WO2024101235A1 - 粒状断熱材充填装置および方法 - Google Patents

粒状断熱材充填装置および方法 Download PDF

Info

Publication number
WO2024101235A1
WO2024101235A1 PCT/JP2023/039374 JP2023039374W WO2024101235A1 WO 2024101235 A1 WO2024101235 A1 WO 2024101235A1 JP 2023039374 W JP2023039374 W JP 2023039374W WO 2024101235 A1 WO2024101235 A1 WO 2024101235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
perlite
insulation material
gas supply
Prior art date
Application number
PCT/JP2023/039374
Other languages
English (en)
French (fr)
Inventor
高明 門田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2024101235A1 publication Critical patent/WO2024101235A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers

Definitions

  • This disclosure relates to an apparatus and method for filling an insulated space in a multi-shell tank that stores liquefied gas with granular insulation material.
  • a multi-shell tank is a tank that includes an inner tank and an outer tank that houses the inner tank.
  • an insulating space of a certain thickness is formed between the inner tank and the outer tank. Furthermore, the insulating space is filled with granular insulating material such as perlite.
  • Patent Document 1 The method described in Patent Document 1 below is known as a method for filling the insulated space inside a multi-shell tank with granular insulation material.
  • a perlite hopper that stores perlite is connected to the insulated space of the multi-shell tank by piping, and the gas inside the insulated space is sucked out with a vacuum pump in this state. This makes use of the pressure difference between the hopper and the insulated space to fill the insulated space with the perlite inside the hopper through the piping.
  • the objective of this disclosure is to provide a granular insulation filling device and method capable of filling the insulation space of a multi-shell tank with granular insulation material at a required specific gravity.
  • the granular insulation filling device is a device for filling an insulated space in a multi-shelled tank that stores liquefied gas with granular insulation, and includes a storage container that stores the granular insulation, a make-up gas pipe that supplies a reduced pressure make-up gas to the storage container to prevent a reduction in pressure in the storage container that accompanies the dispensing of the granular insulation, an introduction pipe that connects the storage container to the multi-shelled tank and introduces the granular insulation in the storage container together with the reduced pressure make-up gas into the insulated space, and a gas supply pipe that has one end connected to an inert gas supply source and the other end that merges with the introduction pipe and supplies the inert gas to the introduction pipe.
  • a method for filling granular insulation material is a method for filling an insulated space in a multi-shelled tank that stores liquefied gas with granular insulation material, in which a storage container that stores the granular insulation material and the multi-shelled tank are connected with an inlet pipe, a gas supply pipe capable of supplying an inert gas is connected to the inlet pipe, the granular insulation material is introduced from the storage container into the insulated space through the inlet pipe together with a pressure reduction compensation gas that suppresses pressure reduction within the storage container due to the discharge of the granular insulation material, and the inert gas is supplied from the gas supply pipe to the inlet pipe during at least a portion of the period during which the granular insulation material is introduced.
  • the present disclosure provides a granular insulation filling device and method capable of filling the insulation space of a multi-shell tank with granular insulation material at a required specific gravity.
  • FIG. 1 is a system diagram showing the configuration of a perlite filling device according to a first embodiment of the present disclosure.
  • FIG. 2 is a system diagram showing the configuration of a perlite filling device according to the second embodiment.
  • FIG. 3 is a system diagram showing the configuration of a perlite filling device according to the third embodiment.
  • the present disclosure relates to a device and method for filling an insulated space in a multi-shell tank that stores liquefied gas with granular insulation material.
  • the multi-shell tank is, for example, a spherical or flat-bottomed double-shelled or triple-shelled tank.
  • the liquefied gas stored therein is, for example, liquefied hydrogen, liquid helium, liquid nitrogen, liquefied natural gas, or liquefied petroleum gas.
  • a representative example of a granular insulation material is powdered perlite.
  • a device and method for filling a thermally insulated space in a double-shelled tank that stores liquefied hydrogen with powdered perlite is shown.
  • FIG. 1 is a system diagram showing the overall configuration of a perlite filling device 1 according to a first embodiment of the granular insulation material filling device of the present disclosure.
  • the perlite filling device 1 is a device for filling perlite P into an insulation space S1 in a multi-shell tank 100.
  • the multi-shell tank 100 is a double-shelled spherical tank for storing liquefied hydrogen.
  • the multi-shell tank 100 includes a spherical tank inner tank 101 that divides a storage space S2 for liquefied hydrogen, a spherical tank outer tank 102 that accommodates the tank inner tank 101, and a support 103 that supports the tank outer tank 102 on the ground.
  • the insulation space S1 is a space of a predetermined thickness formed between the tank inner tank 101 and the tank outer tank 102 for cold insulation.
  • the perlite P is a powdered insulation material that is filled into the insulation space S1 to enhance the cold insulation effect.
  • the perlite filling device 1 is prepared before the multi-shell tank 100 is put into operation, i.e., before liquefied hydrogen is stored in the storage space S2, and is used to fill the insulating space S1 with perlite P in a compressed state.
  • the perlite filling device 1 comprises a perlite container 2 (storage container), a perlite inlet pipe 3 (inlet piping), a vacuum pump 4, a balance gas supply pipe 5 (supplementary gas piping), a replacement device 6, and a gas supply device 7.
  • the perlite container 2 is a container that contains the perlite P before it is filled into the insulating space S1.
  • the perlite introduction pipe 3 is a pipe for introducing the perlite P in the perlite container 2 into the insulating space S1.
  • the perlite introduction pipe 3 connects the tank outer tank 102 and the perlite container 2 to each other.
  • the vacuum pump 4 is a pump for vacuuming the insulating space S1.
  • the balance gas supply pipe 5 is a pipe for balancing the pressure between the storage space S2 and the perlite container 2.
  • the balance gas supply pipe 5 connects the tank inner tank 101 and the perlite container 2 to each other.
  • the replacement device 6 is a device that replaces the air present in the storage space S2 with an inert gas, nitrogen gas in this embodiment, before storing liquefied hydrogen.
  • the gas supply device 7 is a device that supplies an inert gas to the perlite introduction pipe 3 to suppress clogging of the perlite P in the perlite introduction pipe 3.
  • the perlite container 2 is a horizontally long cylindrical container having one end 2A and the other end 2B, and contains perlite P in a nitrogen gas atmosphere.
  • the perlite container 2 is installed at a position somewhat away from the multi-shell tank 100, with the other end 2B of the container being suspended by a crane (not shown). That is, the tip of a wire W extending from the crane is connected to the other end 2B of the perlite container 2.
  • the perlite container 2 is installed in an inclined position relative to the ground by being lifted by the crane via the wire W.
  • the installation position of the perlite container 2 is an inclined position such that the height of the one end 2A on the side closer to the multi-shell tank 100 is lower than the height of the other end 2B on the opposite side.
  • FIG. 1 the position of the perlite container 2 before being lifted by the crane is shown by a two-dot chain line.
  • One end 2A of the perlite container 2 is formed with an outlet 2a for dispensing the perlite P contained in the perlite container 2.
  • the other end 2B is formed with a gas supply port 2b for supplying balance gas as reduced pressure compensation gas into the perlite container 2.
  • nitrogen gas present in the storage space S2 (one inert gas supply source) in the tank inner vessel 101 is supplied as the balance gas. Details will be described later.
  • the perlite introduction pipe 3 includes an upstream pipe 11, a transparent pipe 12, and a downstream pipe 13 that form the pipeline on the multi-shell tank 100 side of the branch socket 3B (junction), and a filling pipe 21 that forms the pipeline on the perlite container 2 side of the branch socket 3B.
  • the branch socket 3B forms a T-shaped branch connection part for merging the gas supply pipe 71 of the gas supply device 7, which will be described later, with the perlite introduction pipe 3.
  • the filling pipe 21 connects the outlet 2a of the perlite container 2 to the branch socket 3B.
  • the filling pipe 21 is composed of a combination of a rigid pipe, such as a steel pipe, and a flexible pipe 21F.
  • the flexible pipe 21F is a pipe that is flexible and can be bent freely, such as a flexible steel pipe.
  • the upstream pipe 11 connects the branch socket 3B and the transparent pipe 12.
  • the upstream pipe 11 is also composed of a combination of a rigid pipe and a flexible pipe 11F.
  • the transparent tube 12 is a straight tube made of a transparent synthetic resin that is interposed between the upstream tube 11 and the downstream tube 13.
  • the transparent tube 12 has a degree of transparency that allows the perlite P passing through it to be visible from the outside.
  • the transparent tube 12 may be made of either a transparent or translucent material.
  • the transparent tube 12 may be a transparent or translucent acrylic tube.
  • the transparent tube 12 is flange-connected to the upstream tube 11 and the downstream tube 13.
  • the downstream pipe 13 includes a vertical pipe 23 extending upward from the transparent pipe 12, and a connecting pipe 24 connecting the downstream end of the vertical pipe 23 to the tank outer tank 102.
  • the vertical pipe 23 is made of a rigid pipe such as a steel pipe.
  • the connecting pipe 24 includes at least a portion of a flexible pipe 24F such as a flexible steel pipe.
  • the downstream end of the connecting pipe 24 is connected to the filling port 102a of the tank outer tank 102.
  • the filling port 102a is a communication part for introducing the perlite P supplied from the perlite introduction pipe 3 into the insulation space S1, and is provided at multiple locations on the tank outer tank 102.
  • the connecting pipe 24 is selectively connected to one of the multiple filling ports 102a, and in that state, the perlite P is filled into the insulation space S1. In other words, the perlite P is filled while appropriately switching the filling port 102a to which the connecting pipe 24 is connected.
  • a first flow control valve 31 is disposed in the perlite introduction pipe 3, midway through the filling pipe 21, upstream of the branch socket 3B.
  • the first flow control valve 31 is a valve whose opening is adjusted to adjust the flow rate of perlite P sent from the filling pipe 21 to the branch socket 3B.
  • the first flow control valve 31 can be of any type as long as it can adjust the flow rate of the filling pipe 21.
  • a first on-off valve 32 is provided midway along the downstream pipe 13 of the perlite introduction pipe 3, near the filling port 102a.
  • the first on-off valve 32 is a valve for switching between starting and stopping the introduction of perlite P into the insulating space S1 through the perlite introduction pipe 3.
  • the first on-off valve 32 is opened when starting the introduction of perlite P, and closed when stopping the introduction of perlite P.
  • the first on-off valve 32 can open or close the pipe line, and is preferably a ball valve that can be quickly shut off in the event of an unforeseen event.
  • the vacuum pump 4 is a suction pump that includes a pump element capable of sucking gas and a driving source such as an electric motor that drives the pump element.
  • the vacuum pump 4 is connected to the insulating space S1 of the multi-shell tank 100 via a suction pipe 41, and is capable of evacuating the insulating space S1 by sucking gas from the insulating space S1 through the suction pipe 41 and discharging it to the outside. Since the perlite container 2 and the insulating space S1 are directly connected by the perlite introduction pipe 3, when the insulating space S1 is evacuated, a large pressure difference occurs between the perlite container 2 and the insulating space S1. When perlite P is introduced into the insulating space S1, the vacuum pump 4 is driven to generate such a pressure difference. By this vacuum filling method, perlite P is drawn into the insulating space S1 through the perlite introduction pipe 3.
  • the balance gas supply pipe 5 connects the gas supply port 2b of the perlite container 2 to the tank inner tank 101. This pipe is for supplying a balance gas to the perlite container 2 to prevent the pressure inside the perlite container 2 from decreasing due to the discharge of the perlite P.
  • an inert gas stored in the storage space S2 inside the tank inner tank 101 is used as the balance gas. Nitrogen gas is also used as the balance gas.
  • the perlite P in the perlite container 2 is sent out from the discharge port 2a to the perlite introduction pipe 3 together with the nitrogen gas, and is introduced into the insulating space S1.
  • the storage space S2 is filled with nitrogen gas.
  • the balance gas supply pipe 5 is provided with a second on-off valve 34, a third on-off valve 35, and a check valve 36.
  • the second on-off valve 34 and the third on-off valve 35 are valves consisting of ball valves or the like that can open/close the pipe line, similar to the first on-off valve 32 described above.
  • the check valve 36 is a check valve that allows flow from the storage space S2 toward the perlite container 2 and prohibits flow in the opposite direction.
  • the second on-off valve 34 is attached to the balance gas supply pipe 5 close to the multi-shell tank 100, and the third on-off valve 35 is attached to the balance gas supply pipe 5 close to the gas supply port 2b of the perlite container 2.
  • the check valve 36 is located downstream of the second on-off valve 34.
  • the replacement device 6 replaces the atmosphere in the storage space S2 from air to nitrogen gas before the operation of filling the multi-shell tank 100 with liquefied hydrogen and perlite P.
  • the replacement device 6 includes a replacement gas supply source 60, a supply pipe 61, and an on-off valve 62.
  • the replacement gas supply source 60 is a nitrogen gas supply source.
  • the storage space S2 is replaced with nitrogen gas by supplying nitrogen gas from the replacement gas supply source 60 through the supply pipe 61 with the on-off valve 62 open.
  • the replacement device 6 supplies nitrogen gas to the storage space S2 to replenish the consumed nitrogen gas even during the operation of filling the perlite P.
  • the storage space S2 is constantly filled with nitrogen gas at a substantially constant pressure.
  • the balance gas supply pipe 5 serves to maintain the pressure inside the perlite container 2 at the same pressure as the storage space S2 by connecting the large-capacity storage space S2 filled with nitrogen gas to the perlite container 2.
  • the gas supply device 7 is a device that suppresses clogging of the perlite P in the perlite introduction pipe 3 by supplying an inert gas to the perlite introduction pipe 3.
  • the gas supply device 7 includes a gas supply pipe 71 and a second flow control valve 72.
  • the gas supply pipe 71 is a pipe that connects the inert gas supply source to the perlite introduction pipe 3, with one end 7a connected to the perlite container 2 and the other end 7b merged with the perlite introduction pipe 3.
  • the gas supply pipe 71 includes a flexible tube 73 in part.
  • the balance gas supplied to the perlite container 2 is used as a supply source of the inert gas. That is, a portion of the nitrogen gas as the balance gas supplied from the storage space S2 to the perlite container 2 is supplied from one end 7a to the gas supply pipe 71.
  • the other end 7b of the gas supply pipe 71 is connected to the branch socket 3B.
  • the nitrogen gas introduced into the gas supply pipe 71 can be supplied to the perlite introduction pipe 3 from the branch socket 3B, which is the junction.
  • the gas supply pipe 71 branches from the perlite container 2 and merges with the perlite introduction pipe 3 to which the outlet 2a is connected, so that the pressure in the perlite container 2 and the gas supply pipe 71 are the same. Therefore, the backflow of perlite P caused by the pressure difference between the two can be suppressed.
  • a filter 2F that does not allow perlite P to pass through is attached to the branching section of one end side 7a of the gas supply pipe 71 in the perlite container 2. This allows only nitrogen gas to be introduced into the gas supply pipe 71 from the one end side 7a.
  • a second flow rate adjustment valve 72 is disposed in the gas supply pipe 71 upstream of the branch socket 3B. The second flow rate adjustment valve 72 is a valve whose opening is adjusted to adjust the flow rate of nitrogen gas supplied from the gas supply pipe 71 to the perlite introduction pipe 3.
  • the flow rate ratio of perlite P to nitrogen gas in the pipeline downstream of the branch socket 3B of the perlite introduction pipe 3 can be adjusted by adjusting the flow rate with the first flow rate adjustment valve 31 arranged upstream of the branch socket 3B and the second flow rate adjustment valve 72 arranged in the gas supply pipe 71.
  • the first flow rate adjustment valve 31 By increasing the opening of the first flow rate adjustment valve 31 while narrowing the opening of the second flow rate adjustment valve 72, perlite P can be sent to the insulating space S1 at a large flow rate.
  • the flow rate of nitrogen gas increases, and perlite P can be sent to the insulating space S1 with a low concentration. This can suppress clogging of the perlite introduction pipe 3.
  • the perlite filling device 1 is first assembled. That is, the perlite container 2 is brought into a fixed position at a specified distance from the multi-shell tank 100, and the perlite introduction pipe 3, the balance gas supply pipe 5, and the gas supply device 7 are assembled between the perlite container 2 and the multi-shell tank 100 as shown in FIG. 1.
  • a vacuum pump 4 is also prepared, and the vacuum pump 4 is connected to the tank outer tank 102 via a suction pipe 41.
  • the perlite container 2 is lifted by the crane wire W so that the height of one end 2A is lower than the other end 2B.
  • the perlite introduction pipe 3 is assembled to connect the discharge outlet 2a of the perlite container 2 to one of the multiple filling ports 102a provided in the tank outer tank 102.
  • the filling port 102a to which the connection pipe 24 of the perlite introduction pipe 3 is first connected is selected to be the filling port 102a located at a relatively low height in the tank outer tank 102.
  • the operation of filling the insulation space S1 with perlite P is started. That is, the first on-off valve 32 of the perlite introduction pipe 3 and the second on-off valve 34 and the third on-off valve 35 of the balance gas supply pipe 5 are opened. In this state, the vacuum pump 4 is driven to evacuate the insulation space S1. As a result, the perlite P in the perlite container 2 is drawn into the insulation space S1 through the perlite introduction pipe 3 together with the nitrogen gas of the balance gas, and the filling of the perlite P is started.
  • the first flow rate adjustment valve 31 of the perlite introduction pipe 3 is, for example, fully opened so that the flow rate of the perlite P is a predetermined flow rate.
  • the second flow rate adjustment valve 72 of the gas supply pipe 71 is fully closed or slightly opened. Since there is a lot of vacant space in the insulation space S1 at the initial filling stage, it is prioritized to increase the flow rate of the perlite P by setting the opening degree as described above and fill a large amount of perlite P in a short time.
  • the filling of the perlite P progresses, it may not proceed smoothly. This is because the area around the filling port 102a to which the connecting tube 24 is connected becomes filled with the perlite P, causing the flow of the perlite P to stagnate or become clogged in the perlite introduction tube 3. The worker can visually check the flow of the perlite P in the perlite introduction tube 3 through the transparent tube 12.
  • the flow control valves 31 and 72 are operated.
  • the predetermined level is, for example, when the flow blockage of perlite P is confirmed in the transparent tube 12, or when a predetermined time has elapsed since filling with the first flow control valve 31 fully opened.
  • the opening of the first flow control valve 31 is reduced and the opening of the second flow control valve 72 is increased. That is, the first flow control valve 31 is narrowed to reduce the flow rate of perlite P and nitrogen gas from the filling pipe 21 to the upstream pipe 11 compared to the initial stage.
  • the opening of the second flow control valve 72 is increased to increase the flow rate of nitrogen gas supplied to the upstream pipe 11.
  • the required nitrogen gas flow rate can be secured in the upstream pipe 11 by the nitrogen gas supplied from the bypass route, the gas supply pipe 71.
  • the flow rate of perlite P into the insulating space S1 per unit time can be reduced. It is essential that perlite P can be filled, even if it takes time to fill.
  • simply throttling the first flow control valve 31 reduces not only the flow rate of perlite P, but also the flow rate of nitrogen gas used as a balance gas. This slows down the flow rate of perlite P in the perlite introduction pipe 3, ultimately causing clogging and making it impossible to fill the pipe at all.
  • nitrogen gas is a gas, it will not clog in the perlite introduction pipe 3. Therefore, in this embodiment, nitrogen gas is supplied through the gas supply pipe 71 to ensure the flow rate of nitrogen gas in the upstream pipe 11 and the downstream pipe 13. This makes it possible to dilute the concentration of perlite P while ensuring the flow rate of perlite P in the perlite introduction pipe 3. Therefore, it is possible to compactly pack perlite P into the insulation space S1 while suppressing clogging of perlite P in the perlite introduction pipe 3.
  • nitrogen gas can be supplied from the gas supply pipe 71 to the perlite introduction pipe 3 that sends the perlite P to the heat-insulating space S1 of the multi-shell tank 100. Therefore, when the flow of the perlite P is stagnant in the perlite introduction pipe 3, the flow of nitrogen gas supplied from the gas supply pipe 71 can send the perlite P to the heat-insulating space S1.
  • the flow rate ratio of perlite P and nitrogen gas in the perlite introduction pipe 3 downstream of the branch socket 3B can be freely controlled.
  • the opening degree of the first flow rate control valve 31 is made larger than the opening degree of the second flow rate control valve 72, and perlite P is introduced into the insulation space S1 at a large flow rate.
  • the opening degree of the first flow rate control valve 31 is narrowed to reduce the flow rate of perlite P, while the opening degree of the second flow rate control valve 72 is relatively large to ensure the flow, and a small amount of perlite P is introduced into the insulation space S1 on the back of a large amount of nitrogen gas.
  • perlite P can be filled into the insulation space S1 at the required specific gravity.
  • the balance gas supplied to the perlite container 2 is supplied to the gas supply pipe 71.
  • the balance gas and the gas supplied to the gas supply pipe 71 are the same inert gas. Therefore, there is no need to provide additional inert gas for supply to the gas supply pipe 71.
  • the pressure inside the perlite container 2 and the gas supply pipe 71 is the same, which has the advantage of preventing backflow of perlite P.
  • the storage space S2 of the multi-shell tank 100 is replaced with nitrogen gas by the replacement device 6, and the storage space S2 serves as a single nitrogen gas supply source to supply nitrogen gas to the balance gas supply pipe 5 and the gas supply pipe 71.
  • the storage space S2 generally has a large capacity, the pressure in the storage space S2 does not suddenly fluctuate even if a large amount of nitrogen gas is sent to the balance gas supply pipe 5 and the gas supply pipe 71. This allows a stable supply of nitrogen gas.
  • [Second embodiment] 2 is a system diagram showing the overall configuration of the perlite filling device 1A according to the second embodiment.
  • the difference between the perlite filling device 1A and the first embodiment is the arrangement of the gas supply device 7A.
  • the gas supply device 7A diverts nitrogen gas from the balance gas supply pipe 5 and supplies the nitrogen gas to the perlite introduction pipe 3.
  • the remaining parts of the perlite filling device 1A are the same as those of the perlite filling device 1 of the first embodiment, so the explanation will be omitted here.
  • the gas supply device 7A includes a gas supply pipe 71A, and a second flow control valve 72A and a check valve 74 disposed on the gas supply pipe 71A.
  • One end 7a of the gas supply pipe 71A is branched and connected to the balance gas supply pipe 5.
  • a T-shaped branch socket 5B is inserted into the balance gas supply pipe 5, and one end 7a of the gas supply pipe 71A is connected to the branch socket 5B.
  • the other end 7b of the gas supply pipe 71A is connected to a T-shaped branch socket 3B inserted into the perlite introduction pipe 3, as in the first embodiment.
  • the gas supply pipe 71A of the second embodiment bypasses the perlite container 2 and directly connects the balance gas supply pipe 5 and the perlite introduction pipe 3, making it possible to supply a portion of the nitrogen gas as the balance gas to the perlite introduction pipe 3.
  • the second flow rate control valve 72A is a valve whose opening is adjusted to adjust the flow rate of nitrogen gas supplied from the gas supply pipe 71A to the perlite introduction pipe 3.
  • the flow rate ratio of perlite P to nitrogen gas in the perlite introduction pipe 3 downstream of the branch socket 3B is controlled by flow rate adjustment using the first flow rate control valve 31 and the second flow rate control valve 72A.
  • the check valve 74 is a backflow prevention valve that prohibits the backflow of nitrogen gas in the gas supply pipe 71A.
  • the opening of the first flow control valve 31 is increased and the second flow control valve 72A is closed or slightly opened, and the perlite P is introduced into the insulating space S1 at a large flow rate.
  • the opening of the first flow control valve 31 is narrowed to reduce the flow rate of the perlite P, while the opening of the second flow control valve 72A is increased, and the nitrogen gas flow rate is relatively increased to introduce a small amount of perlite P into the insulating space S1.
  • the gas supply pipe 71A can bypass the perlite container 2 and directly introduce nitrogen gas from the balance gas supply pipe 5 into the perlite introduction pipe 3. This makes it easier to increase the flow rate of the nitrogen gas flowing through the gas supply pipe 71A.
  • the fluid flow in the upstream pipe 11 of the perlite introduction pipe 3 is dominated by a high-speed nitrogen gas flow FA flowing from the gas supply pipe 71A toward the upstream pipe 11.
  • the perlite P supplied from the filling pipe 21 is added to the nitrogen gas flow FA, making it easier to maintain a state in which a low-concentration perlite P is supplied to the insulation space S1.
  • the perlite P can be filled into the insulation space S1 without clogging the perlite introduction pipe 3. In other words, although it takes a little time, the insulation space S1 can be filled with perlite P at the required specific gravity.
  • the storage space S2 of the multi-shell tank 100 which has been replaced with nitrogen gas, serves as a single inert gas supply source, and nitrogen gas is supplied to the balance gas supply pipe 5 and the gas supply pipe 71A. Therefore, no pressure difference occurs between the balance gas supply pipe 5 and the perlite container 2 and the gas supply pipe 71A, preventing the perlite P from flowing back into the perlite container 2.
  • [Third embodiment] 3 is a system diagram showing the overall configuration of the perlite filling device 1B according to the third embodiment.
  • the perlite filling device 1B differs from the first and second embodiments in that the nitrogen gas is not supplied from the storage space S2 of the multi-shell tank 100, which is replaced with nitrogen gas, but from a gas supply device 7B having its own nitrogen gas source to the perlite introduction pipe 3.
  • the remaining parts of the perlite filling device 1B are the same as those of the perlite filling devices 1 and 1A according to the first and second embodiments, so the explanation will be omitted here.
  • the gas supply device 7B includes a nitrogen gas supply source 70, a gas supply pipe 71B, and a second flow rate adjustment valve 72B.
  • the nitrogen gas supply source 70 is a gas tank filled with nitrogen gas.
  • One end 7a of the gas supply pipe 71B is connected to the nitrogen gas supply source 70.
  • the other end 7b of the gas supply pipe 71B is connected to a T-shaped branch socket 3B inserted into the perlite introduction pipe 3.
  • the second flow rate control valve 72B is a valve that adjusts the flow rate of nitrogen gas supplied from the nitrogen gas supply source 70 to the perlite introduction pipe 3 through the gas supply pipe 71B.
  • the flow rate adjustment by the first flow rate control valve 31 and the second flow rate control valve 72B controls the flow rate ratio of perlite P and nitrogen gas in the perlite introduction pipe 3 downstream of the branch socket 3B.
  • the opening of the first flow control valve 31 is increased and the second flow control valve 72B is closed or slightly opened.
  • the opening of the first flow control valve 31 is narrowed to reduce the flow rate of the perlite P, while the opening of the second flow control valve 72B is increased to relatively increase the nitrogen gas flow rate and introduce a small amount of perlite P into the insulating space S1.
  • the target for filling perlite P by the perlite filling device 1 is a multi-shelled tank 100 that stores liquefied hydrogen.
  • the target for filling perlite by the device and method according to the present disclosure is not limited to liquefied hydrogen tanks, and may be tanks that store other types of liquefied gas.
  • the insulating space of a multi-shelled tank that stores liquefied natural gas, liquid helium, liquid nitrogen, liquefied ammonia, liquefied petroleum gas, etc. may be the target for filling perlite P by the device and method.
  • liquefied hydrogen has the lowest temperature
  • it is required to fill the insulating space with a sufficient amount of perlite in a compressed state in order to improve the cold storage performance.
  • the device and method can be most suitably applied to a multi-shelled tank that stores liquefied hydrogen.
  • granular perlite P is filled into the insulating space S1 of the multi-shell tank 100 as a granular insulating material.
  • Any granular substance that exhibits insulating properties that is, a granular insulating material, can be filled into the insulating space S1, and is not limited to perlite.
  • glass particles known as glass bubbles can be used as a granular insulating material.
  • the granular insulation filling device is a device for filling an insulated space in a multi-shell tank that stores liquefied gas with granular insulation, and includes a storage container for storing the granular insulation, a make-up gas pipe for supplying a reduced pressure make-up gas to the storage container to prevent a reduction in pressure in the storage container due to the dispensing of the granular insulation, an introduction pipe that connects the storage container to the multi-shell tank and introduces the granular insulation in the storage container together with the reduced pressure make-up gas into the insulated space, and a gas supply pipe having one end connected to an inert gas supply source and the other end that merges with the introduction pipe and supplies the inert gas to the introduction pipe.
  • an inert gas can be supplied from a gas supply pipe to the inlet pipe that sends the granular insulation material to the insulated space of the multi-shell tank. Therefore, when the flow of the granular insulation material is stagnated in the inlet pipe, the flow of the inert gas supplied from the gas supply pipe can send the granular insulation material to the insulated space.
  • the granular insulation material filling device of the second aspect is the granular insulation material filling device of the first aspect, further comprising a first flow control valve disposed in the inlet pipe upstream of the junction of the gas supply pipe, and a second flow control valve disposed in the gas supply pipe upstream of the junction, and the flow rate ratio of the granular insulation material and the inert gas downstream of the junction of the inlet pipe can be adjusted by adjusting the flow rates with the first flow control valve and the second flow control valve.
  • the flow rate ratio of the granular insulation material and the inert gas in the introduction pipe can be freely controlled.
  • the opening of the first flow control valve is made larger than the opening of the second flow control valve, and the granular insulation material is introduced into the insulated space at a large flow rate.
  • the opening of the first flow control valve is narrowed to reduce the flow rate of the granular insulation material, while the opening of the second flow control valve is made relatively larger to ensure flow, and a small amount of granular insulation material is introduced into the insulated space on the back of a large amount of inert gas.
  • such flow rate control allows the granular insulation material to be filled into the insulated space at the required specific gravity.
  • the third aspect of the granular insulation material filling device is the granular insulation material filling device of the first or second aspect, in which the reduced pressure make-up gas is an inert gas, one end of the gas supply pipe is connected to the storage container, and a portion of the reduced pressure make-up gas supplied to the storage container is supplied to the gas supply pipe.
  • the reduced pressure make-up gas is an inert gas
  • the inert gas introduced into the storage container as a pressure reduction make-up gas can be used to supply the inert gas to the gas supply pipe.
  • the pressure inside the storage container and the gas supply pipe become the same, preventing backflow of the granular insulation material.
  • the granular insulation material filling device of the fourth aspect is the granular insulation material filling device of the first or second aspect, in which the reduced pressure make-up gas is an inert gas, one end of the gas supply pipe is branched and connected to the make-up gas pipe, and a portion of the reduced pressure make-up gas flowing through the make-up gas pipe is supplied to the gas supply pipe.
  • the reduced pressure make-up gas is an inert gas
  • one end of the gas supply pipe is branched and connected to the make-up gas pipe, and a portion of the reduced pressure make-up gas flowing through the make-up gas pipe is supplied to the gas supply pipe.
  • the inert gas introduced into the make-up gas pipe as the reduced pressure make-up gas can be used to supply the inert gas to the gas supply pipe.
  • the pressure inside the make-up gas pipe and the gas supply pipe are at the same pressure, preventing backflow of the granular insulation material.
  • the fifth aspect of the granular insulation material filling device is the granular insulation material filling device of the first or second aspect, in which the gas supplied to the supplementary gas pipe and the gas supplied to the gas supply pipe are the same inert gas, and the device is provided with a single inert gas supply source that supplies the inert gas to the supplementary gas pipe and the gas supply pipe.
  • a common inert gas is supplied from a single inert gas supply source to the make-up gas piping and the gas supply piping. This simplifies the device structure. In addition, since no pressure difference occurs between the make-up gas piping and the gas supply piping, backflow of the granular insulation material can be prevented.
  • the granular insulation material filling device of the sixth aspect is the granular insulation material filling device of the fifth aspect, which is provided with a replacement device that replaces the liquefied gas storage space in the multi-shell tank with an inert gas, and the storage space in a state where it has been replaced with an inert gas is used as the one inert gas supply source.
  • the inert gas temporarily stored in the storage space of the multi-shell tank is utilized as the inert gas supply source. Since the storage space generally has a large capacity, even if a large amount of inert gas is sent to the make-up gas piping and the gas supply piping, the pressure in the storage space does not suddenly fluctuate. Therefore, the inert gas can be supplied stably.
  • the seventh aspect of the granular insulation filling device is a granular insulation filling device according to the first to sixth aspects, in which the inlet pipe downstream of the junction with the gas supply pipe includes a transparent pipe that is transparent enough to allow the granular insulation flowing inside to be visually observed.
  • the flow state of the granular insulation material in the inlet pipe downstream of the junction can be visually confirmed by the worker through the transparent tube. Therefore, the timing and flow rate of the inert gas supplied from the gas supply pipe to the inlet pipe can be set according to the flow state.
  • the granular insulation filling method is a method for filling an insulated space in a multi-shelled tank that stores liquefied gas with granular insulation, in which an inlet pipe is connected between a storage container that stores the granular insulation and the multi-shelled tank, a gas supply pipe capable of supplying an inert gas is connected to the inlet pipe, the granular insulation is introduced from the storage container into the insulated space through the inlet pipe together with a pressure reduction compensation gas that suppresses pressure reduction within the storage container due to the dispensing of the granular insulation, and the inert gas is supplied from the gas supply pipe to the inlet pipe during at least a portion of the period during which the granular insulation is introduced.
  • the flow of the granular insulation material when the flow of the granular insulation material is stagnated in the inlet pipe during the period in which the granular insulation material is being introduced into the insulated space, the flow of the inert gas supplied from the gas supply pipe can be used to send the granular insulation material to the insulated space.
  • the ninth aspect of the granular insulation filling method is the eighth aspect of the granular insulation filling method, in which in the initial stage of the introduction of the granular insulation into the insulated space, the flow rate of the granular insulation in the introduction pipe is set to a predetermined amount, and when the introduction of the granular insulation into the insulated space reaches a predetermined level, the flow rate of the granular insulation in the introduction pipe is reduced from the initial stage, while the flow rate of the inert gas supplied from the gas supply pipe to the introduction pipe is increased.
  • the introduction of the granular insulation material reaches a predetermined level, for example, at a timing when the flow of the granular insulation material tends to stagnate, the flow rate of the granular insulation material is reduced and the flow rate of the inert gas is increased. This ensures flow in the introduction pipe, and a small amount of granular insulation material can be introduced into the insulated space on the back of a large amount of inert gas.
  • Perlite filling equipment (granular insulation material filling equipment) 12 Transparent tube 2 Perlite container (container) 3. Perlite inlet pipe (inlet piping) 3B Branch socket (junction) 31 First flow control valve 4 Vacuum pump 5 Balance gas supply pipe (supplementary gas pipe) 6 Replacement device 7, 7A, 7B Gas supply device 71, 71A, 71B Gas supply piping 72, 72A, 72B Second flow control valve 7a One end side 7b Other end side 100 Multi-shell tank S1 Insulated space P Perlite (granular insulating material) S1 Insulated space S2 Storage space (one inert gas supply source)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Basic Packing Technique (AREA)

Abstract

粒状断熱材充填装置は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する装置である。粒状断熱材充填装置は、前記粒状断熱材を収容する収容容器と、前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止するために、減圧補填ガスを前記収容容器に供給する補填ガス配管と、前記収容容器と前記多重殻タンクとを接続し、前記収容容器内の粒状断熱材を前記減圧補填ガスとともに前記断熱空間に導入する導入配管と、一端側が不活性ガスの供給源に接続され、他端側が前記導入配管に合流され、前記導入配管に不活性ガスを供給するガス供給配管と、を備える。

Description

粒状断熱材充填装置および方法
 本開示は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する装置および方法に関する。
 一般に、液化水素や液化天然ガスなどの低温の液化ガスは、多重殻タンクの内部に貯蔵される。多重殻タンクは、内槽と、内槽を収容する外槽とを含むタンクである。液化ガスの保冷のため、内槽と外槽との間には所定厚みの断熱空間が形成される。また、前記断熱空間にはパーライト等の粒状断熱材が充填される。
 多重殻タンク内の断熱空間に粒状断熱材を充填する方法として、下記特許文献1に記載の工法が知られている。特許文献1のパーライト充填工法は、パーライトを貯えるパーライトホッパと多重殻タンクの断熱空間とを配管で接続し、かつその状態で断熱空間内のガスを真空ポンプで吸引する。これにより、ホッパと断熱空間との間に生じる差圧を利用して、前記配管を通してホッパ内のパーライトを断熱空間に充填させる。
 粒状断熱材は、多重殻タンクの断熱空間に圧密充填することが、保冷効果を高めるために望ましい。特許文献1の工法にて前記断熱空間への前記粒状断熱材の導入を行った場合、初期段階では良好に導入を行えるが、ある程度導入が進行すると、導入配管において前記粒状断熱材の詰まりが頻発することが判明した。このため、前記粒状断熱材を前記断熱空間へ所要の比重まで圧密充填できないという問題が生じた。
特開平2-256999号公報
 本開示の目的は、多重殻タンクの断熱空間に粒状断熱材を所要の比重で充填することが可能な粒状断熱材充填装置および方法を提供することにある。
 本開示の一局面に係る粒状断熱材充填装置は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する装置であって、前記粒状断熱材を収容する収容容器と、前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止するために、減圧補填ガスを前記収容容器に供給する補填ガス配管と、前記収容容器と前記多重殻タンクとを接続し、前記収容容器内の粒状断熱材を前記減圧補填ガスとともに前記断熱空間に導入する導入配管と、一端側が不活性ガスの供給源に接続され、他端側が前記導入配管に合流され、前記導入配管に不活性ガスを供給するガス供給配管と、を備える。
 本開示の他の局面に係る粒状断熱材充填方法は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する方法であって、前記粒状断熱材を収容する収容容器と前記多重殻タンクとを導入配管で接続し、前記導入配管に不活性ガスを供給可能なガス供給配管を接続し、前記収容容器から前記粒状断熱材を、前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止する減圧補填ガスとともに、前記導入配管を通して前記断熱空間に導入し、前記粒状断熱材の前記導入を行う期間の少なくとも一部に、前記ガス供給配管から前記導入配管に不活性ガスを供給する。
 本開示によれば、多重殻タンクの断熱空間に粒状断熱材を所要の比重で充填することが可能な粒状断熱材充填装置および方法を提供できる。
図1は、本開示の第1実施形態に係るパーライト充填装置の構成を示すシステム図である。 図2は、第2実施形態に係るパーライト充填装置の構成を示すシステム図である。 図3は、第3実施形態に係るパーライト充填装置の構成を示すシステム図である。
 以下、図面を参照して、本開示に係る粒状断熱材充填装置および方法の実施形態を詳細に説明する。本開示は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する装置および方法に関する。多重殻タンクは、例えば球形または平底の二重殻、三重殻タンクである。貯蔵される液化ガスは、例えば液化水素、液体ヘリウム、液体窒素、液化天然ガスまたは液化石油ガスなどである。また、粒状断熱材の代表例は、粉体のパーライトである。以下の実施形態では、一例として、液化水素を貯蔵する二重殻タンクの断熱空間に粉体のパーライトを充填する装置および方法を示す。
 [第1実施形態]
 図1は、本開示の粒状断熱材充填装置の第1実施形態に係るパーライト充填装置1の全体構成を示すシステム図である。パーライト充填装置1は、多重殻タンク100内の断熱空間S1にパーライトPを充填する装置である。多重殻タンク100は、液化水素を貯蔵するための二重殻の球形タンクである。多重殻タンク100は、液化水素の貯蔵空間S2を区画する球状のタンク内槽101と、タンク内槽101を収容する球状のタンク外槽102と、タンク外槽102を地盤上において支持する支柱103とを備える。断熱空間S1は、保冷のためにタンク内槽101とタンク外槽102との間に形成された所定厚みの空間である。パーライトPは、保冷効果を高めるために断熱空間S1に充填される粉体状の断熱材である。パーライト充填装置1は、多重殻タンク100の運用前、つまり貯蔵空間S2に液化水素が貯蔵される前に用意され、パーライトPを断熱空間S1に圧密状態で充填する用途に供される。
 パーライト充填装置1は、パーライト容器2(収容容器)、パーライト導入管3(導入配管)、真空ポンプ4、バランスガス供給管5(補填ガス配管)、置換装置6およびガス供給装置7を備える。
 パーライト容器2は、断熱空間S1に充填される前のパーライトPを収容する容器である。パーライト導入管3は、パーライト容器2内のパーライトPを断熱空間S1へ導入するための配管である。パーライト導入管3は、タンク外槽102とパーライト容器2とを互いに接続している。真空ポンプ4は、断熱空間S1を真空引きするためのポンプである。バランスガス供給管5は、貯蔵空間S2とパーライト容器2との間で圧力バランスをとるための配管である。バランスガス供給管5は、タンク内槽101とパーライト容器2とを互いに接続している。置換装置6は、液化水素を貯蔵する前に、貯蔵空間S2に存在する空気を不活性ガス、本実施形態では窒素ガスに置換する装置である。ガス供給装置7は、パーライト導入管3に不活性ガスを供給し、当該パーライト導入管3におけるパーライトPの詰まりを抑制するための装置である。以下、上掲の各部につき説明を加える。
 パーライト容器2は、一端2Aと他端2Bとを有する横長の筒型容器であり、窒素ガス雰囲気中でパーライトPを収容している。パーライト容器2は、多重殻タンク100から幾分離れた位置において、当該容器の他端2B付近が図略のクレーンにより吊られた状態で設置されている。すなわち、パーライト容器2の他端2B側には、クレーンから延びるワイヤWの先端が接続されている。当該ワイヤWを介してパーライト容器2がクレーンにより吊り上げられることにより、地盤に対し傾斜した姿勢でパーライト容器2が設置される。パーライト容器2の設置姿勢は、多重殻タンク100に近い側の一端2Aの高さが、反対側の他端2Bの高さよりも低くなるように傾斜した姿勢である。なお、図1では、クレーンにより吊り上げられる前のパーライト容器2の姿勢が二点鎖線で示されている。
 パーライト容器2の一端2Aには、当該パーライト容器2に収容されているパーライトPを払い出すための払出口2aが形成されている。他端2Bには、パーライト容器2内に減圧補填ガスとしてのバランスガスを供給するためのガス供給口2bが形成されている。なお、本実施形態では、前記バランスガスとして、タンク内槽101内の貯蔵空間S2(一つの不活性ガス供給源)に存在する窒素ガスが供給される。詳細は後述する。
 パーライト導入管3は、分岐ソケット3B(合流点)よりも多重殻タンク100側の管路を構成する上流管11、透明管12および下流管13と、分岐ソケット3Bよりもパーライト容器2側の管路を構成する充填配管21とを含む。分岐ソケット3Bは、後述するガス供給装置7のガス供給配管71をパーライト導入管3に合流させるためのT字型の分岐接続部を構成している。
 充填配管21は、パーライト容器2の払出口2aと、分岐ソケット3Bとを接続している。充填配管21は、例えば鋼管等から構成された剛性管と、可撓管21Fとの組み合わせで構成されている。可撓管21Fは、屈曲自在な可撓性を有する管であり、例えばフレキシブル鋼管である。上流管11は、分岐ソケット3Bと透明管12とを接続している。上流管11も、剛性管と可撓管11Fとの組み合わせからなる。
 透明管12は、上流管11と下流管13との間に介在される、透明性を有する合成樹脂製のストレート管である。透明管12は、その内部を通過するパーライトPを外部から視認し得る程度の透明性を有している。このような透明性を有する限りにおいて、透明管12は透明又は半透明のいずれの材質から構成されてもよい。例えば、透明管12は、透明又は半透明のアクリル管とすることができる。透明管12は、上流管11および下流管13に対して各々フランジ接続されている。
 下流管13は、透明管12から上方に延びる縦管23と、縦管23の下流端とタンク外槽102とを接続する接続管24とを含む。縦管23は、鋼管等の剛性管から構成されている。接続管24は、少なくとも一部にフレキシブル鋼管等の可撓管24Fを含む。接続管24の下流端は、タンク外槽102の充填口102aに接続されている。充填口102aは、パーライト導入管3から供給されたパーライトPを断熱空間S1に導入するための連通部であって、タンク外槽102の複数箇所に設けられている。これら複数の充填口102aのいずれかに接続管24が選択的に接続され、その状態で断熱空間S1へのパーライトPの充填作業が行われる。すなわち、パーライトPの充填作業は、接続管24が接続される充填口102aを適宜切り替えながら行われる。
 パーライト導入管3における、分岐ソケット3Bよりも上流側の充填配管21の途中には、第1流量調整弁31が配設されている。第1流量調整弁31は、充填配管21から分岐ソケット3Bに送られるパーライトPの流量を調整するために、開度が調整されるバルブである。第1流量調整弁31は、充填配管21の流量を調整できるものであればその種類を問わない。
 パーライト導入管3の下流管13の途中であって充填口102aに近い位置には、第1開閉弁32が設けられている。第1開閉弁32は、パーライト導入管3を通じた断熱空間S1へのパーライトPの導入およびその停止を切り替えるためのバルブである。第1開閉弁32は、パーライトPの導入を開始する際に開弁され、パーライトPの導入を停止する際に閉弁される。第1開閉弁32は、管路を開放又は遮断できるものであり、例えば不測事態に迅速に遮断できるボール弁が好適である。
 真空ポンプ4は、ガスを吸引可能なポンプ要素と当該ポンプ要素を駆動する電動モータ等の駆動源とを含む吸引ポンプである。真空ポンプ4は、吸引管41を介して多重殻タンク100の断熱空間S1と連通しており、当該断熱空間S1内のガスを吸引管41から吸引して外部に排出することにより、断熱空間S1を真空化することが可能である。パーライト容器2と断熱空間S1とはパーライト導入管3で直結されていることから、断熱空間S1が真空化されると、パーライト容器2と断熱空間S1との間に大きな圧力差が生じる。断熱空間S1へのパーライトPの導入時には、このような圧力差が生じるように真空ポンプ4が駆動される。このような真空充填法により、パーライト導入管3を通じてパーライトPが断熱空間S1に引き込まれる。
 バランスガス供給管5は、パーライト容器2のガス供給口2bとタンク内槽101とを接続している。パーライトPの払い出しに伴うパーライト容器2内の減圧を抑止するために、バランスガスをパーライト容器2に供給するための配管である。本実施形態では、タンク内槽101内の貯蔵空間S2に貯留された不活性ガスが、前記バランスガスとして用いられる。また、前記バランスガスとして窒素ガスが用いられる。パーライト容器2内のパーライトPは、前記窒素ガスとともに払出口2aからパーライト導入管3へ送り出され、断熱空間S1に導入される。多重殻タンク100の断熱空間S1にパーライトPを充填する作業中、貯蔵空間S2は窒素ガスで満たされる。
 バランスガス供給管5には、第2開閉弁34、第3開閉弁35およびチャッキ弁36が設けられている。第2開閉弁34および第3開閉弁35は、上述した第1開閉弁32と同様、管路の開放/遮断が可能なボール弁等からなるバルブである。チャッキ弁36は、貯蔵空間S2からパーライト容器2に向かう流れを許容しかつその逆方向の流れを禁止する逆流防止弁である。第2開閉弁34は、多重殻タンク100に近いバランスガス供給管5に取り付けられ、第3開閉弁35は、パーライト容器2のガス供給口2bに近いバランスガス供給管5に取り付けられている。チャッキ弁36は、第2開閉弁34の下流側の近傍に配置されている。
 置換装置6は、多重殻タンク100への液化水素およびパーライトPの充填作業前に、貯蔵空間S2の雰囲気を空気から窒素ガスに置換する。置換装置6は、置換ガス供給源60、供給管61および開閉弁62を含む。置換ガス供給源60は、窒素ガスの供給源である。開閉弁62が開かれた供給管61を通して置換ガス供給源60から窒素ガスが供給されることで、貯蔵空間S2が窒素ガスに置換される。置換装置6は、パーライトPの充填作業中も、消費された窒素ガスを補充するよう、窒素ガスを貯蔵空間S2へ供給する。
 置換ガス供給源60から貯蔵空間S2に窒素ガスが随時供給されることにより、略一定の圧力の窒素ガスで貯蔵空間S2が満たされた状態が定常的に得られる。バランスガス供給管5は、このように窒素ガスで満たされた大容量の貯蔵空間S2とパーライト容器2とを互いに連通することにより、パーライト容器2内の圧力を貯蔵空間S2と同等の圧力に維持する役割を果たす。これにより、パーライトPの充填中、パーライト容器2と断熱空間S1との圧力差が継続的に確保されて、断熱空間S1にパーライトPが充填され易くなる。
 ガス供給装置7は、パーライト導入管3に不活性ガスを供給することにより、当該パーライト導入管3におけるパーライトPの流動詰まりを抑制する装置である。ガス供給装置7は、ガス供給配管71および第2流量調整弁72を含む。ガス供給配管71は、不活性ガスの供給源とパーライト導入管3とを接続する配管であって、その一端側7aがパーライト容器2に接続され、他端側7bがパーライト導入管3に合流されている。ガス供給配管71は、その一部に可撓管73を含んでいる。
 第1実施形態では、前記不活性ガスの供給源として、パーライト容器2に供給されているバランスガスを利用している。すなわち、貯蔵空間S2からパーライト容器2に供給されるバランスガスとしての窒素ガスの一部が、一端側7aからガス供給配管71に供給される。ガス供給配管71の他端側7bは、分岐ソケット3Bに接続されている。ガス供給配管71へ導入された窒素ガスは、合流点である分岐ソケット3Bからパーライト導入管3に供給可能である。このように、ガス供給配管71はパーライト容器2から分岐し、払出口2aが接続されているパーライト導入管3に合流するので、パーライト容器2内とガス供給配管71内とが同じ圧力となる。従って、両者間の差圧に起因するパーライトPの逆流を抑止できる。
 パーライト容器2における、ガス供給配管71の一端側7aの分岐部には、パーライトPを通過させないフィルター2Fが取り付けられている。これにより、窒素ガスだけが一端側7aからガス供給配管71へ導入される。第2流量調整弁72は、分岐ソケット3Bよりも上流側においてガス供給配管71に配設されている。第2流量調整弁72は、ガス供給配管71からパーライト導入管3へ供給される窒素ガスの流量を調整するために、開度が調整されるバルブである。
 分岐ソケット3Bよりも上流側に配設された第1流量調整弁31と、ガス供給配管71に配設された第2流量調整弁72とによる流量調整により、パーライト導入管3の分岐ソケット3Bよりも下流側管路(上流管11および下流管13)におけるパーライトPと窒素ガスとの流量比が調整可能である。第1流量調整弁31の開度を大きくする一方で第2流量調整弁72の開度を絞れば、パーライトPを大きな流量で断熱空間S1へ送ることができる。これに対し、第1流量調整弁31の開度を絞る一方で第2流量調整弁72の開度を大きくすれば、窒素ガスの流量が大きくなり、パーライトPの濃度を薄くして断熱空間S1へ送ることができる。これにより、パーライト導入管3の詰まりを抑制できる。
 <パーライトの充填作業>
 次に、以上のようなパーライト充填装置1を用いて多重殻タンク100の断熱空間S1にパーライトPを充填する作業の概略手順について説明する。なお、この作業が開始される前提として、多重殻タンク100の貯蔵空間S2は既に窒素ガスで満たされているものとする。すなわち、開閉弁62が事前に開かれて、置換ガス供給源60からの窒素ガスが供給管61を通じて貯蔵空間S2に供給されることにより、貯蔵空間S2内のガスが空気から窒素ガスへと置換される。パーライトPの充填作業が開始されるのは、このような窒素ガスへの置換作業が完了した後である。
 パーライトPの充填作業を開始するために、まずパーライト充填装置1が組み立てられる。すなわち、多重殻タンク100から規定の距離だけ離れた定位置にパーライト容器2が搬入されるとともに、図1に示す通りに、パーライト容器2と多重殻タンク100との間でパーライト導入管3、バランスガス供給管5およびガス供給装置7が組み立てられる。併せて真空ポンプ4が用意され、当該真空ポンプ4とタンク外槽102とが吸引管41を介して接続される。パーライト容器2は、一端2Aの高さが他端2Bよりも低くなるように、クレーンのワイヤWによって持ち上げられる。パーライト導入管3は、パーライト容器2の払出口2aと、タンク外槽102に備えられている複数の充填口102aのうちの一つとを接続するように組み立てられる。なお、パーライト導入管3の接続管24が最初に接続される充填口102aとしては、タンク外槽102において比較的高さの低い位置に配置されている充填口102aが選ばれる。
 以上のようなパーライト充填装置1の組立後、パーライトPを断熱空間S1に充填する作業が開始される。すなわち、パーライト導入管3の第1開閉弁32と、バランスガス供給管5の第2開閉弁34および第3開閉弁35が開弁される。その状態で、真空ポンプ4が駆動されて断熱空間S1が真空化される。これにより、パーライト容器2内のパーライトPが、バランスガスの窒素ガスとともにパーライト導入管3を通じて断熱空間S1に引き込まれ、パーライトPの充填が開始される。パーライトPの充填の初期段階では、パーライトPの流量が所定流量となるよう、パーライト導入管3の第1流量調整弁31が例えば全開とされる。一方、ガス供給配管71の第2流量調整弁72は全閉または僅かな開度とされる。充填初期は断熱空間S1に空きが多いことから、上記のような開度設定としてパーライトPの流量を大きくし、短時間に多量のパーライトPの充填を行うことが優先される。
 パーライトPの充填が進むと、パーライトPの充填がスムーズに進行しないことがある。これは、接続管24が接続されている充填口102a付近が充填されたパーライトPで満たされ、パーライト導入管3内においてパーライトPの流動の滞りや詰まりが生じるからである。なお、作業者は、パーライトPのパーライト導入管3内の流動状況を、透明管12を通して目視で確認することができる。
 パーライトPの断熱空間S1への導入が所定のレベルに達したとき、流量調整弁31、72が操作される。前記所定レベルは、例えばパーライトPの流動詰まりが透明管12で確認されたとき、あるいは第1流量調整弁31を全開とする充填が所定時間経過したとき等である。この場合、第1流量調整弁31の開度を小さく、第2流量調整弁72の開度を大きくする操作が行われる。すなわち、第1流量調整弁31を絞って、充填配管21から上流管11へ向かうパーライトPおよび窒素ガスの流量を初期段階よりも少なくする。一方、第2流量調整弁72の開度を大きくすることで、上流管11に供給する窒素ガスの流量を増量させる。これにより、第1流量調整弁31の絞りにより充填配管21のルートでは窒素ガスの流量が減少しても、上流管11ではガス供給配管71というバイパス経路から供給される窒素ガスにより所要の窒素ガス流量が確保できる。
 パーライト導入管3においてパーライトPの詰まりを生じ難くするには、断熱空間S1へ単位時間当たりのパーライトPの流量を減らせば良い。充填に時間を要しても、パーライトPを充填できることが肝要である。しかし、第1流量調整弁31を単純に絞っただけでは、パーライトPだけでなく、バランスガスとしての窒素ガスの流量も減ってしまう。このため、パーライト導入管3内のパーライトPの流速が遅くなり、結局、詰まりが生じて充填自体が行えなくなる。
 窒素ガスは気体であるので、パーライト導入管3内で詰まることはない。そこで、本実施形態では、ガス供給配管71を通して窒素ガスを供給し、上流管11および下流管13における窒素ガスの流量を確保する。これにより、パーライト導入管3内のパーライトPの流速を確保しつつ、パーライトPの濃度を薄くすることができる。従って、パーライト導入管3でのパーライトPの詰まりを抑制しつつ、断熱空間S1へパーライトPを圧密充填することが可能となる。
 なお、上記の通りの流量調整弁31、72の操作を行っても、同一の充填口102aを使用したままではパーライトPの充填はいずれ困難になる。この場合に作業者は、例えばパーライト導入管3の接続管24を、これまで使用していた充填口102aよりも高い位置にある他の充填口102aか、同等の高さでかつ周方向の位置が異なる他の充填口102aに付け替える。その後の作業は、上記と同様である。
 <作用効果>
 以上説明した第1実施形態によれば、パーライトPを多重殻タンク100の断熱空間S1へ送るパーライト導入管3に、ガス供給配管71から窒素ガスが供給可能である。このため、パーライト導入管3においてパーライトPの流動が滞ったときに、ガス供給配管71から供給される窒素ガスの流動でパーライトPを断熱空間S1へ送ることができる。
 また、第1流量調整弁31および第2流量調整弁72による流量調整により、分岐ソケット3Bよりも下流側のパーライト導入管3におけるパーライトPと窒素ガスとの流量比を自在にコントロールできる。例えば、パーライト導入管3においてパーライトPの流動の滞りが生じていない状況では、第1流量調整弁31の開度を第2流量調整弁72の開度よりも大きくして、パーライトPを大きな流量で断熱空間S1へ導入させる。一方、パーライトPの流動に滞りが生じた場合には、第1流量調整弁31の開度を絞ってパーライトPの流量を減らす一方で、第2流量調整弁72の開度を相対的に大きくして流動を確保し、多量の窒素ガスに乗せて少量のパーライトPを断熱空間S1へ導入させる。このような流量コントロールにより、断熱空間S1へ所要の比重でパーライトPを充填させることができる。
 さらに、パーライト容器2に供給されるバランスガスの一部がガス供給配管71へ供給される。つまり、バランスガスとガス供給配管71への供給ガスが同一の不活性ガスである。このため、ガス供給配管71への供給用の不活性ガスを新たに配備する必要がない。また、パーライト容器2およびガス供給配管71の内部が同じ圧力となり、パーライトPの逆流を抑止できる利点もある。
 加えて、多重殻タンク100の貯蔵空間S2が置換装置6によって窒素ガスに置換され、当該貯蔵空間S2を一つの窒素ガス供給源として、バランスガス供給管5とガス供給配管71とに窒素ガスが供給される。このため、装置構造を簡素化できる。また、貯蔵空間S2は一般に大容量であるため、多量に窒素ガスをバランスガス供給管5およびガス供給配管71に送り出したとしても、俄に貯蔵空間S2の圧力は変動しない。従って、安定的に窒素ガスを供給させることができる。
 [第2実施形態]
 図2は、第2実施形態に係るパーライト充填装置1Aの全体構成を示すシステム図である。パーライト充填装置1Aが第1実施形態と相違する点は、ガス供給装置7Aの配置である。ガス供給装置7Aは、バランスガス供給管5から窒素ガスを分流させ、パーライト導入管3に当該窒素ガスを供給する。パーライト充填装置1Aの残余の部分は第1実施形態のパーライト充填装置1と同じであるため、ここでは説明を省く。
 ガス供給装置7Aは、ガス供給配管71Aと、このガス供給配管71Aに配設された第2流量調整弁72Aおよびチャッキ弁74とを含む。ガス供給配管71Aの一端側7aは、バランスガス供給管5に分岐接続されている。具体的には、バランスガス供給管5にT字型の分岐ソケット5Bが割り入れられ、ガス供給配管71Aの一端側7aが分岐ソケット5Bに接続されている。ガス供給配管71Aの他端側7bは、第1実施形態と同様に、パーライト導入管3に割り入れられたT字型の分岐ソケット3Bに接続されている。このように、第2実施形態のガス供給配管71Aは、パーライト容器2をバイパスして、バランスガス供給管5とパーライト導入管3とを直結し、バランスガスとしての窒素ガスの一部をパーライト導入管3へ供給可能としている。
 第2流量調整弁72Aは、ガス供給配管71Aからパーライト導入管3へ供給される窒素ガスの流量を調整するために、開度が調整されるバルブである。第1流量調整弁31および第2流量調整弁72Aによる流量調整により、分岐ソケット3Bよりも下流側のパーライト導入管3におけるパーライトPと窒素ガスとの流量比がコントロールされる。チャッキ弁74は、ガス供給配管71A内における窒素ガスの逆流を禁止する逆流防止弁である。
 第1実施形態と同様に、パーライトPの充填の初期段階では、第1流量調整弁31の開度を大きくするとともに第2流量調整弁72Aを閉止または僅かな開度とし、パーライトPを大きな流量で断熱空間S1へ導入させる。一方、パーライトPの流動に滞りが生じるタイミングになると、第1流量調整弁31の開度を絞ってパーライトPの流量を減らす一方で、第2流量調整弁72Aの開度を大きくし、窒素ガス流量を相対的に大きくして少量のパーライトPを断熱空間S1へ導入させる。
 第2実施形態によれば、ガス供給配管71Aにより、パーライト容器2をバイパスして、バランスガス供給管5から直接的に窒素ガスをパーライト導入管3へ導入できる。このため、ガス供給配管71Aを流れる窒素ガスの流速をより高め易くなる。例えば、第1流量調整弁31を絞る一方で第2流量調整弁72Aを全開に近い開度とすることにより、パーライト導入管3の上流管11の流体流動は、ガス供給配管71Aから上流管11に向けて流れる高速の窒素ガス流FAが主流となる。この場合、当該窒素ガス流FAに充填配管21から供給されるパーライトPが添加される態様となり、濃度の薄いパーライトPが断熱空間S1に供給される状態を維持し易くなる。従って、パーライトPの充填効率は低下し、窒素ガスの使用料が増加するものの、パーライト導入管3に詰まりを起こさせることなく、パーライトPの断熱空間S1への充填自体は行える。すなわち、少々時間は要するものの、断熱空間S1に所要の比重でパーライトPを充填することができる。
 第2実施形態においても、窒素ガスに置換された多重殻タンク100の貯蔵空間S2を一つの不活性ガス供給源とし、バランスガス供給管5およびガス供給配管71Aに窒素ガスを供給する構成である。このため、バランスガス供給管5およびパーライト容器2とガス供給配管71Aとの間に差圧は生じず、パーライトPのパーライト容器2への逆流を防止することができる。
 [第3実施形態]
 図3は、第3実施形態に係るパーライト充填装置1Bの全体構成を示すシステム図である。パーライト充填装置1Bが第1、第2実施形態と相違する点は、窒素ガスに置換された多重殻タンク100の貯蔵空間S2を窒素ガスの供給源とせず、独自の窒素ガスの供給源を有するガス供給装置7Bからパーライト導入管3へ窒素ガスが供給される点である。パーライト充填装置1Bの残余の部分は第1、第2実施形態のパーライト充填装置1、1Aと同じであるため、ここでは説明を省く。
 ガス供給装置7Bは、窒素ガス供給源70、ガス供給配管71Bおよび第2流量調整弁72Bを含む。窒素ガス供給源70は、窒素ガスが充填されたガスタンクである。ガス供給配管71Bの一端側7aは、窒素ガス供給源70に接続されている。ガス供給配管71Bの他端側7bは、パーライト導入管3に割り入れられたT字型の分岐ソケット3Bに接続されている。
 第2流量調整弁72Bは、ガス供給配管71Bを通して窒素ガス供給源70からパーライト導入管3へ供給される窒素ガスの流量を調整するバルブである。第1流量調整弁31および第2流量調整弁72Bによる流量調整により、分岐ソケット3Bよりも下流側のパーライト導入管3におけるパーライトPと窒素ガスとの流量比がコントロールされる。
 第1、第2実施形態と同様に、パーライトPの充填の初期段階では、第1流量調整弁31の開度を大きくするとともに第2流量調整弁72Bを閉止または僅かな開度とされる。一方、パーライトPの流動に滞りが生じるタイミングになると、第1流量調整弁31の開度を絞ってパーライトPの流量を減らす一方で、第2流量調整弁72Bの開度を大きくし、窒素ガス流量を相対的に大きくして少量のパーライトPを断熱空間S1へ導入させる。第3実施形態では、ガス供給配管71Bとパーライト容器2とを同じ圧力に維持する圧力調整機構を設けることが望ましい。
 [変形例]
 以上、本開示の好ましい実施形態について説明したが、本開示はこれに限定されるものではない。例えば次のような変形実施形態を採用できる。
 上記実施形態では、パーライト充填装置1によるパーライトPの充填対象を、液化水素を貯蔵する多重殻タンク100とした。本開示に係る装置および方法によるパーライトの充填対象は液化水素タンクに限られず、他の種類の液化ガスを貯蔵するタンクであってもよい。例えば、液化天然ガス、液体ヘリウム、液体窒素、液化アンモニアまたは液化石油ガス等を貯蔵する多重殻タンクの断熱空間を、本装置および方法によるパーライトPの充填対象としてもよい。但し、液化水素は最も低温であるため、このような液化水素を貯蔵する多重殻タンクを対象とする場合は、保冷性能を高めるために十分な量のパーライトを断熱空間に圧密状態で充填することが求められる。このため、本装置および方法は、液化水素を貯留する多重殻タンクに最も好適に適用され得る。
 上記実施形態では、粒状断熱材として、多重殻タンク100の断熱空間S1に粒状のパーライトPを充填する例を示した。断熱空間S1に充填されるのは断熱機能を発揮する粒状物質、つまり粒状断熱材であればよく、パーライトに限られない。例えば、グラスバブルズなどと称されるガラス粒を粒状断熱材として用いてもよい。
 [本開示のまとめ]
 以上説明した具体的実施形態には、以下の構成を有する開示が含まれている。
 本開示の第1の態様に係る粒状断熱材充填装置は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する装置であって、前記粒状断熱材を収容する収容容器と、前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止するために、減圧補填ガスを前記収容容器に供給する補填ガス配管と、前記収容容器と前記多重殻タンクとを接続し、前記収容容器内の粒状断熱材を前記減圧補填ガスとともに前記断熱空間に導入する導入配管と、一端側が不活性ガスの供給源に接続され、他端側が前記導入配管に合流され、前記導入配管に不活性ガスを供給するガス供給配管と、を備える。
 第1の態様によれば、粒状断熱材を多重殻タンクの断熱空間へ送る導入配管に、ガス供給配管から不活性ガスが供給可能となる。このため、前記導入配管において前記粒状断熱材の流動が滞ったときに、ガス供給配管から供給される不活性ガスの流動で前記粒状断熱材を前記断熱空間へ送ることが可能となる。
 第2の態様に係る粒状断熱材充填装置は、第1の態様の粒状断熱材充填装置において、前記ガス供給配管の合流点よりも上流側において前記導入配管に配設される第1流量調整弁と、前記合流点よりも上流側において前記ガス供給配管に配設される第2流量調整弁と、を備え、前記第1流量調整弁および前記第2流量調整弁による流量調整により、前記導入配管の前記合流点よりも下流側における前記粒状断熱材と前記不活性ガスとの流量比が調整可能とされている。
 第2の態様によれば、導入配管における粒状断熱材と不活性ガスとの流量比を自在にコントロールできる。例えば、導入配管において粒状断熱材の流動の滞りが生じていない状況では、第1流量調整弁の開度を第2流量調整弁の開度よりも大きくして、粒状断熱材を大きな流量で断熱空間へ導入させる。また、粒状断熱材の流動の滞りが生じた場合には、第1流量調整弁の開度を絞って粒状断熱材の流量を減らす一方で、第2流量調整弁の開度を相対的に大きくして流動を確保し、多量の不活性ガスに乗せて少量の粒状断熱材を断熱空間へ導入させる。第2の態様によれば、このような流量コントロールにより、断熱空間へ所要の比重で粒状断熱材を充填させることができる。
 第3の態様に係る粒状断熱材充填装置は、第1または第2の態様の粒状断熱材充填装置において、前記減圧補填ガスが不活性ガスからなり、前記ガス供給配管の一端側が前記収容容器に接続され、前記収容容器に供給される前記減圧補填ガスの一部が前記ガス供給配管へ供給される。
 第3の態様によれば、減圧補填ガスとして収容容器に導入された不活性ガスを利用して、ガス供給配管へ不活性ガスを供給できる。この場合、収容容器内とガス供給配管内とが同じ圧力となり、粒状断熱材の逆流を抑止できる。
 第4の態様に係る粒状断熱材充填装置は、第1または第2の態様の粒状断熱材充填装置において、前記減圧補填ガスが不活性ガスからなり、前記ガス供給配管の一端側が前記補填ガス配管に分岐接続され、前記補填ガス配管を流通する前記減圧補填ガスの一部が前記ガス供給配管へ供給される。
 第4の態様によれば、減圧補填ガスとして補填ガス配管に導入された不活性ガスを利用して、ガス供給配管へ不活性ガスを供給できる。この場合、補填ガス配管内とガス供給配管内とが同じ圧力となり、粒状断熱材の逆流を抑止できる。
 第5の態様に係る粒状断熱材充填装置は、第1または第2の態様の粒状断熱材充填装置において、前記補填ガス配管に供給されるガスと前記ガス供給配管に供給されるガスは、同一の不活性ガスであって、前記不活性ガスを前記補填ガス配管および前記ガス供給配管に供給する一つの不活性ガス供給源を備える。
 第5の態様によれば、一つの不活性ガス供給源から補填ガス配管とガス供給配管とに共通の不活性ガスが供給される。このため、装置構造を簡素化できる。また、補填ガス配管とガス供給配管とに差圧が生じないので、粒状断熱材の逆流を抑止できる。
 第6の態様に係る粒状断熱材充填装置は、第5の態様の粒状断熱材充填装置において、前記多重殻タンクにおける前記液化ガスの貯蔵空間を不活性ガスに置換する置換装置を備え、前記一つの不活性ガス供給源として、不活性ガスに置換された状態の前記貯蔵空間が用いられる。
 第6の態様によれば、多重殻タンクの貯蔵空間に一時的に貯留される不活性ガスを、不活性ガス供給源として利用する。貯蔵空間は一般に大容量であるため、多量に不活性ガスを補填ガス配管およびガス供給配管に送り出したとしても、俄に前記貯蔵空間の圧力は変動しない。従って、安定的に不活性ガスを供給させることができる。
 第7の態様に係る粒状断熱材充填装置は、第1~第6の態様の粒状断熱材充填装置において、前記ガス供給配管の合流点よりも下流側の前記導入配管は、内部を流れる粒状断熱材を目視できる程度の透明性を有する透明管を含む。
 第7の態様によれば、透明管を通して前記合流点よりも下流側の導入配管内における粒状断熱材の流動状態を作業員に視認させることができる。従って、ガス供給配管から導入配管へ不活性ガスを供給させるタイミングや流量などを、前記流動状態に応じて設定させることができる。
 本開示の第8の態様に係る粒状断熱材充填方法は、液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する方法であって、前記粒状断熱材を収容する収容容器と前記多重殻タンクとを導入配管で接続し、前記導入配管に不活性ガスを供給可能なガス供給配管を接続し、前記収容容器から前記粒状断熱材を、前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止する減圧補填ガスとともに、前記導入配管を通して前記断熱空間に導入し、前記粒状断熱材の前記導入を行う期間の少なくとも一部に、前記ガス供給配管から前記導入配管に不活性ガスを供給する。
 第8の態様によれば、断熱空間への粒状断熱材の導入が行われている期間に、前記導入配管において前記粒状断熱材の流動が滞ったときに、ガス供給配管から供給される不活性ガスの流動で前記粒状断熱材を前記断熱空間へ送ることが可能となる。
 第9の態様に係る粒状断熱材充填方法は、第8の態様の粒状断熱材充填方法において、前記粒状断熱材の前記断熱空間への導入の初期段階では、前記導入配管における前記粒状断熱材の流量を所定量に設定し、前記粒状断熱材の前記断熱空間への導入が所定のレベルに達したとき、前記導入配管における前記粒状断熱材の流量を前記初期段階よりも減量する一方で、前記ガス供給配管から前記導入配管に供給する不活性ガスの流量を増量させる。
 第9の態様によれば、粒状断熱材の導入が所定のレベルに達したとき、例えば粒状断熱材の流動が滞りがちとなるタイミングで、粒状断熱材の流量を減量し不活性ガスの流量を増量する。このため、導入配管内の流動を確保し、多量の不活性ガスに乗せて少量の粒状断熱材を断熱空間へ導入させることができる。
 1 パーライト充填装置(粒状断熱材充填装置)
 12 透明管
 2 パーライト容器(収容容器)
 3 パーライト導入管(導入配管)
 3B 分岐ソケット(合流点)
 31 第1流量調整弁
 4 真空ポンプ
 5 バランスガス供給管(補填ガス配管)
 6 置換装置
 7、7A、7B ガス供給装置
 71、71A、71B ガス供給配管
 72、72A、72B 第2流量調整弁
 7a 一端側
 7b 他端側
 100 多重殻タンク
 S1 断熱空間
 P パーライト(粒状断熱材)
 S1 断熱空間
 S2 貯蔵空間(一つの不活性ガス供給源)

Claims (9)

  1.  液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する装置であって、
     前記粒状断熱材を収容する収容容器と、
     前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止するために、減圧補填ガスを前記収容容器に供給する補填ガス配管と、
     前記収容容器と前記多重殻タンクとを接続し、前記収容容器内の粒状断熱材を前記減圧補填ガスとともに前記断熱空間に導入する導入配管と、
     一端側が不活性ガスの供給源に接続され、他端側が前記導入配管に合流され、前記導入配管に不活性ガスを供給するガス供給配管と、
    を備える粒状断熱材充填装置。
  2.  請求項1に記載の粒状断熱材充填装置において、
     前記ガス供給配管の合流点よりも上流側において前記導入配管に配設される第1流量調整弁と、前記合流点よりも上流側において前記ガス供給配管に配設される第2流量調整弁と、を備え、
     前記第1流量調整弁および前記第2流量調整弁による流量調整により、前記導入配管の前記合流点よりも下流側における前記粒状断熱材と前記不活性ガスとの流量比が調整可能とされている、粒状断熱材充填装置。
  3.  請求項1または2に記載の粒状断熱材充填装置において、
     前記減圧補填ガスが不活性ガスからなり、
     前記ガス供給配管の一端側が前記収容容器に接続され、前記収容容器に供給される前記減圧補填ガスの一部が前記ガス供給配管へ供給される、粒状断熱材充填装置。
  4.  請求項1または2に記載の粒状断熱材充填装置において、
     前記減圧補填ガスが不活性ガスからなり、
     前記ガス供給配管の一端側が前記補填ガス配管に分岐接続され、前記補填ガス配管を流通する前記減圧補填ガスの一部が前記ガス供給配管へ供給される、粒状断熱材充填装置。
  5.  請求項1または2に記載の粒状断熱材充填装置において、
     前記補填ガス配管に供給されるガスと前記ガス供給配管に供給されるガスは、同一の不活性ガスであって、
     前記不活性ガスを前記補填ガス配管および前記ガス供給配管に供給する一つの不活性ガス供給源を備える、粒状断熱材充填装置。
  6.  請求項5に記載の粒状断熱材充填装置において、
     前記多重殻タンクにおける前記液化ガスの貯蔵空間を不活性ガスに置換する置換装置を備え、
     前記一つの不活性ガス供給源として、不活性ガスに置換された状態の前記貯蔵空間が用いられる、粒状断熱材充填装置。
  7.  請求項1に記載の粒状断熱材充填装置において、
     前記ガス供給配管の合流点よりも下流側の前記導入配管は、内部を流れる粒状断熱材を目視できる程度の透明性を有する透明管を含む、粒状断熱材充填装置。
  8.  液化ガスを貯蔵する多重殻タンク内の断熱空間に粒状断熱材を充填する方法であって、
     前記粒状断熱材を収容する収容容器と前記多重殻タンクとを導入配管で接続し、
     前記導入配管に不活性ガスを供給可能なガス供給配管を接続し、
     前記収容容器から前記粒状断熱材を、前記粒状断熱材の払い出しに伴う前記収容容器内の減圧を抑止する減圧補填ガスとともに、前記導入配管を通して前記断熱空間に導入し、
     前記粒状断熱材の前記導入を行う期間の少なくとも一部に、前記ガス供給配管から前記導入配管に不活性ガスを供給する、粒状断熱材充填方法。
  9.  請求項8に記載の粒状断熱材充填方法において、
     前記粒状断熱材の前記断熱空間への導入の初期段階では、前記導入配管における前記粒状断熱材の流量を所定量に設定し、
     前記粒状断熱材の前記断熱空間への導入が所定のレベルに達したとき、前記導入配管における前記粒状断熱材の流量を前記初期段階よりも減量する一方で、前記ガス供給配管から前記導入配管に供給する不活性ガスの流量を増量させる、粒状断熱材充填方法。
PCT/JP2023/039374 2022-11-08 2023-11-01 粒状断熱材充填装置および方法 WO2024101235A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-178866 2022-11-08
JP2022178866A JP2024068427A (ja) 2022-11-08 2022-11-08 粒状断熱材充填装置および方法

Publications (1)

Publication Number Publication Date
WO2024101235A1 true WO2024101235A1 (ja) 2024-05-16

Family

ID=91032931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039374 WO2024101235A1 (ja) 2022-11-08 2023-11-01 粒状断熱材充填装置および方法

Country Status (3)

Country Link
JP (1) JP2024068427A (ja)
TW (1) TW202426806A (ja)
WO (1) WO2024101235A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196593U (ja) * 1987-12-17 1989-06-27
JPH0811804A (ja) * 1994-07-01 1996-01-16 Iwatani Internatl Corp 液化ガス貯蔵槽への粉末断熱材の自動充填方法
JP2009281526A (ja) * 2008-05-23 2009-12-03 Nippon Sharyo Seizo Kaisha Ltd 液化ガス貯槽の製造方法および液化ガス貯槽製造ユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196593U (ja) * 1987-12-17 1989-06-27
JPH0811804A (ja) * 1994-07-01 1996-01-16 Iwatani Internatl Corp 液化ガス貯蔵槽への粉末断熱材の自動充填方法
JP2009281526A (ja) * 2008-05-23 2009-12-03 Nippon Sharyo Seizo Kaisha Ltd 液化ガス貯槽の製造方法および液化ガス貯槽製造ユニット

Also Published As

Publication number Publication date
JP2024068427A (ja) 2024-05-20
TW202426806A (zh) 2024-07-01

Similar Documents

Publication Publication Date Title
CN100404375C (zh) 将压缩天然气和液化天然气分配到天然气作动力的车辆中的方法和装置
US2362724A (en) Liquefied petroleum gas dispensing system
US7617848B2 (en) Method and device for filling a container with liquid gas from a storage tank
US6719175B2 (en) Draft system for beverages
EP1316754A1 (en) High flow pressurized cryogenic fluid dispensing system
EP0922901A2 (en) Pressure building device for a cryogenic tank
CA2679773C (en) Agricultural implement with dense phase product dispensing and purging
CN102472430A (zh) 尤其是用于商用船舶的燃烧气体系统
JP2019503461A (ja) 液化ガスを計量分配するためのセット
KR100813181B1 (ko) 옥상 고가 수조 및 충압탱크가 필요없는 소화용수 공급장치
CN105339258B (zh) 减少蒸发气体的液化气体输送装置
WO2024101235A1 (ja) 粒状断熱材充填装置および方法
JP5077881B2 (ja) 液化天然ガスの受入設備
JP4581243B2 (ja) 低温タンク設備
JP2007009981A (ja) 液化ガス供給設備及び液化ガス供給方法
KR20080005859A (ko) 액화 가스 연료용 저장 장치
WO2024101247A1 (ja) 粒状断熱材充填装置
JP6593828B1 (ja) 低温タンクの開放方法およびその開放システム
JP3170068U (ja) 飲料水用サーバーの構造
US20210332952A1 (en) Continuous refill odorant
US5505053A (en) Cryosystem
US12098805B2 (en) System and a coupled system for filling a cryogen storage vessel with a liquid cryogen
RU2827546C1 (ru) Криогенный сосуд со встроенным экономайзером и способ выпуска сжиженного газа из сосуда
JPH08247041A (ja) ポンプ吐出流量の制御方法
US20240240757A1 (en) Cryogenic storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888583

Country of ref document: EP

Kind code of ref document: A1