WO2024103388A1 - 一种集成装置、探测装置、终端及制作方法 - Google Patents

一种集成装置、探测装置、终端及制作方法 Download PDF

Info

Publication number
WO2024103388A1
WO2024103388A1 PCT/CN2022/132858 CN2022132858W WO2024103388A1 WO 2024103388 A1 WO2024103388 A1 WO 2024103388A1 CN 2022132858 W CN2022132858 W CN 2022132858W WO 2024103388 A1 WO2024103388 A1 WO 2024103388A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor chip
substrate layer
integrated device
pcb
cte
Prior art date
Application number
PCT/CN2022/132858
Other languages
English (en)
French (fr)
Inventor
汪帅
陈猛
厉兆勇
魏江波
侯宏江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/132858 priority Critical patent/WO2024103388A1/zh
Publication of WO2024103388A1 publication Critical patent/WO2024103388A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems

Definitions

  • the present application relates to the field of electronic technology, and in particular to an integrated device, a detection device, a terminal and a manufacturing method.
  • LiDAR light detection and ranging
  • LiDAR is an optical measurement device that works by emitting laser signals to an object and receiving the target echo signal reflected by the object, and then comparing the target echo signal with the laser signal to obtain relevant parameters such as the position and distance of the object.
  • LiDAR can form high-definition images by accurately scanning surrounding objects, which helps to achieve rapid identification and decision-making of surrounding objects. It has been widely used in smart cars, smart transportation, urban three-dimensional mapping, and atmospheric environment monitoring.
  • the signal processing speed performance and photosensitive chip target surface requirements of the laser radar receiving module are also constantly increasing, resulting in an exponential increase in the power consumption of the receiving module. Therefore, it is urgent to solve the heat dissipation problem caused by the increase in power consumption of the receiving module.
  • the present application provides an integrated device, a detection device, a terminal and a manufacturing method for solving the problems of heat dissipation and chip stress of a sensor chip.
  • the present application provides an integrated device, which includes: a substrate layer, a sensor chip and a printed circuit board PCB, the substrate layer may include a material with good heat dissipation performance, such as a metal material and/or a ceramic material, and the sensor chip may refer to a chip integrated with a sensor; the sensor chip is arranged on the substrate layer, so that the sensor chip can quickly dissipate heat through the substrate layer; the PCB is arranged on the substrate layer, the PCB is provided with an opening, the sensor chip is located in the opening, and the sensor chip is connected to the PCB through a transmission line; wherein the difference between the thermal expansion coefficient CTE of the substrate layer and the CTE of the sensor chip is less than a first preset threshold, that is, the difference obtained by subtracting the CTE of the sensor chip from the CTE of the substrate layer is less than the first preset threshold, or the difference obtained by subtracting the CTE of the sensor chip from the CTE of the substrate layer is less than the first preset threshold, so
  • the sensor chip by arranging the sensor chip and the PCB on the substrate layer, the sensor chip is located in the opening on the PCB, the sensor chip is connected to the PCB through a transmission line, and the difference between the CTE of the substrate layer and the CTE of the sensor chip is less than a first preset threshold value, the sensor chip can quickly dissipate heat through the substrate layer, and under the same temperature difference, the deformation amount of the substrate layer can be ensured to be basically consistent with the deformation amount of the sensor chip, thereby solving the chip stress problem of the sensor chip.
  • the substrate layer includes a base layer and a boss
  • the sensor chip is disposed on the boss
  • the boss may also be located in an opening on the PCB, that is, the boss and the sensor chip are both located in the opening on the PCB, and the sensor chip may also pass through the opening on the PCB.
  • the base layer and the boss are integrally formed, that is, the base layer and the boss can be two parts of the same substrate layer formed in one process, which can simplify the process of forming the substrate layer.
  • the base layer and the boss are not integrally formed, but two independently set parts, for example, the base layer and the boss can be formed by two independent processes; when the base layer and the boss are two independently set parts, the boss can be bonded to the base layer by adhesive, or riveted to the base layer by rivets, etc., which can improve the flexibility and diversity of forming the base layer and the boss.
  • the material of the base layer is the same as or different from the material of the boss.
  • the material of the base layer is the same as the material of the boss, for example, the material of the base layer and the material of the boss are both aluminum-based silicon carbide AlSiC, copper Cu, aluminum Al, or tungsten W.
  • the material of the base layer is different from the material of the boss, for example, the material of the base layer is aluminum Al, copper Cu or tungsten W, and the material of the boss is aluminum-based silicon carbide AlSiC.
  • the sensor chip is bonded to the substrate layer by an adhesive, for example, the adhesive may be glass adhesive, single-component adhesive or multi-component adhesive, etc.
  • the sensor chip is welded or riveted to the substrate layer.
  • the first preset threshold satisfies: greater than or equal to 0ppm/°C, and less than or equal to 10ppm/°C.
  • the CTE of the sensor chip 220 may be about 2ppm/°C
  • the CTE of the substrate layer 210 may be greater than or equal to 3ppm/°C, and less than or equal to 12ppm/°C.
  • the sensor chip can quickly dissipate heat through the substrate layer, and under the same temperature difference, the deformation of the substrate layer can be ensured to be basically consistent with the deformation of the sensor chip, thereby solving the chip stress problem of the sensor chip.
  • the substrate layer includes at least one of the following materials: aluminum-based silicon carbide AlSiC, aluminum Al, copper Cu, and tungsten W.
  • AlSiC aluminum-based silicon carbide
  • Al aluminum Al
  • copper Cu copper
  • tungsten W tungsten W
  • the height of the sensor chip is greater than the height of the PCB; or, the height of the sensor chip is less than the height of the PCB.
  • the integrated device further includes: a lens structure, which is covered above the sensor chip and fixed on the substrate layer, and the focus of the lens structure is located on the photosensitive surface of the sensor chip.
  • the integrated device can be a receiving module, and can ensure that the sensor chip receives the light signal focused by the lens structure.
  • the difference between the CTE of the lens structure and the CTE of the sensor chip is less than a second preset threshold; that is, the difference between the CTE of the lens structure and the CTE of the sensor chip is less than the second preset threshold, or the difference between the CTE of the sensor chip and the CTE of the lens structure is less than the second preset threshold.
  • the second preset threshold satisfies: greater than or equal to 0ppm/°C, and less than or equal to 10ppm/°C.
  • the deformation amount of the lens structure is basically consistent with the deformation amount of the sensor chip, so that the focus of the lens structure is always located on the photosensitive surface of the sensor chip, avoiding the problem of reduced MTF of the sensor chip at high and low temperatures due to the inconsistency between the deformation amount of the lens structure and the deformation amount of the sensor chip.
  • the integrated device further includes: a protective glue for protecting the transmission line. That is, when manufacturing the integrated circuit, the transmission line may be coated with a protective glue to prevent peripheral devices of the transmission line from interfering with a transmission signal in the transmission line.
  • the protective glue may be a glass glue.
  • the integrated device further includes: a protective glass, which is located above the sensor chip.
  • a protective glass which is located above the sensor chip.
  • the PCB is bonded to the substrate layer by an adhesive, for example, the adhesive may be glass adhesive, single-component adhesive or multi-component adhesive, etc.
  • the PCB is welded or riveted to the substrate layer. In the above possible implementations, the diversity and flexibility of the connection between the PCB and the substrate layer can be improved.
  • the sensor chip is a bare chip, which may also be referred to as a grain or a bare crystal, and the grain or bare crystal may refer to a small piece cut from a wafer.
  • the sensor chip is a photosensitive chip.
  • the photosensitive chip is a SPAD chip.
  • a detection device comprising: a control circuit, and an integrated device provided by the first aspect or any possible implementation of the first aspect, wherein the control circuit is used to receive a signal output by the integrated device.
  • a terminal comprising: a detection device as provided in the second aspect; optionally, the terminal is a vehicle.
  • a method for manufacturing an integrated device comprising a substrate layer, a sensor chip and a PCB having an opening, the method comprising: forming the substrate layer, the substrate layer may comprise a material with good heat dissipation performance, such as a metal material and/or a ceramic material; arranging the sensor chip on the substrate layer, the sensor chip may refer to a chip integrated with a sensor; arranging the PCB on the substrate layer, and connecting the sensor chip and the PCB through a transmission line, the sensor chip being located in the opening of the PCB; wherein the difference between the coefficient of thermal expansion CTE of the substrate layer and the CTE of the sensor chip is less than a first preset threshold, that is, the difference obtained by subtracting the CTE of the sensor chip from the CTE of the substrate layer is less than the first preset threshold, or the difference obtained by subtracting the CTE of the sensor chip from the CTE of the substrate layer is less than the first preset threshold, so that the difference between the CTE of the substrate
  • the substrate layer includes a base layer and a boss
  • the sensor chip is arranged on the boss
  • the boss can also be located in an opening on the PCB, that is, the boss and the sensor chip are both located in the opening on the PCB, and the sensor chip can also pass through the opening on the PCB.
  • the base layer and the boss are integrally formed, that is, the base layer and the boss can be two parts of the same substrate layer formed in one process, which can simplify the process of forming the substrate layer.
  • the base layer and the boss are not integrally formed, but two independently arranged parts, for example, the base layer and the boss can be formed by two independent processes.
  • a material of the base layer is the same as a material of the boss; or a material of the base layer is different from a material of the boss.
  • the sensor chip is arranged on the substrate layer, including: bonding the sensor chip to the substrate layer by adhesive, for example, the adhesive can be glass adhesive, single-component adhesive or multi-component adhesive, etc.; or, the sensor chip is welded or riveted to the substrate layer.
  • adhesive for example, the adhesive can be glass adhesive, single-component adhesive or multi-component adhesive, etc.; or, the sensor chip is welded or riveted to the substrate layer.
  • the first preset threshold satisfies: greater than or equal to 0 ppm/°C and less than or equal to 10 ppm/°C.
  • the CTE of the sensor chip 220 may be about 2 ppm/°C
  • the CTE of the substrate layer 210 may be greater than or equal to 3 ppm/°C and less than or equal to 12 ppm/°C.
  • the substrate layer includes at least one of the following materials: aluminum-based silicon carbide AlSiC, aluminum Al, copper Cu, and tungsten W.
  • the height difference between the sensor chip and the PCB there is a height difference between the sensor chip and the PCB.
  • the height of the sensor chip is greater than the height of the PCB; or the height of the sensor chip is less than the height of the PCB.
  • the integrated device further includes a lens structure
  • the method further includes: covering the lens structure above the sensor chip and fixing it on the substrate layer, and the focus of the lens structure is located on the photosensitive surface of the sensor chip.
  • the difference between the CTE of the lens structure and the CTE of the sensor chip is less than a second preset threshold; that is, the difference between the CTE of the lens structure and the CTE of the sensor chip is less than the second preset threshold, or the difference between the CTE of the sensor chip and the CTE of the lens structure is less than the second preset threshold.
  • the second preset threshold satisfies: greater than or equal to 0 ppm/°C and less than or equal to 10 ppm/°C.
  • the integrated device further includes a protective glue
  • the method further includes: arranging the protective glue on the transmission line to prevent peripheral devices of the transmission line from interfering with a transmission signal in the transmission line.
  • the protective glue may be glass glue.
  • the integrated device further includes a protective glass
  • the method further includes: arranging the protective glass above the sensor chip.
  • the PCB is disposed on the substrate layer, including: bonding the PCB to the substrate layer by adhesive; or, welding or riveting the PCB to the substrate layer.
  • the sensor chip is a bare chip.
  • the sensor chip is a photosensitive chip.
  • FIG1 is a schematic diagram of an application scenario of a laser radar provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of a laser radar provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of another laser radar provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a layout of components in a receiving module
  • FIG5 is a cross-sectional view of an integrated device provided in an embodiment of the present application.
  • FIG6 is an exploded view of an integrated device provided in an embodiment of the present application.
  • FIG7 is a cross-sectional view of another integrated device provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a substrate layer provided in an embodiment of the present application.
  • FIG9 is a cross-sectional view of another integrated circuit provided in an embodiment of the present application.
  • FIG10 is an exploded view of another integrated device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a process for manufacturing an integrated device according to an embodiment of the present application.
  • FIG12 is a cross-sectional view of an integrated device provided in an embodiment of the present application during the manufacturing process
  • FIG13 is a cross-sectional view of another integrated device provided in an embodiment of the present application during the manufacturing process.
  • connection in the embodiments of the present application can be an electrical connection, and the connection between two electrical components can be a direct or indirect connection between the two electrical components.
  • connection between A and B can be a direct connection between A and B, or an indirect connection between A and B through one or more other electrical components, such as A and B connection, or A and C direct connection, C and B direct connection, and A and B are connected through C.
  • connection can also be understood as coupling, such as electromagnetic coupling between two inductors.
  • the connection between A and B enables the transmission of electrical energy between A and B.
  • terminal names of the electronic components in the embodiments of the present application are only exemplary expressions, which can be understood as connection terminals or connection points for connecting with other circuit components. In other examples, there may also be other terminal names, connection terminal names or connection point names.
  • the terminal may also be called a communication terminal, an information transmission terminal, a terminal, a connection terminal, a communication connection terminal, an information connection terminal, a connection point, a communication connection point, an information connection point or an electrode, etc.
  • FIG. 1 exemplarily shows a schematic diagram of an application scenario of a laser radar provided by an embodiment of the present application.
  • the laser radar 100 is installed on a vehicle, so it is also called a vehicle-mounted laser radar.
  • the laser radar also includes a ship-mounted laser radar installed on a ship, or an airborne laser radar installed on a machine, etc.
  • FIG. 1 exemplarily shows a schematic diagram of an application scenario of a laser radar provided by an embodiment of the present application.
  • the laser radar 100 is installed on a vehicle, so it is also called a vehicle-mounted laser radar.
  • the laser radar also includes a ship-mounted laser radar installed on a ship, or an airborne laser radar installed on a machine, etc.
  • FIG. 1 exemplarily shows a schematic diagram of an application scenario of a laser radar provided by an embodiment of the present application.
  • the laser radar 100 is installed on a vehicle, so it is also called a vehicle-mounted laser radar.
  • the laser radar also includes a ship-mounted laser radar installed on
  • the laser radar 100 can be installed at the front of the vehicle, so that during the driving of the vehicle, the laser radar 100 can emit a laser signal, and the laser signal will be reflected by the object after being irradiated to the object in the surrounding environment, and the reflected target echo signal can be received by the laser radar 100, and then the laser radar 100 detects the environmental information around the vehicle based on the target echo signal, so as to use the environmental information to assist or control the driving function of the vehicle, such as but not limited to automatic driving or assisted driving.
  • the laser radar 100 can be one of a mechanical laser radar, a liquid laser radar, a pure solid-state laser radar or a hybrid solid-state laser radar (also called a semi-solid laser radar), or can be other types of laser radars, which are not specifically limited in the present embodiment of the application.
  • the shell of the laser radar 100 can be a rectangular parallelepiped as shown in FIG. 1, or a cube, a cylinder, a ring or a special-shaped body, etc., and the present embodiment of the application does not specifically limit the shape of the shell of the detection device.
  • the transmitting module 120 may include at least one laser, and at least one laser may be connected in series or in parallel to emit a detection laser under the control of the control circuit 110.
  • the scanning module 130 may include one or more of a multi-faceted rotating mirror, a swinging mirror, a micro-electro-mechanical system (MEMS) scanning mirror, and a prism, and is used to change the scanning angle of the detection laser emitted by the transmitting module 120 under the control of the control circuit 110, so that the detection laser can scan and traverse the target objects in the environment.
  • MEMS micro-electro-mechanical system
  • the scanning module 130 is implemented differently, and some types of laser radars may not have a scanning module, for example, a phased array radar in a solid-state laser radar.
  • the detection laser emitted by the above-mentioned transmitting module 120 will also be reflected by the target object in the environment to generate an echo signal.
  • the receiving module 140 can be used to receive the echo signal corresponding to the detection laser under the control of the control circuit 110, and convert the echo signal into an electrical signal and send it to the control circuit 110, and the control circuit 110 determines the characteristics of the target object based on the electrical signal.
  • FIG3 shows a schematic diagram of the internal architecture of another laser radar provided in an embodiment of the present application.
  • the laser radar 100 may include a control circuit 110, a transmitting module 120 and a receiving module 140.
  • the transmitting module 120 and the receiving module 140 include optical elements, such as one or more of lenses, filters, polarizers, reflectors, beam splitters, prisms, windows and scattering plates, etc.
  • the number and type of optical elements specifically included are related to the optical design of the transmitting module 120 and the receiving module 140 in the laser radar 100, and the embodiment of the present application does not specifically limit it.
  • the transmitting module 120 may include at least one laser, and at least one laser may be connected in series or in parallel, and is used to emit a detection laser under the control of the control circuit 110; the transmitting module 120 is also used to change the scanning angle of the detection laser under the control of the control circuit 110, so that the detection laser can scan and traverse the target object in the environment.
  • the detection laser emitted by the above-mentioned transmitting module 120 will also be reflected by the target object in the environment to generate an echo signal.
  • the receiving module 140 can be used to receive the echo signal corresponding to the detection laser under the control of the control circuit 110. Specifically, it can be used to receive the echo signal within a certain scanning angle, and convert the echo signal into an electrical signal and send it to the control circuit 110.
  • the control circuit 110 determines the characteristics of the target object based on the electrical signal.
  • the above-mentioned laser radar 100 may also include more or fewer components than those illustrated in FIG. 2 and FIG. 3 , and the embodiment of the present application does not specifically limit this.
  • the control circuit 110 in FIG. 2 and FIG. 3 may include at least one integrated circuit chip.
  • the control circuit 110 may include at least one processor.
  • a processor is a component or circuit with processing capabilities, for example, one or more of the following types: a general-purpose processor, a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a neural-network processing unit (NPU), a graphics processing unit (GPU), an application processor (AP), a modem processor, an image signal processor (ISP), a video codec, a digital signal processor (DSP), a baseband processor, a network processor (NP), a digital signal processing circuit (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components or other integrated chips.
  • a general-purpose processor includes, for example, a central processing unit (CPU).
  • the receiving module 140 may include a lens structure and a photosensitive chip, wherein the lens structure may be used to focus the echo signal corresponding to the received detection laser on the photosensitive surface of the photoelectric conversion device, and the photosensitive chip may be used to convert the echo signal into an electrical signal.
  • the lens structure may include a lens and a bracket, wherein the bracket may be used to fix the lens; the photosensitive chip may be a single photon avalanche diode (SPAD) chip.
  • SPAD single photon avalanche diode
  • FIG4 shows a schematic diagram of a layout of a receiving module 140.
  • a printed circuit board PCB
  • the photosensitive chip in the receiving module 140 is welded on the PCB
  • the lens structure cover is provided above the photosensitive chip and fixed to the PCB by adhesive or screws
  • the photosensitive chip and the PCB are connected by a transmission line.
  • a protective glue may be applied on the transmission line between the photosensitive chip and the PCB, and a protective glass may be provided above the photosensitive chip.
  • the heat dissipation performance of the PCB is poor, and the photosensitive chip is soldered on the PCB in the above layout, which is not conducive to the heat dissipation of the photosensitive chip; in addition, under the same temperature difference, due to the inconsistency between the deformation of the PCB and the deformation of the lens structure and the deformation of the photosensitive chip, the photosensitive chip will also experience chip stress and a decrease in the modulation transfer function (MTF) at high and low temperatures.
  • MTF modulation transfer function
  • the MTF can also be called resolution.
  • an embodiment of the present application provides an integrated device, in which a substrate layer is provided, and a sensor chip in the integrated device is provided on the substrate layer, while ensuring that the difference between the coefficient of thermal expansion (CTE) of the substrate layer and the CTE of the sensor chip is relatively small, so that the photosensitive chip can quickly dissipate heat through the substrate layer, and ensure that the deformation of the photosensitive chip and the substrate layer under the same temperature difference is consistent, so as to solve the chip stress problem.
  • CTE coefficient of thermal expansion
  • FIG5 and FIG6 are schematic diagrams of the structure of an integrated device provided in an embodiment of the present application, FIG5 shows a cross-sectional view of the integrated device, and FIG6 shows an exploded view of the integrated device.
  • the integrated device includes: a substrate layer 210, a sensor chip 220 and a PCB 230.
  • the sensor chip 220 is disposed on the substrate layer 210.
  • the PCB 230 is disposed on the substrate layer 210, and the PCB 230 is provided with an opening 231, the sensor chip 220 is located in the opening 231, and the sensor chip 220 is connected to the PCB 230 through a transmission line TL.
  • the difference between the CTE of the substrate layer 210 and the CTE of the sensor chip 220 is less than a first preset threshold value.
  • the substrate layer 210 may include a material with good heat dissipation performance, for example, the substrate layer 210 may include a metal material and/or a ceramic material.
  • the metal material may be a single metal, a metal compound, or an alloy material, or a combination of the above materials.
  • the sensor chip 220 may refer to a chip integrated with a sensor.
  • the sensor chip 220 may be a bare chip (die), which may also be referred to as a grain or a bare crystal.
  • the grain or bare crystal may refer to a small piece cut from a wafer.
  • a wafer may also be referred to as a wafer, which refers to a silicon wafer used to make a silicon semiconductor circuit, and its original material may be silicon.
  • the sensor chip 220 is disposed on the substrate layer 210, which can be specifically achieved in any of the following ways.
  • the sensor chip 220 is bonded to the substrate layer 210 by an adhesive, for example, the adhesive can be glass adhesive, single-component adhesive or multi-component adhesive, etc.
  • the sensor chip 220 is welded to the substrate layer 210, for example, solder balls are disposed on the sensor chip, and the sensor chip is welded to the substrate layer 210 by the solder balls.
  • the sensor chip 220 is riveted to the substrate layer 210, for example, the sensor chip 220 is fixed to the substrate layer 210 by rivets. In practical applications, those skilled in the art can also dispose the sensor chip 220 on the substrate layer 210 by other means, and the above examples do not limit the embodiments of the present application.
  • the PCB 230 is disposed on the substrate layer 210, which can also be achieved in a similar manner as described above.
  • the PCB 230 can be bonded to the substrate layer 210 by adhesives such as glass glue, single-component glue or multi-component glue; or, the PCB 230 can be welded to the substrate layer 210 by solder balls or the like; or, the PCB 230 can be riveted to the substrate layer 210 by rivets or the like.
  • FIG6 takes the example of the connection between the PCB 230 and the substrate layer 210 by adhesive glue.
  • those skilled in the art can also dispose the PCB 230 on the substrate layer 210 by other means, and the above examples do not limit the embodiments of the present application.
  • the transmission line TL used to connect the sensor chip 220 and the PCB 230 can be a metal wire.
  • the metal can be gold (Au), that is, the transmission line TL is a gold wire.
  • the height of the sensor chip 220 is greater than the height of the PCB 230; or, the height of the sensor chip 220 is less than the height of the PCB 230.
  • FIG5 is taken as an example in which the height of the sensor chip 220 is less than the height of the PCB 230.
  • the difference between the CTE of the substrate layer 210 and the CTE of the sensor chip 220 is less than the first preset threshold, which may include: the difference obtained by subtracting the CTE of the sensor chip 220 from the CTE of the substrate layer 210 is less than the first preset threshold, or the difference obtained by subtracting the CTE of the substrate layer 210 from the CTE of the sensor chip 220 is less than the first preset threshold. That is, the difference between the CTE of the substrate layer 210 and the CTE of the sensor chip 220 is small.
  • the first preset threshold satisfies: greater than or equal to 0ppm/°C, and less than or equal to 10ppm/°C.
  • the CTE of the sensor chip 220 may be about 2ppm/°C
  • the CTE of the substrate layer 210 may be greater than or equal to 3ppm/°C, and less than or equal to 12ppm/°C.
  • the sensor chip 220 and the PCB 230 are arranged on the substrate layer 210, the sensor chip 220 is located in the opening 231 on the PCB 230, the sensor chip 220 is connected to the PCB 230 through the transmission line TL, and the difference between the CTE of the substrate layer 210 and the CTE of the sensor chip 220 is less than a first preset threshold value, so that the sensor chip 220 can quickly dissipate heat through the substrate layer 210, and under the same temperature difference, it can be ensured that the deformation amount of the substrate layer 210 is basically consistent with the deformation amount of the sensor chip 220, thereby solving the chip stress problem of the sensor chip 220.
  • the substrate layer 210 includes at least one of the following materials: aluminum-based silicon carbide AlSiC, aluminum Al, copper Cu, and tungsten W.
  • the material included in the substrate layer 210 is aluminum-based silicon carbide AlSiC.
  • the material included in the substrate layer 210 is aluminum Al, copper Cu, or tungsten W.
  • the material included in the substrate layer 210 is aluminum-based silicon carbide AlSiC and aluminum Al, or aluminum-based silicon carbide AlSiC and copper Cu, or aluminum-based silicon carbide AlSiC and tungsten W.
  • the substrate layer 210 includes a base layer 211 and a boss 212 disposed on the base layer 211 , and the sensor chip 220 is disposed on the boss 212 .
  • the boss 212 when the sensor chip 220 is arranged on the boss 212, the boss 212 can also be located in the opening 231 on the PCB 230, that is, the boss 212 and the sensor chip 220 are both located in the opening 231 on the PCB 230, and the sensor chip 220 can also pass through the opening 231 on the PCB 230 to form a height difference with the PCB 230, that is, the height of the sensor chip 220 can be greater than the height of the PCB 230 at this time.
  • the base layer 211 and the boss 212 are integrally formed, that is, the base layer 211 and the boss 212 may be two parts of the same substrate layer formed in one process.
  • the base layer 211 and the boss 212 are not integrally formed, but are two independently arranged parts, for example, the base layer 211 and the boss 212 may be formed by two independent processes.
  • the boss 212 may be bonded to the base layer 211 by adhesive, or may be welded by solder balls or riveted to the base layer 211 by rivets.
  • the material of the base layer 211 is the same as or different from the material of the boss 212.
  • the material of the base layer 211 is the same as the material of the boss 212, for example, the material of the base layer 211 and the material of the boss 212 are both aluminum-based silicon carbide AlSiC, copper Cu, aluminum Al, or tungsten W.
  • the material of the base layer 211 is different from the material of the boss 212, for example, the material of the base layer 211 is aluminum Al, copper Cu or tungsten W, and the material of the boss 212 is aluminum-based silicon carbide AlSiC.
  • FIG8 is illustrated by taking the example that the material of the base layer 211 and the material of the boss 212 are the same and both are aluminum-based silicon carbide AlSiC;
  • FIG8 is illustrated by taking the example that the material of the base layer 211 and the material of the boss 212 are different, and the material of the base layer 211 is aluminum Al, and the material of the boss 212 is aluminum-based silicon carbide AlSiC.
  • the integrated device further includes: a protective glass 221, and the protective glass 221 is located above the sensor chip 220.
  • the protective glass 221 can be fixed above the sensor chip 220 by the protective glue 232. By arranging the protective glass 221 above the sensor chip 220, dust or debris can be prevented from falling on the sensor chip 220, so as to avoid affecting the performance of the sensor chip 220.
  • the sensor chip 220 is a photosensitive chip, which may refer to a chip that can convert an optical signal into an electrical signal.
  • the photosensitive chip is specifically a SPAD chip.
  • the integrated device may also include: a lens structure 240, the lens structure 240 is covered above the sensor chip 220 and fixed on the substrate layer 210, and the focus of the lens structure 240 is located on the photosensitive surface of the sensor chip 220.
  • FIG. 9 shows a cross-sectional view of the integrated device
  • FIG. 9 shows an exploded view of the integrated device.
  • FIGS. 9 and 10 take the substrate layer 210 in the integrated device not including the above-mentioned boss 212
  • FIG. 10 takes the example of the connection between the PCB 230 and the substrate layer 210 by adhesive.
  • the lens structure 240 may include a lens 241 and a bracket 242 .
  • the bracket 242 may be used to fix the lens 241 .
  • the lens structure 240 may be fixed on the substrate layer 210 via the bracket 242 .
  • the difference between the CTE of the lens structure 240 and the CTE of the sensor chip 220 is less than a second preset threshold.
  • the difference here is less than the second preset threshold, which may include: the difference obtained by subtracting the CTE of the sensor chip 220 from the CTE of the lens structure 240 is less than the second preset threshold, or the difference obtained by subtracting the CTE of the lens structure 240 from the CTE of the sensor chip 220 is less than the second preset threshold. That is, the difference between the CTE of the lens structure 240 and the CTE of the sensor chip 220 is small.
  • the second preset threshold satisfies: greater than or equal to 0ppm/°C, and less than or equal to 10ppm/°C.
  • the CTE of the lens structure 240 and the CTE of the sensor chip 220 can be compensated.
  • the deformation of the lens structure 240 and the deformation of the sensor chip 220 are basically consistent, thereby ensuring that the focus of the lens structure 240 is always located on the photosensitive surface of the sensor chip 220, avoiding the problem of reduced MTF of the sensor chip 220 at high and low temperatures due to the inconsistency between the deformation of the lens structure 240 and the deformation of the sensor chip 220.
  • an embodiment of the present application also provides a detection device, which includes: a control circuit and a receiving module, the receiving module includes any one of the integrated devices provided above; wherein the control circuit is used to send a first control signal to the receiving module, the receiving module is used to receive the echo signal returned after the detection laser scans the target object according to the first control signal, and convert the echo signal into an electrical signal, and the control circuit is also used to process the electrical signal to obtain point cloud data.
  • the detection device also includes a transmitting module, the control circuit is also used to send a second control signal to the transmitting module, and the transmitting module is used to transmit the above-mentioned detection laser according to the second control signal.
  • the detection device further includes a scanning module, which can be used to change the receiving angle of the receiving module receiving the echo signal under the control of the control circuit.
  • the scanning module can be used to change the scanning angle of the detection laser emitted by the transmitting module under the control of the control circuit.
  • the detection device may be a laser radar, or other device capable of emitting detection laser.
  • detection devices include, but are not limited to: vehicle-mounted laser radar, household sweeping robot laser sensor, dock laser detection module, laser printer, etc.
  • the embodiment of the present application also provides a terminal, including the detection device described above.
  • the terminal includes but is not limited to: smart home devices (such as televisions, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.), smart transportation equipment (such as cars, ships, drones, trains, vans, trucks and other vehicles), smart manufacturing equipment (such as robots, industrial equipment, smart logistics, smart factories, etc.), smart terminals (mobile phones, computers, tablet computers, PDAs, desktops, headphones, audio, wearable devices, vehicle-mounted devices, virtual reality devices, augmented reality devices, etc.).
  • smart home devices such as televisions, sweeping robots, smart desk lamps, audio systems, smart lighting systems, electrical control systems, home background music, home theater systems, intercom systems, video surveillance, etc.
  • smart transportation equipment such as cars, ships, drones, trains, vans, trucks and other vehicles
  • smart manufacturing equipment such as robots, industrial equipment, smart logistics, smart factories,
  • Figure 11 is a schematic flow chart of a method for manufacturing an integrated device provided in an embodiment of the present application, the integrated device may be the integrated device provided above, and the method includes the following steps.
  • Figures 12 and 13 are cross-sectional views of the integrated device during the manufacturing process.
  • S301 forming a substrate layer, as shown in FIG. 12(a) or FIG. 13(a).
  • the substrate layer may include a material with good heat dissipation performance, for example, the substrate layer may include a metal material and/or a ceramic material.
  • the metal material may be a single metal, a metal compound, or an alloy material, or a combination of the above materials.
  • the substrate layer includes at least one of the following materials: aluminum-based silicon carbide AlSiC, aluminum Al, copper Cu, and tungsten W.
  • the material included in the substrate layer is aluminum-based silicon carbide AlSiC.
  • the material included in the substrate layer is aluminum Al, copper Cu, or tungsten W.
  • the material included in the substrate layer is aluminum-based silicon carbide AlSiC and aluminum Al, or aluminum-based silicon carbide AlSiC and copper Cu, or aluminum-based silicon carbide AlSiC and tungsten W.
  • the substrate layer includes a base layer and a boss.
  • the base layer and the boss are integrally formed, that is, the base layer and the boss can be two parts of the same substrate layer formed in one process.
  • the base layer and the boss are not integrally formed, but are two independently set parts, for example, the base layer and the boss can be formed by two independent processes.
  • the boss can be bonded to the base layer by an adhesive, or riveted to the base layer by rivets or the like.
  • FIG12 takes the case where the substrate layer does not include the boss
  • FIG13 takes the case where the substrate layer includes the boss as an example for explanation.
  • the material of the base layer is different from that of the boss.
  • the material of the base layer is the same as that of the boss, for example, the material of the base layer and the material of the boss are both aluminum-based silicon carbide AlSiC, aluminum Al, copper Cu, or tungsten W.
  • the material of the base layer is different from that of the boss, for example, the material of the base layer is aluminum Al, copper Cu, or tungsten W, and the material of the boss is aluminum-based silicon carbide AlSiC.
  • the CTE of the substrate layer can be adjusted by adjusting the content of Al in the aluminum-based silicon carbide AlSiC.
  • the CTE of the substrate layer can be adjusted by adjusting the contents of the at least two materials.
  • S302 Arrange a sensor chip on the substrate layer, as shown in FIG. 12( b ) or FIG. 13( b ).
  • the sensor chip may refer to a chip with an integrated sensor.
  • the sensor chip may be a bare chip, which may also be referred to as a grain or a bare crystal.
  • the grain or bare crystal may refer to a small piece cut from a wafer.
  • a wafer may also be referred to as a wafer, which refers to a silicon wafer used to make a silicon semiconductor circuit, and its original material may be silicon.
  • the difference between the CTE of the substrate layer and the CTE of the sensor chip is less than a first preset threshold, that is, the difference obtained by subtracting the CTE of the sensor chip from the CTE of the substrate layer is less than the first preset threshold, or the difference obtained by subtracting the CTE of the substrate layer from the CTE of the sensor chip is less than the first preset threshold.
  • the first preset threshold satisfies: greater than or equal to 0ppm/°C, and less than or equal to 10ppm/°C.
  • the CTE of the sensor chip can be about 2ppm/°C
  • the CTE of the substrate layer 210 can be greater than or equal to 3ppm/°C, and less than or equal to 12ppm/°C.
  • the sensor chip is arranged on the substrate layer, which can be achieved in any of the following ways.
  • the sensor chip is bonded to the substrate layer by an adhesive, for example, the adhesive can be glass adhesive, single-component adhesive or multi-component adhesive, etc.
  • the sensor chip is welded to the substrate layer, for example, solder balls are arranged on the sensor chip, and the sensor chip is welded to the substrate layer by the solder balls.
  • the sensor chip is riveted to the substrate layer, for example, the sensor chip is fixed to the substrate layer by rivets.
  • PCB is arranged on the substrate layer, and the sensor chip is connected to the PCB via a transmission line TL, and the sensor chip is located in an opening of the PCB, as shown in FIG. 12 (c) or FIG. 13 (c).
  • arranging the PCB on the substrate layer may include: bonding the PCB to the substrate layer by adhesive; or, soldering the PCB to the substrate layer by solder balls of the PCB; or, riveting the PCB to the substrate layer by rivets.
  • the transmission line TL used to connect the sensor chip and the PCB can be a metal wire.
  • the metal can be gold (Au), that is, the transmission line TL is a gold wire.
  • the height difference between the sensor chip and the PCB there is a height difference between the sensor chip and the PCB.
  • the height of the sensor chip is less than the height of the PCB; or, as shown in FIG. 13 (c), the height of the sensor chip is greater than the height of the PCB.
  • the integrated device further includes a protective glue
  • the method may further include: S3031.
  • the protective glue is arranged on the transmission line TL. As shown in (d) of FIG. 12 or (d) of FIG. 13. Specifically, the protective glue is applied on the transmission line TL, so that the peripheral devices of the transmission line TL can avoid interference with the transmission signal in the transmission line TL.
  • the protective glue can be a glass glue.
  • the integrated device further includes a protective glass
  • the method may further include: S3032.
  • the protective glass is arranged above the sensor chip. As shown in (d) in FIG. 12 or (d) in FIG. 13.
  • the protective glass may be fixed above the sensor chip by the above-mentioned glass glue. By arranging the protective glass above the sensor chip, dust or debris may be prevented from falling onto the sensor chip, so as to avoid affecting the performance of the sensor chip.
  • the sensor chip and the PCB are arranged on the substrate layer, the sensor chip is located in the opening on the PCB, the sensor chip is connected to the PCB through the transmission line TL, and the difference between the CTE of the substrate layer and the CTE of the sensor chip is less than a first preset threshold value, so that the sensor chip can quickly dissipate heat through the substrate layer, and under the same temperature difference, it can be ensured that the deformation amount of the substrate layer is basically consistent with the deformation amount of the sensor chip, thereby solving the chip stress problem of the sensor chip.
  • the integrated device also includes a lens structure; accordingly, as shown in FIG11 , the method may further include: S304.
  • the lens structure cover is disposed above the sensor chip and fixed on the substrate layer, and the focus of the lens structure is located on the photosensitive surface of the sensor chip, as shown in FIG. 12 (e) or FIG. 13 (e).
  • the lens structure may include a lens and a bracket, the bracket may be used to fix the lens, and the lens structure may be fixed to the substrate layer through the bracket.
  • the lens structure is fixed to the substrate layer, which may include: the lens structure is bonded to the substrate layer; or the lens structure is welded to the substrate layer; or the lens structure is riveted to the substrate layer. As shown in (e) of FIG. 12 and (e) of FIG. 13, only the lens structure is riveted to the substrate layer as an example for explanation.
  • the difference between the CTE of the lens structure and the CTE of the sensor chip is less than a second preset threshold.
  • the difference here being less than the second preset threshold may include: the difference obtained by subtracting the CTE of the sensor chip from the CTE of the lens structure is less than the second preset threshold, or the difference obtained by subtracting the CTE of the lens structure from the CTE of the sensor chip is less than the second preset threshold. That is, the difference between the CTE of the lens structure and the CTE of the sensor chip is small.
  • the second preset threshold satisfies: greater than or equal to 0ppm/°C, and less than or equal to 10ppm/°C.
  • the deformation amount of the lens structure can be basically consistent with the deformation amount of the sensor chip under the same temperature difference, thereby ensuring that the focus of the lens structure is always located on the photosensitive surface of the sensor chip, and avoiding the problem of reduced MTF of the sensor chip at high and low temperatures due to the inconsistency between the deformation amount of the lens structure and the deformation amount of the sensor chip.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program.
  • the production method introduced in the above content is executed.
  • the embodiment of the present application also provides a computer program product, which implements the manufacturing method introduced in the above content when the computer program product runs on a processor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种集成装置、探测装置、终端及制作方法,涉及电子技术领域,用于解决传感芯片的散热和易出现芯片应力的问题。该集成装置包括:衬底层、传感芯片和PCB;该传感芯片设置于该衬底层上;该PCB设置在该衬底层上,该PCB设置有开口,该传感芯片位于该开口内,该传感芯片通过传输线与该PCB连接;其中,该衬底层的热膨胀系数CTE与该传感芯片的CTE之间的差值小于第一预设阈值。这样,能够使得该传感芯片通过该衬底层迅速散热,且在相同的温差下,能够保证该衬底层的形变量与该传感芯片的形变量基本一致,从而解决该传感芯片的芯片应力问题。

Description

一种集成装置、探测装置、终端及制作方法 技术领域
本申请涉及电子技术领域,尤其涉及一种集成装置、探测装置、终端及制作方法。
背景技术
激光雷达(light detection and ranging,LiDAR)是一种光学测量器件,其工作原理是通过向物体发射激光信号,并接收被物体反射回来的目标回波信号,然后将目标回波信号与激光信号进行比较,以获得物体的位置和距离等相关参数。激光雷达能通过精准地扫描周边物体形成高清图像,有助于实现周边物体的快速识别和决策,目前已在智能汽车、智慧交通、城市三维制图及大气环境监测等场合中得到了广泛的应用。
目前,随着激光雷达识别物体的精度不断提高、以及激光雷达的线束和角分辨率的不断迭代更新,激光雷达中接收模组的信号处理速度性能和感光芯片靶面要求也在不断提高,从而导致接收模组的功耗成倍增加。因此,亟需解决接收模组因功耗增加而带来的散热问题。
发明内容
本申请提供一种集成装置、探测装置、终端及制作方法,用于解决传感芯片的散热和易出现芯片应力的问题。
第一方面,本申请提供一种集成装置,该集成装置包括:衬底层、传感芯片和印刷电路板PCB,该衬底层可以包括散热性能较好的材料,比如金属材料、和/或陶瓷材料,该传感芯片可以是指集成有传感器的芯片;该传感芯片设置于该衬底层上,这样该传感芯片可以通过该衬底层迅速散热;该PCB设置在该衬底层上,该PCB设置有开口,该传感芯片位于该开口内,该传感芯片通过传输线与该PCB连接;其中,该衬底层的热膨胀系数CTE与该传感芯片的CTE之间的差值小于第一预设阈值,也即是,该衬底层的CTE减去该传感芯片的CTE得到的差值小于第一预设阈值,或者该传感芯片的CTE减去该衬底层的CTE得到的差值小于第一预设阈值,从而该衬底层的CTE与该传感芯片的CTE之间相差较小。
上述技术方案中,通过将该传感芯片和该PCB设置在该衬底层上,该传感芯片位于该PCB上的开口内,该传感芯片通过传输线与该PCB连接,且该衬底层的CTE与该传感芯片的CTE之间的差值小于第一预设阈值,能够使得该传感芯片通过该衬底层迅速散热,且在相同的温差下,能够保证该衬底层的形变量与该传感芯片的形变量基本一致,从而解决该传感芯片的芯片应力问题。
在第一方面的一种可能的实现方式中,该衬底层包括基层和凸台,该传感芯片设置于该凸台上,该凸台也可以位于该PCB上的开口内,即该凸台和该传感芯片均位于该PCB上的开口内,该传感芯片还可以穿过该PCB上的开口。上述可能的实现方式中,通过将该传感芯片设置在该衬底层的凸台上,可以进一步提高该传感芯片的散热性能。
在第一方面的一种可能的实现方式中,该基层和该凸台一体成型,即该基层和该凸台可以是在一次工艺中形成的同一个衬底层的两个部分,这样可以简化形成该衬底层的工艺。或者,该基层和该凸台不是一体成型的,而是独立设置的两个部分,比如,该基层和 该凸台可以是通过两次独立的工艺形成的;当该基层和该凸台是独立设置的两个部分时,该凸台可以通过粘接胶粘接在该基层上,或者通过铆钉等铆接在该基层上,这样可以提高形成该基层和该凸台的灵活性和多样性。
在第一方面的一种可能的实现方式中,该基层的材料与该凸台的材料相同或不同。在一种可能的示例中,该基层的材料和该凸台的材料相同,比如,该基层的材料和该凸台的材料均为铝基碳化硅AlSiC,铜Cu,铝Al,或者为钨W。在另一种可能的示例中,该基层的材料和该凸台的材料不同,比如,该基层的材料为铝Al、铜Cu或者钨W,该凸台的材料为铝基碳化硅AlSiC。
在第一方面的一种可能的实现方式中,该传感芯片通过粘接胶粘接在该衬底层上,比如,该粘接胶可以为玻璃胶、单组分胶或者多组分胶等;或者,该传感芯片焊接或者铆接在该衬底层上。上述可能的实现方式中,可以提高该传感芯片与该衬底层之间连接的多样性和灵活性。
在第一方面的一种可能的实现方式中,第一预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。在一种示例中的,该传感芯片220的CTE可以为2ppm/℃左右,该衬底层210的CTE可以为大于或等于3ppm/℃、且小于或等于12ppm/℃。上述可能的实现方式中,可以使得该传感芯片通过该衬底层迅速散热,且在相同的温差下,能够保证该衬底层的形变量与该传感芯片的形变量基本一致,从而解决该传感芯片的芯片应力问题
在第一方面的一种可能的实现方式中,该衬底层包括以下至少一种材料:铝基碳化硅AlSiC,铝Al,铜Cu,钨W。上述可能的实现方式中,提高形成该衬底层的灵活性和多样性,且能够保证设置在该衬底层上的传感芯片的散热性能。
在第一方面的一种可能的实现方式中,该传感芯片与该PCB存在高度差。比如,该传感芯片的高度大于该PCB的高度;或者,该传感芯片的高度小于该PCB的高度。上述可能的实现方式中,当该传感芯片与该PCB之间存在高度差时,有利于在制作该集成装置时形成该传感芯片与该PCB之间的传输线。
在第一方面的一种可能的实现方式中,该集成装置还包括:透镜结构,罩设在该传感芯片上方且固定在该衬底层上,该透镜结构的焦点位于该传感芯片的感光面上。上述可能的实现方式中,该集成装置可以为接收模组,且能够保证该传感芯片接收到透镜结构聚焦的光信号。
在第一方面的一种可能的实现方式中,该透镜结构的CTE与该传感芯片的CTE之间的差值小于第二预设阈值;也即是,该透镜结构的CTE减去该传感芯片的CTE得到的差值小于第二预设阈值,或者该传感芯片的CTE减去该透镜结构的CTE得到的差值小于第二预设阈值。可选的,第二预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。这样在相同的温差下,可以保证该透镜结构的形变量与该传感芯片的形变量基本保持一致,从而使得该透镜结构的焦点始终位于该传感芯片的感光面上,避免因为该透镜结构的形变量与该传感芯片的形变量不一致,而导致该传感芯片在高低温下出现MTF降低的问题。
在第一方面的一种可能的实现方式中,该集成装置还包括:用于保护该传输线的保护胶。即在制造该集成电路时,还可以为该传输线涂覆保护胶,以避免该传输线的外围器件对于该传输线中的传输信号造成干扰。可选的,该保护胶可以为玻璃胶。
在第一方面的一种可能的实现方式中,该集成装置还包括:保护玻璃,该保护玻璃位于该传感芯片的上方。上述可能的实现方式中,通过在该传感芯片的上方设置该保护玻璃,可以防止灰尘或者杂物等掉落在该传感芯片上,以避免对该传感芯片的性能造成影响。
在第一方面的一种可能的实现方式中,该PCB通过粘接胶粘接在该衬底层上,比如,该粘接胶可以为玻璃胶、单组分胶或者多组分胶等;或者,该PCB焊接或者铆接在该衬底层上。上述可能的实现方式中,可以提高该PCB与该衬底层之间连接的多样性和灵活性。
在第一方面的一种可能的实现方式中,该传感芯片为裸片,该裸片也可以称为晶粒或者裸晶,该晶粒或者裸晶可以是指从晶圆中切割得到的小块。可选的,该传感芯片为感光芯片。在一种示例中,该感光芯片为SPAD芯片。这样,在将该集成装置用于激光雷达中的接收模组时,能够提高该接收模组中该感光芯片的散热性能,同时避免了因为该感光芯片的CTE与该PCB的CTE不一致,而导致该感光芯片出现芯片应力的问题。
第二方面,提供一种探测装置,该探测装置包括:控制电路、以及第一方面或第一方面的任一种可能的实现方式所提供的集成装置,该控制电路用于接收该集成装置输出的信号。
第三方面,提供一种终端,该终端包括:包括如第二方面所提供的探测装置;可选的该终端为车辆。
第四方面,提供一种集成装置的制作方法,该集成装置包括衬底层、传感芯片和具有开口的PCB,该方法包括:形成该衬底层,该衬底层可以包括散热性能较好的材料,比如金属材料、和/或陶瓷材料;在该衬底层上设置该传感芯片,该传感芯片可以是指集成有传感器的芯片;在该衬底层上设置该PCB,并通过传输线连接该传感芯片与该PCB,该传感芯片位于该PCB的该开口内;其中,该衬底层的热膨胀系数CTE与该传感芯片的CTE之间的差值小于第一预设阈值,也即是,该衬底层的CTE减去该传感芯片的CTE得到的差值小于第一预设阈值,或者该传感芯片的CTE减去该衬底层的CTE得到的差值小于第一预设阈值,从而该衬底层的CTE与该传感芯片的CTE之间相差较小。
在第四方面的一种可能的实现方式中,该衬底层包括基层和凸台,该传感芯片设置于该凸台上,该凸台也可以位于该PCB上的开口内,即该凸台和该传感芯片均位于该PCB上的开口内,该传感芯片还可以穿过该PCB上的开口。
在第四方面的一种可能的实现方式中,该基层和该凸台一体成型,即该基层和该凸台可以是在一次工艺中形成的同一个衬底层的两个部分,这样可以简化形成该衬底层的工艺。或者,该基层和该凸台不是一体成型的,而是独立设置的两个部分,比如,该基层和该凸台可以是通过两次独立的工艺形成的。
在第四方面的一种可能的实现方式中,该基层的材料与该凸台的材料相同;或者,该基层的材料与该凸台的材料不同。
在第四方面的一种可能的实现方式中,该在该衬底层上设置于该传感芯片,包括:将该传感芯片通过粘接胶粘接在该衬底层上,比如,该粘接胶可以为玻璃胶、单组分胶或者多组分胶等;或者,将该传感芯片通过焊接或铆接在该衬底层上。
在第四方面的一种可能的实现方式中,第一预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。在一种示例中的,该传感芯片220的CTE可以为2ppm/℃左右,该衬底层210的CTE可以为大于或等于3ppm/℃、且小于或等于12ppm/℃。
在第四方面的一种可能的实现方式中,所衬底层包括以下至少一种材料:铝基碳化硅AlSiC,铝Al,铜Cu,钨W。
在第四方面的一种可能的实现方式中,该传感芯片与该PCB存在高度差。比如,该传感芯片的高度大于该PCB的高度;或者,该传感芯片的高度小于该PCB的高度。
在第四方面的一种可能的实现方式中,该集成装置还包括透镜结构,该方法还包括:将该透镜结构罩设在该传感芯片上方且固定在该衬底层上,该透镜结构的焦点位于该传感芯片的感光面上。
在第四方面的一种可能的实现方式中,该透镜结构的CTE与该传感芯片的CTE之间的差值小于第二预设阈值;也即是,该透镜结构的CTE减去该传感芯片的CTE得到的差值小于第二预设阈值,或者该传感芯片的CTE减去该透镜结构的CTE得到的差值小于第二预设阈值。
在第四方面的一种可能的实现方式中,第二预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。
在第四方面的一种可能的实现方式中,该集成装置还包括保护胶,该方法还包括:在该传输线上设置该保护胶,以避免该传输线的外围器件对于该传输线中的传输信号造成干扰。可选的,该保护胶可以为玻璃胶。
在第四方面的一种可能的实现方式中,该集成装置还包括保护玻璃,该方法还包括:在该传感芯片的上方设置该保护玻璃。通过在该传感芯片的上方设置该保护玻璃,可以防止灰尘或者杂物等掉落在该传感芯片上,以避免对该传感芯片的性能造成影响。
在第四方面的一种可能的实现方式中,在该衬底层上设置该PCB,包括:将该PCB通过粘接胶粘接在该衬底层上;或者,将该PCB通过焊接或铆接在该衬底层上。
在第四方面的一种可能的实现方式中,该传感芯片为裸片。
在第四方面的一种可能的实现方式中,该传感芯片为感光芯片。
可以理解地,上述提供的任一种探测装置、终端和集成装置的制作方法,其所能达到的有益效果均可对应参考上文所提供的集成装置中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种激光雷达的应用场景示意图;
图2为本申请实施例提供的一种激光雷达的结构示意图;
图3为本申请实施例提供的另一种激光雷达的结构示意图;
图4为一种接收模组中的元器件布局方式示意图;
图5为本申请实施例提供的一种集成装置的剖面图;
图6为本申请实施例提供的一种集成装置的爆炸图;
图7为本申请实施例提供的另一种集成装置的剖面图;
图8为本申请实施例提供的一种衬底层的结构示意图;
图9为本申请实施例提供的又一种集成电路的剖面图;
图10为本申请实施例提供的另一种集成装置的爆炸图;
图11为本申请实施例提供的一种集成装置的制作方法的流程示意图;
图12为本申请实施例提供的一种集成装置在制作过程中的剖面图;
图13为本申请实施例提供的另一种集成装置在制作过程中的剖面图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例中的“连接”可以是电连接,两个电学元件连接可以是两个电学元件之间的直接或间接连接。例如,A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元件间接连接,例如A与B连接,也可以是A与C直接连接,C与B直接连接,A与B之间通过C实现了连接。在一些场景下,“连接”也可以理解为耦合,如两个电感之间的电磁耦合。总之,A与B之间连接,可以使A与B之间能够传输电能。
本申请实施例中的电子元件的端名称只是一种示例性的表述,可以理解为连接端或连接点,用于与其他电路元件连接。在其它示例中,也可以具有其它的端名称、连接端名称或连接点名称,例如在一些场景中,端也可以称为通信端、信息传输端、端子、连接端、通信连接端、信息连接端、连接点、通信连接点、信息连接点或电极等。
本申请实施例提供一种集成装置,该集成装置在一种应用场景中,可应用于探测装置,如激光雷达。图1示例性示出本申请实施例提供的一种激光雷达的应用场景示意图。该示例中,激光雷达100安装在车辆上,因此也称为车载激光雷达。除车载激光雷达外,激光雷达还包含安装在船上的船载激光雷达,或安装在机器上的机载激光雷达等。一种可能的示例中,如图1所示,激光雷达100例如可安装在车辆的车头位置,如此,在车辆的行驶过程中,激光雷达100可发出激光信号,该激光信号照射到周边环境中的物体后会被物体所反射,而反射回来的目标回波信号可被激光雷达100接收,进而由激光雷达100基于该目标回波信号探测得到车辆周边的环境信息,以利用该环境信息辅助或控制车辆的驾驶功能,诸如包括但不限于自动驾驶或辅助驾驶等。
上述激光雷达100可以是机械式激光雷达、液态激光雷达、纯固态激光雷达或混合固态激光雷达(也称为半固态激光雷达)中的一种,或者也可以是其它类型的激光雷达,本申请实施例对此不作具体限定。另外,激光雷达100的外壳可以是如图1所示意的长方体,也可以是正方体、圆柱体、环形体或异形体等,本申请实施例对探测装置的外壳形状也不作具体限定。
进一步,图2示出本申请实施例提供的一种激光雷达的内部架构示意图。如图2所示,激光雷达100可以包括控制电路110、发射模组120、扫描模组130和接收模组140。其中,发射模组120和接收模组140中包含光学元件,诸如透镜、滤光片、偏振片、反射镜、分束镜、棱镜、窗口片和散射片等中的一种或多种,具体包括的光学元件的数量和类型与激光雷达100中发射模组120和接收模组140的光学设计有关,本申请实施例不作具体限定。发射模组120中可以包含至少一个激光器,至少一个激光器可以串联,也可以并联,用于在控制电路110的控制下发出探测激光。扫描模组130可以包含多面转镜、摆镜、微机电(micro-electro-mechanical system,MEMS)扫描镜、棱镜中的一个或多个,用于在控制电路110的控制下改变发射模组120发射的探测激光的扫描角度,以便使探测激光能扫描遍历环境中的目标物体。在不同类型的激光雷达中,扫描模组130的实现方式不同,且有些类型的激光雷达中也可以不存在扫描模组,例如,固态激光雷达中的相控阵雷达。上述发射模组120发射的探测激光还会被 环境中的目标物体所反射而产生回波信号,接收模组140可用于在控制电路110的控制下接收该探测激光对应的回波信号,并将该回波信号转化为电信号后发送给控制电路110,由控制电路110根据该电信号确定目标物体的特征。
图3示出本申请实施例提供的另一种激光雷达的内部架构示意图。如图3所示,激光雷达100可以包括控制电路110、发射模组120和接收模组140。其中,发射模组120和接收模组140中包含光学元件,诸如透镜、滤光片、偏振片、反射镜、分束镜、棱镜、窗口片和散射片等中的一种或多种,具体包括的光学元件的数量和类型与激光雷达100中发射模组120和接收模组140的光学设计有关,本申请实施例不作具体限定。发射模组120中可以包含至少一个激光器,至少一个激光器可以串联,也可以并联,用于在控制电路110的控制下发出探测激光;发射模组120还用于在控制电路110的控制下改变该探测激光的扫描角度,以便使探测激光能扫描遍历环境中的目标物体。上述发射模组120发射的探测激光还会被环境中的目标物体所反射而产生回波信号。接收模组140可用于在控制电路110的控制下接收该探测激光对应的回波信号,具体可用于接收一定扫描角度内的回波信号,并将该回波信号转化为电信号后发送给控制电路110,由控制电路110根据该电信号确定目标物体的特征。
可以理解的是,在实际应用中,上述激光雷达100也可以包括比图2和图3所示意的更多或更少的部件,本申请实施例对此不作具体限定。
上述图2和图3中的控制电路110可以包括至少一种集成电路芯片,例如,该控制电路110可以包括至少一个处理器,且在包括多个处理器时,所包括的处理器的类型可以相同或不同。处理器是具有处理能力的元件或电路,例如包括以下类型中的一种或多种:通用处理器,现场可编程门阵列(field programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),神经网络处理单元(neural-network processing unit,NPU),图形处理单元(graphics processing unit,GPU),应用处理器(application processor,AP),调制解调处理器,图像信号处理器(image signal processor,ISP),视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或其他集成芯片。其中,通用处理器例如包括中央处理单元(central processor unit,CPU)。此外,控制电路110所包括的全部或部分集成电路芯片可以集成在一起,以片上系统的(system on chip,SoC)的形式呈现。
在一种可能的实施例中,上述接收模组140可以包括透镜结构和感光芯片,该透镜结构可用于将接收到的探测激光对应的回波信号聚焦在该光电转换器件的感光面上,该感光芯片可用于将该回波信号转化为电信号。可选的,该透镜结构可以包括镜头和支架,该支架可用于固定该镜头;该感光芯片可以为单光子雪崩二极管(single photon avalanche diode,SPAD)芯片。
进一步地,图4示出了一种接收模组140的布局方式示意图。该布局方式中设置有一个印刷电路板(printed circuit board,PCB),接收模组140中的感光芯片焊接在该PCB上,该透镜结构罩设在该感光芯片的上方且通过粘接胶或者螺钉等固定在该 PCB上,该感光芯片与该PCB之间通过传输线实现连接。此外,为了保护该传输线和该感光芯片,还可以在该感光芯片与该PCB之间的传输线上涂覆保护胶,在该感光芯片的上方设置保护玻璃。
然而,随着激光雷达识别物体的精度不断提高、以及激光雷达的线束和角分辨率的不断迭代更新,该接收模组的信号处理速度性能和感光芯片靶面要求也在不断提高,从而导致接收模组的功耗成倍增加。但是,该PCB的散热性能较差,上述布局方式中将该感光芯片焊接在该PCB上,不利于该感光芯片的散热;此外,在相同的温差下,由于该PCB的形变量和该透镜结构的形变量与该感光芯片的形变量不一致,还会导致该感光芯片出现芯片应力和高低温下的调制传输函数(modulation transfer function,MTF)降低的问题,该MTF也可以称为解像力。
基于此,本申请实施例提供一种集成装置,该集成装置中设置有衬底层,并将该集成装置中的传感芯片设置在该衬底层上,同时保证该衬底层的热膨胀系数(coefficient of thermal expansion,CTE)与该传感芯片的CTE之间的差值相对较小,从而使得该感光芯片通过该衬底层迅速散热,且保证该感光芯片与该衬底层在相同温差下的形变一致,以解决芯片应力问题。
下面通过具体的实施例介绍本申请实施例所提供的集成装置的具体实现。
图5和图6为本申请实施例提供的一种集成装置的结构示意图,图5示出了该集成装置的一种剖面图,图6示出了该集成装置的一种爆炸图。该集成装置包括:衬底层210、传感芯片220和PCB 230。该传感芯片220设置于该衬底层210上。该PCB 230设置在该衬底层210上,该PCB 230设置有开口231,该传感芯片220位于该开口231内,该传感芯片220通过传输线TL与该PCB 230连接。该衬底层210的CTE与该传感芯片220的CTE之间的差值小于第一预设阈值。
其中,该衬底层210可以包括散热性能较好的材料,比如,该衬底层210可以包括金属材料、和/或陶瓷材料。该金属材料可以为金属单质,也可以包括金属化合物、或者合金材料,还可以包括上述材料的组合。
另外,该传感芯片220可以是指集成有传感器(sensor)的芯片。可选的,该传感芯片220可以为裸片(die),该裸片也可以称为晶粒或者裸晶。该晶粒或者裸晶中可以是指从晶圆(wafer)切割得到的小块。晶圆也可以称为晶元,是指制作硅半导体电路所用的硅晶片,其原始材料可以是硅。
可选的,该传感芯片220设置于该衬底层210上,具体可以通过以下方式中的任一种实现。第一种、该传感芯片220通过粘接胶粘接在该衬底层210上,比如,该粘接胶可以为玻璃胶、单组分胶或者多组分胶等。第二种、该传感芯片220焊接在该衬底层210上,比如,该传感芯片上设置有焊球,通过该焊球焊接在该衬底层210上。第三种、该传感芯片220铆接在该衬底层210上,比如,通过铆钉将该传感芯片220固定在该衬底层210上。在实际应用中,本领域技术人员还可以通过其他方式将该传感芯片220设置于该衬底层210上,上述示例并不对本申请实施例构成限制。
类似的,该PCB 230设置在该衬底层210上,也可以通过上述类似的方式实现。比如,该PCB 230可以通过玻璃胶、单组分胶或者多组分胶等粘接胶粘接在该衬底层210上;或者,该PCB 230可以通过焊球等焊接在该衬底层210上;又或者,该PCB 230可以通过铆 钉等铆接在该衬底层210上。图6中以该PCB 230与该衬底层210之间通过粘结胶连接为例进行说明。在实际应用中,本领域技术人员还可以通过其他方式将该PCB 230设置于该衬底层210上,上述示例并不对本申请实施例构成限制。
再者,用于连接该传感芯片220与该PCB 230的传输线TL可以是金属线,比如,该金属可以为金(Au),即该传输线TL为金线,通过采用金线连接该传感芯片220与该PCB230,可以减小该传输线TL对于传输信号的衰减。
可选的,该传感芯片220与该PCB 230之间存在高度差。比如,该传感芯片220的高度大于该PCB 230的高度;或者,该传感芯片220的高度小于该PCB 230的高度。图5中以该传感芯片220的高度小于该PCB 230的高度为例进行说明。当该传感芯片220与该PCB230之间存在高度差时,有利于在制作该集成装置时形成该传感芯片220与该PCB 230之间的传输线TL。
上述衬底层210的CTE与上述传感芯片220的CTE之间的差值小于第一预设阈值,可以包括:该衬底层210的CTE减去该传感芯片220的CTE得到的差值小于第一预设阈值,或者该传感芯片220的CTE减去该衬底层210的CTE得到的差值小于第一预设阈值。也即是,该衬底层210的CTE与该传感芯片220的CTE之间相差较小。可选的,第一预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。在一种示例中的,该传感芯片220的CTE可以为2ppm/℃左右,该衬底层210的CTE可以为大于或等于3ppm/℃、且小于或等于12ppm/℃。
本申请实施例提供的集成装置中,该传感芯片220和该PCB 230设置在该衬底层210上,该传感芯片220位于该PCB 230上的开口231内,该传感芯片220通过传输线TL与该PCB 230连接,且该衬底层210的CTE与该传感芯片220的CTE之间的差值小于第一预设阈值,能够使得该传感芯片220通过该衬底层210迅速散热,且在相同的温差下,能够保证该衬底层210的形变量与该传感芯片220的形变量基本一致,从而解决该传感芯片220的芯片应力问题。
在一种可能的实施例中,该衬底层210包括以下至少一种材料:铝基碳化硅AlSiC,铝Al,铜Cu,钨W。在一种示例中,该衬底层210包括的材料为铝基碳化硅AlSiC。在另一种示例中,该衬底层210包括的材料为铝Al,铜Cu,或者为钨W。在又一种示例中,该衬底层210包括的材料为铝基碳化硅AlSiC和铝Al,或者铝基碳化硅AlSiC和铜Cu,或者铝基碳化硅AlSiC和钨W。
其中,当该衬底层210包括铝基碳化硅AlSiC时,可以通过调整该铝基碳化硅AlSiC中Al的含量,来调节该衬底层210的CTE。当该衬底层210包括至少两种材料时,可以通过调整该至少两种材料的含量,来调节该衬底层210的CTE。
进一步的,如图7所示,该衬底层210包括基层211、以及设置于该基层211上的凸台212,该传感芯片220设置于该凸台212上。
其中,当该传感芯片220设置于该凸台212上时,该凸台212也可以位于该PCB 230上的开口231内,即该凸台212和该传感芯片220均位于该PCB 230上的开口231内,该传感芯片220还可以穿过该PCB 230上的开口231,以与该PCB 230之间形成高度差,即该传感芯片220的高度此时可以大于该PCB 230的高度。
可选的,如图8中的(a)所示,该基层211和该凸台212一体成型,也即是,该基层 211和该凸台212可以是在一次工艺中形成的同一个衬底层的两个部分。或者,如图8中的(b)所示,该基层211和该凸台212不是一体成型的,而是独立设置的两个部分,比如,该基层211和该凸台212可以是通过两次独立的工艺形成的。当该基层211和该凸台212是独立设置的两个部分时,该凸台212可以通过粘接胶粘接在该基层211上,或者通过焊球焊接或者通过铆钉铆接在该基层211上。
可选的,该基层211的材料和该凸台212的材料相同或不同。在一种可能的示例中,该基层211的材料和该凸台212的材料相同,比如,该基层211的材料和该凸台212的材料均为铝基碳化硅AlSiC,铜Cu,铝Al,或者为钨W。在另一种可能的示例中,该基层211的材料和该凸台212的材料不同,比如,该基层211的材料为铝Al、铜Cu或者钨W,该凸台212的材料为铝基碳化硅AlSiC。图8中的(a)以该基层211的材料和该凸台212的材料相同且均为铝基碳化硅AlSiC为例进行说明;图8中的(b)以该基层211的材料和该凸台212的材料不同,且该基层211的材料为铝Al,该凸台212的材料为铝基碳化硅AlSiC为例进行说明。
进一步的,如图5和图7所示,该集成装置还可以包括:用于保护该传输线TL的保护胶232。即在制造该集成电路时,还可以为该传输线TL涂覆保护胶232,以避免该传输线TL的外围器件对于该传输线TL中的传输信号造成干扰。可选的,该保护胶232可以为玻璃胶。
此外,如图5和图7所示,该集成装置还包括:保护玻璃221,该保护玻璃221位于该传感芯片220的上方。在一种示例中,该保护玻璃221可以通过上述保护胶232固定在该传感芯片220的上方。通过在该传感芯片220的上方设置该保护玻璃221,可以防止灰尘或者杂物等掉落在该传感芯片220上,以避免对该传感芯片220的性能造成影响。
在一种可能的实施例中,该传感芯片220为感光芯片,该感光芯片可以是指能够将光信号转换为电信号的芯片。在一种示例中,该感光芯片具体为SPAD芯片。这样,在将该集成装置用于激光雷达中的接收模组时,能够提高该接收模组中该感光芯片的散热性能,同时避免了因为该传感芯片220的CTE与该PCB 230的CTE不一致,而导致该传感芯片220出现芯片应力的问题。
进一步的,如图9和图10所示,该集成装置还可以包括:透镜结构240,该透镜结构240罩设在该传感芯片220的上方且固定在该衬底层210上,该透镜结构240的焦点位于该传感芯片220的感光面上。图9示出了该集成装置的一种剖面图,图9示出了该集成装置的一种爆炸图。图9和图10中以该集成装置中的衬底层210不包括上述凸台212,且图10中以该PCB 230与该衬底层210之间通过粘结胶连接为例进行说明。
其中,该透镜结构240可以包括镜头241和支架242,该支架242可用于固定该镜头241,该透镜结构240可通过该支架242固定在该衬底层210上。
可选的,该透镜结构240固定在该衬底层210上,具体可以包括:该透镜结构240粘接在该衬底层210上;或者,该透镜结构240焊接在该衬底层210上;或者,该透镜结构240铆接在该衬底层210上。本申请实施例仅以上述固定方式为例进行说明,并不对本申请实施例构成限制。
在一种可能的实施例中,该透镜结构240的CTE与该传感芯片220的CTE之间的差值小于第二预设阈值。这里的差值小于第二预设阈值,可以包括:该透镜结构240的CTE 减去该传感芯片220的CTE得到的差值小于第二预设阈值,或者该传感芯片220的CTE减去该透镜结构240的CTE得到的差值小于第二预设阈值。也即是,该透镜结构240的CTE与该传感芯片220的CTE之间相差较小。可选的,第二预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。
在本申请实施例中,通过设置该透镜结构240的CTE与该传感芯片220的CTE之间的差值小于第二预设阈值,可以使得该透镜结构240的CTE与该传感芯片220的CTE相补偿,这样在相同的温差下,该透镜结构240的形变量与该传感芯片220的形变量基本保持一致,从而保证该透镜结构240的焦点始终位于该传感芯片220的感光面上,避免因为该透镜结构240的形变量与该传感芯片220的形变量不一致,而导致该传感芯片220在高低温下出现MTF降低的问题。
基于此,本申请实施例还提供一种探测装置,该探测装置包括:控制电路和接收模组,该接收模组包括上文所提供的任意一种集成装置;其中,该控制电路用于向该接收模组发送第一控制信号,该接收模组用于根据第一控制信号接收探测激光扫描目标物体后所返回的回波信号,并将回波信号转化为电信号,该控制电路还用于处理电信号得到点云数据。可选的,该探测装置还包括发射模组,该控制电路还用于向该发射模组发送第二控制信号,该发射模组用于根据第二控制信号发射上述探测激光。
在一种可能的实施例中,该探测装置还包括扫描模组,该扫描模组可用于在控制电路的控制下改变该接收模组接收上述回波信号的接收角度。可选的,该扫描模组可用于在控制电路的控制下改变发射模组发射的探测激光的扫描角度。
可选的,该探测装置可以为激光雷达,或能发出探测激光的其它装置。例如,一些探测装置的举例包括但不限于:车载激光雷达、家用扫地机器人激光传感器、码头激光检测模组、激光打印机等。
本申请实施例还提供一种终端,包括上述内容所介绍的探测装置。可选的,该终端包括但不限于:智能家居设备(诸如电视、扫地机器人、智能台灯、音响系统、智能照明系统、电器控制系统、家庭背景音乐、家庭影院系统、对讲系统、视频监控等)、智能运输设备(诸如汽车、轮船、无人机、火车、货车、卡车等车辆)、智能制造设备(诸如机器人、工业设备、智能物流、智能工厂等)、智能终端(手机、计算机、平板电脑、掌上电脑、台式机、耳机、音响、穿戴设备、车载设备、虚拟现实设备、增强现实设备等)。
图11为本申请实施例提供的一种集成装置的制作方法的流程示意图,该集成装置可以为上文所提供的集成装置,该方法包括以下几个步骤。图12和图13为该集成装置在制作过程中的剖面图。
S301:形成衬底层。如图12中(a)或图13中的(a)所示。
其中,该衬底层可以包括散热性能较好的材料,比如,该衬底层可以包括金属材料、和/或陶瓷材料。该金属材料可以为金属单质,也可以包括金属化合物、或者合金材料,还可以包括上述材料的组合。
在一种可能的实施例中,该衬底层包括以下至少一种材料:铝基碳化硅AlSiC,铝Al,铜Cu,钨W。在一种示例中,该衬底层包括的材料为铝基碳化硅AlSiC。在另一种示例中,该衬底层包括的材料为铝Al,铜Cu或者为钨W。在又一种示例中,该衬底层包括的材料为铝基碳化硅AlSiC和铝Al,或者铝基碳化硅AlSiC和铜Cu,或者铝基碳化硅AlSiC和 钨W。
可选的,该衬底层包括基层和凸台。在一种可能的实施例中,该基层和该凸台一体成型,也即是,该基层和该凸台可以是在一次工艺中形成的同一个衬底层的两个部分。或者,该基层和该凸台不是一体成型的,而是独立设置的两个部分,比如,该基层和该凸台可以是通过两次独立的工艺形成的。当该基层和该凸台是独立设置的两个部分时,该凸台可以通过粘接胶粘接在该基层上,或者通过铆钉等铆接在该基层上。图12中以该衬底层不包括凸台,图13中以该衬底层包括凸台为例进行说明。
可选的,该基层与该凸台的材料不同。在一种可能的示例中,该基层的材料和该凸台的材料相同,比如,该基层的材料和该凸台的材料均为铝基碳化硅AlSiC,铝Al,铜Cu或者为钨W。在另一种可能的示例中,该基层的材料和该凸台的材料不同,比如,该基层的材料为铝Al、铜Cu,或者钨W,该凸台的材料为铝基碳化硅AlSiC。
其中,当该衬底层包括铝基碳化硅AlSiC时,可以通过调整该铝基碳化硅AlSiC中Al的含量,来调节该衬底层的CTE。当该衬底层包括至少两种材料时,可以通过调整该至少两种材料的含量,来调节该衬底层的CTE。
S302:在该衬底层上设置传感芯片。如图12中(b)或图13中的(b)所示。
其中,该传感芯片可以是指集成有传感器的芯片。在一种可能的实施例中,该传感芯片可以为裸片,该裸片也可以称为晶粒或者裸晶。该晶粒或者裸晶中可以是指从晶圆中切割得到的小块。晶圆也可以称为晶元,是指制作硅半导体电路所用的硅晶片,其原始材料可以是硅。
可选的,该衬底层的CTE与该传感芯片的CTE之间的差值小于第一预设阈值,即该衬底层的CTE减去该传感芯片的CTE得到的差值小于第一预设阈值,或者该传感芯片的CTE减去该衬底层的CTE得到的差值小于第一预设阈值。可选的,第一预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。在一种示例中的,该传感芯片的CTE可以为2ppm/℃左右,该衬底层210的CTE可以为大于或等于3ppm/℃、且小于或等于12ppm/℃。
具体的,在该衬底层上设置该传感芯片,可以通过以下方式中的任一种实现。第一种、该传感芯片通过粘接胶粘接在该衬底层上,比如,该粘接胶可以为玻璃胶、单组分胶或者多组分胶等。第二种、该传感芯片焊接在该衬底层上,比如,该传感芯片上设置有焊球,通过该焊球焊接在该衬底层上。第三种、该传感芯片铆接在该衬底层上,比如,通过铆钉将该传感芯片固定在该衬底层上。
S303:在该衬底层上设置PCB,并通过传输线TL连接该传感芯片与该PCB,该传感芯片位于该PCB的开口内。如图12中(c)或图13中的(c)所示。
具体的,在该衬底层上设置该PCB,可以包括:通过粘接胶将该PCB粘接在该衬底层上;或者,通过该PCB的焊球将该PCB焊接在该衬底层上;又或者,通过铆钉将该铆接在该衬底层上。
其中,用于连接该传感芯片与该PCB的传输线TL可以是金属线,比如,该金属可以为金(Au),即该传输线TL为金线,通过采用金线连接该传感芯片与该PCB,可以减小该传输线TL对于传输信号的衰减。
可选的,该传感芯片与该PCB之间存在高度差。比如,如图12中(c)所示,该传 感芯片的高度小于该PCB的高度;或者,如图13中的(c)所示,该传感芯片的高度大于该PCB的高度。通过在该传感芯片与该PCB之间形成高度差,有利于形成该传感芯片与该PCB之间的传输线TL。
在一种可能的实施例中,该集成装置还包括保护胶,该方法还可以包括:S3031.在该传输线TL上设置该保护胶。如图12中(d)或图13中的(d)所示。具体的,在该传输线TL上涂覆保护胶,这样可以避免该传输线TL的外围器件对于该传输线TL中的传输信号造成干扰。可选的,该保护胶可以为玻璃胶。
在另一种可能的实施例中,该集成装置还包括保护玻璃,该方法还可以包括:S3032.在该传感芯片的上方设置该保护玻璃。如图12中(d)或图13中的(d)所示。在一种示例中,该保护玻璃可以通过上述玻璃胶固定在该传感芯片的上方。通过在该传感芯片的上方设置该保护玻璃,可以防止灰尘或者杂物等掉落在该传感芯片上,以避免对该传感芯片的性能造成影响。
本申请实施例中,将该传感芯片和该PCB设置在该衬底层上,该传感芯片位于该PCB上的开口内,该传感芯片通过传输线TL与该PCB连接,且该衬底层的CTE与该传感芯片的CTE之间的差值小于第一预设阈值,能够使得该传感芯片通过该衬底层迅速散热,且在相同的温差下,能够保证该衬底层的形变量与该传感芯片的形变量基本一致,从而解决该传感芯片的芯片应力问题。
进一步的,该集成装置还包括透镜结构;相应的,如图11所示,该方法还可以包括:S304。
S304:将该透镜结构罩设在该传感芯片上方且固定在该衬底层上,该透镜结构的焦点位于该传感芯片的感光面上。如图12中(e)或图13中的(e)所示。
其中,该透镜结构可以包括镜头和支架,该支架可用于固定该镜头,该透镜结构可通过该支架固定在该衬底层上。可选的,该透镜结构固定在该衬底层上,具体可以包括:该透镜结构粘接在该衬底层上;或者,该透镜结构焊接在该衬底层上;或者,该透镜结构铆接在该衬底层上。如图12中(e)和图13中的(e)仅以该透镜结构铆接在该衬底层上为例进行说明。
在一种可能的实施例中,该透镜结构的CTE与该传感芯片的CTE之间的差值小于第二预设阈值。这里的差值小于第二预设阈值,可以包括:该透镜结构的CTE减去该传感芯片的CTE得到的差值小于第二预设阈值,或者该传感芯片的CTE减去该透镜结构的CTE得到的差值小于第二预设阈值。也即是,该透镜结构的CTE与该传感芯片的CTE之间相差较小。可选的,第二预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。
在本申请实施例中,通过设置该透镜结构的CTE与该传感芯片的CTE之间的差值小于第二预设阈值,可以使得在相同的温差下,该透镜结构的形变量与该传感芯片的形变量基本保持一致,从而保证该透镜结构的焦点始终位于该传感芯片的感光面上,避免因为该透镜结构的形变量与该传感芯片的形变量不一致,而导致该传感芯片在高低温下出现MTF降低的问题。
根据本申请实施例提供的制作方法,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当计算机程序被运行时,执行上述内容所介绍的制作方法。
根据本申请实施例提供的制作方法,本申请实施例还提供一种计算机程序产品,当计算机程序产品在处理器上运行时,实现上述内容所介绍的制作方法。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种集成装置,其特征在于,所述集成装置包括:衬底层、传感芯片和印刷电路板PCB;
    所述传感芯片设置于所述衬底层上;
    所述PCB设置在所述衬底层上,所述PCB设置有开口,所述传感芯片位于所述开口内,所述传感芯片通过传输线与所述PCB连接;
    其中,所述衬底层的热膨胀系数CTE与所述传感芯片的CTE之间的差值小于第一预设阈值。
  2. 根据权利要求1所述的集成装置,其特征在于,所述衬底层包括基层和凸台,所述传感芯片设置于所述凸台上。
  3. 根据权利要求2所述的集成装置,其特征在于,所述基层和所述凸台一体成型;或者,所述基层的材料与所述凸台的材料不同。
  4. 根据权利要求1-3任一项所述的集成装置,其特征在于,所述传感芯片通过粘接胶粘接在所述衬底层上;或者,所述传感芯片焊接或者铆接在所述衬底层上。
  5. 根据权利要求1-4任一项所述的集成装置,其特征在于,所述第一预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。
  6. 根据权利要求1-5任一项所述的集成装置,其特征在于,所衬底层包括以下至少一种材料:铝基碳化硅AlSiC,铝Al,铜Cu,钨W。
  7. 根据权利要求1-6任一项所述的集成装置,其特征在于,所述传感芯片与所述PCB存在高度差。
  8. 根据权利要求1-7任一项所述的集成装置,其特征在于,所述集成装置还包括:
    透镜结构,罩设在所述传感芯片上方且固定在所述衬底层上,所述透镜结构的焦点位于所述传感芯片的感光面上。
  9. 根据权利要求8所述的集成装置,其特征在于,所述透镜结构的CTE与所述传感芯片的CTE之间的差值小于第二预设阈值。
  10. 根据权利要求1-9任一项所述的集成装置,其特征在于,所述集成装置还包括:用于保护所述传输线的保护胶。
  11. 根据权利要求1-10任一项所述的集成装置,其特征在于,所述集成装置还包括:保护玻璃,所述保护玻璃位于所述传感芯片的上方。
  12. 根据权利要求1-11任一项所述的集成装置,其特征在于,所述PCB通过粘接胶粘接在所述衬底层上;或者,所述PCB焊接或者铆接在所述衬底层上。
  13. 根据权利要求1-12任一项所述的集成装置,其特征在于,所述传感芯片为裸片。
  14. 根据权利要求13所述的集成装置,其特征在于,所述传感芯片为感光芯片。
  15. 一种探测装置,其特征在于,所述探测装置包括:控制电路、以及如权利要求1-14任一项所述的集成装置,所述控制电路用于接收所述集成装置输出的信号。
  16. 一种终端,其特征在于,所述终端包括:如权利要求15所述的探测装置。
  17. 根据权利要求16所述的终端,其特征在于,所述终端为车辆。
  18. 一种集成装置的制作方法,其特征在于,所述集成装置包括衬底层、传感芯片和 具有开口的印刷电路板PCB,所述方法包括:
    形成所述衬底层;
    在所述衬底层上设置所述传感芯片;
    在所述衬底层上设置所述PCB,并通过传输线连接所述传感芯片与所述PCB,所述传感芯片位于所述PCB的所述开口内;
    其中,所述衬底层的热膨胀系数CTE与所述传感芯片的CTE之间的差值小于第一预设阈值。
  19. 根据权利要求18所述的方法,其特征在于,所述衬底层包括基层和凸台,所述传感芯片设置于所述凸台上。
  20. 根据权利要求19所述的方法,其特征在于,所述基层和所述凸台一体成型;或者,所述基层的材料与所述凸台的材料不同。
  21. 根据权利要求18-20任一项所述的方法,其特征在于,所述在所述衬底层上设置于所述传感芯片,包括:
    将所述传感芯片通过粘接胶粘接在所述衬底层上;或者,将所述传感芯片通过焊接或铆接在所述衬底层上。
  22. 根据权利要求18-21任一项所述的方法,其特征在于,所述第一预设阈值满足:大于或等于0ppm/℃,且小于或等于10ppm/℃。
  23. 根据权利要求18-22任一项所述的方法,其特征在于,所衬底层包括以下至少一种材料:铝基碳化硅AlSiC,铝Al,铜Cu,钨W。
  24. 根据权利要求18-23任一项所述的方法,其特征在于,所述传感芯片与所述PCB存在高度差。
  25. 根据权利要求18-24任一项所述的方法,其特征在于,所述集成装置还包括透镜结构,所述方法还包括:
    将所述透镜结构罩设在所述传感芯片上方且固定在所述衬底层上,所述透镜结构的焦点位于所述传感芯片的感光面上。
  26. 根据权利要求25所述的方法,其特征在于,所述透镜结构的CTE与所述传感芯片的CTE之间的差值小于第二预设阈值。
  27. 根据权利要求18-26任一项所述的方法,其特征在于,所述集成装置还包括保护胶,所述方法还包括:在所述传输线上设置所述保护胶。
  28. 根据权利要求18-27任一项所述的方法,其特征在于,所述集成装置还包括保护玻璃,所述方法还包括:在所述传感芯片的上方设置所述保护玻璃。
  29. 根据权利要求18-28任一项所述的方法,其特征在于,所述在所述衬底层上设置所述PCB,包括:将所述PCB通过粘接胶粘接在所述衬底层上;或者,将所述PCB通过焊接或铆接在所述衬底层上。
  30. 根据权利要求18-29任一项所述的方法,其特征在于,所述传感芯片为裸片。
  31. 根据权利要求30所述的方法,其特征在于,所述传感芯片为感光芯片。
PCT/CN2022/132858 2022-11-18 2022-11-18 一种集成装置、探测装置、终端及制作方法 WO2024103388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132858 WO2024103388A1 (zh) 2022-11-18 2022-11-18 一种集成装置、探测装置、终端及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132858 WO2024103388A1 (zh) 2022-11-18 2022-11-18 一种集成装置、探测装置、终端及制作方法

Publications (1)

Publication Number Publication Date
WO2024103388A1 true WO2024103388A1 (zh) 2024-05-23

Family

ID=91083624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132858 WO2024103388A1 (zh) 2022-11-18 2022-11-18 一种集成装置、探测装置、终端及制作方法

Country Status (1)

Country Link
WO (1) WO2024103388A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046344B2 (en) * 2003-06-25 2006-05-16 Fuji Electric Device Technology Co., Ltd. Range finder
JP2006245090A (ja) * 2005-03-01 2006-09-14 Konica Minolta Holdings Inc 半導体用パッケージ及びその製造方法
US20210014965A1 (en) * 2019-07-11 2021-01-14 Innolight Technology (Suzhou) Ltd. Hybrid carrier board and manufacturing method, assembly, and optical module thereof
CN216928585U (zh) * 2021-11-11 2022-07-08 江苏长电科技股份有限公司 一种激光雷达产品封装结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046344B2 (en) * 2003-06-25 2006-05-16 Fuji Electric Device Technology Co., Ltd. Range finder
JP2006245090A (ja) * 2005-03-01 2006-09-14 Konica Minolta Holdings Inc 半導体用パッケージ及びその製造方法
US20210014965A1 (en) * 2019-07-11 2021-01-14 Innolight Technology (Suzhou) Ltd. Hybrid carrier board and manufacturing method, assembly, and optical module thereof
CN216928585U (zh) * 2021-11-11 2022-07-08 江苏长电科技股份有限公司 一种激光雷达产品封装结构

Similar Documents

Publication Publication Date Title
US7042082B2 (en) Method and apparatus for a backsided and recessed optical package connection
US20220007492A1 (en) Vehicular camera module with focus athermalization
US20190273851A1 (en) Imaging apparatus and imaging system having press bent infrared cut filter holder
CN211265963U (zh) 激光二极管封装模块及距离探测装置、电子设备
US20210281040A1 (en) Laser diode packaging module, distance detection device, and electronic device
US11355465B2 (en) Semiconductor device including glass substrate having improved reliability and method of manufacturing the same
US11862929B2 (en) Laser diode packaging module, distance detection device, and electronic device
CN110663147A (zh) 激光二极管封装模块及发射装置、测距装置、电子设备
WO2024103388A1 (zh) 一种集成装置、探测装置、终端及制作方法
WO2023124354A1 (zh) 一种车辆控制器、车辆和车辆控制方法
JP2003244560A (ja) 固体撮像装置
US9647636B1 (en) Piezoelectric package-integrated delay lines for radio frequency identification tags
Schnabel et al. Development of a mid range automotive radar sensor for future driver assistance systems
US10958860B2 (en) Module and method of manufacturing module
JP2010278603A (ja) 撮像モジュール
WO2022153671A1 (ja) 半導体パッケージ、電子装置、および、半導体パッケージの製造方法
US20210341588A1 (en) Ranging device and mobile platform
US20130307005A1 (en) Low Cost Surface Mount Packaging Structure for Semiconductor Optical Device and Packaging Method Therefor
CN113079708A (zh) 激光二极管封装模块及距离探测装置、电子设备
CN111742450B (zh) 转发器以及测距系统
WO2023142030A1 (zh) 一种电路结构、发射模组、探测装置及终端设备
WO2024106011A1 (ja) 半導体パッケージ、電子装置、および、半導体パッケージの制御方法
CN111856486A (zh) Tof测距装置及其制作方法
WO2024087176A1 (zh) 集成装置、制作方法、集成电路、探测装置及终端
WO2023070442A1 (zh) 激光二极管芯片的封装结构及方法、测距装置、可移动平台