WO2024103813A1 - 一种两亲纳米片的制备方法 - Google Patents

一种两亲纳米片的制备方法 Download PDF

Info

Publication number
WO2024103813A1
WO2024103813A1 PCT/CN2023/107428 CN2023107428W WO2024103813A1 WO 2024103813 A1 WO2024103813 A1 WO 2024103813A1 CN 2023107428 W CN2023107428 W CN 2023107428W WO 2024103813 A1 WO2024103813 A1 WO 2024103813A1
Authority
WO
WIPO (PCT)
Prior art keywords
amphiphilic
solvent
nanosheet
mass
urea
Prior art date
Application number
PCT/CN2023/107428
Other languages
English (en)
French (fr)
Inventor
段明
徐义楠
方申文
吴刚
李新亮
吴玉涵
聂梦圆
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Publication of WO2024103813A1 publication Critical patent/WO2024103813A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide

Definitions

  • the invention relates to the technical field of polymer materials, and in particular to a method for preparing an amphiphilic nanosheet.
  • Amphiphilic nanosheets are flaky materials belonging to Janus nanomaterials. They have two parts with different compositions and chemical properties. One side is composed of hydrophobic materials and the other side is composed of hydrophilic materials, which have amphiphilic properties. And because the longitudinal dimensions of amphiphilic nanosheets are nanometer-scale, they also have a large specific surface area, a high aspect ratio, abundant active sites and high softness. These characteristics give amphiphilic nanosheets unique properties.
  • amphiphilic nanosheets are prepared by cross-linking amphiphilic block polymers. Since block polymers cannot completely separate their hydrophobic chains from their hydrophilic chains, the prepared nanosheets are not completely hydrophilic on one side and hydrophobic on the other side, but there are hydrophilic and hydrophobic parts on both sides, and the partition is not obvious. Secondly, the hydrophilic and hydrophobic parts of the partition are not obvious, which makes it easy to agglomerate.
  • amphiphilic nanosheets This is very unfavorable for the application of amphiphilic nanosheets.
  • mass preparation of amphiphilic nanosheets involves the preparation of block polymers, dehydration, and cross-linking steps. The steps are relatively cumbersome, and the preparation of the product at each step needs to be precisely controlled, which increases the difficulty of industrial production.
  • the preparation methods of amphiphilic nanosheets can be roughly divided into the following five types: template method, sol-gel method, self-assembly method, interfacial reaction method, and exfoliation method.
  • the template method first involves the preparation of nanosheet templates, and secondly, the reaction construction is challenging, which will seriously affect the yield of amphiphilic nanosheets, which is obviously not conducive to industrial production;
  • the sol-gel method and the interfacial reaction method generally involve the hydrolysis reaction of silane coupling agents at the oil-water interface, which can easily lead to the demulsification of the emulsion, thereby interrupting the preparation of nanosheets, and it is not easy to control, which greatly increases the industrial operation; although the self-assembly and exfoliation methods have simple steps, they are not reproducible and the process controllability is poor in the process of small-scale preparation in the laboratory, so their industrialization and mass production are not very realistic. Therefore, it is still a huge challenge to develop a preparation method for amphiphilic nanosheets with universal reaction selection and easy process control.
  • the present invention provides a method for preparing an amphiphilic nanosheet.
  • the preparation process of the present invention is simple and the product yield is high.
  • the technical solution of the present invention is as follows:
  • a method for preparing an amphiphilic nanosheet comprises the following steps:
  • Preparing a choline chloride urea-based deep eutectic solvent mixing choline chloride and urea and heating them to prepare a choline chloride urea-based deep eutectic solvent.
  • S2 preparing an oil phase solvent: adding styrene, divinylbenzene (crosslinking agent) and azobisisobutyronitrile to a higher alkane solvent, stirring and dissolving the mixture to obtain an oil phase solvent, wherein the amount of divinylbenzene added is greater than 5% of the mass of the styrene monomer and less than or equal to 5%.
  • the obtained product is agglomerated particles, not nanosheets; and the amount of azobisisobutyronitrile added is the amount added in conventional emulsion polymerization, for example, 1% of the total mass of styrene and divinylbenzene.
  • preparation of amphiphilic nanosheets add hydrophilic monomers, hexadecyltrimethylammonium chloride, and the oil phase solvent prepared in step S2 to the choline chloride urea-based low eutectic solvent prepared in step S1 and stir and mix, ventilate and deoxygenate, then heat to 70°C for at least 6 hours to obtain a hollow morphology product, and then crush the product (such as ultrasonic crushing) and centrifuge to obtain amphiphilic nanosheets (sheet morphology).
  • the mass of the hydrophilic monomer should not exceed 20% of the mass of the low eutectic solvent used.
  • the hydrophilic monomer especially acrylic acid and acrylamide, will preferentially polymerize to form a gel in the reaction system, and cannot continue to polymerize with the hydrophobic monomer at the interface.
  • step S1 dehydration of choline chloride is a conventional operation, and specific operating parameters can be adjusted according to actual conditions, which will not be described in detail here. Choline chloride and urea are mixed and heated.
  • the ratio of choline chloride to urea in step S1 will affect the reaction in step S3.
  • the molar ratio of choline chloride to urea should be between 1:1 and 1:3. Too high or too low a ratio will cause the melting point of the formed low eutectic solvent to be higher than 50°C, which is not conducive to the dissolution and mixing of the monomers.
  • the high-level alkane solvent is mainly used to dissolve styrene, divinylbenzene (crosslinking agent), and azobisisobutyronitrile.
  • the high-level alkane solvent refers to a liquid alkane with a carbon number greater than 8.
  • the high-level alkane solvent is preferably any one of dodecane, tetradecane, and hexadecane.
  • the total volume ratio of the high-level alkane to styrene and divinylbenzene should be greater than 3:1.
  • the volume ratio of the high-level alkane to the polymerizable hydrophobic substance is too small, resulting in the wall thickness of the prepared hollow microspheres being too large and unable to be broken into nanosheets.
  • the amount of hexadecyltrimethylammonium chloride added should be within the range of 0.05% to 0.1% of the mass of the low eutectic solvent. If it is too high, the particle size of the prepared microspheres will be too small, resulting in the inability to break them into nanosheets, and if it is too low, the system will not be able to form an emulsion, resulting in the obtained product being irregular in shape.
  • the hydrophilic monomer may be any one of acrylamide, acrylic acid, and methacryloyloxyethyltrimethylammonium chloride, but is not limited to these three polymerizable hydrophilic monomers.
  • the molar ratio of hydrophilic monomer to styrene should be greater than 1:1, but not exceeding the maximum value of the hydrophilic monomer in step S3. If the hydrophilic monomer of the system is too low, the proportion of the hydrophilic part of the nanosheet will be reduced.
  • the present invention uses a choline chloride urea-based low eutectic solvent containing a hydrophilic monomer as a reaction non-aqueous solvent and a hydrophobic monomer (benzene)
  • the hydrophobic solvent of ethylene undergoes interfacial polymerization at the interface of the low eutectic solvent phase and the oil phase. Due to the characteristics of the low eutectic solvent with a large number of hydrogen bonds, unlike the conventional oil-water interfacial reaction to obtain spherical particles, this low eutectic solvent phase-oil phase interfacial polymerization can obtain hollow microspheres, and then a simple ultrasonic crushing can obtain a sheet structure, which has the following advantages:
  • This method does not require the preparation of block polymers in advance during the reaction, and the hydrophobic monomers are physically isolated from the hydrophilic monomers, so that the prepared amphiphilic nanosheets are clearly partitioned and not easy to agglomerate.
  • This method is similar to conventional emulsion polymerization and can prepare amphiphilic nanosheets in one step, with a simple preparation process.
  • FIG. 1 is a SEM image of the amphiphilic nanosheets of Example 1 of the present invention, wherein FIG. 1a is a morphology image of the hollow microspheres of Example 1 before crushing, and FIG. 1b and FIG. 1c are morphology images of the flaky products of Example 1 after crushing;
  • FIG2 is a SEM image of the amphiphilic nanosheets of Example 2 of the present invention, wherein FIG2a is a morphology image of the hollow microspheres of Example 2 before crushing, and FIG2b and FIG2c are morphology images of the flaky products of Example 2 after crushing;
  • FIG3 is a SEM image of the amphiphilic nanosheets of Example 3 of the present invention, wherein FIG3a is a morphology image of the hollow microspheres of Example 3 before crushing, and FIG3b and FIG3c are morphology images of the flaky products of Example 3 after crushing;
  • FIG4 is a SEM image of the product of Comparative Example 1 of the present invention.
  • FIG5 is a SEM image of the product of Comparative Example 2 of the present invention.
  • FIG6 is a SEM image of a comparative product of the present invention.
  • FIG7 is a SEM image of the product of Comparative Example 4 of the present invention.
  • FIG8 is a SEM-EDS spectrum of the amphiphilic nanosheet of Example 1 of the present invention, wherein FIG8a is a spectrum point scan of Example 1, FIG8b is an element map of the sample obtained by spectrum point scan of the smooth surface of Example 1, and FIG8c is an element map of the sample obtained by spectrum point scan of the rough spherical surface of Example 1;
  • FIG. 9 is a SEM-EDS spectrum of the amphiphilic nanosheets of Example 2 of the present invention, wherein FIG. 9a is a point-scan energy spectrum of Example 2, and FIG. 9b is a point-scan energy spectrum of the smooth surface of Example 2 to obtain an element map of the sample;
  • FIG10 is a SEM-EDS spectrum of the amphiphilic nanosheet of Example 3 of the present invention, wherein FIG10a is a point scan spectrum of Example 3, and FIG10b is a point scan spectrum of the elements contained in the sample obtained by the smooth surface of Example 3;
  • FIG11 is a Fourier transform infrared spectrum of the amphiphilic nanosheets of Example 1 of the present invention.
  • FIG12 is a Fourier transform infrared spectrum of the amphiphilic nanosheets of Example 2 of the present invention.
  • FIG. 13 is a Fourier transform infrared spectrum of the amphiphilic nanosheets of Example 3 of the present invention.
  • the present invention is further described below by specific examples, but is not limited thereto.
  • the raw materials used in the examples are all conventional raw materials and can be obtained commercially; the methods described are all prior art unless otherwise specified.
  • Figures 1 to 3 are SEM images of the products of Examples 1 to 3, respectively, wherein Figures 1a, 2a, and 3a are morphological images of hollow microspheres before crushing of the products of Examples 1 to 3, respectively, Figures 1b and 1c are morphological images of the flaky product after crushing of Example 1, Figures 2b and 2c are morphological images of the flaky product after crushing of Example 2, and Figures 3b and 3c are morphological images of the flaky product after crushing of Example 3. It can be seen from the figures that the solid morphologies prepared in Examples 1 to 3 are all flaky, and one side of the two sides of the flaky is a smooth surface and the other side is a rough spherical surface.
  • Figure 4 is a SEM image of the product of Comparative Example 1, from which it can be seen that it is not in sheet form. Compared with Example 1, the mass ratio of divinylbenzene to styrene in this comparative example (5%) is reduced, which reduces the deposition rate of styrene monomer in hexadecane, resulting in a thicker film and no amphiphilic nanosheets can be obtained.
  • Figure 5 is a SEM image of the product of Comparative Example 2, from which it can be seen that the solid obtained is spherical and cannot be broken by ultrasound later. This is due to the large amount of hydrophobic monomer used (the volume ratio of styrene to hydrophobic monomer is close to 1:2).
  • FIG6 is a SEM image of the product of Example 3.
  • the amount of hexadecyltrimethylammonium chloride used is 0.13% of the mass of the low eutectic solvent, the excessive amount used makes it difficult for the droplets of the reaction system to coalesce, so that the obtained product is a small aggregate ball of about 100 nm.
  • FIG7 is a SEM image of the product of Example 4.
  • the amount of hexadecyltrimethylammonium chloride used is 0.04% of the mass of the low eutectic solvent, the amount used is too low, resulting in unstable emulsion and making the obtained product have irregular morphology.
  • amphiphilic nanosheets prepared in Examples 1 to 3 were tested using a scanning electron microscope (SEM-EDX, Gemini 300, Zeiss, Germany). The test results are shown in Figures 8 to 10 and Tables 1 to 3.
  • Figure 8 is the SEM-EDS spectrum of Example 1, wherein Figure 8a is the energy spectrum point scan of Example 1, Figure 8b is the element map of the sample obtained by the energy spectrum point scan of the smooth surface of Example 1, and Figure 8c is the element map of the sample obtained by the energy spectrum point scan of the rough spherical surface of Example 1, and Table 1 is the relative element content table of the EDS point scan samples of Example 1. It can be seen from the SEM-EDX energy spectrum test that Figure 8b is the point scan of the smooth surface spectrum position 1, and the mass fractions of nitrogen and oxygen elements are 5.21% and 1.51%, indicating the presence of polyacrylamide, showing hydrophilic properties.
  • Figure 8c is the point scan of the rough spherical surface spectrum position 2, and the mass fractions of nitrogen and oxygen elements are 1.71% and 0%. It shows that there is no polyacrylamide component on the inner surface, only polystyrene exists, showing hydrophobic properties. This shows that the prepared amphiphilic nanosheets are clearly divided into zones, the rough spherical surface is polystyrene, and polyacrylamide exists on the smooth surface.
  • Figure 9 is the SEM-EDS spectrum of Example 2, where Figure 9a is the energy spectrum point scan of Example 2, Figure 9b is the element map of the sample obtained by the energy spectrum point scan of the smooth surface of Example 2, and Table 2 is the relative element content table of the EDS point scan sample of Example 2. From the SEM-EDX energy spectrum test, it can be seen that the mass fraction of O element is 13.83%, indicating the presence of polyacrylic acid, which is a pro- The rough spherical surface has no hydrophilic component as in Example 1. Therefore, the obtained polystyrene-polyacrylic acid nanosheets have obvious partitions.
  • Figure 10 is the SEM-EDS spectrum of Example 3, wherein Figure 10a is the energy spectrum point scan of Example 3, Figure 10b is the element map of the sample obtained by the energy spectrum point scan of the smooth surface of Example 3, and Table 3 is the relative element content table of the EDS point scan sample of Example 3.
  • Table 3 is the relative element content table of the EDS point scan sample of Example 3.
  • the explanation shows that polymethacryloyloxyethyl trimethyl ammonium chloride exists, which shows hydrophilic properties.
  • the rough spherical surface also has no hydrophilic components as in Example 1. Therefore, the obtained polystyrene-polymethacryloyloxyethyl trimethyl ammonium chloride nanosheets are clearly partitioned.
  • amphiphilic nanosheets prepared in Examples 1 to 3 were tested using a Fourier transform infrared spectrometer (FT-IR, WQF-520, Beifen-Ruili, China). The final test results are shown in Figures 12 to 13.
  • FT-IR Fourier transform infrared spectrometer
  • Fig. 11 is a Fourier transform infrared spectrum of Example 1, in which 3430 cm -1 is the characteristic absorption peak of NH in the amide group, 1659 cm -1 and 2851 cm -1 are the characteristic absorption peaks of -CH2- on the polymer main chain, and 1626 cm -1 , 1494 cm -1 , 1452 cm -1 and 1375 cm -1 are the characteristic absorption peaks of the benzene ring. Therefore , it is explained that the solid obtained by interfacial polymerization contains polystyrene and polyacrylamide.
  • Fig. 12 is a Fourier transform infrared spectrum of Example 2, in which 3448 cm -1 is a characteristic peak of hydroxyl in carboxyl, 1640 cm -1 is a characteristic absorption peak of carbonyl in carboxyl, 3058 cm -1 , 3019 cm -1 , 2915 cm -1 and 2845 cm -1 are characteristic absorption peaks of -CH2- on the polymer main chain, and 1600 cm -1 , 1492 cm -1 , 1446 cm -1 and 1373 cm -1 are characteristic absorption peaks of benzene ring. Therefore, it is shown that the solid obtained by interfacial polymerization contains polystyrene and polyacrylic acid.
  • Fig. 13 is a Fourier transform infrared spectrum of Example 3, in which 1698cm -1 and 2851cm -1 are characteristic absorption peaks of carbonyl in polymethacryloyloxyethyl trimethyl ammonium chloride, 3056cm -1 , 3021cm -1 , 2918cm -1 and 2851cm -1 are characteristic absorption peaks of -CH2- on the polymer main chain, 1598cm -1 , 1493cm -1 , 1446cm -1 and 1374cm -1 are characteristic absorption peaks of benzene ring. 1024cm -1 is the stretching vibration of the single bond of quaternary ammonium salt. Therefore, it is explained that the solid obtained by interfacial polymerization contains polystyrene and polymethacryloyloxyethyl trimethyl ammonium chloride.
  • amphiphilic nanosheets prepared in Examples 1 to 3 were tested using an organic element analyzer (EA, Vario EL, Elementar, Germany). The final test results are shown in Table 4.
  • Example 1 the mass fractions of elements C, O, and N in Example 1 are 86.480%, 3.567%, and 1.344%, respectively, indicating that the solid obtained by the polymer contains polystyrene and polyacrylamide.
  • Example 2 the mass fractions of elements C, O, and H account for 88.123%, 2.098%, and 6.629%, respectively, indicating that polystyrene and polyacrylic acid exist in the polymer.
  • Example 3 the mass fractions of elements C, O, H, and N account for 87.254%, 1.991%, 8.339%, and 0.567%, respectively, indicating the presence of polystyrene and polymethacryloylethoxytrimethylammonium chloride in the polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种两亲纳米片的制备方法,属于高分子材料技术领域,包括如下步骤:将氯化胆碱与尿素混合加热制备氯化胆碱尿素基低共熔溶剂;将苯乙烯、二乙烯苯、偶氮二异丁腈加入高级烷烃溶剂中搅拌溶解得到油相溶剂,其中,二乙烯苯的加入量大于苯乙烯单体质量的5%;将亲水单体、十六烷基三甲基氯化铵、油相溶剂加入低共熔溶剂中并搅拌混合、通气除氧,然后升温至70℃至少反应6h后再通过破碎离心得到两亲纳米片。本发明无需提前制备嵌段聚合物,且疏水单体与亲水单体物理隔绝,使制备的两亲纳米片分区明显,不易团聚;该方法属于类似常规乳液聚合,一步法制备两亲纳米片,制备工艺简单;产品收率高,易于大批量生产。

Description

一种两亲纳米片的制备方法 技术领域
本发明涉及高分子材料技术领域,具体涉及一种两亲纳米片的制备方法。
背景技术
两亲纳米片是归属于Janus纳米材料的片状物质,其具有不同组成与化学性质的两部分,其一面组成为疏水材料、另一面为亲水材料,具有两亲的性质。并且因为两亲纳米片纵向尺寸为纳米级,故其也具有较大的比表面积、较高的纵横比、丰富的活性位点以及较高的柔软性,这些特性赋予了两亲纳米片独特的性能。
现阶段,由于两亲纳米片的成分的不均一性,使其大量制备或者是工业化生产造成巨大困难。科研工作者已经对两亲纳米片的大批量生产进行了广泛而深入的研究,但是却存在许多问题。首先,两亲纳米片都由两亲嵌段聚合物交联制备而成的,由于嵌段聚合物无法做到其疏水链与亲水链的完全分开,所以其制备的纳米片并非完全一面亲水一面疏水,而是两面都存在亲水部分与疏水部分,分区不明显。其次,其分区亲水部分与疏水部分不明显导致其很容易团聚。这对两亲纳米片的应用是及其不利的。最后,两亲纳米片的大量制备都涉及嵌段聚合物制备,脱水,交联步骤。步骤较为繁琐,且需要精确控制每一步的产品的制备,这样就给工业化生产加大了难度。
根据过往研究人员对其纳米片制备方法的探索及研究。实验室小批量制备分区明显两亲纳米片制备方法大致可以分为以下五种;模板法、溶胶-凝胶法、自组装法、界面反应法、剥离法。但是这些方法在工业化生产上都具有较大的限制;模板法首先会涉及到纳米片状模板的制备,其次反应构建具有挑战性,都将严重影响两亲纳米片的产率,显然不利于工业化生产;溶胶-凝胶法、界面反应法一般是在油水界面处发生硅烷偶联剂的水解反应,极易导致乳液的破乳,从而使纳米片的制备发生中断,并且不易控制,极大增加了工业化操作;自主装、剥离法法虽然步骤简单,但是在实验室少量制备过程中,其重现性不好,过程可控制性差,故其工业化和大批量生产不太现实。故开发一种具有反应选择普适性,过程控制容易的两亲纳米片制备方法仍然是一个巨大挑战。
发明内容
鉴于此,为了解决上述问题中的至少一个,本发明提供了一种两亲纳米片的制备方法,本发明制备工艺简单、产品收率高,本发明的技术方案如下:
一种两亲纳米片的制备方法,包括如下步骤:
S1、制备氯化胆碱尿素基低共熔溶剂:将氯化胆碱与尿素混合加热制备氯化胆碱尿素基低共熔溶剂。
S2、制备油相溶剂:将苯乙烯、二乙烯苯(交联剂)、偶氮二异丁腈加入高级烷烃溶剂中搅拌溶解得到油相溶剂,其中,二乙烯苯的加入量大于苯乙烯单体质量的5%,小于等于5%所得到的产物为团状颗粒,非纳米片;偶氮二异丁腈的加入量为常规乳液聚合加入量,比如为苯乙烯和二乙烯苯总质量的1%。
S3、制备两亲纳米片:将亲水单体、十六烷基三甲基氯化铵、步骤S2制备的油相溶剂加入步骤S1制备的氯化胆碱尿素基低共熔溶剂中并搅拌混合、通气除氧,然后升温至70℃至少反应6h得到中空形貌的产品,然后对该产品进行破碎(如超声破碎)离心即可得到两亲纳米片(片状形貌)。其中,亲水单体的质量不应超过所使用低共熔溶剂质量的20%。亲水单体质量过高,亲水单体尤其是丙烯酸、丙烯酰胺将会优先聚合使反应体系形成凝胶,无法继续与疏水单体在界面进行聚合。
步骤S1中,氯化胆碱脱水属于常规操作,具体操作参数可以根据实际情况调整,此处不再详述,氯化胆碱与尿素混合加热。
步骤S1中氯化胆碱与尿素的配比会影响步骤S3反应的进行,氯化胆碱与尿素的摩尔配比应该在1:1到1:3之间,过高或过低都会使其所形成的低共熔溶剂溶点高于50℃,不利于单体的溶解与混合。
步骤S2中,高级烷烃溶剂主要用于溶解苯乙烯、二乙烯苯(交联剂)、偶氮二异丁腈,本发明中,高级烷烃溶剂是指碳原子数大于8的液态烷烃,作为本发明的一种具体实施方式,高级烷烃溶剂优选为十二烷、十四烷、十六烷中的任意一种。高级烷烃与苯乙烯,二乙烯苯总体积比应大于3:1,高级烷烃于可聚合疏水物质的体积比太小导致所制得中空微球的壁厚太大,无法破碎成纳米片。
作为本发明的一种具体实施方式,十六烷基三甲基氯化铵加量应在低共熔溶剂质量的0.05%~0.1%范围之内。过高会使所制备的微球粒径过小,导致其无法破碎成纳米片,过低使体系无法形成乳液,导致所得到的产品为不规则形状。
作为本发明的一种具体实施方式,亲水单体可以为丙烯酰胺、丙烯酸、甲基丙烯酰氧乙基三甲基氯化铵中的任意一种,但不局限于这三种可聚合亲水单体。
作为本发明的一种具体实施方式,亲水单体与苯乙烯摩尔比应大于1:1,但不超过步骤S3中亲水单体的最大值。体系亲水单体过低,将会降低纳米片亲水部分所占比例。
本发明的技术效果在于:
本发明以含亲水单体的氯化胆碱尿素基低共熔溶剂作为反应非水溶剂,与含疏水单体(苯 乙烯)的疏水溶剂在低共熔溶剂相油相界面发生界面聚合反应,由于低共熔溶剂的具有大量氢键的特性,不同于常规的油水界面反应得到球状颗粒,这种低共熔溶剂相油相界面聚合可以得到中空微球,然后简单超声破碎即可得到片状结构,具有以下有点:
(1)反应中该法无需提前制备嵌段聚合物,且疏水单体与亲水单体物理隔绝,使制备的两亲纳米片分区明显,不易团聚。
(2)该方法属于类似常规乳液聚合,一步法制备两亲纳米片,制备工艺简单。
(3)产品收率高,现有案例中收率大于60%,易于大批量生产。
附图说明
图1是本发明实施例1两亲纳米片的SEM图,其中,图1a是实施例1破碎前中空微球形貌图,图1b、图1c为实施例1破碎后片状产物形貌图;
图2是本发明实施例2两亲纳米片的SEM图,其中,图2a是实施例2破碎前中空微球形貌图,图2b、图2c为实施例2破碎后片状产物形貌图;
图3是本发明实施例3两亲纳米片的SEM图,其中,图3a是实施例3破碎前中空微球形貌图,图3b、图3c为实施例3破碎后片状产物形貌图;
图4是本发明对比例1产品的SEM图;
图5是本发明对比例2产品的SEM图;
图6是本发明对比3产品的SEM图;
图7是本发明对比例4产品的SEM图;
图8是本发明实施例1两亲纳米片的SEM-EDS谱图,其中,图8a是实施例1能谱点扫图,图8b是示例1光滑面能谱点扫得到样品所含元素图、图8c是实施例1粗糙小球面能谱点扫得到样品所含元素图;
图9是本发明实施例2两亲纳米片的SEM-EDS谱图,其中,图9a是实施例2能谱点扫图,图9b是实施例2光滑面能谱点扫得到样品所含元素图;
图10是本发明实施例3两亲纳米片的SEM-EDS谱图,其中,图10a是实施例3能谱点扫图,图10b是实施例3光滑面能谱点扫得到样品所含元素图;
图11是本发明实施例1两亲纳米片的傅里叶红外变换光谱图;
图12是本发明实施例2两亲纳米片的傅里叶红外变换光谱图;
图13是本发明实施例3两亲纳米片的傅里叶红外变换光谱图。
具体实施方式
下面通过具体实施例对本发明做进一步说明,但不限于此。实施例中所用原料均为常规原料,可市购获得;所述方法如无特殊说明均为现有技术。
(一)制备产品
实施例1
S1、在90℃下,取282.33g氯化胆碱与242.90尿素(氯化胆碱与尿素摩尔比为1:2)混合物机械搅拌30min使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用。
S2、向84.46g十六烷中加入30.00g苯乙烯,3.00g二乙烯苯,0.33g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液。
S3、在30℃下,取500.00g上述制备的低共熔溶剂于1000ml的三颈瓶中,然后依次加入20.47g丙烯酰胺、0.5g十六烷基三甲基氯化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化15min,同时氮气通入15min,然后机械搅拌降至500rpm,温度升到70℃反应8h。
反应结束后,加入800ml蒸馏水超声(功率1000Kw)破碎10min后离心,继续用600ml石油醚,600ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到38.92g白色粉末,质量收率为72.79%。
实施例2
S1、在80℃下,磁力搅拌加热37.64g氯化胆碱与24.29g尿素的混合物(氯化胆碱与尿素摩尔比为1:1.5)使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用;
S2、向8.69g十二烷中加入2.5g苯乙烯,1g二乙烯苯,0.035g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液;
S3、在30℃下,取50g上述S1中制备的低共熔溶剂于100ml的三颈瓶中,然后依次加入2.00g丙烯酸、0.04g十六烷基三甲基溴化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化15min,同时氮气通入15min,然后机械搅拌降至500rpm,温度升到70℃反应6h。
反应结束后,加入80ml蒸馏水超声(功率1000Kw)破碎10min后离心,继续用60ml石油醚,80ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到3.52g白色粉末,质量收率为64.0%。
实施例3
S1、在70℃下,磁力搅拌加热52.98g氯化胆碱与56.98g尿素的混合物(氯化胆碱与尿素摩尔比为1:2.5)使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用;
S2、向17.94g十四烷中加入3.20g苯乙烯,0.32g二乙烯苯,0.035g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液;
S3、在30℃下,取100g上述S1中制备的低共熔溶剂于100ml的三颈瓶中,然后依次加入5.98g甲基丙烯酰氧乙基三甲基氯化铵、0.05g十六烷基三甲基溴化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化15min,同时氮气通入15min,然后机械搅拌降至500rpm, 温度升到70℃反应6h。
反应结束后,加入200ml蒸馏水进行超声(功率1000Kw)破碎10min后进行离心,180ml石油醚,180ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到8.6g白色粉末,质量收率为68.36%。
对比例1
S1、在90℃下,取28.23g氯化胆碱与24.29尿素(氯化胆碱与尿素摩尔比为1:2)混合物机械搅拌30min使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用。
S2、向8.45g十六烷中加入3.00g苯乙烯,0.15g二乙烯苯,0.031g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液。
S3、在30℃下,取50.0g上述制备的低共熔溶剂于100ml的三颈瓶中,然后依次加入2.04g丙烯酰胺、0.050g十六烷基三甲基溴化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化15min,同时氮气通入15min,然后机械搅拌降至500rpm,温度升到70℃反应8h。
反应结束后,加入80ml蒸馏水超声(功率1000Kw)破碎10min后离心,继续用60ml石油醚,60ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到3.61g白色粉末,质量收率为69.56%。
对比例2
S1、在90℃下,取28.23g氯化胆碱与24.29尿素(氯化胆碱与尿素摩尔比为1:2)混合物机械搅拌30min使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用。
S2、向6.99g十六烷中加入3.74g苯乙烯,0.37g二乙烯苯,0.040g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液。
S3、在30℃下,取50.0g上述制备的低共熔溶剂于100ml的三颈瓶中,然后依次加入2.58g丙烯酰胺、0.050g十六烷基三甲基溴化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化5min,同时氮气通入15min,然后机械搅拌降至500rpm,温度升到70℃反应8h。
反应结束后,加入80ml蒸馏水超声(功率1000Kw)破碎10min后离心,继续用60ml石油醚,60ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到4.51g白色粉末,质量收率为67.41%。
对比例3
S1、在90℃下,取28.23g氯化胆碱与24.29尿素(氯化胆碱与尿素摩尔比为1:2)混合物机械搅拌30min使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用。
S2、向8.45g十六烷中加入3.00g苯乙烯,0.3g二乙烯苯,0.035g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液。
S3、在30℃下,取50.0g上述制备的低共熔溶剂于100ml的三颈瓶中,然后依次加入2.04g丙烯酰胺、0.065g十六烷基三甲基溴化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化15min,同时氮气通入15min,然后机械搅拌降至500rpm,温度升到70℃反应8h。
反应结束后,加入80ml蒸馏水超声(功率1000Kw)破碎10min后离心,继续用60ml石油醚,60ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到4.01g白色粉末,质量收率为75.09%。
对比案例4
S1、在90℃下,取28.23g氯化胆碱与24.29尿素(氯化胆碱与尿素摩尔比为1:2)混合物机械搅拌30min使其呈现澄清透明状液体后,冷却至25℃得到低共熔溶剂备用。
S2、向8.45g十六烷中加入3.00g苯乙烯,0.5g二乙烯苯,0.035g偶氮二异丁腈(AIBN)搅拌均匀得到油相混合溶液。
S3、在30℃下,取50.0g上述制备的低共熔溶剂于100ml的三颈瓶中,然后依次加入2.04g丙烯酰胺、0.02g十六烷基三甲基溴化铵以及S2配置的油相混合溶液。1000rpm机械搅拌乳化15min,同时氮气通入15min,然后机械搅拌降至500rpm,温度升到70℃反应8h。
反应结束后,加入80ml蒸馏水超声(功率1000Kw)破碎10min后离心,继续用60ml石油醚,60ml乙醇对其进行离心(离心转速为5000rpm),烘干后得到2.54g白色粉末,质量收率为45.84%。
(二)产品性能测试
SEM表面形貌测试
取实施例1-3以及对比例1-4的产品,利用扫描电镜(SEM,Gemini 300,Zeiss,Germany)对其进行测试,最终测试结果如图1~7所示。
图1~图3是分别实施例1~实施例3产品的SEM图,其中,图1a、2a、3a分别为实施例1~实施例3产品破碎前中空微球形貌图,图1b、图1c为实施例1破碎后片状产物形貌图,图2b、图2c为实施例2破碎后片状产物形貌图,图3b、图3c为实施例3破碎后片状产物形貌图。由图中可知,实施例1~实施例3所制备的固体形貌均为片状,其片状的两侧中,一侧为光滑面、另一侧为粗糙小球面。
图4是对比例1产品的SEM图,由图可知,其并非片状。相对于实施例1,本对比例中二乙烯苯与苯乙烯的质量比(5%)降低,这降低了苯乙烯单体在十六烷中的沉积速率,从而导致膜变厚,无法得到两亲纳米片。
图5是对比例2产品的SEM图,由图可知,其得到的固体为球形,而且后期通过超声无法破碎。这是由于其疏水单体用量多(苯乙烯与疏水单体的体积比接近于1:2)造成的。
图6是对比例3产品的SEM图,由图可知,由于十六烷基三甲基氯化铵的用量为低共熔溶剂的质量的0.13%,使用量过高使反应体系的液滴聚并不易发生,使所得产品为100nm左右的聚集体小球。
图7是对比例4产品的SEM图,由图可知,由于十六烷基三甲基氯化铵的用量为低共熔溶剂的质量的0.04%,使用量过低导致乳液不稳定,使所得产品为不规则形貌的产品。
SEM-EDS能谱测试
取实施例1~3制得的两亲纳米片,利用扫描电镜(SEM-EDX,Gemini 300,Zeiss,Germany)对其进行测试,测试结果如图8~10、表1~3所示。
表1实施例1EDS点扫样品相对元素含量
图8是实施例1的SEM-EDS谱图,其中,图8a是实施例1能谱点扫图,图8b是示例1光滑面能谱点扫得到样品所含元素图、图8c是实施例1粗糙小球面能谱点扫得到样品所含元素图,表1是实施例1EDS点扫样品相对元素含量表。从SEM-EDX能谱测试可以看出,图8b是光滑面谱图1位置的点扫,氮元素与氧元素质量分数为5.21%、1.51%,说明表明存在聚丙烯酰胺,表现为亲水特性。图8c是粗糙小球面谱图2位置的点扫,氮元素与氧元素质量分数为1.71%、0%。说明内表面无聚丙烯酰胺成分,只存在聚苯乙烯,表现为疏水特性。这说明所制备的两亲纳米片分区明显,粗糙小球面为聚苯乙烯,光滑表面存在聚丙烯酰胺。
表2实施例2 EDS点扫样品相对元素含量
图9是实施例2的SEM-EDS谱图,其中,图9a是实施例2能谱点扫图,图9b是实施例2光滑面能谱点扫得到样品所含元素图,表2是实施例2EDS点扫样品相对元素含量表。从SEM-EDX能谱测试可以看出,O元素质量分数为13.83%,说明表明存在聚丙烯酸,表现为亲 水特性,粗糙小球面也如实施例1无亲水成分。故制得的为分区明显的聚苯乙烯-聚丙烯酸纳米片。
表3实施例3 EDS点扫样品相对元素含量
图10是实施例3的SEM-EDS谱图,其中,图10a是实施例3能谱点扫图,图10b是实施例3光滑面能谱点扫得到样品所含元素图,表3是实施例3EDS点扫样品相对元素含量表。从SEM-EDX能谱测试可以看出,O元素,N元素质量分数为12.66%,10.48%。说明表明存在聚甲基丙烯酰氧乙基三甲基氯化铵,表现为亲水特性。粗糙小球面也如实施例1无亲水成分。故制得的为分区明显的聚苯乙烯-聚甲基丙烯酰氧乙基三甲基氯化铵纳米片。
FT-IR光谱测试
取实施例1~3中制得的两亲纳米片,利用傅里叶红外变换光谱仪(FT-IR,WQF-520,Beifen-Ruili,China)对其进行测试,最终测试结果如图12~13所示。
图11是实施例1的傅里叶红外变换光谱图,图中,3430cm-1为酰胺基中N-H的特征吸收峰,1659cm-1和为酰胺基的特征吸收峰,3030cm-1,2960cm-1,2920cm-1和2851cm-1为聚合物主链上-CH2-的特征吸收峰,1626cm-1,1494cm-1,1452cm-1和1375cm-1为苯环特征吸收峰。故说明界面聚合所得到的固体存在聚苯乙烯与聚丙烯酰胺。
图12是实施例2的傅里叶红外变换光谱图,图中,3448cm-1为羧基中羟基的特征峰,1640cm-1为羧基中羰基的特征吸收峰,3058cm-1,3019cm-1,2915cm-1和2845cm-1为聚合物主链上-CH2-的特征吸收峰,1600cm-1,1492cm-1,1446cm-1和1373cm-1为苯环特征吸收峰。故说明界面聚合所得到的固体存在聚苯乙烯与聚丙烯酸。
图13是实施例3的傅里叶红外变换光谱图,图中,1698cm-1和为聚甲基丙烯酰氧乙基三甲基氯化铵中羰基的特征吸收峰,3056cm-1,3021cm-1,2918cm-1和2851cm-1为聚合物主链上-CH2-的特征吸收峰,1598cm-1,1493cm-1,1446cm-1和1374cm-1为苯环特征吸收峰。1024cm-1为季铵盐谈单键的伸缩振动。故说明界面聚合所得到的固体存在聚苯乙烯与聚甲基丙烯酰氧乙基三甲基氯化铵。
元素分析测试
取实施例1~3中制得的两亲纳米片,利用有机元素分析仪(EA,Vario EL,Elementar,Germany)对其进行测试,最终测试结果如表4所示。
表4实施例1~3元素分析统计表
从表4可知,实施例1中元素C、O、N的质量分数占比分别为86.480%、3.567%、1.344%,说明聚合物所得固体存在聚苯乙烯,聚丙烯酰胺。
实施例2中元素C、O、H的质量分数占比为88.123%、2.098%、6.629%,说明聚合物中存在聚苯乙烯、聚丙烯酸。
实施例3中元素C、O、H、N的质量分数占比为87.254%、1.991%、8.339%、0.567%,说明聚合物存在聚苯乙烯、聚甲基丙烯酰乙氧基三甲基氯化铵。
故根据实施案例1,实施案例2,实施案例3的SEM,FTIR,SEM-EDS,元素分析综合分析,我们成功合成了三种分区明显的两亲纳米片,即聚苯乙烯-聚丙烯酰胺两亲纳米片、聚苯乙烯-聚丙烯酸两亲纳米片、聚苯乙烯-聚甲基丙烯酰乙氧基三甲基氯化铵两亲纳米片。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (3)

  1. 一种两亲纳米片的制备方法,其特征在于,包括以下步骤:
    S1、制备低共熔溶剂:将氯化胆碱与尿素混合加热制备氯化胆碱尿素基低共熔溶剂;
    S2、制备油相溶剂:将苯乙烯、二乙烯苯、偶氮二异丁腈加入高级烷烃溶剂中搅拌溶解得到油相溶剂,其中,二乙烯苯的加入量大于苯乙烯单体质量的5%;
    S3、制备两亲纳米片:将亲水单体、十六烷基三甲基氯化铵、油相溶剂加入低共熔溶剂中并搅拌混合、通气除氧,然后升温至70℃至少反应6h后再通过破碎离心得到两亲纳米片,其中,亲水单体的质量不大于低共熔溶剂质量的20%;
    所述的十六烷基三甲基溴化铵的加量为低共熔溶剂质量的0.05%~0.1%;
    所述亲水单体为丙烯酰胺、丙烯酸或甲基丙烯酰氧乙基三甲基氯化铵;
    所述亲水单体与苯乙烯摩尔比大于1:1。
  2. 根据权利要求1所述的一种两亲纳米片的制备方法,其特征在于,所述氯化胆碱与尿素的摩尔比为1:1~3。
  3. 根据权利要求1所述的一种两亲纳米片的制备方法,其特征在于,所述高级烷烃溶剂为十二烷、十四烷或十六烷,且高级烷烃溶剂与苯乙烯、二乙烯苯总体积的比值大于3:1。
PCT/CN2023/107428 2022-11-15 2023-07-14 一种两亲纳米片的制备方法 WO2024103813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211430277.9A CN115716886B (zh) 2022-11-15 2022-11-15 一种两亲纳米片的制备方法
CN202211430277.9 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024103813A1 true WO2024103813A1 (zh) 2024-05-23

Family

ID=85255212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107428 WO2024103813A1 (zh) 2022-11-15 2023-07-14 一种两亲纳米片的制备方法

Country Status (2)

Country Link
CN (1) CN115716886B (zh)
WO (1) WO2024103813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716886B (zh) * 2022-11-15 2023-08-08 西南石油大学 一种两亲纳米片的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299240A1 (en) * 2012-03-21 2015-10-22 The Texas A&M University System Amphiphilic nanosheets and methods of making the same
CN113087837A (zh) * 2021-04-06 2021-07-09 河南工业大学 超分子-聚合物双网络低共熔凝胶及其制备方法与应用
CN114904399A (zh) * 2022-06-06 2022-08-16 山东中康国创先进印染技术研究院有限公司 基于低共熔溶剂和烷烃的界面聚合方法、聚酰胺复合膜及其制备方法
CN115716886A (zh) * 2022-11-15 2023-02-28 西南石油大学 一种两亲纳米片的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230172195A1 (en) * 2017-11-23 2023-06-08 Yissrm Research Developmet Company of The Hebrew University of Jerusalem Ltd. Microcapsules and processes for their preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299240A1 (en) * 2012-03-21 2015-10-22 The Texas A&M University System Amphiphilic nanosheets and methods of making the same
CN113087837A (zh) * 2021-04-06 2021-07-09 河南工业大学 超分子-聚合物双网络低共熔凝胶及其制备方法与应用
CN114904399A (zh) * 2022-06-06 2022-08-16 山东中康国创先进印染技术研究院有限公司 基于低共熔溶剂和烷烃的界面聚合方法、聚酰胺复合膜及其制备方法
CN115716886A (zh) * 2022-11-15 2023-02-28 西南石油大学 一种两亲纳米片的制备方法

Also Published As

Publication number Publication date
CN115716886A (zh) 2023-02-28
CN115716886B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2024103813A1 (zh) 一种两亲纳米片的制备方法
WO2022048008A1 (zh) 一种有机-无机杂化纳米材料及其制备方法、应用
WO2016026464A1 (zh) 有机/无机杂化Janus颗粒及制备方法和改性方法、以及改性Janus颗粒及其应用
Zhang et al. Polystyrene/nano-SiO 2 composite microspheres fabricated by Pickering emulsion polymerization: Preparation, mechanisms and thermal properties.
CN102653580B (zh) 一种Janus结构复合乳胶粒子的制备方法
CN105418923B (zh) 一种改性双马来酰亚胺树脂及其制备方法
CN108264735A (zh) 一种增韧导热绝缘的环氧树脂基复合材料的制备方法
CN109929141A (zh) 一种聚乙烯亚胺改性的氧化石墨烯及其环氧纳米复合材料
CN109021948A (zh) 一种新型稠油降粘剂的制备方法
CN101864119B (zh) 聚丙烯酸酯/蒙脱土复合材料的制备方法
CN111732945A (zh) 一种稠油降粘剂、其制备方法及其应用
CN104277171A (zh) 一种纳米碳酸钙改性苯丙乳液的制备方法
Zhang et al. Facile fabrication of snowman-like Janus particles with asymmetric fluorescent properties via seeded emulsion polymerization
CN108794680A (zh) 一种新型稠油降粘剂的制备方法
Zeng et al. Preparation of Carboxyl‐Functionalized Polystyrene/Silica Composite Nanoparticles
Qiang et al. The effects of polymer‐nanofiller interactions on the dynamical mechanical properties of PMMA/CaCO3 composites prepared by microemulsion template
CN108264765A (zh) 一种增韧导热绝缘氰酸酯树脂基复合材料的制备方法
CN114797697A (zh) 双马来酰亚胺树脂中空聚合物微球及其制备方法和改性氰酸酯树脂的方法
JP2020514423A5 (zh)
CN115305076B (zh) 一种复合降凝剂及其制备方法和应用
Wen et al. Study of the physicochemical properties of silica powder and the stability of organic–inorganic hybrid emulsion in the presence of ethanol
KR100692612B1 (ko) 구형 실리콘 미립자의 제조 방법
CN108530790A (zh) 高含量碳纳米管-氧化石墨烯聚合物复合材料的制备方法
KR20130129588A (ko) 그라핀-공중합체 나노복합체 제조 방법
CN112851869B (zh) 一种基于种子聚合法制备形貌可调的聚离子液体基各向异性复合粒子的方法