WO2019214730A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2019214730A1
WO2019214730A1 PCT/CN2019/086459 CN2019086459W WO2019214730A1 WO 2019214730 A1 WO2019214730 A1 WO 2019214730A1 CN 2019086459 W CN2019086459 W CN 2019086459W WO 2019214730 A1 WO2019214730 A1 WO 2019214730A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
subcarrier spacing
subcarrier
determining
carrier
Prior art date
Application number
PCT/CN2019/086459
Other languages
English (en)
French (fr)
Inventor
邵华
刘哲
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810820209.0A external-priority patent/CN110475358A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020022625-4A priority Critical patent/BR112020022625A2/pt
Priority to JP2020563620A priority patent/JP7128297B2/ja
Priority to CA3099321A priority patent/CA3099321A1/en
Priority to AU2019266797A priority patent/AU2019266797C1/en
Priority to EP19799977.4A priority patent/EP3783979B1/en
Publication of WO2019214730A1 publication Critical patent/WO2019214730A1/zh
Priority to US17/094,547 priority patent/US11516760B2/en
Priority to JP2022130722A priority patent/JP7483806B2/ja
Priority to US17/986,466 priority patent/US11838885B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for determining the timing at which the timing advance TA is effective.
  • the time for the uplink signals from different user equipments (UEs) to reach the network equipment is basically aligned. Therefore, the network device sends a time advance (TA) to the terminal device, and the terminal device adjusts the time for sending the uplink signal according to the received TA, so as to implement uplink timing synchronization between the terminal device and the network device.
  • TA time advance
  • the terminal device first receives the TA adjustment command sent by the network device, and after a period of time, the terminal device applies the new TA until a new TA adjustment command is received.
  • the terminal device can control the time interval to control the time when the TA takes effect.
  • the uplink-carrier spacing (SCS) of the uplink (UL) is different, which causes different time intervals, resulting in the same time advance group (TAG), different UL.
  • the TA effective time is inconsistent; in addition, different TA effective time increases the implementation complexity of the terminal device.
  • the present application provides a method and apparatus for determining a timing at which a timing advance TA is effective, which can ensure uplink timing synchronization between a terminal device and a network device.
  • a communication method including: determining a first subcarrier spacing from the M subcarrier spacings, wherein the M subcarrier spacings are subcarrier spacings corresponding to L carriers used by the terminal device, where , L ⁇ M ⁇ 2; determining an effective timing of the timing advance amount TA of each of the L carriers according to the first subcarrier interval.
  • the network device sends the configuration information to the terminal device to indicate the uplink subcarrier interval, and sends a TA adjustment command to the terminal device; the terminal device receives the TA adjustment command sent by the network device, where the TA adjustment command includes the TA adjustment amount, and the terminal device A new timing advance amount is determined based on the current timing advance amount TA and the TA adjustment amount.
  • the base station determines the timing advance amount of each UE by measuring the uplink signal transmitted by the UE, and notifies the UE of the timing advance amount.
  • the first time interval N may be defined as K slots, and the total duration of the first time interval N includes four parts of duration as shown in the figure, namely N 1 , N 2 , L 2 and TA max .
  • the mobile communication system supports multiple subcarrier spacings (for example, different service types or operating frequencies are applied per seed carrier interval), and the symbols of different subcarrier spacings have different lengths of corresponding cyclic prefixes CP.
  • the anti-delay impact performance of different sub-carrier spacings is also different. Therefore, the UE uses different timing advances in different scenarios, thereby satisfying the diversified requirements of the 5G mobile communication system for uplink synchronization.
  • different subcarrier spacings in the carrier resources are 15 kHz, 30 kHz, 60 kHz, and 120 kHz, which may be more likely in the future. It should be understood that the present application includes but is not limited thereto.
  • N 1 , N 2 , and TA max are different, resulting in inconsistent TA effective times of different ULs in the same TAG.
  • Different TA effective times increase the implementation complexity of the terminal device and do not conform to the definition of the same TAG.
  • the embodiment of the present application provides a method for determining the TA effective time, by determining the interval time N before the TA effective time, and ensuring that the interval time N is included in the case of including multiple UL subcarrier intervals for the same terminal device UE. It is consistent. Therefore, in the same TAG, the TA effective time of the terminal device is consistent, and the uplink timing synchronization between the terminal device and the network device can be ensured.
  • the terminal device determines the first subcarrier spacing from the M subcarrier intervals, and specifically determining the first subcarrier spacing is as follows:
  • N 1 , N 2 refer to the smallest UL subcarrier spacing.
  • the 15 kHz is taken as the standard.
  • N 1 and N 2 refer to the maximum UL subcarrier spacing.
  • the 30KHz is taken as the standard.
  • the TA max refers to the minimum UL subcarrier spacing.
  • the 15 kHz is taken as the standard.
  • the TA max refers to the maximum UL subcarrier spacing.
  • the TA max it is based on 30 kHz.
  • the N 1 , N 2 , and TA max refer to the smallest UL subcarrier spacing.
  • the 15KHz is taken as the standard.
  • the N 1 , N 2 , and TA max refer to the maximum UL subcarrier spacing.
  • the time interval is calculated, which is based on 30 kHz.
  • the minimum UL subcarrier spacing referenced by N 1 , N 2 , TA max refers to the maximum UL subcarrier spacing.
  • N 1 and N 2 are based on 15KHz
  • TA max is based on 30KHz.
  • the largest UL subcarrier spacing referenced by N 1 , N 2 , TA max refers to the smallest UL subcarrier spacing.
  • N 1 and N 2 are based on 30KHz
  • TA max is based on 15KHz.
  • the base station is configured with random access resources on the UL and SUL, and the subcarrier spacing of the Msg3 is 15 kHz or 30 kHz, respectively, and the ⁇ corresponding to the TA max refers to the minimum 15 kHz or the ⁇ reference to the maximum 30 kHz.
  • the L uplink UL subcarrier spacings s described above may also be the SCS of the bandwidth part BWP of all active states, or the subcarrier spacing of multiple BWPs configured by the terminal, or the subcarriers of all BWPs. interval.
  • the subcarrier spacing of the uplink carrier resource for transmitting Msg 3 may be 15 kHz.
  • the subcarrier spacing of the uplink resource may be reconfigured, for example, allocated carrier resources.
  • the subcarrier spacing may be 30KHz or 60KHz. Therefore, in order to consider the influence of random access, the influence of the Msg 3 subcarrier spacing is considered here in the determination process of TA max .
  • each uplink carrier may correspond to different message 3 subcarrier intervals, for example, when the UE is configured with an uplink carrier UL and a supplementary uplink carrier (SUL).
  • Message 3 may have 2 subcarrier spacings, for example 15 kHz and 30 kHz, respectively. Therefore, the influence of multiple Msg3 subcarrier spacings is also considered in the determination of TA max .
  • the uplink UL subcarrier spacing adopted by the UE is different from that of Msg 3.
  • TA max should take the minimum value of Msg 3 and the configured subcarrier spacing SCS of the UL.
  • the subcarrier spacing SCS of the carrier resource for transmitting Msg 3 is 15KHz, and when the time interval is calculated, N 1 , N 2 is based on 30KHz, and TA max is based on 15KHz.
  • first possible subcarrier spacing of the ten possible N 1 , N 2 , and TA max references The above describes the case of the first possible subcarrier spacing of the ten possible N 1 , N 2 , and TA max references. It should be understood that the above case is only an example and not a limitation, in various processes for determining the first subcarrier spacing. There may be more combinations of first subcarrier spacings for references to N 1 , N 2 , TA max , and the application includes, but is not limited to, this.
  • the determining, by the terminal device, the first threshold value, determining the first threshold value, and determining the first threshold value as the first sub-carrier interval, and participating in determining the TA effective time is determining, by the terminal device, the first threshold value, determining the first threshold value, and determining the first threshold value as the first sub-carrier interval, and participating in determining the TA effective time.
  • the method provided by the foregoing application may also be used in combination with the prior art, for example, obtaining a minimum value in the first subcarrier spacing of the determined uplink carrier resource and the subcarrier spacing of the downlink carrier resource, thereby obtaining a sub Carrier spacing, which will not be described here. It should be understood that the application includes but is not limited thereto.
  • determining, according to the first subcarrier interval, an effective moment of a timing advance amount TA of each of the L carriers including: according to the first sub And determining, by the carrier interval, a first time interval corresponding to the first carrier of the L carriers, where the first time interval is a time interval between a receiving time of the downlink signal and an effective time of the TA; determining, according to the first time interval, The timing of the timing advance TA of each of the L carriers.
  • the terminal device determines, according to the first subcarrier interval, a first time interval corresponding to the first carrier of the L carriers, where the first time interval is a receiving moment of the downlink signal and an effective moment of the TA a time interval between the second time interval; and determining, according to the first time interval, an effective time of the timing advance amount TA of each of the L carriers.
  • the subcarrier spacing of the downlink DL is 15 kHz
  • the subcarrier spacing of the uplink UL is 30 kHz
  • the first time is obtained by the formula (1).
  • the first time interval includes one or more durations of the first duration, the second duration, and the third duration, according to the first subcarrier spacing Determining a first time interval corresponding to the first carrier of the L carriers, including:
  • a first duration which is a duration required to process the downlink signal
  • a second duration which is a duration required to prepare an uplink signal
  • a third duration which is a maximum duration allowed by the 12-bit or 6-bit timing advance command TAC corresponding to the first subcarrier interval.
  • the first time interval may refer to a maximum subcarrier interval, or a minimum subcarrier interval.
  • the maximum subcarrier spacing is 30 KHz
  • the minimum subcarrier spacing is 15 KHz
  • the first time interval determined according to the above method is 5 ms.
  • 5ms is equivalent to 5 slots, that is, for the 15KHz uplink carrier, the TA is applied from the 6th slot.
  • the 30KHz subcarrier spacing 5ms is equivalent to 10 slots, and for the 30KHz uplink carrier, TA is applied from the 11th slot.
  • the first time interval when referring to the maximum subcarrier interval, for a small subcarrier interval, the first time interval cannot implement an integer number of time slots, and the first time interval needs to be rounded up.
  • the rounding operation represents selecting a value greater than the original first time interval and being the smallest integer multiple of the time slot duration corresponding to the minimum subcarrier spacing.
  • the first time interval determined according to the above method is 2.5 ms, including 2 carriers (15 kHz and 30 kHz). Since 2.5 ms is not an integer multiple of the corresponding slot of the 15 kHz subcarrier interval, the first time interval is required to be 2.5 ms.
  • the step size of 15KHz is rounded up, that is, 3ms.
  • 3ms corresponds to 3 time slots (15KHz) and 6 time slots (30KHz) respectively. Then, corresponding to the subcarrier spacing of 15 KHz, a new TA is applied from the 4th slot, corresponding to a subcarrier spacing of 30 KHz, and a new TA is applied from 7 slots.
  • 12bit is only an example and not a limitation, and may take other possible values less than 12bit, for example, may be 6bit.
  • the length of time required to process the downlink signal is related to the downlink signal configuration, such as demodulation reference signal configuration, and/or downlink signal subcarrier spacing, and/or UE processing capability. It should be understood that the duration required for preparing the uplink signal is related to the uplink signal subcarrier spacing, and/or the UE processing capability.
  • the process of determining the first time interval enumerated herein may be summed according to formula (1) by determining the durations of N 1 , N 2 , L 2 , and TA max respectively, thereby obtaining the first time interval N.
  • the embodiment of the present application may also determine only one or more durations of N 1 , N 2 , L 2 , and TA max . During the development of the technology, only at least one duration may be determined, and the relationship may be obtained through a certain relationship.
  • a time interval N any method for determining the duration of any one or more of N 1 , N 2 , L 2 , and TA max by the method provided by the present application falls within the scope of protection of the present application.
  • the method when at least two carriers of the L carriers are used in a random access procedure, and the carrier used for transmitting the message Msg 3 includes at least two subcarrier intervals Before determining the third duration according to the first subcarrier interval, the method further includes: determining, according to the at least two subcarrier intervals, the first subcarrier spacing.
  • the first time interval further includes a fourth duration, where the first time interval further includes a fourth duration, where the fourth duration is the cell according to the cell The length of time determined by the multiplexing mode; and/or
  • the fourth duration is a duration determined by the terminal device according to a frequency range in which the terminal device or the network device operates.
  • the method further includes: determining a first mapping relationship, where the first mapping relationship includes a one-to-one mapping relationship between multiple subcarrier spacings and multiple durations And determining, according to the first subcarrier interval, an effective time of the timing advance TA of each of the L carriers, including: determining, according to the first mapping relationship, corresponding to the first subcarrier spacing a first time interval; determining, according to the first time interval, an effective time of the timing advance amount TA of each of the L carriers.
  • the terminal device learns the sub-carrier spacing of all the uplink ULs in a TAG according to the configuration of the network device, and then receives the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the new TA in MAC-CE is the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the new TA in MAC-CE is the sub-carrier spacing of all the uplink ULs in a TAG according to the configuration of the network device, and then receives the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the new TA in MAC-CE is the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the terminal After receiving the MAC-CE including the TA adjustment, the terminal determines the first time interval according to the minimum or maximum uplink subcarrier spacing in the same TAG. For example, the terminal device can determine the first time interval according to a preset function.
  • the first subcarrier spacing is the smallest subcarrier spacing of the M subcarrier spacings; or the first subcarrier spacing is the M subcarrier spacings. The largest subcarrier spacing in the middle.
  • the first subcarrier spacing may be a maximum/minimum value among all uplink subcarrier intervals, or a maximum/minimum value of a subcarrier interval of a bandwidth portion of all active states, or a configuration of a terminal.
  • the determining, by the terminal device, the first threshold value, determining the first threshold value, and determining the first threshold value as the first sub-carrier interval, and participating in determining the TA effective time is determining, by the terminal device, the first threshold value, determining the first threshold value, and determining the first threshold value as the first sub-carrier interval, and participating in determining the TA effective time.
  • the method further include:
  • the uplink information is transmitted according to the timing advance amount TA.
  • the terminal device determines the first time interval N
  • the time represented by the first time interval N is added from the time of receiving the downlink signal. It is possible to determine the effective time of the TA.
  • the uplink information may be sent according to the timing advance TA.
  • a communication apparatus including: a determining unit, configured to determine a first subcarrier spacing from the M subcarrier spacings, wherein the M subcarrier spacings are corresponding to L carriers used by the terminal device a subcarrier spacing, where L ⁇ M ⁇ 2; the determining unit is further configured to determine, according to the first subcarrier spacing, an effective time of the timing advance TA of each of the L carriers.
  • the determining unit is further configured to: determine, according to the first subcarrier interval, a first time interval corresponding to the first carrier of the L carriers, the first time The interval is a time interval between a reception time of the downlink signal and an effective time of the TA; and according to the first time interval, an effective time of the timing advance amount TA of each of the L carriers is determined.
  • the first time interval includes one or more durations of the first duration, the second duration, and the third duration
  • the determining unit is further configured to: Determining, according to the first subcarrier interval, a first duration, which is a duration required for processing the downlink signal; and/or determining a second duration according to the first subcarrier interval, where the second duration is preparing an uplink signal The required duration; and/or determining a third duration according to the first subcarrier spacing, the third duration being a maximum duration allowed by the 12-bit or 6-bit timing advance command TAC corresponding to the first subcarrier spacing .
  • the method further includes: determining, according to the at least two subcarrier intervals, the first subcarrier spacing.
  • the first time interval further includes a fourth duration, where the first time interval further includes a fourth duration, where the fourth duration is a duration determined by the terminal device according to the cell multiplexing mode; and/or
  • the fourth duration is a duration determined by the terminal device according to a frequency range in which the terminal device or the network device operates.
  • the determining unit is further configured to: determine a first mapping relationship, where the first mapping relationship includes a plurality of subcarrier spacings and a plurality of durations a mapping relationship; and determining, according to the first mapping relationship, a first time interval corresponding to the first subcarrier spacing; determining, according to the first time interval, an effective timing advance TA of each of the L carriers time.
  • the first subcarrier spacing is the smallest subcarrier spacing of the M subcarrier spacings; or the first subcarrier spacing is the M subcarrier spacings. The largest subcarrier spacing in the middle.
  • the apparatus further includes a sending unit, configured to send uplink information according to the timing advance amount TA.
  • a communication device having the function of implementing the behavior of a terminal device in the design of any of the possible implementation methods of the first aspect and the first aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the communication device includes a memory and a processor for coupling with the memory, executing instructions in the memory to implement the first aspect and the first Any of a possible implementation methods of the method; the memory for storing program instructions and data.
  • a fourth aspect a computer readable storage medium for storing a computer program, the computer program comprising the method for implementing any of the above first aspect and any one of the possible implementation methods of the first aspect Instructions.
  • a computer program product comprising computer program code, when the computer program code is run on a computer, causing the computer to perform any of the first aspect and the first aspect of the first aspect Method of designing any of the communication methods.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the above aspects, for example, generating, receiving, determining, transmitting, or processing the method involved in the foregoing method Data and / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of an example of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic diagram of interaction between a terminal device and a network device in a TA adjustment process.
  • FIG. 3 is a schematic diagram of the terminal device transmitting uplink information according to the timing advance TA.
  • FIG. 4 is a schematic diagram of an example of an effective time of a TA according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for determining a TA effective time provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of an example communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an example terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another terminal device according to an embodiment of the present application.
  • the “protocol” may refer to a standard protocol in the communication field, and may include, for example, an LTE protocol, an NR protocol, and related protocols used in a future communication system.
  • the present application includes but is not limited thereto.
  • pre-definition may be implemented by pre-storing corresponding codes, tables, or other manners that can be used to indicate related information in a device (for example, including a terminal device and a network device).
  • a device for example, including a terminal device and a network device.
  • pre-definition can be defined in the protocol.
  • reporting and “feedback” are often used interchangeably, but those skilled in the art can understand the meaning thereof.
  • the feedback CSI and the feedback CSI may all be substantially the CSI transmitted through the physical uplink channel. Therefore, in the embodiments of the present application, the meanings to be expressed are consistent when the distinction is not emphasized.
  • LTE long term evolution
  • FDD frequency division duplex
  • time division duplex time division duplex
  • 5G fifth generation
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a schematic diagram of a wireless communication system 100 suitable for use with embodiments of the present application.
  • the wireless communication system 100 can include one or more network devices, such as the network device 101 shown in FIG. 1; the wireless communication system 100 can also include one or more terminal devices, for example, FIG. Terminal device #1 102, terminal device #2 103 are shown.
  • the wireless communication system 100 can support Coordinated Multiple Points Transmission (CoMP), that is, multiple cells or multiple network devices can cooperatively participate in data transmission of one terminal device or jointly receive data transmitted by one terminal device, or Multiple cells or multiple network devices perform cooperative scheduling or cooperative beamforming.
  • CoMP Coordinated Multiple Points Transmission
  • the multiple cells may belong to the same network device or different network devices, and may be selected according to channel gain or path loss, received signal strength, received signal instructions, and the like.
  • the network device in the wireless communication system may be any device with a wireless transceiver function or a chip that can be disposed on the device, including but not limited to: a base station, an evolved base station (eNB) , a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node, a transmission point (TP), or a transmission and reception point (transmission) And reception point (TRP), etc., may also be a gNB in the NR system, or may be a component or a part of devices constituting a base station, such as a central unit (CU), a distributed unit (DU), or Baseband unit (BBU), etc.
  • a base station such as a central unit (CU), a distributed unit (DU), or Baseband unit (BBU), etc.
  • CU central unit
  • DU distributed unit
  • BBU Baseband unit
  • a radio access network device is referred to as a network device.
  • a network device refers to a radio access network device.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the gNB can include CUs and DUs.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture.
  • the network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in the access network RAN, and the CU may be divided into network devices in the core network CN, which is not limited herein.
  • the terminal device in the wireless communication system may also be referred to as a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with wireless transceiver function, or may be applied to virtual reality (VR), augmented reality (AR). ), industrial control, self driving, remote medical, smart grid, transportation safety, smart city, and smart home ) Wireless terminals in scenarios such as .
  • VR virtual reality
  • AR augmented reality
  • the foregoing terminal device and a chip applicable to the foregoing terminal device are collectively referred to as a terminal device. It should be understood that the specific technology and specific device configuration adopted by the terminal device in this embodiment of the present application are not limited.
  • the network device may be a serving network device, and the serving network device may refer to providing an RRC connection, a non-access stratum (NAS) for the terminal device through a wireless air interface protocol.
  • Network device for at least one service in mobility management and security input.
  • the network device may also be a cooperative network device.
  • the serving network device may send control signaling to the terminal device, and the cooperative network device may send data to the terminal device; or the serving network device may send control signaling to the terminal device, where the serving network device and the cooperative network device may send data to the terminal device; Alternatively, both the serving network device and the cooperative network device may send control signaling to the terminal device, and both the serving network device and the cooperative network device may send data to the terminal device; or the cooperative network device may send control signaling to the terminal device, the service At least one of the network device and the cooperative network device may transmit data to the terminal device; or the cooperative network device may transmit control signaling and data to the terminal device.
  • This embodiment of the present application is not particularly limited.
  • network device and the terminal device are schematically illustrated in FIG. 1 for convenience of understanding, but this should not constitute any limitation to the present application, and a more or less number of network devices may be included in the wireless communication system.
  • a network device that can communicate with different terminal devices may be the same network device or a different network device, and the number of network devices that communicate with different terminal devices may be the same. Different, this application includes but is not limited to.
  • the terminal device may be any terminal device that has a wireless connection relationship with one or more network devices in a wireless communication system. It can be understood that any one of the terminal devices in the wireless communication system can implement wireless communication based on the same technical solution.
  • the terminal device is represented by the UE, and the base station is identified by the gNB. This application includes but is not limited to.
  • Time advance group A group of cells configured by a network device through radio resource control (RRC) signaling, that is, the network device configures a time advance TA for the cell, and multiple cells have The same TA forms a TAG.
  • RRC radio resource control
  • time advance time advance
  • the signal is delayed in spatial transmission, and the TA is used to characterize the distance between the terminal device and the antenna port of the network device.
  • the communication system may use an uplink timing advance mechanism.
  • the UE sends the uplink information according to the timing advance.
  • the timing advance is essentially a negative offset between the start time of the downlink subframe and the start time of the uplink subframe.
  • the base station can control the time when the uplink signal from different UEs arrives at the base station by appropriately controlling the offset of each UE. For the UE closer to the base station, the uplink information can be sent according to a smaller timing advance, which is farther away from the base station.
  • the UE because the signal has a large transmission delay, needs to send uplink information according to a large timing advance.
  • the network device configures the same timing advance TA for one or more cells. At the same time, the network device adjusts the TA according to the location, distance, and the like of the terminal device. It should be understood that the network device may be adjusted according to a certain period, or the network device may be adjusted according to information such as the location, distance, and the like of the terminal device, and the application includes but is not limited thereto.
  • the terminal device Receiving, by the terminal device, a TA adjustment command sent by the network device, where the TA adjustment command includes a TA adjustment amount, and the terminal device determines a new timing advance amount according to the timing advance TA of the current cell and the newly received TA adjustment amount, and according to the new The timing advance amount sends uplink information.
  • FIG. 2 is a schematic diagram of interaction between a terminal device and a network device during a TA adjustment process. As shown in FIG. 2, the process of the terminal TA adjustment includes S201 to S205.
  • the network device sends configuration information to the terminal device, where the uplink subcarrier spacing is indicated.
  • the network device sends a TA adjustment command to the terminal device.
  • the terminal device receives a TA adjustment command sent by the base station, and determines a time interval at which the TA takes effect.
  • the terminal device may include some or all of the above steps in the actual TA adjustment process, and the embodiment of the present application is not limited thereto.
  • FIG. 3 shows a schematic diagram of a UE transmitting uplink information according to a timing advance.
  • the UE if the signal transmission distance between the UE and the base station is D, the base station expects to receive the uplink signal sent by the UE at time T 0, the UE needs to send information in the uplink time T 0 -T TA, wherein, the TA represents Timing advance, which takes the value D/c, and c indicates the rate of electromagnetic wave transmission. Since the UE has mobility, the distance D of the signal transmitted between the UE and the base station also changes. Therefore, the UE needs to continuously adjust the value of the timing advance to ensure that the uplink signal arrives at the base station and the base station expects the uplink signal to reach the base station. The error of the moment is within an acceptable range.
  • the base station can determine the timing advance of each UE by measuring the uplink signal transmitted by the UE.
  • the base station can measure the timing advance according to any uplink signal sent by the UE, and the base station can notify the UE of the timing advance by the following two methods.
  • the base station may notify the UE of the timing advance TA by a TAC field of a random access response (RAR).
  • RAR random access response
  • the base station measures the preamble sent by the UE.
  • the size of the TAC field of the RAR may be, for example, 11 bits, and the corresponding timing advance coefficient ranges from 0 to 1282.
  • the timing advance coefficient is multiplied by 16T s .
  • the value of the current uplink advancement, where 16T s is the length of time, and in the LTE system, T s 1 / (15000 ⁇ 2048) seconds.
  • the base station may send the UE to the UE by using a timing advance command media access control control element (TAC MAC CE).
  • TAC MAC CE timing advance command media access control control element
  • the UE performs uplink synchronization with the base station in the random access process, but the communication environment of the UE may change with time, so that the timing advance in the random access process is no longer applicable to the new communication environment, for example, :
  • the transmission delay between the UE and the base station may change greatly in a short time
  • the current transmission path disappears and switches to a new communication path, and the transmission delay of the new communication path has a large change with respect to the original communication path;
  • the crystal oscillator offset of the UE, and the accumulation of offset for a long time may cause an uplink timing error
  • the UE needs to constantly update its timing advance.
  • Fig. 4 shows a schematic diagram of the effective timing of the TA.
  • the first time interval N may be defined as K slots, and the total duration of the first time interval N includes four parts of the duration, which are N 1 , N 2 , L 2 , and TA max , respectively, which may represent for:
  • N ceil(N 1 +N 2 +L 2 +TA max ) ⁇ ⁇ (1)
  • N 1 , N 2 , TA max are related to the uplink subcarrier spacing.
  • N 1 represents the time required for the terminal device to process the physical downlink share channel (PDSCH)
  • N 2 represents the delay of the terminal device to prepare the physical uplink share channel (PUSCH)
  • L 2 represents the terminal device.
  • TA max is the maximum duration allowed by the timing advance command TAC.
  • TAC the maximum duration allowed by the 12-bit TAC, or the maximum duration allowed by the 6-bit TAC.
  • the first time interval includes, in addition to the foregoing enumerated N 1 , N 2 , L 2 , and TA max , a duration determined by the terminal device according to the cell multiplexing mode, or the fourth duration is The duration determined by the terminal device according to the frequency range in which the terminal device or the network device operates. For example, the duration of the handover of the terminal device in different working modes or working frequency bands, and the time when the terminal device performs the handover is denoted as N TA offset .
  • the duration represented by the N TA offset and the maximum duration allowed by the 12-bit or 6-bit TAC mentioned above may be added as a whole as a TA max , for example, may be allowed by the TAC.
  • the N TA offset is the time when the terminal device performs the handover, for example, the time when the terminal device performs the uplink and downlink handover.
  • the uplink and downlink handover time N TA offset is related to the working mode or the working frequency band of the communication system, and the value of the protocol N TA offset can be listed as shown in Table 1.
  • FR1 represents a frequency band with a frequency less than 6 GHz
  • FR2 represents a frequency band with a frequency greater than 6 GHz.
  • the FR2 band can be FDD, or TDD, or both.
  • N TA offset (unit: T C ) FDD FR1 band 0 TDD FR1 band 39936 or 25600 FR2 band 13792
  • FR2 can be FDD, or TDD, or both.
  • FDD FR1 and TDD bands do not include LTE and NR coexistence scenarios 25600 FDD FR1 frequency band includes scenarios where LTE and NR coexist 0 TDD FR1 frequency band includes scenarios where LTE and NR coexist 39936 FR2 band 13792
  • the value of the N TA offset may be obtained by using one or more messages in the RRC signaling, downlink control information (DCI), and media access control control element (MAC-CE); or
  • the implicit manner determines, for example, by implicitly indicating the value of NTA offset ; or the value of NTA offset is predefined or pre-configured. It should be understood that the manner in which the value of the N TA offset is obtained is not limited in this application.
  • FR1 represents a scene where the operating frequency is less than 6 GHz
  • FR2 represents a scene in which the operating frequency is greater than or equal to 6 GHz.
  • ⁇ f max ⁇ 15,30,60,120,240 ⁇ 10 3 , applied to different working frequency bands or subcarrier spacings
  • N f ⁇ 512,1024,2048 ⁇ applied to different fast Fourier transforms (fast fourier transform) Transform, FFT) sampling frequency.
  • the N TA offset may be determined according to the non-SUL carrier.
  • the second uplink refers to a supplemental uplink (SUL).
  • N ceil(N 1 +N 2 +L 2 +N TA +N TA offset ) ⁇ ⁇ (2)
  • the downlink signal in the embodiment of the present application may be a signal transmitted by the PDCCH, such as a DCI, a demodulation reference signal (DMRS), or the like; or may be a data or information transmitted by the PDSCH.
  • the uplink signal may be data or information transmitted by the PUSCH, such as uplink scheduling information, uplink control information (UCI), feedback information, etc., specifically, such as an acknowledgement (ACK)/negative acknowledgement (NACK) ), an uplink scheduling request (SR), and the like. It should be understood that the application includes but is not limited thereto.
  • the 5G mobile communication system supports multiple subcarrier spacings (for example, different service types or working frequencies are applied for each seed carrier interval), and the lengths of the corresponding cyclic prefixes (CPs) of the different subcarrier spacing symbols are different.
  • the anti-delay impact performance of different sub-carrier spacings is also different. Therefore, the UE uses different timing advances in different scenarios, thereby satisfying the diversified requirements of the 5G mobile communication system for uplink synchronization.
  • different subcarrier spacings in the carrier resources are 15 kHz, 30 kHz, 60 kHz, and 120 kHz, which may be more likely in the future. It should be understood that the present application includes but is not limited thereto.
  • N 1 decoding time N 1 has two different reference cases, because the TA adjustment command of the present disclosure may be included in the MAC-CE, carried on a PDSCH, one is additional demodulation reference signal DMRS, The decoding time of the PDSCH is the decoding time of the PDSCH without the additional demodulation reference signal DMRS.
  • the decoding time of the PDSCH with the additional DMRS is taken as an example. In detail, it should be understood that the embodiments of the present application include but are not limited thereto.
  • the symbol here is the smallest unit of time domain resources.
  • the embodiment of the present application does not limit the length of time of one symbol.
  • the length of one symbol can vary for different subcarrier spacing.
  • the symbols may include uplink symbols and downlink symbols.
  • the uplink symbols may be referred to as, for example, single carrier-frequency division multiple access (SC-FDMA) symbols or orthogonal frequency division multiple access (orthogonal).
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM orthogonal frequency division multiple access
  • the downlink symbol may be referred to as an OFDM symbol, for example, but is not limited thereto.
  • N 2 and the uplink subcarriers are also shown in Table 4 below, where ⁇ denotes a subcarrier spacing, where 0, 1, 2, and 3 correspond to 15 kHz, 30 kHz, 60 kHz, and 120 kHz, respectively.
  • TA max The relationship between TA max and the uplink subcarrier is also shown in Table 5 below, in which the length of time of TA max when the subcarrier spacing is 15 kHz, 30 kHz, 60 kHz, and 120 kHz, respectively.
  • Subcarrier spacing (unit: KHz)
  • TA max (unit: ms) 15 2 30 1 60 0.5 120 0.25
  • a plurality of cells are included in a time advance group (TAG) as described above, and each cell may include multiple terminal devices UE, and each UE is configured with multiple Uplink carrier resources (up link, UL).
  • TAG time advance group
  • the existing solution is for a plurality of uplink resources UL in a time advance group TAG, because of a difference in its sub-carrier spacing (SCS), specifically, when the terminal device UE is configured with 15KHz, 30KHz, 60KHz, At a subcarrier spacing of 120 KHz, an interval time N can be determined for each seed carrier interval.
  • SCS sub-carrier spacing
  • ceil(58 symbol) 5ms.
  • 0.5ms 7 symbol
  • 2ms 28 symbol.
  • the first time interval is obtained by the formula (1).
  • 0.5ms 14 symbol
  • 1ms 28 symbol.
  • the embodiment of the present application provides a method for determining the TA effective time, by determining the interval time N before the TA effective time, and ensuring that the interval time N is included in the case of including multiple UL subcarrier intervals for the same terminal device UE. It is consistent. Therefore, in the same TAG, the TA effective time of the terminal device is consistent, and the uplink timing synchronization between the terminal device and the network device can be ensured.
  • FIG. 5 is a schematic flowchart of a method for determining a TA effective time provided by an embodiment of the present application.
  • the method 500 includes:
  • the terminal device determines a first subcarrier spacing from the M subcarrier intervals, where the M subcarrier spacings are subcarrier spacings corresponding to the L carriers used by the terminal device, where L ⁇ M ⁇ 2.
  • the first subcarrier spacing is the smallest subcarrier spacing of the M subcarrier spacings; or the first subcarrier spacing is the largest subcarrier spacing of the M subcarrier spacings.
  • the first subcarrier spacing may be a maximum/minimum value among all uplink subcarrier intervals, or a maximum/minimum value of a subcarrier interval of a bandwidth part (BWP) of all active states. Or one or more of the maximum/minimum value of the subcarrier spacing of the plurality of BWPs configured by the terminal, or the maximum/minimum value of the subcarrier spacing of all the BWPs. It may be fixed to a certain subcarrier spacing, for example, for a low frequency (the operating frequency is less than or equal to 6 GHz), and may be fixed at a frequency of 15 kHz.
  • the embodiments of the present application include but are not limited thereto.
  • a terminal device is taken as an example for description. It is assumed that the network device configures L uplink carrier resources UL for the terminal device #A, and each carrier resource of the L uplink carrier resources UL has one sub-port.
  • the carrier spacing that is, the L uplink carrier resources UL has a total of M subcarrier spacings.
  • the subcarrier spacing of two or more ULs in the L uplink carrier resources UL may be the same. At present, different subcarrier spacings in the carrier resources are 15 kHz, 30 kHz, 60 kHz, and 120 kHz, which may be more likely in the future. It should be understood that the present application includes but is not limited thereto.
  • the 4 ULs may have only one subcarrier interval, for example, the subcarrier spacing of each of the 4 ULs is 15 KHz; or the 4 The UL may have two subcarrier spacings, for example, the subcarrier spacing of 1 UL in 4 ULs is 15 KHz, and the other 3 UL subcarrier spacings are 30 KHz; or the 4 ULs may have three subcarrier spacings, such as The subcarrier spacing of one UL in the four ULs is 15 kHz, the subcarrier spacing of one UL is 30 kHz, and the spacing of the other two UL subcarriers is 60 kHz; or the four ULs may have four seed carriers.
  • Interval for example, the subcarrier spacing of one UL in four ULs is 15 kHz, the subcarrier spacing of one UL is 30 kHz, the subcarrier spacing of one UL is 60 kHz, and the other subcarrier spacing of one UL is It is 120KHz.
  • the above list is only one possible case, just to illustrate the possible relationship between the subcarrier spacing and the carrier resources, it should be understood that the present application includes but is not limited thereto.
  • the relationship between L and M may be that the number of carrier resources L is greater than or equal to the number of subcarrier spacings M, where L ⁇ M ⁇ 2, mainly because when the network device configures one carrier resource for the terminal device, One carrier resource must have only one subcarrier spacing, such as a 15 kHz subcarrier spacing.
  • N 1 , N 2 , and TA max are all determined according to the subcarrier spacing of 15 KHz according to Table 1, Table 2, and Table 3, respectively, so that no difference occurs.
  • M may be a positive integer greater than or equal to 2.
  • the subcarrier spacing of the carrier resources of the downlink signal is referred to.
  • the first time interval may refer to a maximum subcarrier interval, or a minimum subcarrier interval.
  • the maximum subcarrier spacing is 30 KHz
  • the minimum subcarrier spacing is 15 KHz
  • the first time interval determined according to the above method is 5 ms.
  • 5ms is equivalent to 5 slots, that is, for the 15KHz uplink carrier, the TA is applied from the 6th slot.
  • the 30KHz subcarrier spacing 5ms is equivalent to 10 slots, and for the 30KHz uplink carrier, TA is applied from the 11th slot.
  • the first time interval when referring to the maximum subcarrier interval, for a small subcarrier interval, the first time interval cannot implement an integer number of time slots, and the first time interval needs to be rounded up.
  • the rounding operation represents selecting a value greater than the original first time interval and being the smallest integer multiple of the time slot duration corresponding to the minimum subcarrier spacing.
  • the first time interval determined according to the above method is 2.5 ms, including 2 carriers (15 kHz and 30 kHz). Since 2.5 ms is not an integer multiple of the corresponding slot of the 15 kHz subcarrier interval, the first time interval is required to be 2.5 ms.
  • the step size of 15KHz is rounded up, that is, 3ms.
  • 3ms corresponds to 3 time slots (15KHz) and 6 time slots (30KHz) respectively. Then, corresponding to the subcarrier spacing of 15 KHz, a new TA is applied from the 4th slot, corresponding to a subcarrier spacing of 30 KHz, and a new TA is applied from 7 slots.
  • min ( ⁇ DL , ⁇ UL ), where ⁇ DL corresponds to the subcarrier spacing of the PDSCH, and ⁇ UL corresponds to the uplink transmission corresponding hybrid automatic repeat request feedback acknowledgement (hybrid Subcarrier spacing of automatic repeat request acknowledge, HARQ-ACK.
  • min( ⁇ DL , ⁇ UL ), where ⁇ DL may be a subcarrier spacing corresponding to a PDCCH for downlink scheduling of a PUSCH, and ⁇ UL corresponds to a subcarrier spacing of an uplink transmitting PUSCH .
  • ⁇ in the middle corresponds to the subcarrier spacing of the uplink PUSCH.
  • the PDCCH or the PDSCH is generally referred to as a downlink carrier resource DL, and generally only corresponds to one subcarrier spacing.
  • the application includes but is not limited thereto.
  • the subcarrier spacing of the downlink DL is 15 kHz
  • the subcarrier spacing of the uplink UL is 30 kHz
  • the terminal device determines the first subcarrier spacing from the M subcarrier intervals, and the method for specifically determining the first subcarrier spacing is as follows:
  • N 1 , N 2 refer to the smallest UL subcarrier spacing.
  • the 15 kHz is taken as the standard.
  • N 1 and N 2 refer to the maximum UL subcarrier spacing.
  • the 30KHz is taken as the standard.
  • the TA max refers to the minimum UL subcarrier spacing.
  • the 15 kHz is taken as the standard.
  • the TA max refers to the maximum UL subcarrier spacing.
  • the TA max it is based on 30 kHz.
  • the N 1 , N 2 , and TA max refer to the smallest UL subcarrier spacing.
  • the 15KHz is taken as the standard.
  • the N 1 , N 2 , and TA max refer to the maximum UL subcarrier spacing.
  • the minimum UL subcarrier spacing referenced by N 1 , N 2 , TA max refers to the maximum UL subcarrier spacing.
  • N 1 and N 2 are based on 15KHz
  • TA max is based on 30KHz.
  • the largest UL subcarrier spacing referenced by N 1 , N 2 , TA max refers to the smallest UL subcarrier spacing.
  • N 1 and N 2 are based on 30KHz
  • TA max is based on 15KHz.
  • the base station is configured with random access resources on the UL and SUL, and the subcarrier spacing of the Msg3 is 15 kHz or 30 kHz, respectively, and the ⁇ corresponding to the TA max refers to the minimum 15 kHz or the ⁇ reference to the maximum 30 kHz.
  • the L uplink UL subcarrier spacing UL SCSs described above may also be the SCS of the bandwidth part of all active states, or the subcarrier spacing of multiple BWPs configured by the terminal, or the subcarriers of all BWPs. interval.
  • the subcarrier spacing of the uplink carrier resource for transmitting Msg 3 may be 15 kHz.
  • the subcarrier spacing of the uplink resource may be reconfigured, for example, allocated carrier resources.
  • the subcarrier spacing may be 30KHz or 60KHz. Therefore, in order to consider the influence of random access, the influence of the Msg 3 subcarrier spacing is considered here in the determination process of TA max .
  • each uplink carrier may correspond to different message 3 subcarrier intervals, for example, when the UE is configured with an uplink carrier UL and a supplementary uplink carrier (SUL).
  • Message 3 may have 2 subcarrier spacings, for example 15 kHz and 30 kHz, respectively. Therefore, the influence of multiple Msg3 subcarrier spacings is also considered in the determination of TA max .
  • the uplink UL subcarrier spacing adopted by the UE is different from that of Msg 3.
  • TA max should take the minimum value of Msg 3 and the configured subcarrier spacing SCS of the UL.
  • the subcarrier spacing SCS of the carrier resource for transmitting Msg 3 is 15KHz, and when the time interval is calculated, N 1 , N 2 is based on 30KHz, and TA max is based on 15KHz.
  • first possible subcarrier spacing of the ten possible N 1 , N 2 , and TA max references The above describes the case of the first possible subcarrier spacing of the ten possible N 1 , N 2 , and TA max references. It should be understood that the above case is only an example and not a limitation, in various processes for determining the first subcarrier spacing. There may be more combinations of first subcarrier spacings for references to N 1 , N 2 , TA max , and the application includes, but is not limited to, this.
  • the determining, by the terminal device, the first threshold value, determining the first threshold value, and determining the first threshold value as the first sub-carrier interval, and participating in determining the TA effective time is determining, by the terminal device, the first threshold value, determining the first threshold value, and determining the first threshold value as the first sub-carrier interval, and participating in determining the TA effective time.
  • the method provided by the foregoing application may also be used in combination with the prior art, for example, obtaining a minimum value in the first subcarrier spacing of the determined uplink carrier resource and the subcarrier spacing of the downlink carrier resource, thereby obtaining a sub Carrier spacing, which will not be described here. It should be understood that the application includes but is not limited thereto.
  • the method for determining the first subcarrier spacing is to ensure that the interval time N is consistent for the same terminal device UE in the case of including multiple UL subcarrier intervals. Therefore, in the same TAG, the TA effective time of the terminal device is consistent, and the uplink timing synchronization between the terminal device and the network device can be ensured.
  • the terminal device determines, according to the first subcarrier interval, an effective time of the timing advance TA of each of the L carriers.
  • the terminal device determines the first subcarrier interval, and further determines the effective timing of the timing advance TA of each carrier.
  • the terminal device determines, according to the first subcarrier interval, a first time interval corresponding to the first carrier of the L carriers, where the first time interval is a receiving moment of the downlink signal and an effective moment of the TA a time interval between the second time interval; and determining, according to the first time interval, an effective time of the timing advance amount TA of each of the L carriers.
  • the subcarrier spacing of the downlink DL is 15 kHz
  • the subcarrier spacing of the uplink UL is 30 kHz
  • the first time is obtained by the formula (1).
  • the terminal device determines, according to the first subcarrier interval, a first duration N 1 , where the first duration is a duration required for processing the downlink signal; and/or determining, according to the first subcarrier interval, a second duration N 2 , the second duration is a length of time required to prepare an uplink signal; and/or determining a third duration TA max according to the first subcarrier spacing, where the third duration is corresponding to the first subcarrier spacing
  • the maximum time allowed by the 12-bit timing advance command TAC is allowed; the terminal device determines the first time according to one or more durations of the first duration N 1 , the second duration N 2 , and the third duration TA max interval.
  • 12bit is only an example and not a limitation here, and other possible values less than 12 bits may be taken, for example, 6 bits.
  • the first time interval further includes a fourth duration, where the first time interval further includes a fourth duration, where the fourth duration is a duration determined by the terminal device according to the cell multiplexing mode; and/or the fourth duration It is the length of time that the terminal device determines according to the frequency range in which the terminal device or the network device operates.
  • the fourth duration may be the duration of the terminal device switching in different working modes or working frequency bands.
  • the fourth duration refer to the foregoing related description, and details are not described herein again.
  • the length of time required to process the downlink signal is related to the downlink signal configuration, such as demodulation reference signal configuration, and/or downlink signal subcarrier spacing, and/or UE processing capability.
  • the duration required for preparing the uplink signal is related to the uplink signal subcarrier spacing, and/or the UE processing capability.
  • the process of determining the first time interval enumerated herein may be summed according to formula (1) by determining the durations of N 1 , N 2 , L 2 , and TA max respectively, thereby obtaining the first time interval N.
  • the embodiment of the present application may also determine only one or more durations of N 1 , N 2 , L 2 , and TA max . During the development of the technology, only at least one duration may be determined, and the relationship may be obtained through a certain relationship.
  • a time interval N any method for determining the duration of any one or more of N 1 , N 2 , L 2 , and TA max by the method provided by the present application falls within the scope of protection of the present application.
  • N 1 , N 2 refer to the smallest UL subcarrier spacing.
  • N 1 and N 2 refer to the maximum UL subcarrier spacing.
  • the TA max refers to the minimum UL subcarrier spacing.
  • TA max 2ms.
  • the TA max refers to the maximum UL subcarrier spacing.
  • the N 1 , N 2 , and TA max refer to the smallest UL subcarrier spacing.
  • the 15KHz is taken as the standard.
  • the N 1 , N 2 , and TA max refer to the maximum UL subcarrier spacing.
  • the minimum UL subcarrier spacing referenced by N 1 , N 2 , TA max refers to the maximum UL subcarrier spacing.
  • N 1 and N 2 are based on 15KHz
  • TA max is based on 30KHz.
  • the largest UL subcarrier spacing referenced by N 1 , N 2 , TA max refers to the smallest UL subcarrier spacing.
  • N 1 and N 2 are based on 30KHz
  • TA max is based on 15KHz.
  • the base station configures random access resources on the UL and SUL, and the subcarrier spacing of the message 3 is 15 kHz or 30 kHz, respectively, and the ⁇ corresponding to the TA max refers to the minimum 15 kHz or the ⁇ reference to the maximum 30 kHz.
  • the L uplink subcarrier spacing UL SCSs described above may also be the SCS of the bandwidth part of all active states, or the subcarrier spacing of multiple BWPs configured by the terminal, or the subcarrier spacing of all BWPs. .
  • the subcarrier spacing of the uplink carrier resource for transmitting Msg 3 may be 15 kHz.
  • the subcarrier spacing of the uplink resource may be reconfigured, for example, allocated carrier resources.
  • the subcarrier spacing may be 30KHz or 60KHz. Therefore, in order to consider the influence of random access, the influence of the Msg 3 subcarrier spacing is considered here in the determination process of TA max .
  • each uplink carrier may correspond to different message 3 subcarrier intervals. For example, if the UE is configured with uplink carrier UL and SUL, message 3 may have 2 subcarriers. The intervals are, for example, 15 kHz and 30 kHz, respectively. Therefore, the influence of multiple Msg3 subcarrier spacings is also considered in the determination of TA max .
  • the uplink UL subcarrier spacing adopted by the UE is different from that of Msg 3.
  • TA max should take the minimum value of Msg 3 and the configured subcarrier spacing SCS of the UL.
  • the subcarrier spacing SCS of the carrier resource for transmitting Msg 3 is 15KHz, and when the time interval is calculated, N 1 , N 2 is based on 30KHz, and TA max is based on 15KHz.
  • the foregoing describes nine possible situations in which the first time interval may be determined according to the first subcarrier spacing. It should be understood that the above is only an example and not a limitation, and the present application includes but is not limited thereto.
  • the terminal device determines a first mapping relationship, where the first mapping relationship includes a one-to-one mapping relationship between multiple subcarrier spacings and multiple durations; and the terminal device according to the Determining, by the first mapping relationship, a first time interval corresponding to the first subcarrier interval; and determining, according to the first time interval, an effective time of the timing advance amount TA of each of the L carriers.
  • the terminal device learns the sub-carrier spacing of all the uplink ULs in a TAG according to the configuration of the network device, and then receives the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the new TA in MAC-CE is the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the new TA in MAC-CE is the sub-carrier spacing of all the uplink ULs in a TAG according to the configuration of the network device, and then receives the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the new TA in MAC-CE is the MAC-CE that is sent by the network device and includes the TA adjustment command, and determines the TA effective time, and then the application can be applied.
  • the terminal After receiving the MAC-CE including the TA adjustment, the terminal determines the first time interval according to the minimum or maximum uplink subcarrier spacing in the same TAG. For example, the terminal device can determine the first time interval according to a preset function in Table 6.
  • Subcarrier spacing unit: KHz
  • First time interval unit: ms 15 6+n 30 3+0.5n 60 2.25+0.25n 120 1.5+0.125n
  • the value of the integer n can be ⁇ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12 ⁇ .
  • the first time interval N may also be represented by the number of time slots equivalent to the first time interval in Table 4, as shown in Table 7.
  • the set of values of the integer n is ⁇ -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10 , 11, 12 ⁇ .
  • the terminal device determines the first time interval N
  • the time represented by the first time interval N is added from the time of receiving the downlink signal. It is possible to determine the effective time of the TA.
  • the uplink information may be sent according to the timing advance TA.
  • the UE may send the uplink data according to the method shown in FIG. 3. For example, the UE may determine the downlink radio frame i according to the received downlink radio frame i-1, and determine the start time of the uplink radio frame i according to the timing advance amount TTA. T 0 -T TA , where T 0 is the starting time at which the UE receives the downlink radio frame i. The UE determines the start time of the uplink radio frame i, and can determine the time for transmitting the uplink information. The time when the UE sends the uplink information may be part of the time in the uplink radio frame.
  • FIG. 6 is a schematic block diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 can correspond to (e.g., can be configured or itself) the terminal device described in the method 500 above.
  • FIG. 6 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 600 includes a determining unit 610 and a transmitting unit 620.
  • the communication device 600 can be a terminal device or a chip configured in the terminal device.
  • the determining unit 610 is configured to determine a first subcarrier spacing from the M subcarrier intervals, where the M subcarrier spacings are subcarrier spacings corresponding to the L carriers used by the terminal device, where L ⁇ M ⁇ 2.
  • the determining unit 610 is further configured to determine, according to the first subcarrier interval, an effective time of the timing advance TA of each of the L carriers.
  • the determining unit 610 is further configured to determine, according to the first subcarrier interval, a first time interval corresponding to a first one of the L carriers, where the first time interval is a downlink signal receiving. a time interval between the time and the effective time of the TA; determining, according to the first time interval, an effective time of the timing advance TA of each of the L carriers.
  • the determining unit 610 is further configured to determine, according to the first subcarrier interval, a first duration, where the first duration is a duration required for processing the downlink signal; and/or according to the first subcarrier.
  • the second duration is the length of time required to prepare the uplink signal; and/or the third duration is determined according to the first subcarrier interval, where the third duration is corresponding to the first subcarrier spacing
  • the first time interval is determined by the determining unit 610 according to one or more durations of the first duration, the second duration, and the third duration.
  • the first time interval further includes a fourth duration, where the terminal duration is determined by the terminal device according to the cell multiplexing mode; and/or the fourth duration is the terminal device according to the terminal device or the network device
  • the frequency range of the work is determined by the length of time.
  • the fourth duration is the duration of the terminal device switching in different working modes or working frequency bands.
  • the fourth duration refer to the foregoing related description, and details are not described herein again.
  • the determining unit 610 is further configured to determine a first mapping relationship, where the first mapping relationship includes a one-to-one mapping relationship between multiple subcarrier spacings and multiple durations; and according to the first mapping relationship, Determining a first time interval corresponding to the first subcarrier interval; determining, according to the first time interval, an effective time of a timing advance amount TA of each of the L carriers.
  • the first subcarrier spacing is the smallest subcarrier spacing of the M subcarrier spacings; or the first subcarrier spacing is the largest subcarrier spacing of the M subcarrier spacings.
  • the first subcarrier interval may be a maximum/minimum value among all uplink subcarrier intervals, or a maximum/minimum value of a subcarrier interval of all active BWPs, or multiple configured by the terminal.
  • the apparatus 600 further includes a sending unit 620, configured to send uplink information according to the timing advance TA.
  • a sending unit 620 configured to send uplink information according to the timing advance TA.
  • the communication device 600 may correspond to a terminal device in the communication method 200 and a terminal device in the communication method 500 according to an embodiment of the present application, and the communication device 600 may include a communication method 200 and a communication method for performing the method of FIG. A module of a method performed by a terminal device in 500.
  • the modules in the communication device 600 and the other operations and/or functions described above are respectively implemented in the communication method 200 and the communication method 500 in FIG. 2, and are not described herein again for brevity.
  • FIG. 7 is a schematic structural diagram of a terminal device 700 according to an embodiment of the present application.
  • the terminal device 700 includes a processor 710 and a transceiver 720.
  • the terminal device 700 further includes a memory 730.
  • the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 730 is configured to store a computer program, and the processor 710 is configured to be called from the memory 730.
  • the computer program is run to control the transceiver 720 to send and receive signals.
  • the above processor 710 and memory 730 can synthesize a processing device, and the processor 710 is configured to execute the program code stored in the memory 730 to implement the above functions.
  • the memory 730 can also be integrated in the processor 710 or independent of the processor 710.
  • the foregoing terminal device may further include an antenna 740, configured to send downlink data or downlink control signaling output by the transceiver 720 by using a wireless signal.
  • FIG. 8 is a schematic structural diagram of a terminal device 800 according to an embodiment of the present application.
  • the terminal device 800 includes a processor 801 and a transceiver 802.
  • the terminal device 800 further includes a memory 803.
  • the processor 802, the transceiver 802 and the memory 803 communicate with each other through an internal connection path for transferring control and/or data signals
  • the memory 803 is for storing a computer program
  • the processor 801 is used for the memory 803.
  • the computer program is called and run to control the transceiver 802 to send and receive signals.
  • the processor 801 and the memory 803 may be combined to form a processing device 804 for executing the program code stored in the memory 803 to implement the above functions.
  • the memory 803 can also be integrated in the processor 801 or independent of the processor 801.
  • the terminal device 800 may further include an antenna 810, configured to send uplink data or uplink control signaling output by the transceiver 802 by using a wireless signal.
  • the terminal device 800 may correspond to a terminal device in the communication method 200 and the communication method 500 according to an embodiment of the present application, and the terminal device 800 may include a module for performing a method performed by the terminal device of the communication method 200 of FIG. And, each module in the terminal device 800 and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the communication method 200 and the communication method 500 in FIG. For the sake of brevity, it will not be repeated here.
  • the above-mentioned processor 801 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 802 can be used to perform the actions of the terminal to transmit or transmit to the terminal device described in the foregoing method embodiments.
  • the transceiver 802 can be used to perform the actions of the terminal to transmit or transmit to the terminal device described in the foregoing method embodiments.
  • the above processor 801 and memory 803 can be integrated into one processing device, and the processor 801 is configured to execute program code stored in the memory 803 to implement the above functions.
  • the memory 803 can also be integrated in the processor 801.
  • the terminal device 800 described above may also include a power source 805 for providing power to various devices or circuits in the terminal.
  • the terminal device 800 may further include one or more of an input unit 814, a display unit 816, an audio circuit 818, a camera 820, a sensor 822, and the like, the audio circuit.
  • a speaker 882, a microphone 884, and the like can also be included.
  • the terminal device and the terminal device in the method embodiment are completely corresponding, and the corresponding module or unit performs corresponding steps, for example, the sending module (transmitter) method performs the steps sent in the method embodiment, The receiving module (receiver) performs the steps received in the method embodiment, and the steps other than transmitting and receiving may be performed by the processing module (processor).
  • the function of the specific module can refer to the corresponding method embodiment.
  • the sending module and the receiving module can form a transceiver module, and the transmitter and the receiver can form a transceiver to jointly implement the transceiver function; the processor can be one or more.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定定时提前量TA生效时刻的方法和装置,该方法包括:从M个子载波间隔中确定第一子载波间隔,其中,该M个子载波间隔是该终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2;根据该第一子载波间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻,能够保证终端设备和网络设备之间的上行定时同步。

Description

通信方法和通信装置
本申请要求于2018年05月11日提交的、申请号为201810450341.7、发明名称为“通信方法和通信装置”的中国专利申请的优先权,且要求于2018年07月24日提交的、申请号为201810820209.0、发明名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种确定定时提前量TA生效时刻的方法和装置。
背景技术
为了保证上行传输的正交性,避免小区内干扰,要求来自不同的终端设备(user equipment,UE)的上行信号到达网络设备的时间基本上是对齐的。因此,网络设备会向终端设备发送时间提前量(time advance,TA),终端设备根据该接收的TA调整发送上行信号的时间,从而实现终端设备和网络设备之间的上行定时同步。
终端设备接收到下行信号的起始时间与传输上行信号的时间之间有一定的时间间隔,而且不同的终端设备具有不同的时间间隔。终端设备在调整TA的过程中,首先接收网络设备发送的TA调整命令,间隔一段时间后,终端设备应用新的TA,直到收到新的TA调整命令。终端设备可以通过控制时间间隔,从而实现控制TA生效的时间。
目前,由于上行资源(up link,UL)的子载波间隔(single-carrier spacing,SCS)不同,会导致时间间隔不同,造成同一个时间提前量组(time advance group,TAG)中,不同UL的TA生效时间不一致;此外,不同的TA生效时间,增加了终端设备的实现复杂度。
发明内容
本申请提供一种确定定时提前量TA生效时刻的方法和装置,能够保证终端设备和网络设备之间的上行定时同步。
第一方面,提供了一种通信方法,包括:从M个子载波间隔中确定第一子载波间隔,其中,该M个子载波间隔是该终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2;根据该第一子载波间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻。
网络设备向终端设备发送配置信息,用于指示上行子载波间隔,向终端设备发送TA调整命令;终端设备接收网络设备发送的TA调整命令,所述的TA调整命令中包括TA调整量,终端设备根据当前定时提前量TA和所述TA调整量确定新的定时提前量。
基站通过测量UE传输的上行信号来确定每个UE的定时提前量,并通知UE定时提前量。对于一个终端设备而言,从终端设备UE接收到下行信号的时刻到TA的起始生效 时刻,有一定的时间间隔,本申请称之为第一时间间隔N。第一时间间隔N可以定义为K个时隙(slots),且该第一时间间隔N的总时长包括如图的四部分时长,分别是N 1、N 2、L 2和TA max
移动通信系统支持多种子载波间隔(例如,每种子载波间隔适用不同业务类型或者工作频率),不同的子载波间隔的符号各自对应的循环前缀CP的长度不同。相应地,不同的子载波间隔对应的抗时延影响性能也不同,因此,UE在不同场景下使用不同的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。目前,在载波资源中不同的子载波间隔有15KHz、30KHz、60KHz、120KHz,可能在以后有更多的可能,应理解,本申请包括但不限于此。
在不同的UL子载波间隔的情况下,会导致N 1、N 2、TA max的绝对长度不同,造成同一个TAG中,不同UL的TA生效时间不一致。不同的TA生效时间,增加了终端设备的实现复杂度,同时不符合同一个TAG的定义。
本申请实施例将提供一种确定TA生效时间的方法,通过确定TA生效时间前的间隔时间N,并且保证对于同一个终端设备UE,在包括多种UL子载波间隔的情况下该间隔时间N是一致的。从而使得在同一个TAG中,终端设备的TA生效时间是一致的,能够保证终端设备和网络设备之间的上行定时同步。
可选地,终端设备从M个子载波间隔中确定第一子载波间隔,具体确定第一子载波间隔的方法列举如下:
情况一
对于所述的L个上行UL,N 1、N 2参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算N 1、N 2时,以15KHz为准。
情况二
对于所述的L个上行UL,N 1、N 2参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算N 1、N 2时,以30KHz为准。
情况三
对于所述的L个上行UL,所述的TA max参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算TA max时,以15KHz为准。
情况四
对于所述的L个上行UL,所述的TA max参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算TA max时,以30KHz为准。
情况五
对于所述的L个上行UL,所述N 1、N 2、TA max参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,以15KHz为准。
情况六
对于所述的L个上行UL,所述N 1、N 2、TA max参考最大的UL的子载波间隔。例如, UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,以30KHz为准。
情况七
对于所述的L个上行UL,N 1、N 2参考的最小的UL的子载波间隔,TA max参考最大的UL的子载波间隔。
例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,N 1、N 2以15KHz为准,TA max以30KHz为准。
情况八
对于所述的L个上行UL,N 1、N 2参考的最大的UL的子载波间隔,TA max参考最小的UL的子载波间隔。
例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,N 1、N 2以30KHz为准,TA max以15KHz为准。
情况九
对于所述的L个上行UL,N 1、N 2参考的最小的UL的子载波间隔,TA max参考上行UL中子载波间隔和用于传输Msg3的载波资源的子载波间隔的最小值,即:μ=min(Msg3 SCS,UL SCS)。
情况十
对于所述的L个上行UL,和T个随机接入过程消息3(Msg3)子载波间隔,N1、N2参考最小的UL的子载波间隔,TA max参考中最大/最小的子载波间隔,即:μ=min(max(Msg3 SCSs),UL SCS)或者μ=min(min(Msg3 SCSs),UL SCS)。
例如,基站配置了UL和SUL上的随机接入资源,其Msg3的子载波间隔分别为15KHz或者30KHz,则TA max对应的μ参考最小的15KHz或者μ参考最大的30KHz。
可选地,以上所述的L个上行UL子载波间隔s,还可以是所有激活状态的带宽部分BWP的SCS,或者终端所配置的多个BWP的子载波间隔,或者所有的BWP的子载波间隔。
应理解,在随机接入过程中,传输Msg 3的上行载波资源的子载波间隔可能是15KHz,在随机接入过程完成之后,传输上行资源的子载波间隔可能配重新配置,例如分配的载波资源的子载波间隔可能为30KHz或者60KHz,因此,为了考虑到随机接入的影响,这里在TA max的确定过程中,考虑Msg 3子载波间隔的影响。同时,由于多个上行载波可能都对应有随机接入资源,因此每个上行载波可能对应不同的消息3子载波间隔,例如UE配置了上行载波UL和补充上行载波(supplementary UL,SUL)的情况,消息3可能有2个子载波间隔,例如分别为15KHz和30KHz。因此,在TA max的确定过程中,还考虑了多个Msg3子载波间隔的影响。
例如UE所采用的上行UL子载波间隔与Msg 3不同,为了支持最大的覆盖范围,TA max应该取Msg 3和所配置的UL的子载波间隔SCS中最小值。例如,UE配置了L=2个上行UL,子载波间隔分别为60KHz和30KHz,进行随机接入过程中,传输Msg 3的载波资源的子载波间隔SCS为15KHz,则计算时间间隔时,N 1、N 2以30KHz为准,TA max以15KHz为准。
以上列举了十种可能的N 1、N 2、TA max的参考的第一子载波间隔的情况,应理解,以上情况只是举例而非限定,在各种确定该第一子载波间隔的过程中,可能有更多的关于 N 1、N 2、TA max的参考的第一子载波间隔的组合情况,本申请包括但并不限于此。
可选地,终端设备确定第一子载波间隔过程中,可以设置第一门限值,将该第一门限值确定为第一子载波间隔,参与后续确定TA生效时刻。
可选地,本申请上述提供的方法还可以与现有技术结合使用,例如在上述确定的上行载波资源的第一子载波间隔和下行载波资源的子载波间隔中求最小值,从而得到一个子载波间隔,此处不再赘述。应理解,本申请包括但不限于此。
结合第一方面,在第一方面的某些实现方式中,根据该第一子载波间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻,包括:根据该第一子载波间隔,确定该L个载波中的第一载波对应的第一时间间隔,该第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;根据该第一时间间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻。
可选地,终端设备根据所述第一子载波间隔,确定所述L个载波中的第一载波对应的第一时间间隔,所述第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;再根据所述第一时间间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
例如,当下行DL的子载波间隔为15KHz,上行UL的子载波间隔为30KHz,μ=min(μ DLUL)=min(15KHz,30KHz)=15KHz,由公式(1)得到第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+10 symbol+0.5ms+2ms)=ceil(58 symbol)=5ms。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一时间间隔包括第一时长、第二时长和第三时长中的一种或多种时长,根据第一子载波间隔,确定该L个载波中的第一载波对应的第一时间间隔,包括:
根据该第一子载波间隔,确定第一时长,该第一时长是处理下行信号所需要的时长;和/或
根据该第一子载波间隔,确定第二时长,该第二时长是准备上行信号所需要的时长;和/或
根据该第一子载波间隔,确定第三时长,该第三时长是对应第一子载波间隔下,12比特或6比特的定时提前命令TAC所允许指示的最大时长。
可选地,所述第一时间间隔,可以参考最大子载波间隔,或者最小子载波间隔。例如,最大子载波间隔为30KHz,最小子载波间隔为15KHz,根据以上方法确定的第一时间间隔为5ms。参考15KHz子载波间隔时,5ms等效于5个时隙,也即对于15KHz上行载波,从第6个时隙应用TA。参考30KHz子载波间隔时,5ms等效于10个时隙,对于30KHz上行载波,从第11个时隙应用TA。
可选地,当参考最大子载波间隔时,对于小的子载波间隔,第一时间间隔无法实现整数个时隙,需要对第一时间间隔进行向上取整操作。所述取整操作代表选择大于原第一时间间隔,且为最小子载波间隔所对应时隙时长的最小整数倍的数值。例如,根据以上方法确定的第一时间间隔为2.5ms,包括2个载波(15KHz和30KHz),由于2.5ms不是15KHz子载波间隔对应时隙的整数倍,需要先对第一时间间隔2.5ms按照15KHz的步长进行向上取整,也即3ms。3ms分别对应3个时隙(15KHz)和6个时隙(30KHz)。于是,对应15KHz的子载波间隔,从第4个时隙开始应用新的TA,对应30KHz的子载波间隔, 从7个时隙应用新的TA。
应理解,这里12bit只是一种实例而非限定,也可以取小于12bit的其他可能的数值,例如可以为6bit。
应理解,所述的处理下行信号所需要的时长,和下行信号配置,例如解调参考信号配置,和/或下行信号子载波间隔,和/或UE处理能力有关。应理解,所述的准备上行信号所需要的时长和上行信号子载波间隔,和/或UE处理能力有关。
应理解,这里列举的确定第一时间间隔的过程,根据公式(1)可以通过分别确定N 1、N 2、L 2、TA max的时长来求和,从而得到第一时间间隔N。本申请实施例也可以只确定N 1、N 2、L 2、TA max中的一个或多个时长,在技术的发展过程中,可能只需要确定其中至少一个时长,可以通过一定的关系得到第一时间间隔N。这里,凡是通过本申请提供的方法来确定N 1、N 2、L 2、TA max中任意一个或多个时长的方法均落入本申请的保护范围。
结合第一方面和上述实现方式,在某些可能的实现方式中,当L个载波中至少两个载波用于随机接入过程,且用于传输消息Msg 3的载波包括至少两个子载波间隔时,根据第一子载波间隔,确定第三时长之前,该方法还包括:根据至少两个子载波间隔,确定第一子载波间隔。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一时间间隔还包括第四时长,该第一时间间隔还包括第四时长,该第四时长是该终端设备根据小区复用模式确定的时长;和/或
该第四时长是该终端设备根据该终端设备或网络设备工作的频率范围确定的时长。
结合第一方面和上述实现方式,在某些可能的实现方式中,该方法还包括:确定第一映射关系,该第一映射关系包括多种子载波间隔与多个时长之间的一一映射关系;以及该根据该第一子载波间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻,包括:根据该第一映射关系,确定与该第一子载波间隔相对应的第一时间间隔;根据该第一时间间隔,确定L个载波中的每个载波的定时提前量TA的生效时刻。具体地,终端设备根据网络设备配置,获知一个TAG中所有的上行UL的子载波间隔;再接收网络设备下发的包含TA调整命令的MAC-CE,确定TA生效时刻,此后即可应用包括在MAC-CE中的新的TA。
终端接收到包括TA调整的MAC-CE之后,根据同一个TAG中最小或最大的上行子载波间隔,确定第一时间间隔。例如,终端设备可以根据预设函数来确定该第一时间间隔。
结合第一方面和上述实现方式,在某些可能的实现方式中,该第一子载波间隔是该M个子载波间隔中最小的子载波间隔;或该第一子载波间隔是该M个子载波间隔中最大的子载波间隔。
应理解,所述的第一子载波间隔,可以为所有上行子载波间隔中的最大值/最小值,或者所有激活状态的带宽部分的子载波间隔的最大/最小值,或者终端所配置的多个BWP的子载波间隔的最大/最小值,或者所有的BWP的子载波间隔的最大/最小值中一种或者多种确定。也可以根据固定为某个子载波间隔,例如对于低频(工作频率小于等于6GHz),可以固定位15KHz。
可选地,终端设备确定第一子载波间隔过程中,可以设置第一门限值,将该第一门限值确定为第一子载波间隔,参与后续确定TA生效时刻。
结合第一方面和上述实现方式,在某些可能的实现方式中,该根据该第一子载波间隔, 确定该L个载波中的每个载波的定时提前量TA的生效时刻之后,该方法还包括:
根据该定时提前量TA发送上行信息。
以上介绍了终端设备确定定时提前量TA的生效时刻的详细过程,在终端设备确定了第一时间间隔N之后,从接收下行信号的时刻起,加上该第一时间时间间隔N代表的时长就可以确定TA的生效时刻。在终端设备确定所述L个载波中的每个载波的定时提前量TA的生效时刻之后,就可以根据所述定时提前量TA发送上行信息。
第二方面,提供了一种通信装置,包括:确定单元,用于从M个子载波间隔中确定第一子载波间隔,其中,该M个子载波间隔是该终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2;该确定单元还用于根据该第一子载波间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻。
结合第二方面,在某些可能的实现方式中,该确定单元还用于:根据该第一子载波间隔,确定该L个载波中的第一载波对应的第一时间间隔,该第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;根据该第一时间间隔,确定该L个载波中的每个载波的定时提前量TA的生效时刻。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一时间间隔包括第一时长、第二时长和第三时长中的一种或多种时长,确定单元还用于:根据该第一子载波间隔,确定第一时长,该第一时长是处理下行信号所需要的时长;和/或根据该第一子载波间隔,确定第二时长,该第二时长是准备上行信号所需要的时长;和/或根据该第一子载波间隔,确定第三时长,该第三时长是对应第一子载波间隔下,12比特或6比特的定时提前命令TAC所允许指示的最大时长。
结合第二方面和上述实现方式,在某些可能的实现方式中,当L个载波中至少两个载波用于随机接入过程,且用于传输消息Msg 3的载波包括至少两个子载波间隔时,根据第一子载波间隔,确定第三时长之前,该方法还包括:根据至少两个子载波间隔,确定第一子载波间隔。
结合第二方面和上述实现方式,在某些可能的实现方式中,
该第一时间间隔还包括第四时长,该第一时间间隔还包括第四时长,该第四时长是该终端设备根据小区复用模式确定的时长;和/或
该第四时长是该终端设备根据该终端设备或网络设备工作的频率范围确定的时长。
结合第二方面和上述实现方式,在某些可能的实现方式中,该确定单元还用于:确定第一映射关系,该第一映射关系包括多种子载波间隔与多个时长之间的一一映射关系;以及根据该第一映射关系,确定与该第一子载波间隔相对应的第一时间间隔;根据该第一时间间隔,确定L个载波中的每个载波的定时提前量TA的生效时刻。
结合第二方面和上述实现方式,在某些可能的实现方式中,该第一子载波间隔是该M个子载波间隔中最小的子载波间隔;或该第一子载波间隔是该M个子载波间隔中最大的子载波间隔。
结合第二方面和上述实现方式,在某些可能的实现方式中,该装置还包括发送单元,用于根据该定时提前量TA发送上行信息。
第三方面,提供了一种通信装置,该通信装置具有实现上述第一方面和第一方面任意一种可能的实现方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。 所述模块可以是软件和/或硬件。
结合第三方面,在某些可能的实现方式中,该通信装置的结构中包括存储器和处理器,该处理器用于与存储器耦合,执行该存储器中的指令,以实现如第一方面和第一方面任意一种可能的实现方法设计中任一项方法;该存储器,用于存储程序指令和数据。
第四方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于实现上述第一方面和第一方面任意一种可能的实现方法设计中任一项该的方法的指令。
第五方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第一方面和第一方面任意一种可能的实现方法设计中任一项该通信方法。
第六方面,提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,确定,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例的一例无线通信系统的示意图。
图2是TA调整过程中终端设备和网络设备的交互示意图。
图3是终端设备按照定时提前量TA发送上行信息的示意图。
图4是本申请实施例提供的一例TA的生效时刻的示意图。
图5是本申请实施例提供的一种确定TA生效时刻的方法的示意性流程图。
图6是本申请实施例提供的一例通信装置的示意性框图。
图7是本申请实施例提供的一例终端设备的结构示意图。
图8是本申请实施例提供的又一例终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
需要说明的是,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请包括但不限于此。
还需要说明的是,本申请实施例中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,在本申请实施例中,“上报”和“反馈”经常交替使用,但本领域的技术人员可以理解其含义。对于终端设备来说,上报CSI和反馈CSI实质上都可以是通过物理上行信道发送CSI。因此,在本申请实施例中,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)通信系统以及未来的移动通信系统等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的无线通信系统100的示意图。如图1所示,该无线通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备101;该无线通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备#1 102、终端设备#2 103。该无线通信系统100可支持协作多点传输(Coordinated Multiple Points Transmission,CoMP),即,多个小区或多个网络设备可以协同参与一个终端设备的数据传输或者联合接收一个终端设备发送的数据,或者多个小区或多个网络设备进行协作调度或者协作波束成型。其中,该多个小区可以属于相同的网络设备或者不同的网络设备,并且可以根据信道增益或路径损耗、接收信号强度、接收信号指令等来选择。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备,如汇聚单元(central unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
在一些部署中,gNB可以包括CU和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该无线通信系统中的终端设备也可以称为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑,还可以是应用于虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、运输安全(transportation safety)、智慧城市(smart city)以及智慧家庭(smart home)等场景中的无线终端。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选地,图1示出的通信系统100中,网络设备可以为服务网络设备,服务网络设备可以是指通过无线空口协议为终端设备提供RRC连接、非接入层(non-access stratum,NAS)移动性管理和安全性输入中至少一项服务的网络设备。可选地,网络设备还可以为协作网络设备。服务网络设备可以向终端设备发送控制信令,协作网络设备可以向终端设备发送数据;或者,服务网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备可以向终端设备发送数据;或者,服务网络设备和协作网络设备均可以向终端设备发送控制信令,并且服务网络设备和协作网络设备均可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令,服务网络设备和协作网络设备中的至少一个可以向终端设备发送数据;或者,协作网络设备可以向终端设备发送控制信令和数据。本申请实施例对此并未特别限定。
应理解,图1中仅为便于理解,示意性地示出了网络设备和终端设备,但这不应对本申请构成任何限定,该无线通信系统中还可以包括更多或更少数量的网络设备,也可以包括更多数量的终端设备,与不同的终端设备通信的网络设备可以是相同的网络设备,也可以是不同的网络设备,与不同的终端设备通信的网络设备的数量可以相同,也可以不同,本申请包括但不限于此。
以下,不失一般性,以一个终端设备与一个网络设备之间的交互过程为例详细说明本申请实施例。该终端设备可以为处于无线通信系统中与一个或多个网络设备具有无线连接关系的任意终端设备。可以理解的是,处于该无线通信系统中的任意一个终端设备均可以基于相同的技术方案实现无线通信,以下用UE表示终端设备,以gNB标识基站。本申请包括但不限于此。
为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行简单介绍。
1、时间提前量组(time advance group,TAG):网络设备通过无线资源控制(radio resource control,RRC)信令配置的一组小区,即网络设备为小区配置时间提前量TA,多个小区有相同的TA就形成一个TAG。对于每个小区的上行载波,采用同样的上行发送定时提前量TA。
2、时间提前量(time advance,TA)
信号在空间传输是有延迟的,TA用于表征终端设备和网络设备天线端口之间的距离。为了保证不同终端设备的上行传输过程的正交性,保证基站侧的时间同步,即,为了保证不同UE的上行信号在期望的时间到达基站,通信系统可以使用上行定时提前(uplink timing advance)机制,UE根据定时提前量发送上行信息,在UE看来,定时提前量本质上是下行子帧的起始时刻与上行子帧的起始时刻之间的一个负偏移(negative offset)。基 站通过适当地控制每个UE的偏移,可以控制来自不同UE的上行信号到达基站的时间,对于距离基站较近的UE,可以根据较小的定时提前量发送上行信息,对于距离基站较远的UE,由于信号有较大的传输延迟,因此,需要根据较大的定时提前量发送上行信息。
一个TAG中,网络设备会为一个或多个小区配置相同的时间提前量TA,同时,网络设备会根据终端设备所处的位置、距离等信息对该TA进行调整。应理解,网络设备可以按照一定的周期进行调整,或者网络设备根据终端设备的所处的位置、距离等信息进行调整,本申请包括但不限于此。
终端设备接收网络设备发送的TA调整命令,该TA调整命令中包括TA调整量,终端设备根据当前小区的定时提前量TA和该新接收的TA调整量确定新的定时提前量,并根据该新的定时提前量发送上行信息。
图2是终端设备在TA调整过程中,和网络设备的交互示意图。如图2所示,终端TA调整的过程包括S201至S205。
S201,网络设备向终端设备发送配置信息,用于指示上行子载波间隔;
S202,网络设备向终端设备发送TA调整命令;
S203,终端设备接收基站发送的TA调整命令,确定TA生效的时间间隔;
S204,间隔一段时间后,应用新的TA。在后续的时隙上应用新的TA,直到收到新的TA调整命令。
应理解,终端设备在实际的TA调整过程中,可以包括以上步骤的部分步骤或全部步骤,本申请实施例并不限于此。
基站通过定时提前命令(timing advance command,TAC)通知UE定时提前量,不同的UE对应不同的定时提前量。图3示出了UE按照定时提前量发送上行信息的示意图。图3中,如果信号在UE与基站之间传输的距离为D,基站期望在T 0时刻接收到UE发送的上行信号,则UE需要在T 0-T TA时刻发送上行信息,其中,TA表示定时提前量,其取值为D/c,c表示电磁波传输的速率。由于UE具有移动性,信号在UE与基站之间传输的距离D也会变化,因此,UE需要不断调整定时提前量的取值,以保证上行信号到达基站的时刻与基站期望该上行信号到达基站的时刻的误差在可接受范围之内。
基站通过测量UE传输的上行信号来确定每个UE的定时提前量,理论上,基站可以根据UE发送的任何上行信号都测量定时提前量,基站可以通过下列两种方式通知UE定时提前量。
方式一
在随机接入过程中,基站可以通过随机接入响应(random access response,RAR)的TAC字段将定时提前量TA通知给UE,在这种情况下,基站通过测量UE发送的前导序列(preamble)来确定定时提前量TA,RAR的TAC字段的大小例如可以是11比特(bit),对应定时提前系数的范围是0~1282,对于随机接入来说,定时提前系数乘以16T s就得到了当前上行提前量的值,其中,16T s为时间长度,在LTE系统中,T s=1/(15000×2048)秒。
方式二
在无线资源控制连接态,基站可以通过定时提前命令媒体接入控制控制元素(timing advance command media access control control element,TAC MAC CE)发送给UE。
UE在随机接入过程中与基站进行了上行同步,但是UE的通信环境可能会随着时间变化而发生变化,从而导致随机接入过程中的定时提前量不再适用于新的通信环境,例如:
高速移动中的UE,其与基站之间的传输时延在短时间内会发生较大的变化;
当前传输路径消失,切换到新的通信路径,新的通信路径的传输时延相对于原通信路径有了较大的变化;
UE的晶振偏移,长时间的偏移累积可能导致上行定时出错;
UE移动导致的多普勒频移。
因此,UE需要不断地更新其定时提前量。
图4示出了TA的生效时刻的示意图。目前在NR中,对于一个终端设备而言,从终端设备接收到下行信号的时刻到TA的起始生效时刻,有一定的时间间隔,本申请称之为第一时间间隔N。第一时间间隔N可以定义为K个时隙(slots),且该第一时间间隔N的总时长包括如图的四部分时长,分别是N 1、N 2、L 2和TA max,可以表示为:
N=ceil(N 1+N 2+L 2+TA max)····························································(1)
上述公式(1)中,ceil表示向上取整,N 1、N 2、TA max和上行子载波间隔有关。N 1代表终端设备处理物理下行共享信道(physical downlink share channel,PDSCH)需要的时间,N 2代表终端设备准备物理上行共享信道(physical uplink share channel,PUSCH)的时延,L 2代表终端设备的媒体接入控制(Media Access Control,MAC)层的处理时延,TA max为定时提前命令TAC所允许指示的最大时长。具体地,例如TA max可以是12比特TAC所允许指示的最大时长,或者6比特TAC所允许指示的最大时长。
在一种可能的实现方式中,第一时间间隔除了上述列举的N 1、N 2、L 2和TA max之外,还包括终端设备根据小区复用模式确定的时长,或者该第四时长是该终端设备根据该终端设备或网络设备工作的频率范围确定的时长。例如,终端设备在不同的工作模式或工作频段下进行切换的时长,将终端设备进行切换的时间记作N TA offset
可选地,可以将N TA offset所代表的的时长和以上所说的12比特或者6比特TAC所允许指示的最大时长两部分时长加起来作为一个整体作为TA max,例如,可以将TAC所允许指示的最大时长记作N TA,则TA max=N TA+N TA offset。本申请对此并不限定。
应理解,N TA offset是终端设备进行切换的时间,例如终端设备进行上下行切换的时间。具体地,该上下行切换时间N TA offset与通信系统的工作模式或工作频段相关,根据协议N TA offset的取值可以列举如表1所示。其中,FR1表示频率小于6GHz的频段,FR2表示频率大于6GHz的频段。FR2频段可以是FDD,或者TDD,或者两者都是。
表1
用于上行传输的工作模式和频带 N TA offset(单位:T C)
FDD FR1频段 0
TDD FR1频段 39936 or 25600
FR2频段 13792
或者,当考虑LTE和NR共存的情况时,N TA offset的取值可以列举如表2所示。其中,FR2可以是FDD,或者TDD,或者两者都是。
表2
用于上行传输的工作模式和频带 N TA offset(单位:T C)
FDD FR1和TDD频段不包括LTE和NR共存场景 25600
FDD FR1频段包括LTE和NR共存的场景 0
TDD FR1频段包括LTE和NR共存的场景 39936
FR2频段 13792
其中N TA offset的值可以通过RRC信令,下行控制信息(downlink control information,DCI),媒体接入控制控制单元(media access control control element,MAC-CE)中一个或者多个消息获取;或者根据隐含方式确定,例如,通过隐式指示N TA offset的值;或者N TA offset的值是预定义或者预配置的。应理解,本申请对N TA offset的值的获取方式不做限定。
此外,FR1表示工作频率小于6GHz的场景,FR2表示工作频率大于等于6GHz的场景。单位T c=1/(Δf max·N f),Δf max=480·10 3Hz,N f=4096。可选地,Δf max={15,30,60,120,240}10 3,应用于不同的工作频段或子载波间隔,N f={512,1024,2048}应用于不同的快速傅里叶变换(fast fourier transform,FFT)采样频率。
当终端设备配置了第二上行载波时,N TA offset可以根据非SUL载波确定。这里第二上行指补充上行载波(supplementary uplink,SUL)。
应理解,当确定TA max的过程中考虑N TA offset时,以上公式(1)也可以等效表示为:
N=ceil(N 1+N 2+L 2+N TA+N TA offset)···················································(2)
另外,这里需要说明的是,本申请实施例里所说的下行信号可以是PDCCH传输的信号,例如DCI、解调参考信号(demodulation reference signal,DMRS)等;也可以是PDSCH传输的数据或信息。上行信号可以是PUSCH传输的数据或信息,例如上行调度信息、上行控制信息(uplink control information,UCI)、反馈信息等,具体地,如肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)、上行调度请求(scheduling request,SR)等。应理解,本申请包括但不限于此。
5G移动通信系统支持多种子载波间隔(例如,每种子载波间隔适用不同业务类型或者工作频率),不同的子载波间隔的符号各自对应的循环前缀(cyclic prefix,CP)的长度不同。相应地,不同的子载波间隔对应的抗时延影响性能也不同,因此,UE在不同场景下使用不同的定时提前量,从而可以满足5G移动通信系统对上行同步的多样化需求。目前,在载波资源中不同的子载波间隔有15KHz、30KHz、60KHz、120KHz,可能在以后有更多的可能,应理解,本申请包括但不限于此。
根据TS 38.214协议,N 1和上行子载波的关系也如下表3所示。其中,μ表示子载波间隔,其中0、1、2、3分别对应15KHz、30KHz、60KHz、120KHz。表1中的PDSCH译码时间N 1有两种不同的参考情况,因为本申请的TA调整命令可以包括在MAC-CE中,承载在PDSCH上,一种是有附加的解调参考信号DMRS的PDSCH的译码时间,另一种是没有附加的解调参考信号DMRS的PDSCH的译码时间,本申请实施例以较大的译码时间,即有附加的DMRS的PDSCH的译码时间为例进行详细介绍,应理解,在本申请实施例包括但不限于此。
表3
Figure PCTCN2019086459-appb-000001
应理解,这里符号(symbol)是时域资源的最小单位。本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。符号可以包括上行符号和下行符号,作为示例而非限定,上行符号例如可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号;下行符号例如可以称为OFDM符号,在本申请实施例包括但不限于此。
N 2和上行子载波的关系也如下表4所示,其中,μ表示子载波间隔,其中0、1、2、3分别对应15KHz、30KHz、60KHz、120KHz。
表4
μ PUSCH准备时间N 2(单位:符号symbol)
0 10
1 12
2 23
3 36
TA max和上行子载波的关系也如下表5所示,其中,列出了子载波间隔分别为15KHz、30KHz、60KHz、120KHz时,TA max的时间长度。
表5
子载波间隔(单位:KHz) TA max(单位:ms)
15 2
30 1
60 0.5
120 0.25
在实际的间隔时间N的确定过程中,如前所述一个时间提前量组(time advance group,TAG)中包括多个小区,每个小区可以包括多个终端设备UE,每个UE被配置多个上行载波资源(up link,UL)。现有的方案对于一个时间提前量组TAG中的多个上行资源UL,由于其子载波间隔(single-carrier spacing,SCS)的不同,具体地,当终端设备UE配置 了15KHz、30KHz、60KHz、120KHz的子载波间隔时,对于每一种子载波间隔,都能确定出一个间隔时间N。
例如,当参考子载波间隔15KHz时,由公式(1)得到第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+10 symbol+0.5ms+2ms)=ceil(58 symbol)=5ms。其中,0.5ms=7 symbol,2ms=28 symbol。
当参考子载波间隔30KHz时,由公式(1)得到第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+12 symbol+0.5ms+1ms)=ceil(67 symbol)=2.5ms。其中,0.5ms=14 symbol,1ms=28 symbol。
由以上的计算过程,可知在不同的UL子载波间隔的情况下,会导致N 1、N 2、TA max的绝对长度不同,造成同一个TAG中,不同UL的TA生效时间不一致。不同的TA生效时间,增加了终端设备的实现复杂度,同时不符合同一个TAG的定义。
本申请实施例将提供一种确定TA生效时间的方法,通过确定TA生效时间前的间隔时间N,并且保证对于同一个终端设备UE,在包括多种UL子载波间隔的情况下该间隔时间N是一致的。从而使得在同一个TAG中,终端设备的TA生效时间是一致的,能够保证终端设备和网络设备之间的上行定时同步。
图5示出了本申请实施例提供的一种确定TA生效时刻的方法的示意性流程图。该方法500包括:
S510,终端设备从M个子载波间隔中确定第一子载波间隔,其中,所述M个子载波间隔是所述终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2。
可选地,该第一子载波间隔是该M个子载波间隔中最小的子载波间隔;或该第一子载波间隔是该M个子载波间隔中最大的子载波间隔。
应理解,所述的第一子载波间隔,可以为所有上行子载波间隔中的最大值/最小值,或者所有激活状态的带宽部分(bandwidth part,BWP)的子载波间隔的最大/最小值,或者终端所配置的多个BWP的子载波间隔的最大/最小值,或者所有的BWP的子载波间隔的最大/最小值中一种或者多种确定。也可以根据固定为某个子载波间隔,例如对于低频(工作频率小于等于6GHz),可以固定位15KHz,本申请实施例包括但不限于此。
在本申请实施例中,以一个终端设备为例进行说明,假设网络设备为终端设备#A配置了L个上行载波资源UL,该L个上行载波资源UL中的每个载波资源都有一个子载波间隔,即该L个上行载波资源UL总共有M个子载波间隔。其中,可能L个上行载波资源UL中可以有两个或两个以上的UL的子载波间隔是相同的。目前,在载波资源中不同的子载波间隔有15KHz、30KHz、60KHz、120KHz,可能在以后有更多的可能,应理解,本申请包括但不限于此。
例如,网络设备为终端设备#A配置了4个上行载波资源UL,则该4个UL可能只有一种子载波间隔,如4个UL中每个UL的子载波间隔都是15KHz;或者该4个UL可能有两种子载波间隔,如4个UL中1个UL的子载波间隔都是15KHz,其他的3个UL的子载波间隔都是30KHz;又或者该4个UL可能有三种子载波间隔,如4个UL中1个UL的子载波间隔都是15KHz,1个UL的子载波间隔都是30KHz,其他的2个UL的子载波间隔都是60KHz;又或者该4个UL可能有四种子载波间隔,如4个UL中1个UL的子载波间隔都是15KHz,1个UL的子载波间隔都是30KHz,1个UL的子载波间隔都是60KHz,其他的1个UL的子载波间隔都是120KHz。以上列举的只是一种可能的情况, 只是为了说明子载波间隔和载波资源之间可能的关系,应理解,本申请包括但不限于此。
由以上列举可知,L与M的关系可以是载波资源数L大于或等于子载波间隔数M,这里限制L≥M≥2,主要因为当网络设备为终端设备配置1个载波资源的时候,该1个载波资源必然只有1个子载波间隔,例如15KHz的子载波间隔。此时在第一间隔时间的计算过程中,N 1、N 2、TA max都是根据该15KHz的子载波间隔再分别根据表1、表2和表3来确定的,那么不会出现不同的UL的TA生效时间不一致的问题,因此,本申请中M可以是大于或等于2的正整数。
可选地,在根据子载波间隔数计算第一时间间隔N的时候,会参考下行信号的载波资源的子载波间隔。
可选地,所述第一时间间隔,可以参考最大子载波间隔,或者最小子载波间隔。例如,最大子载波间隔为30KHz,最小子载波间隔为15KHz,根据以上方法确定的第一时间间隔为5ms。参考15KHz子载波间隔时,5ms等效于5个时隙,也即对于15KHz上行载波,从第6个时隙应用TA。参考30KHz子载波间隔时,5ms等效于10个时隙,对于30KHz上行载波,从第11个时隙应用TA。
可选地,当参考最大子载波间隔时,对于小的子载波间隔,第一时间间隔无法实现整数个时隙,需要对第一时间间隔进行向上取整操作。所述取整操作代表选择大于原第一时间间隔,且为最小子载波间隔所对应时隙时长的最小整数倍的数值。例如,根据以上方法确定的第一时间间隔为2.5ms,包括2个载波(15KHz和30KHz),由于2.5ms不是15KHz子载波间隔对应时隙的整数倍,需要先对第一时间间隔2.5ms按照15KHz的步长进行向上取整,也即3ms。3ms分别对应3个时隙(15KHz)和6个时隙(30KHz)。于是,对应15KHz的子载波间隔,从第4个时隙开始应用新的TA,对应30KHz的子载波间隔,从7个时隙应用新的TA。
具体地,在对于N 1的确定过程中,μ=min(μ DLUL),其中μ DL对应于PDSCH的子载波间隔,μ UL对应于上行发送对应混合自动重传请求反馈确认(hybrid automatic repeat request acknowledge,HARQ-ACK)的子载波间隔。在对于N 2的确定过程中,μ=min(μ DLUL),其中μ DL可以是对应于下行用于调度PUSCH的PDCCH的子载波间隔,μ UL对应于上行发送PUSCH的子载波间隔。在对于TA max的确定过程中,中的μ对应于上行PUSCH的子载波间隔。应理解,不论是PDCCH,还是PDSCH,统称为下行载波资源DL,一般只对应一种子载波间隔,本申请包括但不限于此。
例如,当下行DL的子载波间隔为15KHz,上行UL的子载波间隔为30KHz,μ=min(μ DLUL)=min(15KHz,30KHz)=15KHz。
在S510中,终端设备从M个子载波间隔中确定第一子载波间隔,具体确定第一子载波间隔的方法列举如下:
情况一
对于所述的L个上行UL,N 1、N 2参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算N 1、N 2时,以15KHz为准。
情况二
对于所述的L个上行UL,N 1、N 2参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算N 1、N 2时,以30KHz 为准。
情况三
对于所述的L个上行UL,所述的TA max参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算TA max时,以15KHz为准。
情况四
对于所述的L个上行UL,所述的TA max参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算TA max时,以30KHz为准。
情况五
对于所述的L个上行UL,所述N 1、N 2、TA max参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,以15KHz为准。
情况六
对于所述的L个上行UL,所述N 1、N 2、TA max参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,以30KHz为准。
情况七
对于所述的L个上行UL,N 1、N 2参考的最小的UL的子载波间隔,TA max参考最大的UL的子载波间隔。
例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,N 1、N 2以15KHz为准,TA max以30KHz为准。
情况八
对于所述的L个上行UL,N 1、N 2参考的最大的UL的子载波间隔,TA max参考最小的UL的子载波间隔。
例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,N 1、N 2以30KHz为准,TA max以15KHz为准。
情况九
对于所述的L个上行UL,N 1、N 2参考的最小的UL的子载波间隔,TA max参考上行UL中子载波间隔和用于传输Msg3的载波资源的子载波间隔的最小值,即:μ=min(Msg3 SCS,UL SCS)。
情况十
对于所述的L个上行UL,和T个随机接入过程消息3(Msg3)子载波间隔,N1、N2参考最小的UL的子载波间隔,TA max参考中最大/最小的子载波间隔,即:μ=min(max(Msg3 SCSs),UL SCS)或者μ=min(min(Msg3 SCSs),UL SCS)。
例如,基站配置了UL和SUL上的随机接入资源,其Msg3的子载波间隔分别为15KHz或者30KHz,则TA max对应的μ参考最小的15KHz或者μ参考最大的30KHz。
可选地,以上所述的L个上行UL子载波间隔UL SCSs,还可以是所有激活状态的带宽部分的SCS,或者终端所配置的多个BWP的子载波间隔,或者所有的BWP的子载波间隔。
应理解,在随机接入过程中,传输Msg 3的上行载波资源的子载波间隔可能是15KHz,在随机接入过程完成之后,传输上行资源的子载波间隔可能配重新配置,例如分配的载波资源的子载波间隔可能为30KHz或者60KHz,因此,为了考虑到随机接入的影响,这里在TA max的确定过程中,考虑Msg 3子载波间隔的影响。同时,由于多个上行载波可能都对应有随机接入资源,因此每个上行载波可能对应不同的消息3子载波间隔,例如UE配置了上行载波UL和补充上行载波(supplementary UL,SUL)的情况,消息3可能有2个子载波间隔,例如分别为15KHz和30KHz。因此,在TA max的确定过程中,还考虑了多个Msg3子载波间隔的影响。
例如UE所采用的上行UL子载波间隔与Msg 3不同,为了支持最大的覆盖范围,TA max应该取Msg 3和所配置的UL的子载波间隔SCS中最小值。例如,UE配置了L=2个上行UL,子载波间隔分别为60KHz和30KHz,进行随机接入过程中,传输Msg 3的载波资源的子载波间隔SCS为15KHz,则计算时间间隔时,N 1、N 2以30KHz为准,TA max以15KHz为准。
以上列举了十种可能的N 1、N 2、TA max的参考的第一子载波间隔的情况,应理解,以上情况只是举例而非限定,在各种确定该第一子载波间隔的过程中,可能有更多的关于N 1、N 2、TA max的参考的第一子载波间隔的组合情况,本申请包括但并不限于此。
可选地,终端设备确定第一子载波间隔过程中,可以设置第一门限值,将该第一门限值确定为第一子载波间隔,参与后续确定TA生效时刻。
可选地,本申请上述提供的方法还可以与现有技术结合使用,例如在上述确定的上行载波资源的第一子载波间隔和下行载波资源的子载波间隔中求最小值,从而得到一个子载波间隔,此处不再赘述。应理解,本申请包括但不限于此。
总之,本申请实施例提供的确定该第一子载波间隔的方法,旨在保证对于同一个终端设备UE,在包括多种UL子载波间隔的情况下该间隔时间N是一致的。从而使得在同一个TAG中,终端设备的TA生效时间是一致的,能够保证终端设备和网络设备之间的上行定时同步。
S520,终端设备根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
经过上述S510的方法,终端设备确定了该第一子载波间隔,就可以进一步确定每个载波的定时提前量TA的生效时刻。
可选地,终端设备根据所述第一子载波间隔,确定所述L个载波中的第一载波对应的第一时间间隔,所述第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;再根据所述第一时间间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
例如,当下行DL的子载波间隔为15KHz,上行UL的子载波间隔为30KHz,μ=min(μ DLUL)=min(15KHz,30KHz)=15KHz,由公式(1)得到第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+10 symbol+0.5ms+2ms)=ceil(58 symbol)=5ms。
可选地,终端设备根据所述第一子载波间隔,确定第一时长N 1,所述第一时长是处理下行信号所需要的时长;和/或根据所述第一子载波间隔,确定第二时长N 2,所述第二时长是准备上行信号所需要的时长;和/或根据所述第一子载波间隔,确定第三时长TA max, 所述第三时长是对应第一子载波间隔下,12比特定时提前命令TAC所允许指示的最大时长;终端设备根据第一时长N 1、第二时长N 2和第三时长TA max中的一种或多种时长,确定所述第一时间间隔。应理解,这里12bit只是一种实例而非限定,也可以取小于12bit的其他可能的数值,例如为6bit。
可选地,该第一时间间隔还包括第四时长,该第一时间间隔还包括第四时长,该第四时长是该终端设备根据小区复用模式确定的时长;和/或该第四时长是该终端设备根据该终端设备或网络设备工作的频率范围确定的时长。例如,该第四时长可以是该终端设备在不同的工作模式或工作频段下进行切换的时长。对于该第四时长参见前述的相关描述,此处不再赘述。应理解,所述的处理下行信号所需要的时长,和下行信号配置,例如解调参考信号配置,和/或下行信号子载波间隔,和/或UE处理能力有关。应理解,所述的准备上行信号所需要的时长和上行信号子载波间隔,和/或UE处理能力有关。
应理解,这里列举的确定第一时间间隔的过程,根据公式(1)可以通过分别确定N 1、N 2、L 2、TA max的时长来求和,从而得到第一时间间隔N。本申请实施例也可以只确定N 1、N 2、L 2、TA max中的一个或多个时长,在技术的发展过程中,可能只需要确定其中至少一个时长,可以通过一定的关系得到第一时间间隔N。这里,凡是通过本申请提供的方法来确定N 1、N 2、L 2、TA max中任意一个或多个时长的方法均落入本申请的保护范围。
具体地,与前述列举的九种情况相对应的确定第一时间间隔N的实例列举如下。
情况一
对于所述的L个上行UL,N 1、N 2参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算N 1、N 2时,以15KHz为准,N 1=13 symbol,N 2=10 symbol。
情况二
对于所述的L个上行UL,N 1、N 2参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算N 1、N 2时,以30KHz为准,N 1=13 symbol,N 2=12 symbol。
情况三
对于所述的L个上行UL,所述的TA max参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算TA max时,以15KHz为准,TA max=2ms。
情况四
对于所述的L个上行UL,所述的TA max参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算TA max时,以30KHz为准,TA max=1ms。
情况五
对于所述的L个上行UL,所述N 1、N 2、TA max参考最小的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,以15KHz为准。对于上行15KHz和30KHz的UL,其第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+10 symbol+0.5ms+2ms)=ceil(58 symbol)=5ms。
情况六
对于所述的L个上行UL,所述N 1、N 2、TA max参考最大的UL的子载波间隔。例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,以30KHz为准。对于上行15KHz和30KHz的UL,其第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+12 symbol+0.5ms+1ms)=ceil(67 symbol)=2.5ms。
情况七
对于所述的L个上行UL,N 1、N 2参考的最小的UL的子载波间隔,TA max参考最大的UL的子载波间隔。
例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,N 1、N 2以15KHz为准,TA max以30KHz为准。对于上行15Khz和30Khz的UL,其第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+10 symbol+0.5ms+1ms)=ceil(44 symbol)=4ms。
情况八
对于所述的L个上行UL,N 1、N 2参考的最大的UL的子载波间隔,TA max参考最小的UL的子载波间隔。
例如,UE配置了L=2个上行UL,子载波间隔分别为15KHz和30KHz,则计算时间间隔时,N 1、N 2以30KHz为准,TA max以15KHz为准。对于上行15Khz和30Khz的UL,其第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+12 symbol+0.5ms+2ms)=ceil(60 symbol)=5ms。
情况九
对于所述的L个上行UL,N 1、N 2参考的最小的UL的子载波间隔,TA max参考上行UL中最小的子载波间隔和用于传输Msg3的载波资源的子载波间隔,即:μ=min(Msg3 SCS,UL SCS)。
情况十
对于所述的L个上行UL,和M个随机接入过程消息3(Msg3)子载波间隔,N1、N2参考最小的子载波间隔,TA max参考中最大/最小的子载波间隔,即:μ=min(max(Msg3 SCSs),UL SCS)或者μ=min(min(Msg3 SCSs),UL SCS)。
例如,基站配置了UL和SUL上的随机接入资源,其消息3的子载波间隔分别为15KHz或者30KHz,则TA max对应的μ参考最小的15KHz或者μ参考最大的30KHz。
可选地,以上所述的L个上行子载波间隔UL SCSs,还可以是所有激活状态的带宽部分的SCS,或者终端所配置的多个BWP的子载波间隔,或者所有的BWP的子载波间隔。
应理解,在随机接入过程中,传输Msg 3的上行载波资源的子载波间隔可能是15KHz,在随机接入过程完成之后,传输上行资源的子载波间隔可能配重新配置,例如分配的载波资源的子载波间隔可能为30KHz或者60KHz,因此,为了考虑到随机接入的影响,这里在TA max的确定过程中,考虑Msg 3子载波间隔的影响。同时,由于多个上行载波可能都对应有随机接入资源,因此每个上行载波可能对应不同的消息3子载波间隔,例如UE配置了上行载波UL和SUL的情况,消息3可能有2个子载波间隔,例如分别为15KHz和30KHz。因此,在TA max的确定过程中,还考虑了多个Msg3子载波间隔的影响。
例如UE所采用的上行UL子载波间隔与Msg 3不同,为了支持最大的覆盖范围,TA max应该取Msg 3和所配置的UL的子载波间隔SCS中最小值。例如,UE配置了L=2个上行 UL,子载波间隔分别为60KHz和30KHz,进行随机接入过程中,传输Msg 3的载波资源的子载波间隔SCS为15KHz,则计算时间间隔时,N 1、N 2以30KHz为准,TA max以15KHz为准。当下行DL的子载波间隔SCS=15KHz的时候,对于上行30KHz和60KHz的UL,其第一时间间隔N=ceil(N 1+N 2+L 2+TA max)=ceil(13 symbol+12 symbol+0.5ms+2ms)=ceil(60 symbol)=5ms。
以上列举了九种可能根据第一子载波间隔确定第一时间间隔的情况,应理解,以上情况只是举例而非限定,本申请包括但并不限于此。
可选地,在另一种可能的实现方式中,终端设备确定第一映射关系,该第一映射关系包括多种子载波间隔与多个时长之间的一一映射关系;以及终端设备根据所述第一映射关系,确定与第一子载波间隔相对应的第一时间间隔;再根据该第一时间间隔,确定L个载波中的每个载波的定时提前量TA的生效时刻。
具体地,终端设备根据网络设备配置,获知一个TAG中所有的上行UL的子载波间隔;再接收网络设备下发的包含TA调整命令的MAC-CE,确定TA生效时刻,此后即可应用包括在MAC-CE中的新的TA。
终端接收到包括TA调整的MAC-CE之后,根据同一个TAG中最小或最大的上行子载波间隔,确定第一时间间隔。例如,终端设备可以根据表6中的预设函数来确定该第一时间间隔。
表6
子载波间隔(单位:KHz) 第一时间间隔(单位:ms)
15 6+n
30 3+0.5n
60 2.25+0.25n
120 1.5+0.125n
其中,整数n的可取值为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}。
可选地,还可以采用如表4中第一时间间隔所等效的时隙数目表示该第一时间间隔N,如表7所示。
表7
子载波间隔(单位:KHz) 生效时间间隔(单位:时隙slots)
15 6+n
30 6+n
60 9+n
120 12+n
其中,整数n的可取值集合为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12}。
以上介绍了终端设备确定定时提前量TA的生效时刻的详细过程,在终端设备确定了第一时间间隔N之后,从接收下行信号的时刻起,加上该第一时间时间间隔N代表的时 长就可以确定TA的生效时刻。在终端设备确定所述L个载波中的每个载波的定时提前量TA的生效时刻之后,就可以根据所述定时提前量TA发送上行信息。
UE可以按照图3所示的方法发送上行数据,例如,UE可以根据接收到的下行无线帧i-1确定下行无线帧i,并根据定时提前量T TA确定上行无线帧i的起始时刻为T 0-T TA,其中,T 0为UE接收到下行无线帧i的起始时刻。UE确定上行无线帧i的起始时刻,即可确定发送上行信息的时间。UE发送上行信息的时间可能是上行无线帧中的部分时间。
上文结合图2至图5详细介绍了本申请提供的确定TA生效时刻的方法。可以理解的是,终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。下面将结合图6至图8对本申请实施例的通信装置进行详细说明。图6是本申请实施例提供的通信装置600的示意性框图。该通信装置600可以对应(例如,可以配置于或本身即为)上述方法500中描述的终端设备。在采用集成的单元的情况下,图6示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备600包括:确定单元610和发送单元620。
在一种可能的设计中,该通信装置600可以为终端设备或配置于终端设备中的芯片。
确定单元610,用于从M个子载波间隔中确定第一子载波间隔,其中,所述M个子载波间隔是所述终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2。
所述确定单元610还用于根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
可选地,所述确定单元610还用于根据所述第一子载波间隔,确定所述L个载波中的第一载波对应的第一时间间隔,所述第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;根据所述第一时间间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
可选地,所述确定单元610还用于根据所述第一子载波间隔,确定第一时长,所述第一时长是处理下行信号所需要的时长;和/或根据所述第一子载波间隔,确定第二时长,所述第二时长是准备上行信号所需要的时长;和/或根据所述第一子载波间隔,确定第三时长,所述第三时长是对应第一子载波间隔下,12比特定时提前命令TAC所允许指示的最大时长;所述确定单元610根据第一时长、第二时长和第三时长中的一种或多种时长,确定所述第一时间间隔。
可选地,该第一时间间隔还包括第四时长,该第四时长是该终端设备根据小区复用模式确定的时长;和/或该第四时长是该终端设备根据该终端设备或网络设备工作的频率范围确定的时长。例如,该第四时长是该终端设备在不同的工作模式或工作频段下进行切换的时长。对于该第四时长参见前述的相关描述,此处不再赘述。
可选地,所述确定单元610还用于确定第一映射关系,所述第一映射关系包括多种子载波间隔与多个时长之间的一一映射关系;以及根据所述第一映射关系,确定与所述第一子载波间隔相对应的第一时间间隔;根据所述第一时间间隔,确定L个载波中的每个载波的定时提前量TA的生效时刻。
可选地,所述第一子载波间隔是所述M个子载波间隔中最小的子载波间隔;或所述第一子载波间隔是所述M个子载波间隔中最大的子载波间隔。
应理解,所述的第一子载波间隔,可以为所有上行子载波间隔中的最大值/最小值,或者所有激活状态的BWP的子载波间隔的最大/最小值,或者终端所配置的多个BWP的 子载波间隔的最大/最小值,或者所有的BWP的子载波间隔的最大/最小值中一种或者多种确定。也可以根据固定为某个子载波间隔,例如对于低频(工作频率小于等于6GHz),可以固定位15KHz。
可选地,所述装置600还包括发送单元620,用于根据所述定时提前量TA发送上行信息。
应理解,该通信装置600可对应于根据本申请实施例的通信方法200中的终端设备和通信方法500中的终端设备,该通信装置600可以包括用于执行图2中通信方法200和通信方法500中的终端设备执行的方法的模块。并且,该通信装置600中的各模块和上述其他操作和/或功能分别为了实现图2中通信方法200和通信方法500中的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例提供的终端设备700的结构示意图。如图7所示,该终端设备700包括处理器710和收发器720。可选地,该终端设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。
上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
上述终端设备还可以包括天线740,用于将收发器720输出的下行数据或下行控制信令通过无线信号发送出去。
图8是本申请实施例提供的终端设备800的结构示意图。如图8所示,该终端设备800包括:处理器801和收发器802,可选地,该终端设备800还包括存储器803。其中,其中,处理器802、收发器802和存储器803之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器803用于存储计算机程序,该处理器801用于从该存储器803中调用并运行该计算机程序,以控制该收发器802收发信号。
上述处理器801和存储器803可以合成一个处理装置804,处理器801用于执行存储器803中存储的程序代码来实现上述功能。具体实现时,该存储器803也可以集成在处理器801中,或者独立于处理器801。上述终端设备800还可以包括天线810,用于将收发器802输出的上行数据或上行控制信令通过无线信号发送出去。
具体地,终端设备800可以对应于根据本申请实施例的通信方法200和通信方法500中的终端设备,该终端设备800可以包括用于执行图2中通信方法200的终端设备执行的方法的模块,并且,该终端设备800中的各模块和上述其他操作和/或功能分别为了实现图2中通信方法200和通信方法500的相应流程。为了简洁,在此不再赘述。
上述处理器801可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器802可以用于执行前面方法实施例中描述的终端向终端设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器801和存储器803可以集成为一个处理装置,处理器801用于执行存储器803中存储的程序代码来实现上述功能。具体实现时,该存储器803也可以集成在处理器801中。
上述终端设备800还可以包括电源805,用于给终端中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备800还可以包括输入单元814,显示单元816,音频电路818,摄像头820和传感器822等中的一个或多个,所述音频电路还可以包括扬声器882,麦克风884等。
应理解,上述各个装置实施例中终端设备和方法实施例中的终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (62)

  1. 一种通信方法,其特征在于,包括:
    接收定时提前量TA调整命令;
    根据对应于多于一个带宽部分BWP的子载波间隔,确定调整后的定时提前量TA的生效时刻。
  2. 根据权利要求1所述的方法,其特征在于,根据对应于多于一个BWP的子载波间隔,确定调整后的定时提前量TA的生效时刻包括:
    根据第一时长,第二时长和第三时长中的至少一项,确定调整后的TA的生效时隙,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个BWP的子载波间隔相关。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时长为处理下行信号所需要的时长,所述第二时长为准备上行信号所需要的时长,所述第三时长为12bit定时提前命令TAC所允许指示的最大时长。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个BWP的子载波间隔相关包括:
    根据第一子载波间隔,确定第一时长和/或第二时长,所述第一子载波间隔为对应于多于一个BWP的子载波间隔中的最小子载波间隔;
    其中,所述第一时长为处理下行信号所需要的时长,所述第二时长为准备上行信号所需要的时长。
  5. 根据权利要求2或3所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个BWP的子载波间隔相关包括:
    所述第一时长和/或第二时长与第一子载波间隔有关,所述第一子载波间隔为对应于多于一个BWP的子载波间隔中的最小子载波间隔;
    其中,所述第一时长为处理下行信号所需要的时长,所述第二时长为准备上行信号所需要的时长。
  6. 根据权利要求4所述的方法,其特征在于,根据第一子载波间隔,确定第一时长和/或第二时长包括:
    根据第一子载波间隔以及所述第一子载波间隔与第一时长的对应关系,确定第一时长,所述第一子载波间隔与第一时长的对应关系为子载波间隔与第一时长的多个对应关系中的一个;和/或,
    根据第一子载波间隔以及所述第一子载波间隔与第二时长的对应关系,确定第二时长,其中,所述第一子载波间隔与第二时长的对应关系为子载波间隔与第二时长的多个对应关系中的一个。
  7. 根据根据权利要求5所述的方法,其特征在于,所述第一时长和/或第二时长与所述第一子载波间隔有关包括:
    所述第一子载波间隔与第一时长具有对应关系,所述对应关系为至少一个子载波间隔与第一时长的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第一子载波间隔,和/或,
    所述第一子载波间隔与第二时长具有对应关系,所述对应关系为至少一个子载波间隔与第二时长的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第一子载波间隔。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个BWP的子载波间隔相关包括:
    根据第二子载波间隔,确定第三时长;所述第二子载波间隔为对应于多于一个BWP的子载波间隔中的最小子载波间隔,对应于多于一个BWP的子载波间隔包括用于传输Msg3的BWP的子载波间隔和终端设备所被配置的上行BWP的子载波间隔;
    其中,所述第三时长为对应所述第二子载波间隔的情况下,定时提前命令TAC所允许指示的最大时长。
  9. 根据权利要求2-7中任一项所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个BWP的子载波间隔相关包括:
    所述第三时长与第二子载波间隔有关,所述第二子载波间隔为对应于多于一个BWP的子载波间隔中的最小子载波间隔,对应于多于一个BWP的子载波间隔包括用于传输Msg3的BWP的子载波间隔和终端设备所被配置的上行BWP的子载波间隔;
    其中,所述第三时长为对应所述第二子载波间隔的情况下,定时提前命令TAC所允许指示的最大时长。
  10. 根据权利要求8或9所述的方法,其特征在于,定时提前命令TAC所允许指示的最大时长为12bit TAC所允许指示的最大时长。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,用于传输Msg3的BWP的子载波间隔多于1个。
  12. 根据权利要求8-10中任一项所述的方法,其特征在于,所述用于传输Msg3的BWP包括终端设备被配置上行载波和补充上行载波的情况下用于传输Msg3的BWP。
  13. 根据权利要求8和10-12中任意一项所述的方法,其特征在于,所述根据第二子载波间隔,确定第三时长包括:
    根据第二子载波间隔和第二子载波间隔与第三时长的对应关系,确定第三时长;
    其中,第二子载波间隔与第三时长的对应关系为至少一个子载波间隔与第三时长的多个对应关系中的一个,所述至少一个子载波间隔包括所述第二子载波间隔。
  14. 根据权利要求9-12中任意一项所述的方法,其特征在于,所述第三时长与第二子载波间隔有关包括:
    所述第三时长与所述第二子载波间隔具有对应关系,所述对应关系为第三时长与至少一个子载波间隔的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第二子载波间隔。
  15. 根据权利要求4-7中任一项所述的方法,其特征在于,所述多于一个BWP包括上行BWP和下行BWP。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述调整后的定时提前量TA的生效时刻为一个时间提前组TAG的调整后的TA的生效时刻。
  17. 根据权利要求1-16中任一项所述的方法,其特征在于,还包括:在确定所述调整后的TA的生效时刻后,利用所述调整后的TA发送上行信息。
  18. 根据权利要求1-17中任意一项所述的方法,其特征在于,所述多于一个BWP为 终端设备所被配置的。
  19. 一种通信方法,其特征在于,包括:
    接收定时提前量TA调整命令;
    根据对应于多于一个载波或载波资源的子载波间隔,确定调整后的定时提前量TA的生效时刻。
  20. 根据权利要求19所述的方法,其特征在于,根据对应于多于一个载波或载波资源的子载波间隔,确定调整后的定时提前量TA的生效时刻包括:
    根据第一时长,第二时长和第三时长中的至少一项,确定调整后的TA的生效时隙,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个载波或载波资源的子载波间隔相关。
  21. 根据权利要求20所述的方法,其特征在于,所述第一时长为处理下行信号所需要的时长,所述第二时长为准备上行信号所需要的时长,所述第三时长为12bit定时提前命令TAC所允许指示的最大时长。
  22. 根据权利要求20或21所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个载波或载波资源的子载波间隔相关包括:
    根据第一子载波间隔,确定第一时长和/或第二时长,所述第一子载波间隔为对应于多于一个载波或载波资源的子载波间隔中的最小子载波间隔;
    其中,所述第一时长为处理下行信号所需要的时长,所述第二时长为准备上行信号所需要的时长。
  23. 根据权利要求20或21所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个载波或载波资源的子载波间隔相关包括:
    所述第一时长和/或第二时长与第一子载波间隔有关,所述第一子载波间隔为对应于多于一个载波或载波资源的子载波间隔中的最小子载波间隔;
    其中,所述第一时长为处理下行信号所需要的时长,所述第二时长为准备上行信号所需要的时长。
  24. 根据权利要求22所述的方法,其特征在于,根据第一子载波间隔,确定第一时长和/或第二时长包括:
    根据第一子载波间隔以及所述第一子载波间隔与第一时长的对应关系,确定第一时长,所述第一子载波间隔与第一时长的对应关系为至少一个子载波间隔与第一时长的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第一子载波间隔;和/或,
    根据第一子载波间隔以及所述第一子载波间隔与第二时长的对应关系,确定第二时长,其中,所述第一子载波间隔与第二时长的对应关系为至少一个子载波间隔与第二时长的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第一子载波间隔。
  25. 根据根据权利要求23所述的方法,其特征在于,所述第一时长和/或第二时长与所述第一子载波间隔有关包括:
    所述第一子载波间隔与第一时长具有对应关系,所述对应关系为至少一个子载波间隔与第一时长的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第一子载波间隔,和/或,
    所述第一子载波间隔与第二时长具有对应关系,所述对应关系为至少一个子载波间隔与第二时长的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第一子载波 间隔。
  26. 根据权利要求20-25中任一项所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个载波或载波资源的子载波间隔相关包括:
    根据第二子载波间隔,确定第三时长;所述第二子载波间隔为对应于多于一个载波或载波资源的子载波间隔中的最小子载波间隔,对应于多于一个载波或载波资源的子载波间隔包括用于传输Msg3的载波的子载波间隔和终端设备的上行载波的子载波间隔;
    其中,所述第三时长为对应所述第二子载波间隔的情况下,定时提前命令TAC所允许指示的最大时长。
  27. 根据权利要求20-25中任一项所述的方法,其特征在于,所述第一时长,第二时长和第三时长中的至少一项与对应于多于一个载波或载波资源的子载波间隔相关包括:
    所述第三时长与第二子载波间隔有关,所述第二子载波间隔为对应于多于一个载波或载波资源的子载波间隔中的最小子载波间隔,对应于多于一个载波或载波资源的子载波间隔包括用于传输Msg3的载波的子载波间隔和终端设备的上行载波的子载波间隔;
    其中,所述第三时长为对应所述第二子载波间隔的情况下,定时提前命令TAC所允许指示的最大时长。
  28. 根据权利要求26或27所述的方法,其特征在于,定时提前命令TAC所允许指示的最大时长为12bit TAC所允许指示的最大时长。
  29. 根据权利要求26-28中任一项所述的方法,其特征在于,用于传输Msg3的载波的子载波间隔多于1个。
  30. 根据权利要求26-29中任一项所述的方法,其特征在于,所述用于传输Msg3的载波包括终端设备被配置上行载波和补充上行载波的情况下用于传输Msg3的载波。
  31. 根据权利要求26和28-30中任意一项所述的方法,其特征在于,所述根据第二子载波间隔,确定第三时长包括:
    根据第二子载波间隔和第二子载波间隔与第三时长的对应关系,确定第三时长;
    其中,第二子载波间隔与第三时长的对应关系为至少一个子载波间隔与第三时长的多个对应关系中的一个,所述至少一个子载波间隔包括所述第二子载波间隔。
  32. 根据权利要求27-30中任意一项所述的方法,其特征在于,所述第三时长与第二子载波间隔有关包括:
    所述第三时长与所述第二子载波间隔具有对应关系,所述对应关系为第三时长与至少一个子载波间隔的至少两个对应关系中的一个,所述至少一个子载波间隔包括所述第二子载波间隔。
  33. 根据权利要求22-25中任一项所述的方法,其特征在于,所述多于一个载波或载波资源包括上行载波和下行载波。
  34. 根据权利要求19-33中任一项所述的方法,其特征在于,所述调整后的定时提前量TA的生效时刻为一个时间提前组TAG的调整后的TA的生效时刻。
  35. 根据权利要求19-34中任一项所述的方法,其特征在于,还包括:在确定所述调整后的TA的生效时刻后,利用所述调整后的TA发送上行信息。
  36. 一种通信装置,其特征在于,包括:
    接收模块,用于接收定时提前量TA调整命令;
    处理模块,用于根据对应于多于一个带宽部分BWP的子载波间隔,确定调整后的定 时提前量TA的生效时刻。
  37. 一种通信装置,其特征在于,包括:
    接收模块,用于接收定时提前量TA调整命令;
    处理模块,用于根据对应于多于一个载波或载波资源的子载波间隔,确定调整后的定时提前量TA的生效时刻。
  38. 一种通信装置,其特征在于,包括:
    处理器,用于与存储器耦合,执行所述存储器中的指令,以实现如权利要求1至35中任一项所述的方法。
  39. 一种通信系统,其特征在于,包括:
    如权利要求36或37或38所述的通信装置。
  40. 如权利要求39所述的通信系统,其特征在于,还包括:
    网络设备,用于发送所述定时提前量TA调整命令。
  41. 一种通信方法,其特征在于,包括:
    从M个子载波间隔中确定第一子载波间隔,其中,所述M个子载波间隔是终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2;
    根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
  42. 根据权利要求41所述的方法,其特征在于,所述根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻,包括:
    根据所述第一子载波间隔,确定第一时间间隔,所述第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;
    根据所述第一时间间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
  43. 根据权利要求42所述的方法,其特征在于,所述根据所述第一子载波间隔,确定所述第一时间间隔,包括:
    根据所述第一子载波间隔,确定第一时长,所述第一时长是处理下行信号所需要的时长;和/或
    根据所述第一子载波间隔,确定第二时长,所述第二时长是准备上行信号所需要的时长;
    根据所述第一时长和/或第二时长,确定第一时间间隔。
  44. 根据权利要求42或43所述的方法,其特征在于,所述根据所述第一子载波间隔,确定所述第一时间间隔,包括:根据第三时长确定第一时间间隔,所述第三时长是对应第二子载波间隔下,12比特或6比特的定时提前命令TAC所允许指示的最大时长;
    所述第二子载波间隔根据第三子载波间隔和第四子载波间隔中较小的子载波间隔;
    所述第三子载波间隔为终端设备的多个上行载波对应的子载波间隔中最小的子载波间隔;
    所述第四子载波间隔为终端传输消息3的子载波间隔。
  45. 根据权利要求42所述的方法,其特征在于,所述第一时间间隔包括第一时长、第二时长和第三时长中的一种或多种时长,所述根据所述第一子载波间隔,确定所述L个载波中的第一载波对应的第一时间间隔,包括:
    根据所述第一子载波间隔,确定第一时长,所述第一时长是处理下行信号所需要的时长;和/或
    根据所述第一子载波间隔,确定第二时长,所述第二时长是准备上行信号所需要的时长;和/或
    根据所述第一子载波间隔,确定第三时长,所述第三时长是对应第一子载波间隔下,12比特或6比特的定时提前命令TAC所允许指示的最大时长。
  46. 根据权利要求45所述的方法,其特征在于,当所述L个载波中至少两个载波用于随机接入过程,且用于传输消息Msg 3的载波包括至少两个子载波间隔时,所述根据所述第一子载波间隔,确定第三时长之前,所述方法还包括:
    根据所述至少两个子载波间隔,确定所述第一子载波间隔。
  47. 根据权利要求42至46中任一项所述的方法,其特征在于,所述第一时间间隔还包括第四时长,所述第四时长是所述终端设备根据小区复用模式确定的时长;和/或
    所述第四时长是所述终端设备根据所述终端设备或网络设备工作的频率范围确定的时长。
  48. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    确定第一映射关系,所述第一映射关系包括多种子载波间隔与多个时长之间的一一映射关系;以及
    所述根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻,包括:
    根据所述第一映射关系,确定与所述第一子载波间隔相对应的第一时间间隔;
    根据所述第一时间间隔,确定L个载波中的每个载波的定时提前量TA的生效时刻。
  49. 根据权利要求41至48中任一项所述的方法,其特征在于,所述第一子载波间隔是所述M个子载波间隔中最小的子载波间隔;或
    所述第一子载波间隔是所述M个子载波间隔中最大的子载波间隔。
  50. 根据权利要求41至49中任一项所述的方法,其特征在于,所述根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻之后,所述方法还包括:
    根据所述定时提前量TA发送上行信息。
  51. 一种通信装置,其特征在于,包括:
    确定单元,用于从M个子载波间隔中确定第一子载波间隔,其中,所述M个子载波间隔是终端设备所使用的L个载波对应的子载波间隔,其中,L≥M≥2;
    所述确定单元还用于根据所述第一子载波间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
  52. 根据权利要求51所述的装置,其特征在于,所述确定单元还用于:
    根据所述第一子载波间隔,确定第一时间间隔,所述第一时间间隔是下行信号的接收时刻与TA的生效时刻之间的时间间隔;
    根据所述第一时间间隔,确定所述L个载波中的每个载波的定时提前量TA的生效时刻。
  53. 根据权利要求50所述的装置,其特征在于,所述根据所述第一子载波间隔,确定第一时间间隔,包括:
    根据所述第一子载波间隔,确定第一时长,所述第一时长是处理下行信号所需要的时长;和/或
    根据所述第一子载波间隔,确定第二时长,所述第二时长是准备上行信号所需要的时长;
    根据所述第一时长和/或第二时长,确定第一时间间隔。
  54. 根据权利要求52或53所述的装置,其特征在于,所述根据所述第一子载波间隔,确定第一时间间隔,包括:根据第三时长确定第一时间间隔,所述第三时长是对应第二子载波间隔下,12比特或6比特的定时提前命令TAC所允许指示的最大时长:
    所述第二子载波间隔根据第三子载波间隔和第四子载波间隔中较小的子载波间隔;
    所述第三子载波间隔为终端设备的对应于多个上行载波的子载波间隔中最小的子载波间隔;
    所述第四子载波间隔为终端传输消息3的子载波间隔。
  55. 根据权利要求52所述的装置,其特征在于,所述第一时间间隔包括第一时长、第二时长和第三时长中的一种或多种时长,所述确定单元还用于:
    根据所述第一子载波间隔,确定第一时长,所述第一时长是处理下行信号所需要的时长;和/或
    根据所述第一子载波间隔,确定第二时长,所述第二时长是准备上行信号所需要的时长;和/或
    根据所述第一子载波间隔,确定第三时长,所述第三时长是对应第一子载波间隔下,12比特或6比特的定时提前命令TAC所允许指示的最大时长。
  56. 根据权利要求55所述的装置,其特征在于,当所述L个载波中至少两个载波用于随机接入过程,且用于传输消息Msg 3的载波包括至少两个子载波间隔时,所述确定单元还用于:
    根据所述至少两个子载波间隔,确定所述第一子载波间隔。
  57. 根据权利要求52至56中任一项所述的装置,其特征在于,所述第一时间间隔还包括第四时长所述第四时长是所述终端设备根据小区复用模式确定的时长;和/或
    所述第四时长是所述终端设备根据所述终端设备或网络设备工作的频率范围确定的时长。
  58. 根据权利要求51所述的装置,其特征在于,所述确定单元还用于:
    确定第一映射关系,所述第一映射关系包括多种子载波间隔与多个时长之间的一一映射关系;以及
    根据所述第一映射关系,确定与所述第一子载波间隔相对应的第一时间间隔;
    根据所述第一时间间隔,确定L个载波中的每个载波的定时提前量TA的生效时刻。
  59. 根据权利要求51至58中任一项所述的装置,其特征在于,所述第一子载波间隔是所述M个子载波间隔中最小的子载波间隔;或
    所述第一子载波间隔是所述M个子载波间隔中最大的子载波间隔。
  60. 根据权利要求51至59中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于根据所述定时提前量TA发送上行信息。
  61. 一种计算机可读存储介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1至35或41-50中任一项所述的方法的指令。
  62. 一种通信装置,其特征在于,用于执行上述权利要求1至35或41-50中任一项所述的方法。
PCT/CN2019/086459 2018-05-11 2019-05-10 通信方法和通信装置 WO2019214730A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112020022625-4A BR112020022625A2 (pt) 2018-05-11 2019-05-10 método, sistema, e aparelho de comunicação, e meio de armazenamento
JP2020563620A JP7128297B2 (ja) 2018-05-11 2019-05-10 通信方法および通信装置
CA3099321A CA3099321A1 (en) 2018-05-11 2019-05-10 Communication method and communications apparatus
AU2019266797A AU2019266797C1 (en) 2018-05-11 2019-05-10 Communication Method and Communications Apparatus
EP19799977.4A EP3783979B1 (en) 2018-05-11 2019-05-10 Communication method and communication apparatus
US17/094,547 US11516760B2 (en) 2018-05-11 2020-11-10 Method and apparatus for timing advance adjustment
JP2022130722A JP7483806B2 (ja) 2018-05-11 2022-08-18 通信方法および通信装置
US17/986,466 US11838885B2 (en) 2018-05-11 2022-11-14 Method and apparatus for timing advance adjustment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810450341.7 2018-05-11
CN201810450341 2018-05-11
CN201810820209.0A CN110475358A (zh) 2018-05-11 2018-07-24 通信方法和通信装置
CN201810820209.0 2018-07-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,547 Continuation US11516760B2 (en) 2018-05-11 2020-11-10 Method and apparatus for timing advance adjustment

Publications (1)

Publication Number Publication Date
WO2019214730A1 true WO2019214730A1 (zh) 2019-11-14

Family

ID=65562975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086459 WO2019214730A1 (zh) 2018-05-11 2019-05-10 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN109451586B (zh)
WO (1) WO2019214730A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475358A (zh) 2018-05-11 2019-11-19 华为技术有限公司 通信方法和通信装置
CN109451586B (zh) * 2018-05-11 2020-07-07 华为技术有限公司 通信方法和通信装置
CN111757510A (zh) * 2019-03-26 2020-10-09 夏普株式会社 由用户设备执行的方法以及用户设备
CN112188609B (zh) * 2019-07-04 2021-11-19 华为技术有限公司 确定定时提前ta参考时刻的方法和装置
CN112398602A (zh) * 2019-08-12 2021-02-23 夏普株式会社 由用户设备执行的方法以及用户设备
CN116707739A (zh) * 2019-09-30 2023-09-05 中兴通讯股份有限公司 信息确定、调整方法、门限值使用方法、终端及存储介质
CN111064539B (zh) * 2019-12-23 2021-10-26 展讯半导体(南京)有限公司 一种上行同步方法、通信装置及存储介质
WO2021166044A1 (ja) * 2020-02-17 2021-08-26 株式会社Nttドコモ 通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012329A (zh) * 2017-09-27 2018-05-08 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
CN109451586A (zh) * 2018-05-11 2019-03-08 华为技术有限公司 通信方法和通信装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872417B (zh) * 2016-09-28 2022-03-01 中兴通讯股份有限公司 数据发送、接收方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108012329A (zh) * 2017-09-27 2018-05-08 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
CN109451586A (zh) * 2018-05-11 2019-03-08 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Technical Specification Group Ra- dio Access Network; NR; Physical layer procedures for data (Release 15)", 3RD GENERATION PARTNERSHIP PROJECT, TS 38.214 V15.1.0, 9 April 2018 (2018-04-09), XP051451093 *
QUALCOMM INCORPORATED: "Summary of Remaining Details on RACH Procedure", 3GPP TSG-RAN WG1 92BIS, RL-1805754, 24 April 2018 (2018-04-24), XP051435705 *
See also references of EP3783979A4

Also Published As

Publication number Publication date
CN109451586A (zh) 2019-03-08
CN109451586B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2019214730A1 (zh) 通信方法和通信装置
US11589393B2 (en) Random access configuration
JP7483806B2 (ja) 通信方法および通信装置
CN111587605B (zh) 用于保持针对非许可无线频谱的信道占用率的上行链路信道调度
WO2020200017A1 (zh) 一种通信方法及装置
TWI632819B (zh) 處理裝置對裝置通訊的裝置及方法
TW201635750A (zh) 自包含分時雙工(tdd)子訊框結構
JP6937324B2 (ja) 端末装置、基地局装置、および、通信方法
CN107615857B (zh) 终端装置、集成电路以及通信方法
US20230354312A1 (en) Processing time for fast-switched ul tx across carriers
US20220346088A1 (en) Multiplexing scheduling method for iab network and iab node
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
US11894891B2 (en) Signaling for scheduled multi-user multiple-input multiple-output acknowledgement
US20230362900A1 (en) Uplink transmission method, terminal, and network side device
WO2022147735A1 (zh) 确定发送功率的方法及装置
EP4233254A1 (en) Implicit update of activated tci states
EP3681212B1 (en) Terminal device and communication method
US20230328673A1 (en) Method and device used in communication node for wireless communication
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置
WO2024031639A1 (en) Timing synchronization for wakeup receiver
TW202327390A (zh) 用於針對無ssb dl bwp中的rach和sdt的同步的方法和裝置
KR20230075027A (ko) 비지상 네트워크 시스템에서 데이터를 송수신하는 장치 및 방법
WO2018233694A1 (zh) 信号发送和接收方法、装置
WO2018233691A1 (zh) 信号发送和接收方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3099321

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020563620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022625

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019266797

Country of ref document: AU

Date of ref document: 20190510

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019799977

Country of ref document: EP

Effective date: 20201117

ENP Entry into the national phase

Ref document number: 112020022625

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201106