WO2024101948A1 - 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2024101948A1
WO2024101948A1 PCT/KR2023/018066 KR2023018066W WO2024101948A1 WO 2024101948 A1 WO2024101948 A1 WO 2024101948A1 KR 2023018066 W KR2023018066 W KR 2023018066W WO 2024101948 A1 WO2024101948 A1 WO 2024101948A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
layer
compound
Prior art date
Application number
PCT/KR2023/018066
Other languages
English (en)
French (fr)
Inventor
한수진
박종진
윤정민
윤희경
이재탁
허동욱
홍성길
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024101948A1 publication Critical patent/WO2024101948A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D497/00Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D497/12Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D497/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • This specification relates to compounds and organic light-emitting devices containing the same.
  • an organic light-emitting device is a light-emitting device using an organic semiconductor material and requires exchange of holes and/or electrons between an electrode and an organic semiconductor material.
  • Organic light-emitting devices can be broadly divided into two types according to their operating principles as follows. First, excitons are formed in the organic layer by photons flowing into the device from an external light source, these excitons are separated into electrons and holes, and these electrons and holes are transferred to different electrodes and used as current sources (voltage sources). It is a type of light emitting device. The second type is a light-emitting device that applies voltage or current to two or more electrodes to inject holes and/or electrons into the organic semiconductor material layer forming the interface with the electrodes, and operates by the injected electrons and holes.
  • organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials.
  • Organic light-emitting devices that utilize the organic light-emitting phenomenon usually have a structure including an anode, a cathode, and an organic material layer between them.
  • the organic material layer is often composed of a multi-layer structure composed of different materials to increase the efficiency and stability of the organic light-emitting device, and for example, it consists of a hole injection layer, a hole transport layer, a light-emitting layer, an electron suppression layer, an electron transport layer, and an electron injection layer. You can lose.
  • this organic light-emitting device when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer. When the injected holes and electrons meet, an exciton is formed, and this exciton When it falls back to the ground state, it glows.
  • These organic light-emitting devices are known to have characteristics such as self-luminescence, high brightness, high efficiency, low driving voltage, wide viewing angle, and high contrast.
  • Materials used as organic layers in organic light-emitting devices can be classified into light-emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron suppression materials, electron transport materials, and electron injection materials, depending on their function.
  • charge transport materials such as hole injection materials, hole transport materials, electron suppression materials, electron transport materials, and electron injection materials, depending on their function.
  • color of light emitting there are blue, green, and red light emitting materials, and yellow and orange light emitting materials needed to realize better natural colors.
  • a host/dopant system can be used as a luminescent material.
  • the principle is that when a small amount of dopant, which has a smaller energy band gap and higher luminous efficiency than the host that mainly constitutes the light-emitting layer, is mixed into the light-emitting layer, excitons generated in the host are transported to the dopant, producing highly efficient light.
  • the wavelength of the host moves to the wavelength of the dopant, light of the desired wavelength can be obtained depending on the type of dopant used.
  • the materials that make up the organic layer within the device such as hole injection material, hole transport material, light-emitting material, electron suppressor material, electron transport material, and electron injection material, must be stable and efficient materials. As this is supported by , the development of new materials continues to be required.
  • An exemplary embodiment of the present specification provides a compound of Formula 1 below.
  • Y1 and Y2 are the same or different from each other and are each independently O or S,
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, a halogen group, a nitrile group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group,
  • R are the same or different from each other, and are each independently hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group, or substituted or unsubstituted heteroaryl group, or an adjacent substituent group Can be combined to form a substituted or unsubstituted ring,
  • L1 and L2 are the same or different from each other and are each independently a direct bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group,
  • a is 1 to 3, and when a is 2 or more, Q1 is the same or different from each other,
  • b is 1 to 7, and when b is 2 or more, Q2 is the same or different from each other.
  • a first electrode a second electrode provided opposite the first electrode; and an organic light-emitting device including one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers include the above-mentioned compounds.
  • the compound of the present invention can be used as a material for the organic layer of an organic light-emitting device.
  • an organic light emitting device including the compound of the present invention an organic light emitting device with high efficiency, low voltage, and long lifespan characteristics can be obtained, and the compound of the present invention can be used in the electron injection layer, electron transport layer, and electron injection of the organic light emitting device. And when included in the transport layer, an organic light emitting device having long lifespan characteristics can be manufactured.
  • the compound of the present invention has two or more substituted heterocycles containing an N-containing 6-membered ring with electron transport properties, and the substituents are adjacent to each other at ortho positions, resulting in structural distortion, allowing the electron transport ability to be adjusted in various ways. You can.
  • FIG. 1 and 2 show examples of organic light-emitting devices according to the present invention.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is changed to another substituent.
  • the position to be substituted is not limited as long as it is the position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted, and if two or more substituents are substituted. , two or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; Nitrile group (-CN); silyl group; boron group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; and substituted or unsubstituted heteroaryl groups, or substituted with a substituent in which two or more of the above-exemplified substituents are linked, or having no substituent.
  • a substituent group in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, or it may be interpreted as a substituent in which two phenyl groups are connected.
  • halogen groups include fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
  • the silyl group is deuterium; Substituted or unsubstituted alkyl group; Alternatively, it may be substituted or unsubstituted with a substituted or unsubstituted aryl group.
  • the silyl group specifically includes, but is not limited to, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, and phenylsilyl group. No.
  • the boron group is deuterium; Substituted or unsubstituted alkyl group; Alternatively, it may be substituted or unsubstituted with a substituted or unsubstituted aryl group.
  • the boron group specifically includes, but is not limited to, trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, and phenyl boron group.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 60. According to one embodiment, the carbon number of the alkyl group is 1 to 30. According to another embodiment, the carbon number of the alkyl group is 1 to 20. According to another embodiment, the carbon number of the alkyl group is 1 to 10. Specific examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, and octyl groups.
  • the amine group is -NH 2 ; Alkylamine group; N-alkylarylamine group; Arylamine group; N-arylheteroarylamine group; It may be selected from the group consisting of N-alkylheteroarylamine group and heteroarylamine group, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30.
  • amine groups include methylamine groups; dimethylamine group; ethylamine group; diethylamine group; phenylamine group; Naphthylamine group; Biphenylamine group; Anthracenylamine group; 9-methylanthracenylamine group; Diphenylamine group; Ditolylamine group; N-phenyltolylamine group; Triphenylamine group; N-phenylbiphenylamine group; N-phenylnaphthylamine group; N-biphenylnaphthylamine group; N-naphthylfluorenylamine group; N-phenylphenanthrenylamine group; N-biphenylphenanthrenylamine group; N-phenylfluorenylamine group; N-phenylterphenylamine group; N-phenanthrenylfluorenylamine group; N-biphenylfluorenylamine group, etc.
  • N-alkylarylamine group refers to an amine group in which the N of the amine group is substituted with an alkyl group and an aryl group.
  • N-arylheteroarylamine group refers to an amine group in which the N of the amine group is substituted with an aryl group and a heteroaryl group.
  • N-alkylheteroarylamine group refers to an amine group in which the N of the amine group is substituted with an alkyl group and a heteroaryl group.
  • alkyl groups in the alkylamine group, N-arylalkylamine group, alkylthioxy group, alkylsulfoxy group, and N-alkylheteroarylamine group are the same as the examples of the alkyl groups described above.
  • the alkylthioxy group includes methylthioxy group; ethylthioxy group; tert-butylthioxy group; hexylthioxy group; Octylthioxy groups, etc.
  • examples of alkylsulfoxy groups include mesyl; ethyl sulfoxy group; Propyl alcohol oxygen group; Butyl sulfoxy group, etc., but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another embodiment, the carbon number of the cycloalkyl group is 3 to 6. Specifically, it includes cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., but is not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, biphenyl group, or terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, triphenylene group, chrysenyl group, fluorenyl group, etc., but is not limited thereto.
  • the heteroaryl group is a cyclic group containing one or more of N, O, P, S, Si, and Se as heteroatoms, and the number of carbon atoms is not particularly limited, but it is preferably 2 to 60 carbon atoms. According to one embodiment, the heteroaryl group has 2 to 30 carbon atoms.
  • heteroaryl groups include pyridine group, pyrrole group, pyrimidine group, pyridazinyl group, furan group, thiophene group, imidazole group, pyrazole group, dibenzofuran group, dibenzothiophene group, carbazole group, etc. However, it is not limited to these.
  • Formula 1 is any one of the following Formulas 1-1 to 1-4.
  • X1 to X10, Y1, Y2, L1, L2, Q1, Q2, a and b are as defined in Formula 1.
  • Formula 1 is the following Formula 1-1-1 or 1-1-2.
  • X1 to X10, L1, L2, Q1, Q2, a, and b are as defined in Formula 1.
  • Formula 1 is the following Formula 1-1-3 or 1-1-4.
  • X1 to X10, L1, L2, Q1, Q2, a, and b are as defined in Formula 1.
  • Formula 1 is any one of the following Formulas 1-1-5 to 1-1-8.
  • X1 to X10, L1, L2, Q1, Q2, a, and b are as defined in Formula 1.
  • Y1 and Y2 are O.
  • Y1 and Y2 are S.
  • Y1 is O and Y2 is S.
  • Y1 is S and Y2 is O.
  • any two of X1 to X5 are N, and the others are CR.
  • any set of X1 to X5 is N, and the rest are CR.
  • any four of X1 to X5 are N, and the remainder are CR,
  • X1 to X5 are N.
  • X1 to X3 are N, and the remainder is CR.
  • X1 to X5 are N, and the remainder is CR.
  • X1 and X5 are N, and the remainder is CR.
  • X1, X3, and X5 are N, and the remainder are CR.
  • any two of X6 to X10 are N, and the others are CR.
  • any three of X6 to X10 are N, and the rest are CR.
  • any four of X6 to X10 are N, and the remainder are CR,
  • X6 to X10 are N.
  • X6 and X8 are N, and the remainder is CR.
  • X6 to X10 are N, and the remainder is CR.
  • X6 and X10 are N, and the remainder is CR.
  • X6, X8, and X10 are N, and the remainder are CR.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted arylene group having 3 to 30 carbon atoms. It is a heteroarylene group.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted arylene group having 3 to 20 carbon atoms. It is a heteroarylene group.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a substituted or unsubstituted arylene group having 6 to 15 carbon atoms, or a substituted or unsubstituted arylene group having 3 to 15 carbon atoms. It is a heteroarylene group.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, an arylene group having 6 to 30 carbon atoms substituted or unsubstituted with deuterium, or an arylene group with carbon atoms substituted or unsubstituted with deuterium. It is a heteroarylene group of 3 to 30.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with deuterium, or an arylene group with 6 to 20 carbon atoms substituted or unsubstituted with deuterium. It is a heteroarylene group of 3 to 20.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, an arylene group having 6 to 15 carbon atoms substituted or unsubstituted with deuterium, or an arylene group with 6 to 15 carbon atoms substituted or unsubstituted with deuterium. It is a heteroarylene group of 3 to 15.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, It is a substituted or unsubstituted divalent naphthyl group, a divalent anthracene group substituted or unsubstituted with deuterium, or a divalent phenanthrene group substituted or unsubstituted with deuterium.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a phenylene group substituted or unsubstituted with deuterium, a divalent biphenyl group substituted or unsubstituted with deuterium, or It is a divalent naphthyl group that is substituted or unsubstituted.
  • L1 and L2 are the same or different from each other, and are each independently a direct bond, a phenylene group substituted or unsubstituted with deuterium, or a divalent naphthyl group substituted or unsubstituted with deuterium.
  • L1 is a direct bond
  • L1 is a phenylene group unsubstituted or substituted with deuterium.
  • L1 is a divalent naphthyl group substituted or unsubstituted with deuterium.
  • L2 is a direct bond
  • L2 is a phenylene group unsubstituted or substituted with deuterium.
  • L2 is a divalent naphthyl group substituted or unsubstituted with deuterium.
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, nitrile group, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group, substituted or It is an unsubstituted heteroaryl group.
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, nitrile group, substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted It is an aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms.
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, nitrile group, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted It is an aryl group with 6 to 20 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 20 carbon atoms.
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, nitrile group, substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, substituted or unsubstituted It is an aryl group with 6 to 15 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 15 carbon atoms.
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, nitrile group, methyl group, ethyl group, propyl group, or terbutyl group.
  • Q1 and Q2 are the same or different from each other, and are each independently hydrogen, deuterium, F, Cl, Br, nitrile group, methyl group, ethyl group, propyl group, or terbutyl group.
  • Q1 and Q2 are the same or different from each other and are each independently hydrogen or deuterium.
  • Q1 and Q2 are hydrogen.
  • Q1 and Q2 are deuterium.
  • R is hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group, or substituted or unsubstituted heteroaryl group, or an adjacent substituent Can be combined with to form a substituted or unsubstituted ring.
  • R is hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or substituted or It may be an unsubstituted heteroaryl group having 3 to 30 carbon atoms, or it may be combined with an adjacent substituent to form a substituted or unsubstituted hydrocarbon ring.
  • R is hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or substituted or It may be an unsubstituted heteroaryl group having 3 to 30 carbon atoms, or it may be combined with an adjacent substituent to form a substituted or unsubstituted aliphatic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heterocycle.
  • R is hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or substituted or It may be an unsubstituted heteroaryl group having 3 to 20 carbon atoms, or it may be combined with an adjacent substituent to form a substituted or unsubstituted aliphatic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heterocycle.
  • R is hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, substituted or unsubstituted aryl group having 6 to 15 carbon atoms, or substituted or It may be an unsubstituted heteroaryl group having 3 to 15 carbon atoms, or it may be combined with an adjacent substituent to form a substituted or unsubstituted aliphatic ring, a substituted or unsubstituted aromatic ring, or a substituted or unsubstituted heterocycle.
  • R is a nitrile group; methyl group; A phenyl group substituted or unsubstituted with deuterium, nitrile group, or dibenzofuran group; Biphenyl group substituted or unsubstituted with a nitrile group; naphthyl group; phenanthrene group; triphenylene group; Pyridine group; Carbazole group substituted or unsubstituted with a phenyl group; Fluorene group substituted or unsubstituted with a methyl group; Benzimidazole group substituted or unsubstituted with ethyl group and phenyl group; Or it is a dibenzofuran group.
  • R combines with an adjacent ring to form a benzene ring.
  • Formula 1 is one of the structural formulas below.
  • Substituents of the compound of Formula 1 may be combined by methods known in the art, and the type, position, or number of substituents may be changed according to techniques known in the art.
  • the organic light emitting device includes a first electrode; a second electrode provided opposite the first electrode; And an organic light-emitting device comprising at least one organic material layer provided between the first electrode and the second electrode, wherein at least one layer of the organic material layer contains the above-described compound.
  • the organic light emitting device of the present invention can be manufactured using conventional organic light emitting device manufacturing methods and materials, except that one or more organic material layers are formed using the above-described compounds.
  • the compound may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution application method refers to spin coating, dip coating, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light-emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a layer that simultaneously performs hole injection and hole transport, a light-emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited to this and may include fewer or more organic material layers.
  • the organic material layer may include one or more of an electron transport layer, an electron injection layer, and an electron injection and transport layer, and one or more of the layers may include the compound represented by Formula 1. You can.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer may include the compound represented by Formula 1.
  • the electron injection and transport layer includes the compound of Formula 1 and a metal complex.
  • the organic material layer may include one or more layers among a hole injection layer, a hole transport layer, and a layer that performs both hole injection and hole transport, and one or more of the layers is represented by the formula (1) It may contain compounds.
  • the organic material layer may include a hole injection layer or a hole transport layer, and the hole transport layer or the hole injection layer may include the compound represented by Formula 1 above.
  • the first electrode is an anode and the second electrode is a cathode.
  • the first electrode is a cathode and the second electrode is an anode.
  • the structure of the organic light emitting device of the present invention may have the same structure as shown in FIG. 1, but is not limited thereto.
  • Figure 1 illustrates the structure of an organic light-emitting device in which an anode 2, an organic material layer 3, and a cathode 4 are sequentially stacked on a substrate 1.
  • the compound represented by Formula 1 may be included in the organic layer 3.
  • Figure 2 shows an organic light emitting device in which an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (7), an electron injection and transport layer (8), and a cathode (4) are sequentially stacked on a substrate (1).
  • the structure of the device is illustrated.
  • the compound represented by Formula 1 may be included in the electron injection and transport layer 8.
  • the organic light emitting device deposits a metal, a conductive metal oxide, or an alloy thereof on a substrate using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation.
  • PVD physical vapor deposition
  • An anode is formed by depositing a layer on top of a hole injection layer, a hole transport layer, a layer that performs both hole transport and hole injection, a light emitting layer, an electron transport layer, an electron injection layer, and a group consisting of a layer that performs both electron transport and electron injection. It can be manufactured by forming an organic material layer containing one or more selected layers and then depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device can also be made by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the organic material layer may have a multi-layer structure including a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer, but is not limited to this and may have a single-layer structure.
  • the organic material layer uses a variety of polymer materials to form a smaller number of layers by using a solvent process rather than a deposition method, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer. It can be manufactured in layers.
  • the anode is an electrode that injects holes
  • the anode material is generally preferably a material with a large work function to facilitate hole injection into the organic layer.
  • anode materials that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combination of metal and oxide such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline are included, but are not limited to these.
  • the cathode is an electrode that injects electrons
  • the cathode material is preferably a material with a low work function to facilitate electron injection into the organic layer.
  • Specific examples of cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; There are, but are not limited to, multi-layered materials such as LiF/Al or LiO 2 /Al.
  • the hole injection layer is a layer that serves to facilitate the injection of holes from the anode to the light emitting layer, and the hole injection material is a material that can well inject holes from the anode at a low voltage.
  • HOMO highest occupied
  • the molecular orbital is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • hole injection materials include metal porphyrine, oligothiophene, arylamine-based organic substances, hexanitrilehexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the thickness of the hole injection layer may be 1 to 150 nm. If the thickness of the hole injection layer is 1 nm or more, there is an advantage in preventing the hole injection characteristics from deteriorating, and if it is 150 nm or less, the thickness of the hole injection layer is so thick that the driving voltage is increased to improve the movement of holes. There is an advantage to preventing this.
  • the hole injection layer includes, but is not limited to, a compound represented by the following formula HI-1.
  • L 1-h is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group,
  • Ar 1-h to Ar 4-h are the same as or different from each other, and each independently represents a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • L 1-h is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • L 1-h is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms.
  • L 1-h is a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 20 carbon atoms.
  • L 1-h is an arylene group having 6 to 30 carbon atoms substituted or unsubstituted with an aryl group having 6 to 30 carbon atoms, or an arylene group having 6 to 30 carbon atoms substituted or unsubstituted with an aryl group having 6 to 30 carbon atoms. It is a heteroarylene group of 30 to 30.
  • L 1-h is an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with an aryl group having 6 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms substituted or unsubstituted with an aryl group having 6 to 20 carbon atoms. It is a heteroarylene group of 20 to 20.
  • L 1-h is a divalent spiroacridine fluorene group substituted with a phenyl group.
  • Ar 1-h to Ar 4-h are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 30 carbon atoms. It is a heteroaryl group of 3 to 30.
  • Ar 1-h to Ar 4-h are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms. It is a heteroaryl group of 3 to 20.
  • Ar 1-h to Ar 4-h are the same or different from each other, and are each independently an aryl group having 6 to 30 carbon atoms, substituted or unsubstituted with an aryl group having 6 to 30 carbon atoms, Or it is a heteroaryl group having 3 to 30 carbon atoms that is substituted or unsubstituted with an aryl group having 6 to 30 carbon atoms.
  • Ar 1-h to Ar 4-h are the same or different from each other, and are each independently an aryl group having 6 to 20 carbon atoms, substituted or unsubstituted with an aryl group having 6 to 20 carbon atoms, Or it is a heteroaryl group having 3 to 20 carbon atoms that is substituted or unsubstituted with an aryl group having 6 to 20 carbon atoms.
  • Ar 1-h to Ar 4-h are the same or different from each other, and each independently represents a phenyl group or a carbazole group substituted with a phenyl group.
  • the formula HI-1 may be the following compound, but is not limited thereto.
  • the hole transport layer may play a role in facilitating the transport of holes.
  • the hole transport material is a material that can transport holes from the anode or hole injection layer and transfer them to the light emitting layer, and a material with high mobility for holes is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
  • the hole transport layer may play a role in facilitating the transport of holes.
  • the hole transport material is a material that can transport holes from the anode or hole injection layer and transfer them to the light emitting layer, and a material with high mobility for holes is suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
  • the hole transport layer includes a compound represented by the following chemical formula HT-2, but is not limited thereto.
  • At least one of X'1 to X'6 is N, and the remainder is CH,
  • R309 to R314 are the same or different from each other, and are each independently hydrogen; heavy hydrogen; Nitrile group; Substituted or unsubstituted alkyl group; Substituted or unsubstituted amine group; Substituted or unsubstituted aryl group; Or it is a substituted or unsubstituted heteroaryl group, or it combines with adjacent groups to form a substituted or unsubstituted ring.
  • X'1 to X'6 are N.
  • R309 to R314 are nitrile groups.
  • the formula HT-1 is represented by the following compound.
  • the hole transport layer includes a compound represented by the following chemical formula HT-2, but is not limited thereto.
  • R400 to R403 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Substituted or unsubstituted amine group; Substituted or unsubstituted heteroaryl group; and any one selected from the group consisting of combinations thereof, or by combining with adjacent groups to form a substituted or unsubstituted ring,
  • L402 is a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • R400 to R402 are the same as or different from each other, and each independently represents a substituted or unsubstituted aryl group; Substituted or unsubstituted amine group; Substituted or unsubstituted heteroaryl group; and any one selected from the group consisting of combinations thereof.
  • R402 is a phenyl group substituted with a carbazole group or an arylamine group; Biphenyl group substituted with carbazole group or arylamine group; and any one selected from the group consisting of combinations thereof.
  • R400 and R401 are the same or different from each other and are each independently a substituted or unsubstituted aryl group, or are combined with adjacent groups to form an aromatic hydrocarbon ring substituted with an alkyl group.
  • R400 and R401 are the same or different from each other, and are each independently a phenyl group or a diphenylfluorene group.
  • the chemical formula HT-2 may be the following compound, but is not limited thereto.
  • An electron blocking layer may be provided between the hole transport layer and the light emitting layer.
  • the electron suppressing layer may be made of the spiro compound described above or a material known in the art.
  • the light-emitting layer may emit red, green, or blue light and may be made of a phosphorescent material or a fluorescent material.
  • the light-emitting material is a material capable of emitting light in the visible range by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and is preferably a material with good quantum efficiency for fluorescence or phosphorescence.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV) series polymer; Spiro compounds; Polyfluorene, rubrene, etc., but are not limited to these.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • Carbazole-based compounds dimerized styryl compounds
  • BAlq 10-hydroxybenzoquinoline-metal compound
  • Compounds of the benzoxazole, benzthiazole and benzimidazole series Compounds of the benzoxazole, benzthiazole and benzimidazole series
  • Poly(p-phenylenevinylene) (PPV) series polymer Poly(p-phenylenevinylene) (PPV) series polymer
  • Host materials for the light-emitting layer include condensed aromatic ring derivatives or heterocycle-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocyclic ring-containing compounds include carbazole derivatives, dibenzofuran derivatives, and ladder-type compounds. These include, but are not limited to, furan compounds and pyrimidine derivatives.
  • An organic light-emitting device includes a light-emitting layer, and the light-emitting layer includes a compound represented by the following formula H as a host material.
  • L21 and L22 are the same or different from each other and are each independently directly bonded; Substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • R21 to R28 are the same as or different from each other, and are each independently hydrogen; heavy hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • Ar21 and Ar22 are the same or different from each other, and are each independently a substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • R21 to R28 are the same as or different from each other, and are each independently hydrogen or deuterium.
  • Ar21 and Ar22 are different from each other.
  • Ar21 and Ar22 are the same or different from each other, and each independently represents a substituted or unsubstituted aryl group.
  • Ar21 and Ar22 are naphthyl groups.
  • L21 and L22 are the same or different from each other and are each independently directly bonded; Substituted or unsubstituted phenylene group; Substituted or unsubstituted biphenylene group; Substituted or unsubstituted naphthylene group; A substituted or unsubstituted divalent dibenzofuran group; Or it is a substituted or unsubstituted dibenzothiophene group.
  • the formula H is represented by the following compound.
  • the light-emitting dopants include PIQIr(acac)(bis(1-phenylquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), and PQIr(tris(1-phenylquinoline)iridium).
  • phosphorescent materials such as PtOEP (octaethylporphyrin platinum), or fluorescent materials such as Alq 3 (tris(8-hydroxyquinolino)aluminum) may be used, but are not limited to these.
  • the light-emitting dopant may be a phosphorescent material such as (4,6-F2ppy) 2 Irpic, spiro-DPVBi, spiro-6P, distylbenzene (DSB), distrylarylene (DSA), Fluorescent materials such as PFO-based polymers and PPV-based polymers may be used, but are not limited to these.
  • the dopant includes, but is not limited to, a compound represented by the following formula D-1.
  • T1 to T6 are the same or different from each other, and are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • t5 and t6 are each integers from 1 to 4,
  • t5 is 2 or more, the 2 or more T5 are the same or different from each other,
  • t6 is 2 or more
  • the 2 or more T6s are the same or different from each other.
  • T1 to T6 are the same as or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms.
  • T1 to T6 are the same as or different from each other, and are each independently hydrogen; A straight or branched alkyl group having 1 to 30 carbon atoms; A nitrile group, or a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms substituted or unsubstituted with a straight-chain or branched alkylsilyl group having 1 to 30 carbon atoms; Or it is a monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms.
  • T1 to T6 are the same as or different from each other, and are each independently a phenyl group; Or it is a terphenyl group substituted with a trimethylsilyl group.
  • Formula D-1 is represented by the following compound.
  • the light emitting layer may include a host and a dopant, and a hole blocking layer may be provided between the electron transport layer and the light emitting layer, and materials known in the art may be used.
  • the electron transport layer may play a role in facilitating the transport of electrons.
  • the electron transport material is a material that can easily inject electrons from the cathode and transfer them to the light-emitting layer, and a material with high mobility for electrons is suitable. Specific examples include Al complex of 8-hydroxyquinoline; Complex containing Alq 3 ; organic radical compounds; Hydroxyflavone-metal complexes, etc., but are not limited to these.
  • the thickness of the electron transport layer may be 1 to 50 nm.
  • the thickness of the electron transport layer is 1 nm or more, there is an advantage in preventing the electron transport characteristics from deteriorating, and if it is 50 nm or less, the thickness of the electron transport layer is too thick to prevent the driving voltage from increasing to improve the movement of electrons. There are benefits to this.
  • the electron injection layer may serve to facilitate injection of electrons.
  • the electron injection material has the ability to transport electrons, has an excellent electron injection effect from the cathode, a light emitting layer or a light emitting material, prevents movement of excitons generated in the light emitting layer to the hole injection layer, and also has an excellent electron injection effect from the cathode to the light emitting layer or light emitting material. , Compounds with excellent thin film forming ability are preferred.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc. and their derivatives, metals.
  • fluorenone anthraquinodimethane
  • diphenoquinone diphenoquinone
  • thiopyran dioxide oxazole
  • oxadiazole triazole
  • imidazole imidazole
  • perylenetetracarboxylic acid
  • the electron injection and transport layer may serve to facilitate electron injection and transport. It can be constructed by appropriately selecting the electron transport layer material described above or the electron injection layer material.
  • the electron injection and transport layer includes the compound of Formula 1 and the metal complex at a mass ratio of 1:10 to 10:1.
  • the electron injection and transport layer includes the compound of Formula 1 and the metal complex at a mass ratio of 1:5 to 5:1.
  • the electron injection and transport layer includes the compound of Formula 1 and the metal complex at a mass ratio of 1:3 to 3:1.
  • metal complex compounds include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, Tris(2-methyl-8-hydroxyquinolinato)aluminum, Tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato) aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato) gallium, etc. It is not limited to this.
  • the hole blocking layer is a layer that prevents holes from reaching the cathode, and can generally be formed under the same conditions as the hole injection layer. Specifically, it includes oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complex, etc., but is not limited thereto.
  • the organic light emitting device may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.
  • the organic light emitting device of the present invention can be manufactured using conventional organic light emitting device manufacturing methods and materials, except that one or more organic material layers are formed using the above-described compounds.
  • X1 to X10, Y1, Y2, L1, L2, Q1, Q2, a and b are as defined in Formula 1 above.
  • compound 1-b 50 g, 92.9 mmol
  • 2-chloro-4,6-diphenyl-1,3,5-triazine 49.8 g, 186 mmol
  • potassium carbonate 29.5 g, 278.7 mmol
  • tetrakistriphenyl-phosphinopalladium 3.2 g, 2.8 mmol
  • compound 3-b 50 g, 118.8 mmol
  • 4-chloro-2,6-diphenylpyrimidine 31.7 g, 118.8 mmol
  • potassium carbonate 37.8 g, 356.5 mmol
  • tetrakistriphenyl-phosphinopalladium 4.1 g, 3.6 mmol
  • compound 4-a 50 g, 133.8 mmol
  • bis(pinacolato)diborone 34 g, 133.8 mmol
  • potassium acetate 85.2 g, 401.5 mmol
  • [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium 0.8 g, 1.3 mmol
  • a glass substrate coated with a thin film of ITO (indium tin oxide) with a thickness of 1,000 ⁇ was placed in distilled water with a detergent dissolved in it and washed ultrasonically.
  • a detergent manufactured by Fischer Co. was used, and distilled water filtered secondarily using a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was repeated twice with distilled water for 10 minutes.
  • the following compound HI-A was thermally vacuum deposited to a thickness of 600 ⁇ to form a hole injection layer.
  • hole injection layer hexanitrile hexaazatriphenylene (HAT, 50 ⁇ ) of the following formula and HT-A (600 ⁇ ) of the following compound were sequentially vacuum deposited to form a hole transport layer.
  • HAT hexanitrile hexaazatriphenylene
  • the following compounds BH and BD were vacuum deposited at a weight ratio of 25:1 to a film thickness of 200 ⁇ on the hole transport layer to form a light emitting layer.
  • Compound 1 prepared in Synthesis Example 1 and the following compound [LiQ] (Lithiumquinolate) were vacuum deposited at a 1:1 weight ratio to form an electron transport and injection layer with a thickness of 360 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 10 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron transport and injection layer.
  • the deposition rate of organic matter was maintained at 0.4 to 0.9 ⁇ /sec
  • the deposition rate of lithium fluoride of the cathode was maintained at 0.3 ⁇ /sec
  • aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 1 ⁇ 10.
  • An organic light emitting device was manufactured by maintaining -7 to 5 ⁇ 10 -8 torr.
  • An organic light-emitting device was manufactured in the same manner as in Experimental Example 1, except that the compound in Table 1 below was used instead of Compound 1 in Experimental Example 1.
  • An organic light-emitting device was manufactured in the same manner as in Experimental Example 1, except that the compound in Table 1 below was used instead of Compound 1 in Experimental Example 1.
  • the compounds ET-1 to ET-8 used in Table 1 below are as follows.
  • the driving voltage, luminous efficiency, and color coordinates were measured at a current density of 10 mA/cm 2 , and the luminance was 90% of the initial luminance at a current density of 20 mA/cm 2.
  • the time to become (T 90 ) was measured. The results are shown in Table 1 below.
  • the organic light-emitting device containing the compound of Formula 1 of the present invention is substituted only with an N-containing ring having electron transport properties, and thus has various electron transport capabilities. It can be adjusted. Therefore, it was confirmed that it showed significantly better properties in terms of efficiency and lifespan than an organic light-emitting device substituted with only three carbazole groups, which have excellent hole characteristics.
  • the organic light-emitting device containing the compound of Formula 1 of the present invention has two or more N-containing rings with electron transport properties substituted, , dioxin, phenoxazine, and thianthrene core structures and N-containing rings with electron transport properties are adjacent to each other in ortho and para positions, which is advantageous for controlling the electron transport ability in various ways. Therefore, it was confirmed that the organic light-emitting device showed significantly better properties in terms of efficiency and lifespan than an organic light-emitting device using a compound with one N-containing ring substituted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 명세서는 화학식 1의 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

화합물 및 이를 포함하는 유기 발광 소자
본 출원은 2022년 11월 11일 한국특허청에 제출된 한국 특허 출원 제10-2022-0150773호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 명세서에서, 유기 발광 소자란 유기 반도체 물질을 이용한 발광 소자로서, 전극과 유기 반도체 물질 사이에서의 정공 및/또는 전자의 교류를 필요로 한다. 유기 발광 소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고, 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 발광 소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기 반도체 물질층에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 작동하는 형태의 발광 소자이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자억제층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트 등의 특성을 갖는 것으로 알려져 있다.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 억제 물질, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다.
또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도펀트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도펀트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도펀트의 파장대로 이동하므로, 이용하는 도펀트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 억제 물질, 전자 수송 물질, 전자 주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되므로 새로운 재료의 개발이 계속 요구되고 있다.
본 명세서에는 화합물 및 이를 포함하는 유기 발광 소자가 기재된다.
본 명세서의 일 실시상태는 하기 화학식 1의 화합물을 제공한다.
[화학식 1]
Figure PCTKR2023018066-appb-img-000001
상기 화학식 1에 있어서,
Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 O 또는 S이고,
Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이고,
X1 내지 X5 중 2 이상은 N이고, N이 아닌 나머지는 서로 같거나 상이하고, 각각 독립적으로 CR이고,
X6 내지 X10 중 2 이상은 N이고, N이 아닌 나머지는 서로 같거나 상이하고, 각각 독립적으로 CR이고,
R은 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 고리를 형성할 수 있고,
L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이고,
a는 1 내지 3이고, a가 2 이상일 때, Q1는 서로 같거나 상이하고,
b는 1 내지 7이고, b가 2 이상일 때, Q2는 서로 같거나 상이하다.
또한, 본 발명의 일 실시상태에 따르면, 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 전술한 화합물을 포함하는 유기 발광 소자를 제공한다.
본 발명의 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다. 본 발명의 화합물을 포함하여 유기 발광 소자를 제조하는 경우, 고효율, 저전압 및 장수명 특성을 갖는 유기 발광 소자를 얻을 수 있으며, 본 발명의 화합물을 유기 발광 소자의 전자 주입층, 전자 수송층, 및 전자주입 및 수송층에 포함하는 경우, 장수명 특성을 가지는 유기 발광 소자를 제조할 수 있다.
본 발명의 화합물은 전자 수송 특성을 가진 N함유 6원 고리를 포함하는 헤테로고리가 2개 이상으로 치환 되어있고, 치환기가 서로 오쏘 위치에 이웃하고 있어 구조적 뒤틀림이 발생하여 전자 수송 능력이 다양하게 조절할 수 있다.
도 1 및 2는 본 발명에 따른 유기 발광 소자의 예를 도시한 것이다.
[부호의 설명]
1: 기판
2: 양극
3: 유기물층
4: 음극
5: 정공주입층
6: 정공수송층
7: 발광층
8: 전자주입 및 수송층
이하 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환" 이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기(-CN); 실릴기; 붕소기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 사이클로알킬기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로아릴기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 도 있다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)가 있다.
본 명세서에 있어서, 실릴기는 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기 등으로 치환 또는 비치환될 수 있다. 상기 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기로 치환 또는 비치환될 수 있다. 상기 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; N-알킬아릴아민기; 아릴아민기; N-아릴헤테로아릴아민기; N-알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 탄소수는 특별히 한정되지 않으나, 1 내지 30인 것이 바람직하다. 아민기의 구체적인 예로는 메틸아민기; 디메틸아민기; 에틸아민기; 디에틸아민기; 페닐아민기; 나프틸아민기; 바이페닐아민기; 안트라세닐아민기; 9-메틸안트라세닐아민기; 디페닐아민기; 디톨릴아민기; N-페닐톨릴아민기; 트리페닐아민기; N-페닐바이페닐아민기; N-페닐나프틸아민기; N-바이페닐나프틸아민기; N-나프틸플루오레닐아민기; N-페닐페난트레닐아민기; N-바이페닐페난트레닐아민기; N-페닐플루오레닐아민기; N-페닐터페닐아민기; N-페난트레닐플루오레닐아민기; N-바이페닐플루오레닐아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, N-알킬아릴아민기는 아민기의 N에 알킬기 및 아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-아릴헤테로아릴아민기는 아민기의 N에 아릴기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, N-알킬헤테로아릴아민기는 아민기의 N에 알킬기 및 헤테로아릴기가 치환된 아민기를 의미한다.
본 명세서에 있어서, 알킬아민기, N-아릴알킬아민기, 알킬티옥시기, 알킬술폭시기, N-알킬헤테로아릴아민기 중의 알킬기는 전술한 알킬기의 예시와 같다. 구체적으로 알킬티옥시기로는 메틸티옥시기; 에틸티옥시기; tert-부틸티옥시기; 헥실티옥시기; 옥틸티옥시기 등이 있고, 알킬술폭시기로는 메실; 에틸술폭시기; 프로필술폭시기; 부틸술폭시기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필기, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기, 사이클로헵틸기, 사이클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐렌기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 이종원자로 N, O, P, S, Si 및 Se 중 1개 이상을 포함하는 고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 2 내지 30이다. 헤테로아릴기의 예로는 피리딘기, 피롤기, 피리미딘기, 피리다지닐기, 퓨란기, 티오펜기, 이미다졸기, 피라졸기, 디벤조퓨란기, 디벤조티오펜기, 카바졸기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나이다.
[화학식 1-1]
Figure PCTKR2023018066-appb-img-000002
[화학식 1-2]
Figure PCTKR2023018066-appb-img-000003
[화학식 1-3]
Figure PCTKR2023018066-appb-img-000004
[화학식 1-4]
Figure PCTKR2023018066-appb-img-000005
상기 화학식 1-1 내지 1-4에 있어서, X1 내지 X10, Y1, Y2, L1, L2, Q1, Q2, a 및 b는 상기 화학식 1에서 정의한 것과 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 1-1-1 또는 1-1-2이다.
[화학식 1-1-1]
Figure PCTKR2023018066-appb-img-000006
[화학식 1-1-2]
Figure PCTKR2023018066-appb-img-000007
상기 화학식 1-1-1 및 1-1-2에 있어서, X1 내지 X10, L1, L2, Q1, Q2, a 및 b는 상기 화학식 1에서 정의한 것과 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 1-1-3 또는 1-1-4이다.
[화학식 1-1-3]
Figure PCTKR2023018066-appb-img-000008
[화학식 1-1-4]
Figure PCTKR2023018066-appb-img-000009
상기 화학식 1-1-3 및 1-1-4에 있어서, X1 내지 X10, L1, L2, Q1, Q2, a 및 b는 상기 화학식 1에서 정의한 것과 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 1-1-5 내지 1-1-8 중 어느 하나이다.
[화학식 1-1-5]
Figure PCTKR2023018066-appb-img-000010
[화학식 1-1-6]
Figure PCTKR2023018066-appb-img-000011
[화학식 1-1-7]
Figure PCTKR2023018066-appb-img-000012
[화학식 1-1-8]
Figure PCTKR2023018066-appb-img-000013
상기 화학식 1-1-5 내지 1-1-8에 있어서, X1 내지 X10, L1, L2, Q1, Q2, a 및 b는 상기 화학식 1에서 정의한 것과 같다.
본 발명의 일 실시상태에 있어서, 상기 Y1 및 Y2는 O이다.
본 발명의 일 실시상태에 있어서, 상기 Y1 및 Y2는 S이다.
본 발명의 일 실시상태에 있어서, 상기 Y1은 O이고, Y2는 S이다.
본 발명의 일 실시상태에 있어서, 상기 Y1은 S이고, Y2는 O이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 어느 둘은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 어느 셋은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 어느 넷은 N이고, 나머지는 CR이다,
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5는 N이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 X1 및 X3은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 X2 및 X4는 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 X1 및 X5는 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X1 내지 X5 중 X1, X3 및 X5는 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 어느 둘은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 어느 셋은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 어느 넷은 N이고, 나머지는 CR이다,
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10은 N이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 X6 및 X8은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 X7 및 X9는 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 X6 및 X10은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 X6 내지 X10 중 X6, X8 및 X10은 N이고, 나머지는 CR이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 또는 치환 또는 비치환된 탄소수 3 내지 15의 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 중수소로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 중수소로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 탄소수 6 내지 15의 아릴렌기, 또는 중수소로 치환 또는 비치환된 탄소수 3 내지 15의 헤테로아릴렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 중수소로 치환 또는 비치환된 2가의 나프틸기, 중수소로 치환 또는 비치환된 2가의 안트라센기, 또는 중수소로 치환 또는 비치환된 2가의 페난트렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 페닐렌기, 중수소로 치환 또는 비치환된 2가의 비페닐기, 또는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 발명의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 페닐렌기, 또는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 발명의 일 실시상태에 있어서, 상기 L1은 직접결합이다.
본 발명의 일 실시상태에 있어서, 상기 L1은 중수소로 치환 또는 비치환된 페닐렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L1은 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 발명의 일 실시상태에 있어서, 상기 L2는 직접결합이다.
본 발명의 일 실시상태에 있어서, 상기 L2는 중수소로 치환 또는 비치환된 페닐렌기이다.
본 발명의 일 실시상태에 있어서, 상기 L2는 중수소로 치환 또는 비치환된 2가의 나프틸기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 치환 또는 비치환된 헤테로아릴기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴기, 치환 또는 비치환된 탄소수 3 내지 15의 헤테로아릴기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 메틸기, 에틸기, 프로필기 또는 터부틸기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, F, Cl, Br, 니트릴기, 메틸기, 에틸기, 프로필기 또는 터부틸기이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 또는 중수소이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 수소이다.
본 발명의 일 실시상태에 있어서, 상기 Q1 및 Q2는 중수소이다.
본 발명의 일 실시상태에 있어서, 상기 R는 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 R는 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 탄화수소고리를 형성할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 R는 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 지방족고리, 치환 또는 비치환된 방향족고리, 또는 치환 또는 비치환된 헤테로고리를 형성할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 R는 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 지방족고리, 치환 또는 비치환된 방향족고리, 또는 치환 또는 비치환된 헤테로고리를 형성할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 R는 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 15의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 15의 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 지방족고리, 치환 또는 비치환된 방향족고리, 또는 치환 또는 비치환된 헤테로고리를 형성할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 R는 니트릴기; 메틸기; 중수소, 니트릴기, 또는 디벤조퓨란기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 바이페닐기; 나프틸기; 페난트렌기; 트리페닐렌기; 피리딘기; 페닐기로 치환 또는 비치환된 카바졸기; 메틸기로 치환 또는 비치환된 플루오렌기; 에틸기 및 페닐기로 치환 또는 비치환된 벤즈이미다졸기; 또는 디벤조퓨란기이다.
본 발명의 일 실시상태에 있어서, 상기 R는 인접한 고리와 결합하여 벤젠고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 아래 구조식 중 어느 하나이다.
Figure PCTKR2023018066-appb-img-000014
Figure PCTKR2023018066-appb-img-000015
Figure PCTKR2023018066-appb-img-000016
Figure PCTKR2023018066-appb-img-000017
Figure PCTKR2023018066-appb-img-000018
Figure PCTKR2023018066-appb-img-000019
Figure PCTKR2023018066-appb-img-000020
Figure PCTKR2023018066-appb-img-000021
Figure PCTKR2023018066-appb-img-000022
Figure PCTKR2023018066-appb-img-000023
Figure PCTKR2023018066-appb-img-000024
Figure PCTKR2023018066-appb-img-000025
상기 화학식 1의 화합물의 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기의 종류, 위치 또는 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
또한, 상기와 같은 구조의 코어 구조에 다양한 치환기를 도입함으로써 도입된 치환기의 고유 특성을 갖는 화합물을 합성할 수 있다. 예컨대, 유기 발광 소자 제조시 사용되는 정공 주입층 물질, 정공 수송용 물질, 발광층 물질 및 전자 수송층 물질에 주로 사용되는 치환기를 상기 코어 구조에 도입함으로써 각 유기물층에서 요구하는 조건들을 충족시키는 물질을 합성할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비되는 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 전술한 화합물을 포함하는 것을 특징으로 한다.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 정공주입 및 정공수송을 동시에 하는 층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층 또는 더 많은 수의 유기물층을 포함할 수 있다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 전자수송층, 전자주입층, 및 전자주입 및 수송층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 유기 발광 소자에서, 상기 유기물층은 전자수송층 또는 전자주입층을 포함할 수 있고, 상기 전자수송층 또는 전자주입층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 발명의 유기 발광 소자에서, 상기 전자주입 및 수송층은 상기 화학식 1의 화합물과 금속 착체를 포함한다.
본 발명의 유기 발광 소자에서, 상기 유기물층은 정공주입층, 정공수송층 및 정공주입과 정공수송을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
또 하나의 유기 발광 소자에서, 상기 유기물층은 정공주입층 또는 정공수송층을 포함할 수 있고, 상기 정공수송층 또는 정공주입층이 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공주입층/정공버퍼층/정공수송층/발광층/음극
(4) 양극/정공수송층/발광층/전자수송층/음극
(5) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(7) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(8) 양극/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/음극
(9) 양극/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/전자주입층 /음극
(10) 양극/ 정공수송층/전자억제층/발광층/전자수송층/음극
(11) 양극/ 정공수송층/전자억제층/발광층/전자수송층/전자주입층/음극
(12) 양극/정공주입층/정공수송층/전자억제층/발광층/전자수송층/음극
(13)양극/정공주입층/정공수송층/전자억제층/발광층/전자수송층/전자주입 층/음극
(14) 양극/정공수송층/발광층/정공억제층/전자수송층/음극
(15) 양극/정공수송층/발광층/ 정공억제층/전자수송층/전자주입층/음극
(16) 양극/정공주입층/정공수송층/발광층/정공억제층/전자수송층/음극
(17)양극/정공주입층/정공수송층/발광층/정공억제층/전자수송층/전자주입 층/음극
(18)양극/정공주입층/정공수송층/전자억제층/발광층/정공저지층/전자주입및 수송층/음극
본 발명의 유기 발광 소자의 구조는 도 1에 나타낸 것과 같은 구조를 가질 수 있으나, 이에만 한정되는 것은 아니다.
도 1에는 기판(1) 위에 양극(2), 유기물층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 유기물층(3)에 포함될 수 있다.
도 2에는 기판(1) 위에 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자주입 및 수송층(8) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 전자주입 및 수송층(8)에 포함될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 정공수송 및 정공주입을 동시에 하는 층, 발광층, 전자수송층, 전자주입층, 및 전자수송 및 전자주입을 동시에하는 층으로 이루어진 군으로부터 선택된 1층 이상을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극은 정공을 주입하는 전극으로, 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO, Indium Tin Oxide), 인듐아연 산화물(IZO, Indium Zinc Oxide)과 같은 금속 산화물; ZnO : Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극은 전자를 주입하는 전극으로, 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 양극으로부터 발광층으로 정공의 주입을 원활하게 하는 역할을 하는 층이며, 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 정공주입층의 두께는 1 내지 150nm일 수 있다. 상기 정공주입층의 두께가 1nm 이상이면, 정공 주입 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 150nm 이하이면, 정공주입층의 두께가 너무 두꺼워 정공의 이동을 향상시키기 위해 구동전압이 상승되는것을 방지할 수 있는 이점이 있다.
본 명세서의 일 실시상태에 따르면, 상기 정공주입층은 하기 화학식 HI-1로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[HI-1]
Figure PCTKR2023018066-appb-img-000026
상기 화학식 HI-1에 있어서,
L1-h는 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이고,
Ar1-h 내지 Ar4-h는 서로 같거나 상이하고, 각각 독립적으로, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1-h는 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1-h는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1-h는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1-h는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1-h는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1-h는 페닐기로 치환된 2가의 스피로아크리딘플루오렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1-h 내지 Ar4-h는 서로 같거나 상이하고, 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1-h 내지 Ar4-h는 서로 같거나 상이하고, 각각 독립적으로, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1-h 내지 Ar4-h는 서로 같거나 상이하고, 각각 독립적으로, 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1-h 내지 Ar4-h는 서로 같거나 상이하고, 각각 독립적으로, 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 또는 탄소수 6 내지 20의 아릴기로 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1-h 내지 Ar4-h는 서로 같거나 상이하고, 각각 독립적으로, 페닐기 또는 페닐기로 치환된 카바졸기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HI-1는 하기 화합물이 될 수 있으나, 이에 한정하는 것은 아니다.
Figure PCTKR2023018066-appb-img-000027
상기 정공수송층은 정공의 수송을 원활하게 하는 역할을 할 수 있다. 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공수송층은 정공의 수송을 원활하게 하는 역할을 할 수 있다. 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 정공수송층은 하기 화학식 HT-2로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 HT-1]
Figure PCTKR2023018066-appb-img-000028
상기 화학식 HT-1에 있어서,
X'1 내지 X'6 중 적어도 하나는 N이고, 나머지는 CH이며,
R309 내지 R314은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 X'1 내지 X'6는 N이다.
본 명세서의 일 실시상태에 따르면, 상기 R309 내지 R314는 니트릴기다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HT-1은 하기 화합물로 표시된다.
Figure PCTKR2023018066-appb-img-000029
본 명세서의 일 실시상태에 따르면, 상기 정공수송층은 하기 화학식 HT-2로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 HT-2]
Figure PCTKR2023018066-appb-img-000030
상기 화학식 HT-1에 있어서,
R400 내지 R403는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 헤테로아릴기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이거나, 인접한 기와 서로 결합하여 치환 또는 비치환된 고리를 형성하고,
L402는 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R400 내지 R402는 서로 같거나 상이하고, 각가 독립적으로 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 헤테로아릴기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이다.
본 명세서의 일 실시상태에 따르면, 상기 R402는 카바졸기 또는 아릴아민기로 치환된 페닐기; 카바졸기 또는 아릴아민기로 치환된 바이페닐기; 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나이다.
본 명세서의 일 실시상태에 따르면, 상기 R400 및 R401는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이거나, 인접한 기와 서로 결합하여 알킬기로 치환된 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R400 및 R401는 서로 같거나 상이하고, 각각 독립적으로 페닐기, 또는 디페닐플루오렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 HT-2는 하기 화합물이 될 수 있으나, 이에 한정하는 것은 아니다.
Figure PCTKR2023018066-appb-img-000031
정공수송층과 발광층 사이에 전자억제층이 구비될 수 있다. 상기 전자억제층은 전술한 스피로 화합물 또는 당 기술분야에 알려져 있는 재료가 사용될 수 있다.
상기 발광층은 적색, 녹색 또는 청색을 발광할 수 있으며, 인광 물질 또는 형광 물질로 이루어질 수 있다. 상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
발광층의 호스트 재료로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 따른 유기 발광 소자는 발광층을 포함하고, 상기 발광층은 호스트 물질로 하기 화학식 H로 표시되는 화합물을 포함한다.
[화학식 H]
Figure PCTKR2023018066-appb-img-000032
상기 화학식 H에 있어서,
L21 및 L22는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기이고,
R21 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
Ar21 및 Ar22는 서로 동일하거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
본 명세서의 일 실시상태에 있어서, 상기 R21 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소 또는 중수소이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 서로 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar21 및 Ar22는 나프틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 L21 및 L22는 서로 동일하거나 상이하고, 각각 독립적으로 직접결합; 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 비페닐렌기; 치환 또는 비치환된 나프틸렌기; 치환 또는 비치환된 2가의 디벤조퓨란기; 또는 치환 또는 비치환된 2가의 디벤조티오펜기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 H는 하기 화합물로 표시된다.
Figure PCTKR2023018066-appb-img-000033
발광층이 적색 발광을 하는 경우, 발광 도펀트로는 PIQIr(acac)(bis(1-phenylisoquinoline)acetylacetonateiridium), PQIr(acac)(bis(1-phenylquinoline)acetylacetonate iridium), PQIr(tris(1-phenylquinoline)iridium), PtOEP(octaethylporphyrin platinum)와 같은 인광 물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다. 발광층이 녹색 발광을 하는 경우, 발광 도펀트로는 Ir(ppy)3(fac tris(2-phenylpyridine)iridium)와 같은 인광물질이나, Alq3(tris(8-hydroxyquinolino)aluminum)와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다. 발광층이 청색 발광을 하는 경우, 발광 도펀트로는 (4,6-F2ppy)2Irpic와 같은 인광 물질이나, spiro-DPVBi, spiro-6P, 디스틸벤젠(DSB), 디스트릴아릴렌(DSA), PFO계 고분자, PPV계 고분자와 같은 형광 물질이 사용될 수 있으나, 이에만 한정된 것은 아니다.
본 명세서의 일 실시상태에 따르면, 상기 도펀트는 하기 화학식 D-1로 표시되는 화합물을 포함하나, 이에만 한정되는 것은 아니다.
[화학식 D-1]
Figure PCTKR2023018066-appb-img-000034
상기 화학식 D-1에 있어서,
T1 내지 T6은 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
t5 및 t6은 각각 1 내지 4의 정수이며,
상기 t5가 2 이상인 경우, 상기 2 이상의 T5는 서로 같거나 상이하고,
상기 t6가 2 이상인 경우, 상기 2 이상의 T6는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 T1 내지 T6은 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 T1 내지 T6은 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 니트릴기, 또는 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬실릴기로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 T1 내지 T6은 서로 같거나 상이하고, 각각 독립적으로 페닐기; 또는 트리메틸실릴기로 치환된 터페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 D-1는 하기 화합물로 표시된다.
Figure PCTKR2023018066-appb-img-000035
본 명세서의 일 실시상태에 따르면, 상기 발광층은 호스트와 도펀트를 전자수송층과 발광층 사이에 정공억제층이 구비될 수 있으며, 당 기술분야에 알려져 있는 재료가 사용될 수 있다.
상기 전자수송층은 전자의 수송을 원활하게 하는 역할을 할 수 있다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층의 두께는 1 내지 50nm일 수 있다. 전자수송층의 두께가 1nm 이상이면, 전자 수송 특성이 저하되는 것을 방지할 수 있는 이점이 있고, 50nm 이하이면, 전자수송층의 두께가 너무 두꺼워 전자의 이동을 향상시키기 위해 구동전압이 상승되는 것을 방지할 수 있는 이점이 있다.
상기 전자주입층은 전자의 주입을 원활하게 하는 역할을 할 수 있다. 전자 주입 물질로는 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 전자주입 및 수송층은 전자 주입 및 수송을 원활히 하는 역할을 할 수 있다. 앞서 기술한 전자 수송층의 물질이나, 전자주입층 물질을 적절히 선택하여 구성할 수 있다.
상기 전자주입 및 수송층은 상기 화학식 1의 화합물과 금속착체를 1:10 내지 10:1의 질량비로 포함한다.
상기 전자주입 및 수송층은 상기 화학식 1의 화합물과 금속착체를 1:5 내지 5:1의 질량비로 포함한다.
상기 전자주입 및 수송층은 상기 화학식 1의 화합물과 금속착체를 1:3 내지 3:1의 질량비로 포함한다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
상기 정공차단층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
상기 화학식 1의 화합물의 제조방법 및 이들을 이용한 유기 발광 소자의 제조는 이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
하기 반응식에 있어서, 치환기의 종류 및 개수는 당업자가 공지된 출발물질을 적절히 선택함에 따라 다양한 종류의 중간체를 합성할 수 있다. 반응 종류 및 반응 조건은 당기술분야에 알려져 있는 것들이 이용될 수 있다.
상기 화학식 1의 화합물의 제조방법 및 이들을 이용한 유기 발광 소자의 제조는 이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
하기 반응식에 있어서, 치환기의 종류 및 개수는 당업자가 공지된 출발물질을 적절히 선택함에 따라 다양한 종류의 중간체를 합성할 수 있다. 반응 종류 및 반응 조건은 당기술분야에 알려져 있는 것들이 이용될 수 있다.
Figure PCTKR2023018066-appb-img-000036
상기 X1 내지 X10, Y1, Y2, L1, L2, Q1, Q2, a 및 b는 상기 화학식 1에서 정의한 것과 같다.
본 명세서의 실시예에 기재된 제조식과 상기 중간체들을 통상의 기술상식을 바탕으로 적절히 조합하면, 본 명세서에 기재되어 있는 상기 화학식 1의 화합물들을 모두 제조할 수 있다.
[합성예]
합성예 1: 화합물 1의 합성
Figure PCTKR2023018066-appb-img-000037
단계 1) 화합물 1-a의 합성
질소 분위기에서 (2,4-디클로페닐)보론산(50 g, 262 mmol)와 2-브로모디벤조[b,e][1,4]디옥신 (68.9 g, 262mmol)를 테트라하이드로 퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(83.3 g, 786.1mmol)를 물83 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(9.1 g, 7.9mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1725 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 1-a(73.3g, 85%, MS: [M+H]+ = 330.2)을 제조하였다.
단계 2) 화합물 1-b의 합성
질소 분위기에서 화합물 1-a(50 g, 151.9 mmol)와 비스(피나콜라토)디보론(38.6 g, 151.9mmol)를 Diox(1,4-dioxane) 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(96.7 g, 455.7mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(0.9 g, 1.5mmol) 및 0 (0 g, 0mmol)을 투입하였다. 7시간 반응 후 상온으로 식힌 후 유기층을 필터처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 778 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 흰색의 고체 화합물 1-b(44.3g, 57%, MS: [M+H]+ = 513.2)을 제조하였다.
단계 3) 화합물 1의 합성
질소 분위기에서 화합물 1-b(50 g, 92.9 mmol)와 2-클로로-4,6-디페닐-1,3,5-트리아진(49.8 g, 186mmol)를 테트라하이드로 퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(29.5 g, 278.7mmol)를 물 30 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(3.2 g, 2.8mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1343 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 1(47g, 70%, MS: [M+H]+ = 723.3)을 제조하였다.
합성예 2: 화합물 2의 합성
Figure PCTKR2023018066-appb-img-000038
합성예 1에서, 2-브로모디벤조[b,e][1,4]디옥신 및 2-클로로-4,6-디페닐-1,3,5-트리아진을 1-브로모디벤조[b,e][1,4]디옥신 및 2-클로로-4,6-디메틸피리미딘으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 2(MS[M+H]+= 721.3)을 제조하였다.
합성예 3: 화합물 3의 합성
Figure PCTKR2023018066-appb-img-000039
단계 1) 화합물 3-a의 합성
질소 분위기에서 (4-브로모-2-클로로페닐)보론산(50 g, 212.5 mmol)와 2-아이오도디벤조[b,e][1,4]디옥신(65.9 g, 212.5mmol)을 톨루엔 1000ml와 에탄올 50ml에 넣고 온도 60℃에서 교반하였다. 이 후 포타슘카보네이트(67.6 g, 637.6mmol)를 물 68 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(7.4 g, 6.4mmol)을 투입하였다. 2시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1588 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 3-a(45.3g, 57%, MS: [M+H]+ = 374.6)을 제조하였다.
단계 2) 화합물 3-b의 합성
질소 분위기에서 화합물 3-a(50 g, 133.8 mmol)와 비스(피나콜라토)디보론(34 g, 133.8mmol)를 Diox(1,4-dioxane) 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(85.2 g, 401.5mmol)를 투입하고 충분히 교반한 후 [1,1′-비스(디페닐포스피노)페로센]디클로로팔라듐 (1 g, 1.3mmol)을 투입하였다. 6시간 반응 후 상온으로 식힌 후 유기층을 필터처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 563 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 흰색의 고체 화합물 3-b(36g, 64%, MS: [M+H]+ = 421.7)을 제조하였다.
단계 3) 화합물 3-c의 합성
질소 분위기에서 화합물 3-b(50 g, 118.8 mmol)와 4-클로로-2,6-디페닐피리미딘(31.7 g, 118.8mmol)를 테트라하이드로 퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(37.8 g, 356.5mmol)를 물 38 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(4.1 g, 3.6mmol)을 투입하였다. 1시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1248 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 3-c(36.8g, 59%, MS: [M+H]+ = 526)을 제조하였다.
단계 4) 화합물 3-d의 합성
질소 분위기에서 화합물 3-c(50 g, 95.2 mmol)와 비스(피나콜라토)디보론(24.2 g, 95.2mmol)를 Diox(1,4-dioxane) 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(60.6 g, 285.7mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(0.5 g, 1mmol) 및 디사이클로헥실포스핀 (0.4 g, 1.9mmol)을 투입하였다. 4시간 반응 후 상온으로 식힌 후 유기층을 필터처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 587 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 흰색의 고체 화합물 3-d(34.6g, 59%, MS: [M+H]+ = 617.5)을 제조하였다.
단계 5) 화합물 3의 합성
질소 분위기에서 화합물 3-d(50 g, 81.1 mmol)와 2-클로로-4-(디벤조[b,d]티오펜-4-일)-6-페닐피리미딘(30.2 g, 81.1mmol)를 테트라하이드로 퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(25.8 g, 243.3mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(2.8 g, 2.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1341 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 3(52.3g, 78%, MS: [M+H]+ = 828)을 제조하였다.
합성예 4: 화합물 4의 합성
Figure PCTKR2023018066-appb-img-000040
단계 1) 화합물 4-a의 합성
질소 분위기에서 (4-브로모-2-클로로페닐)보론산(50 g, 212.5 mmol)와 2-브로모디벤조[b,e][1,4]디옥신(65.9 g, 212.5mmol)를 톨루엔 1000ml와 에탄올 50ml에 넣고 온도 60℃에서 교반하였다. 이 후 포타슘카보네이트(67.6 g, 637.6mmol)를 물 68 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(7.4 g, 6.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1588 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 4-a(67.5g, 85%, MS: [M+H]+ = 374.6)을 제조하였다.
단계 2) 화합물 4-b의 합성
질소 분위기에서 화합물 4-a(50 g, 133.8 mmol)와 비스(피나콜라토)디보론(34 g, 133.8mmol)를 Diox(1,4-dioxane) 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(85.2 g, 401.5mmol)를 투입하고 충분히 교반한 후 [1,1′-비스(디페닐포스피노)페로센]디클로로팔라듐 (0.8 g, 1.3mmol)을 투입하였다. 5시간 반응 후 상온으로 식힌 후 유기층을 필터 처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 563 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 흰색의 고체 화합물 4-b(43.4g, 77%, MS: [M+H]+ = 421.7)을 제조하였다.
단계 3) 화합물 4-c의 합성
질소 분위기에서 화합물 4-b(50 g, 118.8 mmol)와 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-2-페닐퀴나졸린(47 g, 118.8mmol)를 테트라하이드로 퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(37.8 g, 356.5mmol)를 물 38 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(4.1 g, 3.6mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1555 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 4-c(57.5g, 74%, MS: [M+H]+ = 655.1)을 제조하였다.
단계 4) 화합물 4-d의 합성
질소 분위기에서 화합물 4-c(50 g, 76.4 mmol)와 비스(피나콜라토)디보론(47.2 g, 76.4mmol)를 Diox(1,4-dioxane) 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(48.7 g, 229.3mmol)를 투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(0.4 g, 0.8mmol) 및 디사이클로헥실포스핀 (0.3 g, 1.5mmol)을 투입하였다. 7시간 반응 후 상온으로 식힌 후 유기층을 필터처리하여 염을 제거한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 10 배 472 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 흰색의 고체 화합물 4-d(35.9g, 76%, MS: [M+H]+ = 618.5)을 제조하였다.
단계 5) 화합물 4의 합성
질소 분위기에서 화합물 4-d(50 g, 81 mmol)와 2-클로로-4,6-디페닐피리미딘(21.6 g, 162mmol)를 테트라하이드로 퓨란 1000ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(25.7 g, 242.9mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 테트라키스트리페닐-포스피노팔라듐(2.8 g, 2.4mmol)을 투입하였다. 3시간 반응 후 상온으로 식힌 후 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 톨루엔 20배 1376 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 톨루엔과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 4(41.3g, 60%, MS: [M+H]+ = 851)을 제조하였다.
합성예 5: 화합물 5의 합성
Figure PCTKR2023018066-appb-img-000041
합성예 4에서, 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-2-페닐퀴나졸린 및 4-클로로-2-(디벤조[b,d]티오펜-4-일)-6-페닐피리미딘를 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)벤조니트릴 및 2-클로로-4,6-디페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 4의 제조 방법과 동일한 제조 방법으로 화합물 5(MS[M+H]+= 748.3)를 제조하였다.
합성예 6: 화합물 6의 합성
Figure PCTKR2023018066-appb-img-000042
합성예 1에서, 2-브로모디벤조[b,e][1,4]다이옥신을 2-브로모-8-페닐디벤조[b,e][1,4]디옥신으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 6(MS[M+H]+= 799.3)을 제조하였다.
합성예 7: 화합물 7의 합성
Figure PCTKR2023018066-appb-img-000043
합성예 1에서, 2-브로모디벤조[b,e][1,4]디옥신 및 2-클로로-4,6-디페닐-1,3,5-트리아진를 9-브로모디벤조[b,e][1,4]디옥신-2-카보니트릴 및 4-클로로-2,6-디페닐피리미딘으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 7(MS[M+H]+= 746.3)을 제조하였다.
합성예 8: 화합물 8의 합성
Figure PCTKR2023018066-appb-img-000044
합성예 4에서, 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-2-페닐퀴나졸린 및 2-클로로-4,6-디페닐피리미딘를 4-(3-브로모페닐)-2,6-디페닐피리미딘 및 2-(3-브로모페닐)-4,6-디페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 4의 제조 방법과 동일한 제조 방법으로 화합물 8(MS[M+H]+= 874.3)을 제조하였다.
합성예 9: 화합물 9의 합성
Figure PCTKR2023018066-appb-img-000045
합성예 1에서, 2-브로모디벤조[b,e][1,4]디옥신를 2-브로모디벤조[b,e][1,4]디옥신-1,3,4,6,7,8,9-d7으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 9(MS[M+H]+= 730.3)을 제조하였다.
합성예 10: 화합물 10의 합성
Figure PCTKR2023018066-appb-img-000046
합성예 4에서, (2,4-디클로로페닐)보론산, 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-2-페닐퀴나졸린 및 2-클로로-4,6-디페닐피리미딘를 (6-브로모-2-클로로-[1,1'-비페닐]-3-일)보론산, 4-클로로-2,6-디페닐피리미딘 및 4-클로로-6-(디벤조b,d]티오펜-4-일)-2-페닐피리미딘으로 변경하여 사용한 것을 제외하고는, 화합물 4의 제조 방법과 동일한 제조 방법으로 화합물 10(MS[M+H]+= 903.3)을 제조하였다.
합성예 11: 화합물 11의 합성
Figure PCTKR2023018066-appb-img-000047
합성예 4에서, (2,4-디클로로페닐)보론산, 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-2-페닐퀴나졸린 및 2-클로로-4,6-디페닐피리미딘를 (4-브로모-2-클로로-6-시아노페닐)보론산, 2-클로로-4-(나프탈렌-1-일)-6-페닐-1,3,5-트리아진 및 2-클로로-4,6-디페닐-1,3,5-트리아진으로 변경하여 사용한 것을 제외하고는, 화합물 4의 제조 방법과 동일한 제조 방법으로 화합물 11(MS[M+H]+= 798.3)을 제조하였다.
합성예 12: 화합물 12의 합성
Figure PCTKR2023018066-appb-img-000048
합성예 1에서, 2-브로모디벤조[b,e][1,4]디옥신 및 2-클로로-4,6-디페닐-1,3,5-트리아진를 1-브로모페녹사틴 및 2-클로로-4,6-디페닐피리미딘으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 12(MS[M+H]+= 737.3)을 제조하였다.
합성예 13: 화합물 13의 합성
Figure PCTKR2023018066-appb-img-000049
합성예 1에서, 2-브로모디벤조[b,e][1,4]디옥신를 1-브로모티안트렌으로 변경하여 사용한 것을 제외하고는, 화합물 1의 제조 방법과 동일한 제조 방법으로 화합물 13(MS[M+H]+= 754.2)을 제조하였다.
실험예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 하기 화합물 HI-A를 600Å의 두께로 열 진공증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화학식의 헥사니트릴 헥사아자트리페닐렌(hexaazatriphenylene; HAT, 50Å) 및 하기 화합물 HT-A(600Å)를 순차적으로 진공증착하여 정공수송층을 형성하였다.
이어서, 상기 정공수송층 위에 막 두께 200Å으로 하기 화합물 BH와 BD를 25:1의 중량비로 진공증착하여 발광층을 형성하였다.
상기 발광층 위에 합성예 1에서 제조한 화합물 1과 하기 화합물 [LiQ](Lithiumquinolate)를 1:1 중량비로 진공증착하여 360Å의 두께로 전자수송 및 주입층을 형성하였다. 상기 전자수송 및 주입층 위에 순차적으로 10Å 두께로 리튬 플루오라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2023018066-appb-img-000050
상기의 과정에서 유기물의 증착속도는 0.4 내지 0.9 Å/sec를 유지하였고, 음극의 리튬 플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착 시 진공도는 1 × 10-7 내지 5 × 10-8 torr를 유지하여, 유기 발광 소자를 제작하였다.
실험예 2 내지 13
실험예 1의 화합물 1 대신 하기 표 1의 화합물을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교 실험예 1 내지 8
실험예 1의 화합물 1 대신 하기 표 1의 화합물을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 ET-1 내지 ET-8의 화합물은 하기와 같다.
Figure PCTKR2023018066-appb-img-000051
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 대하여, 10 mA/cm2의 전류밀도에서 구동 전압, 발광 효율 및 색좌표를 측정하였고, 20 mA/cm2의 전류밀도에서 초기 휘도 대비 90%가 되는 시간(T90)을 측정하였다. 그 결과를 하기 표 1에 나타내었다.

화합물
(전자수송 및 주입층)
(V@10mA/cm2) 효율
(cd/A@10mA/cm2)
색좌표
(x,y)
T90
(hr@20mA/cm2)
실험예 1 화합물 1 4.15 4.25 (0.136, 0.112) 180
실험예 2 화합물 2 4.11 4.38 (0.136, 0.111) 177
실험예 3 화합물 3 4.07 4.44 (0.136, 0.112) 188
실험예 4 화합물 4 4.20 4.19 (0.136, 0.111) 190
실험예 5 화합물 5 4.22 4.21 (0.136, 0.111) 172
실험예 6 화합물 6 4.17 4.39 (0.136, 0.111) 159
실험예 7 화합물 7 4.20 4.25 (0.136, 0.112) 161
실험예 8 화합물 8 4.22 4.36 (0.136, 0.111) 191
실험예 9 화합물 9 4.15 4.27 (0.136, 0.112) 241
실험예 10 화합물 10 4.27 4.18 (0.136, 0.111) 200
실험예 11 화합물 11 4.23 4.30 (0.136, 0.111) 170
실험예 12 화합물 12 3.99 4.78 (0.136, 0.111) 158
실험예 13 화합물 13 3.89 4.80 (0.136, 0.111) 101
비교실험예 1 ET-1 5.13 2.99 (0.136, 0.111) 30
비교실험예 2 ET-2 4.88 3.02 (0.136, 0.111) 99
비교실험예 3 ET-3 4.75 3.10 (0.136, 0.112) 100
비교실험예 4 ET-4 4.92 3.19 (0.136, 0.111) 54
비교실험예 5 ET-5 4.81 3.42 (0.136, 0.112) 59
비교실험예 6 ET-6 4.74 3.25 (0.136, 0.112) 36
비교실험예 7 ET-7 4.78 3.50 (0.136, 0.112) 54
비교실험예 8 ET-8 4.71 2.85 (0.136, 0.112) 65
상기 표 1에 기재된 바와 같이, 본 발명의 화학식 1로 표시되는 화합물을 사용한 유기 발광 소자의 경우, 전압, 효율 및/또는 수명(T90)에서 우수한 특성을 나타내는 것을 확인하였다.
상기 표 1의 실험예 1 내지 13과 비교실험예 1을 비교하면, 본 발명의 화학식 1의 화합물을 포함하는 유기 발광 소자는 전자 수송 특성을 가진 N 함유 고리로만 치환되어 있어 전자 수송 능력이 다양하게 조절할 수 있다. 따라서 정공특성이 우수한 카바졸기로만 3개 치환되어 있는 유기 발광 소자보다 효율 및 수명 면에서 현저히 우수한 특성을 보임을 확인할 수 있었다.
상기 표 1의 실험예 1 내지 13과 비교실험예 2 내지 5를 비교하면, 본 발명의 화학식 1의 화합물을 포함하는 유기 발광 소자는 전자 수송 특성을 가진 N 함유 고리가 2개 이상으로 치환되어 있고, 다이옥신, 페녹사진 및 티안트렌 코어 구조와 전자 수송 특성의 N 함유 고리가 서로 오쏘 및 파라 위치로 이웃하고 있어 전자 수송 능력을 다양하게 조절하는데 유리하다. 따라서 N 함유 고리가 1개 치환된 화합물을 사용한 유기 발광 소자보다 효율 및 수명 면에서 현저히 우수한 특성을 보임을 확인할 수 있었다.
비교실험예 6 내지 8은 벤젠고리의 1, 3, 5번 위치에 각각 치환기가 치환된다. 비록 본 발명 화학식 1과 동일한 치환기로 벤젠고리가 치환되지만, 치환위치가 다르다. 실험결과에서 알 수 있듯, 벤젠고리의 1, 3, 4번 위치에 치환기들이 치환된 실시예의 화합물이 비교실험예 6 내지 8의 화합물보다 저전압, 고효율 장수명의 특성을 보이는 것을 알 수 있다.

Claims (15)

  1. 하기 화학식 1의 화합물:
    [화학식 1]
    Figure PCTKR2023018066-appb-img-000052
    상기 화학식 1에 있어서,
    Y1 및 Y2는 서로 같거나 상이하고, 각각 독립적으로 O 또는 S이고,
    Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이고,
    X1 내지 X5 중 2 이상은 N이고, N이 아닌 나머지는 서로 같거나 상이하고, 각각 독립적으로 CR이고,
    X6 내지 X10 중 2 이상은 N이고, N이 아닌 나머지는 서로 같거나 상이하고, 각각 독립적으로 CR이고,
    R은 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 치환기와 결합하여 치환 또는 비치환된 고리를 형성할 수 있고,
    L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 치환 또는 비치환된 아릴렌기, 또는 치환 또는 비치환된 헤테로아릴렌기이고,
    a는 1 내지 3이고, a가 2 이상일 때, Q1는 서로 같거나 상이하고,
    b는 1 내지 7이고, b가 2 이상일 때, Q2는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나인 것인 화합물:
    [화학식 1-1]
    Figure PCTKR2023018066-appb-img-000053
    [화학식 1-2]
    Figure PCTKR2023018066-appb-img-000054
    [화학식 1-3]
    Figure PCTKR2023018066-appb-img-000055
    [화학식 1-4]
    Figure PCTKR2023018066-appb-img-000056
    상기 화학식 1-1 내지 1-4에 있어서, X1 내지 X10, Y1, Y2, L1, L2, Q1, Q2, a 및 b는 상기 화학식 1에서 정의한 것과 같다.
  3. 청구항 1에 있어서, 상기 Y1는 O이고, Y2는 S인 것인 화합물.
  4. 청구항 1에 있어서, 상기 Y1 및 Y2는 S인 것인 화합물.
  5. 청구항 1에 있어서, 상기 Y1 및 Y2는 O인 것인 화합물.
  6. 청구항 1에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 직접결합, 중수소로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 또는 중수소로 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴렌기인 것인 화합물.
  7. 청구항 1에 있어서, 상기 Q1 및 Q2는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 할로겐기, 니트릴기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기인 것인 화합물.
  8. 청구항 1에 있어서, 상기 X1 내지 X5 중 어느 둘은 N이고, 나머지는 CR인 것인 화합물.
  9. 청구항 1에 있어서, 상기 X6 내지 X10 중 어느 둘은 N이고, 나머지는 CR인 것인 화합물.
  10. 청구항 1에 있어서, 상기 X1 내지 X5 중 X1, X3 및 X5는 N이고, 나머지는 CR인 것인 화합물.
  11. 청구항 1에 있어서, 상기 X6 내지 X10 중 X6, X8 및 X10은 N이고, 나머지는 CR인 것인 화합물.
  12. 청구항 1에 있어서, 상기 화학식 1은 아래 화합물 중 어느 하나인 것인 화합물:
    Figure PCTKR2023018066-appb-img-000057
    Figure PCTKR2023018066-appb-img-000058
    Figure PCTKR2023018066-appb-img-000059
    Figure PCTKR2023018066-appb-img-000060
    Figure PCTKR2023018066-appb-img-000061
    Figure PCTKR2023018066-appb-img-000062
    Figure PCTKR2023018066-appb-img-000063
    Figure PCTKR2023018066-appb-img-000064
    Figure PCTKR2023018066-appb-img-000065
    Figure PCTKR2023018066-appb-img-000066
    Figure PCTKR2023018066-appb-img-000067
    Figure PCTKR2023018066-appb-img-000068
  13. 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비되는 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 청구항 1 내지 12 중 어느 한 항에 따른 화합물을 포함하는 유기 발광 소자.
  14. 청구항 13에 있어서, 상기 유기물층은 전자 주입층, 전자 수송층, 및 전자주입 및 수송층 중 1층 이상을 포함하고, 상기 층들 중 1층 이상이 상기 화합물을 포함하는 것인 유기 발광 소자.
  15. 청구항 14에 있어서, 상기 전자주입 및 수송층은 상기 화합물과 금속착체를 1:10 내지 10:1의 질량비로 포함하는 것인 유기 발광 소자.
PCT/KR2023/018066 2022-11-11 2023-11-10 화합물 및 이를 포함하는 유기 발광 소자 WO2024101948A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220150773 2022-11-11
KR10-2022-0150773 2022-11-11

Publications (1)

Publication Number Publication Date
WO2024101948A1 true WO2024101948A1 (ko) 2024-05-16

Family

ID=91033255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018066 WO2024101948A1 (ko) 2022-11-11 2023-11-10 화합물 및 이를 포함하는 유기 발광 소자

Country Status (2)

Country Link
KR (1) KR20240069653A (ko)
WO (1) WO2024101948A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110077851A (ko) * 2009-12-30 2011-07-07 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150077263A (ko) * 2013-12-27 2015-07-07 주식회사 두산 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20180129977A (ko) * 2013-07-30 2018-12-05 메르크 파텐트 게엠베하 전자 소자용 물질
CN109651406A (zh) * 2019-01-23 2019-04-19 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件
KR20190100882A (ko) * 2018-02-21 2019-08-29 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2974937C (en) 2015-03-25 2023-09-05 National Cancer Center Therapeutic agent for bile duct cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110077851A (ko) * 2009-12-30 2011-07-07 주식회사 두산 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20180129977A (ko) * 2013-07-30 2018-12-05 메르크 파텐트 게엠베하 전자 소자용 물질
KR20150077263A (ko) * 2013-12-27 2015-07-07 주식회사 두산 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20190100882A (ko) * 2018-02-21 2019-08-29 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN109651406A (zh) * 2019-01-23 2019-04-19 苏州久显新材料有限公司 热激活延迟荧光化合物、发光材料及有机电致发光器件

Also Published As

Publication number Publication date
KR20240069653A (ko) 2024-05-20

Similar Documents

Publication Publication Date Title
WO2019083327A2 (ko) 헤테로고리 화합물을 이용한 유기 발광 소자
WO2021010656A1 (ko) 유기 발광 소자
WO2021107728A1 (ko) 유기 발광 소자
WO2020138963A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020145725A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2019164218A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020159279A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2021125813A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019078692A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021015417A1 (ko) 유기발광 화합물 및 유기발광소자
WO2020122671A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019172647A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2017052221A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2019194615A1 (ko) 다환 화합물 및 이를 포함하는 유기전자소자
WO2020149610A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022239962A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021125814A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020153652A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020246837A9 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020153653A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020153654A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2020130623A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23889204

Country of ref document: EP

Kind code of ref document: A1