSBd域、XGTC/FS header域和XGTC/FS payload域,下行帧长压缩时PSBd域和XGTC/FS header域保持不变,对XGTC/FS payload域进行压缩以降低下行帧时延,压缩算法根据实际应用场景进行设计,压缩后的帧长n1(us),n2(us)等。
即上述是基于G.987.3/G.9807.1/G.9804.2标准下的下行帧长的调整方法:分别为根据比例进行压缩和根据应用场景选择压缩算法的调整示意图。
本公开实施例还提供了一种可选的下行帧长的通知方法,如图7所示,图7是根据本公开实施例的一种可选的在G.984.3标准的下行帧长的通知方法示意图;
可见,G.984.3标准PLend field域包括BWmap length指示位,ATM length指示位和CRC校验位,其中ATM length指示位更换为下行帧长指示位,即Frame length,用于通知光路由器下行帧长信息。
此外,本公开实施例还提供了另一种可选的下行帧帧长通知方法示意图,如图8所示,图8是根据本公开实施例的另一种可选的在G.987.3/G.9807.1/G.9804.2标准的下行帧帧长通知方法示意图;
可见,G.987.3/G.9807.1/G.9804.2标准PON-ID域包括Admintive label指示位和DWLCHID指示位,其中Admintive label由36bits缩短为24bits,插入下行帧长指示位,即Frame length,用于通知光路由器下行帧长信息。
图9为本公开实施例的一种可选的全光网络低时延通信方法示意图,如图9所示,具体包括以下步骤:
S902:光网关识别光路由器业务类型,获取无线资源和缓存资源;
S904:判断是否存在时延敏感业务,如果是则进入步骤S910,如果不是进入步骤S906;
S906:判断是否需要对光路由器资源进行集中调度,如果是则进入步骤S910,如果不是 进入步骤S908;
S908:光网关保持下行帧长不变或者恢复下行帧长至125us;
S910:光网关按比例压缩下行帧或者根据应用场景选择压缩算法;
S912:光路由器搜索同步域,根据帧头或者管理消息进行解帧。
通过上述步骤,光网关先识别光路由器的业务类型,并获取无线资源和缓存资源;光网关识别光路由器是否存在时延敏感业务,若存在则光网关按比例压缩下行帧或者根据应用场景选择压缩算法;若不存在则判断光网关是否需要对光路由器无线资源和缓存资源进行集中调度;若需要则光网关按比例压缩下行帧或者根据应用场景选择压缩算法,若不需要则光网关保持下行帧长不变或者恢复下行帧长至125us;最后光路由器搜索同步域,根据帧头或者管理消息进行解帧;采用上述方案,解决了相关技术中光网关无法对下行帧长进行压缩的问题,达到了压缩下行帧长的技术效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台第二节点设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
在本实施例中还提供了一种下行帧长的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本公开实施例的可选的下行帧长的处理装置的结构框图,如图10所示,该装置包括:
压缩模块1002,设置为光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;
发送模块1004,设置为所述光网关将压缩后的下行帧长发送至所述光路由器。
通过上述模块,光网关根据包括光路由器的业务类型,所述光路由器设置为确定集中调度的参数至少之一的目标参数对所述下行帧长进行压缩;以得到压缩后的下行帧长,最后光网关将压缩后的下行帧长发送给该光路由器;采用上述方案,解决了相关技术中光网关无法对下行帧长进行压缩的问题,达到了压缩下行帧长的技术效果。
可选的,上述压缩模块1002,还设置为所述光网关根据目标参数对所述下行帧长进行压缩之前,执行以下方法至少之一:所述光网关根据所述光路由器发送的报文协议类型确定所述光路由器的业务类型;所述光网关根据物理层操作管理和维护PLOAM消息,或管理和控制接口OMCI消息确定所述光路由器的无线资源或缓存资源。
光网关可以通过光路由器发送的报文协议类型识别光路由器的业务类型,如光路由器发送HART报文(Highway Addressable Remote Transducer,可寻址远程传感器),光网关可以识别为用户正在通过光路由器进行VR互动;如光路由器发送组播加入报文,光网关可以识别为用户正在通过光路由器观看IPTV视频;光路由器发送SIP报文(Session Initiation Protocol,会话初始协议),光网关可以识别为用户正在通过光路由器进行语音通话。光网关 也可以通过PLOAM消息或者OMCI消息交互获取光路由器用于确定集中调度的参数,即获取光路由器的无线资源或缓存资源。
可选的,上述压缩模块1002,还设置为在确定所述光路由器的业务类型为时延敏感业务的情况下,所述光网关将所述下行帧长压缩到第一长度范围。
光网关根据光路由器业务类型、用于确定集中调度的参数进行下行帧长动态调整,用于确定集中调度的参数包括光路由器的无线资源或缓存资源,例如光网关识别路由器有时延敏感业务,时延敏感业务对时延要求小于80us,则光网关可以将下行帧长调整到第一长度范围,如62.5us,或者更短以适应该业务场景。
可选的,上述压缩模块1002,还设置为在所述光路由器的无线资源或缓存资源需要进行集中调度的情况下,所述光网关将所述下行帧长调整到第二长度范围。
若光网关需要对光路由器的无线资源和缓存资源进行集中调度,而集中调度的时延要求小于20us,则光网关可以将下行帧长调整到第二长度范围,如15.625us或者更短以进行光路由器资源集中调度管理。
基于上述步骤,上述发送模块1004,还设置为所述光网关通过目标消息将压缩后的下行帧长发送至所述光路由器,以指示所述光路由器对所述目标消息进行解帧,得到所述压缩后的下行帧长;其中,所述目标消息包括以下之一:标准下行帧PLend field域,下行帧PON-ID域,物理层操作管理和维护PLOAM消息,管理和控制接口OMCI消息。
光路由器搜索下行帧同步域进行下行帧同步,同步后可以根据下行帧帧头PLend field域或者PON-ID域的Frame length获取下行帧压缩后的帧长信息,根据帧长信息进行GTC payload或者XGTC/FS payload域解帧重组,同时根据BWmap域带宽信息进行上行burst突发控制;也可以根据PLOAM或者OMCI管理消息获取下行帧压缩后的帧长信息以及下行帧长切换的超帧计数信息,当超帧计数时间到达时,主网关和从网关同时进行下行帧长切换和下行帧解帧算法切换。
可选的,上述压缩模块1002,还设置为在所述目标消息包括所述标准下行帧PLend field域的情况下,通过所述标准下行帧PLend field域中的ATM length指示位指示所述压缩后的下行帧长。
光网关可以通过G984.3标准下行侦PLend field域中的ATM length通知光路由器调整后的下行帧长,即压缩后的下行帧长。
可选的,上述压缩模块1002,还设置为在所述目标消息包括所述下行帧PON-ID域的情况下,通过所述下行帧PON-ID域中的Admintive label指示位指示所述压缩后的下行帧长。
光网关也可以通过G987.3标准、G9807.1标准、G9804.2标准下行帧PON-ID域中的Admintive label通知光路由器调整后的下行帧长,即压缩后的下行帧长。
可选的,上述压缩模块1002,还设置为通过以下方法至少之一对所述下行帧长进行压缩:按照预设比例进行压缩,按照应用场景进行压缩。
下行帧可以按比例压缩或者根据应用场景选择压缩算法,如125us下行帧可以分为n个子帧,每个子帧按比例压缩后帧长125/n(us),n=8时,子帧帧长125/8=15.625us,DBA调度周期最小12.5us;每个子帧也可以不按比例压缩,根据实际应用场景进行设计,如第一个子帧压缩后帧长n1(us),第二个子帧压缩后帧长n2(us)......,n1+n2+...=125us,n=8时,子帧帧长可以为n1=12us,n2=13us,n3=14us,n4=15us,n5=16us,n6=17us,n7=18us,n8=20us 或者其它组合,DBA调度周期和压缩后的帧长匹配。
可选的,上述压缩模块1002,还设置为对于包括PCBd域和GTC payload域的标准下行帧,所述光网关保持所述PCBd域不变,对所述GTC payload域进行压缩。
G.984.3标准下行帧包括PCBd域和GTC payload域,下行帧长压缩时PCBd域保持不变,对GTC payload域进行压缩以降低下行帧时延,压缩算法为按比例压缩,压缩后的帧长125/n(us);或,G.984.3标准下行帧包括PCBd域和GTC payload域,下行帧长压缩时PCBd域保持不变,对GTC payload域进行压缩以降低下行帧时延,压缩算法根据实际应用场景进行设计,压缩后的帧长n1(us),n2(us)等。
可选的,上述压缩模块1002,还设置为对于包括PSBd域、第一XGTC/FS header域和第二XGTC/FS payload域的标准下行帧,所述光网关保持所述PSBd域和所述第一XGTC/FS header域不变,对所述第二XGTC/FS payload域进行压缩。
G.987.3/G.9807.1/G.9804.2标准下行帧包括PSBd域、XGTC/FS header域和XGTC/FS payload域,下行帧长压缩时PSBd域和XGTC/FS header域保持不变,对XGTC/FS payload域进行压缩以降低下行帧时延,压缩算法为按比例压缩,压缩后的帧长125/n(us),或,G.987.3/G.9807.1/G.9804.2标准下行帧包括PSBd域、XGTC/FS header域和XGTC/FS payload域,下行帧长压缩时PSBd域和XGTC/FS header域保持不变,对XGTC/FS payload域进行压缩以降低下行帧时延,压缩算法根据实际应用场景进行设计,压缩后的帧长n1(us),n2(us)等。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;
S2,所述光网关将压缩后的下行帧长发送至所述光路由器。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;
S2,所述光网关将压缩后的下行帧长发送至所述光路由器。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种下行帧长的处理方法,包括:
    光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;
    所述光网关将压缩后的下行帧长发送至所述光路由器。
  2. 根据权利要求1所述的下行帧长的处理方法,其中,所述用于确定集中调度的参数包括:所述光路由器的无线资源或缓存资源,所述光网关根据目标参数对所述下行帧长进行压缩之前,所述方法还包括以下至少之一:
    所述光网关根据所述光路由器发送的报文协议类型确定所述光路由器的业务类型;
    所述光网关根据物理层操作管理和维护PLOAM消息,或管理和控制接口OMCI消息确定所述光路由器的无线资源或缓存资源。
  3. 根据权利要求1所述的下行帧长的处理方法,其中,所述光网关根据目标参数对所述下行帧长进行压缩,包括:
    在确定所述光路由器的业务类型为时延敏感业务的情况下,所述光网关将所述下行帧长压缩到第一长度范围。
  4. 根据权利要求1所述的下行帧长的处理方法,其中,所述用于确定集中调度的参数包括:所述光路由器的无线资源或缓存资源,所述光网关根据目标参数对所述下行帧长进行压缩,包括:
    在所述光路由器的无线资源或缓存资源需要进行集中调度的情况下,所述光网关将所述下行帧长调整到第二长度范围。
  5. 根据权利要求1所述的下行帧长的处理方法,其中,所述光网关将压缩后的下行帧长发送至所述光路由器,包括:
    所述光网关通过目标消息将压缩后的下行帧长发送至所述光路由器,以指示所述光路由器对所述目标消息进行解帧,得到所述压缩后的下行帧长;
    其中,所述目标消息包括以下之一:标准下行帧PLend field域,下行帧PON-ID域,物理层操作管理和维护PLOAM消息,管理和控制接口OMCI消息。
  6. 根据权利要求5所述的下行帧长的处理方法,其中,所述方法还包括:
    在所述目标消息包括所述标准下行帧PLend field域的情况下,通过所述标准下行帧PLend field域中的ATM length指示位指示所述压缩后的下行帧长。
  7. 根据权利要求5所述的下行帧长的处理方法,其中,所述方法还包括:
    在所述目标消息包括所述下行帧PON-ID域的情况下,通过所述下行帧PON-ID域中的Admintive label指示位指示所述压缩后的下行帧长。
  8. 根据权利要求1所述的下行帧长的处理方法,其中,所述光网关根据目标参数对所述下行帧长进行压缩,至少包括以下之一:
    对所述下行帧长按照预设比例进行压缩;
    按照应用场景对所述下行帧长进行压缩。
  9. 根据权利要求1所述的下行帧长的处理方法,其中,所述光网关根据目标参数对所述下行帧长进行压缩,包括:
    对于包括PCBd域和GTC payload域的标准下行帧,所述光网关保持所述PCBd域不变,对所述GTC payload域进行压缩。
  10. 根据权利要求1所述的下行帧长的处理方法,其中,所述光网关根据目标参数对所述下行帧长进行压缩,包括:
    对于包括PSBd域、第一XGTC/FS header域和第二XGTC/FS payload域的标准下行帧,所述光网关保持所述PSBd域和所述第一XGTC/FS header域不变,对所述第二XGTC/FS payload域进行压缩。
  11. 一种下行帧长的处理装置,应用于光网关,包括:
    压缩模块,设置为光网关根据目标参数对所述下行帧长进行压缩,其中,所述目标参数至少包括以下之一:光路由器的业务类型,用于确定集中调度的参数;
    发送模块,设置为所述光网关将压缩后的下行帧长发送至所述光路由器。
  12. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至10任一项中所述的方法。
  13. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至10任一项中所述的方法。
PCT/CN2023/091307 2022-08-16 2023-04-27 下行帧长的处理方法及装置、存储介质、电子装置 WO2024037038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210984160.9 2022-08-16
CN202210984160.9A CN116489539A (zh) 2022-08-16 2022-08-16 下行帧长的处理方法及装置、存储介质、电子装置

Publications (1)

Publication Number Publication Date
WO2024037038A1 true WO2024037038A1 (zh) 2024-02-22

Family

ID=87223788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091307 WO2024037038A1 (zh) 2022-08-16 2023-04-27 下行帧长的处理方法及装置、存储介质、电子装置

Country Status (2)

Country Link
CN (1) CN116489539A (zh)
WO (1) WO2024037038A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117544877B (zh) * 2024-01-10 2024-04-30 中兴通讯股份有限公司 基于全光网络的低时延通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045602A (zh) * 2009-10-26 2011-05-04 中兴通讯股份有限公司 帧定界的方法、光线路终端及光网络单元
US7991296B1 (en) * 2006-11-10 2011-08-02 Marvell International Ltd. Method and apparatus for data frame synchronization and delineation
CN106576010A (zh) * 2015-05-20 2017-04-19 华为技术有限公司 一种无源光网络成帧的方法、装置及系统
CN112672236A (zh) * 2019-10-15 2021-04-16 华为技术有限公司 业务信号处理方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7991296B1 (en) * 2006-11-10 2011-08-02 Marvell International Ltd. Method and apparatus for data frame synchronization and delineation
CN102045602A (zh) * 2009-10-26 2011-05-04 中兴通讯股份有限公司 帧定界的方法、光线路终端及光网络单元
CN106576010A (zh) * 2015-05-20 2017-04-19 华为技术有限公司 一种无源光网络成帧的方法、装置及系统
CN112672236A (zh) * 2019-10-15 2021-04-16 华为技术有限公司 业务信号处理方法及设备

Also Published As

Publication number Publication date
CN116489539A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
US10476526B2 (en) Coding and decoding method and device, and system
JP5512807B2 (ja) スケジューリングされたペイロード受信に基づいて光ネットワーク装置をエネルギー効率良く動作させるためのシステムおよび方法
KR101502605B1 (ko) 이단 네트워크에서 스케쥴링
US9793993B2 (en) Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
US10827239B2 (en) Message transmission method, relay device, and message processor
US20160286290A1 (en) Dynamic bandwidth assignment method and apparatus on passive optical network
WO2024037038A1 (zh) 下行帧长的处理方法及装置、存储介质、电子装置
WO2011017992A1 (zh) 带宽分配方法及光纤线路终端
WO2012119358A1 (zh) 无源光网络的动态带宽分配方法及装置
CN101753578A (zh) Ethernet/e1协议转换方法及协议转换器
US20220006744A1 (en) Service forwarding method and network device
US20220116269A1 (en) Apparatus and methods for synchronization pattern configuration in an optical network
CN113784392A (zh) 通信方法、装置及系统
US11824963B2 (en) Packet processing method and device
US8391285B2 (en) Communication apparatus, communication system, and communication method
CN113596628A (zh) 一种业务传输方法、装置、发送端及存储介质
US10225310B2 (en) Transmission processing methods and apparatuses of data packet
CN109302504B (zh) Ptn中控制信令通道的建立方法、ptn网元及存储介质
WO2014169483A1 (zh) 一种带宽分配的方法、设备及系统
CN115174979B (zh) 流媒体传输网络及传输控制方法、装置、设备及存储介质
WO2023123654A1 (zh) 数据传输方法、装置、存储介质及电子装置
WO2020248980A1 (zh) 带宽的分配、带宽的检查方法及装置
WO2022267543A1 (zh) 一种数据帧的分片方法、数据帧的解析方法及相关设备
WO2023045815A1 (zh) 传输方法、电子设备及计算机可读存储介质
EP4369733A1 (en) Method for processing cascaded onts, and apparatus and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853945

Country of ref document: EP

Kind code of ref document: A1