WO2024101232A1 - Film and method for producing semiconductor package - Google Patents

Film and method for producing semiconductor package Download PDF

Info

Publication number
WO2024101232A1
WO2024101232A1 PCT/JP2023/039360 JP2023039360W WO2024101232A1 WO 2024101232 A1 WO2024101232 A1 WO 2024101232A1 JP 2023039360 W JP2023039360 W JP 2023039360W WO 2024101232 A1 WO2024101232 A1 WO 2024101232A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
film
acrylate
urethane
antistatic layer
Prior art date
Application number
PCT/JP2023/039360
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 藤田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024101232A1 publication Critical patent/WO2024101232A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Definitions

  • This disclosure relates to a method for manufacturing a film and a semiconductor package.
  • Semiconductor elements are sealed in a package and mounted on a board to protect them from the outside air.
  • Hardening resins such as epoxy resins are used to seal semiconductor elements. Resin sealing is performed by placing the semiconductor element in a designated location in a mold, filling the mold with hardening resin, and then hardening it.
  • a release film is often placed on the inner surface of the mold to improve the releasability of the package from the mold.
  • Patent Document 1 proposes providing an antistatic layer on one surface of the substrate.
  • the present disclosure provides a film that has sufficient antistatic properties and is less susceptible to cracks and voids even when stretched to conform to complex shapes, and a method for manufacturing a semiconductor package using the film.
  • a film comprising a substrate and an antistatic layer, The film, wherein the antistatic layer is a layer made of a cured product of a composition containing a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1,000 g/eq or more, an antistatic agent, and a polymerization initiator.
  • a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1,000 g/eq or more
  • an antistatic agent and a polymerization initiator.
  • the urethane (meth)acrylate comprises a multifunctional urethane (meth)acrylate having two or more (meth)acryloyl groups.
  • the urethane (meth)acrylate has at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure.
  • the composition contains a polyfunctional (meth)acrylate other than the urethane (meth)acrylate.
  • the substrate comprises at least one selected from the group consisting of a fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyethylene terephthalate, and polyamide.
  • the fluororesin comprises at least one selected from the group consisting of ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.
  • the antistatic agent comprises a conductive polymer.
  • the antistatic agent contains a chain-like conductive filler.
  • This disclosure provides a film that has sufficient antistatic properties and is less susceptible to cracks and voids even when stretched to conform to complex shapes, as well as a method for manufacturing a semiconductor package using the film.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the present film.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the present film.
  • the term "step” includes not only a step that is independent of other steps, but also a step that cannot be clearly distinguished from other steps as long as the purpose of the step is achieved.
  • the numerical range indicated using “to” includes the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages.
  • the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
  • each component may contain multiple types of the corresponding substance.
  • the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
  • the configuration of the embodiment is not limited to the configuration shown in the drawings.
  • the sizes of components in the drawings are conceptual, and the relative relationships between the sizes of the components are not limited to these.
  • unit of a polymer refers to a portion derived from a monomer that exists in the polymer and constitutes the polymer.
  • unit also refers to a unit that is obtained by chemically converting the structure of a unit after the formation of the polymer.
  • units derived from individual monomers are referred to by the name of the monomer with "unit” added.
  • films and sheets are referred to as "films" regardless of their thickness.
  • acrylate and methacrylate are collectively referred to as "(meth)acrylate”
  • acrylic and methacrylic are collectively referred to as “(meth)acrylic”
  • acryloyl and methacryloyl are collectively referred to as “(meth)acryloyl”.
  • a film according to an embodiment of the present disclosure (hereinafter also referred to as “the film”) is a film including a substrate and an antistatic layer, and the antistatic layer is a layer made of a cured product of a composition (hereinafter also referred to as "antistatic layer composition”) that includes a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1000 g/eq or more, an antistatic agent, and a polymerization initiator.
  • a composition hereinafter also referred to as "antistatic layer composition” that includes a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1000 g/eq or more, an antistatic agent, and a polymerization initiator.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the present film.
  • the film 1 shown in FIG. 1 includes a substrate 2 and an antistatic layer 3 in this order.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the present film.
  • the film 1 shown in FIG. 2 includes a substrate 2, an antistatic layer 3, and an adhesive layer 4 in this order.
  • the substrate 2 is disposed so as to contact a die, and after resin sealing, the antistatic layer 3 or the adhesive layer 4 contacts a sealing body (i.e., a semiconductor package in which a semiconductor element is sealed).
  • the film 1 may include other layers in addition to the substrate 2, the antistatic layer 3, and the adhesive layer 4. Each component of the film is described in detail below.
  • the material of the substrate is not particularly limited.
  • the substrate typically contains a resin, such as a fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyethylene terephthalate, or polyamide.
  • a resin having releasability hereinafter, also referred to as "releasable resin”
  • the releasable resin means a resin in which a layer composed of the resin has releasability.
  • the releasable resin examples include fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyamide, etc. From the viewpoint of excellent releasability, heat resistance, strength, and elongation at high temperatures, fluororesin, polymethylpentene, syndiotactic polystyrene, and polycycloolefin are preferable, and from the viewpoint of excellent releasability, fluororesin is more preferable.
  • the resin contained in the substrate may be one type or two or more types.
  • the resin contained in the substrate is composed solely of a fluororesin.
  • the substrate is composed solely of a fluororesin, it does not prevent the substrate from containing a resin other than the fluororesin as long as the effect of the invention is not impaired.
  • the fluororesin from the viewpoint of excellent releasability and heat resistance, a fluoroolefin polymer is preferable.
  • the fluoroolefin polymer is a polymer having units based on a fluoroolefin.
  • the fluoroolefin polymer may further have units other than the units based on a fluoroolefin.
  • Examples of the fluoroolefin include tetrafluoroethylene (hereinafter also referred to as "TFE"), vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene (hereinafter also referred to as "HFP"), chlorotrifluoroethylene, etc.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • chlorotrifluoroethylene etc.
  • One type of fluoroolefin may be used alone, or two or more types may be used in combination.
  • the fluoroolefin polymers include ethylene-TFE copolymer (hereinafter also referred to as "ETFE”), TFE-HFP copolymer (hereinafter also referred to as "FEP”), TFE-perfluoro(alkyl vinyl ether) copolymer, TFE-HFP-vinylidene fluoride copolymer, etc. From the viewpoint of mechanical properties, at least one selected from the group consisting of ETFE and FEP is preferable. One type of fluoroolefin polymer may be used alone, or two or more types may be used in combination.
  • ETFE is a preferred fluoroolefin polymer.
  • ETFE is a copolymer having units based on TFE (hereinafter also referred to as "TFE units”) and units based on ethylene (hereinafter also referred to as "E units").
  • ETFE the polymer having TFE unit, E unit, and unit based on a third monomer other than TFE and ethylene is preferred.By the type and content of unit based on third monomer, it is easy to adjust the crystallinity of ETFE, and thus it is easy to adjust the storage modulus or other tensile properties of substrate.For example, by ETFE having unit based on third monomer (particularly monomer having fluorine atom), tensile strength and tensile elongation at high temperature (particularly around 180 °C) tend to improve.
  • the third monomer includes a monomer having a fluorine atom and a monomer having no fluorine atom.
  • Examples of the monomer having a fluorine atom include the following monomers a1 to a5.
  • Monomer a1 Fluoroolefins having 2 or 3 carbon atoms.
  • Monomer a2 Fluoroalkylethylenes represented by X(CF 2 ) n CY ⁇ CH 2 (wherein X and Y each independently represent a hydrogen atom or a fluorine atom, and n represents an integer of 2 to 8).
  • Monomer a3 Fluorovinyl ethers.
  • Monomer a4 functional group-containing fluorovinyl ethers.
  • Monomer a5 a fluorine-containing monomer having an aliphatic ring structure.
  • monomer a1 examples include fluoroethylenes (trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.) and fluoropropylenes (hexafluoropropylene (HFP), 2-hydropentafluoropropylene, etc.).
  • fluoroethylenes trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.
  • fluoropropylenes hexafluoropropylene (HFP), 2-hydropentafluoropropylene, etc.
  • n 2 to 6
  • n 2 to 4
  • X a fluorine atom
  • Y a hydrogen atom
  • Specific examples of the monomer a2 include the following compounds.
  • CF3CF2CH CH2
  • CF3CF2CF2CF2CH CH2 ((perfluorobutyl)ethylene ( hereinafter also referred to as "PFBE "))
  • PFBE perfluorobutylethylene
  • CF3CF2CF2CF2CF CH2
  • CF2HCF2CF2CF CH2
  • CF2HCF2CF2CF2CF CH2 .
  • the monomer a3 include the following compounds: Among the following, diene monomers are monomers that can be cyclopolymerized.
  • PPVE perfluoro(propyl vinyl ether)
  • CF2 CFOCF2CF ( CF3 )O( CF2 ) 2CF3
  • CF2 CFO( CF2 ) 3O ( CF2 ) 2CF3
  • CF2 CFO( CF2CF ( CF3 )O) 2 ( CF2 ) 2CF3
  • CF2 CFOCF2CF ( CF3 )O( CF2 ) 2CF3
  • CFO( CF2 ) 2CF CF2
  • CF2 CFO( CF2 ) 3CO2CH3
  • CF2 CFOCF2CF ( CF3 ) O ( CF2 ) 3CO2CH3
  • CF2 CFOCF2CF ( CF3 )O( CF2 ) 2SO2F .
  • monomer a5 examples include perfluoro(2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, and perfluoro(2-methylene-4-methyl-1,3-dioxolane).
  • Examples of the monomer having no fluorine atom include the following monomers b1 to b4.
  • Monomer b1 Olefins.
  • Monomer b2 vinyl esters.
  • Monomer b3 vinyl ethers.
  • Monomer b4 unsaturated acid anhydride.
  • the monomer b1 include propylene and isobutene.
  • a specific example of the monomer b2 is vinyl acetate.
  • Specific examples of the monomer b3 include ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether.
  • Specific examples of the monomer b4 include maleic anhydride, itaconic anhydride, citraconic anhydride, and 5-norbornene-2,3-dicarboxylic anhydride.
  • the third monomer may be used alone or in combination of two or more kinds.
  • ETFE a copolymer having TFE unit, E unit and unit based on PFBE (hereinafter also referred to as "PFBE unit" is particularly preferred.
  • the molar ratio of TFE units to E units is preferably 80/20 to 40/60, more preferably 70/30 to 45/55, and even more preferably 65/35 to 50/50.
  • the ETFE has excellent heat resistance and mechanical strength.
  • the proportion of units based on the third monomer in ETFE is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, and even more preferably 0.20 to 10 mol%, relative to the sum of all units constituting ETFE (100 mol%).
  • ETFE has excellent heat resistance and mechanical strength.
  • the proportion of PFBE units is preferably 0.5 to 4.0 mol%, more preferably 0.7 to 3.6 mol%, and even more preferably 1.0 to 3.6 mol%, relative to the total of all units constituting ETFE (100 mol%).
  • the proportion of PFBE units is within the above range, the tensile strength and tensile elongation of the film at high temperatures, particularly at around 180°C, are improved.
  • the substrate may consist of resin only, or may contain other components in addition to resin.
  • examples of other components include lubricants, antioxidants, antistatic agents, plasticizers, and mold release agents. From the viewpoint of preventing the substrate from soiling the mold, it is preferable that the substrate does not contain other components.
  • the thickness of the substrate is preferably 25 to 250 ⁇ m, more preferably 50 to 150 ⁇ m, and even more preferably 75 to 125 ⁇ m.
  • the film is easily deformable and has excellent mold conformability.
  • the thickness of the substrate is equal to or more than the lower limit of the above range, the film is easy to handle, for example, in a roll-to-roll process, and wrinkles are unlikely to occur when the film is stretched and placed to cover the cavity of a mold.
  • the thickness of the substrate can be measured in accordance with ISO 4591:1992 (JIS K7130:1999) (B1 method: a method for measuring the thickness of a sample taken from a plastic film or sheet by a mass method). The same applies to the thickness of each layer of the film hereinafter.
  • the surface of the substrate may have a surface roughness.
  • the arithmetic mean roughness Ra of the substrate surface is preferably 0.2 to 3.0 ⁇ m, more preferably 0.5 to 2.5 ⁇ m.
  • the arithmetic mean roughness Ra of the substrate surface is equal to or greater than the lower limit of the above range, the releasability from the mold is more excellent.
  • the arithmetic mean roughness Ra of the substrate surface is equal to or less than the upper limit of the above range, pinholes are less likely to form in the film.
  • the arithmetic mean roughness Ra is measured based on JIS B0601:2013 (ISO 4287:1997, Amd.1:2009).
  • the reference length lr (cutoff value ⁇ c) for the roughness curve is 0.8 mm.
  • the substrate may be unstretched or stretched.
  • unstretched polyamide film biaxially oriented polyamide film, biaxially oriented PET (polyethylene terephthalate) film, biaxially oriented PEN (polyethylene naphthalate) film, biaxially oriented syndiotactic polystyrene film, and unstretched PBT (polybutylene terephthalate) film are commercially available.
  • Other films that can be used include polyimide film, polyphenylene sulfide resin film, and cross-linked polyethylene film.
  • the surface of the substrate adjacent to other layers may be subjected to any surface treatment.
  • surface treatments include corona treatment, plasma treatment, application of a silane coupling agent, application of an adhesive, etc. From the viewpoint of adhesion between the substrate and other layers, corona treatment or plasma treatment is preferred.
  • the wetting tension of the surface of the substrate on the antistatic layer side is preferably 20 mN/m or more, more preferably 30 mN/m or more, and particularly preferably 35 mN/m or more. There is no particular upper limit to the wetting tension, and it may be 80 mN/m or less.
  • the substrate may be a single layer or may have a multi-layer structure.
  • the multi-layer structure may be a structure in which a plurality of layers, each of which contains a resin, are laminated. In this case, the resins contained in the plurality of layers may be the same or different.
  • the substrate is preferably a single layer. From the viewpoint of film strength, the substrate is preferably a multi-layer structure.
  • the multilayer structure may be, for example, a structure in which a layer containing the above-mentioned release resin (preferably a fluororesin) is laminated on a resin film (which may be a film containing only resin) containing a resin such as polyester, polybutylene terephthalate, polystyrene (preferably syndiotactic), or polycarbonate, or a structure in which a layer containing a first release resin, the resin film, and a layer containing a second release resin are laminated in this order.
  • the layer containing the release resin and the resin film may be laminated via an adhesive.
  • One or both sides of each layer containing a release resin may be subjected to a corona treatment or plasma treatment.
  • the layer containing the release resin is disposed on the antistatic layer side.
  • the surface of the antistatic layer side of the layer containing the release resin disposed on the antistatic layer side is subjected to a corona treatment or plasma treatment.
  • the antistatic layer is made of a cured product of a composition for forming an antistatic layer, which will be described in detail later.
  • the antistatic layer may be provided on the substrate so as to be adjacent to the substrate, or may be provided on the substrate via another layer which is adjacent to the substrate.
  • the thickness of the antistatic layer is preferably 0.05 to 3.0 ⁇ m, and more preferably 0.1 to 2.5 ⁇ m.
  • the antistatic function is excellent.
  • the thickness of the antistatic layer is equal to or less than the upper limit of the range, the film is more easily stretched, and the effect of suppressing the occurrence of cracks and voids is more excellent.
  • the stability of the production process including the appearance of the coated surface, is excellent.
  • the composition for the antistatic layer contains a urethane (meth)acrylate (hereinafter also referred to as "specific urethane (meth)acrylate”) having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1,000 g/eq or more, an antistatic agent, and a polymerization initiator.
  • the composition for the antistatic layer may further contain a polymerizable compound other than the specific urethane (meth)acrylate.
  • the composition for the antistatic layer may further contain other components different from the specific urethane (meth)acrylate and the polymerizable compound other than the specific urethane (meth)acrylate.
  • the specific urethane (meth)acrylate and the polymerizable compound other than the specific urethane (meth)acrylate are polymerized by the action of a polymerization initiator, and the polymerized product functions as a binder for dispersing the antistatic agent.
  • the urethane bonds contained in certain urethane (meth)acrylates are characterized by their high cohesive strength resulting from hydrogen bonds, which act to suppress breakage within the antistatic layer due to shear applied during film stretching, and are thought to be linked to the effect of suppressing breakage within the layer that would appear as cracks or voids.
  • the specific urethane (meth)acrylate may be a urethane (meth)acrylate having one urethane bond, a urethane (meth)acrylate having two or more urethane bonds, or a mixture thereof.
  • the specific urethane (meth)acrylate may be a monofunctional urethane (meth)acrylate having one (meth)acryloyl group, a polyfunctional urethane (meth)acrylate having two or more (meth)acryloyl groups, or a mixture thereof.
  • the monofunctional urethane (meth)acrylate and the polyfunctional urethane (meth)acrylate may each be used alone or in combination of two or more.
  • the (meth)acryloyl group equivalent of the specific urethane (meth)acrylate is 1,000 g/eq or more, the film has excellent extensibility, and cracks and voids are less likely to occur even when the film is stretched to conform to a complex shape in the production of a semiconductor package having a complex shape.
  • the (meth)acryloyl group equivalent of the specific urethane (meth)acrylate is preferably 1,500 g/eq or more, more preferably 5,000 g/eq or more.
  • the upper limit of the (meth)acryloyl group equivalent is not particularly limited, but may be, for example, 100,000 g/eq or even 50,000 g/eq. The lower limit and the upper limit can be appropriately combined.
  • the "(meth)acryloyl group equivalent” is the value obtained by dividing the molecular weight of the (meth)acrylate by the number of (meth)acryloyl groups.
  • the molecular weight of the (meth)acrylate is the value of the mass average molecular weight (hereinafter also referred to as "Mw”) obtained by gel permeation chromatography (hereinafter also referred to as "GPC”) measurement for compounds whose molecular weight distribution can be obtained by GPC measurement, and is the formula weight calculated from the structural formula for compounds whose molecular weight distribution cannot be obtained by GPC measurement.
  • Mw is a value calculated in terms of polystyrene obtained by GPC measurement using a calibration curve prepared using standard polystyrene samples with known molecular weights.
  • the (meth)acryloyl group equivalent of the urethane (meth)acrylate is the sum of the values obtained by multiplying the (meth)acryloyl group equivalent of each of the two or more types of urethane (meth)acrylates by the mass fraction of each urethane (meth)acrylate.
  • a urethane (meth)acrylate having a (meth)acryloyl group equivalent of less than 1,000 g/eq may be contained, so long as the total (meth)acryloyl group equivalent of the two or more urethane (meth)acrylates is not less than 1,000 g/eq.
  • the specific urethane (meth)acrylate preferably contains a polyfunctional urethane (meth)acrylate, because by having a plurality of reactive groups in the molecule, one or more of the reactive groups are incorporated in the curing reaction and do not detach from the antistatic layer.
  • the number of (meth)acryloyl groups in the polyfunctional urethane (meth)acrylate is preferably 4 or less, more preferably 3 or less, and particularly preferably 2. Therefore, the polyfunctional urethane (meth)acrylate is particularly preferably a bifunctional urethane (meth)acrylate.
  • the specific urethane (meth)acrylate preferably has at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure, more preferably has at least one structure selected from the group consisting of a polyether structure and a polyester structure, and even more preferably has a polyester structure.
  • the specific urethane (meth)acrylate has such a structure, the structure relaxes to follow the deformation during stretching, making chemical bonds less likely to break, and it tends to have an excellent effect of suppressing the occurrence of cracks and voids.
  • the specific urethane (meth)acrylate can be produced by a known method.
  • the specific urethane (meth)acrylate can be obtained by any of the following methods.
  • compound a is reacted with a compound having two isocyanate groups (hereinafter also referred to as “compound c") to obtain a prepolymer having one or more isocyanate groups, and then the prepolymer is reacted with a compound having a hydroxyl group and a (meth)acryloyl group (hereinafter also referred to as “compound d").
  • the number of hydroxyl groups in compound a is 1 when a monofunctional urethane (meth)acrylate is obtained, and is 2 or more when a polyfunctional urethane (meth)acrylate is obtained.
  • the number of hydroxyl groups in compound a is preferably 4 or less, and particularly preferably 2.
  • Examples of compound a include polyether monol (such as methoxypolyethylene glycol), polyether polyol (such as polyethylene glycol), polyester monol, polyester polyol, polycarbonate monol, and polycarbonate polyol.
  • Compound a is preferably one which gives a urethane (meth)acrylate having a (meth)acryloyl group equivalent of 1,000 g/eq or more, and among these, from the viewpoint of excellent effect of suppressing the occurrence of cracks and voids, one having at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure is preferred.
  • compound b examples include isocyanatoalkyl (meth)acrylates such as 2-isocyanatoethyl (meth)acrylate.
  • Examples of the compound c include various polyfunctional isocyanate compounds such as hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), isophorone diisocyanate (IPDI), xylene diisocyanate (XDI), triphenylmethane triisocyanate, and tris(isocyanate phenyl)thiophosphate.
  • HDI hexamethylene diisocyanate
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • NDI naphthalene diisocyanate
  • TODI tolidine diisocyanate
  • IPDI isophorone diisocyanate
  • XDI xylene diisocyanate
  • compounds in which the isocyanate groups of these polyfunctional isocyanate compounds are protected with a blocking agent include phenols such as m-cresol and guaiacol, benzenethiol, ethyl acetoacetate, diethyl malonate, and ⁇ -caprolactam.
  • the number of isocyanate groups in compound c is preferably 4 or less, and particularly preferably 2.
  • compound d examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 1,4-cyclohexanedimethanol monoacrylate, and 2-acryloyloxyethyl-2-hydroxyethyl-phthalic acid.
  • the number of urethane bonds in the specific urethane (meth)acrylate is preferably 4 or less, more preferably 3 or less, from the viewpoint of obtaining high extensibility without increasing the crosslink density of the antistatic layer too much.
  • the number of urethane bonds in the specific urethane (meth)acrylate may be 1 or more, and is preferably 2 or more, from the viewpoint of preventing unreacted monomer from being easily detached from the antistatic layer.
  • the specific urethane (meth)acrylate may be a commercially available product.
  • commercially available products include U-200PA, UA-W2, UA-W2A, UA-2235PE, UA-290TM, UA-1138P, UA-3573AB, and UA-2374PIB (all product names) manufactured by Shin-Nakamura Chemical Co., Ltd., UF-3003, UF-3003M, UF-3007, UF-3007M, UF-3123M, UF-3223BA, UF-3999BA, UF-3999AM, UF-3999HX, and UF-0146 (all product names) manufactured by Kyoeisha Chemical Co., Ltd., and UN-5500, UN-5590, UN-9200A, and UN-9000PEP manufactured by Negami Chemical Co., Ltd.
  • the polymerizable compound other than the specific urethane (meth)acrylate may be any compound that is copolymerizable with the specific urethane (meth)acrylate, and may include, for example, a compound having a polymerizable functional group such as a (meth)acryloyl group or a vinyl group.
  • the number of polymerizable functional groups may be one or two or more. From the viewpoint of easily suppressing the detachment of unreacted monomers from the antistatic layer after curing, the number of polymerizable functional groups is preferably two or more.
  • the polymerizable compound other than the specific urethane (meth)acrylate may contain a compound having a thiol group that is incorporated into the polymerization product by causing a thiol-ene reaction. When the compound having a thiol group is contained, the flexibility and toughness of the antistatic layer can be increased.
  • the polymerizable compound other than the specific urethane (meth)acrylate from the viewpoint of excellent copolymerizability and compatibility with the specific urethane (meth)acrylate, (meth)acrylate is preferable.
  • the (meth)acrylate include the monofunctional (meth)acrylate and polyfunctional (meth)acrylate shown below.
  • Monofunctional (meth)acrylate Methoxypolyethylene glycol (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, ethoxylated o-phenylphenol (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, isobornyl (meth)acrylate, isononyl (meth)acrylate, and the like.
  • Polyfunctional (meth)acrylate Bifunctional (meth)acrylates such as 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 2-hydroxy-3-methacrylpropyl (meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and ethoxylated bisphenol A di(meth)acrylate; Trifunctional (meth)acrylates such as trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, ethoxylated glycerin tri(meth)acrylate, tris-(2-
  • the (meth)acrylate is preferably a polyfunctional (meth)acrylate.
  • the number of (meth)acryloyl groups in the polyfunctional (meth)acrylate is preferably 6 or less, particularly preferably 3 or less, from the viewpoint of obtaining high extensibility without excessively increasing the crosslinking density of the antistatic layer.
  • antistatic agents examples include ionic liquids, conductive polymers, conductive fillers, etc.
  • One type of antistatic agent may be used alone, or two or more types may be used in combination.
  • Examples of the ionic liquid include onium compounds such as pyridinium and imidazolium, and fluorine-based compounds.
  • a conductive polymer is a polymer in which electrons move and diffuse through the polymer skeleton.
  • Examples of the conductive polymer include a conductive polymer having a polyaniline skeleton, a conductive polymer having a polyacetylene skeleton, a conductive polymer having a polyparaphenylene skeleton, a conductive polymer having a polypyrrole skeleton, a conductive polymer having a polythiophene skeleton, and a conductive polymer having a polyvinylcarbazole skeleton.
  • the conductive filler examples include metal ion conductive salts, metal-based fillers such as metals and fillers coated with metals, metal oxide-based fillers such as metal oxides and fillers coated with metal oxides, and carbon-based fillers such as conductive carbon and conductive carbon nanotubes.
  • the shape of the conductive filler is not limited, but needle-like, fibrous, and chain-like fillers are preferred.
  • metal ion conductive salts include lithium salt compounds.
  • the metal as the conductive filler and the metal that coats the filler include gold, silver, copper, nickel, and cobalt.
  • metal oxides as the conductive filler and metal oxides coating the filler include tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), zinc antimonate, and antimony oxide.
  • ITO tin-doped indium oxide
  • ATO antimony-doped tin oxide
  • PTO phosphorus-doped tin oxide
  • zinc antimonate and antimony oxide.
  • the antistatic agent preferably contains a conductive polymer, from the viewpoint of easily maintaining antistatic performance even after stretching. In such a case, the conductive path is less likely to be destroyed by deformation during stretching.
  • a conductive polymer from the viewpoint of excellent heat resistance and conductivity, at least one selected from the group consisting of conductive polymers having a polyaniline skeleton, conductive polymers having a polyacetylene skeleton, conductive polymers having a polyparaphenylene skeleton, conductive polymers having a polypyrrole skeleton, conductive polymers having a polythiophene skeleton, and conductive polymers having a polyvinylcarbazole skeleton is preferable.
  • the conductive polymer is preferably a conductive polymer having a polythiophene skeleton, and poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) is particularly preferable.
  • PEDOT-PSS poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid
  • the antistatic agent preferably contains a conductive filler, more preferably a chain-like conductive filler.
  • a conductive filler more preferably a chain-like conductive filler.
  • the chain structure is relaxed in response to deformation during stretching, so that the conductive path is not easily broken.
  • recombination of the connection points of the chain-like conductive filler occurs during stretching, and the conductive path is easily reformed.
  • the aspect ratio of the chain-like conductive filler is preferably 5 or more, more preferably 10 or more.
  • the upper limit of the aspect ratio is not particularly limited, but is, for example, 100.
  • a chain-like conductive filler having an aspect ratio of 5 or more is a filler having a structure in which 5 or more conductive particles (for example, the above-mentioned metal or metal oxide particles) are connected.
  • the chain-like conductive filler may have a branch.
  • the aspect ratio can be determined from the ratio of the length in the major axis direction to the length in the minor axis direction by observing an image under an electron microscope or the like.
  • the chain-like conductive filler is preferably at least one selected from the group consisting of metal-based fillers, metal oxide-based fillers, and carbon-based fillers.
  • the chain-like conductive filler is preferably a metal oxide-based filler.
  • the chain-like metal-based filler include metal nanowires such as gold nanowires, silver nanowires, and copper nanowires.
  • Examples of the chain-like metal oxide filler include chain-like ATO materials, etc.
  • the polymerization initiator examples include a photopolymerization initiator and a thermal polymerization initiator.
  • the polymerization initiator is preferably a photopolymerization initiator.
  • the antistatic layer composition can be quickly cured by irradiation with active energy rays, and productivity is excellent.
  • the time required for curing is shorter than in the case of thermal curing, and the speed of continuous production (coating process) can be increased.
  • thermal curing aging is required after curing, but in the case of irradiation with active energy rays, aging is not necessary.
  • the photopolymerization initiator may be any known compound, such as ⁇ -hydroxyacetophenone ( ⁇ -hydroxyphenyl ketone), ⁇ -aminoacetophenone, benzil ketal, or other alkylphenone compounds, acylphosphine oxide compounds, oxime ester compounds, oxyphenylacetic acid esters, benzoin ethers, aromatic ketones (benzophenones), ketone/amine compounds, benzoylformic acid, and its ester derivatives.
  • ⁇ -hydroxyacetophenone ⁇ -hydroxyphenyl ketone
  • ⁇ -aminoacetophenone benzil ketal
  • alkylphenone compounds alkylphenone compounds
  • acylphosphine oxide compounds acylphosphine oxide compounds
  • oxime ester compounds oxime ester compounds
  • oxyphenylacetic acid esters benzoin ethers
  • aromatic ketones (benzophenones) ketone/amine compounds
  • the photopolymerization initiator examples include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin butyl ether, diethoxyacetophenone, benzyl dimethyl ketal, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, benzophenone, 2,4,6-trimethylbenzoin diphenylphosphine oxide, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, Michler's ketone, N,N-dimethylaminobenzoic acid isoamyl, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoylformic acid, methyl benzoylformate, and ethyl benzoyl
  • lubricants examples include microbeads made of a thermoplastic resin, fumed silica, and polytetrafluoroethylene (PTFE) particles.
  • colorants examples include various organic and inorganic colorants, more specifically, cobalt blue, red iron oxide, cyanine blue, and the like.
  • coupling agent examples include a silane coupling agent and a titanate coupling agent.
  • the composition for the antistatic layer contains a surface modifier
  • the composition for the antistatic layer contains a surface modifier.
  • the surface modifier is preferably one that can be unevenly distributed on the surface of the antistatic layer and its vicinity when the antistatic layer is formed and has good compatibility with other materials such as urethane (meth)acrylate, and examples thereof include silicone-based surface modifiers, fluorine-based surface modifiers, and fluorine-silicone-based surface modifiers.
  • silicone-based surface modifiers examples include BYK-UV3505 manufactured by BYK Corporation, and X-22-164, X-22-164AS, X-22-164A, X-22-164B, X-22-164C, X-22-164E, KP-410, KP-411, KP-412, KP-413, KP-414, KP-415, KP-423, KP-416, KP-418, KP-422, and KP-420 manufactured by Shin-Etsu Chemical Co., Ltd.
  • fluorine-based surface modifier examples include KY-1203, X-71-1203E, KY-1211, and KY-1207 manufactured by Shin-Etsu Chemical Co., Ltd.
  • fluorine-silicone surface modifier examples include KP-911 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the surface modifier preferably has a polymerizable functional group such as a (meth)acryloyl group. If the surface modifier has a polymerizable functional group, it reacts with urethane (meth)acrylate or the like when the composition for the antistatic layer is cured, and the surface modifier is fixed in and on the surface of the antistatic layer, making it possible to prevent the surface modifier from being transferred to an object such as an electronic component when the film comes into contact with the object.
  • a polymerizable functional group such as a (meth)acryloyl group. If the surface modifier has a polymerizable functional group, it reacts with urethane (meth)acrylate or the like when the composition for the antistatic layer is cured, and the surface modifier is fixed in and on the surface of the antistatic layer, making it possible to prevent the surface modifier from being transferred to an object such as an electronic component when the film comes into contact with the object.
  • the content of the specific urethane (meth)acrylate is preferably 20 to 99% by mass, and more preferably 40 to 90% by mass, based on the total amount of the composition for the antistatic layer.
  • the content of the specific urethane (meth)acrylate is equal to or greater than the lower limit, the effect of suppressing the occurrence of cracks and voids is more excellent.
  • the content of the specific urethane (meth)acrylate is equal to or less than the upper limit, the content of the antistatic agent can be increased.
  • the proportion of the polyfunctional urethane (meth)acrylate to the total amount of the specific urethane (meth)acrylate is preferably 50% by mass or more, more preferably 80% by mass or more, and may be 100% by mass.
  • the content of the polymerizable compound other than the specific urethane (meth)acrylate is preferably 50% by mass or less, more preferably 20% by mass or less, and may be 0% by mass, based on the total amount of the antistatic layer composition.
  • the content of the antistatic agent is preferably an amount that causes the surface resistivity of the film to fall within the range described below.
  • the content of the antistatic agent is preferably 1 to 60% by mass, more preferably 10 to 50% by mass, based on the total amount of the composition for the antistatic layer.
  • the content of the antistatic agent is equal to or more than the lower limit, the surface resistivity of the film tends to be in a suitable range.
  • the content of the antistatic agent is equal to or less than the upper limit, the curability of the composition for the antistatic layer tends to be good.
  • the content of the polymerization initiator is preferably 1 to 10 mass %, more preferably 2 to 5 mass %, based on the total of the specific urethane (meth)acrylate and the polymerizable compound other than the specific urethane (meth)acrylate.
  • the contents of the other components are appropriately set depending on the desired surface resistance and strength of the antistatic layer.
  • the content of the surface modifier is preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass, based on the total amount of the composition for antistatic layer.
  • the content of the surface modifier is equal to or more than the lower limit, the modifying effect is easily exhibited, whereas when the content is equal to or less than the upper limit, the occurrence of poor appearance and transfer to the product side due to detachment of the surface modifier due to poor curing are suppressed.
  • the adhesive layer has adhesiveness to other members (e.g., electronic components). By having the adhesive layer, the adhesion between the film and other members is improved. For example, when a semiconductor package having an exposed portion is manufactured, the exposed portion and the film are well adhered to each other, so that the sealing resin is less likely to penetrate into the exposed portion.
  • the adhesive layer may be provided on the antistatic layer so as to be adjacent to the antistatic layer, or may be provided on the antistatic layer via another layer which is adjacent to the antistatic layer.
  • the material of the adhesive layer is not particularly limited, and examples thereof include a cured product of a thermosetting adhesive layer composition, a cured product of an active energy ray-curable adhesive layer composition, etc.
  • the thermosetting adhesive layer composition include a composition containing a hydroxyl group-containing (meth)acrylic polymer and a difunctional or higher isocyanate compound (hereinafter also referred to as a "polyfunctional isocyanate compound”), as described in WO 2016/125796.
  • the adhesive layer contains a reaction-cured product of a hydroxyl group-containing (meth)acrylic polymer and a polyfunctional isocyanate compound.
  • the hydroxyl group-containing (meth)acrylic polymer reacts with the polyfunctional isocyanate compound to crosslink and become a reaction-cured product.
  • the adhesive layer of this embodiment may also contain a reaction-cured product of a hydroxyl group-containing (meth)acrylic polymer, a polyfunctional isocyanate compound, and other components.
  • the thickness of the adhesive layer is preferably 0.05 to 3.0 ⁇ m, more preferably 0.05 to 2.5 ⁇ m, and even more preferably 0.05 to 2.0 ⁇ m.
  • the thickness of the adhesive layer is equal to or greater than the lower limit, the adhesiveness is excellent.
  • the thickness of the adhesive layer is equal to or less than the upper limit, the function of the antistatic layer is fully exerted, and the surface resistivity of the adhesive layer side of the film is low.
  • the film may or may not have layers other than the substrate, the antistatic layer, and the adhesive layer.
  • Examples of the other layers include a gas barrier layer, a colored layer, etc. These layers may be used alone or in combination of two or more.
  • the present film is produced, for example, by the following method.
  • a layer of the composition for the antistatic layer is formed on one side of the substrate, and the composition for the antistatic layer is cured to form an antistatic layer.
  • an adhesive layer or other optional layer may be formed.
  • the composition for the optional layer may be applied before curing the composition for the antistatic layer, and the curing of the composition for the antistatic layer and the curing of the composition for the optional layer may be performed simultaneously.
  • the layer of the antistatic layer composition can be formed, for example, by preparing a coating liquid for the antistatic layer containing the above-mentioned composition for the antistatic layer and a liquid medium, applying the coating liquid for the antistatic layer onto one side of the substrate, and drying the coating liquid. Note that the composition for the antistatic layer does not contain a liquid medium.
  • liquid medium examples include general organic solvents, such as ketones, esters, hydrocarbons, alcohols, glycols, glycol ethers, etc. It is preferable to select a liquid medium that has excellent solubility for the specific urethane (meth)acrylate, antistatic agent, etc. contained in the composition for the antistatic layer.
  • the content of the liquid medium is set according to the solid content of the coating liquid for the antistatic layer.
  • the solid content concentration of the coating liquid for the antistatic layer is preferably from 1 to 30% by mass, more preferably from 1 to 10% by mass, and even more preferably from 1 to 5% by mass.
  • the liquid medium preferably contains a liquid medium having a boiling point of 80° C. or more (hereinafter also referred to as a "high boiling point medium") from the viewpoint of easily distributing the surface modifier on the surface side of the layer.
  • the boiling point of the high boiling point medium is preferably 100° C. or more, and from the viewpoint of reducing the drying load, it is preferably 250° C. or less.
  • the high boiling point medium examples include propylene glycol monomethyl ether (boiling point 121° C.), cyclopentanone (boiling point 131° C.), propylene glycol monomethyl ether acetate (boiling point 146.4° C.), cyclohexanone (boiling point 155.6° C.), and N-methyl-2-pyrrolidone (boiling point 202° C.).
  • the content of the high-boiling point medium is preferably from 1 to 30% by mass, more preferably from 5 to 20% by mass, based on the total amount of the liquid medium.
  • a known coating method can be applied, and examples thereof include spin coating, spray coating, inkjet coating, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, microgravure coating, comma coating, slot die coating, lip coating, and solution casting.
  • the drying method may be any known method capable of removing the liquid medium.
  • the coating liquid for the antistatic layer may be left in an atmosphere below the boiling point of the liquid medium after application and before drying.
  • the leaving time is, for example, 0.1 to 10 minutes.
  • Methods for curing the composition for the antistatic layer include irradiation with active energy rays (active energy ray curing), heating (thermal curing), and the like, and irradiation with active energy rays is preferred from the viewpoint of a fast curing rate.
  • active energy ray examples include ultraviolet rays, electron beams, etc. From the viewpoint of suppressing damage to the coating film caused by the active energy ray, ultraviolet rays are preferred.
  • ultraviolet irradiation it is preferable to select a combination that maximizes the overlap between the emission spectrum of the ultraviolet light source and the absorption spectrum of the polymerization initiator.
  • the ultraviolet light source can be selected from light sources such as a high-pressure mercury lamp, an H bulb, a D bulb, and a V bulb.
  • the irradiation amount (accumulated light amount) of the active energy rays is preferably from 100 to 3,000 mJ/ ⁇ , and more preferably from 500 to 2,000 mJ/ ⁇ .
  • the irradiation with active energy rays is preferably carried out in an inert gas atmosphere such as nitrogen in order to suppress reaction inhibition by oxygen in the air in radical reactions and promote the curing reaction. When irradiating with active energy rays, heating may be performed to promote curing.
  • the surface resistivity of the present film is not particularly limited, and may be 10 17 ⁇ / ⁇ or less, preferably 10 11 ⁇ / ⁇ or less, more preferably 10 10 ⁇ / ⁇ or less, and even more preferably 10 9 ⁇ / ⁇ or less.
  • the lower limit of the surface resistivity is not particularly limited.
  • the surface resistivity of the film is measured in accordance with IEC 60093:1980: double ring electrode method, at an applied voltage of 500 V for 1 minute.
  • an ultra-high resistance meter R8340 (Advantec) can be used as a measuring device.
  • the present film is useful, for example, as a release film used in various processes such as a process of sealing a semiconductor element with a curable resin, and as a surface protection film for a semiconductor element, a solar cell module, etc.
  • the present film is useful as a release film used in a process of sealing a semiconductor element with a curable resin, and is particularly useful as a release film used in a process of producing a semiconductor package having a complex shape, for example, a sealed body in which a part of an electronic component is exposed from the resin.
  • a method for manufacturing a semiconductor package includes: disposing the film on an inner surface of a mold; placing a substrate having a semiconductor element fixed thereto in the mold in which the film is placed; encapsulating the semiconductor element in the mold with a curable resin to produce an encapsulated body; Releasing the encapsulated body from the mold; and including.
  • Examples of the semiconductor package include an integrated circuit in which semiconductor elements such as transistors and diodes are integrated; a light-emitting diode having a light-emitting element; and the like.
  • the package shape of the integrated circuit may be one that covers the entire integrated circuit, or one that covers only a portion of the integrated circuit, i.e., one that exposes a portion of the integrated circuit.
  • SIP Single In-line Package
  • ZIP Zero In-line Package
  • DIP Digital In-line Package
  • SOJ Small Outline J-leaded package
  • SON Small Outline Non-leaded package
  • SOI Small Outline I-leaded package
  • SOF Small Outline F-leaded package
  • QFP Quantad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN Quadad Flat Non-leaded package
  • QFF Quadad Flat F-leaded package
  • PGA Pein Grid Array
  • LGA Landand Grid Array
  • BGA Ball Grid Array
  • DTP Dual Tape carrier Package
  • QTP Quad Tape carrier Package
  • CSP Chip Size Package/Chip Scale Package
  • WL-CSP Wafer Level CSP
  • LLP Leadless Lead frame Package
  • DFN DFN (Dual Flatpack No-leaded
  • MCP Multiple Flat Packs
  • the semiconductor package is preferably one that is manufactured through collective sealing and singulation, and examples of the semiconductor package include integrated circuits sealed by the Molded Array Packaging (MAP) method or the Wafer Level Packaging (WL) method.
  • MAP Molded Array Packaging
  • WL Wafer Level Packaging
  • thermosetting resins such as epoxy resins and silicone resins are preferred, and epoxy resins are more preferred.
  • the semiconductor package may or may not have electronic components such as a source electrode and sealing glass in addition to the semiconductor element. Also, some of the electronic components such as the semiconductor element, source electrode, and sealing glass may be exposed from the resin.
  • the manufacturing method for the semiconductor package can be a known manufacturing method, except for using this film.
  • a method for sealing a semiconductor element can be a transfer molding method, and a known transfer molding device can be used as the device used for this.
  • the manufacturing conditions can also be the same as those in known manufacturing methods for semiconductor packages.
  • the film was cut into a strip (50 mm wide, 100 mm long). This film was clamped and set between the grips of a tensile tester (RTC-131-A manufactured by Orientec Co., Ltd.). The film was stretched until the elongation rate reached 200%, with a grip distance of 10 mm before tension and a speed of 100 mm/min. The elongation rate is the ratio of the grip distance during tension to the grip distance before tension. The film was then removed from the grips and observed under an optical microscope (magnification 20x) and evaluated according to the following criteria. A: There were no cracks or voids. B: There were no cracks, but there were voids. C: There were no voids, but there were cracks. D: There were cracks and voids.
  • ETFE film Fluon (registered trademark) ETFE C-88AXP (manufactured by AGC) was fed into an extruder equipped with a T-die, and taken up between a pressing roll with an uneven surface and a metal roll with a mirror surface to form a film with a thickness of 100 ⁇ m.
  • the temperature of the extruder and the T-die was 320° C.
  • the temperature of the pressing roll and the metal roll was 100° C.
  • the Ra of the surface of the obtained film was 2.0 ⁇ m on the pressing roll side and 0.2 ⁇ m on the mirror side.
  • the mirror side was subjected to a corona treatment so that the wetting tension based on ISO8296:1987 (JIS K6768:1999) was 40 mN/m or more.
  • Bifunctional UA-1 UA-W2A (manufactured by Shin-Nakamura Chemical Co., Ltd.), polyether-based bifunctional urethane acrylate, (meth)acryloyl group equivalent 1,750 g/eq.
  • Bifunctional UA-2 UF-3003 (manufactured by Kyoeisha Chemical Co., Ltd.), polyester-based bifunctional urethane acrylate, (meth)acryloyl group equivalent 7,500 g/eq.
  • Bifunctional UA-3 UF-3003M (manufactured by Kyoeisha Chemical Co., Ltd.), polyester-based bifunctional urethane acrylate, (meth)acryloyl group equivalent 10,000 g/eq.
  • Trifunctional acrylate A-TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), trimethylolpropane triacrylate, (meth)acryloyl group equivalent 99 g/eq.
  • Monofunctional acrylate AM-230 (manufactured by Shin-Nakamura Chemical Co., Ltd.), methoxypolyethylene glycol #1000 acrylate, (meth)acryloyl group equivalent 1098 g/eq.
  • Conductive polymer SEPLEGYDA (registered trademark) SAS-F16 (manufactured by Shin-Etsu Polymer Co., Ltd.), conductive polymer having a polythiophene skeleton (PEDOT-PSS), methyl ethyl ketone (MEK) dispersion, solid content 2% by mass.
  • Conductive filler V-3561 (manufactured by JGC Catalysts and Chemicals), chain ATO (structure in which 10 or more ATO particles are connected, aspect ratio of 10 or more), propylene glycol monomethyl ether (PGME) dispersion, solid content 20.4 mass %.
  • Photopolymerization initiator Omnirad 184 (manufactured by IGM Resins BV), 1-hydroxycyclohexyl phenyl ketone.
  • Surface modifier BYK-UV3505 (manufactured by BYK Corporation), a silicone-based surface modifier whose main component is modified polydimethylsiloxane having an acryloyl group, solid content 100% by mass.
  • Base component 1 ALACOAT (registered trademark) AS601D (manufactured by Arakawa Chemical Industries, Ltd.), solid content 3.4 mass %, conductive polythiophene 0.4 mass %, carboxy group-containing (meth)acrylic polymer 3.0 mass %.
  • Curing agent 1 ARAQUAT CL910 (manufactured by Arakawa Chemical Industries, Ltd.), solid content 10 mass %, trifunctional aziridine compound (2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate], aziridine equivalent 142 g/eq.
  • Base agent 2 Nissetsu (registered trademark) KP2562 (manufactured by Nippon Carbide Industries Co., Ltd.), solid content 35% by mass, hydroxyl group-containing (meth)acrylic polymer.
  • Curing agent 2 Nissetsu CK157 (manufactured by Nippon Carbide Industries Co., Ltd.), solid content 100 mass%, bifunctional isocyanate compound (isocyanurate-type hexamentylene diisocyanate), NCO content 21 mass%.
  • the material types and amounts of the binder, the antistatic agent, and the other additives are shown in Table 1.
  • the amounts shown in Table 1 are the ratios of each component to the total of the binder, the antistatic agent, and the other additives (solid content conversion).
  • the amount of the photopolymerization initiator was 4 mass% relative to the binder.
  • the amount of the liquid medium was an amount such that the solid content of the coating liquid for the antistatic layer was 3.7 mass%.
  • the obtained coating liquid for antistatic layer was applied to the surface of the substrate on the side that had been subjected to the corona treatment using a wire bar #8, and dried for 1 minute in an oven at 55° C. Thereafter, the coating liquid was cured by irradiating ultraviolet rays (UV) using an H-bulb UV lamp under a nitrogen gas atmosphere so that the integrated light amount was 1,500 mJ/ ⁇ , forming an antistatic layer having a thickness of 0.3 ⁇ m, and a film was obtained.
  • UV ultraviolet rays
  • the cross section of the film of Example 6 was observed with a scanning electron microscope (SEM) while undergoing elemental analysis by EDX. Silicon, an element specific to the surface modifier, was detected unevenly on the surface and near the surface, confirming that the surface modifier is unevenly distributed on the surface side of the antistatic layer.
  • SEM scanning electron microscope
  • Example 7 In the same manner as in Example 3, an antistatic layer was formed on the substrate. Next, 100 parts of the base agent 2, 6 parts of the curing agent 2, and ethyl acetate were mixed to prepare a coating liquid for adhesive layer. The amount of ethyl acetate was set to an amount such that the solid content of the coating liquid for adhesive layer was 25 mass%. The obtained adhesive layer coating liquid was applied to the surface of the substrate on which the antistatic layer was formed using a gravure coater, and then dried (thermosetting) to form an adhesive layer having a thickness of 0.8 ⁇ m, to obtain a film.
  • Coating was performed by a direct gravure method using a ⁇ 100 mm ⁇ 250 mm width lattice 150#-depth 40 ⁇ m roll as a gravure plate. Drying was performed at 100° C. for 1 minute through a roll support drying oven with an air volume of 19 m/sec. Thereafter, the film was aged at 40° C. for 2 days to obtain a film.
  • An antistatic layer coating liquid was prepared by mixing 10 parts of the base agent 1, 1 part of the curing agent 1, and methanol. The amount of methanol was set to an amount such that the solid content of the antistatic layer coating liquid was 2% by mass.
  • the obtained coating liquid for the antistatic layer was applied to the surface of the substrate on the corona-treated side using a gravure coater, and then dried (thermosetting) to form an antistatic layer having a thickness of 0.1 ⁇ m.
  • Coating was performed by a direct gravure method using a ⁇ 100 mm ⁇ 250 mm width lattice 150#-depth 40 ⁇ m roll as a gravure plate. Drying was performed at 100° C. for 1 minute through a roll-supported drying oven with an air flow rate of 19 m/sec.
  • a coating liquid for adhesive layer 100 parts of the base agent 2, 4 parts of the curing agent 2, and ethyl acetate were mixed to prepare a coating liquid for adhesive layer.
  • the amount of ethyl acetate was set to an amount such that the solid content of the coating liquid for adhesive layer was 25% by mass.
  • the obtained adhesive layer coating liquid was applied to the surface of the substrate on the side on which the antistatic layer was formed using a gravure coater, and then dried (thermosetting) to form an adhesive layer having a thickness of 2 ⁇ m.
  • Coating was performed by a direct gravure method using a ⁇ 100 mm ⁇ 250 mm width lattice 150#-depth 40 ⁇ m roll as a gravure plate. Drying was performed at 100° C. for 1 minute through a roll support drying oven with an air volume of 19 m/sec. Thereafter, the film was aged at 40° C. for 120 hours to obtain a film.
  • the surface resistivity of the obtained film and the results of defects during stretching are shown in Table 1.
  • Table 1 "10 ⁇ n" for the surface resistivity indicates 10 n .
  • “10 ⁇ 10” indicates 10 10 .
  • Example 9 The films of Examples 1 to 7 had sufficient antistatic properties, and no cracks or voids were generated during stretching. On the other hand, after stretching, numerous cracks extending in a direction perpendicular to the stretching direction were observed in Examples 8, 10, and 11. In Example 9, no cracks or voids were generated, but the film did not have antistatic properties because the antistatic layer did not contain an antistatic agent.
  • the film of the present disclosure has sufficient antistatic properties and is less likely to crack or void when stretched.
  • the film of the present disclosure can be used as a release film to manufacture semiconductor packages such as integrated circuits that integrate semiconductor elements such as transistors and diodes, source electrodes, sealing glass, and other electronic components.
  • the film of the present disclosure can also be used as a protective film when processing, transporting, and storing semiconductor elements, solar cell modules, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present disclosure provides a film which comprises a base material and an antistatic layer, wherein the antistatic layer is formed of a cured product of a composition that contains an antistatic agent, a polymerization initiator and a urethane (meth)acrylate that comprises one or more (meth)acryloyl groups and one or more urethane bonds, while having a (meth)acryloyl group equivalent of 1,000 g/eq or more.

Description

フィルム及び半導体パッケージの製造方法Method for manufacturing film and semiconductor package
 本開示は、フィルム及び半導体パッケージの製造方法に関する。 This disclosure relates to a method for manufacturing a film and a semiconductor package.
 半導体素子は外気からの遮断及び保護のため、パッケージの形態に封止されて基板上に実装される。半導体素子の封止には、エポキシ樹脂等の硬化性樹脂が用いられる。樹脂封止は、半導体素子を金型内の所定の場所に配置し、金型内に硬化性樹脂を充填して硬化させることによって行われる。半導体素子の封止において、金型からのパッケージの離型性向上のため、金型の内面に離型用のフィルムを配置することが多い。 Semiconductor elements are sealed in a package and mounted on a board to protect them from the outside air. Hardening resins such as epoxy resins are used to seal semiconductor elements. Resin sealing is performed by placing the semiconductor element in a designated location in a mold, filling the mold with hardening resin, and then hardening it. When sealing semiconductor elements, a release film is often placed on the inner surface of the mold to improve the releasability of the package from the mold.
 半導体パッケージの製造において離型用のフィルムを用いる場合、封止後の半導体パッケージをフィルムから剥離する際に静電気が発生してフィルムが帯電し、帯電したフィルムからの放電により半導体パッケージが破損することがある。
 フィルムの帯電を防止するため、特許文献1では、基材の一方の面に帯電防止層を設けることが提案されている。
When a release film is used in the manufacture of semiconductor packages, static electricity is generated when the sealed semiconductor package is peeled off from the film, causing the film to become charged. Discharge from the charged film can then damage the semiconductor package.
In order to prevent static electricity from building up in the film, Patent Document 1 proposes providing an antistatic layer on one surface of the substrate.
国際公開第2016/125796号International Publication No. 2016/125796
 近年の半導体パッケージ形状のさらなる複雑化、露出部を有する半導体パッケージの高低差の増加等に伴い、フィルムを複雑な形状に追従させて用いることが増えている。本発明者は、フィルムを複雑な形状に追従させて延伸させた場合、該フィルムにクラック(割れ)やボイド(空隙)といった欠陥が発生することがあるという問題点を知見している。これらの欠陥は、製品不良につながるおそれがある。そのため、このような場合でもクラックやボイドが発生しないフィルムが求められる。 In recent years, as semiconductor package shapes have become more complex and semiconductor packages with exposed parts have greater height differences, films are increasingly being used to conform to these complex shapes. The inventors have found that when a film is stretched to conform to a complex shape, defects such as cracks and voids can occur in the film. These defects can lead to product defects. Therefore, there is a demand for a film that does not cause cracks or voids even in such cases.
 本開示は、充分な帯電防止性能を有し、複雑な形状に追従させて延伸させた場合であってもクラックやボイドが発生しにくいフィルム、及び当該フィルムを用いた半導体パッケージの製造方法を提供する。 The present disclosure provides a film that has sufficient antistatic properties and is less susceptible to cracks and voids even when stretched to conform to complex shapes, and a method for manufacturing a semiconductor package using the film.
 本開示は、以下の[1]~[14]の構成を有するフィルム及び当該フィルムを用いた半導体パッケージの製造方法を提供する。
 [1]基材と、帯電防止層とを含むフィルムであって、
 前記帯電防止層が、1つ以上の(メタ)アクリロイル基及び1つ以上のウレタン結合を有し、(メタ)アクリロイル基当量が1,000g/eq以上であるウレタン(メタ)アクリレートと、帯電防止剤と、重合開始剤と、を含む組成物の硬化物からなる層である、フィルム。
 [2]前記ウレタン(メタ)アクリレートが、2以上の(メタ)アクリロイル基を有する多官能ウレタン(メタ)アクリレートを含む、前記[1]のフィルム。
 [3]前記ウレタン(メタ)アクリレートが、ポリエーテル構造、ポリエステル構造、及びポリカーボネート構造からなる群より選択される少なくとも1つの構造を有する、前記[1]又は[2]のフィルム。
 [4]前記組成物が、前記ウレタン(メタ)アクリレート以外の多官能(メタ)アクリレートを含む、前記[1]~[3]のいずれか1つのフィルム。
 [5]前記基材が、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリシクロオレフィン、シリコーンゴム、ポリエステルエラストマー、ポリブチレンテレフタレート、ポリエチレンテレフタレート、及びポリアミドからなる群より選択される少なくとも1種を含む、前記[1]~[4]のいずれか1つのフィルム。
 [6]前記フッ素樹脂が、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体、及びテトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオリド共重合体からなる群より選択される少なくとも1種を含む、前記[5]のフィルム。
 [7]前記帯電防止剤が、導電性重合体を含む、前記[1]~[6]のいずれか1つのフィルム。
 [8]前記帯電防止剤が、鎖状の導電性フィラーを含む、前記[1]~[6]のいずれか1つのフィルム。
 [9]前記重合開始剤が、光重合開始剤である、前記[1]~[8]のいずれか1つのフィルム。
 [10]前記組成物が、表面改質剤をさらに含む、前記[1]~[9]のいずれか1つのフィルム。
 [11]粘着層をさらに含む、前記[1]~[10]のいずれか1つのフィルム。
 [12]離型フィルムである、前記[1]~[11]のいずれか1つのフィルム。
 [13]半導体素子を硬化性樹脂で封止する工程で用いられる離型フィルムである、前記[1]~[12]のいずれか1つのフィルム。
 [14]前記[1]~[13]のいずれか1つのフィルムを金型内面に配置することと、
 前記フィルムが配置された前記金型内に、半導体素子が固定された基板を配置することと、
 前記金型内の半導体素子を硬化性樹脂で封止して、封止体を作製することと、
 前記封止体を前記金型から離型することと、を含む、半導体パッケージの製造方法。
The present disclosure provides a film having the following configurations [1] to [14] and a method for manufacturing a semiconductor package using the film.
[1] A film comprising a substrate and an antistatic layer,
The film, wherein the antistatic layer is a layer made of a cured product of a composition containing a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1,000 g/eq or more, an antistatic agent, and a polymerization initiator.
[2] The film according to [1], wherein the urethane (meth)acrylate comprises a multifunctional urethane (meth)acrylate having two or more (meth)acryloyl groups.
[3] The film according to [1] or [2], wherein the urethane (meth)acrylate has at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure.
[4] The film according to any one of [1] to [3], wherein the composition contains a polyfunctional (meth)acrylate other than the urethane (meth)acrylate.
[5] The film according to any one of [1] to [4], wherein the substrate comprises at least one selected from the group consisting of a fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyethylene terephthalate, and polyamide.
[6] The film according to [5], wherein the fluororesin comprises at least one selected from the group consisting of ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.
[7] The film according to any one of [1] to [6], wherein the antistatic agent comprises a conductive polymer.
[8] The film according to any one of [1] to [6], wherein the antistatic agent contains a chain-like conductive filler.
[9] The film according to any one of [1] to [8], wherein the polymerization initiator is a photopolymerization initiator.
[10] The film of any one of [1] to [9], wherein the composition further comprises a surface modifier.
[11] The film of any one of [1] to [10] above, further comprising an adhesive layer.
[12] The film according to any one of [1] to [11] above, which is a release film.
[13] The film according to any one of [1] to [12] above, which is a release film used in a step of encapsulating a semiconductor element with a curable resin.
[14] Placing a film according to any one of [1] to [13] on an inner surface of a mold;
placing a substrate having a semiconductor element fixed thereto within the die in which the film is placed;
encapsulating the semiconductor element in the mold with a curable resin to produce an encapsulated body;
and releasing the sealing body from the mold.
 本開示によれば、充分な帯電防止性能を有し、複雑な形状に追従させて延伸させた場合であってもクラックやボイドが発生しにくいフィルム、及び当該フィルムを用いた半導体パッケージの製造方法を提供できる。 This disclosure provides a film that has sufficient antistatic properties and is less susceptible to cracks and voids even when stretched to conform to complex shapes, as well as a method for manufacturing a semiconductor package using the film.
図1は、本フィルムの一態様を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of the present film. 図2は、本フィルムの他の一態様を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing another embodiment of the present film.
 以下、本開示の実施形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。 The following describes in detail the embodiments of the present disclosure. However, the embodiments of the present disclosure are not limited to the following embodiments. In the following embodiments, the components (including element steps, etc.) are not essential unless otherwise specified. The same applies to numerical values and their ranges, and they do not limit the embodiments of the present disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、1つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において図面を参照して実施形態を説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、図面における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
In the present disclosure, the term "step" includes not only a step that is independent of other steps, but also a step that cannot be clearly distinguished from other steps as long as the purpose of the step is achieved.
In the present disclosure, the numerical range indicated using "to" includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in the present disclosure in stages, the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
In the present disclosure, each component may contain multiple types of the corresponding substance. When multiple substances corresponding to each component are present in the composition, the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
When an embodiment is described with reference to the drawings in this disclosure, the configuration of the embodiment is not limited to the configuration shown in the drawings. In addition, the sizes of components in the drawings are conceptual, and the relative relationships between the sizes of the components are not limited to these.
 本開示において、重合体の「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。なお、場合によっては、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
 本開示において、フィルム及びシートを、その厚さにかかわらず「フィルム」と称する。
 本開示において、アクリレート及びメタクリレートを「(メタ)アクリレート」と総称し、アクリル及びメタクリルを「(メタ)アクリル」と総称し、アクリロイル及びメタクリロイルを「(メタ)アクリロイル」と総称する。
In this disclosure, the term "unit" of a polymer refers to a portion derived from a monomer that exists in the polymer and constitutes the polymer. The term "unit" also refers to a unit that is obtained by chemically converting the structure of a unit after the formation of the polymer. In some cases, units derived from individual monomers are referred to by the name of the monomer with "unit" added.
In this disclosure, films and sheets are referred to as "films" regardless of their thickness.
In the present disclosure, acrylate and methacrylate are collectively referred to as "(meth)acrylate", acrylic and methacrylic are collectively referred to as "(meth)acrylic", and acryloyl and methacryloyl are collectively referred to as "(meth)acryloyl".
〔フィルム〕
 本開示の一実施形態に係るフィルム(以下、「本フィルム」ともいう。)は、基材と、帯電防止層とを含むフィルムであって、前記帯電防止層が、1つ以上の(メタ)アクリロイル基及び1つ以上のウレタン結合を有し、(メタ)アクリロイル基当量が1000g/eq以上であるウレタン(メタ)アクリレートと、帯電防止剤と、重合開始剤と、を含む組成物(以下、「帯電防止層用組成物」ともいう。)の硬化物からなる層である。
〔film〕
A film according to an embodiment of the present disclosure (hereinafter also referred to as "the film") is a film including a substrate and an antistatic layer, and the antistatic layer is a layer made of a cured product of a composition (hereinafter also referred to as "antistatic layer composition") that includes a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1000 g/eq or more, an antistatic agent, and a polymerization initiator.
 本フィルムは基材と帯電防止層とを含んでいればよく、他の構成は特に限定されない。
 図1は、本フィルムの一態様を示す概略断面図である。図1に示されるフィルム1は、基材2と、帯電防止層3とをこの順に含む。図2は、本フィルムの他の一態様を示す概略断面図である。図2に示されるフィルム1は、基材2と、帯電防止層3と、粘着層4とをこの順に含む。フィルム1が半導体素子の封止に用いられる場合には、基材2が金型と接するように配置され、樹脂封止後、帯電防止層3又は粘着層4は、封止体(すなわち、半導体素子が封止された半導体パッケージ)と接する。フィルム1は、基材2、帯電防止層3及び粘着層4に加えて他の層を含んでいてもよい。
 以下、本フィルムの各構成要素について詳述する。
The present film is not particularly limited as long as it contains a substrate and an antistatic layer.
FIG. 1 is a schematic cross-sectional view showing one embodiment of the present film. The film 1 shown in FIG. 1 includes a substrate 2 and an antistatic layer 3 in this order. FIG. 2 is a schematic cross-sectional view showing another embodiment of the present film. The film 1 shown in FIG. 2 includes a substrate 2, an antistatic layer 3, and an adhesive layer 4 in this order. When the film 1 is used for sealing a semiconductor element, the substrate 2 is disposed so as to contact a die, and after resin sealing, the antistatic layer 3 or the adhesive layer 4 contacts a sealing body (i.e., a semiconductor package in which a semiconductor element is sealed). The film 1 may include other layers in addition to the substrate 2, the antistatic layer 3, and the adhesive layer 4.
Each component of the film is described in detail below.
(基材)
 基材の材質は特に制限されない。
 基材は、典型的には樹脂を含む。樹脂としては、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリシクロオレフィン、シリコーンゴム、ポリエステルエラストマー、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアミド等が挙げられる。
 一態様において、フィルムの離型性に優れる観点からは、基材は離型性を有する樹脂(以下、「離型性樹脂」ともいう。)を含むことが好ましい。離型性樹脂とは、当該樹脂で構成される層が離型性を有する樹脂を意味する。離型性樹脂としては、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリシクロオレフィン、シリコーンゴム、ポリエステルエラストマー、ポリブチレンテレフタレート、ポリアミド等が挙げられる。離型性、耐熱性、強度、高温における伸びに優れる観点からは、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリシクロオレフィンが好ましく、離型性に優れる観点からは、フッ素樹脂がより好ましい。
 基材に含まれる樹脂は、1種でもよく2種以上でもよい。基材に含まれる樹脂は、フッ素樹脂の単独で構成されることが特に好ましい。但し、フッ素樹脂の単独で構成される場合であっても、発明の効果を損なわない範囲においてフッ素樹脂以外の樹脂が含有されることを妨げるものではない。
(Base material)
The material of the substrate is not particularly limited.
The substrate typically contains a resin, such as a fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyethylene terephthalate, or polyamide.
In one embodiment, from the viewpoint of excellent releasability of the film, it is preferable that the substrate contains a resin having releasability (hereinafter, also referred to as "releasable resin"). The releasable resin means a resin in which a layer composed of the resin has releasability. Examples of the releasable resin include fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyamide, etc. From the viewpoint of excellent releasability, heat resistance, strength, and elongation at high temperatures, fluororesin, polymethylpentene, syndiotactic polystyrene, and polycycloolefin are preferable, and from the viewpoint of excellent releasability, fluororesin is more preferable.
The resin contained in the substrate may be one type or two or more types. It is particularly preferable that the resin contained in the substrate is composed solely of a fluororesin. However, even if the substrate is composed solely of a fluororesin, it does not prevent the substrate from containing a resin other than the fluororesin as long as the effect of the invention is not impaired.
 フッ素樹脂としては、離型性及び耐熱性に優れる観点からは、フルオロオレフィン重合体が好ましい。フルオロオレフィン重合体は、フルオロオレフィンに基づく単位を有する重合体である。フルオロオレフィン重合体は、フルオロオレフィンに基づく単位以外の他の単位を更に有してもよい。
 フルオロオレフィンとしては、テトラフルオロエチレン(以下、「TFE」ともいう。)、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン(以下、「HFP」ともいう。)、クロロトリフルオロエチレン等が挙げられる。フルオロオレフィンは、1種を単独で用いてもよく、2種以上を併用してもよい。
As the fluororesin, from the viewpoint of excellent releasability and heat resistance, a fluoroolefin polymer is preferable. The fluoroolefin polymer is a polymer having units based on a fluoroolefin. The fluoroolefin polymer may further have units other than the units based on a fluoroolefin.
Examples of the fluoroolefin include tetrafluoroethylene (hereinafter also referred to as "TFE"), vinyl fluoride, vinylidene fluoride, trifluoroethylene, hexafluoropropylene (hereinafter also referred to as "HFP"), chlorotrifluoroethylene, etc. One type of fluoroolefin may be used alone, or two or more types may be used in combination.
 フルオロオレフィン重合体としては、エチレン-TFE共重合体(以下、「ETFE」ともいう。)、TFE-HFP共重合体(以下、「FEP」ともいう。)、TFE-ペルフルオロ(アルキルビニルエーテル)共重合体、TFE-HFP-ビニリデンフルオリド共重合体等が挙げられる。機械的物性の観点からは、ETFE及びFEPからなる群より選択される少なくとも1つが好ましい。フルオロオレフィン重合体は、1種を単独で用いてもよく、2種以上を併用してもよい。 The fluoroolefin polymers include ethylene-TFE copolymer (hereinafter also referred to as "ETFE"), TFE-HFP copolymer (hereinafter also referred to as "FEP"), TFE-perfluoro(alkyl vinyl ether) copolymer, TFE-HFP-vinylidene fluoride copolymer, etc. From the viewpoint of mechanical properties, at least one selected from the group consisting of ETFE and FEP is preferable. One type of fluoroolefin polymer may be used alone, or two or more types may be used in combination.
 高温での伸びが大きい観点からは、フルオロオレフィン重合体としては、ETFEが好ましい。ETFEは、TFEに基づく単位(以下、「TFE単位」ともいう。)とエチレンに基づく単位(以下、「E単位」ともいう。)とを有する共重合体である。
 ETFEとしては、TFE単位と、E単位と、TFE及びエチレン以外の第3の単量体に基づく単位と、を有する重合体が好ましい。第3の単量体に基づく単位の種類及び含有量によって、ETFEの結晶化度を調整しやすく、これにより基材の貯蔵弾性率又は他の引張特性を調整しやすい。例えばETFEが第3の単量体(特にフッ素原子を有する単量体)に基づく単位を有することで、高温(特に180℃前後)における引張強度及び引張伸度が向上する傾向にある。
From the viewpoint of high elongation at high temperatures, ETFE is a preferred fluoroolefin polymer. ETFE is a copolymer having units based on TFE (hereinafter also referred to as "TFE units") and units based on ethylene (hereinafter also referred to as "E units").
As ETFE, the polymer having TFE unit, E unit, and unit based on a third monomer other than TFE and ethylene is preferred.By the type and content of unit based on third monomer, it is easy to adjust the crystallinity of ETFE, and thus it is easy to adjust the storage modulus or other tensile properties of substrate.For example, by ETFE having unit based on third monomer (particularly monomer having fluorine atom), tensile strength and tensile elongation at high temperature (particularly around 180 ℃) tend to improve.
 第3の単量体としては、フッ素原子を有する単量体及びフッ素原子を有しない単量体が挙げられる。
 フッ素原子を有する単量体としては、下記の単量体a1~a5等が挙げられる。
 単量体a1:炭素数2又は3のフルオロオレフィン類。
 単量体a2:X(CFCY=CH(ただし、X、Yは、それぞれ独立に水素原子又はフッ素原子であり、nは2~8の整数である。)で表されるフルオロアルキルエチレン類。
 単量体a3:フルオロビニルエーテル類。
 単量体a4:官能基含有フルオロビニルエーテル類。
 単量体a5:脂肪族環構造を有する含フッ素単量体。
The third monomer includes a monomer having a fluorine atom and a monomer having no fluorine atom.
Examples of the monomer having a fluorine atom include the following monomers a1 to a5.
Monomer a1: Fluoroolefins having 2 or 3 carbon atoms.
Monomer a2: Fluoroalkylethylenes represented by X(CF 2 ) n CY═CH 2 (wherein X and Y each independently represent a hydrogen atom or a fluorine atom, and n represents an integer of 2 to 8).
Monomer a3: Fluorovinyl ethers.
Monomer a4: functional group-containing fluorovinyl ethers.
Monomer a5: a fluorine-containing monomer having an aliphatic ring structure.
 単量体a1の具体例としては、フルオロエチレン類(トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、クロロトリフルオロエチレン等)、フルオロプロピレン類(ヘキサフルオロプロピレン(HFP)、2-ヒドロペンタフルオロプロピレン等)が挙げられる。 Specific examples of monomer a1 include fluoroethylenes (trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.) and fluoropropylenes (hexafluoropropylene (HFP), 2-hydropentafluoropropylene, etc.).
 単量体a2としては、nが2~6の単量体が好ましく、nが2~4の単量体がより好ましい。また、Xがフッ素原子であり、Yが水素原子である単量体、すなわち(ペルフルオロアルキル)エチレンが好ましい。
 単量体a2の具体例としては、下記の化合物が挙げられる。
 CFCFCH=CH
 CFCFCFCFCH=CH((ペルフルオロブチル)エチレン(以下、「PFBE」ともいう。))、
 CFCFCFCFCF=CH
 CFHCFCFCF=CH
 CFHCFCFCFCF=CH
As the monomer a2, a monomer in which n is 2 to 6 is preferred, and a monomer in which n is 2 to 4 is more preferred. Also, a monomer in which X is a fluorine atom and Y is a hydrogen atom, that is, (perfluoroalkyl)ethylene, is preferred.
Specific examples of the monomer a2 include the following compounds.
CF3CF2CH = CH2 ,
CF3CF2CF2CF2CH = CH2 ((perfluorobutyl)ethylene ( hereinafter also referred to as " PFBE ")),
CF3CF2CF2CF2CF = CH2 ,
CF2HCF2CF2CF = CH2 ,
CF2HCF2CF2CF2CF = CH2 .
 単量体a3の具体例としては、下記の化合物が挙げられる。なお、下記のうちジエンである単量体は環化重合し得る単量体である。
 CF=CFOCF
 CF=CFOCFCF
 CF=CFO(CFCF(ペルフルオロ(プロピルビニルエーテル)(以下、「PPVE」ともいう。))、
 CF=CFOCFCF(CF)O(CFCF
 CF=CFO(CFO(CFCF
 CF=CFO(CFCF(CF)O)(CFCF
 CF=CFOCFCF(CF)O(CFCF
 CF=CFOCFCF=CF
 CF=CFO(CFCF=CF
Specific examples of the monomer a3 include the following compounds: Among the following, diene monomers are monomers that can be cyclopolymerized.
CF2 = CFOCF3 ,
CF2 = CFOCF2CF3 ,
CF 2 ═CFO(CF 2 ) 2 CF 3 (perfluoro(propyl vinyl ether) (hereinafter also referred to as “PPVE”)),
CF2 = CFOCF2CF ( CF3 )O( CF2 ) 2CF3 ,
CF2 =CFO( CF2 ) 3O ( CF2 ) 2CF3 ,
CF2 =CFO( CF2CF ( CF3 )O) 2 ( CF2 ) 2CF3 ,
CF2 = CFOCF2CF ( CF3 )O( CF2 ) 2CF3 ,
CF2 = CFOCF2CF = CF2 ,
CF2 =CFO( CF2 ) 2CF = CF2 .
 単量体a4の具体例としては、下記の化合物が挙げられる。
 CF=CFO(CFCOCH
 CF=CFOCFCF(CF)O(CFCOCH
 CF=CFOCFCF(CF)O(CFSOF。
Specific examples of the monomer a4 include the following compounds.
CF2 =CFO( CF2 ) 3CO2CH3 ,
CF2 = CFOCF2CF ( CF3 ) O ( CF2 ) 3CO2CH3 ,
CF2 = CFOCF2CF ( CF3 )O( CF2 ) 2SO2F .
 単量体a5の具体例としては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、及びペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)が挙げられる。 Specific examples of monomer a5 include perfluoro(2,2-dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, and perfluoro(2-methylene-4-methyl-1,3-dioxolane).
 フッ素原子を有しない単量体としては、下記の単量体b1~b4等が挙げられる。
 単量体b1:オレフィン類。
 単量体b2:ビニルエステル類。
 単量体b3:ビニルエーテル類。
 単量体b4:不飽和酸無水物。
Examples of the monomer having no fluorine atom include the following monomers b1 to b4.
Monomer b1: Olefins.
Monomer b2: vinyl esters.
Monomer b3: vinyl ethers.
Monomer b4: unsaturated acid anhydride.
 単量体b1の具体例としては、プロピレン、及びイソブテンが挙げられる。
 単量体b2の具体例としては、酢酸ビニルが挙げられる。
 単量体b3の具体例としては、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、及びヒドロキシブチルビニルエーテルが挙げられる。
 単量体b4の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、及び5-ノルボルネン-2,3-ジカルボン酸無水物が挙げられる。
Specific examples of the monomer b1 include propylene and isobutene.
A specific example of the monomer b2 is vinyl acetate.
Specific examples of the monomer b3 include ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether.
Specific examples of the monomer b4 include maleic anhydride, itaconic anhydride, citraconic anhydride, and 5-norbornene-2,3-dicarboxylic anhydride.
 第3の単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 第3の単量体としては、結晶化度を調整しやすい観点、並びに高温(特に180℃前後)における引張強度及び引張伸度に優れる観点からは、単量体a2、HFP、PPVE、及び酢酸ビニルが好ましく、HFP、PPVE、CFCFCH=CH、及びPFBEがより好ましく、PFBEが特に好ましい。すなわち、ETFEとしては、TFE単位と、E単位と、PFBEに基づく単位(以下、「PFBE単位」ともいう。)と、を有する共重合体が特に好ましい。
The third monomer may be used alone or in combination of two or more kinds.
As the third monomer, from the viewpoint of easy adjustment of crystallinity and excellent tensile strength and tensile elongation at high temperature (particularly around 180 ° C.), monomer a2, HFP, PPVE and vinyl acetate are preferred, HFP, PPVE, CF 3 CF 2 CH = CH 2 and PFBE are more preferred, and PFBE is particularly preferred. That is, as ETFE, a copolymer having TFE unit, E unit and unit based on PFBE (hereinafter also referred to as "PFBE unit" is particularly preferred.
 ETFEにおいて、TFE単位とE単位とのモル比(TFE単位/E単位)は、80/20~40/60が好ましく、70/30~45/55がより好ましく、65/35~50/50が更に好ましい。TFE単位/E単位が前記範囲内であると、ETFEの耐熱性及び機械的強度に優れる。 In ETFE, the molar ratio of TFE units to E units (TFE units/E units) is preferably 80/20 to 40/60, more preferably 70/30 to 45/55, and even more preferably 65/35 to 50/50. When the TFE units/E units ratio is within the above range, the ETFE has excellent heat resistance and mechanical strength.
 ETFE中の第3の単量体に基づく単位の割合は、ETFEを構成する全単位の合計(100モル%)に対して0.01~20モル%が好ましく、0.10~15モル%がより好ましく、0.20~10モル%が更に好ましい。第3の単量体に基づく単位の割合が前記範囲内であると、ETFEの耐熱性及び機械的強度に優れる。 The proportion of units based on the third monomer in ETFE is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, and even more preferably 0.20 to 10 mol%, relative to the sum of all units constituting ETFE (100 mol%). When the proportion of units based on the third monomer is within the above range, ETFE has excellent heat resistance and mechanical strength.
 第3の単量体に基づく単位がPFBE単位を含む場合、PFBE単位の割合は、ETFEを構成する全単位の合計(100モル%)に対して0.5~4.0モル%が好ましく、0.7~3.6モル%がより好ましく、1.0~3.6モル%が更に好ましい。PFBE単位の割合が前記範囲内であると、フィルムの高温、特に180℃前後における引張強度及び引張伸度が向上する。 When the units based on the third monomer contain PFBE units, the proportion of PFBE units is preferably 0.5 to 4.0 mol%, more preferably 0.7 to 3.6 mol%, and even more preferably 1.0 to 3.6 mol%, relative to the total of all units constituting ETFE (100 mol%). When the proportion of PFBE units is within the above range, the tensile strength and tensile elongation of the film at high temperatures, particularly at around 180°C, are improved.
 基材は、樹脂のみからなってもよく、樹脂に加えて、他の成分を更に含んでもよい。他の成分としては、滑剤、酸化防止剤、帯電防止剤、可塑剤、離型剤等が挙げられる。基材は、金型を汚しにくい観点からは、他の成分を含まないことが好ましい。 The substrate may consist of resin only, or may contain other components in addition to resin. Examples of other components include lubricants, antioxidants, antistatic agents, plasticizers, and mold release agents. From the viewpoint of preventing the substrate from soiling the mold, it is preferable that the substrate does not contain other components.
 基材の厚さは、25~250μmが好ましく、50~150μmがより好ましく、75~125μmが更に好ましい。基材の厚さが前記範囲の上限値以下であると、フィルムが容易に変形可能で、金型追従性に優れる。基材の厚さが前記範囲の下限値以上であると、フィルムの取り扱い、例えばロール・トゥ・ロールでの扱いが容易であり、フィルムを引っ張りながら金型のキャビティを覆うように配置する際に、しわが発生しにくい。
 基材の厚さは、ISO 4591:1992(JIS K7130:1999)のB1法:プラスチックフィルム又はシートから採った試料の質量法による厚さの測定方法)に準拠して測定できる。以下、フィルムの各層の厚さについても同様である。
The thickness of the substrate is preferably 25 to 250 μm, more preferably 50 to 150 μm, and even more preferably 75 to 125 μm. When the thickness of the substrate is equal to or less than the upper limit of the above range, the film is easily deformable and has excellent mold conformability. When the thickness of the substrate is equal to or more than the lower limit of the above range, the film is easy to handle, for example, in a roll-to-roll process, and wrinkles are unlikely to occur when the film is stretched and placed to cover the cavity of a mold.
The thickness of the substrate can be measured in accordance with ISO 4591:1992 (JIS K7130:1999) (B1 method: a method for measuring the thickness of a sample taken from a plastic film or sheet by a mass method). The same applies to the thickness of each layer of the film hereinafter.
 基材の表面は表面粗さを有していてもよい。基材の表面の算術平均粗さRaは、0.2~3.0μmが好ましく、0.5~2.5μmがより好ましい。基材の表面の算術平均粗さRaが前記範囲の下限値以上であると、金型からの離型性がより優れる。基材の表面の算術平均粗さRaが前記範囲の上限値以下であると、フィルムにピンホールが開きにくい。
 算術平均粗さRaは、JIS B0601:2013(ISO 4287:1997、Amd.1:2009)に基づき測定される。粗さ曲線用の基準長さlr(カットオフ値λc)は0.8mmとする。
The surface of the substrate may have a surface roughness. The arithmetic mean roughness Ra of the substrate surface is preferably 0.2 to 3.0 μm, more preferably 0.5 to 2.5 μm. When the arithmetic mean roughness Ra of the substrate surface is equal to or greater than the lower limit of the above range, the releasability from the mold is more excellent. When the arithmetic mean roughness Ra of the substrate surface is equal to or less than the upper limit of the above range, pinholes are less likely to form in the film.
The arithmetic mean roughness Ra is measured based on JIS B0601:2013 (ISO 4287:1997, Amd.1:2009). The reference length lr (cutoff value λc) for the roughness curve is 0.8 mm.
 基材は、無延伸であっても延伸されていてもよい。例えば無延伸ポリアミドフィルム、二軸延伸ポリアミドフィルム、二軸延伸PET(ポリエチレンテレフタレート)フィルム、二軸延伸PEN(ポリエチレンナフタレート)フィルム、二軸延伸シンジオタクチックポリスチレンフィルム、無延伸PBT(ポリブチレンテレフタレート)フィルムが市販されている。その他、ポリイミドフィルム、ポリフェニレンサルファイド樹脂フィルム、架橋ポリエチレンフィルム等を用いることができる。 The substrate may be unstretched or stretched. For example, unstretched polyamide film, biaxially oriented polyamide film, biaxially oriented PET (polyethylene terephthalate) film, biaxially oriented PEN (polyethylene naphthalate) film, biaxially oriented syndiotactic polystyrene film, and unstretched PBT (polybutylene terephthalate) film are commercially available. Other films that can be used include polyimide film, polyphenylene sulfide resin film, and cross-linked polyethylene film.
 基材の、他の層と隣接する表面には任意の表面処理が施されていてもよい。表面処理としては、コロナ処理、プラズマ処理、シランカップリング剤塗工、接着剤の塗布等が挙げられる。基材と他の層との密着性の観点からは、コロナ処理又はプラズマ処理が好ましい。 The surface of the substrate adjacent to other layers may be subjected to any surface treatment. Examples of surface treatments include corona treatment, plasma treatment, application of a silane coupling agent, application of an adhesive, etc. From the viewpoint of adhesion between the substrate and other layers, corona treatment or plasma treatment is preferred.
 基材と隣接する層との密着性の観点からは、基材の、帯電防止層側の表面の濡れ張力は、20mN/m以上が好ましく、30mN/m以上がより好ましく、35mN/m以上が特に好ましい。濡れ張力の上限は特に制限されず、80mN/m以下でもよい。 From the viewpoint of adhesion between the substrate and the adjacent layer, the wetting tension of the surface of the substrate on the antistatic layer side is preferably 20 mN/m or more, more preferably 30 mN/m or more, and particularly preferably 35 mN/m or more. There is no particular upper limit to the wetting tension, and it may be 80 mN/m or less.
 基材は単層であってもよく、多層構造を有していてもよい。多層構造としては、それぞれの層が樹脂を含む複数の層が積層した構造が挙げられる。この場合、複数の層にそれぞれ含まれる樹脂は同一でも異なってもよい。金型追従性、引張伸度、製造コスト等の観点からは、基材は単層であることが好ましい。フィルム強度の観点からは、基材は多層構造を有することが好ましい。
 多層構造は、例えば、前述の離型性樹脂(好ましくはフッ素樹脂)を含む層を、ポリエステル、ポリブチレンテレフタラート、ポリスチレン(シンジオタクチックが好ましい。)、ポリカーボネート等の樹脂を含む樹脂フィルム(樹脂のみを含むフィルムであってもよい。)に積層させた構造であってもよく、第1の離型性樹脂を含む層、前記樹脂フィルム、及び第2の離型性樹脂を含む層、をこの順に積層させた構造であってもよい。離型性樹脂を含む層と樹脂フィルムとは接着剤を介して積層させてもよい。それぞれの離型性樹脂を含む層の片面又は両面に、コロナ処理又はプラズマ処理が施されていてもよい。基材がかかる多層構造を有する場合、離型性樹脂を含む層が帯電防止層側に配置されることが好ましい。基材がかかる多層構造を有する場合、帯電防止層側に配置される離型性樹脂を含む層の帯電防止層側の表面はコロナ処理又はプラズマ処理が施されていることが好ましい。
The substrate may be a single layer or may have a multi-layer structure. The multi-layer structure may be a structure in which a plurality of layers, each of which contains a resin, are laminated. In this case, the resins contained in the plurality of layers may be the same or different. From the viewpoint of mold followability, tensile elongation, production cost, etc., the substrate is preferably a single layer. From the viewpoint of film strength, the substrate is preferably a multi-layer structure.
The multilayer structure may be, for example, a structure in which a layer containing the above-mentioned release resin (preferably a fluororesin) is laminated on a resin film (which may be a film containing only resin) containing a resin such as polyester, polybutylene terephthalate, polystyrene (preferably syndiotactic), or polycarbonate, or a structure in which a layer containing a first release resin, the resin film, and a layer containing a second release resin are laminated in this order. The layer containing the release resin and the resin film may be laminated via an adhesive. One or both sides of each layer containing a release resin may be subjected to a corona treatment or plasma treatment. When the substrate has such a multilayer structure, it is preferable that the layer containing the release resin is disposed on the antistatic layer side. When the substrate has such a multilayer structure, it is preferable that the surface of the antistatic layer side of the layer containing the release resin disposed on the antistatic layer side is subjected to a corona treatment or plasma treatment.
(帯電防止層)
 帯電防止層は、帯電防止層用組成物の硬化物からなる。帯電防止層用組成物については後で詳しく説明する。
 帯電防止層は、基材上に基材と隣接して設けられてもよく、基材上に基材と隣接する他の層を介して設けられてもよい。
(Antistatic Layer)
The antistatic layer is made of a cured product of a composition for forming an antistatic layer, which will be described in detail later.
The antistatic layer may be provided on the substrate so as to be adjacent to the substrate, or may be provided on the substrate via another layer which is adjacent to the substrate.
 帯電防止層の厚さは、0.05~3.0μmが好ましく、0.1~2.5μmがより好ましい。帯電防止層の厚さが前記下限値以上であると、帯電防止機能に優れる。帯電防止層の厚さが前記範囲の上限値以下であると、フィルムが伸びやすく、クラックやボイドの発生抑制効果がより優れる。また、塗工面の外観をはじめとした生産プロセスの安定性に優れる。 The thickness of the antistatic layer is preferably 0.05 to 3.0 μm, and more preferably 0.1 to 2.5 μm. When the thickness of the antistatic layer is equal to or greater than the lower limit, the antistatic function is excellent. When the thickness of the antistatic layer is equal to or less than the upper limit of the range, the film is more easily stretched, and the effect of suppressing the occurrence of cracks and voids is more excellent. In addition, the stability of the production process, including the appearance of the coated surface, is excellent.
 <帯電防止層用組成物>
 帯電防止層用組成物は、1つ以上の(メタ)アクリロイル基及び1つ以上のウレタン結合を有し、(メタ)アクリロイル基当量が1,000g/eq以上であるウレタン(メタ)アクリレート(以下、「特定ウレタン(メタ)アクリレート」とも記す。)と、帯電防止剤と、重合開始剤と、を含む。
 帯電防止層用組成物は、特定ウレタン(メタ)アクリレート以外の重合性化合物をさらに含んでいてもよい。
 帯電防止層用組成物は、特定ウレタン(メタ)アクリレートと特定ウレタン(メタ)アクリレート以外の重合性化合物とは異なる他の成分をさらに含んでいてもよい。
 特定ウレタン(メタ)アクリレート及び特定ウレタン(メタ)アクリレート以外の重合性化合物は、重合開始剤の作用により重合する。その重合物は、帯電防止剤を分散するバインダとして機能する。
<Antistatic Layer Composition>
The composition for the antistatic layer contains a urethane (meth)acrylate (hereinafter also referred to as "specific urethane (meth)acrylate") having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1,000 g/eq or more, an antistatic agent, and a polymerization initiator.
The composition for the antistatic layer may further contain a polymerizable compound other than the specific urethane (meth)acrylate.
The composition for the antistatic layer may further contain other components different from the specific urethane (meth)acrylate and the polymerizable compound other than the specific urethane (meth)acrylate.
The specific urethane (meth)acrylate and the polymerizable compound other than the specific urethane (meth)acrylate are polymerized by the action of a polymerization initiator, and the polymerized product functions as a binder for dispersing the antistatic agent.
 特定ウレタン(メタ)アクリレート中に含まれるウレタン結合は、水素結合に由来する高い凝集力を持つことが特長で、フィルム延伸時にかかる帯電防止層内の剪断に対し断裂を抑制するように働き、クラックやボイドとして現れるような層内における断裂を抑制する作用に繋がっていると考えられる。
 特定ウレタン(メタ)アクリレートは、ウレタン結合を1つ有するウレタン(メタ)アクリレートであってもよく、ウレタン結合を2つ以上有するウレタン(メタ)アクリレートであってもよく、それらの混合物であってもよい。
 特定ウレタン(メタ)アクリレートは、(メタ)アクリロイル基を1つ有する単官能ウレタン(メタ)アクリレートであってもよく、(メタ)アクリロイル基を2つ以上有する多官能ウレタン(メタ)アクリレートであってもよく、それらの混合物であってもよい。単官能ウレタン(メタ)アクリレート、多官能ウレタン(メタ)アクリレートはそれぞれ1種を単独で用いてもよく、2種以上を併用してもよい。
The urethane bonds contained in certain urethane (meth)acrylates are characterized by their high cohesive strength resulting from hydrogen bonds, which act to suppress breakage within the antistatic layer due to shear applied during film stretching, and are thought to be linked to the effect of suppressing breakage within the layer that would appear as cracks or voids.
The specific urethane (meth)acrylate may be a urethane (meth)acrylate having one urethane bond, a urethane (meth)acrylate having two or more urethane bonds, or a mixture thereof.
The specific urethane (meth)acrylate may be a monofunctional urethane (meth)acrylate having one (meth)acryloyl group, a polyfunctional urethane (meth)acrylate having two or more (meth)acryloyl groups, or a mixture thereof. The monofunctional urethane (meth)acrylate and the polyfunctional urethane (meth)acrylate may each be used alone or in combination of two or more.
 特定ウレタン(メタ)アクリレートの(メタ)アクリロイル基当量が1,000g/eq以上であることで、フィルムの伸び性に優れ、複雑な形状を有する半導体パッケージの製造において本フィルムを複雑な形状に追従させて延伸させた場合であってもクラックやボイドが発生しにくい。
 特定ウレタン(メタ)アクリレートの(メタ)アクリロイル基当量は、1,500g/eq以上が好ましく、5,000g/eq以上がより好ましい。(メタ)アクリロイル基当量の上限は特に限定されないが、例えば100,000g/eq、さらには50,000g/eqであってよい。前記下限値及び前記上限値は適宜組み合わせることができる。
Since the (meth)acryloyl group equivalent of the specific urethane (meth)acrylate is 1,000 g/eq or more, the film has excellent extensibility, and cracks and voids are less likely to occur even when the film is stretched to conform to a complex shape in the production of a semiconductor package having a complex shape.
The (meth)acryloyl group equivalent of the specific urethane (meth)acrylate is preferably 1,500 g/eq or more, more preferably 5,000 g/eq or more. The upper limit of the (meth)acryloyl group equivalent is not particularly limited, but may be, for example, 100,000 g/eq or even 50,000 g/eq. The lower limit and the upper limit can be appropriately combined.
 「(メタ)アクリロイル基当量」は、(メタ)アクリレートの分子量を(メタ)アクリロイル基の数で割った値である。(メタ)アクリレートの分子量は、ゲル浸透クロマトグラフィ(以下、「GPC」とも記す。)測定により分子量分布が得られる化合物については、GPC測定で得られる質量平均分子量(以下、「Mw」とも記す。)の値であり、GPC測定により分子量分布が得られない化合物については、構造式から算出される式量である。Mwは、分子量既知の標準ポリスチレン試料を用いて作製した検量線を用いたGPC測定によって得られるポリスチレン換算の値である。
 帯電防止層用組成物が2種以上のウレタン(メタ)アクリレートを含む場合、ウレタン(メタ)アクリレートの(メタ)アクリロイル基当量は、2種以上のウレタン(メタ)アクリレート各々の(メタ)アクリロイル基当量に各ウレタン(メタ)アクリレートの質量分率を乗じた値の和である。
 2種以上のウレタン(メタ)アクリレート全体での(メタ)アクリロイル基当量が1000g/eq未満とならない範囲で、(メタ)アクリロイル基当量が1,000g/eq未満のウレタン(メタ)アクリレートを含んでいてもよい。
The "(meth)acryloyl group equivalent" is the value obtained by dividing the molecular weight of the (meth)acrylate by the number of (meth)acryloyl groups. The molecular weight of the (meth)acrylate is the value of the mass average molecular weight (hereinafter also referred to as "Mw") obtained by gel permeation chromatography (hereinafter also referred to as "GPC") measurement for compounds whose molecular weight distribution can be obtained by GPC measurement, and is the formula weight calculated from the structural formula for compounds whose molecular weight distribution cannot be obtained by GPC measurement. Mw is a value calculated in terms of polystyrene obtained by GPC measurement using a calibration curve prepared using standard polystyrene samples with known molecular weights.
When the composition for the antistatic layer contains two or more types of urethane (meth)acrylates, the (meth)acryloyl group equivalent of the urethane (meth)acrylate is the sum of the values obtained by multiplying the (meth)acryloyl group equivalent of each of the two or more types of urethane (meth)acrylates by the mass fraction of each urethane (meth)acrylate.
A urethane (meth)acrylate having a (meth)acryloyl group equivalent of less than 1,000 g/eq may be contained, so long as the total (meth)acryloyl group equivalent of the two or more urethane (meth)acrylates is not less than 1,000 g/eq.
 帯電防止層から未反応モノマーが脱離しにくい観点から、特定ウレタン(メタ)アクリレートは、多官能ウレタン(メタ)アクリレートを含むことが好ましい。複数の反応基を分子中に有することで、そのいずれか1以上の反応基が硬化反応に組み込まれることで帯電防止層から脱離しなくなるためである。
 多官能ウレタン(メタ)アクリレートが有する(メタ)アクリロイル基の数は、帯電防止層の架橋密度を高めすぎず、高い伸張性を得る観点から、4以下が好ましく、3以下がより好ましく、2が特に好ましい。したがって、多官能ウレタン(メタ)アクリレートは、2官能ウレタン(メタ)アクリレートが特に好ましい。
From the viewpoint of preventing unreacted monomers from being easily detached from the antistatic layer, the specific urethane (meth)acrylate preferably contains a polyfunctional urethane (meth)acrylate, because by having a plurality of reactive groups in the molecule, one or more of the reactive groups are incorporated in the curing reaction and do not detach from the antistatic layer.
From the viewpoint of obtaining high extensibility without excessively increasing the crosslinking density of the antistatic layer, the number of (meth)acryloyl groups in the polyfunctional urethane (meth)acrylate is preferably 4 or less, more preferably 3 or less, and particularly preferably 2. Therefore, the polyfunctional urethane (meth)acrylate is particularly preferably a bifunctional urethane (meth)acrylate.
 特定ウレタン(メタ)アクリレートは、ポリエーテル構造、ポリエステル構造、及びポリカーボネート構造からなる群より選択される少なくとも1つの構造を有することが好ましく、ポリエーテル構造、ポリエステル構造からなる群より選択される少なくとも1つの構造を有することがより好ましく、ポリエステル構造を有することがさらに好ましい。特定ウレタン(メタ)アクリレートがかかる構造を有すると、延伸時の変形に対し、構造が構造緩和により変形に追従することで化学結合の断裂が起こりにくくなり、クラックやボイドの発生抑制効果に優れる傾向がある。 The specific urethane (meth)acrylate preferably has at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure, more preferably has at least one structure selected from the group consisting of a polyether structure and a polyester structure, and even more preferably has a polyester structure. When the specific urethane (meth)acrylate has such a structure, the structure relaxes to follow the deformation during stretching, making chemical bonds less likely to break, and it tends to have an excellent effect of suppressing the occurrence of cracks and voids.
 特定ウレタン(メタ)アクリレートは、公知の方法によって製造できる。例えば、以下のいずれかの方法によって特定ウレタン(メタ)アクリレートが得られる。
 (1)1つ以上の水酸基を有する化合物(以下、「化合物a」とも記す。)と、イソシアネート基及び(メタ)アクリロイル基を有する化合物(以下、「化合物b」とも記す。)とを反応させる方法。
 (2)化合物aと、2つのイソシアネート基を有する化合物(以下、「化合物c」とも記す。)とを反応させて1つ以上のイソシアネート基を有するプレポリマーを得た後、前記プレポリマーと、水酸基及び(メタ)アクリロイル基を有する化合物(以下、「化合物d」とも記す。)とを反応させる方法。
The specific urethane (meth)acrylate can be produced by a known method. For example, the specific urethane (meth)acrylate can be obtained by any of the following methods.
(1) A method of reacting a compound having one or more hydroxyl groups (hereinafter also referred to as “compound a”) with a compound having an isocyanate group and a (meth)acryloyl group (hereinafter also referred to as “compound b”).
(2) A method in which compound a is reacted with a compound having two isocyanate groups (hereinafter also referred to as "compound c") to obtain a prepolymer having one or more isocyanate groups, and then the prepolymer is reacted with a compound having a hydroxyl group and a (meth)acryloyl group (hereinafter also referred to as "compound d").
 化合物aの水酸基の数は、単官能ウレタン(メタ)アクリレートを得る場合は1つであり、多官能ウレタン(メタ)アクリレートを得る場合は2つ以上である。化合物aの水酸基の数は、4以下が好ましく、2が特に好ましい。
 化合物aとしては、例えば、ポリエーテルモノオール(メトキシポリエチレングリコール等)、ポリエーテルポリオール(ポリエチレングリコール等)、ポリエステルモノオール、ポリエステルポリオール、ポリカーボネートモノオール、及びポリカーボネートポリオールが挙げられる。
 化合物aとしては、得られるウレタン(メタ)アクリレートの(メタ)アクリロイル基当量が1,000g/eq以上となるものが好ましい。中でも、クラックやボイドの発生抑制効果に優れる観点から、ポリエーテル構造、ポリエステル構造、及びポリカーボネート構造からなる群より選択される少なくとも1つの構造を有するものが好ましい。
The number of hydroxyl groups in compound a is 1 when a monofunctional urethane (meth)acrylate is obtained, and is 2 or more when a polyfunctional urethane (meth)acrylate is obtained. The number of hydroxyl groups in compound a is preferably 4 or less, and particularly preferably 2.
Examples of compound a include polyether monol (such as methoxypolyethylene glycol), polyether polyol (such as polyethylene glycol), polyester monol, polyester polyol, polycarbonate monol, and polycarbonate polyol.
Compound a is preferably one which gives a urethane (meth)acrylate having a (meth)acryloyl group equivalent of 1,000 g/eq or more, and among these, from the viewpoint of excellent effect of suppressing the occurrence of cracks and voids, one having at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure is preferred.
 化合物bとしては、例えば、2-イソシアナトエチル(メタ)アクリレート等のイソシアナトアルキル(メタ)アクリレートが挙げられる。 Examples of compound b include isocyanatoalkyl (meth)acrylates such as 2-isocyanatoethyl (meth)acrylate.
 化合物cとしては、例えば、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、イソホロンジイソシアネート(IPDI)、キシレンジイソシアネート(XDI)、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート等の種々の多官能イソシアネート化合物が挙げられる。また、これらの多官能イソシアネート化合物のイソシアヌレート体(3量体)及びビュレット体、これらの多官能イソシアネート化合物とポリオール化合物との反応物(アダクト体、2官能プレポリマー、3官能プレポリマー等)が挙げられる。また、これらの多官能イソシアネート化合物のイソシアネート基がブロック化剤で保護された化合物が挙げられる。ブロック化剤としては、m-クレゾール、グアヤコール(Guaiacol)等のフェノール類、ベンゼンチオール、アセト酢酸エチル、マロン酸ジエチル、εカプロラクタム等が挙げられる。
 化合物cのイソシアネート基の数は、4以下が好ましく、2が特に好ましい。
Examples of the compound c include various polyfunctional isocyanate compounds such as hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), isophorone diisocyanate (IPDI), xylene diisocyanate (XDI), triphenylmethane triisocyanate, and tris(isocyanate phenyl)thiophosphate. Also included are isocyanurate bodies (trimers) and biuret bodies of these polyfunctional isocyanate compounds, and reaction products (adducts, bifunctional prepolymers, trifunctional prepolymers, etc.) of these polyfunctional isocyanate compounds with polyol compounds. Also included are compounds in which the isocyanate groups of these polyfunctional isocyanate compounds are protected with a blocking agent. Examples of blocking agents include phenols such as m-cresol and guaiacol, benzenethiol, ethyl acetoacetate, diethyl malonate, and ε-caprolactam.
The number of isocyanate groups in compound c is preferably 4 or less, and particularly preferably 2.
 化合物dとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、及び2-アクリロイルオキシエチル-2-ヒドロキシエチル-フタル酸が挙げられる。 Examples of compound d include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 1,4-cyclohexanedimethanol monoacrylate, and 2-acryloyloxyethyl-2-hydroxyethyl-phthalic acid.
 特定ウレタン(メタ)アクリレートが有するウレタン結合の数は、帯電防止層の架橋密度を高めすぎず、高い伸張性を得る観点から、4つ以下が好ましく、3つ以下がより好ましい。特定ウレタン(メタ)アクリレートが有するウレタン結合の数は、1つ以上であればよく、帯電防止層から未反応モノマーが脱離しにくい観点から、2つ以上が好ましい。 The number of urethane bonds in the specific urethane (meth)acrylate is preferably 4 or less, more preferably 3 or less, from the viewpoint of obtaining high extensibility without increasing the crosslink density of the antistatic layer too much. The number of urethane bonds in the specific urethane (meth)acrylate may be 1 or more, and is preferably 2 or more, from the viewpoint of preventing unreacted monomer from being easily detached from the antistatic layer.
 特定ウレタン(メタ)アクリレートは市販品を用いてもよい。市販品としては、新中村化学工業社製のU-200PA、UA-W2、UA-W2A、UA-2235PE、UA-290TM、UA-1138P、UA-3573AB、UA-2374PIB(以上、いずれも製品名)、共栄社化学社製のUF-3003、UF-3003M、UF-3007、UF-3007M、UF-3123M、UF-3223BA、UF-3999BA、UF-3999AM、UF-3999HX、UF-0146、(以上、いずれも製品名)、根上工業社製のUN-5500、UN-5590、UN-9200A、UN-9000PEP等が挙げられる。 The specific urethane (meth)acrylate may be a commercially available product. Examples of commercially available products include U-200PA, UA-W2, UA-W2A, UA-2235PE, UA-290TM, UA-1138P, UA-3573AB, and UA-2374PIB (all product names) manufactured by Shin-Nakamura Chemical Co., Ltd., UF-3003, UF-3003M, UF-3007, UF-3007M, UF-3123M, UF-3223BA, UF-3999BA, UF-3999AM, UF-3999HX, and UF-0146 (all product names) manufactured by Kyoeisha Chemical Co., Ltd., and UN-5500, UN-5590, UN-9200A, and UN-9000PEP manufactured by Negami Chemical Co., Ltd.
 特定ウレタン(メタ)アクリレート以外の重合性化合物としては、特定ウレタン(メタ)アクリレートと共重合可能なものであればよく、例えば(メタ)アクリロイル基、ビニル基等の重合性官能基を有する化合物が挙げられる。重合性官能基の数は1つでもよく2つ以上でもよい。硬化後の帯電防止層からの未反応モノマーの脱離を抑制しやすいという観点から、重合性官能基の数は2以上であることが好ましい。
 特定ウレタン(メタ)アクリレート以外の重合性化合物として、チオール-エン反応を起こすことにより重合生成物に組み込まれるようなチオール基を有する化合物を含んでもよい。チオール基を有する化合物を含む場合には、帯電防止層の柔軟性や靭性を高めることができる。
 特定ウレタン(メタ)アクリレート以外の重合性化合物としては、特定ウレタン(メタ)アクリレートとの共重合性や相溶性に優れる観点から、(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、例えば、以下に示す単官能(メタ)アクリレート及び多官能(メタ)アクリレートが挙げられる。
The polymerizable compound other than the specific urethane (meth)acrylate may be any compound that is copolymerizable with the specific urethane (meth)acrylate, and may include, for example, a compound having a polymerizable functional group such as a (meth)acryloyl group or a vinyl group. The number of polymerizable functional groups may be one or two or more. From the viewpoint of easily suppressing the detachment of unreacted monomers from the antistatic layer after curing, the number of polymerizable functional groups is preferably two or more.
The polymerizable compound other than the specific urethane (meth)acrylate may contain a compound having a thiol group that is incorporated into the polymerization product by causing a thiol-ene reaction. When the compound having a thiol group is contained, the flexibility and toughness of the antistatic layer can be increased.
As the polymerizable compound other than the specific urethane (meth)acrylate, from the viewpoint of excellent copolymerizability and compatibility with the specific urethane (meth)acrylate, (meth)acrylate is preferable. Examples of the (meth)acrylate include the monofunctional (meth)acrylate and polyfunctional (meth)acrylate shown below.
 単官能(メタ)アクリレート:
 メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、エトキシ化-o-フェニルフェノール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルコハク酸、イソボルニル(メタ)アクリレート、イソノニル(メタ)アクリレート等。
Monofunctional (meth)acrylate:
Methoxypolyethylene glycol (meth)acrylate, phenoxydiethylene glycol (meth)acrylate, ethoxylated o-phenylphenol (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, isobornyl (meth)acrylate, isononyl (meth)acrylate, and the like.
 多官能(メタ)アクリレート:
 1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ-3-メタクリルプロピル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、等の2官能(メタ)アクリレート;
 トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、等の3官能(メタ)アクリレート;
 ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、等の4官能(メタ)アクリレート;
 ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エトキシ化ジペンタエリスリトールヘキサ(メタ)アクリレート等の5官能以上の(メタ)アクリレート。
Polyfunctional (meth)acrylate:
Bifunctional (meth)acrylates such as 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 2-hydroxy-3-methacrylpropyl (meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, polytetramethylene glycol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, and ethoxylated bisphenol A di(meth)acrylate;
Trifunctional (meth)acrylates such as trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, ethoxylated glycerin tri(meth)acrylate, tris-(2-(meth)acryloxyethyl)isocyanurate, and pentaerythritol tri(meth)acrylate;
tetrafunctional (meth)acrylates such as pentaerythritol tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, and ditrimethylolpropane tetra(meth)acrylate;
(Meth)acrylates having five or more functional groups, such as dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and ethoxylated dipentaerythritol hexa(meth)acrylate.
 帯電防止層の硬度が向上する観点、帯電防止層から未反応モノマーが脱離しにくい観点から、(メタ)アクリレートとしては、多官能(メタ)アクリレートが好ましい。
 多官能(メタ)アクリレートが有する(メタ)アクリロイル基の数は、帯電防止層の架橋密度を高めすぎず、高い伸張性を得る観点から、6以下が好ましく、3以下が特に好ましい。
From the viewpoint of improving the hardness of the antistatic layer and preventing unreacted monomers from being released from the antistatic layer, the (meth)acrylate is preferably a polyfunctional (meth)acrylate.
The number of (meth)acryloyl groups in the polyfunctional (meth)acrylate is preferably 6 or less, particularly preferably 3 or less, from the viewpoint of obtaining high extensibility without excessively increasing the crosslinking density of the antistatic layer.
 帯電防止剤としては、イオン液体、導電性重合体、導電性フィラー等が挙げられる。帯電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of antistatic agents include ionic liquids, conductive polymers, conductive fillers, etc. One type of antistatic agent may be used alone, or two or more types may be used in combination.
 イオン液体としては、ピリジニウム、イミダゾリウム等のオニウム、フッ素系化合物等が挙げられる。
 導電性重合体とは、重合体の骨格を伝って、電子が移動し、拡散する重合体である。導電性重合体としては、ポリアニリン骨格を有する導電性重合体、ポリアセチレン骨格を有する導電性重合体、ポリパラフェニレン骨格を有する導電性重合体、ポリピロール骨格を有する導電性重合体、ポリチオフェン骨格を有する導電性重合体、ポリビニルカルバゾール骨格を有する導電性重合体等が挙げられる。
 導電性フィラーとしては、金属イオン伝導型塩;金属、金属で被覆されたフィラー等の金属系フィラー;金属酸化物、金属酸化物で被覆されたフィラー等の金属酸化物系フィラー;導電性カーボン、導電性カーボンナノチューブ等の炭素系フィラーが挙げられる。導電性フィラーの形状は問わないが、針状、繊維状、鎖状が好ましい。
 金属イオン伝導型塩としては、リチウム塩化合物等が挙げられる。
 導電性フィラーとしての金属及びフィラーを被覆する金属としては、金、銀、銅、ニッケル、コバルト等が挙げられる。
 導電性フィラーとしての金属酸化物及びフィラーを被覆する金属酸化物としては、酸化錫、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫(PTO)、アンチモン酸亜鉛、酸化アンチモン等が挙げられる。
Examples of the ionic liquid include onium compounds such as pyridinium and imidazolium, and fluorine-based compounds.
A conductive polymer is a polymer in which electrons move and diffuse through the polymer skeleton. Examples of the conductive polymer include a conductive polymer having a polyaniline skeleton, a conductive polymer having a polyacetylene skeleton, a conductive polymer having a polyparaphenylene skeleton, a conductive polymer having a polypyrrole skeleton, a conductive polymer having a polythiophene skeleton, and a conductive polymer having a polyvinylcarbazole skeleton.
Examples of the conductive filler include metal ion conductive salts, metal-based fillers such as metals and fillers coated with metals, metal oxide-based fillers such as metal oxides and fillers coated with metal oxides, and carbon-based fillers such as conductive carbon and conductive carbon nanotubes. The shape of the conductive filler is not limited, but needle-like, fibrous, and chain-like fillers are preferred.
Examples of metal ion conductive salts include lithium salt compounds.
Examples of the metal as the conductive filler and the metal that coats the filler include gold, silver, copper, nickel, and cobalt.
Examples of metal oxides as the conductive filler and metal oxides coating the filler include tin oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), phosphorus-doped tin oxide (PTO), zinc antimonate, and antimony oxide.
 延伸後も帯電防止能を維持しやすい観点から、帯電防止剤は、導電性重合体を含むことが好ましい。かかる場合、延伸時の変形に対し導電パスが破壊されにくい。導電性重合体としては、耐熱性及び導電性に優れる観点から、ポリアニリン骨格を有する導電性重合体、ポリアセチレン骨格を有する導電性重合体、ポリパラフェニレン骨格を有する導電性重合体、ポリピロール骨格を有する導電性重合体、ポリチオフェン骨格を有する導電性重合体、及びポリビニルカルバゾール骨格を有する導電性重合体からなる群より選択される少なくとも1つが好ましい。中でも、少量の添加でも良好な導電性能を発現しやすく環境安定性に優れる観点から、導電性重合体は、ポリチオフェン骨格を有する導電性重合体が好ましく、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホン酸(PEDOT-PSS)が特に好ましい。 The antistatic agent preferably contains a conductive polymer, from the viewpoint of easily maintaining antistatic performance even after stretching. In such a case, the conductive path is less likely to be destroyed by deformation during stretching. As the conductive polymer, from the viewpoint of excellent heat resistance and conductivity, at least one selected from the group consisting of conductive polymers having a polyaniline skeleton, conductive polymers having a polyacetylene skeleton, conductive polymers having a polyparaphenylene skeleton, conductive polymers having a polypyrrole skeleton, conductive polymers having a polythiophene skeleton, and conductive polymers having a polyvinylcarbazole skeleton is preferable. Among them, from the viewpoint of easily exhibiting good conductive performance even with a small amount of addition and excellent environmental stability, the conductive polymer is preferably a conductive polymer having a polythiophene skeleton, and poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) is particularly preferable.
 延伸後も帯電防止能を維持しやすい観点から、帯電防止剤は、導電性フィラーを含むことが好ましく、鎖状の導電性フィラーを含むことがより好ましい。帯電防止剤が鎖状の導電性フィラーを含む場合、延伸時の変形に対し鎖状構造が構造緩和するため、導電パスが破壊されにくい。また、延伸時に鎖状の導電性フィラーの接続点の組み換えが起こり、導電パスの再形成がされやすい。
 鎖状の導電性フィラーのアスペクト比は、5以上が好ましく、10以上がより好ましい。該アスペクト比の上限は特に限定されないが、例えば100である。アスペクト比が5以上の鎖状の導電性フィラーの一例として、導電性粒子(例えば前記した金属や金属酸化物の粒子)が5つ以上連結された構造のフィラーが挙げられる。鎖状の導電性フィラーは分岐を有していてもよい。
 アスペクト比は、電子顕微鏡像等の観察から長軸方向の長さと短軸方向の長さの比により求められる。
 鎖状の導電性フィラーは、導電性や耐久性に優れる観点から、金属系フィラー、金属酸化物系フィラー及び炭素系フィラーからなる群より選択される少なくとも1つが好ましい。中でも、耐久性や使用環境による帯電防止能の変動の小ささに優れる観点から、鎖状の導電性フィラーは、金属酸化物系フィラーが好ましい。鎖状の金属系フィラーとしては、金ナノワイヤー、銀ナノワイヤー、銅ナノワイヤー等の金属ナノワイヤーが挙げられる。鎖状の金属酸化物フィラーとしては、鎖状ATO材料等が挙げられる。
From the viewpoint of easily maintaining the antistatic ability even after stretching, the antistatic agent preferably contains a conductive filler, more preferably a chain-like conductive filler. When the antistatic agent contains a chain-like conductive filler, the chain structure is relaxed in response to deformation during stretching, so that the conductive path is not easily broken. In addition, recombination of the connection points of the chain-like conductive filler occurs during stretching, and the conductive path is easily reformed.
The aspect ratio of the chain-like conductive filler is preferably 5 or more, more preferably 10 or more. The upper limit of the aspect ratio is not particularly limited, but is, for example, 100. An example of a chain-like conductive filler having an aspect ratio of 5 or more is a filler having a structure in which 5 or more conductive particles (for example, the above-mentioned metal or metal oxide particles) are connected. The chain-like conductive filler may have a branch.
The aspect ratio can be determined from the ratio of the length in the major axis direction to the length in the minor axis direction by observing an image under an electron microscope or the like.
From the viewpoint of excellent conductivity and durability, the chain-like conductive filler is preferably at least one selected from the group consisting of metal-based fillers, metal oxide-based fillers, and carbon-based fillers. Among them, from the viewpoint of excellent durability and small fluctuation of antistatic ability depending on the use environment, the chain-like conductive filler is preferably a metal oxide-based filler. Examples of the chain-like metal-based filler include metal nanowires such as gold nanowires, silver nanowires, and copper nanowires. Examples of the chain-like metal oxide filler include chain-like ATO materials, etc.
 重合開始剤としては、光重合開始剤、熱重合開始剤等が挙げられる。
 重合開始剤としては、光重合開始剤が好ましい。重合開始剤が光重合開始剤であると、帯電防止層用組成物を活性エネルギー線の照射により速やかに硬化でき、生産性に優れる。例えば、熱硬化の場合に比べ、硬化に要する時間が短く、連続生産(塗工工程)の速度を速くできる。また、熱硬化の場合、硬化後に養生(エージング)が必要になるが、活性エネルギー線の照射であれば、養生は行わなくてもよい。
Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator.
The polymerization initiator is preferably a photopolymerization initiator. When the polymerization initiator is a photopolymerization initiator, the antistatic layer composition can be quickly cured by irradiation with active energy rays, and productivity is excellent. For example, the time required for curing is shorter than in the case of thermal curing, and the speed of continuous production (coating process) can be increased. In addition, in the case of thermal curing, aging is required after curing, but in the case of irradiation with active energy rays, aging is not necessary.
 光重合開始剤としては、公知のものを使用でき、例えばα-ヒドロキシアセトフェノン(α-ヒドロキシフェニルケトン)系、α-アミノアセトフェノン系、ベンジルケタール系等のアルキルフェノン型化合物、アシルホスフィンオキシド型化合物、オキシムエステル化合物、オキシフェニル酢酸エステル類、ベンゾインエーテル類、芳香族ケトン類(ベンゾフェノン類)、ケトン/アミン化合物、ベンゾイルギ酸及びそのエステル誘導体が挙げられる。  The photopolymerization initiator may be any known compound, such as α-hydroxyacetophenone (α-hydroxyphenyl ketone), α-aminoacetophenone, benzil ketal, or other alkylphenone compounds, acylphosphine oxide compounds, oxime ester compounds, oxyphenylacetic acid esters, benzoin ethers, aromatic ketones (benzophenones), ketone/amine compounds, benzoylformic acid, and its ester derivatives.
 光重合開始剤の具体例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインブチルエーテル、ジエトキシアセトフェノン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン、2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ミヒラーズケトン、N,N-ジメチルアミノ安息香酸イソアミル、2-クロロチオキサントン、2,4-ジエチルチオキサントン、ベンゾイルギ酸、ベンゾイルギ酸メチル、及びベンゾイルギ酸エチルが挙げられる。
 光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
Specific examples of the photopolymerization initiator include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin butyl ether, diethoxyacetophenone, benzyl dimethyl ketal, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, benzophenone, 2,4,6-trimethylbenzoin diphenylphosphine oxide, 2-methyl-[4-(methylthio)phenyl]-2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butan-1-one, Michler's ketone, N,N-dimethylaminobenzoic acid isoamyl, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoylformic acid, methyl benzoylformate, and ethyl benzoylformate.
The photopolymerization initiator may be used alone or in combination of two or more kinds.
 帯電防止層用組成物に含まれていてもよい他の成分としては、滑剤、着色剤、カップリング剤、表面改質剤等の各種の添加剤が挙げられる。
 滑剤としては、熱可塑性樹脂からなるマイクロビーズ、ヒュームドシリカ、ポリテトラフルオロエチレン(PTFE)微粒子等が挙げられる。
 着色剤としては、各種の有機着色剤及び無機着色剤が挙げられ、より具体的には、コバルトブルー、べんがら、シアニンブルー等が挙げられる。
 カップリング剤としては、シランカップリング剤、チタネートカップリング剤等が挙げられる。
Other components that may be contained in the antistatic layer composition include various additives such as lubricants, colorants, coupling agents, and surface modifiers.
Examples of the lubricant include microbeads made of a thermoplastic resin, fumed silica, and polytetrafluoroethylene (PTFE) particles.
Examples of colorants include various organic and inorganic colorants, more specifically, cobalt blue, red iron oxide, cyanine blue, and the like.
Examples of the coupling agent include a silane coupling agent and a titanate coupling agent.
 帯電防止層用組成物が表面改質剤を含むと、表面タック性や粘着性、接触角等の表面性状を調整することができる。特に粘着層が設けられない場合は、帯電防止層用組成物が表面改質剤を含むことが好ましい。
 表面改質剤としては、帯電防止層を形成したときに帯電防止層の表面及びその近傍に偏在可能であり、ウレタン(メタ)アクリレート等の他の材料との相溶性が良好なものが好ましく、例えばシリコーン系表面改質剤、フッ素系表面改質剤、フッ素-シリコーン系表面改質剤が挙げられる。シリコーン系表面改質剤としては、BYK社製のBYK-UV3505、信越化学工業社製のX-22-164、X-22-164AS、X-22-164A、X-22-164B、X-22-164C、X-22-164E、KP-410、KP-411、KP-412、KP-413、KP-414、KP-415、KP-423、KP-416、KP-418、KP-422、KP-420等が挙げられる。フッ素系表面改質剤としては、信越化学工業社製のKY-1203、X-71-1203E、KY-1211、KY-1207等が挙げられる。フッ素-シリコーン系表面改質剤としては、信越化学工業社製のKP-911等が挙げられる。
When the composition for the antistatic layer contains a surface modifier, it is possible to adjust surface properties such as surface tackiness, adhesion, contact angle, etc. In particular, when an adhesive layer is not provided, it is preferable that the composition for the antistatic layer contains a surface modifier.
The surface modifier is preferably one that can be unevenly distributed on the surface of the antistatic layer and its vicinity when the antistatic layer is formed and has good compatibility with other materials such as urethane (meth)acrylate, and examples thereof include silicone-based surface modifiers, fluorine-based surface modifiers, and fluorine-silicone-based surface modifiers. Examples of silicone-based surface modifiers include BYK-UV3505 manufactured by BYK Corporation, and X-22-164, X-22-164AS, X-22-164A, X-22-164B, X-22-164C, X-22-164E, KP-410, KP-411, KP-412, KP-413, KP-414, KP-415, KP-423, KP-416, KP-418, KP-422, and KP-420 manufactured by Shin-Etsu Chemical Co., Ltd. Examples of the fluorine-based surface modifier include KY-1203, X-71-1203E, KY-1211, and KY-1207 manufactured by Shin-Etsu Chemical Co., Ltd. Examples of the fluorine-silicone surface modifier include KP-911 manufactured by Shin-Etsu Chemical Co., Ltd.
 表面改質剤としては、(メタ)アクリロイル基等の重合性官能基を有するものが好ましい。表面改質剤が重合性官能基を有すると、帯電防止層用組成物の硬化時にウレタン(メタ)アクリレート等と反応し、表面改質剤が帯電防止層中及び帯電防止層表面に固定され、フィルムと電子部品等の対象物との接触時に表面改質剤が対象物に転写されることを抑制できる。 The surface modifier preferably has a polymerizable functional group such as a (meth)acryloyl group. If the surface modifier has a polymerizable functional group, it reacts with urethane (meth)acrylate or the like when the composition for the antistatic layer is cured, and the surface modifier is fixed in and on the surface of the antistatic layer, making it possible to prevent the surface modifier from being transferred to an object such as an electronic component when the film comes into contact with the object.
 帯電防止層用組成物中、特定ウレタン(メタ)アクリレートの含有量は、帯電防止層用組成物の全量に対し、20~99質量%が好ましく、40~90質量%がより好ましい。特定ウレタン(メタ)アクリレートの含有量が前記下限値以上であると、クラックやボイドの発生抑制効果がより優れる。特定ウレタン(メタ)アクリレートの含有量が前記上限値以下であると、帯電防止剤の含有量を多くできる。 In the composition for the antistatic layer, the content of the specific urethane (meth)acrylate is preferably 20 to 99% by mass, and more preferably 40 to 90% by mass, based on the total amount of the composition for the antistatic layer. When the content of the specific urethane (meth)acrylate is equal to or greater than the lower limit, the effect of suppressing the occurrence of cracks and voids is more excellent. When the content of the specific urethane (meth)acrylate is equal to or less than the upper limit, the content of the antistatic agent can be increased.
 特定ウレタン(メタ)アクリレートの全量に対する多官能ウレタン(メタ)アクリレートの割合は、50質量%以上が好ましく、80質量%以上が好ましく、100質量%であってもよい。 The proportion of the polyfunctional urethane (meth)acrylate to the total amount of the specific urethane (meth)acrylate is preferably 50% by mass or more, more preferably 80% by mass or more, and may be 100% by mass.
 特定ウレタン(メタ)アクリレート以外の重合性化合物の含有量は、帯電防止層用組成物の全量に対し、50質量%以下が好ましく、20質量%以下がより好ましく、0質量%であってもよい。 The content of the polymerizable compound other than the specific urethane (meth)acrylate is preferably 50% by mass or less, more preferably 20% by mass or less, and may be 0% by mass, based on the total amount of the antistatic layer composition.
 帯電防止剤の含有量は、帯電防止機能を充分に発揮する観点からは、フィルムの表面抵抗率が後述の範囲となる量であることが好ましい。
 一態様において、帯電防止剤の含有量は、帯電防止層用組成物の全量に対し、1~60質量%が好ましく、10~50質量%がより好ましい。帯電防止剤の含有量が前記下限値以上であると、フィルムの表面抵抗率が好適な範囲となりやすい。帯電防止剤の含有量が前記上限値以下であると、帯電防止層用組成物の硬化性が良好となりやすい。
From the viewpoint of fully exerting the antistatic function, the content of the antistatic agent is preferably an amount that causes the surface resistivity of the film to fall within the range described below.
In one embodiment, the content of the antistatic agent is preferably 1 to 60% by mass, more preferably 10 to 50% by mass, based on the total amount of the composition for the antistatic layer. When the content of the antistatic agent is equal to or more than the lower limit, the surface resistivity of the film tends to be in a suitable range. When the content of the antistatic agent is equal to or less than the upper limit, the curability of the composition for the antistatic layer tends to be good.
 重合開始剤の含有量は、特定ウレタン(メタ)アクリレート及び特定ウレタン(メタ)アクリレート以外の重合性化合物の合計に対し、1~10質量%が好ましく、2~5質量%がより好ましい。 The content of the polymerization initiator is preferably 1 to 10 mass %, more preferably 2 to 5 mass %, based on the total of the specific urethane (meth)acrylate and the polymerizable compound other than the specific urethane (meth)acrylate.
 他の成分の含有量は、帯電防止層の所望の表面抵抗及び強度に応じて適宜設定される。
 帯電防止層用組成物が表面改質剤を含む場合、表面改質剤の含有量は、帯電防止層用組成物の全量に対し、0.1~10質量%が好ましく、1~5質量%が好ましい。表面改質剤の含有量が前記下限値以上であると、改質効果が発現しやすく、前記上限値以下であると、外観不良の発生や硬化不良による表面改質剤の脱離による製品側への転写が抑制される。
The contents of the other components are appropriately set depending on the desired surface resistance and strength of the antistatic layer.
When the composition for antistatic layer contains a surface modifier, the content of the surface modifier is preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass, based on the total amount of the composition for antistatic layer. When the content of the surface modifier is equal to or more than the lower limit, the modifying effect is easily exhibited, whereas when the content is equal to or less than the upper limit, the occurrence of poor appearance and transfer to the product side due to detachment of the surface modifier due to poor curing are suppressed.
(粘着層)
 粘着層は、他部材(例えば電子部品)に対する粘着性を有する。粘着層を有することで、フィルムと他部材との密着性が良好となる。例えば露出部を有する半導体パッケージの製造時、露出部とフィルムとが良好に密着することで、封止樹脂が露出部に侵入しにくい。
 粘着層は、帯電防止層上に帯電防止層と隣接して設けられてもよく、帯電防止層上に帯電防止層と隣接する他の層を介して設けられてもよい。
(Adhesive layer)
The adhesive layer has adhesiveness to other members (e.g., electronic components). By having the adhesive layer, the adhesion between the film and other members is improved. For example, when a semiconductor package having an exposed portion is manufactured, the exposed portion and the film are well adhered to each other, so that the sealing resin is less likely to penetrate into the exposed portion.
The adhesive layer may be provided on the antistatic layer so as to be adjacent to the antistatic layer, or may be provided on the antistatic layer via another layer which is adjacent to the antistatic layer.
 粘着層の材質は特に制限されず、例えば、熱硬化性の粘着層用組成物の硬化物、活性エネルギー線硬化性の粘着層用組成物の硬化物等が挙げられる。熱硬化性の粘着層用組成物としては、例えば、国際公開第2016/125796号に記載されるような、水酸基含有(メタ)アクリル重合体と、2官能以上のイソシアネート化合物(以下、「多官能イソシアネート化合物」ともいう。)とを含む組成物が挙げられる。 The material of the adhesive layer is not particularly limited, and examples thereof include a cured product of a thermosetting adhesive layer composition, a cured product of an active energy ray-curable adhesive layer composition, etc. Examples of the thermosetting adhesive layer composition include a composition containing a hydroxyl group-containing (meth)acrylic polymer and a difunctional or higher isocyanate compound (hereinafter also referred to as a "polyfunctional isocyanate compound"), as described in WO 2016/125796.
 一態様において、金型や封止樹脂が高温となるトランスファ成形プロセスでの使用に耐えうる耐熱性と、帯電防止層との相溶性の観点からは、粘着層は、水酸基含有(メタ)アクリル重合体と、多官能イソシアネート化合物との反応硬化物を含むことが好ましい。この場合、水酸基含有(メタ)アクリル重合体が多官能イソシアネート化合物と反応して架橋し、反応硬化物となる。本態様の粘着層は、水酸基含有(メタ)アクリル重合体と、多官能イソシアネート化合物と、その他の成分との反応硬化物を含むものであってもよい。 In one embodiment, from the viewpoints of heat resistance sufficient to withstand use in a transfer molding process in which the mold and sealing resin are exposed to high temperatures, and compatibility with the antistatic layer, it is preferable that the adhesive layer contains a reaction-cured product of a hydroxyl group-containing (meth)acrylic polymer and a polyfunctional isocyanate compound. In this case, the hydroxyl group-containing (meth)acrylic polymer reacts with the polyfunctional isocyanate compound to crosslink and become a reaction-cured product. The adhesive layer of this embodiment may also contain a reaction-cured product of a hydroxyl group-containing (meth)acrylic polymer, a polyfunctional isocyanate compound, and other components.
 粘着層の厚さは0.05~3.0μmが好ましく、0.05~2.5μmがより好ましく、0.05~2.0μmが更に好ましい。粘着層の厚さが前記下限値以上であると、粘着性に優れる。粘着層の厚さが前記上限値以下であると、帯電防止層の機能が充分に発現し、フィルムの粘着層側の表面抵抗率が低くなる。 The thickness of the adhesive layer is preferably 0.05 to 3.0 μm, more preferably 0.05 to 2.5 μm, and even more preferably 0.05 to 2.0 μm. When the thickness of the adhesive layer is equal to or greater than the lower limit, the adhesiveness is excellent. When the thickness of the adhesive layer is equal to or less than the upper limit, the function of the antistatic layer is fully exerted, and the surface resistivity of the adhesive layer side of the film is low.
(他の層)
 フィルムは、基材、帯電防止層及び粘着層以外の他の層を備えていても備えていなくてもよい。他の層としては、ガスバリア層、着色層等が挙げられる。これらの層は1種を単独で用いても2種以上を組み合わせて用いてもよい。
(Other layers)
The film may or may not have layers other than the substrate, the antistatic layer, and the adhesive layer. Examples of the other layers include a gas barrier layer, a colored layer, etc. These layers may be used alone or in combination of two or more.
(フィルムの製造方法)
 本フィルムは、例えば以下の方法で製造される。
 基材の一方の面上に、帯電防止層用組成物の層を形成し、帯電防止層用組成物を硬化させて帯電防止層を形成する。必要に応じて、粘着層やその他の任意の層を形成してもよい。帯電防止層の、基材とは反対側に任意の層を形成する場合、帯電防止層用組成物を硬化する前に、任意の層用組成物を塗布し、帯電防止層用組成物の硬化と任意の層用組成物の硬化とを同時に行ってもよい。
(Film manufacturing method)
The present film is produced, for example, by the following method.
A layer of the composition for the antistatic layer is formed on one side of the substrate, and the composition for the antistatic layer is cured to form an antistatic layer. If necessary, an adhesive layer or other optional layer may be formed. When an optional layer is formed on the side of the antistatic layer opposite the substrate, the composition for the optional layer may be applied before curing the composition for the antistatic layer, and the curing of the composition for the antistatic layer and the curing of the composition for the optional layer may be performed simultaneously.
 帯電防止層用組成物の層は、例えば、前記した帯電防止層用組成物及び液状媒体を含む帯電防止層用塗工液を調製し、帯電防止層用塗工液を基材の一方の面上に塗布し、乾燥する方法により形成できる。なお、帯電防止層用組成物には液状媒体は含まれない。 The layer of the antistatic layer composition can be formed, for example, by preparing a coating liquid for the antistatic layer containing the above-mentioned composition for the antistatic layer and a liquid medium, applying the coating liquid for the antistatic layer onto one side of the substrate, and drying the coating liquid. Note that the composition for the antistatic layer does not contain a liquid medium.
 液状媒体としては、一般的な有機溶媒が挙げられ、ケトン、エステル、炭化水素、アルコール、グリコール、グリコールエーテル等が挙げられる。帯電防止層用組成物に含まれる特定ウレタン(メタ)アクリレート、帯電防止剤等の溶解性が優れる液状媒体を選択することが好ましい。
 液状媒体の含有量は、帯電防止層用塗工液の固形分濃度に応じて設定される。
 帯電防止層用塗工液の固形分濃度は、1~30質量%が好ましく、1~10質量%がより好ましく、1~5質量%が更に好ましい。
Examples of the liquid medium include general organic solvents, such as ketones, esters, hydrocarbons, alcohols, glycols, glycol ethers, etc. It is preferable to select a liquid medium that has excellent solubility for the specific urethane (meth)acrylate, antistatic agent, etc. contained in the composition for the antistatic layer.
The content of the liquid medium is set according to the solid content of the coating liquid for the antistatic layer.
The solid content concentration of the coating liquid for the antistatic layer is preferably from 1 to 30% by mass, more preferably from 1 to 10% by mass, and even more preferably from 1 to 5% by mass.
 帯電防止層用組成物が表面改質剤を含む場合、表面改質剤を層の表面側に偏在しやすくする観点から、液状媒体は、沸点が80℃以上の液状媒体(以下、「高沸点媒体」とも記す。)を含むことが好ましい。高沸点媒体の沸点は、100℃以上が好ましく、また、乾燥負荷を低減する観点から、250℃以下が好ましい。高沸点媒体の具体例としては、プロピレングリコールモノメチルエーテル(沸点121℃)、シクロペンタノン(沸点131℃)、プロピレングリコールモノメチルエーテルアセテート(沸点146.4℃)、シクロヘキサノン(沸点155.6℃)、及びN-メチル-2-ピロリドン(沸点202℃)が挙げられる。
 高沸点媒体の含有量は、液状媒体の合計量に対し、1~30質量%が好ましく、5~20質量%がより好ましい。
When the antistatic layer composition contains a surface modifier, the liquid medium preferably contains a liquid medium having a boiling point of 80° C. or more (hereinafter also referred to as a "high boiling point medium") from the viewpoint of easily distributing the surface modifier on the surface side of the layer. The boiling point of the high boiling point medium is preferably 100° C. or more, and from the viewpoint of reducing the drying load, it is preferably 250° C. or less. Specific examples of the high boiling point medium include propylene glycol monomethyl ether (boiling point 121° C.), cyclopentanone (boiling point 131° C.), propylene glycol monomethyl ether acetate (boiling point 146.4° C.), cyclohexanone (boiling point 155.6° C.), and N-methyl-2-pyrrolidone (boiling point 202° C.).
The content of the high-boiling point medium is preferably from 1 to 30% by mass, more preferably from 5 to 20% by mass, based on the total amount of the liquid medium.
 帯電防止層用塗工液の塗布方法としては、公知の塗布方法を適用でき、例えばスピンコーティング法、スプレーコーティング法、インクジェットコーティング法、バーコーティング法、ナイフコーティング法、ロールコーティング法、ブレードコーティング法、ダイコーティング法、グラビアコーティング法、マイクログラビアコーティング法、コンマコーティング法、スロットダイコーティング法、リップコーティング法、及びソリューションキャスティング法が挙げられる。
 乾燥方法は、液状媒体を除去できればよく、公知の乾燥方法を適用できる。
 帯電防止層用組成物が表面改質剤を含む場合、表面改質剤を層の表面側に偏在しやすくする観点から、帯電防止層用塗工液の塗布後、乾燥する前に、液状媒体の沸点未満の雰囲気下で放置してもよい。放置時間は、例えば0.1~10分間である。
As a method for applying the coating liquid for the antistatic layer, a known coating method can be applied, and examples thereof include spin coating, spray coating, inkjet coating, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, microgravure coating, comma coating, slot die coating, lip coating, and solution casting.
The drying method may be any known method capable of removing the liquid medium.
When the composition for the antistatic layer contains a surface modifier, in order to easily distribute the surface modifier unevenly on the surface side of the layer, the coating liquid for the antistatic layer may be left in an atmosphere below the boiling point of the liquid medium after application and before drying. The leaving time is, for example, 0.1 to 10 minutes.
 帯電防止層用組成物の硬化方法としては、活性エネルギー線の照射(活性エネルギー線硬化)、加熱(熱硬化)等が挙げられ、硬化速度が速い観点から、活性エネルギー線の照射が好ましい。
 活性エネルギー線としては、紫外線、電子線等が挙げられる。活性エネルギー線による塗膜へのダメージを抑制する観点から、紫外線が好ましい。
 紫外線照射を選択する場合には、紫外線光源の発光スペクトルと重合開始剤の吸収スペクトルの重なりが大きくなるような組み合わせを選ぶことが好ましい。紫外線光源としては、高圧水銀灯、Hバルブ、Dバルブ、Vバルブ等の光源から選択することができる。
 活性エネルギー線の照射量(積算光量)は、100~3,000mJ/□が好ましく、500~2,000mJ/□がより好ましい。
 活性エネルギー線の照射は、ラジカル反応の大気下における酸素による反応阻害を抑制し硬化反応を促進するため、窒素等の不活性ガス雰囲気下で行うことが好ましい。
 活性エネルギー線を照射する際に、硬化を促進するため、加熱してもよい。
Methods for curing the composition for the antistatic layer include irradiation with active energy rays (active energy ray curing), heating (thermal curing), and the like, and irradiation with active energy rays is preferred from the viewpoint of a fast curing rate.
Examples of the active energy ray include ultraviolet rays, electron beams, etc. From the viewpoint of suppressing damage to the coating film caused by the active energy ray, ultraviolet rays are preferred.
When ultraviolet irradiation is selected, it is preferable to select a combination that maximizes the overlap between the emission spectrum of the ultraviolet light source and the absorption spectrum of the polymerization initiator. The ultraviolet light source can be selected from light sources such as a high-pressure mercury lamp, an H bulb, a D bulb, and a V bulb.
The irradiation amount (accumulated light amount) of the active energy rays is preferably from 100 to 3,000 mJ/□, and more preferably from 500 to 2,000 mJ/□.
The irradiation with active energy rays is preferably carried out in an inert gas atmosphere such as nitrogen in order to suppress reaction inhibition by oxygen in the air in radical reactions and promote the curing reaction.
When irradiating with active energy rays, heating may be performed to promote curing.
(フィルムの表面抵抗率)
 本フィルムの表面抵抗率は特に制限されず、1017Ω/□以下であってもよく、1011Ω/□以下が好ましく、1010Ω/□以下がより好ましく、10Ω/□以下が更に好ましい。表面抵抗率の下限は特に制限されない。
 本フィルムの表面抵抗率は、IEC 60093:1980:二重リング電極法に準拠して、印加電圧500V、印加時間1分間で測定する。測定機器としては、例えば超高抵抗計R8340(Advantec社)を使用できる。
(Surface resistivity of film)
The surface resistivity of the present film is not particularly limited, and may be 10 17 Ω/□ or less, preferably 10 11 Ω/□ or less, more preferably 10 10 Ω/□ or less, and even more preferably 10 9 Ω/□ or less. The lower limit of the surface resistivity is not particularly limited.
The surface resistivity of the film is measured in accordance with IEC 60093:1980: double ring electrode method, at an applied voltage of 500 V for 1 minute. As a measuring device, for example, an ultra-high resistance meter R8340 (Advantec) can be used.
(フィルムの用途)
 本フィルムは、例えば、半導体素子を硬化性樹脂で封止する工程等の各種の工程で用いられる離型フィルムや、半導体素子や太陽電池モジュール等の表面保護フィルムとして有用である。中でも、本フィルムは、半導体素子を硬化性樹脂で封止する工程で用いられる離型フィルムとして有用であり、複雑な形状を有する半導体パッケージ、例えば電子部品の一部が前記樹脂から露出した封止体を作製する工程で用いられる離型フィルムとして特に有用である。
(Film Uses)
The present film is useful, for example, as a release film used in various processes such as a process of sealing a semiconductor element with a curable resin, and as a surface protection film for a semiconductor element, a solar cell module, etc. In particular, the present film is useful as a release film used in a process of sealing a semiconductor element with a curable resin, and is particularly useful as a release film used in a process of producing a semiconductor package having a complex shape, for example, a sealed body in which a part of an electronic component is exposed from the resin.
〔半導体パッケージの製造方法〕
 一態様において、半導体パッケージの製造方法は、
 本フィルムを金型内面に配置することと、
 本フィルムが配置された前記金型内に、半導体素子が固定された基板を配置することと、
 前記金型内の半導体素子を硬化性樹脂で封止して、封止体を作製することと、
 前記封止体を前記金型から離型することと、
を含む。
[Method of manufacturing semiconductor package]
In one aspect, a method for manufacturing a semiconductor package includes:
disposing the film on an inner surface of a mold;
placing a substrate having a semiconductor element fixed thereto in the mold in which the film is placed;
encapsulating the semiconductor element in the mold with a curable resin to produce an encapsulated body;
Releasing the encapsulated body from the mold; and
including.
 半導体パッケージとしては、トランジスタ、ダイオード等の半導体素子を集積した集積回路;発光素子を有する発光ダイオード等が挙げられる。
 集積回路のパッケージ形状としては、集積回路全体を覆うものであってもよく、集積回路の一部を覆うもの、すなわち集積回路の一部を露出させるものでもよい。具体例としては、SIP(Single In-line Package)、ZIP(Zigzag In-line Package)、DIP(Dual In-line Package)、SOJ(Small Outline J-leaded package)、SON(Small Outline Non-leaded package)、SOI(Small Outline I-leaded package)、SOF(Small Outline F-leaded package)、QFP(Quad Flat Package)、QFJ(Quad Flat J-leaded package)、QFN(Quad Flat Non-leaded package)、QFF(Quad Flat F-leaded package)、PGA(Pin Grid Array)、LGA(Land Grid Array)、BGA(Ball Grid Array)、DTP(Dual Tape carrier Package)、QTP(Quad Tape carrier Package)、CSP(Chip Size Package/Chip Scale Package)、WL-CSP(Wafer Level CSP)、LLP(Leadless Lead frame Package)、DFN(Dual Flatpack No-leaded)、MCP(Multi Chip Package)、MCM(Multi Chip Module)、SiP(System in a Package)、PoP(Package on a Package)、PiP(Package in a Package)、QIP(又はQUIP)(Quad In-line Package)、CFP(Ceramic Flat Package)、LLCC(Lead Less Chip Carrier)、FOWLP(Fan Out Wafer Level Package)、COB(Chip On Board)、COF(Chip On Film)、COG(Chip On Glass)、SVP(Surface Vertical Package)等が挙げられる。
 半導体パッケージとしては、生産性の点から、一括封止及びシンギュレーションを経て製造されるものが好ましく、封止方式がMAP(Molded Array Packaging)方式、又はWL(Wafer Level packaging)方式である集積回路等が挙げられる。
Examples of the semiconductor package include an integrated circuit in which semiconductor elements such as transistors and diodes are integrated; a light-emitting diode having a light-emitting element; and the like.
The package shape of the integrated circuit may be one that covers the entire integrated circuit, or one that covers only a portion of the integrated circuit, i.e., one that exposes a portion of the integrated circuit. Specific examples include SIP (Single In-line Package), ZIP (Zigzag In-line Package), DIP (Dual In-line Package), SOJ (Small Outline J-leaded package), SON (Small Outline Non-leaded package), SOI (Small Outline I-leaded package), SOF (Small Outline F-leaded package), QFP (Quad Flat Package), QFJ (Quad Flat J-leaded package), QFN (Quad Flat Non-leaded package), QFF (Quad Flat F-leaded package), PGA (Pin Grid Array), LGA (Land Grid Array), BGA (Ball Grid Array), DTP (Dual Tape carrier Package), QTP (Quad Tape carrier Package), CSP (Chip Size Package/Chip Scale Package), WL-CSP (Wafer Level CSP), LLP (Leadless Lead frame Package), DFN (Dual Flatpack No-leaded), MCP (Multiple Flat Packs), and the like. Chip Package), MCM (Multi Chip Module), SiP (System in a Package), PoP (Package on a Package), PiP (Package in a Package), QIP (or QUIP) (Quad In-line Package), CFP (Ceramic Flat Package), LLCC (Lead Less Chip Carrier), FOWLP (Fan Out Wafer Level Package), COB (Chip On Board), COF (Chip On Film), COG (Chip On Glass), SVP (Surface Vertical Package), etc.
From the viewpoint of productivity, the semiconductor package is preferably one that is manufactured through collective sealing and singulation, and examples of the semiconductor package include integrated circuits sealed by the Molded Array Packaging (MAP) method or the Wafer Level Packaging (WL) method.
 硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂が好ましく、エポキシ樹脂がより好ましい。 As the curable resin, thermosetting resins such as epoxy resins and silicone resins are preferred, and epoxy resins are more preferred.
 一態様において、半導体パッケージは、半導体素子に加え、ソース電極、シールガラス等の電子部品を有するものでもよく、有しないものでもよい。また、当該半導体素子、ソース電極、シールガラス等の電子部品のうち一部が樹脂から露出したものであってもよい。 In one aspect, the semiconductor package may or may not have electronic components such as a source electrode and sealing glass in addition to the semiconductor element. Also, some of the electronic components such as the semiconductor element, source electrode, and sealing glass may be exposed from the resin.
 前記半導体パッケージの製造方法は、本フィルムを用いること以外は、公知の製造方法を採用できる。例えば半導体素子の封止方法としては、トランスファ成形法が挙げられ、この際に使用する装置としては、公知のトランスファ成形装置を用いることができる。製造条件も、公知の半導体パッケージの製造方法における条件と同じ条件とできる。 The manufacturing method for the semiconductor package can be a known manufacturing method, except for using this film. For example, a method for sealing a semiconductor element can be a transfer molding method, and a known transfer molding device can be used as the device used for this. The manufacturing conditions can also be the same as those in known manufacturing methods for semiconductor packages.
 次に本開示の実施形態を実施例により具体的に説明するが、本開示の実施形態はこれらの実施例に限定されるものではない。以下の例において、例1~7は実施例であり、例8~11は比較例である。「部」は「質量部」を意味する。 Next, the embodiments of the present disclosure will be specifically described using examples, but the embodiments of the present disclosure are not limited to these examples. In the following examples, Examples 1 to 7 are examples, and Examples 8 to 11 are comparative examples. "Parts" means "parts by mass."
(評価方法)
 <表面抵抗率>
 IEC 60093:1980:二重リング電極法に準拠して、フィルムの基材とは反対側の表面抵抗率(Ω/□)を測定した。測定機器として超高抵抗計R8340(Advantec社)を使用し、印加電圧500V、印加時間1分間で測定を行った。
(Evaluation method)
<Surface resistivity>
The surface resistivity (Ω/□) of the film on the side opposite to the substrate was measured according to the double ring electrode method of IEC 60093:1980. The measurement was performed using an ultra-high resistance meter R8340 (Advantec) at an applied voltage of 500 V for 1 minute.
 <延伸時の欠陥>
 フィルムを短冊状(幅50mm、長さ100mm幅)にカットした。このフィルムを、引張試験機(オリエンテック社製RTC-131-A)のつかみ具に挟みセットした。引張前のつかみ具間距離10mm、速度100mm/分で、伸び率が200%になるまでフィルムを伸ばした。伸び率は、引張前のつかみ具間距離に対する引張時のつかみ具間距離の割合である。その後、フィルムをつかみ具から外し、光学顕微鏡(倍率20倍)で観察し、以下の基準で評価した。
 A:クラックもボイドもなかった。
 B:クラックはなかったが、ボイドがあった。
 C:ボイドはなかったが、クラックがあった。
 D:クラックもボイドもあった。
<Defects during stretching>
The film was cut into a strip (50 mm wide, 100 mm long). This film was clamped and set between the grips of a tensile tester (RTC-131-A manufactured by Orientec Co., Ltd.). The film was stretched until the elongation rate reached 200%, with a grip distance of 10 mm before tension and a speed of 100 mm/min. The elongation rate is the ratio of the grip distance during tension to the grip distance before tension. The film was then removed from the grips and observed under an optical microscope (magnification 20x) and evaluated according to the following criteria.
A: There were no cracks or voids.
B: There were no cracks, but there were voids.
C: There were no voids, but there were cracks.
D: There were cracks and voids.
(使用材料)
 <基材>
 ETFEフィルム:Fluon(登録商標) ETFE C-88AXP(AGC社製)を、Tダイを備えた押出機にフィードし、表面に凹凸のついた押し当てロールと、鏡面の金属ロールの間に引き取り、厚さ100μmのフィルムを製膜した。押出機及びTダイの温度は320℃、押し当てロール及び金属ロールの温度は100℃であった。得られたフィルムの表面のRaは、押し当てロール側が2.0μm、鏡面側が0.2μmであった。鏡面側には、ISO8296:1987(JIS K6768:1999)に基づく濡れ張力が40mN/m以上となるように、コロナ処理を施した。
(Materials used)
<Substrate>
ETFE film: Fluon (registered trademark) ETFE C-88AXP (manufactured by AGC) was fed into an extruder equipped with a T-die, and taken up between a pressing roll with an uneven surface and a metal roll with a mirror surface to form a film with a thickness of 100 μm. The temperature of the extruder and the T-die was 320° C., and the temperature of the pressing roll and the metal roll was 100° C. The Ra of the surface of the obtained film was 2.0 μm on the pressing roll side and 0.2 μm on the mirror side. The mirror side was subjected to a corona treatment so that the wetting tension based on ISO8296:1987 (JIS K6768:1999) was 40 mN/m or more.
 <帯電防止層の材料>
 2官能UA-1:UA-W2A(新中村化学工業社製)、ポリエーテル系2官能ウレタンアクリレート、(メタ)アクリロイル基当量1,750g/eq。
 2官能UA-2:UF-3003(共栄社化学社製)、ポリエステル系2官能ウレタンアクリレート、(メタ)アクリロイル基当量7,500g/eq。
 2官能UA-3:UF-3003M(共栄社化学社製)、ポリエステル系2官能ウレタンアクリレート、(メタ)アクリロイル基当量10,000g/eq。
 6官能UA:U-6LPA(新中村化学工業社製)、6官能ウレタンアクリレート、(メタ)アクリロイル基当量142g/eq。
 3官能アクリレート:A-TMPT(新中村化学工業社製)、トリメチロールプロパントリアクリレート、(メタ)アクリロイル基当量99g/eq。
 単官能アクリレート:AM-230(新中村化学工業社製)、メトキシポリエチレングリコール#1000アクリレート、(メタ)アクリロイル基当量1098g/eq。
 導電性重合体:SEPLEGYDA(登録商標) SAS-F16(信越ポリマー社製)、ポリチオフェン骨格を有する導電性重合体(PEDOT-PSS)、メチルエチルケトン(MEK)分散品、固形分2質量%。
 導電性フィラー:V-3561(日揮触媒化成社製)、鎖状ATO(ATO粒子が10以上連結された構造、アスペクト比10以上)、プロピレングリコールモノメチルエーテル(PGME)分散品、固形分20.4質量%。
 光重合開始剤:Omnirad184(IGM Resins B.V.社製)、1-ヒドロキシシクロヘキシルフェニルケトン。
 表面改質剤:BYK-UV3505(BYK社製)、アクリロイル基を有する変性ポリジメチルシロキサンを主成分とするシリコーン系表面改質剤、固形分100質量%。
<Materials for Antistatic Layer>
Bifunctional UA-1: UA-W2A (manufactured by Shin-Nakamura Chemical Co., Ltd.), polyether-based bifunctional urethane acrylate, (meth)acryloyl group equivalent 1,750 g/eq.
Bifunctional UA-2: UF-3003 (manufactured by Kyoeisha Chemical Co., Ltd.), polyester-based bifunctional urethane acrylate, (meth)acryloyl group equivalent 7,500 g/eq.
Bifunctional UA-3: UF-3003M (manufactured by Kyoeisha Chemical Co., Ltd.), polyester-based bifunctional urethane acrylate, (meth)acryloyl group equivalent 10,000 g/eq.
Hexafunctional UA: U-6LPA (manufactured by Shin-Nakamura Chemical Co., Ltd.), a hexafunctional urethane acrylate, (meth)acryloyl group equivalent 142 g/eq.
Trifunctional acrylate: A-TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), trimethylolpropane triacrylate, (meth)acryloyl group equivalent 99 g/eq.
Monofunctional acrylate: AM-230 (manufactured by Shin-Nakamura Chemical Co., Ltd.), methoxypolyethylene glycol #1000 acrylate, (meth)acryloyl group equivalent 1098 g/eq.
Conductive polymer: SEPLEGYDA (registered trademark) SAS-F16 (manufactured by Shin-Etsu Polymer Co., Ltd.), conductive polymer having a polythiophene skeleton (PEDOT-PSS), methyl ethyl ketone (MEK) dispersion, solid content 2% by mass.
Conductive filler: V-3561 (manufactured by JGC Catalysts and Chemicals), chain ATO (structure in which 10 or more ATO particles are connected, aspect ratio of 10 or more), propylene glycol monomethyl ether (PGME) dispersion, solid content 20.4 mass %.
Photopolymerization initiator: Omnirad 184 (manufactured by IGM Resins BV), 1-hydroxycyclohexyl phenyl ketone.
Surface modifier: BYK-UV3505 (manufactured by BYK Corporation), a silicone-based surface modifier whose main component is modified polydimethylsiloxane having an acryloyl group, solid content 100% by mass.
 主剤1:アラコート(商標登録) AS601D(荒川化学工業社製)、固形分3.4質量%、導電性ポリチオフェン0.4質量%、カルボキシ基含有(メタ)アクリル重合体3.0質量%。
 硬化剤1:アラコート CL910(荒川化学工業社製)、固形分10質量%、3官能アジリジン化合物(2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、アジリジン当量142g/eq。
Base component 1: ALACOAT (registered trademark) AS601D (manufactured by Arakawa Chemical Industries, Ltd.), solid content 3.4 mass %, conductive polythiophene 0.4 mass %, carboxy group-containing (meth)acrylic polymer 3.0 mass %.
Curing agent 1: ARAQUAT CL910 (manufactured by Arakawa Chemical Industries, Ltd.), solid content 10 mass %, trifunctional aziridine compound (2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate], aziridine equivalent 142 g/eq.
 <粘着層の材料>
 主剤2:ニッセツ(登録商標) KP2562(日本カーバイド工業社製)、固形分35質量%、水酸基含有(メタ)アクリル重合体。
 硬化剤2:ニッセツ CK157(日本カーバイド工業社製)、固形分100質量%、2官能イソシアネート化合物(イソシアヌレート型ヘキサメンチレンジイソシアネート)、NCO含量21質量%。
<Material for adhesive layer>
Base agent 2: Nissetsu (registered trademark) KP2562 (manufactured by Nippon Carbide Industries Co., Ltd.), solid content 35% by mass, hydroxyl group-containing (meth)acrylic polymer.
Curing agent 2: Nissetsu CK157 (manufactured by Nippon Carbide Industries Co., Ltd.), solid content 100 mass%, bifunctional isocyanate compound (isocyanurate-type hexamentylene diisocyanate), NCO content 21 mass%.
(例1~6、8~10)
 バインダ、帯電防止剤、その他添加剤、光重合開始剤、液状媒体(帯電防止剤が導電性重合体の場合はシクロヘキサノンのみ、帯電防止剤が導電性フィラーの場合はPGME/シクロヘキサノン=9/1(質量比)の混合媒体)を混合して帯電防止層用塗工液を調製した。バインダ、帯電防止剤及びその他添加剤の材料種及び配合量は、表1に示す。表1に示す配合量は、バインダ、帯電防止剤及びその他添加剤の合計に対する各成分の割合(固形分換算)である。光重合開始剤の配合量は、バインダに対して4質量%とした。液状媒体の配合量は、帯電防止層用塗工液の固形分が3.7質量%になる量とした。
 得られた帯電防止層用塗工液を、基材のコロナ処理を施した側の表面に、ワイヤーバー#8を用いて塗工し、55℃のオーブン内で1分間乾燥した。そののちに、窒素ガス雰囲気下で、HバルブのUVランプを用い、積算光量が1,500mJ/□となるように紫外線(UV)を照射することにより硬化させて厚さ0.3μmの帯電防止層を形成し、フィルムを得た。
(Examples 1 to 6, 8 to 10)
The coating liquid for the antistatic layer was prepared by mixing the binder, the antistatic agent, other additives, the photopolymerization initiator, and the liquid medium (only cyclohexanone when the antistatic agent is a conductive polymer, and a mixed medium of PGME/cyclohexanone = 9/1 (mass ratio) when the antistatic agent is a conductive filler). The material types and amounts of the binder, the antistatic agent, and the other additives are shown in Table 1. The amounts shown in Table 1 are the ratios of each component to the total of the binder, the antistatic agent, and the other additives (solid content conversion). The amount of the photopolymerization initiator was 4 mass% relative to the binder. The amount of the liquid medium was an amount such that the solid content of the coating liquid for the antistatic layer was 3.7 mass%.
The obtained coating liquid for antistatic layer was applied to the surface of the substrate on the side that had been subjected to the corona treatment using a wire bar #8, and dried for 1 minute in an oven at 55° C. Thereafter, the coating liquid was cured by irradiating ultraviolet rays (UV) using an H-bulb UV lamp under a nitrogen gas atmosphere so that the integrated light amount was 1,500 mJ/□, forming an antistatic layer having a thickness of 0.3 μm, and a film was obtained.
 例6のフィルムの断面について、走査型電子顕微鏡(SEM)により観察しながらEDXによる元素分析を行った。表面改質剤に特有の元素であるケイ素が表面及び表面近傍に偏って検出された結果から、帯電防止層において表面改質剤が、帯電防止層の表面側に偏在していることが確認された。 The cross section of the film of Example 6 was observed with a scanning electron microscope (SEM) while undergoing elemental analysis by EDX. Silicon, an element specific to the surface modifier, was detected unevenly on the surface and near the surface, confirming that the surface modifier is unevenly distributed on the surface side of the antistatic layer.
(例7)
 例3と同様にして、基材上に帯電防止層を形成した。
 次いで、主剤2の100部と硬化剤2の6部と、酢酸エチルとを混合して粘着層用塗工液を調製した。酢酸エチルの配合量は、粘着層用塗工液の固形分が25質量%になる量とした。
 得られた粘着層用塗工液を、基材の帯電防止層を形成した側の表面に、グラビアコータを用いて塗工し、乾燥(熱硬化)して厚さ0.8μmの粘着層を形成し、フィルムを得た。塗工は、ダイレクトグラビア方式で、グラビア版としてΦ100mm×250mm幅の格子150#-深度40μmロールを用いて行った。乾燥は、100℃で1分間、ロールサポート乾燥炉を通り、風量は19m/秒で行った。その後、40℃、2日間の条件で養生をしてフィルムを得た。
(Example 7)
In the same manner as in Example 3, an antistatic layer was formed on the substrate.
Next, 100 parts of the base agent 2, 6 parts of the curing agent 2, and ethyl acetate were mixed to prepare a coating liquid for adhesive layer. The amount of ethyl acetate was set to an amount such that the solid content of the coating liquid for adhesive layer was 25 mass%.
The obtained adhesive layer coating liquid was applied to the surface of the substrate on which the antistatic layer was formed using a gravure coater, and then dried (thermosetting) to form an adhesive layer having a thickness of 0.8 μm, to obtain a film. Coating was performed by a direct gravure method using a Φ100 mm×250 mm width lattice 150#-depth 40 μm roll as a gravure plate. Drying was performed at 100° C. for 1 minute through a roll support drying oven with an air volume of 19 m/sec. Thereafter, the film was aged at 40° C. for 2 days to obtain a film.
(例11)
 主剤1の10部と、硬化剤1の1部と、メタノールとを混合して、帯電防止層用塗工液を調製した。メタノールの配合量は、帯電防止層用塗工液の固形分が2質量%になる量とした。
 得られた帯電防止層用塗工液を、基材のコロナ処理を施した側の表面に、グラビアコータを用いて塗工し、乾燥(熱硬化)して厚さ0.1μmの帯電防止層を形成した。塗工は、ダイレクトグラビア方式で、グラビア版としてΦ100mm×250mm幅の格子150#-深度40μmロールを用いて行った。乾燥は、100℃で1分間、ロールサポート乾燥炉を通り、風量は19m/秒で行った。
(Example 11)
An antistatic layer coating liquid was prepared by mixing 10 parts of the base agent 1, 1 part of the curing agent 1, and methanol. The amount of methanol was set to an amount such that the solid content of the antistatic layer coating liquid was 2% by mass.
The obtained coating liquid for the antistatic layer was applied to the surface of the substrate on the corona-treated side using a gravure coater, and then dried (thermosetting) to form an antistatic layer having a thickness of 0.1 μm. Coating was performed by a direct gravure method using a Φ100 mm×250 mm width lattice 150#-depth 40 μm roll as a gravure plate. Drying was performed at 100° C. for 1 minute through a roll-supported drying oven with an air flow rate of 19 m/sec.
 次いで、主剤2の100部と硬化剤2の4部と、酢酸エチルとを混合して粘着層用塗工液を調製した。酢酸エチルの配合量は、粘着層用塗工液の固形分が25質量%になる量とした。
 得られた粘着層用塗工液を、基材の帯電防止層を形成した側の表面に、グラビアコータを用いて塗工し、乾燥(熱硬化)して厚さ2μmの粘着層を形成した。塗工は、ダイレクトグラビア方式で、グラビア版としてΦ100mm×250mm幅の格子150#-深度40μmロールを用いて行った。乾燥は、100℃で1分間、ロールサポート乾燥炉を通り、風量は19m/秒で行った。その後、40℃、120時間の条件で養生をしてフィルムを得た。
Next, 100 parts of the base agent 2, 4 parts of the curing agent 2, and ethyl acetate were mixed to prepare a coating liquid for adhesive layer. The amount of ethyl acetate was set to an amount such that the solid content of the coating liquid for adhesive layer was 25% by mass.
The obtained adhesive layer coating liquid was applied to the surface of the substrate on the side on which the antistatic layer was formed using a gravure coater, and then dried (thermosetting) to form an adhesive layer having a thickness of 2 μm. Coating was performed by a direct gravure method using a Φ100 mm×250 mm width lattice 150#-depth 40 μm roll as a gravure plate. Drying was performed at 100° C. for 1 minute through a roll support drying oven with an air volume of 19 m/sec. Thereafter, the film was aged at 40° C. for 120 hours to obtain a film.
 得られたフィルムの表面抵抗率、延伸時の欠陥の結果を表1に示した。表1中、表面抵抗率の「10^n」は10を示す。例えば「10^10」は1010を示す。 The surface resistivity of the obtained film and the results of defects during stretching are shown in Table 1. In Table 1, "10^n" for the surface resistivity indicates 10 n . For example, "10^10" indicates 10 10 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例1~7のフィルムは、充分な帯電防止性能を有していた。また、延伸時にクラックもボイドも発生しなかった。
 一方、例8、10、11においては、延伸後、延伸方向と直交する方向に延びる多数のクラックが観察された。例9においては、クラックもボイドも発生しなかったが、帯電防止層が帯電防止剤を含まないため、フィルムが帯電防止性能を有していなかった。
The films of Examples 1 to 7 had sufficient antistatic properties, and no cracks or voids were generated during stretching.
On the other hand, after stretching, numerous cracks extending in a direction perpendicular to the stretching direction were observed in Examples 8, 10, and 11. In Example 9, no cracks or voids were generated, but the film did not have antistatic properties because the antistatic layer did not contain an antistatic agent.
 本開示のフィルムは、充分な帯電防止性能を有するとともに、延伸時にクラックやボイドが発生しにくい。本開示のフィルムを離型フィルムとして用いて、トランジスタ、ダイオード等の半導体素子、ソース電極、シーリングガラス等の電子部品を集積した集積回路等の半導体パッケージを製造できる。本開示のフィルムを半導体素子や太陽電池モジュール等を加工・輸送・保管する際の保護フィルムとしても活用できる。 The film of the present disclosure has sufficient antistatic properties and is less likely to crack or void when stretched. The film of the present disclosure can be used as a release film to manufacture semiconductor packages such as integrated circuits that integrate semiconductor elements such as transistors and diodes, source electrodes, sealing glass, and other electronic components. The film of the present disclosure can also be used as a protective film when processing, transporting, and storing semiconductor elements, solar cell modules, etc.
 以上、各種の実施の形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present disclosure is not limited to such examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present disclosure. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年11月7日出願の日本特許出願(特願2022-178344)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-178344) filed on November 7, 2022, the contents of which are incorporated by reference into this application.
 1 積層体
 2 基材
 3 帯電防止層
 4 粘着層
REFERENCE SIGNS LIST 1 Laminate 2 Substrate 3 Antistatic layer 4 Adhesive layer

Claims (15)

  1.  基材と、帯電防止層とを含むフィルムであって、
     前記帯電防止層が、1つ以上の(メタ)アクリロイル基及び1つ以上のウレタン結合を有し、(メタ)アクリロイル基当量が1,000g/eq以上であるウレタン(メタ)アクリレートと、帯電防止剤と、重合開始剤と、を含む組成物の硬化物からなる層である、フィルム。
    A film comprising a substrate and an antistatic layer,
    The film, wherein the antistatic layer is a layer made of a cured product of a composition containing a urethane (meth)acrylate having one or more (meth)acryloyl groups and one or more urethane bonds and having a (meth)acryloyl group equivalent of 1,000 g/eq or more, an antistatic agent, and a polymerization initiator.
  2.  前記ウレタン(メタ)アクリレートが、2以上の(メタ)アクリロイル基を有する多官能ウレタン(メタ)アクリレートを含む、請求項1に記載のフィルム。 The film of claim 1, wherein the urethane (meth)acrylate comprises a multifunctional urethane (meth)acrylate having two or more (meth)acryloyl groups.
  3.  前記ウレタン(メタ)アクリレートが、ポリエーテル構造、ポリエステル構造、及びポリカーボネート構造からなる群より選択される少なくとも1つの構造を有する、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the urethane (meth)acrylate has at least one structure selected from the group consisting of a polyether structure, a polyester structure, and a polycarbonate structure.
  4.  前記組成物が、前記ウレタン(メタ)アクリレート以外の多官能(メタ)アクリレートを含む、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the composition contains a multifunctional (meth)acrylate other than the urethane (meth)acrylate.
  5.  前記基材が、フッ素樹脂、ポリメチルペンテン、シンジオタクチックポリスチレン、ポリシクロオレフィン、シリコーンゴム、ポリエステルエラストマー、ポリブチレンテレフタレート、ポリエチレンテレフタレート、及びポリアミドからなる群より選択される少なくとも1種を含む、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the substrate comprises at least one selected from the group consisting of fluororesin, polymethylpentene, syndiotactic polystyrene, polycycloolefin, silicone rubber, polyester elastomer, polybutylene terephthalate, polyethylene terephthalate, and polyamide.
  6.  前記フッ素樹脂が、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体、及びテトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオリド共重合体からなる群より選択される少なくとも1種を含む、請求項5に記載のフィルム。 The film according to claim 5, wherein the fluororesin comprises at least one selected from the group consisting of ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro(alkyl vinyl ether) copolymer, and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer.
  7.  前記帯電防止剤が、導電性重合体を含む、請求項1又は2に記載のフィルム。 The film of claim 1 or 2, wherein the antistatic agent comprises a conductive polymer.
  8.  前記帯電防止剤が、導電性フィラーを含む、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the antistatic agent comprises a conductive filler.
  9.  前記重合開始剤が、光重合開始剤である、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the polymerization initiator is a photopolymerization initiator.
  10.  前記組成物が、表面改質剤をさらに含む、請求項1又は2に記載のフィルム。 The film of claim 1 or 2, wherein the composition further comprises a surface modifier.
  11.  粘着層をさらに含む、請求項1又は2に記載のフィルム。 The film of claim 1 or 2, further comprising an adhesive layer.
  12.  離型フィルムである、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, which is a release film.
  13.  半導体素子を硬化性樹脂で封止する工程で用いられる離型フィルムである、請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, which is a release film used in a process for sealing a semiconductor element with a curable resin.
  14.  請求項1又は2に記載のフィルムを金型内面に配置することと、
     前記フィルムが配置された前記金型内に、半導体素子が固定された基板を配置することと、
     前記金型内の半導体素子を硬化性樹脂で封止して、封止体を作製することと、
     前記封止体を前記金型から離型することと、を含む、半導体パッケージの製造方法。
    Placing the film according to claim 1 or 2 on an inner surface of a mold;
    placing a substrate having a semiconductor element fixed thereto within the die in which the film is placed;
    encapsulating the semiconductor element in the mold with a curable resin to produce an encapsulated body;
    and releasing the sealing body from the mold.
  15.  請求項11に記載のフィルムを金型内面に配置することと、
     前記フィルムが配置された前記金型内に、半導体素子が固定された基板を配置することと、
     前記金型内の半導体素子を硬化性樹脂で封止して、封止体を作製することと、
     前記封止体を前記金型から離型することと、を含む、半導体パッケージの製造方法。
    Placing the film according to claim 11 on an inner surface of a mold;
    placing a substrate having a semiconductor element fixed thereto within the die in which the film is placed;
    encapsulating the semiconductor element in the mold with a curable resin to produce an encapsulated body;
    and releasing the sealing body from the mold.
PCT/JP2023/039360 2022-11-07 2023-10-31 Film and method for producing semiconductor package WO2024101232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022178344 2022-11-07
JP2022-178344 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024101232A1 true WO2024101232A1 (en) 2024-05-16

Family

ID=91032915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039360 WO2024101232A1 (en) 2022-11-07 2023-10-31 Film and method for producing semiconductor package

Country Status (1)

Country Link
WO (1) WO2024101232A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931362A (en) * 1995-07-14 1997-02-04 Koei Chem Co Ltd Photocurable undercoating material for electrostatic coating and electrostatic coating method using the same
JP2005166904A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Mold releasing sheet for semiconductor mold
WO2012008444A1 (en) * 2010-07-12 2012-01-19 大日本印刷株式会社 Curable resin composition for antistatic layer, optical film, polarizing plate, and display panel
JP2015131945A (en) * 2013-12-10 2015-07-23 日本合成化学工業株式会社 Adhesive composition, adhesive, adhesive sheet, surface protection adhesive and surface protection adhesive sheet
WO2016125796A1 (en) * 2015-02-06 2016-08-11 旭硝子株式会社 Film, method for producing same, and method for producing semiconductor element using film
JP2017182080A (en) * 2011-10-17 2017-10-05 大日本印刷株式会社 Optical film, polarizing plate, and image display device
JP2018035264A (en) * 2016-08-31 2018-03-08 東ソー株式会社 Urethane (meth)acrylate, active energy ray-curable resin composition and cured product of the same
JP2019050420A (en) * 2018-12-04 2019-03-28 積水化学工業株式会社 Mold releasing film for semiconductor mold
WO2020031708A1 (en) * 2018-08-09 2020-02-13 東レフィルム加工株式会社 Mold release film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931362A (en) * 1995-07-14 1997-02-04 Koei Chem Co Ltd Photocurable undercoating material for electrostatic coating and electrostatic coating method using the same
JP2005166904A (en) * 2003-12-02 2005-06-23 Hitachi Chem Co Ltd Mold releasing sheet for semiconductor mold
WO2012008444A1 (en) * 2010-07-12 2012-01-19 大日本印刷株式会社 Curable resin composition for antistatic layer, optical film, polarizing plate, and display panel
JP2017182080A (en) * 2011-10-17 2017-10-05 大日本印刷株式会社 Optical film, polarizing plate, and image display device
JP2015131945A (en) * 2013-12-10 2015-07-23 日本合成化学工業株式会社 Adhesive composition, adhesive, adhesive sheet, surface protection adhesive and surface protection adhesive sheet
WO2016125796A1 (en) * 2015-02-06 2016-08-11 旭硝子株式会社 Film, method for producing same, and method for producing semiconductor element using film
JP2018035264A (en) * 2016-08-31 2018-03-08 東ソー株式会社 Urethane (meth)acrylate, active energy ray-curable resin composition and cured product of the same
WO2020031708A1 (en) * 2018-08-09 2020-02-13 東レフィルム加工株式会社 Mold release film
JP2019050420A (en) * 2018-12-04 2019-03-28 積水化学工業株式会社 Mold releasing film for semiconductor mold

Similar Documents

Publication Publication Date Title
KR102444374B1 (en) Film, method for producing same, and method for producing semiconductor element using film
TWI687296B (en) Mold release film and method for manufacturing semiconductor package
KR101815343B1 (en) Pressure sensitive adhesive film and method for manufacturing organic electronic device using the same
KR101105470B1 (en) Semiconductor chip laminate and adhesive composition for semiconductor chip lamination
WO2022153794A1 (en) Film, and method for manufacturing semiconductor package
US10665738B2 (en) Gas barrier film, solar cell, and manufacturing method of gas barrier film
KR20120022980A (en) Adhesive agent, adhesive sheet, and process for production of electronic component
JP2018116959A (en) Circuit board device
TW202004873A (en) Die bonding film, dicing die bonding sheet, and method for producing semiconductor chip
WO2024101232A1 (en) Film and method for producing semiconductor package
TWI504717B (en) Adhesive masking tape for molded underfill process for die-exposed flip chip package
TW202431439A (en) Film and method for manufacturing semiconductor package
JP5707899B2 (en) Urethane resin having (meth) acryloyl group, active energy ray-curable adhesive containing the urethane resin, and solar cell back surface protective sheet
JP2010168541A (en) Pressure-sensitive adhesive tape or sheet
WO2018180961A1 (en) Transparent conductive laminate and production method therefor
WO2024048545A1 (en) Film and method for producing semiconductor package
WO2022180998A1 (en) Film, method for manufacturing same, and method for manufacturing semiconductor package
WO2024048548A1 (en) Laminate, method for manufacturing same, and method for manufacturing semiconductor package
TWI708825B (en) Dicing die-bonding film
JP2013000977A (en) Gas barrier film and method of manufacturing the same
JP5757170B2 (en) Method for producing gas barrier film
WO2024161901A1 (en) Solar cell module and electronic device provided with same
KR101542623B1 (en) Filling agent for organic light emitting diode and organic light emitting diode apparatus comprising the same
KR102469843B1 (en) Adhesive sheet, and encapsulation body
TW202330277A (en) Dicing die bonding film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23888580

Country of ref document: EP

Kind code of ref document: A1