WO2018180961A1 - Transparent conductive laminate and production method therefor - Google Patents

Transparent conductive laminate and production method therefor Download PDF

Info

Publication number
WO2018180961A1
WO2018180961A1 PCT/JP2018/011632 JP2018011632W WO2018180961A1 WO 2018180961 A1 WO2018180961 A1 WO 2018180961A1 JP 2018011632 W JP2018011632 W JP 2018011632W WO 2018180961 A1 WO2018180961 A1 WO 2018180961A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
conductive laminate
transparent
auxiliary electrode
Prior art date
Application number
PCT/JP2018/011632
Other languages
French (fr)
Japanese (ja)
Inventor
務 原
豪志 武藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2018180961A1 publication Critical patent/WO2018180961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a transparent conductive laminate and a method for producing the same.
  • the transparent conductive layer has a resistance value lower than that of the transparent conductive layer as an auxiliary electrode layer
  • a structure provided with a pattern layer of fine metal wires or metal paste is used, and a transparent resin layer may be disposed between the fine wires or between the pattern layers.
  • Patent Document 1 discloses a flexibility obtained by applying a coating liquid containing transparent conductive particles and a dispersion medium on a transparent base sheet and laminating a transparent conductive film from the viewpoint of making the electronic device flexible.
  • a transparent conductive sheet is disclosed.
  • Patent Document 2 discloses that the transparent conductive layer is formed of indium-tin oxide (ITO) or the like by a dry film forming method from the viewpoint of demanding high transparency and low resistance. .
  • ITO indium-tin oxide
  • Patent Document 1 Although it has flexibility because it uses a transparent substrate sheet, it has a configuration in which conductivity is expressed in a transparent conductive film formed by applying a coating liquid containing transparent conductive particles and a dispersion medium. For this reason, there is no disclosure of a transparent conductive film formed by a dry film formation method.
  • Patent Document 2 discloses that the transparent conductive layer is formed on the surface composed of the auxiliary electrode layer and the transparent resin layer by a dry film forming method, but the present inventors have further studied. As a result, due to the strong stress of the film formed by the dry film formation method in addition to the temperature rise during film formation, irregularities occur on the surface of the transparent conductive layer, resulting in a decrease in optical properties, for example, a large haze value. It came to discover that there is a problem of increasing.
  • an object of the present invention is to provide a transparent conductive laminate having excellent optical characteristics and flexibility at the same time.
  • the present inventors have determined that the elastic modulus of the opening portion of the auxiliary electrode layer or the embedded resin layer provided above the opening portion and the auxiliary electrode layer has a specific value. By controlling to the range, it was found that while having flexibility, an increase in haze of the transparent conductive layer formed by the dry film forming method can be suppressed, and the present invention was completed. That is, the present invention provides the following (1) to (13).
  • (1) A transparent conductive laminate comprising at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, wherein the transparent conductive layer is made of a metal oxide, and the embedded resin layer
  • a solar cell element or organic electroluminescence element comprising the transparent conductive laminate according to any one of (1) to (10) above.
  • the manufacturing method of a transparent conductive laminated body including the process of forming the said embedded resin layer on an electrode layer and an opening part, and the process of forming the said transparent conductive layer.
  • the transparent conductive laminate of the present invention is a transparent conductive laminate comprising at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, and the transparent conductive layer is made of a metal oxide.
  • the elastic modulus at 25 ° C. of the embedded resin layer is 3000 to 8000 MPa, and the elastic modulus at 70 ° C. is 1000 to 7000 MPa. By controlling the elastic modulus at 25 ° C. and 70 ° C.
  • a “transparent conductive laminate” and a “transparent conductive laminate” are used separately.
  • the “transparent conductive laminate” means a laminate that does not include a transparent conductive layer in the configuration of the “transparent conductive laminate” of the present invention. The configuration of the transparent conductive laminate of the present invention will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the transparent conductive laminate of the present invention.
  • the transparent conductive laminate 1 ⁇ / b> A has a configuration in which an embedded resin layer 3, an auxiliary electrode 4, and a transparent conductive layer 5 are laminated on a transparent substrate 2.
  • the auxiliary electrode layer 4 has an opening 9 between adjacent auxiliary electrode layers 4, and the embedded resin layer 3 exists on the opening 9 and the auxiliary electrode layer 4.
  • FIG. 2 is a cross-sectional view showing another example of the configuration of the transparent conductive laminate of the present invention.
  • the transparent conductive laminate 1B has a structure in which a transparent gas barrier layer 7, an adhesion layer 8, an embedded resin layer 3, an auxiliary electrode 4 and a transparent conductive layer 5 are laminated on a transparent substrate 2 with a primer layer 6 interposed therebetween. is there.
  • the auxiliary electrode layer 4 has an opening 9 between adjacent auxiliary electrode layers 4, and the embedded resin layer 3 exists on the opening 9 and the auxiliary electrode layer 4. In the above, the embedded resin layer 3 may exist only in the opening 9.
  • the transparent substrate used in the present invention is not particularly limited, and may be appropriately selected according to the device to be used. For example, it is not particularly limited as long as it has flexibility and high transmittance in the visible light range. , Flexible glass, resin film and the like.
  • Resin film materials include polyimide, polyamide, polyamideimide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cyclohexane
  • Examples include olefin copolymers, cycloolefin polymers, aromatic polymers, polyurethane polymers, and the like.
  • polyester examples include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polyarylate.
  • cycloolefin polymer examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • a cycloolefin polymer industrially, Apel (manufactured by Mitsui Chemicals, ethylene-cycloolefin copolymer), Arton (manufactured by JSR, norbornene copolymer), Zeonore (manufactured by Nippon Zeon Co., Ltd., norbornene copolymer) Polymer) and the like.
  • Apel manufactured by Mitsui Chemicals, ethylene-cycloolefin copolymer
  • Arton manufactured by JSR, norbornene copolymer
  • Zeonore manufactured by Nippon Zeon Co., Ltd., norbornene copolymer
  • Polymer polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a cycloolefin polymer and a cycloolefin copolymer are particularly preferable.
  • polyimide is particularly preferable.
  • the thickness of the transparent substrate is preferably 1 to 1000 ⁇ m, more preferably 5 to 250 ⁇ m, and still more preferably 10 to 200 ⁇ m. If it is this range, the mechanical strength as a base material and transparency can be ensured.
  • the auxiliary electrode layer used for this invention is provided in order to reduce the sheet resistance value of the transparent conductive layer of the transparent conductive laminated body of this invention. Moreover, in order to suppress the fall of the light transmittance of a transparent conductive layer, it patterns and provides an opening part normally.
  • the material of the auxiliary electrode layer is not particularly limited, but patterning is preferably performed using a method such as photolithography.
  • the material of the auxiliary electrode layer is gold, silver, copper, aluminum, magnesium, nickel, platinum, single metal such as palladium, palladium, silver-palladium, silver-copper, silver-magnesium, aluminum-silicon, aluminum-silver Binary or ternary aluminum alloys such as aluminum-copper and aluminum-titanium-palladium.
  • silver, copper, aluminum, and an aluminum alloy are preferable from the viewpoint of specific resistance, and copper and aluminum alloy are more preferable from the viewpoint of cost, etching property, and corrosion resistance.
  • a conductive paste containing a conductive material can be used as a material for the auxiliary electrode layer.
  • the conductive paste is not particularly limited.
  • a conductive paste in which conductive fine particles such as metal fine particles, carbon and ruthenium oxide, and conductive carbon materials such as metal nanowires and carbon nanotubes are dispersed in a solvent is used.
  • a binder component may be included, and two or more kinds of conductive pastes may be mixed and used.
  • An auxiliary electrode layer is obtained by printing and baking or curing this conductive paste.
  • the material of the metal fine particles is not particularly limited, and examples thereof include materials composed of the single metals and alloys described above. From the viewpoint of conductivity, silver, copper, aluminum and the like are preferable. From the viewpoint of corrosion resistance and chemical resistance, platinum, rhodium, ruthenium, palladium and the like are preferable, and one or more of these metals may be included. Moreover, you may use the composite fine particle like the copper particle which coat
  • the conductive carbon material is inferior to metal in terms of conductivity, but is low in price and excellent in corrosion resistance and chemical resistance.
  • the conductive carbon material is not particularly limited, and examples thereof include acetylene black, ketjen black, oil furnace black, conductive single-walled carbon nanotubes, conductive multi-walled carbon nanotubes, and graphene powder.
  • ruthenium oxide (RuO 2 ) fine particles are more expensive than the conductive carbon material, but can be used as an auxiliary electrode layer because they are conductive materials having excellent corrosion resistance.
  • the auxiliary electrode layer may be a single layer or a multilayer structure.
  • the multilayer structure may be a multilayer structure in which layers made of the same kind of material are laminated, or a multilayer structure in which layers made of at least two kinds of materials are laminated.
  • the multilayer structure is more preferably a two-layer structure in which layers of different materials are stacked.
  • the formed auxiliary electrode layer may be subjected to chemical treatment.
  • a blackening treatment to an auxiliary electrode layer mainly made of copper for the purpose of preventing reflection can be mentioned.
  • the contrast can be improved when the transparent conductive laminate of the present invention is used in a display device or a lighting device.
  • the pattern of the auxiliary electrode layer used in the present invention is not particularly limited, and is a lattice, honeycomb, comb, strip (stripe), linear, curved, wavy (sine curve, etc.), polygonal shape. And the like, a circular mesh shape, an elliptical mesh shape, and an indeterminate shape. Among these, a lattice shape, a honeycomb shape, or a comb shape is preferable.
  • the thickness of the auxiliary electrode layer is preferably 10 nm to 20 ⁇ m, more preferably 100 nm to 15 ⁇ m, still more preferably 1 ⁇ m to 10 ⁇ m.
  • the aperture ratio of the opening portion of the auxiliary electrode layer pattern (the portion where the auxiliary electrode layer is not formed) is preferably 80% or more and less than 100%, more preferably, from the viewpoint of transparency (light transmittance). Is 85% or more and less than 99%, more preferably 90% or more and less than 98%.
  • the aperture ratio is the ratio of the total area of the openings to the area of the entire region where the pattern of the auxiliary electrode layer including the openings is formed.
  • the line width of the auxiliary electrode layer is preferably from 0.1 to 100 ⁇ m, more preferably from 1 to 80 ⁇ m, still more preferably from 5 to 60 ⁇ m. If the line width is within this range, the aperture ratio is wide, the transmittance can be secured, and a stable low-resistance transparent conductive laminate can be obtained, which is preferable.
  • the embedded resin layer used in the present invention suppresses the occurrence of unevenness on the surface of the transparent conductive layer of the transparent conductive laminate due to the temperature rise during the formation of the transparent conductive layer and the stress relaxation of the film, and the transferability of the auxiliary electrode layer. Used to improve and develop flexibility.
  • the embedded resin layer has an elastic modulus at 25 ° C. of 3000 to 8000 MPa and an elastic modulus at 70 ° C. of 1000 to 7000 MPa.
  • the elastic modulus at 25 ° C. is less than 3000 MPa, the transferability of the auxiliary electrode layer is inferior, so that a transparent conductive laminate using a transfer process cannot be formed. Flexibility falls that the elastic modulus in 25 degreeC is over 8000 Mpa. Further, if the elastic modulus at 70 ° C. is less than 1000 MPa, unevenness is likely to occur on the surface of the embedded resin layer due to thermal shrinkage derived from thermal history during dry film formation and film stress of the transparent conductive layer, and haze In addition to the rise, the transparent conductive layer is easily cracked.
  • the elastic modulus at 70 ° C. exceeds 7000 MPa, stress relaxation of the transparent conductive layer after film formation cannot be sufficiently suppressed, and the transparent conductive layer may be peeled off.
  • the elastic modulus at 25 ° C. is preferably 3300 to 7900 MPa, more preferably 3500 to 7500 MPa, still more preferably 3600 to 7300 MPa.
  • the elastic modulus at 70 ° C. is preferably 1100 to 6700 MPa, more preferably 1200 to 6500 MPa, and still more preferably 1300 to 6400 MPa.
  • the transferability of the auxiliary electrode layer is improved, and at the same time, stress relaxation of the transparent conductive layer after film formation can be suppressed, and haze increases. This leads to suppression, and a transparent conductive laminate having excellent optical properties is obtained.
  • the glass transition temperature of the embedded resin layer is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 130 ° C. or higher. When the glass transition temperature of the embedded resin layer is within this range, the elastic modulus at 70 ° C. can be maintained within the above-described range.
  • the thickness of the embedded resin layer is preferably 0.1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, and still more preferably 5 to 60 ⁇ m. When the thickness of the embedded resin layer is within this range and the elastic modulus is within the range of the present invention, stress relaxation of the transparent conductive layer after film formation can be suppressed, and the auxiliary electrode layer can be embedded. .
  • the embedded resin layer used in the present invention is not particularly limited as long as the above-described elastic modulus is within the range of the present invention.
  • the embedded resin layer is made of a transparent resin composition containing inorganic fine particles. It may be. Moreover, it does not need to contain inorganic fine particles.
  • the following energy ray-sensitive composition is cured.
  • the energy beam sensitive composition includes (i) an energy beam curable compound, (ii) inorganic fine particles, and (iii) a photopolymerization initiator. By irradiating the energy ray sensitive composition with energy rays, it can be crosslinked and cured.
  • the composition contains additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, an infrared absorber, an antistatic agent, a leveling agent, and an antifoaming agent as long as the effects of the present invention are not impaired. be able to.
  • the term “energy beam” means an electromagnetic wave such as an ultraviolet ray or an electron beam or a charged particle beam having energy quanta.
  • (I) Energy ray curable compound As the energy ray curable compound, a polyfunctional (meth) acrylate monomer and / or a (meth) acrylate prepolymer is preferable, and a polyfunctional (meth) acrylate monomer is more preferable.
  • (meth) acrylate means both acrylate and methacrylate, and the same applies to other similar terms.
  • multifunctional (meth) acrylate monomers examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol diene.
  • Examples of (meth) acrylate-based prepolymers include polyester (meth) acrylate-based prepolymers, epoxy (meth) acrylate-based prepolymers, urethane (meth) acrylate-based prepolymers, polyol (meth) acrylate-based prepolymers, and the like. It is done.
  • the polyester (meth) acrylate-based prepolymer can be obtained, for example, by esterifying a hydroxyl group of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid. it can.
  • the epoxy acrylate prepolymer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
  • the urethane acrylate prepolymer can be obtained, for example, by esterifying a polyurethane oligomer having hydroxyl groups at both ends obtained by reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid.
  • the polyol acrylate prepolymer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid. These prepolymers may be used alone or in combination of two or more, and may be used in combination with the polyfunctional (meth) acrylate monomer.
  • the inorganic fine particles used in the present invention are not particularly limited, but damage the basic characteristics of the transparent conductive laminate, such as a decrease in total light transmittance (increase in haze) of the transparent conductive laminate.
  • the silica fine particles, titanium oxide fine particles, alumina fine particles, and calcium carbonate fine particles are exemplified.
  • the surface was modified with an organic compound having a polymerizable unsaturated group capable of reacting with the energy ray curable compound.
  • Silica fine particles are preferred.
  • Silica fine particles whose surface is modified with an organic compound having a polymerizable unsaturated group are prepared by reacting a silanol group on the surface of the silica fine particle with a polymerizable unsaturated group-containing organic compound having a functional group capable of reacting with the silanol group. Can be obtained.
  • the organic compound having a polymerizable unsaturated group that modifies the surface of the inorganic fine particles is included as a constituent of (ii) the inorganic fine particles, and the above-mentioned (i) energy ray-curable compound and Are distinguished.
  • polymerizable unsaturated group-containing organic compound having a functional group capable of reacting with the silanol group for example, a compound represented by the following general formula (1) is preferable.
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a halogen atom or a group represented by the following formula.
  • organic compounds examples include (meth) acrylic acid chloride, (meth) acrylic acid 2-isocyanate ethyl, (meth) acrylic acid glycidyl, (meth) acrylic acid 2,3-iminopropyl, (meth) (Meth) acrylic acid and derivatives thereof such as 2-hydroxyethyl acrylate, (meth) acrylic acid, (meth) acryloyloxypropyltrimethoxysilane and the like may be mentioned, and these may be used alone or in combination of two or more.
  • the content of the inorganic fine particles in the entire volume of the embedded resin layer containing the inorganic fine particles is preferably 20 to 70% by volume, more preferably 30 to 65% by volume, and further preferably 30 to 60% by volume.
  • the content of the inorganic fine particles is within this range, for example, the elastic modulus at 70 ° C. of the embedded resin layer can be controlled to a high value. Moreover, heat resistance can be improved.
  • the inorganic fine particles silica fine particles are preferable.
  • the energy ray-sensitive composition contains a photopolymerization initiator.
  • the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]- 2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4′-diethylamino
  • photopolymerization initiators may be used alone or in combination of two or more.
  • Commercially available products such as Irgacure 127, Irgacure 184, Irgacure 819, Darocur 1173 and the like can be used as appropriate.
  • Examples of commercially available energy ray-sensitive compositions containing the above (i) energy ray-curable compound, (ii) silica fine particles, and (iii) a photopolymerization initiator include, for example, “Opster Z7530”, “Opster Z7524”, “OPSTAR TU4086” (product name, all manufactured by JSR Corporation), and the like.
  • an embedded resin layer may be formed using an energy ray sensitive composition
  • an energy ray sensitive composition comprising (ii) an energy ray curable compound and (iii) a photopolymerization initiator that does not contain silica fine particles.
  • the energy ray curable compound is preferably a urethane acrylate compound.
  • 2 mol or more of hydroxyl group is contained per 1 mol of a compound having 2 or more NCO groups in one molecule.
  • examples thereof include compounds having one or more (meth) acrylic groups in one molecule, obtained by reacting acrylic monomers.
  • hydroxyl group-containing acrylic monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono
  • examples include hydroxyl group-containing (meth) acrylates such as (meth) acrylate and cyclohexanedimethanol mono (meth) acrylate.
  • the compound having two or more NCO groups in one molecule is preferably an oligomer having a molecular weight of about 500 to 50,000 obtained by reacting a polyisocyanate compound such as diisocyanate and a polyol compound such as diol.
  • polyisocyanate compound examples include aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate, and aromatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, and phenylene diisocyanate.
  • polyol compound examples include glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, and 1,4-cyclohexanedimethanol; trivalent or higher polyols such as glycerin and pentaerythritol; polyethylene glycol, polypropylene Polyether-type diols such as glycol, polytetramethylene glycol, polyhexamethylene glycol; the above diols react with dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid, and sebacic acid Polyester-type diols obtained in this manner.
  • glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, and 1,4-cyclohexanedimethanol
  • UV curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Co., Ltd., UT5746, solid content 80% by mass, ethyl acetate solution
  • the photopolymerization initiator include compounds that generate radicals when irradiated with light.
  • examples of such photopolymerization initiators include alkylphenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime ester photopolymerization initiators. Of these, acylphosphine oxide photoreaction initiators are preferred from the viewpoint of easy adjustment of the elastic modulus.
  • the content of the photopolymerization initiator is preferably 0.2 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the (i) energy beam curable compound. When the content of the photopolymerization initiator is in this range, the weather resistance is good and the curability is sufficient.
  • the energy ray sensitive composition may contain an ultraviolet absorber as necessary.
  • the UV absorber include benzotriazole UV absorbers, hindered amine UV absorbers, benzophenone UV absorbers, and triazine UV absorbers. These ultraviolet absorbers may be used alone or in combination of two or more. Among these, a radical polymerizable ultraviolet absorber having a radical polymerizable double bond in the molecule is preferable.
  • the content when the ultraviolet absorber is contained is preferably 0.1 with respect to a total of 100 parts by mass of (i) active energy ray-curable compound, (ii) silica fine particles, and (iii) photopolymerization initiator. The amount is 2 to 10 parts by mass, more preferably 0.5 to 7 parts by mass.
  • the energy ray-sensitive composition may contain a light stabilizer as necessary.
  • light stabilizers include hindered amine light stabilizers, benzophenone light stabilizers, and benzotriazole light stabilizers. These light stabilizers may be used alone or in combination of two or more.
  • the content when the light stabilizer is contained is preferably 0.2 with respect to a total of 100 parts by mass of (i) energy ray-curable compound, (ii) silica fine particles, and (iii) photopolymerization initiator. -10 parts by mass, more preferably 0.5-7 parts by mass.
  • a polymerization inhibitor, a viscosity modifier, surfactant, an antifoamer, an organometallic coupling agent, a silane coupling agent etc. can be added as needed.
  • the transparent conductive layer used in the present invention is made of a metal oxide.
  • Metal oxides include indium-tin oxide (ITO), indium-zinc oxide (IZO), aluminum-zinc oxide (AZO), gallium-zinc oxide (GZO), indium-gallium-zinc oxide (IGZO), niobium oxide, titanium oxide, tin oxide, and the like. These can be used alone or in combination. Among these, ITO and IZO are particularly preferable from the viewpoints of transmittance, sheet resistance, and stability.
  • the film thickness of the transparent conductive layer is preferably 5 to 200 nm, more preferably 10 to 100 nm, and further preferably 20 to 50 nm.
  • the total light transmittance of the transparent conductive layer is preferably 70% or more, more preferably 80% or more, more preferably 90% or more, as measured in accordance with JIS K7361-1. Is more preferable.
  • the turbidity of the transparent conductive layer is preferably 10% or less, more preferably 5% or less.
  • the sheet resistance value of the transparent conductive layer is preferably 1000 ⁇ / ⁇ or less, more preferably 500 ⁇ / ⁇ or less, and still more preferably 100 ⁇ / ⁇ or less.
  • a dry film forming method is preferable from the viewpoint of obtaining high transmittance and low sheet resistance.
  • resistance vapor deposition, electron beam deposition, molecular beam epitaxy, ion beam, ion plating, sputtering, etc. physical vapor deposition (hereinafter also referred to as “PVD”), thermal CVD,
  • PVD physical vapor deposition
  • CVD chemical vapor deposition method
  • plasma CVD method a plasma CVD method
  • photo CVD method an epitaxial CVD method
  • an atomic layer CVD method or the like.
  • a sputtering method is preferable because a low sheet resistance value, high-precision film thickness control, a predetermined composition ratio is easily obtained, and quality stability is high. After the film is formed by the above method, a more excellent sheet resistance value can be obtained by performing a heat treatment within a range that does not affect other laminated bodies as necessary.
  • the dry film forming method referred to here is generally called a dry process method by treating the surface of a material using a gas phase or a molten state.
  • the transparent conductive laminate of the present invention preferably further comprises an adhesion layer on the surface of the embedded resin layer opposite to the transparent conductive layer, and is interposed between the embedded resin layer and a transparent gas barrier layer described later. More preferably, the adhesive layer is included. As described above, the adhesion layer is used to improve adhesion between the embedded resin layer and the transparent gas barrier layer, for example, and to improve flexibility of the transparent conductive laminate.
  • the elastic modulus at 25 ° C. of the adhesive layer is preferably 100 to 3000 MPa, more preferably 200 to 2400 MPa, and still more preferably 400 to 2200 MPa.
  • the elastic modulus of the adhesive layer at 25 ° C. is in the above range, the adhesiveness is improved and the flexibility is further improved by interposing directly between the transparent gas barrier layer and the embedded resin layer.
  • the glass transition temperature of the adhesion layer is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher.
  • the glass transition temperature of the adhesion layer is lower than the glass transition temperature of the embedded resin layer to be combined, and if it is within this range, the adhesion and flexibility are improved.
  • the thickness of the adhesion layer is preferably 1 to 120 ⁇ m, more preferably 3 to 100 ⁇ m, and still more preferably 4 to 80 ⁇ m. When the thickness of the embedded resin layer is in the above-described range and the thickness of the adhesion layer is in this range, the flexibility of the transparent conductive laminate is improved.
  • the adhesion layer used in the present invention is not particularly limited as long as the above-described elastic modulus is within the range of the present invention, and is preferably made of a transparent resin composition in the same manner as the embedded resin layer.
  • a transparent resin composition in the same manner as the embedded resin layer.
  • an energy beam curable compound, a thermoplastic resin, etc. are mentioned.
  • Examples of the energy ray curable compound include the same compounds as those used for the embedded resin layer described above.
  • thermoplastic resin examples include polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken. , Polyvinyl alcohol, polycarbonate resin, fluorine resin, polyvinyl acetate resin, acetal resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin such as polybutylene naphthalate (PBN), nylon 6, polyamide resins such as nylon 66, and the like.
  • polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken.
  • the said resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyvinylidene chloride are preferable.
  • Examples of commercially available energy ray curable compounds include UV curable acrylic resins (Toyo Ink, UA-A1, solid content 100% by mass), UV curable acrylic resins (Toa Gosei Co., Ltd., UVX6125, solids). 100% by weight) and the like, and Irgacure 819 (manufactured by BASF) as a photopolymerization initiator. Similar to the above-described embedded resin layer, an adhesive layer having a predetermined elastic modulus can be obtained by adjusting the amount of a photopolymerization initiator or the like.
  • the content of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the energy ray curable compound. When the content of the photopolymerization initiator is within this range, curability is sufficient.
  • a polymerization inhibitor, a viscosity modifier, surfactant, an antifoamer, an organometallic coupling agent, etc. can be added as needed.
  • the transparent conductive laminate of the present invention preferably further includes a transparent gas barrier layer on the transparent substrate.
  • the transparent gas barrier layer used in the present invention suppresses the permeation of water vapor in the atmosphere that has passed through the transparent substrate 2 in FIG. 2, for example, and as a result, the water vapor of the embedded resin layer 3, the auxiliary electrode layer 4, etc. Has a function to prevent transmission.
  • the transparent conductive laminate of the present invention By keeping the water vapor transmission rate in such a range and maintaining the water vapor transmission rate of other layers such as the auxiliary electrode layer and the embedded resin layer at a predetermined value, for example, the transparent conductive laminate of the present invention An increase in sheet resistance can be suppressed without the transparent conductive layer being deteriorated by moisture. Further, when used as a translucent electrode of an electronic device, it is possible to suppress deterioration over time of the active layer and the like inside the device, leading to a longer life of the device.
  • a layer containing a metal oxide As a transparent gas barrier layer, a layer containing a metal oxide; a layer obtained by subjecting a layer containing a polymer compound (hereinafter sometimes referred to as “polymer layer”) to a modification treatment such as ion implantation; Can be mentioned.
  • a method for forming the layer containing the metal oxide the above-described method for forming a transparent conductive layer can be used.
  • a lower sheet resistance value can be obtained by performing heat treatment within a range that does not affect other laminated bodies as necessary.
  • metal oxide materials include metals such as silicon, aluminum, magnesium, zinc, and tin; inorganic materials such as silicon oxide, silicon monoxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and zinc tin oxide Oxides; inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride; inorganic carbides; inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides . These can be used alone or in combination of two or more.
  • membrane which uses an inorganic oxide, an inorganic nitride, or a metal as a raw material from a gas-barrier viewpoint is preferable.
  • a silicon oxynitride layer made of a layer containing metal oxide or a layer containing a polysilazane compound and having oxygen, nitrogen, and silicon as main constituent atoms formed by a modification treatment has interlayer adhesion, From the viewpoint of having gas barrier properties and bending resistance, it is preferably used.
  • Polymer compounds used for the polymer layer include silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester Etc. These polymer compounds can be used alone or in combination of two or more. Among these, a silicon-containing polymer compound is preferable as the polymer compound because of its superior gas barrier properties. Examples of silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds. Among these, a polysilazane compound is preferable from the viewpoint of forming a transparent gas barrier layer having excellent gas barrier properties.
  • the transparent gas barrier layer can be formed, for example, by subjecting the polysilazane compound-containing layer to plasma ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, heat treatment, and the like.
  • ions implanted by the plasma ion implantation process include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
  • a specific processing method of the plasma ion implantation processing a method of injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or a gas barrier without using an external electric field.
  • the plasma treatment is a method for modifying a layer containing a silicon-containing polymer by exposing the polysilazane compound-containing layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the ultraviolet irradiation treatment is a method for modifying a layer containing a silicon-containing polymer by irradiating a polysilazane compound-containing layer with ultraviolet rays.
  • the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because it can efficiently modify the inside of the polysilazane compound-containing layer without roughening the surface and form a gas barrier layer having more excellent gas barrier properties.
  • the method for laminating the transparent gas barrier layer is not particularly limited, but the laminating method is preferable because it can be easily produced.
  • the transparent gas barrier layer may be a single layer or a laminate of two or more layers. Further, when two or more layers are laminated, they may be the same or different.
  • the film thickness of the transparent gas barrier layer is preferably 20 nm to 50 ⁇ m, more preferably 30 nm to 1 ⁇ m, still more preferably 40 to 500 nm. When the film thickness of the transparent gas barrier layer is within this range, excellent gas barrier properties and adhesiveness can be obtained, and flexibility and coating strength can be compatible.
  • a primer layer When forming a transparent gas barrier layer on a transparent substrate, a primer layer may be used to improve the adhesion between the transparent substrate and the transparent gas barrier layer.
  • the primer layer for example, an acrylic-based, polyester-based, polyurethane-based, or rubber-based primer layer can be appropriately used.
  • the thickness of the primer layer is usually 0.1 to 10 ⁇ m, preferably 0.5 to 5 ⁇ m.
  • the thickness of the primer layer is in the above range, by covering the unevenness of the transparent substrate, defects derived from the transparent substrate are reduced, the gas barrier performance of the transparent gas barrier layer is improved, and the transparent substrate Adhesion between the transparent gas barrier layers is improved, and the surface can be smoothly peeled off from the transfer substrate side in a surface smoothness transfer step of the transfer substrate surface described later.
  • the haze of the transparent conductive laminate of the present invention is preferably 2.5% or less, more preferably 2.0% or less.
  • the increase rate of haze before and after dry film formation is preferably 1.40 or less, more preferably 1.25. Hereinafter, it is more preferably 1.10 or less.
  • the sheet resistance value on the transparent conductive layer side of the transparent conductive laminate of the present invention is preferably 10 ⁇ / ⁇ or less, more preferably 5 ⁇ / ⁇ or less, and further preferably 1 ⁇ / ⁇ or less. When the sheet resistance value is within this range, a transparent conductive laminate having excellent electrical characteristics can be obtained.
  • the thickness of the transparent conductive laminate is preferably 10 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 20 to 150 ⁇ m. If it is this range, when a transparent conductive layer is laminated
  • the total light transmittance (T 0 ) of the opening of the transparent conductive laminate is preferably 80% to 96%, more preferably 90 to 96%, and still more preferably 92% to 96%.
  • the total light transmittance (T) of the transparent conductive laminate including the auxiliary electrode layer is preferably 80% to 95%, more preferably 83% to 95%, and still more preferably 85% to 95%. is there.
  • the ratio T / T 0 of the total light transmittance (T) of the transparent conductive laminate including the auxiliary electrode layer to the total light transmittance (T 0 ) of the opening of the transparent conductive laminate is due to an increase in surface resistivity, etc. If electrical characteristics are not impaired, the closer to 1, the better. 0.93 to 0.99 is preferable, 0.96 to 0.99 is more preferable, and 0.97 to 0.99 is even more preferable. is there.
  • the auxiliary electrode layer is printed in the same pattern, it means that the closer the line width of the auxiliary electrode layer is, the closer it is to 1.
  • the transparent conductive laminate of the present invention has excellent optical properties and flexibility. Further, the sheet resistance value is small, and the transferability of the auxiliary electrode layer is excellent. Therefore, it is preferable to apply to a solar cell element or an organic electroluminescence element that requires a large area.
  • the method for producing a transparent conductive laminate of the present invention comprises at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, the transparent conductive layer comprising a metal oxide,
  • a method for producing a transparent conductive laminate wherein the elastic modulus at 25 ° C. of the resin layer is 3000 to 8000 MPa and the elastic modulus at 70 ° C. is 1000 to 7000 MPa, the step of forming the auxiliary electrode layer, Including a step of forming the embedded resin layer in the opening of the auxiliary electrode layer, or on the auxiliary electrode layer and in the opening, and a step of forming the transparent conductive layer.
  • the auxiliary electrode layer forming step is a step of forming a pattern made of the above-described auxiliary electrode layer material on a transfer substrate described later.
  • a method of forming the auxiliary electrode layer after providing an auxiliary electrode layer on which a pattern is not formed on a transfer substrate, a known physical treatment or chemical treatment mainly using a photolithography method, or a combination thereof.
  • the pattern of the auxiliary electrode layer is formed directly by a method of processing into a predetermined pattern shape, or by a screen printing method, a rotary screen printing method, a screen offset printing method, an inkjet method, an offset printing method, a gravure offset printing method, etc. And the like.
  • a PVD method physical vapor deposition method
  • a vacuum deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a thermal CVD method, an ALD method (atomic layer deposition method).
  • CVD chemical vapor deposition
  • various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade, and electrodeposition.
  • a wet process, a silver salt method, etc. are mentioned, and it is suitably selected according to the material of the auxiliary electrode layer.
  • the embedded resin layer forming step is a step of laminating an embedded resin layer on the opening of the auxiliary electrode layer or on the opening and the auxiliary electrode layer, as one aspect.
  • Another aspect is a step of laminating an embedded resin layer on the adhesion layer or the transparent gas barrier layer.
  • Examples of the method for forming the embedded resin layer include a dip coating method, a spin coating method, a spray coating method, a gravure coating method, a die coating method, a doctor blade method, and a Meyer bar coating method.
  • Examples of the method of irradiating energy radiation include ultraviolet rays and electron beams.
  • the ultraviolet rays are obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, etc., and the light quantity is usually 100 to 500 mJ / cm 2 , while the electron beam is obtained with an electron beam accelerator or the like, and the irradiation dose is usually 150 to 350 kV.
  • ultraviolet rays are particularly preferable.
  • a cured film can be obtained, without adding a photoinitiator.
  • the transparent conductive layer forming step is a step of forming a transparent conductive layer on the surface side composed of the auxiliary electrode layer and the embedded resin layer.
  • the method for forming the transparent conductive layer is as described above.
  • the production of the transparent conductive laminate of the present invention preferably further includes an adhesion layer forming step.
  • An adhesion layer formation process is a process of forming an adhesion layer on an embedding resin layer as one mode.
  • the adhesion layer is formed on the transparent gas barrier layer.
  • the method for forming the adhesion layer is the same as the method for forming the embedded resin layer described above.
  • the production of the transparent conductive laminate of the present invention preferably further includes a transparent gas barrier layer forming step.
  • the transparent gas barrier layer forming step is a step of forming a transparent gas barrier layer on the transparent substrate via the primer layer described above.
  • the method for forming and laminating the transparent gas barrier layer is as described above.
  • the production of the transparent conductive laminate of the present invention preferably further includes a transfer substrate forming step.
  • the transfer substrate forming step is a step of forming a release layer on the support of the transfer substrate.
  • the support material is not particularly limited, and examples thereof include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polypropylene and polymethylpentene, polycarbonate films, and polyvinyl acetate films. Among them, a polyester film is preferable, and a biaxially stretched polyethylene terephthalate film is particularly preferable.
  • the thickness of the support is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m, still more preferably 30 to 100 ⁇ m. If it is this range, since mechanical strength can be ensured, it is preferable.
  • the release layer used in the present invention may or may not be appropriately provided depending on the support to be used. However, in the case of providing, the layer obtained by curing the silicone resin composition or the ultraviolet curable release composition (hereinafter referred to as “cured”). It is sometimes referred to as a “layer”).
  • the silicone resin composition is not particularly limited, and examples thereof include an addition reaction type silicone resin composition containing a photosensitizer.
  • the addition reaction type silicone resin composition is obtained by adding a catalyst (for example, a platinum-based catalyst) and a photosensitizer to a main agent composed of an addition reaction type silicone resin and a crosslinking agent, and, if necessary, an addition reaction inhibitor. Further, a release adjusting agent, an adhesion improving agent and the like may be added.
  • a well-known ultraviolet curable peeling composition may be sufficient and a commercial item can be used. Specific examples include a silicone-based, fluorine-based, alkyl pendant-based, and long-chain alkyl-based ultraviolet curable release composition. If necessary, the above-described addition reaction inhibitor, peeling regulator, adhesion improver, and the like may be added. Moreover, it is preferable that the ultraviolet curable releasable composition segregates silicon on the surface.
  • a coating liquid comprising a silicone resin composition or an ultraviolet curable release composition and the above-described additive component used as desired is applied onto the substrate, for example, gravure coating. It can be applied by the method, bar coating method, spray coating method, spin coating method or the like.
  • an appropriate organic solvent may be added for the purpose of adjusting the viscosity of the coating solution.
  • an organic solvent There is no restriction
  • the transfer process of the transfer substrate surface is a process of peeling the transfer substrate, and the surface composed of the auxiliary electrode layer and the embedded resin layer.
  • the peeling method of the surface which consists of a transfer base material, an auxiliary electrode layer, and a transparent resin layer does not have a restriction
  • the surface composed of the auxiliary electrode layer and the embedded resin layer can be made excellent in smoothness, increase in haze, etc. can be suppressed, and as a result, the optical characteristics of the transparent conductive laminate can be improved. It leads to improvement.
  • a step of laminating different laminates by a laminating method or the like may be included.
  • a laminate comprising a transfer substrate / auxiliary electrode layer and a laminate comprising an embedded resin layer / transparent gas barrier layer / primer layer / transparent substrate are laminated to form a transfer substrate / auxiliary electrode.
  • a laminate comprising a layer / embedded resin layer / transparent gas barrier layer / primer layer / transparent substrate may be used.
  • a laminate comprising a transfer substrate / auxiliary electrode layer / embedded resin layer and a laminate comprising a transparent gas barrier layer / primer layer / transparent substrate are laminated to form a transfer substrate / auxiliary electrode layer.
  • a laminate comprising: / embedded resin layer / transparent gas barrier layer / primer layer / transparent substrate may be used.
  • a laminate comprising a transfer substrate / auxiliary electrode layer / embedded resin layer / adhesion layer and a laminate comprising a transparent gas barrier layer / primer layer / transparent substrate are laminated, or a transfer substrate / A laminate comprising an auxiliary electrode layer / embedded resin layer and a laminate comprising an adhesion layer / transparent gas barrier layer / primer layer / transparent substrate are laminated to form a transfer substrate / auxiliary electrode layer / embedded resin layer / It is good also as a laminated body containing the adhesion layer which consists of adhesion layer / transparent gas barrier layer / primer layer / transparent substrate.
  • the transfer substrate is then peeled off from the transfer substrate / auxiliary electrode interface side to form a transparent conductive laminate, and the surface comprising the auxiliary electrode layer and the embedded resin layer of the transparent conductive laminate
  • the transparent conductive laminate of the present invention can be produced.
  • the elastic modulus may be measured as described in the examples, or after the transparent conductive laminate was prepared, the transparent conductive laminate was cut obliquely with, for example, a diamond knife, and the measurement location was exposed and then exposed. Measurements may be made so that the indenter of the dynamic ultra-micro hardness tester is in vertical contact with the measurement location, or other layers stacked on the measurement location may be removed by etching, etc. You may measure after exposing.
  • C Haze Haze was measured according to JIS K 7136 using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., HAZE METER NDH5000).
  • zipping is “when the auxiliary electrode layer on the transfer substrate is transferred from the transfer substrate to the embedded resin layer side, the auxiliary electrode layer of the transfer substrate does not peel smoothly, and the sound is crispy. It means a phenomenon that repeats peeling or stopping while standing. When transferring, zipping may occur, and the auxiliary electrode layer may not be peeled off from the transfer substrate, and a portion that is not transferred may occur.
  • (G) Dry-type film-forming property The haze before and after dry-type film formation was measured when a transparent conductive layer was formed to a thickness of 50 nm on the surface composed of the auxiliary electrode layer and the embedded resin layer by the dry-type film formation method. Then, the dry film-forming property was evaluated.
  • the dry film forming resistance refers to fluctuations in the haze value due to dry film formation.
  • When haze rise is 10% or less ⁇ : When haze rise is more than 10% and 50% or less x: When haze rise is more than 50% (h) Flexibility Repeated bending tester (YUASA) Using the Koki Co., Ltd.), the sheet resistance value ⁇ before and after bending 100 times so that the transparent conductive layer of the transparent conductive laminate is convex so that the bent portion is 50 mm ⁇ is measured, and the following standard The flexibility was evaluated according to the following.
  • Adhesive tape (cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) is pasted on the transparent conductive layer surface that is cross-cut into a grid shape, and in accordance with the cross-cut tape method of JIS K5600-5-6 (cross-cut method) (Registered Trademark) A peel test was performed, and the adhesion of the transparent conductive layer, the embedded resin layer, and the adhesion layer was evaluated according to the following criteria. In addition, about adhesiveness, it determined by the following reference
  • Example 1 The following UV curable acrylic resin solution A was applied on a slide glass having a thickness of 1 mm with an applicator, dried at 90 ° C. for 2 minutes, and then release sheet B [polyethylene terephthalate film subjected to silicone release treatment] (SP manufactured by Lintec Corporation, SP -PET 381031, thickness 38 ⁇ m), and using a conveyor type UV irradiation device (manufactured by Heraeus, high-pressure mercury lamp), the integrated light is irradiated from the coated surface so that the integrated light amount is 250 mJ / cm 2. Obtained.
  • the film thickness after curing was 50 ⁇ m.
  • UV curable acrylic resin solution A A solution obtained by adding 1.5 parts by mass of a photoinitiator (Irgacure 819, manufactured by BASF) to 100 parts by mass of UV curable acrylic resin (manufactured by Nippon Synthetic Chemical Co., Ltd., UT5746, solid content 80% by mass, ethyl acetate solution) .
  • Embed UV curable acrylic resin composition A on alkali-free glass (Corning, EagleXG, 100 mm square, 0.7 mm thickness) so that the film thickness after curing is 25 ⁇ m under the same coating and curing conditions as described above.
  • the resin layer A was formed and haze Ha0 was measured.
  • Table 1 An ITO layer, which is a transparent conductive layer, was formed by sputtering on the embedded resin layer A thus formed under the following conditions, and haze H a1 after the film formation was measured.
  • a metal paste (conductive composition) for printing an auxiliary electrode layer made of a thin silver wire As a metal paste (conductive composition) for printing an auxiliary electrode layer made of a thin silver wire, a silver paste (manufactured by Mitsuboshi Belting Co., Ltd., trade name: low-temperature fired conductive paste MDot (registered trademark)) was used, and the line width was 30 ⁇ m, Using a screen plate (printing area 100 mm square) having a honeycomb structure with a pitch of 1200 ⁇ m, an auxiliary electrode layer is formed on a transfer substrate by printing with a screen printing machine (manufactured by Micro Tech, model name: MT-320TV). did. After printing, temporary drying was performed at 70 ° C. for 1 minute, followed by baking at 150 ° C.
  • a screen printing machine manufactured by Micro Tech, model name: MT-320TV
  • the transfer substrate used here was PET A4100 (100 ⁇ m thickness) manufactured by Toyobo Co., Ltd., and the untreated surface was used as the electrode printing surface.
  • the obtained electrode had a width of 40 ⁇ m and a height of 7 ⁇ m.
  • the UV curable acrylic resin composition A was applied to the transparent gas barrier layer side surface of the transparent substrate having the transparent gas barrier layer described later with an applicator and dried at 90 ° C. for 2 minutes.
  • transfer substrate / auxiliary electrode layer / embedded resin layer A / gas barrier layer / primer layer / A laminate A of transparent substrates was obtained.
  • the laminated body A is irradiated with a conveyor-type UV irradiator (manufactured by Heraeus, high-pressure mercury lamp) from the transparent substrate side having the transparent gas barrier layer so that the accumulated light amount becomes 250 mJ / cm 2.
  • the embedded resin layer A was cured (thickness of the embedded resin layer A after curing: 25 ⁇ m).
  • the transfer base material is peeled off from the interface side consisting of the embedded resin layer A and the auxiliary electrode layer, so that the auxiliary electrode layer and the embedded resin layer having openings through the transparent gas barrier layer on the transparent base material.
  • a transparent conductive laminate A in which a composite layer composed of A was laminated was prepared, and the elastic modulus and haze H b0 of the embedded resin layer A at 25 ° C. and 70 ° C. were measured with a dynamic ultra-small surface hardness meter. .
  • the transparent conductive layer was formed to a thickness of 50 nm in the same manner as the transparent conductive layer formation conditions described above to form a transparent conductive laminate, and the haze H b1 , sheet resistance value ⁇ , water vapor transmission rate ( WVTR) was measured.
  • a perhydropolysilazane-containing liquid manufactured by AZ Electronic Materials, trade name: AZNL110A-20
  • a perhydropolysilazane layer having a thickness of 200 nm was formed.
  • argon (Ar) was plasma ion-implanted into the obtained perhydropolysilazane layer under the following conditions to form a perhydropolysilazane layer (hereinafter referred to as “inorganic layer A”) in which plasma ions were implanted.
  • inorganic layer B two silicon oxynitride layers (inorganic layer B) were repeatedly formed on the inorganic layer A in the same manner as the inorganic layer A except that the thickness of the perhydropolysilazane layer was 150 nm, and a transparent gas barrier layer was laminated.
  • RF power source Model number “RF56000”, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
  • Example 2 A transparent conductive laminate B was prepared in the same manner as in Example 1 except that the embedded resin layer B was formed using the following UV curable acrylic resin solution B, and embedded using a dynamic ultra-small surface hardness meter. The elastic modulus at 25 ° C. and 70 ° C. of the resin layer B and the haze H b0 of the transparent conductive laminate B were measured. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were measured. Further, as in Example 1, the glass transition temperature Tg of the embedded resin layer B was measured.
  • a photoinitiator Irgacure 819, manufactured by BASF
  • Example 1 A transparent conductive laminate C was produced in the same manner as in Example 1 except that the embedded resin layer C was formed using the following UV curable acrylic resin solution C. Although the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer C was measured, haze H b0 , haze H b1, etc. of the transparent conductive laminate C were not measured due to poor transferability. Further, in the same manner as in Example 1, the glass transition temperature Tg of the embedded resin layer C was measured.
  • UV curable acrylic resin solution C 50 parts of UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.) for 100 parts by mass of UV curable acrylic resin (manufactured by Nippon Synthetic Chemical, UT5746, solid content 80% by mass, ethyl acetate solution), light A solution obtained by adding 1.5 parts by mass of an initiator (Irgacure 819, manufactured by BASF).
  • UV curable acrylic resin U-A1 manufactured by Toyo Ink Co., Ltd.
  • UV curable acrylic resin manufactured by Nippon Synthetic Chemical, UT5746, solid content 80% by mass, ethyl acetate solution
  • an initiator Irgacure 819, manufactured by BASF
  • Example 2 A transparent conductive laminate D was produced in the same manner as in Example 1 except that the embedded resin layer D was formed using the following UV curable acrylic resin solution D. Although the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer D was measured, the haze H b0 , haze H b1, etc. of the transparent conductive laminate D were not measured because of poor transferability. Further, in the same manner as in Example 1, the glass transition temperature Tg of the embedded resin layer D was measured.
  • UV curable acrylic resin solution D A solution comprising a UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.).
  • Example 3 The following adhesion layer coating liquid A was applied onto a slide glass having a thickness of 1 mm with an applicator, dried at 90 ° C. for 2 minutes, and then release sheet B [polyethylene terephthalate film subjected to silicone release treatment] (SP-PET 381031 manufactured by Lintec Corporation). , And a thickness of 38 ⁇ m) was applied and irradiated from the coated surface using a conveyor-type UV irradiation device (manufactured by Heraeus, high-pressure mercury lamp) so that the integrated light amount was 250 mJ / cm 2 , thereby obtaining an adhesion layer A.
  • the film thickness after curing was 50 ⁇ m.
  • Adhesion layer coating solution A A coating solution comprising a UV curable acrylic resin (manufactured by Toyo Ink, UA-A1, solid content: 100% by mass).
  • a transfer substrate with an auxiliary electrode layer was prepared in the same manner as in Example 1.
  • the UV curable acrylic resin solution A is applied to the auxiliary electrode layer side of the transfer substrate with an applicator and dried at 90 ° C. for 2 minutes, and the transfer substrate / auxiliary electrode layer / embedded resin layer A (uncured) A laminate B was formed.
  • an adhesion layer A (UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.)) was applied with an applicator to the transparent gas barrier layer side of the transparent substrate having the transparent gas barrier layer formed in the same manner as in Example 1. Then, irradiation is performed from the adhesion layer A side by a conveyor type UV irradiator (manufactured by Heraeus, high-pressure mercury lamp) so that the integrated light amount is 250 mJ / cm 2, and the adhesion layer A / transparent gas barrier layer / primer layer / transparent substrate A laminate C (thickness of the adhesion layer A after curing: 5 ⁇ m) was formed.
  • the elastic modulus at 25 ° C.
  • the embedded resin layer A of the laminate B and the adhesion layer A of the laminate C are bonded with a laminator, and integrated from the transparent resin substrate side by a conveyor type UV irradiator (manufactured by Heraeus, high-pressure mercury lamp). Irradiation was performed so that the amount of light was 250 mJ / cm 2 to cure the embedded resin layer A in the laminate B (thickness of the embedded resin layer A after curing: 25 ⁇ m).
  • a transparent conductive laminate E in which a composite layer composed of the embedded resin layer A is laminated is manufactured, and the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer A and haze H are measured by a dynamic ultra-small surface hardness meter. c0 was measured. Furthermore, a transparent conductive layer was formed to a thickness of 50 nm in the same manner as in Example 1 to obtain a transparent conductive laminate, and haze H c1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were evaluated.
  • Example 4 A transparent conductive laminate F was produced in the same manner as in Example 1 except that the film thickness of the adhesion layer A was changed to 25 ⁇ m, and the haze H c0 of the transparent conductive laminate F was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were measured.
  • Example 5 A transparent conductive laminate G was produced in the same manner as in Example 1 except that the thickness of the adhesion layer A was changed to 50 ⁇ m, and the haze H c0 of the transparent conductive laminate G was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were measured.
  • Example 6 A transparent conductive laminate H was produced in the same manner as in Example 1 except that the film thickness of the adhesion layer A was changed to 75 ⁇ m, and the haze H c0 of the transparent conductive laminate H was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were measured.
  • Example 7 the embedded resin layer A is changed to an embedded resin layer E made of the following UV curable acrylic resin solution E, and coating is performed with a die coater so that the thickness directly above the transfer substrate is 1 ⁇ m (after curing). Then, while drying at 70 ° C. for 30 seconds, the adhesion layer A is changed to the adhesion layer B composed of the following adhesion layer coating liquid B, and coated and cured to a thickness of 10 ⁇ m (after curing) with a bar coater, Further, except that the embedded resin layer E and the adhesion layer B were bonded, a transparent conductive laminate I was prepared in the same manner as in Example 3, and the embedded resin layer E 25 was measured with a dynamic ultra-small surface hardness meter.
  • the elastic modulus at ° C. and 70 ° C. and the haze H c0 of the transparent conductive laminate I were measured.
  • adherence layer B after hardening before bonding was measured with the dynamic ultra fine surface hardness meter similarly to Example 3.
  • the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were measured.
  • an embedded resin layer E was produced on a slide glass having a thickness of 1 mm using a UV curable acrylic resin solution E (film thickness after curing; 50 ⁇ m), and the glass transition temperature Tg. was measured.
  • the adhesion layer B was produced on the 1 mm-thick slide glass by the same method as Example 3 using the adhesion layer coating liquid B (film thickness after curing: 50 ⁇ m), and the glass transition temperature Tg was measured.
  • UV curable acrylic resin solution E A solution prepared by adding a UV curable acrylic resin containing inorganic fine particles (manufactured by JSR, Opstar Z7530, solid content 73 mass%, methyl ethyl ketone solution) as a diluent solvent to adjust the solid content to 30 wt%.
  • Adhesion layer coating solution B 1 part by weight of photoinitiator (BASF, Irgacure 819) and 100 parts by weight of silane coupling agent (Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by weight of UV curable acrylic resin (Toa Gosei Co., Ltd., UVX6125, solid content 100% by weight) , KBM903) to which 1 part by mass is added.
  • photoinitiator BASF, Irgacure 819
  • silane coupling agent Shin-Etsu Chemical Co., Ltd.
  • Example 8 A transparent conductive laminate J was prepared in the same manner as in Example 3 except that the thickness of the adhesion layer A after curing was 100 ⁇ m, and the haze H c0 of the transparent conductive laminate J was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ⁇ , and water vapor transmission rate (WVTR) were measured.
  • the transparent conductive laminate of the present invention has excellent optical properties and flexibility at the same time, and further has a small sheet resistance value, such as flexible solar cell elements and organic electroluminescence elements that require a large area. It can also be used for devices.
  • 1A, 1B transparent conductive laminate 2: transparent substrate 3: embedded resin layer 4: auxiliary electrode layer 5: transparent conductive layer 6: primer layer 7: transparent gas barrier layer 8: adhesion layer 9: opening

Abstract

The present invention provides: a transparent conductive laminate that simultaneously exhibits excellent optical properties and flexibility and that has, on a transparent base material, at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer, wherein the transparent conductive layer comprises a metal oxide, and the embedded resin layer has an elastic modulus at 25°C of 3,000-8,000 MPa and an elastic modulus at 70°C of 1,000-7,000 MPa; and a production method for the transparent conductive laminate.

Description

透明導電性積層体及びその製造方法Transparent conductive laminate and method for producing the same
 本発明は、透明導電性積層体及びその製造方法に関する。 The present invention relates to a transparent conductive laminate and a method for producing the same.
 近年、プリンテッドエレクトロニクスの発展により、今後普及が期待される有機薄膜太陽電池や有機EL照明等をはじめとする、主として有機材料を用いた電子デバイスの大面積化、加えてフレキシブル化が進められている。これら電子デバイスの大面積化にともない、それらに利用される透明導電性フィルムの透明導電層に関して低抵抗化が求められており、この要求に対し、デバイス動作(集電又は電圧印加)時に透明導電層が一般に高い電気抵抗率を有する事から生じる、光電変換効率や発光効率等の電子デバイスの性能低下を抑制するために、透明導電層に補助電極層として、透明導電層より低い抵抗値を有する金属細線や金属ペーストのパターン層を設けた構造が用いられ、細線間、又はパターン層間には透明樹脂層が配置されることがある。 In recent years, with the development of printed electronics, the area of electronic devices mainly using organic materials, such as organic thin-film solar cells and organic EL lighting, which are expected to spread in the future, has been increased, and in addition, flexibility has been promoted. Yes. As these electronic devices become larger in area, there is a demand for lower resistance for the transparent conductive layer of the transparent conductive film used for them. In response to this requirement, transparent conductivity is required during device operation (current collection or voltage application). In order to suppress degradation of the performance of electronic devices such as photoelectric conversion efficiency and light emission efficiency, which generally arises from the fact that the layer has a high electrical resistivity, the transparent conductive layer has a resistance value lower than that of the transparent conductive layer as an auxiliary electrode layer A structure provided with a pattern layer of fine metal wires or metal paste is used, and a transparent resin layer may be disposed between the fine wires or between the pattern layers.
 上記に関し、特許文献1には、電子デバイスのフレキシブル化の観点から透明基材シート上に透明導電性粒子と分散媒とを含む塗布液を塗布して透明導電膜を積層してなる屈曲性を有する透明導電性シートが開示されている。また、特許文献2では、高い透明性及び低抵抗化が要求される観点から、前記透明導電層を、インジウム-スズ酸化物(ITO)等を乾式成膜法で形成することが開示されている。 With respect to the above, Patent Document 1 discloses a flexibility obtained by applying a coating liquid containing transparent conductive particles and a dispersion medium on a transparent base sheet and laminating a transparent conductive film from the viewpoint of making the electronic device flexible. A transparent conductive sheet is disclosed. Patent Document 2 discloses that the transparent conductive layer is formed of indium-tin oxide (ITO) or the like by a dry film forming method from the viewpoint of demanding high transparency and low resistance. .
特開2015-162355号公報Japanese Patent Laying-Open No. 2015-162355 特開2014-216175号公報JP 2014-216175 A
 しかしながら、特許文献1では、透明基材シートを用いているため屈曲性を有するものの、透明導電性粒子と分散媒とを含む塗布液を塗布してなる透明導電膜に導電性を発現させる構成であるため、乾式成膜法で形成した透明導電膜については開示がされていない。また、特許文献2では、透明導電層を、補助電極層や透明樹脂層とからなる面に、乾式成膜法で形成することが開示されているが、本発明者らが、さらに検討をした結果、成膜時の温度上昇に加え乾式成膜法で形成した膜が有する強い応力により、結果として、透明導電層の表面に凹凸が発生し、光学特性の低下、例えば、ヘーズの値が大きく増加するという問題があることを見出すに至った。 However, in patent document 1, although it has flexibility because it uses a transparent substrate sheet, it has a configuration in which conductivity is expressed in a transparent conductive film formed by applying a coating liquid containing transparent conductive particles and a dispersion medium. For this reason, there is no disclosure of a transparent conductive film formed by a dry film formation method. Patent Document 2 discloses that the transparent conductive layer is formed on the surface composed of the auxiliary electrode layer and the transparent resin layer by a dry film forming method, but the present inventors have further studied. As a result, due to the strong stress of the film formed by the dry film formation method in addition to the temperature rise during film formation, irregularities occur on the surface of the transparent conductive layer, resulting in a decrease in optical properties, for example, a large haze value. It came to discover that there is a problem of increasing.
 本発明は、上記問題を鑑み、優れた光学特性及び屈曲性を同時に有する透明導電性積層体を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a transparent conductive laminate having excellent optical characteristics and flexibility at the same time.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、補助電極層の開口部、又は、開口部及び補助電極層上部に設けた埋込樹脂層の弾性率を特定の値の範囲に制御することで、屈曲性を有するとともに、かつ乾式成膜法で形成した透明導電層のヘーズの増加が抑制できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(13)を提供するものである。
(1)透明基材上に、少なくとも埋込樹脂層、補助電極層、及び透明導電層を含む透明導電性積層体であって、前記透明導電層が金属酸化物からなり、前記埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである、透明導電性積層体。
(2)前記埋込樹脂層のガラス転移温度が90℃以上である、上記(1)に記載の透明導電性積層体。
(3)前記埋込樹脂層の膜厚が0.1~100μmである、上記(1)又は(2)に記載の透明導電性積層体。
(4)前記透明導電性積層体が、さらに前記埋込樹脂層の透明導電層とは反対の面上に密着層を含む、上記(1)~(3)のいずれかに記載の透明導電性積層体。
(5)前記密着層のガラス転移温度が40℃以上である、上記(4)に記載の透明導電性積層体。
(6)前記密着層の膜厚が1~120μmである、上記(4)又は(5)に記載の透明導電性積層体。
(7)前記密着層の25℃における弾性率が100~3000MPaである、上記(4)~(6)のいずれかに記載の透明導電性積層体。
(8)前記透明導電性積層体が、さらに透明基材上に透明ガスバリア層を含む上記(1)~(7)のいずれかに記載の透明導電性積層体。
(9)前記透明導電性積層体が、さらに前記埋込樹脂層と透明ガスバリア層との間に密着層を含む、上記(8)に記載の透明導電性積層体。
(10)前記金属酸化物がスパッタ法で成膜される、上記(1)に記載の透明導電性積層体。
(11)上記(1)~(10)のいずれかに記載の透明導電性積層体を有する、太陽電池素子又は有機エレクトロルミネッセンス素子。
(12)透明基材上に、少なくとも埋込樹脂層、補助電極層、及び透明導電層を含み、該透明導電層が金属酸化物からなり、前記埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである、透明導電性積層体の製造方法であって、前記補助電極層を形成する工程、該補助電極層の開口部、又は、補助電極層上及び開口部に前記埋込樹脂層を形成する工程、及び前記透明導電層を形成する工程を含む、透明導電性積層体の製造方法。
(13)さらに、密着層を形成する工程及び/又は透明ガスバリア層を形成する工程を含む、上記(12)に記載の透明導電性積層体の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have determined that the elastic modulus of the opening portion of the auxiliary electrode layer or the embedded resin layer provided above the opening portion and the auxiliary electrode layer has a specific value. By controlling to the range, it was found that while having flexibility, an increase in haze of the transparent conductive layer formed by the dry film forming method can be suppressed, and the present invention was completed.
That is, the present invention provides the following (1) to (13).
(1) A transparent conductive laminate comprising at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, wherein the transparent conductive layer is made of a metal oxide, and the embedded resin layer A transparent conductive laminate having an elastic modulus at 25 ° C. of 3000 to 8000 MPa and an elastic modulus at 70 ° C. of 1000 to 7000 MPa.
(2) The transparent conductive laminate according to the above (1), wherein the embedded resin layer has a glass transition temperature of 90 ° C. or higher.
(3) The transparent conductive laminate according to the above (1) or (2), wherein the thickness of the embedded resin layer is 0.1 to 100 μm.
(4) The transparent conductive layer according to any one of the above (1) to (3), wherein the transparent conductive laminate further includes an adhesion layer on a surface of the embedded resin layer opposite to the transparent conductive layer. Laminated body.
(5) The transparent conductive laminate according to (4), wherein the adhesion layer has a glass transition temperature of 40 ° C. or higher.
(6) The transparent conductive laminate according to the above (4) or (5), wherein the adhesion layer has a thickness of 1 to 120 μm.
(7) The transparent conductive laminate according to any one of (4) to (6), wherein the adhesion layer has an elastic modulus at 25 ° C. of 100 to 3000 MPa.
(8) The transparent conductive laminate according to any one of (1) to (7), wherein the transparent conductive laminate further comprises a transparent gas barrier layer on a transparent substrate.
(9) The transparent conductive laminate according to (8), wherein the transparent conductive laminate further comprises an adhesion layer between the embedded resin layer and the transparent gas barrier layer.
(10) The transparent conductive laminate according to (1), wherein the metal oxide is formed by sputtering.
(11) A solar cell element or organic electroluminescence element comprising the transparent conductive laminate according to any one of (1) to (10) above.
(12) On the transparent substrate, at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer are included, the transparent conductive layer is made of a metal oxide, and the elastic modulus at 25 ° C. of the embedded resin layer is 3000. A method for producing a transparent conductive laminate having a modulus of elasticity of 1000 to 7000 MPa at 70 ° C., the step of forming the auxiliary electrode layer, the opening of the auxiliary electrode layer, or an auxiliary The manufacturing method of a transparent conductive laminated body including the process of forming the said embedded resin layer on an electrode layer and an opening part, and the process of forming the said transparent conductive layer.
(13) The method for producing a transparent conductive laminate according to (12), further comprising a step of forming an adhesion layer and / or a step of forming a transparent gas barrier layer.
 本発明によれば、優れた光学特性及び屈曲性を同時に有する透明導電性積層体を提供することができる。 According to the present invention, it is possible to provide a transparent conductive laminate having excellent optical properties and flexibility at the same time.
本発明の透明導電性積層体の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the transparent conductive laminated body of this invention. 本発明の透明導電性積層体の構成の他の一例を示す断面図である。It is sectional drawing which shows another example of a structure of the transparent conductive laminated body of this invention.
[透明導電性積層体]
 本発明の透明導電性積層体は、透明基材上に、少なくとも埋込樹脂層、補助電極層、及び透明導電層を含む透明導電性積層体であって、前記透明導電層が金属酸化物からなり、前記埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである。
 前記埋込樹脂層の25℃及び70℃における弾性率を上記の範囲に制御することにより、透明導電層形成前後での乾式成膜法由来の温度上昇、乾式成膜法で形成した膜の応力等により生じる透明導電層表面の凹凸によるヘーズの増加を抑制することができ、屈曲性を維持しつつ光学特性の優れた透明導電性積層体が得られる。
 なお、本発明においては、「透明導電性積層体」と「透明導電積層体」とを区別して用いる。「透明導電積層体」とは、本発明の「透明導電性積層体」の構成において、透明導電層を含まない積層体を意味する。
 本発明の透明導電性積層体の構成について、図を用いて説明する。
[Transparent conductive laminate]
The transparent conductive laminate of the present invention is a transparent conductive laminate comprising at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, and the transparent conductive layer is made of a metal oxide. The elastic modulus at 25 ° C. of the embedded resin layer is 3000 to 8000 MPa, and the elastic modulus at 70 ° C. is 1000 to 7000 MPa.
By controlling the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer within the above range, the temperature rise from the dry film formation method before and after the formation of the transparent conductive layer, the stress of the film formed by the dry film formation method An increase in haze due to irregularities on the surface of the transparent conductive layer caused by the above can be suppressed, and a transparent conductive laminate having excellent optical characteristics while maintaining flexibility is obtained.
In the present invention, a “transparent conductive laminate” and a “transparent conductive laminate” are used separately. The “transparent conductive laminate” means a laminate that does not include a transparent conductive layer in the configuration of the “transparent conductive laminate” of the present invention.
The configuration of the transparent conductive laminate of the present invention will be described with reference to the drawings.
 図1は、本発明の透明導電性積層体の構成の一例を示す断面図である。透明導電性積層体1Aは、透明基材2上に埋込樹脂層3、補助電極4及び透明導電層5を積層した構成としたものである。補助電極層4は隣接する補助電極層4同士間に開口部9を有し、埋込樹脂層3は、開口部9及び補助電極層4上に存在する。
 同様に、図2は、本発明の透明導電性積層体の構成の他の一例を示す断面図である。透明導電性積層体1Bは、透明基材2上にプライマー層6を介し透明ガスバリア層7、密着層8、埋込樹脂層3、補助電極4及び透明導電層5を積層した構成としたものである。補助電極層4は隣接する補助電極層4同士間に開口部9を有し、埋込樹脂層3は、開口部9及び補助電極層4上に存在する。
 上記において、埋込樹脂層3は、開口部9にのみに存在していてもよい。
FIG. 1 is a cross-sectional view showing an example of the configuration of the transparent conductive laminate of the present invention. The transparent conductive laminate 1 </ b> A has a configuration in which an embedded resin layer 3, an auxiliary electrode 4, and a transparent conductive layer 5 are laminated on a transparent substrate 2. The auxiliary electrode layer 4 has an opening 9 between adjacent auxiliary electrode layers 4, and the embedded resin layer 3 exists on the opening 9 and the auxiliary electrode layer 4.
Similarly, FIG. 2 is a cross-sectional view showing another example of the configuration of the transparent conductive laminate of the present invention. The transparent conductive laminate 1B has a structure in which a transparent gas barrier layer 7, an adhesion layer 8, an embedded resin layer 3, an auxiliary electrode 4 and a transparent conductive layer 5 are laminated on a transparent substrate 2 with a primer layer 6 interposed therebetween. is there. The auxiliary electrode layer 4 has an opening 9 between adjacent auxiliary electrode layers 4, and the embedded resin layer 3 exists on the opening 9 and the auxiliary electrode layer 4.
In the above, the embedded resin layer 3 may exist only in the opening 9.
(基材)
 本発明に用いる透明基材は、特に限定されず、使用するデバイス等に応じて、適宜選択すればよく、例えば、柔軟性及び可視光域で高い透過率を有するものであれば特に限定されず、フレキシブルガラス、樹脂フィルム等が挙げられる。樹脂フィルムの材料としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系コポリマー、シクロオレフィン系ポリマー、芳香族系重合体、ポリウレタン系ポリマー等が挙げられる。
 これらの中で、ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリアリレート等が挙げられる。また、シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。例えば、シクロオレフィン系ポリマーとして工業的には、アペル(三井化学社製、エチレン-シクロオレフィン共重合体)、アートン(JSR社製、ノルボルネン共重合体)、ゼオノア(日本ゼオン社製、ノルボルネン系共重合体)等が挙げられる。このような透明基材の中で、ハンドリング性の観点から、二軸延伸されたポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。光学等方性の観点からはシクロオレフィン系ポリマーやシクロオレフィン系コポリマーが特に好ましい。耐熱性の観点からは、ポリイミドが特に好ましい。
 ハンドリング性に優れることで、本発明の透明導電性積層体の製造が容易になり、また光学等方性に優れることで、本発明の透明導電性積層体を表示デバイスに用いる際に、好適に用いることができる。
 透明基材の厚みは、1~1000μmであることが好ましく、より好ましくは5~250μm、さらに好ましくは10~200μmである。この範囲であれば、基材としての機械強度、透明性が確保できる。
(Base material)
The transparent substrate used in the present invention is not particularly limited, and may be appropriately selected according to the device to be used. For example, it is not particularly limited as long as it has flexibility and high transmittance in the visible light range. , Flexible glass, resin film and the like. Resin film materials include polyimide, polyamide, polyamideimide, polyphenylene ether, polyetherketone, polyetheretherketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cyclohexane Examples include olefin copolymers, cycloolefin polymers, aromatic polymers, polyurethane polymers, and the like.
Among these, examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and polyarylate. Examples of the cycloolefin polymer include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. For example, as a cycloolefin polymer, industrially, Apel (manufactured by Mitsui Chemicals, ethylene-cycloolefin copolymer), Arton (manufactured by JSR, norbornene copolymer), Zeonore (manufactured by Nippon Zeon Co., Ltd., norbornene copolymer) Polymer) and the like. Among such transparent substrates, from the viewpoint of handling properties, biaxially stretched polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable. From the viewpoint of optical isotropy, a cycloolefin polymer and a cycloolefin copolymer are particularly preferable. From the viewpoint of heat resistance, polyimide is particularly preferable.
When the transparent conductive laminate of the present invention is used for a display device, it is easy to produce the transparent conductive laminate of the present invention by being excellent in handling properties, and excellent in optical isotropy. Can be used.
The thickness of the transparent substrate is preferably 1 to 1000 μm, more preferably 5 to 250 μm, and still more preferably 10 to 200 μm. If it is this range, the mechanical strength as a base material and transparency can be ensured.
(補助電極層)
 本発明に用いる補助電極層は、本発明の透明導電性積層体の透明導電層のシート抵抗値を低下させるために設けられる。また、通常、透明導電層の光線透過率の低下を抑制するためにパターン化し開口部を設ける。
(Auxiliary electrode layer)
The auxiliary electrode layer used for this invention is provided in order to reduce the sheet resistance value of the transparent conductive layer of the transparent conductive laminated body of this invention. Moreover, in order to suppress the fall of the light transmittance of a transparent conductive layer, it patterns and provides an opening part normally.
 補助電極層の材料は、特に制限されないが、フォトリソグラフィー等の方法を用いてパターン化を行うことが好ましい。その場合に、補助電極層の材料は、金、銀、銅、アルミニウム、マグネシウム、ニッケル、白金、パラジウム等の単金属、銀-パラジウム、銀-銅、銀-マグネシウム、アルミニウム-シリコン、アルミニウム-銀、アルミニウム-銅、アルミニウム-チタン-パラジウム等の2元ないし3元系のアルミニウム合金等を挙げることができる。これらの材料の中で、比抵抗値の観点から、銀、銅、アルミニウム、及びアルミニウム合金が好ましく、コスト、エッチング性、耐食性の観点から、銅、アルミニウム合金がより好ましい。 The material of the auxiliary electrode layer is not particularly limited, but patterning is preferably performed using a method such as photolithography. In this case, the material of the auxiliary electrode layer is gold, silver, copper, aluminum, magnesium, nickel, platinum, single metal such as palladium, palladium, silver-palladium, silver-copper, silver-magnesium, aluminum-silicon, aluminum-silver Binary or ternary aluminum alloys such as aluminum-copper and aluminum-titanium-palladium. Among these materials, silver, copper, aluminum, and an aluminum alloy are preferable from the viewpoint of specific resistance, and copper and aluminum alloy are more preferable from the viewpoint of cost, etching property, and corrosion resistance.
 また、補助電極層の材料として、導電性材料を含む導電ペーストを用いることができる。導電ペーストとしては、特に限定はされないが、例えば、溶媒中に、金属微粒子、カーボン、酸化ルテニウム等の導電性微粒子や金属ナノワイヤー、カーボンナノチューブ等の導電性カーボン材料を分散させたものを用いることができ、さらにバインダー成分を有していてもよく、2種類以上の導電ペーストを混合させて使用してもよい。この導電ペーストを印刷し、焼成もしくは硬化することにより、補助電極層が得られる。 Also, a conductive paste containing a conductive material can be used as a material for the auxiliary electrode layer. The conductive paste is not particularly limited. For example, a conductive paste in which conductive fine particles such as metal fine particles, carbon and ruthenium oxide, and conductive carbon materials such as metal nanowires and carbon nanotubes are dispersed in a solvent is used. In addition, a binder component may be included, and two or more kinds of conductive pastes may be mixed and used. An auxiliary electrode layer is obtained by printing and baking or curing this conductive paste.
 上記金属微粒子の材質としては、特に限定されないが、前述した単金属および合金から成る材質が挙げられる。導電性の観点からは、銀、銅、アルミニウム等が好ましい。耐食性や耐薬品性の面からは、白金、ロジウム、ルテニウム、パラジウム等が好ましく、これらの金属を1種または2種以上含んでいてもよい。また、コストの観点から銀を表層に被覆した銅微粒子や、柔軟性の観点から銀を表層に被覆した樹脂粒子のような複合微粒子を用いてもよい。金属ナノワイヤ材料は、特に限定されないが、銀ナノワイヤ、銅ナノワイヤ、ニッケルナノワイヤ、シリコンナノワイヤ等が挙げられる。
導電性カーボン材料は、導電性の面では金属に比べて劣っているが、低価格であり、耐食性及び耐薬品性に優れている。導電性カーボン材料としては、特に限定されないが、アセチレンブラック、ケッチェンブラック、オイルファーネスブラック、導電性単層カーボンナノチューブ、導電性多層カーボンナノチューブ、グラフェンパウダー等が挙げられる。また、酸化ルテニウム(RuO)微粒子は、導電性カーボン材料に比べて高価ではあるが、優れた耐食性を有する導電性物質であるため、補助電極層として使用できる。
The material of the metal fine particles is not particularly limited, and examples thereof include materials composed of the single metals and alloys described above. From the viewpoint of conductivity, silver, copper, aluminum and the like are preferable. From the viewpoint of corrosion resistance and chemical resistance, platinum, rhodium, ruthenium, palladium and the like are preferable, and one or more of these metals may be included. Moreover, you may use the composite fine particle like the copper particle which coat | covered silver on the surface layer from a viewpoint of cost, and the resin particle which coat | covered silver on the surface layer from a softness | flexibility viewpoint. Although metal nanowire material is not specifically limited, Silver nanowire, copper nanowire, nickel nanowire, silicon nanowire etc. are mentioned.
The conductive carbon material is inferior to metal in terms of conductivity, but is low in price and excellent in corrosion resistance and chemical resistance. The conductive carbon material is not particularly limited, and examples thereof include acetylene black, ketjen black, oil furnace black, conductive single-walled carbon nanotubes, conductive multi-walled carbon nanotubes, and graphene powder. Further, ruthenium oxide (RuO 2 ) fine particles are more expensive than the conductive carbon material, but can be used as an auxiliary electrode layer because they are conductive materials having excellent corrosion resistance.
 補助電極層は、単層であってもよく、多層構造であってもよい。多層構造としては、同種の材料からなる層を積層した多層構造であってもよく、少なくとも2種類以上の材料からなる層を積層した多層構造であってもよい。
 多層構造としては、異種の材料からなる層を積層した2層構造であることがより好ましい。このような多層構造としては、例えば、最初に銀のパターン層を形成させ、その上から銅のパターン層を形成させると、銀の高導電性を保持しながら耐食性が改善されるため好ましい。
 また、光学特性の改善を目的として、形成した補助電極層に対して、化学処理を施してもよい。例えば、反射防止を目的とした、銅を主とする補助電極層への黒化処理等が挙げられる。黒化処理を施すことで、本発明の透明導電性積層体を、表示デバイスや照明デバイスに用いた際に、コントラストの向上を図れる。
The auxiliary electrode layer may be a single layer or a multilayer structure. The multilayer structure may be a multilayer structure in which layers made of the same kind of material are laminated, or a multilayer structure in which layers made of at least two kinds of materials are laminated.
The multilayer structure is more preferably a two-layer structure in which layers of different materials are stacked. As such a multilayer structure, for example, it is preferable to form a silver pattern layer first and then form a copper pattern layer on the silver pattern layer, because the corrosion resistance is improved while maintaining high silver conductivity.
Further, for the purpose of improving optical characteristics, the formed auxiliary electrode layer may be subjected to chemical treatment. For example, a blackening treatment to an auxiliary electrode layer mainly made of copper for the purpose of preventing reflection can be mentioned. By performing the blackening treatment, the contrast can be improved when the transparent conductive laminate of the present invention is used in a display device or a lighting device.
 本発明に用いた補助電極層のパターンとしては、特に限定されず、格子状、ハニカム状、櫛歯状、帯状(ストライプ状)、直線状、曲線状、波線状(サイン曲線等)、多角形状の網目状、円形状の網目状、楕円状の網目状、不定形等が挙げられる。これらの中でも、格子状、ハニカム状、櫛歯状のものが好ましい。 The pattern of the auxiliary electrode layer used in the present invention is not particularly limited, and is a lattice, honeycomb, comb, strip (stripe), linear, curved, wavy (sine curve, etc.), polygonal shape. And the like, a circular mesh shape, an elliptical mesh shape, and an indeterminate shape. Among these, a lattice shape, a honeycomb shape, or a comb shape is preferable.
 補助電極層の厚さは、10nm~20μmであることが好ましく、より好ましくは100nm~15μm、さらに好ましくは1μm~10μmである。
 補助電極層のパターンの開口部(補助電極層が形成されてない部分)の開口率としては、透明性(光線透過率)の観点から、80%以上100%未満であることが好ましく、より好ましくは85%以上99%未満であり、さらに好ましくは90%以上98%未満である。なお、開口率とは、開口部を含む補助電極層のパターンが形成されている全領域の面積に対する、開口部の総面積の割合である。
 補助電極層の線幅は、0.1~100μmが好ましく、より好ましくは1~80μm、さらに好ましくは5~60μmである。線幅がこの範囲にあれば、開口率が広く、透過率が確保でき、さらに、安定した低抵抗の透明導電性積層体が得られるため、好ましい。
The thickness of the auxiliary electrode layer is preferably 10 nm to 20 μm, more preferably 100 nm to 15 μm, still more preferably 1 μm to 10 μm.
The aperture ratio of the opening portion of the auxiliary electrode layer pattern (the portion where the auxiliary electrode layer is not formed) is preferably 80% or more and less than 100%, more preferably, from the viewpoint of transparency (light transmittance). Is 85% or more and less than 99%, more preferably 90% or more and less than 98%. The aperture ratio is the ratio of the total area of the openings to the area of the entire region where the pattern of the auxiliary electrode layer including the openings is formed.
The line width of the auxiliary electrode layer is preferably from 0.1 to 100 μm, more preferably from 1 to 80 μm, still more preferably from 5 to 60 μm. If the line width is within this range, the aperture ratio is wide, the transmittance can be secured, and a stable low-resistance transparent conductive laminate can be obtained, which is preferable.
(埋込樹脂層)
 本発明に用いる埋込樹脂層は、透明導電層の成膜時の温度上昇及び膜の応力緩和による透明導電性積層体の透明導電層表面における凹凸の発生の抑制、補助電極層の転写性の向上及び屈曲性を発現させるために用いられる。
(Embedded resin layer)
The embedded resin layer used in the present invention suppresses the occurrence of unevenness on the surface of the transparent conductive layer of the transparent conductive laminate due to the temperature rise during the formation of the transparent conductive layer and the stress relaxation of the film, and the transferability of the auxiliary electrode layer. Used to improve and develop flexibility.
 埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである。25℃における弾性率が3000MPa未満であると、補助電極層の転写性に劣るため、転写工程を用いた透明導電性積層体の形成が出来ない。25℃における弾性率が8000MPa超であると、屈曲性が低下する。また、70℃における弾性率が1000MPa未満であると、乾式成膜時の熱履歴由来の熱収縮及び透明導電層の膜応力が要因となり埋込樹脂層表面に凹凸が発生しやすくなり、ヘーズの上昇はもとより、透明導電層にクラックを発生させやすくする。70℃における弾性率が7000MPa超であると、成膜後の透明導電層の応力緩和を十分に抑制することができず、透明導電層の剥離が生ずる場合がある。
 25℃における弾性率は、3300~7900MPaが好ましく、より好ましくは3500~7500MPa、さらに好ましくは3600~7300MPaである。
 70℃における弾性率は、1100~6700MPaが好ましく、より好ましくは1200~6500MPa、さらに好ましくは1300~6400MPaである。25℃における弾性率及び70℃における弾性率が上記の範囲にあると、補助電極層の転写性が向上し、同時に成膜後の透明導電層の応力緩和を抑制することができ、ヘーズ上昇の抑制につながり、優れた光学特性を有する透明導電性積層体が得られる。
The embedded resin layer has an elastic modulus at 25 ° C. of 3000 to 8000 MPa and an elastic modulus at 70 ° C. of 1000 to 7000 MPa. When the elastic modulus at 25 ° C. is less than 3000 MPa, the transferability of the auxiliary electrode layer is inferior, so that a transparent conductive laminate using a transfer process cannot be formed. Flexibility falls that the elastic modulus in 25 degreeC is over 8000 Mpa. Further, if the elastic modulus at 70 ° C. is less than 1000 MPa, unevenness is likely to occur on the surface of the embedded resin layer due to thermal shrinkage derived from thermal history during dry film formation and film stress of the transparent conductive layer, and haze In addition to the rise, the transparent conductive layer is easily cracked. When the elastic modulus at 70 ° C. exceeds 7000 MPa, stress relaxation of the transparent conductive layer after film formation cannot be sufficiently suppressed, and the transparent conductive layer may be peeled off.
The elastic modulus at 25 ° C. is preferably 3300 to 7900 MPa, more preferably 3500 to 7500 MPa, still more preferably 3600 to 7300 MPa.
The elastic modulus at 70 ° C. is preferably 1100 to 6700 MPa, more preferably 1200 to 6500 MPa, and still more preferably 1300 to 6400 MPa. When the elastic modulus at 25 ° C. and the elastic modulus at 70 ° C. are in the above ranges, the transferability of the auxiliary electrode layer is improved, and at the same time, stress relaxation of the transparent conductive layer after film formation can be suppressed, and haze increases. This leads to suppression, and a transparent conductive laminate having excellent optical properties is obtained.
 前記埋込樹脂層のガラス転移温度が90℃以上であることが好ましく、より好ましくは、110℃以上、さらに好ましくは130℃以上である。埋込樹脂層のガラス転移温度がこの範囲にあると、70℃における弾性率を前述した範囲に維持できる。
 前記埋込樹脂層の膜厚が0.1~100μmであることが好ましく、より好ましくは1~80μm、さらに好ましくは5~60μmである。埋込樹脂層の膜厚がこの範囲にあり、弾性率が本発明の範囲内にあると、成膜後の透明導電層の応力緩和を抑制することができ、補助電極層を埋め込む事が出来る。
The glass transition temperature of the embedded resin layer is preferably 90 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 130 ° C. or higher. When the glass transition temperature of the embedded resin layer is within this range, the elastic modulus at 70 ° C. can be maintained within the above-described range.
The thickness of the embedded resin layer is preferably 0.1 to 100 μm, more preferably 1 to 80 μm, and still more preferably 5 to 60 μm. When the thickness of the embedded resin layer is within this range and the elastic modulus is within the range of the present invention, stress relaxation of the transparent conductive layer after film formation can be suppressed, and the auxiliary electrode layer can be embedded. .
 本発明に用いる埋込樹脂層は、前述した弾性率が、本発明の範囲内であれば特に制限されないが、高温時でも高い弾性率を得る観点から、無機微粒子を含む透明樹脂組成物からなっていてもよい。また、無機微粒子を含むことがなくてもよい。具体的には、無機微粒子を含む場合は、以下のエネルギー線感応型組成物を硬化してなるものである。
 エネルギー線感応型組成物は、(i)エネルギー線硬化型化合物、(ii)無機微粒子、(iii)光重合開始剤を含む。該エネルギー線感応型組成物に対して、エネルギー線を照射することで、架橋、硬化し得ることができる。
 また、該組成物には、本発明の効果を損なわない範囲で、紫外線吸収剤、光安定剤、酸化防止剤、赤外線吸収剤、帯電防止剤、レベリング剤、消泡剤等の添加剤を含むことができる。
 なお、本発明において「エネルギー線」とは、紫外線又は電子線等の電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。
The embedded resin layer used in the present invention is not particularly limited as long as the above-described elastic modulus is within the range of the present invention. However, from the viewpoint of obtaining a high elastic modulus even at high temperatures, the embedded resin layer is made of a transparent resin composition containing inorganic fine particles. It may be. Moreover, it does not need to contain inorganic fine particles. Specifically, when inorganic fine particles are included, the following energy ray-sensitive composition is cured.
The energy beam sensitive composition includes (i) an energy beam curable compound, (ii) inorganic fine particles, and (iii) a photopolymerization initiator. By irradiating the energy ray sensitive composition with energy rays, it can be crosslinked and cured.
The composition contains additives such as an ultraviolet absorber, a light stabilizer, an antioxidant, an infrared absorber, an antistatic agent, a leveling agent, and an antifoaming agent as long as the effects of the present invention are not impaired. be able to.
In the present invention, the term “energy beam” means an electromagnetic wave such as an ultraviolet ray or an electron beam or a charged particle beam having energy quanta.
(i)エネルギー線硬化型化合物
 エネルギー線硬化型化合物としては、多官能性(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系プレポリマーが好ましく、多官能性(メタ)アクリレート系モノマーがより好ましい。
 なお、本発明において、(メタ)アクリレートとは、アクリレート及びメタクリレートの両方を意味し、他の類似用語も同様である。
(I) Energy ray curable compound As the energy ray curable compound, a polyfunctional (meth) acrylate monomer and / or a (meth) acrylate prepolymer is preferable, and a polyfunctional (meth) acrylate monomer is more preferable. .
In the present invention, (meth) acrylate means both acrylate and methacrylate, and the same applies to other similar terms.
 多官能性(メタ)アクリレート系モノマーとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 なお、これらのモノマーは単独で又は2種以上を組み合わせて用いてもよい。
Examples of multifunctional (meth) acrylate monomers include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol diene. (Meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di (meth) acrylate, ethylene oxide modified di (meth) acrylate phosphoric acid, allylation Cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified dipenta Lithritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, di Examples include pentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate.
In addition, you may use these monomers individually or in combination of 2 or more types.
 (メタ)アクリレート系プレポリマーとしては、例えば、ポリエステル(メタ)アクリレート系プレポリマー、エポキシ(メタ)アクリレート系プレポリマー、ウレタン(メタ)アクリレート系プレポリマー、ポリオール(メタ)アクリレート系プレポリマー等が挙げられる。
 ポリエステル(メタ)アクリレート系プレポリマーは、例えば、多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。
 エポキシアクリレート系プレポリマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。
 ウレタンアクリレート系プレポリマーは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアネートの反応によって得られる両末端に水酸基を有するポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。
 ポリオールアクリレート系プレポリマーは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。
 なお、これらのプレポリマーは単独で又は2種以上を組み合わせて用いてもよく、前記多官能性(メタ)アクリレート系モノマーと併用してもよい。
Examples of (meth) acrylate-based prepolymers include polyester (meth) acrylate-based prepolymers, epoxy (meth) acrylate-based prepolymers, urethane (meth) acrylate-based prepolymers, polyol (meth) acrylate-based prepolymers, and the like. It is done.
The polyester (meth) acrylate-based prepolymer can be obtained, for example, by esterifying a hydroxyl group of a polyester oligomer having hydroxyl groups at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid. it can. Or it can obtain by esterifying the hydroxyl group of the terminal of the oligomer obtained by adding an alkylene oxide to polyhydric carboxylic acid with (meth) acrylic acid.
The epoxy acrylate prepolymer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it.
The urethane acrylate prepolymer can be obtained, for example, by esterifying a polyurethane oligomer having hydroxyl groups at both ends obtained by reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid.
The polyol acrylate prepolymer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid.
These prepolymers may be used alone or in combination of two or more, and may be used in combination with the polyfunctional (meth) acrylate monomer.
(ii)無機微粒子
 本発明に用いる無機微粒子は、特に制限されないが、透明導電性積層体の全光線透過率の低下(ヘーズの増加)等、該透明導電性積層体の基本的な特性を損なわない範囲で選択され、シリカ微粒子、酸化チタン微粒子、アルミナ微粒子、炭酸カルシウム微粒子が挙げられる。該無機微粒子の中でも、(i)エネルギー線硬化型化合物と強固な結合を形成する観点から、該エネルギー線硬化型化合物と反応することができる重合性不飽和基を有する有機化合物で表面修飾されたシリカ微粒子が好ましい。
 重合性不飽和基を有する有機化合物で表面修飾されたシリカ微粒子は、シリカ微粒子の表面のシラノール基に、該シラノール基と反応し得る官能基を有する重合性不飽和基含有有機化合物を反応させることにより、得ることができる。
 なお、本発明において、無機微粒子の表面を修飾する重合性不飽和基を有する有機化合物は、(ii)無機微粒子の構成要素として含まれるものであり、上記の(i)エネルギー線硬化型化合物とは区別される。
(Ii) Inorganic fine particles The inorganic fine particles used in the present invention are not particularly limited, but damage the basic characteristics of the transparent conductive laminate, such as a decrease in total light transmittance (increase in haze) of the transparent conductive laminate. The silica fine particles, titanium oxide fine particles, alumina fine particles, and calcium carbonate fine particles are exemplified. Among the inorganic fine particles, (i) from the viewpoint of forming a strong bond with the energy ray curable compound, the surface was modified with an organic compound having a polymerizable unsaturated group capable of reacting with the energy ray curable compound. Silica fine particles are preferred.
Silica fine particles whose surface is modified with an organic compound having a polymerizable unsaturated group are prepared by reacting a silanol group on the surface of the silica fine particle with a polymerizable unsaturated group-containing organic compound having a functional group capable of reacting with the silanol group. Can be obtained.
In the present invention, the organic compound having a polymerizable unsaturated group that modifies the surface of the inorganic fine particles is included as a constituent of (ii) the inorganic fine particles, and the above-mentioned (i) energy ray-curable compound and Are distinguished.
 前記シラノール基と反応し得る官能基を有する重合性不飽和基含有有機化合物としては、例えば、下記一般式(1)で表される化合物等が好ましい。 As the polymerizable unsaturated group-containing organic compound having a functional group capable of reacting with the silanol group, for example, a compound represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001

 (式中、Rは水素原子又はメチル基、Rはハロゲン原子又は下記式で示される基である。)
Figure JPOXMLDOC01-appb-C000001

(In the formula, R 1 is a hydrogen atom or a methyl group, R 2 is a halogen atom or a group represented by the following formula.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 このような有機化合物としては、例えば、(メタ)アクリル酸クロリド、(メタ)アクリル酸2-イソシアナートエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2,3-イミノプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸、(メタ)アクリロイルオキシプロピルトリメトキシシラン等の(メタ)アクリル酸及びその誘導体が挙げられ、単独で又は2種以上を組み合わせて用いてもよい。 Examples of such organic compounds include (meth) acrylic acid chloride, (meth) acrylic acid 2-isocyanate ethyl, (meth) acrylic acid glycidyl, (meth) acrylic acid 2,3-iminopropyl, (meth) (Meth) acrylic acid and derivatives thereof such as 2-hydroxyethyl acrylate, (meth) acrylic acid, (meth) acryloyloxypropyltrimethoxysilane and the like may be mentioned, and these may be used alone or in combination of two or more.
 前記無機微粒子を含む埋込樹脂層全体積中の該無機微粒子の含有量は、好ましくは20~70体積%、より好ましくは30~65体積%、さらに好ましくは30~60体積%である。無機微粒子の含有量がこの範囲であると、例えば、埋込樹脂層の70℃の弾性率を高い値に制御できる。また、耐熱性を向上させることができる。無機微粒子としては、シリカ微粒子が好ましい。 The content of the inorganic fine particles in the entire volume of the embedded resin layer containing the inorganic fine particles is preferably 20 to 70% by volume, more preferably 30 to 65% by volume, and further preferably 30 to 60% by volume. When the content of the inorganic fine particles is within this range, for example, the elastic modulus at 70 ° C. of the embedded resin layer can be controlled to a high value. Moreover, heat resistance can be improved. As the inorganic fine particles, silica fine particles are preferable.
(iii)光重合開始剤
 エネルギー線感応型組成物には、光重合開始剤が含有する。
 光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2(ヒドロキシ-2-プロピル)ケトン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミノ安息香酸エステル等が挙げられる。これらの光重合開始剤は、単独で又は2種以上を組み合わせて用いてもよい。市販品である、Irgacure127、Irgacure184、Irgacure819, Darocure1173等を適宜用いることができる。
(Iii) Photopolymerization initiator The energy ray-sensitive composition contains a photopolymerization initiator.
Examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl]- 2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 (hydroxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzene Nzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2 , 4-diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, p-dimethylaminobenzoate, and the like. These photopolymerization initiators may be used alone or in combination of two or more. Commercially available products such as Irgacure 127, Irgacure 184, Irgacure 819, Darocur 1173 and the like can be used as appropriate.
 上記(i)エネルギー線硬化型化合物、(ii)シリカ微粒子、及び(iii)光重合開始剤を含むエネルギー線感応型組成物の市販品としては、例えば、「オプスターZ7530」、「オプスターZ7524」、「オプスターTU4086」(製品名、いずれもJSR社製)、等が挙げられる。 Examples of commercially available energy ray-sensitive compositions containing the above (i) energy ray-curable compound, (ii) silica fine particles, and (iii) a photopolymerization initiator include, for example, “Opster Z7530”, “Opster Z7524”, “OPSTAR TU4086” (product name, all manufactured by JSR Corporation), and the like.
 また、上記において、(ii)シリカ微粒子を含まない、(i)エネルギー線硬化型化合物及び(iii)光重合開始剤からなるエネルギー線感応型組成物を用い、埋込樹脂層を形成することができる。
 (i)エネルギー線硬化型化合物としては、柔軟性の観点から、ウレタンアクリレート系化合物が好ましく、例えば1分子中に2個以上のNCO基を有する化合物1モルに対して2モル以上のヒドロキシル基含有アクリル系モノマーを反応させて得られる、1分子中に1個以上の(メタ)アクリル基を有する化合物が挙げられる。ここで、ヒドロキシル基含有アクリル系モノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレートなどのヒドロキシル基含有(メタ)アクリレートが挙げられる。
 また、1分子中2個以上のNCO基を有する化合物としては、ジイソシナネート等のポリイソシアネート化合物とジオール等のポリオール化合物とを反応させて得られる分子量が500~50000程度のオリゴマーが好ましい。
 ポリイソシアネート化合物としては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等の脂肪族ポリイソシアネートや、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート等の芳香族ポリイソシアネートが挙げられる。
 ポリオール化合物としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール等のグリコール;グリセリン、ペンタエリトリトール等の3価以上のポリオール;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール等のポリエーテル型ジオール;上記ジオールと、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、アジピン酸、セバシン酸等の二塩基酸とを反応して得られるポリエステル型のジオール等、が挙げられる。
 例えば、市販品としては、UV硬化系ウレタンアクリレート樹脂(日本合成化学社製、UT5746、固形分80質量%、酢酸エチル溶液)等が挙げられる。
 光重合開始剤としては、光を照射したときにラジカルを発生させる化合物が挙げられる。このような光重合開始剤としては、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系光重合開始剤、オキシムエステル系光重合開始剤等が挙げられる。
 これらの中でも、弾性率の調整が容易な点から、アシルフォスフィンオキサイド系光反応開始剤が好ましい。
光重合開始剤等の量を調整することにより、所定の弾性率を有する埋込樹脂層とすることもできる。
 光重合開始剤の含有量としては、(i)エネルギー線硬化型化合物100質量部に対して、好ましくは0.2~5質量部、より好ましくは0.5~3質量部である。光重合開始剤の含有量がこの範囲にあると、耐候性が良好で、硬化性が十分となる。
Further, in the above, an embedded resin layer may be formed using an energy ray sensitive composition comprising (ii) an energy ray curable compound and (iii) a photopolymerization initiator that does not contain silica fine particles. it can.
(I) From the viewpoint of flexibility, the energy ray curable compound is preferably a urethane acrylate compound. For example, 2 mol or more of hydroxyl group is contained per 1 mol of a compound having 2 or more NCO groups in one molecule. Examples thereof include compounds having one or more (meth) acrylic groups in one molecule, obtained by reacting acrylic monomers. Here, hydroxyl group-containing acrylic monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono Examples include hydroxyl group-containing (meth) acrylates such as (meth) acrylate and cyclohexanedimethanol mono (meth) acrylate.
The compound having two or more NCO groups in one molecule is preferably an oligomer having a molecular weight of about 500 to 50,000 obtained by reacting a polyisocyanate compound such as diisocyanate and a polyol compound such as diol.
Examples of the polyisocyanate compound include aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate, and aromatic polyisocyanates such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, and phenylene diisocyanate.
Examples of the polyol compound include glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, hexamethylene glycol, neopentyl glycol, and 1,4-cyclohexanedimethanol; trivalent or higher polyols such as glycerin and pentaerythritol; polyethylene glycol, polypropylene Polyether-type diols such as glycol, polytetramethylene glycol, polyhexamethylene glycol; the above diols react with dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid, and sebacic acid Polyester-type diols obtained in this manner.
For example, as a commercial product, UV curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Co., Ltd., UT5746, solid content 80% by mass, ethyl acetate solution) and the like can be mentioned.
Examples of the photopolymerization initiator include compounds that generate radicals when irradiated with light. Examples of such photopolymerization initiators include alkylphenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime ester photopolymerization initiators.
Of these, acylphosphine oxide photoreaction initiators are preferred from the viewpoint of easy adjustment of the elastic modulus.
By adjusting the amount of the photopolymerization initiator or the like, an embedded resin layer having a predetermined elastic modulus can be obtained.
The content of the photopolymerization initiator is preferably 0.2 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the (i) energy beam curable compound. When the content of the photopolymerization initiator is in this range, the weather resistance is good and the curability is sufficient.
 エネルギー線感応型組成物には、必要に応じて、紫外線吸収剤を含有してもよい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。これらの紫外線吸収剤は、単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、分子内にラジカル重合性の二重結合を有するラジカル重合性紫外線吸収剤が好ましい。
 紫外線吸収剤が含有する場合の含有量としては、(i)活性エネルギー線硬化型化合物、(ii)シリカ微粒子、及び(iii)光重合開始剤の合計100質量部に対して、好ましくは0.2~10質量部、より好ましくは0.5~7質量部である。
The energy ray sensitive composition may contain an ultraviolet absorber as necessary.
Examples of the UV absorber include benzotriazole UV absorbers, hindered amine UV absorbers, benzophenone UV absorbers, and triazine UV absorbers. These ultraviolet absorbers may be used alone or in combination of two or more. Among these, a radical polymerizable ultraviolet absorber having a radical polymerizable double bond in the molecule is preferable.
The content when the ultraviolet absorber is contained is preferably 0.1 with respect to a total of 100 parts by mass of (i) active energy ray-curable compound, (ii) silica fine particles, and (iii) photopolymerization initiator. The amount is 2 to 10 parts by mass, more preferably 0.5 to 7 parts by mass.
 エネルギー線感応型組成物には、必要に応じて、光安定剤を含有してもよい。
 光安定剤としては、ヒンダードアミン系光安定剤、ベンゾフェノン系光安定剤、ベンゾトリアゾール系光安定剤等が挙げられる。これらの光安定剤は、単独で又は2種以上を組み合わせて用いてもよい。
 光安定剤が含有する場合の含有量としては、(i)エネルギー線硬化型化合物、(ii)シリカ微粒子、及び(iii)光重合開始剤の合計100質量部に対して、好ましくは0.2~10質量部、より好ましくは0.5~7質量部である。
 また、必要に応じて、上記の各成分に加えて、重合禁止剤、粘度調整剤、界面活性剤、消泡剤、有機金属カップリング剤、シランカップリング剤などを添加することができる。
The energy ray-sensitive composition may contain a light stabilizer as necessary.
Examples of light stabilizers include hindered amine light stabilizers, benzophenone light stabilizers, and benzotriazole light stabilizers. These light stabilizers may be used alone or in combination of two or more.
The content when the light stabilizer is contained is preferably 0.2 with respect to a total of 100 parts by mass of (i) energy ray-curable compound, (ii) silica fine particles, and (iii) photopolymerization initiator. -10 parts by mass, more preferably 0.5-7 parts by mass.
Moreover, in addition to said each component, a polymerization inhibitor, a viscosity modifier, surfactant, an antifoamer, an organometallic coupling agent, a silane coupling agent etc. can be added as needed.
(透明導電層)
 本発明に用いる透明導電層は、金属酸化物からなる。金属酸化物としては、インジウム-スズ酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、アルミニウム-亜鉛酸化物(AZO)、ガリウム-亜鉛酸化物(GZO)、インジウム-ガリウム-亜鉛酸化物(IGZO)、酸化ニオブ、酸化チタン、酸化スズ等が挙げられ、これらを単独で、もしくは複数を用いることができる。この中で、透過率、シート抵抗値、安定性の観点からITOおよびIZOが特に好ましい。
 透明導電層の膜厚は、5~200nmであることが好ましく、10~100nmがより好ましく、20~50nmがさらに好ましい。この範囲であれば、高い透過率、低い表面抵抗率および面内抵抗の均一性を併せ持つ薄膜が得られるため好ましい。
 また、透明導電層の全光線透過率は、JIS K7361-1に準拠して測定される全光線透過率が70%以上のものが好ましく、80%以上のものがより好ましく、90%以上のものがさらに好ましい。
 透明導電層の濁度は10%以下が好ましく、より好ましくは5%以下である。
 透明導電層のシート抵抗値は1000Ω/□以下が好ましく、より好ましくは500Ω/□以下であり、さらに好ましくは100Ω/□以下である。
(Transparent conductive layer)
The transparent conductive layer used in the present invention is made of a metal oxide. Metal oxides include indium-tin oxide (ITO), indium-zinc oxide (IZO), aluminum-zinc oxide (AZO), gallium-zinc oxide (GZO), indium-gallium-zinc oxide ( IGZO), niobium oxide, titanium oxide, tin oxide, and the like. These can be used alone or in combination. Among these, ITO and IZO are particularly preferable from the viewpoints of transmittance, sheet resistance, and stability.
The film thickness of the transparent conductive layer is preferably 5 to 200 nm, more preferably 10 to 100 nm, and further preferably 20 to 50 nm. If it is this range, since the thin film which has a high transmittance | permeability, a low surface resistivity, and the uniformity of in-plane resistance is obtained, it is preferable.
The total light transmittance of the transparent conductive layer is preferably 70% or more, more preferably 80% or more, more preferably 90% or more, as measured in accordance with JIS K7361-1. Is more preferable.
The turbidity of the transparent conductive layer is preferably 10% or less, more preferably 5% or less.
The sheet resistance value of the transparent conductive layer is preferably 1000Ω / □ or less, more preferably 500Ω / □ or less, and still more preferably 100Ω / □ or less.
 上記透明導電層の形成方法としては、高い透過率及び低いシート抵抗値を得る観点から、乾式成膜法が好ましい。例えば、抵抗加熱蒸着法、電子ビーム蒸着法、分子線エピタキシー法、イオンビーム法、イオンプレーティング法、スパッタ法等の物理気相成長法(以下、「PVD」ともいう)や、熱CVD法、プラズマCVD法、光CVD法、エピタキシャルCVD法、アトミックレイヤーCVD法、等の化学気相成長法(以下、「CVD」ともいう)等の乾式成膜法である。
 低いシート抵抗値、高精度の膜厚制御、所定の組成比が得られやすく、品質安定性も高いことからスパッタ法が好ましい。上記手法により成膜した後、必要に応じて、他の積層体に影響を及ぼさない範囲で加熱処理を施すことにより、より優れたシート抵抗値が得られる。
ここでいう、乾式成膜法とは材料表面を気相または融解状態を用いて処理することで、一般にドライプロセス法と呼ばれることもある。
As a method for forming the transparent conductive layer, a dry film forming method is preferable from the viewpoint of obtaining high transmittance and low sheet resistance. For example, resistance vapor deposition, electron beam deposition, molecular beam epitaxy, ion beam, ion plating, sputtering, etc., physical vapor deposition (hereinafter also referred to as “PVD”), thermal CVD, It is a dry film forming method such as a chemical vapor deposition method (hereinafter also referred to as “CVD”) such as a plasma CVD method, a photo CVD method, an epitaxial CVD method, an atomic layer CVD method, or the like.
A sputtering method is preferable because a low sheet resistance value, high-precision film thickness control, a predetermined composition ratio is easily obtained, and quality stability is high. After the film is formed by the above method, a more excellent sheet resistance value can be obtained by performing a heat treatment within a range that does not affect other laminated bodies as necessary.
The dry film forming method referred to here is generally called a dry process method by treating the surface of a material using a gas phase or a molten state.
(密着層)
 本発明の透明導電性積層体には、さらに埋込樹脂層の透明導電層とは反対の面上に密着層を含むことが好ましく、前記埋込樹脂層と後述する透明ガスバリア層との間に前記密着層を含むことがより好ましい。
 密着層は、埋込樹脂層と、上述したように、例えば、透明ガスバリア層との密着性の向上、また、透明導電性積層体の屈曲性等の向上のために用いられる。
(Adhesion layer)
The transparent conductive laminate of the present invention preferably further comprises an adhesion layer on the surface of the embedded resin layer opposite to the transparent conductive layer, and is interposed between the embedded resin layer and a transparent gas barrier layer described later. More preferably, the adhesive layer is included.
As described above, the adhesion layer is used to improve adhesion between the embedded resin layer and the transparent gas barrier layer, for example, and to improve flexibility of the transparent conductive laminate.
 密着層の25℃における弾性率が100~3000MPaであることが好ましく、より好ましくは200~2400MPa、さらに好ましくは400~2200MPaである。25℃における密着層の弾性率が上記の範囲にあると、透明ガスバリア層等と埋込樹脂層との間に直接介在させることにより、密着性が向上し、かつ屈曲性もより向上する。 The elastic modulus at 25 ° C. of the adhesive layer is preferably 100 to 3000 MPa, more preferably 200 to 2400 MPa, and still more preferably 400 to 2200 MPa. When the elastic modulus of the adhesive layer at 25 ° C. is in the above range, the adhesiveness is improved and the flexibility is further improved by interposing directly between the transparent gas barrier layer and the embedded resin layer.
 前記密着層のガラス転移温度が40℃以上であることが好ましく、より好ましくは50℃以上、さらに好ましくは60℃以上である。密着層のガラス転移温度が、組み合わせる埋込樹脂層のガラス転移温度より低く、この範囲にあると密着性及び屈曲性が向上する。
 前記密着層の膜厚が1~120μmであることが好ましく、より好ましくは3~100μm、さらに好ましくは4~80μmである。埋込樹脂層の膜厚が前述した範囲にあり、かつ密着層の膜厚がこの範囲にあると、透明導電性積層体の屈曲性が向上する。
The glass transition temperature of the adhesion layer is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 60 ° C. or higher. The glass transition temperature of the adhesion layer is lower than the glass transition temperature of the embedded resin layer to be combined, and if it is within this range, the adhesion and flexibility are improved.
The thickness of the adhesion layer is preferably 1 to 120 μm, more preferably 3 to 100 μm, and still more preferably 4 to 80 μm. When the thickness of the embedded resin layer is in the above-described range and the thickness of the adhesion layer is in this range, the flexibility of the transparent conductive laminate is improved.
 本発明に用いる密着層は、前述した弾性率が、本発明の範囲内であれば特に制限されず、埋込樹脂層と同様、透明樹脂組成物からなることが好ましい。例えば、エネルギー線硬化型化合物、熱可塑性樹脂等が挙げられる。 The adhesion layer used in the present invention is not particularly limited as long as the above-described elastic modulus is within the range of the present invention, and is preferably made of a transparent resin composition in the same manner as the embedded resin layer. For example, an energy beam curable compound, a thermoplastic resin, etc. are mentioned.
 エネルギー線硬化型化合物としては、前述した埋込樹脂層に用いられるものと同一のものが挙げられる。 Examples of the energy ray curable compound include the same compounds as those used for the embedded resin layer described above.
 熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニリデン系樹脂、エチレン-酢酸ビニル共重合体ケン化物、ポリビニルアルコール、ポリカーボネート系樹脂、フッ素系樹脂、ポリ酢酸ビニル系樹脂、アセタール系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)等のポリエステル系樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂等が挙げられる。また、上記樹脂を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデンが好ましい。 Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, polybutene, (meth) acrylic resins, polyvinyl chloride resins, polystyrene resins, polyvinylidene chloride resins, ethylene-vinyl acetate copolymer ken. , Polyvinyl alcohol, polycarbonate resin, fluorine resin, polyvinyl acetate resin, acetal resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin such as polybutylene naphthalate (PBN), nylon 6, polyamide resins such as nylon 66, and the like. Moreover, the said resin may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyvinylidene chloride are preferable.
 エネルギー線硬化型化合物の市販品としては、例えば、UV硬化系アクリル樹脂(東洋インキ社製,UA-A1、固形分100質量%)、UV硬化系アクリル樹脂(東亜合成社製、UVX6125、固形分100重量%)等が挙げられ、光重合開始剤としてIrgacure819(BASF社製)等が挙げられる。前述した埋込樹脂層と同様に、光重合開始剤等の量を調整することにより、所定の弾性率を有する密着層とすることもできる。
 光重合開始剤の含有量としては、エネルギー線硬化型化合物100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~5質量部である。光重合開始剤の含有量がこの範囲にあると、硬化性が十分となる。
 また、必要に応じて、上記の各成分に加えて、重合禁止剤、粘度調整剤、界面活性剤、消泡剤、有機金属カップリング剤などを添加することができる。
Examples of commercially available energy ray curable compounds include UV curable acrylic resins (Toyo Ink, UA-A1, solid content 100% by mass), UV curable acrylic resins (Toa Gosei Co., Ltd., UVX6125, solids). 100% by weight) and the like, and Irgacure 819 (manufactured by BASF) as a photopolymerization initiator. Similar to the above-described embedded resin layer, an adhesive layer having a predetermined elastic modulus can be obtained by adjusting the amount of a photopolymerization initiator or the like.
The content of the photopolymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the energy ray curable compound. When the content of the photopolymerization initiator is within this range, curability is sufficient.
Moreover, in addition to each said component, a polymerization inhibitor, a viscosity modifier, surfactant, an antifoamer, an organometallic coupling agent, etc. can be added as needed.
(透明ガスバリア層)
 本発明の透明導電性積層体には、さらに透明基材上に透明ガスバリア層を含むことが好ましい。本発明に用いる透明ガスバリア層は、例えば、図2において、透明基材2を透過した大気中の水蒸気の透過を抑制し、結果として、埋込樹脂層3、補助電極層4等への水蒸気の透過を防ぐ機能を有する。本発明においては、前記透明基材上に透明ガスバリア層を積層した時に、該透明ガスバリア層を有さない該透明基材面側からの40℃、90%RHの高湿条件下における水蒸気透過率が1.0(g・m-2・day-1)以下であることが好ましく、より好ましくは1.0×10-2(g・m-2・day-1)以下であり、さらに好ましくは5.0×10-4(g・m-2・day-1)以下であり、特に好ましくは1.0×10-4(g・m-2・day-1)以下である。水蒸気透過率がこのような範囲にあり、かつ補助電極層、埋込樹脂層等の他の層の水蒸気透過率を所定の値に維持することにより、例えば、本発明の透明導電性積層体の透明導電層が水分により劣化することなく、シート抵抗値の増加を抑制できる。また、電子デバイスの透光性電極として用いた時に、それらデバイス内部の活性層等の経時的な劣化を抑制することができ、デバイスの長寿命化に繋げることができる。
(Transparent gas barrier layer)
The transparent conductive laminate of the present invention preferably further includes a transparent gas barrier layer on the transparent substrate. The transparent gas barrier layer used in the present invention suppresses the permeation of water vapor in the atmosphere that has passed through the transparent substrate 2 in FIG. 2, for example, and as a result, the water vapor of the embedded resin layer 3, the auxiliary electrode layer 4, etc. Has a function to prevent transmission. In the present invention, when a transparent gas barrier layer is laminated on the transparent substrate, the water vapor transmission rate under high humidity conditions of 40 ° C. and 90% RH from the surface of the transparent substrate without the transparent gas barrier layer. Is preferably 1.0 (g · m −2 · day −1 ) or less, more preferably 1.0 × 10 −2 (g · m −2 · day −1 ) or less, and further preferably It is 5.0 × 10 −4 (g · m −2 · day −1 ) or less, and particularly preferably 1.0 × 10 −4 (g · m −2 · day −1 ) or less. By keeping the water vapor transmission rate in such a range and maintaining the water vapor transmission rate of other layers such as the auxiliary electrode layer and the embedded resin layer at a predetermined value, for example, the transparent conductive laminate of the present invention An increase in sheet resistance can be suppressed without the transparent conductive layer being deteriorated by moisture. Further, when used as a translucent electrode of an electronic device, it is possible to suppress deterioration over time of the active layer and the like inside the device, leading to a longer life of the device.
 透明ガスバリア層としては、金属酸化物を含む層;高分子化合物を含む層(以下、「高分子層」ということがある。)にイオン注入等の改質処理を施して得られる層;等が挙げられる。
 上記金属酸化物を含む層の形成方法としては、前述の透明導電層の形成方法を用いることができる。さらに、成膜した後、必要に応じて、他の積層体に影響を及ぼさない範囲で加熱処理を施すことにより、より低いシート抵抗値が得られる。
 金属酸化物の原料としては、シリコン、アルミニウム、マグネシウム、亜鉛、及びスズ等の金属;酸化珪素、一酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ、酸化亜鉛スズ等の無機酸化物;窒化珪素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化珪素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましい。また、金属酸化物を含む層、またはポリシラザン系化合物を含む層に改質処理を施して形成された酸素、窒素、珪素を主構成原子として有する層からなる酸窒化珪素層が、層間密着性、ガスバリア性、及び耐折り曲げ性を有する観点から、好ましく用いられる。
 高分子層に用いる高分子化合物としては、ポリオルガノシロキサン、ポリシラザン系化合物等の珪素含有高分子化合物、ポリイミド、ポリアミド、ポリアミドイミド、ポリフエニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル等が挙げられる。これらの高分子化合物は1種単独で、あるいは2種以上を組合せて用いることができる。
 これらの中でも、より優れたガスバリア性をことから高分子化合物としては、珪素含有高分子化合物が好ましい。珪素含有高分子化合物としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。これらの中でも、優れたガスバリア性を有する透明ガスバリア層を形成できる観点から、ポリシラザン系化合物が好ましい。
As a transparent gas barrier layer, a layer containing a metal oxide; a layer obtained by subjecting a layer containing a polymer compound (hereinafter sometimes referred to as “polymer layer”) to a modification treatment such as ion implantation; Can be mentioned.
As a method for forming the layer containing the metal oxide, the above-described method for forming a transparent conductive layer can be used. Furthermore, after film formation, a lower sheet resistance value can be obtained by performing heat treatment within a range that does not affect other laminated bodies as necessary.
Examples of metal oxide materials include metals such as silicon, aluminum, magnesium, zinc, and tin; inorganic materials such as silicon oxide, silicon monoxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide, tin oxide, and zinc tin oxide Oxides; inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride; inorganic carbides; inorganic sulfides; inorganic oxynitrides such as silicon oxynitride; inorganic oxide carbides; inorganic nitride carbides; inorganic oxynitride carbides . These can be used alone or in combination of two or more.
In these, the inorganic vapor deposition film | membrane which uses an inorganic oxide, an inorganic nitride, or a metal as a raw material from a gas-barrier viewpoint is preferable. In addition, a silicon oxynitride layer made of a layer containing metal oxide or a layer containing a polysilazane compound and having oxygen, nitrogen, and silicon as main constituent atoms formed by a modification treatment has interlayer adhesion, From the viewpoint of having gas barrier properties and bending resistance, it is preferably used.
Polymer compounds used for the polymer layer include silicon-containing polymer compounds such as polyorganosiloxane and polysilazane compounds, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester Etc. These polymer compounds can be used alone or in combination of two or more.
Among these, a silicon-containing polymer compound is preferable as the polymer compound because of its superior gas barrier properties. Examples of silicon-containing polymer compounds include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds. Among these, a polysilazane compound is preferable from the viewpoint of forming a transparent gas barrier layer having excellent gas barrier properties.
 透明ガスバリア層は、例えば、ポリシラザン化合物含有層に、プラズマイオン注入処理、プラズマ処理、紫外線照射処理、熱処理等を施すことにより形成できる。プラズマイオン注入処理により注入されるイオンとしては、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトン等が挙げられる。
 プラズマイオン注入処理の具体的な処理方法としては、外部電界を用いて発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に対して注入する方法、または、外部電界を用いることなく、ガスバリア層形成用材料からなる層に印加する負の高電圧パルスによる電界のみで発生させたプラズマ中に存在するイオンを、ポリシラザン化合物含有層に注入する方法が挙げられる。
 プラズマ処理は、ポリシラザン化合物含有層をプラズマ中に晒して、含ケイ素ポリマーを含有する層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。紫外線照射処理は、ポリシラザン化合物含有層に紫外線を照射して含ケイ素ポリマーを含有する層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
 これらの中でも、ポリシラザン化合物含有層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
The transparent gas barrier layer can be formed, for example, by subjecting the polysilazane compound-containing layer to plasma ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, heat treatment, and the like. Examples of ions implanted by the plasma ion implantation process include hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton.
As a specific processing method of the plasma ion implantation processing, a method of injecting ions present in plasma generated using an external electric field into a polysilazane compound-containing layer, or a gas barrier without using an external electric field. There is a method in which ions existing in plasma generated only by an electric field generated by a negative high voltage pulse applied to a layer made of a layer forming material are implanted into the polysilazane compound-containing layer.
The plasma treatment is a method for modifying a layer containing a silicon-containing polymer by exposing the polysilazane compound-containing layer to plasma. For example, plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421. The ultraviolet irradiation treatment is a method for modifying a layer containing a silicon-containing polymer by irradiating a polysilazane compound-containing layer with ultraviolet rays. For example, the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
Among these, the ion implantation treatment is preferable because it can efficiently modify the inside of the polysilazane compound-containing layer without roughening the surface and form a gas barrier layer having more excellent gas barrier properties.
 透明ガスバリア層の積層方法としては、特に制限されないが、製造が簡便にできることから、ラミネート法が好ましい。 The method for laminating the transparent gas barrier layer is not particularly limited, but the laminating method is preferable because it can be easily produced.
 透明ガスバリア層は、1層であっても2層以上積層されていてもよい。また、2層以上積層される場合は、それらが同じであっても異なっていてもよい。
 透明ガスバリア層の膜厚は、20nm~50μmであることが好ましく、より好ましくは、30nm~1μm、さらに好ましくは40~500nmである。透明ガスバリア層の膜厚がこの範囲にあると、優れたガスバリア性や密着性が得られるとともに、柔軟性と、被膜強度とを両立させることができる。
The transparent gas barrier layer may be a single layer or a laminate of two or more layers. Further, when two or more layers are laminated, they may be the same or different.
The film thickness of the transparent gas barrier layer is preferably 20 nm to 50 μm, more preferably 30 nm to 1 μm, still more preferably 40 to 500 nm. When the film thickness of the transparent gas barrier layer is within this range, excellent gas barrier properties and adhesiveness can be obtained, and flexibility and coating strength can be compatible.
(プライマー層)
 透明基材の上に透明ガスバリア層を形成する場合、透明基材と透明ガスバリア層との密着性を向上させるためにプライマー層を用いてもよい。プライマー層としては、例えば、アクリル系、ポリエステル系、ポリウレタン系、ゴム系等のプライマー層を適宜用いることができる。プライマー層の厚さは、通常、0.1~10μmであり、好ましくは0.5~5μmである。プライマー層の厚さが、上記の範囲にあると、透明基材の凹凸をカバーすることで、透明基材由来の欠陥を減少させ、透明ガスバリア層のガスバリア性能が向上すると共に、透明基材と透明ガスバリア層間の密着力が向上し、後述する転写基材面の表面平滑性転写工程において、転写基材側から円滑に剥離することができる。
(Primer layer)
When forming a transparent gas barrier layer on a transparent substrate, a primer layer may be used to improve the adhesion between the transparent substrate and the transparent gas barrier layer. As the primer layer, for example, an acrylic-based, polyester-based, polyurethane-based, or rubber-based primer layer can be appropriately used. The thickness of the primer layer is usually 0.1 to 10 μm, preferably 0.5 to 5 μm. When the thickness of the primer layer is in the above range, by covering the unevenness of the transparent substrate, defects derived from the transparent substrate are reduced, the gas barrier performance of the transparent gas barrier layer is improved, and the transparent substrate Adhesion between the transparent gas barrier layers is improved, and the surface can be smoothly peeled off from the transfer substrate side in a surface smoothness transfer step of the transfer substrate surface described later.
 本発明の透明導電性積層体のヘーズは、2.5%以下であることが好ましく、より好ましくは2.0%以下である。また、乾式成膜前後でのヘーズの増加率(乾式成膜前のヘーズの値に対する乾式成膜後のヘーズの値の比)が1.40以下であることが好ましく、より好ましくは1.25以下、さらに好ましくは1.10以下である。ヘーズの値及び乾式成膜前後でのヘーズの増加率がこの範囲であれば、光学特性の優れた透明導電性積層体が得られる。 The haze of the transparent conductive laminate of the present invention is preferably 2.5% or less, more preferably 2.0% or less. Further, the increase rate of haze before and after dry film formation (ratio of haze value after dry film formation to haze value before dry film formation) is preferably 1.40 or less, more preferably 1.25. Hereinafter, it is more preferably 1.10 or less. When the haze value and the rate of increase in haze before and after dry film formation are in this range, a transparent conductive laminate having excellent optical properties can be obtained.
 発明の透明導電性積層体の透明導電層側のシート抵抗値は、10Ω/□以下であることが好ましく、より好ましくは5Ω/□以下であり、さらに好ましくは1Ω/□以下である。シート抵抗値がこの範囲であれば、電気特性の優れた透明導電性積層体が得られる。 The sheet resistance value on the transparent conductive layer side of the transparent conductive laminate of the present invention is preferably 10Ω / □ or less, more preferably 5Ω / □ or less, and further preferably 1Ω / □ or less. When the sheet resistance value is within this range, a transparent conductive laminate having excellent electrical characteristics can be obtained.
 透明導電積層体の厚みは、10~300μmであることが好ましく、より好ましくは10~200μmであり、さらに好ましくは20~150μmである。この範囲であれば、透明導電積層体上に透明導電層を積層し、透明導電性積層体とした場合に、フレキシブル性を有しつつ、高い透過率、低いシート抵抗値を付与することができる。
 透明導電積層体の開口部の全光線透過率(T)は、80%~96%であることが好ましく、より好ましくは90~96%であり、さらに好ましくは92%~96%である。
 補助電極層を含む透明導電積層体の全光線透過率(T)は、80%~95%であることが好ましく、より好ましくは83%~95%であり、さらに好ましくは85%~95%である。
 透明導電積層体の開口部の全光線透過率(T)に対する、補助電極層を含む透明導電積層体の全光線透過率(T)の比T/Tは、表面抵抗率の増加等により電気特性を損なわなければ、1に近づくほど良く、0.93~0.99であることが好ましく、より好ましくは0.96~0.99であり、さらに好ましくは0.97~0.99である。
 なお、補助電極層を同一パターンで印刷した場合、補助電極層の線幅が細くなるほど1に近づくことを意味している。
The thickness of the transparent conductive laminate is preferably 10 to 300 μm, more preferably 10 to 200 μm, and still more preferably 20 to 150 μm. If it is this range, when a transparent conductive layer is laminated | stacked on a transparent conductive laminated body and it is set as a transparent conductive laminated body, it can provide a high transmittance | permeability and a low sheet resistance value, having flexibility. .
The total light transmittance (T 0 ) of the opening of the transparent conductive laminate is preferably 80% to 96%, more preferably 90 to 96%, and still more preferably 92% to 96%.
The total light transmittance (T) of the transparent conductive laminate including the auxiliary electrode layer is preferably 80% to 95%, more preferably 83% to 95%, and still more preferably 85% to 95%. is there.
The ratio T / T 0 of the total light transmittance (T) of the transparent conductive laminate including the auxiliary electrode layer to the total light transmittance (T 0 ) of the opening of the transparent conductive laminate is due to an increase in surface resistivity, etc. If electrical characteristics are not impaired, the closer to 1, the better. 0.93 to 0.99 is preferable, 0.96 to 0.99 is more preferable, and 0.97 to 0.99 is even more preferable. is there.
In addition, when the auxiliary electrode layer is printed in the same pattern, it means that the closer the line width of the auxiliary electrode layer is, the closer it is to 1.
 本発明の透明導電性積層体は、優れた光学特性及び屈曲性を有する。また、シート抵抗値が小さく、補助電極層の転写性に優れている。従って、大面積化を必要とする太陽電池素子又は有機エレクトロルミネッセンス素子等に適用することが好ましい。 The transparent conductive laminate of the present invention has excellent optical properties and flexibility. Further, the sheet resistance value is small, and the transferability of the auxiliary electrode layer is excellent. Therefore, it is preferable to apply to a solar cell element or an organic electroluminescence element that requires a large area.
[透明導電性積層体の製造方法]
 本発明の透明導電性積層体の製造方法は、透明基材上に、少なくとも埋込樹脂層、補助電極層、及び透明導電層を含み、該透明導電層が金属酸化物からなり、前記埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである、透明導電性積層体の製造方法であって、前記補助電極層を形成する工程、該補助電極層の開口部、又は、補助電極層上及び開口部に前記埋込樹脂層を形成する工程、及び前記透明導電層を形成する工程を含む。
[Method for producing transparent conductive laminate]
The method for producing a transparent conductive laminate of the present invention comprises at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, the transparent conductive layer comprising a metal oxide, A method for producing a transparent conductive laminate, wherein the elastic modulus at 25 ° C. of the resin layer is 3000 to 8000 MPa and the elastic modulus at 70 ° C. is 1000 to 7000 MPa, the step of forming the auxiliary electrode layer, Including a step of forming the embedded resin layer in the opening of the auxiliary electrode layer, or on the auxiliary electrode layer and in the opening, and a step of forming the transparent conductive layer.
(補助電極層形成工程)
 補助電極層形成工程は、後述する転写基材上に、前述した補助電極層の材料からなるパターンを形成する工程である。
 補助電極層の形成方法としては、転写基材上に、パターンが形成されていない補助電極層を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、ロータリースクリーン印刷法、スクリーンオフセット印刷法、インクジェット法、オフセット印刷法、グラビアオフセット印刷法等により直接補助電極層のパターンを形成する方法等が挙げられる。
 パターンが形成されていない補助電極層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD法(物理気相成長法)、もしくは熱CVD法、ALD法(原子層蒸着法)等のCVD法(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着等のウェットプロセス、銀塩法等が挙げられ、補助電極層の材料に応じて適宜選択される。
(Auxiliary electrode layer forming process)
The auxiliary electrode layer forming step is a step of forming a pattern made of the above-described auxiliary electrode layer material on a transfer substrate described later.
As a method of forming the auxiliary electrode layer, after providing an auxiliary electrode layer on which a pattern is not formed on a transfer substrate, a known physical treatment or chemical treatment mainly using a photolithography method, or a combination thereof. The pattern of the auxiliary electrode layer is formed directly by a method of processing into a predetermined pattern shape, or by a screen printing method, a rotary screen printing method, a screen offset printing method, an inkjet method, an offset printing method, a gravure offset printing method, etc. And the like.
As a method for forming an auxiliary electrode layer on which no pattern is formed, a PVD method (physical vapor deposition method) such as a vacuum deposition method, a sputtering method, an ion plating method, a thermal CVD method, an ALD method (atomic layer deposition method). ) And other dry processes such as CVD (chemical vapor deposition), or various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade, and electrodeposition. A wet process, a silver salt method, etc. are mentioned, and it is suitably selected according to the material of the auxiliary electrode layer.
(埋込樹脂層形成工程)
 埋込樹脂層形成工程は、一態様として、補助電極層の開口部、又は、開口部及び補助電極層上に埋込樹脂層を積層する工程である。他の態様として、密着層、又は透明ガスバリア層上に埋込樹脂層を積層する工程である。
(Embedded resin layer forming process)
The embedded resin layer forming step is a step of laminating an embedded resin layer on the opening of the auxiliary electrode layer or on the opening and the auxiliary electrode layer, as one aspect. Another aspect is a step of laminating an embedded resin layer on the adhesion layer or the transparent gas barrier layer.
 埋込樹脂層の形成方法としては、ディップコート法、スピンコート法、スプレーコート法、グラビアコート法、ダイコート法、ドクターブレード法、マイヤーバーコート法等が挙げられる。
 エネルギー放射線を照射する方法としては、例えば、紫外線や電子線等が挙げられる。上記紫外線は、高圧水銀ランプ、フュージョンHランプ、キセノンランプ等で得られ、光量は、通常100~500mJ/cmであり、一方電子線は、電子線加速器等によって得られ、照射量は、通常150~350kVである。このエネルギー線の中では、特に紫外線が好適である。なお、電子線を使用する場合は、光重合開始剤を添加することなく、硬化膜を得ることができる。
Examples of the method for forming the embedded resin layer include a dip coating method, a spin coating method, a spray coating method, a gravure coating method, a die coating method, a doctor blade method, and a Meyer bar coating method.
Examples of the method of irradiating energy radiation include ultraviolet rays and electron beams. The ultraviolet rays are obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, etc., and the light quantity is usually 100 to 500 mJ / cm 2 , while the electron beam is obtained with an electron beam accelerator or the like, and the irradiation dose is usually 150 to 350 kV. Among these energy rays, ultraviolet rays are particularly preferable. In addition, when using an electron beam, a cured film can be obtained, without adding a photoinitiator.
(透明導電層形成工程)
 透明導電層形成工程は、補助電極層と埋込樹脂層とからなる面側に、透明導電層を形成する工程である。透明導電層の形成方法は、前述した通りである。
(Transparent conductive layer forming process)
The transparent conductive layer forming step is a step of forming a transparent conductive layer on the surface side composed of the auxiliary electrode layer and the embedded resin layer. The method for forming the transparent conductive layer is as described above.
(密着層形成工程)
 本発明の透明導電性積層体の製造において、さらに密着層形成工程を含むことが好ましい。密着層形成工程は、一態様として、埋込樹脂層上に密着層を形成する工程である。他の態様として、透明ガスバリア層上に密着層を形成する工程である。
 密着層の形成方法としては、前述した埋込樹脂層の形成方法と同様である。
(Adhesion layer forming process)
The production of the transparent conductive laminate of the present invention preferably further includes an adhesion layer forming step. An adhesion layer formation process is a process of forming an adhesion layer on an embedding resin layer as one mode. In another embodiment, the adhesion layer is formed on the transparent gas barrier layer.
The method for forming the adhesion layer is the same as the method for forming the embedded resin layer described above.
(透明ガスバリア層形成工程)
 本発明の透明導電性積層体の製造において、さらに透明ガスバリア層形成工程を含むことが好ましい。透明ガスバリア層形成工程は、透明基材上に前述したプライマー層を介し透明ガスバリア層を形成する工程である。透明ガスバリア層の形成方法及び積層方法は前述したとおりである。
(Transparent gas barrier layer forming process)
The production of the transparent conductive laminate of the present invention preferably further includes a transparent gas barrier layer forming step. The transparent gas barrier layer forming step is a step of forming a transparent gas barrier layer on the transparent substrate via the primer layer described above. The method for forming and laminating the transparent gas barrier layer is as described above.
(転写基材形成工程)
 本発明の透明導電性積層体の製造において、さらに転写基材形成工程を含むことが好ましい。転写基材形成工程は、転写基材の支持体上に、剥離層を形成する工程である。
(Transfer substrate forming process)
The production of the transparent conductive laminate of the present invention preferably further includes a transfer substrate forming step. The transfer substrate forming step is a step of forming a release layer on the support of the transfer substrate.
(支持体)
支持材としては、特に制限はなく、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリプロピレンやポリメチルペンテン等のポリオレフィンフィルム、ポリカーボネートフィルム、ポリ酢酸ビニルフィルム等を挙げることができるが、これらの中でポリエステルフィルムが好ましく、特に二軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。支持体の厚さは、10~500μmが好ましく、より好ましくは20~300μm、さらに好ましくは30~100μmである。この範囲であれば、機械的強度が確保できるため好ましい。
(Support)
The support material is not particularly limited, and examples thereof include polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyolefin films such as polypropylene and polymethylpentene, polycarbonate films, and polyvinyl acetate films. Among them, a polyester film is preferable, and a biaxially stretched polyethylene terephthalate film is particularly preferable. The thickness of the support is preferably 10 to 500 μm, more preferably 20 to 300 μm, still more preferably 30 to 100 μm. If it is this range, since mechanical strength can be ensured, it is preferable.
(剥離層)
 本発明に用いる剥離層は、用いる支持体によって適宜設けてもよいし、設けなくてもよいが、設ける場合は、シリコーン樹脂組成物又は紫外線硬化型剥離組成物を硬化した層(以下、「硬化層」ということがある。)とすることが好ましい。
(Peeling layer)
The release layer used in the present invention may or may not be appropriately provided depending on the support to be used. However, in the case of providing, the layer obtained by curing the silicone resin composition or the ultraviolet curable release composition (hereinafter referred to as “cured”). It is sometimes referred to as a “layer”).
 シリコーン樹脂組成物としては、特に制限されないが、光増感剤を含む付加反応型シリコーン樹脂組成物が挙げられる。付加反応型シリコーン樹脂組成物は、付加反応型シリコーン樹脂と架橋剤からなる主剤に、触媒(例えば白金系触媒)と光増感剤を加えたものであり、必要に応じて、付加反応抑制剤、剥離調整剤、密着向上剤等を加えてもよい。 The silicone resin composition is not particularly limited, and examples thereof include an addition reaction type silicone resin composition containing a photosensitizer. The addition reaction type silicone resin composition is obtained by adding a catalyst (for example, a platinum-based catalyst) and a photosensitizer to a main agent composed of an addition reaction type silicone resin and a crosslinking agent, and, if necessary, an addition reaction inhibitor. Further, a release adjusting agent, an adhesion improving agent and the like may be added.
 紫外線硬化型剥離組成物としては、特に制限されないが、公知の紫外線硬化型剥離組成物でよく、市販品を用いることが出来る。具体的には、シリコーン系、フッ素系、アルキルペンダント系、長鎖アルキル系の紫外線硬化型剥離性組成物を挙げることができる。必要に応じて、上述した付加反応抑制剤、剥離調整剤、密着向上剤等を加えてもよい。また、紫外線硬化型剥離性組成物はケイ素を表面に偏析させることが好ましい。 Although it does not restrict | limit especially as an ultraviolet curable peeling composition, A well-known ultraviolet curable peeling composition may be sufficient and a commercial item can be used. Specific examples include a silicone-based, fluorine-based, alkyl pendant-based, and long-chain alkyl-based ultraviolet curable release composition. If necessary, the above-described addition reaction inhibitor, peeling regulator, adhesion improver, and the like may be added. Moreover, it is preferable that the ultraviolet curable releasable composition segregates silicon on the surface.
 硬化層の形成方法としては、シリコーン樹脂組成物、又は紫外線硬化型剥離組成物と、所望により用いられる上述した添加剤成分とからなる塗工液を、前記の基材上に、例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法等により塗工することができる。この際、塗工液の粘度調整の目的で、適当な有機溶剤を加えてもよい。有機溶剤としては、特に制限は無く、様々なものを用いることができる。例えばトルエン、ヘキサン等の炭化水素化合物をはじめ、酢酸エチル、メチルエチルケトン及び、これらの混合物等が用いられる。 As a method for forming the cured layer, a coating liquid comprising a silicone resin composition or an ultraviolet curable release composition and the above-described additive component used as desired is applied onto the substrate, for example, gravure coating. It can be applied by the method, bar coating method, spray coating method, spin coating method or the like. At this time, an appropriate organic solvent may be added for the purpose of adjusting the viscosity of the coating solution. There is no restriction | limiting in particular as an organic solvent, A various thing can be used. For example, hydrocarbon compounds such as toluene and hexane, ethyl acetate, methyl ethyl ketone, and mixtures thereof are used.
(転写基材面の転写工程)
 本発明の透明導電性積層体の製造において、さらに転写基材面の転写工程を含むことが好ましい。転写基材面の転写工程は、転写基材と、補助電極層と埋込樹脂層とからなる面を剥離する工程である。
 転写基材と、補助電極層と透明樹脂層からなる面の剥離方法は、特に制限はなく、公知の方法で行うことができる。本転写工程により、補助電極層と埋込樹脂層とからなる表面を平滑性に優れたものとすることができ、ヘーズの増加等を抑制し、結果的に透明導電性積層体の光学特性を向上させることに繋がる。
(Transfer process of transfer substrate surface)
In the production of the transparent conductive laminate of the present invention, it is preferable to further include a transfer step on the transfer substrate surface. The transfer process of the transfer substrate surface is a process of peeling the transfer substrate, and the surface composed of the auxiliary electrode layer and the embedded resin layer.
The peeling method of the surface which consists of a transfer base material, an auxiliary electrode layer, and a transparent resin layer does not have a restriction | limiting in particular, It can carry out by a well-known method. By this transfer process, the surface composed of the auxiliary electrode layer and the embedded resin layer can be made excellent in smoothness, increase in haze, etc. can be suppressed, and as a result, the optical characteristics of the transparent conductive laminate can be improved. It leads to improvement.
(積層体形成工程)
 本発明の透明導電性積層体の製造において、異なる積層体同士をラミネート法等により積層する工程を有してもよい。例えば、一態様として、転写基材/補助電極層からなる積層体と、埋込樹脂層/透明ガスバリア層/プライマー層/透明基材からなる積層体とを積層して、転写基材/補助電極層/埋込樹脂層/透明ガスバリア層/プライマー層/透明基材からなる積層体としてもよい。他の態様として、転写基材/補助電極層/埋込樹脂層からなる積層体と、透明ガスバリア層/プライマー層/透明基材からなる積層体とを積層して、転写基材/補助電極層/埋込樹脂層/透明ガスバリア層/プライマー層/透明基材からなる積層体としてもよい。さらに他の態様として、転写基材/補助電極層/埋込樹脂層/密着層からなる積層体と、透明ガスバリア層/プライマー層/透明基材からなる積層体とを積層、または転写基材/補助電極層/埋込樹脂層からなる積層体と、密着層/透明ガスバリア層/プライマー層/透明基材からなる積層体とを積層して、転写基材/補助電極層/埋込樹脂層/密着層/透明ガスバリア層/プライマー層/透明基材からなる密着層を含む積層体としてもよい。いずれの場合にも、その後、転写基材/補助電極層の界面側から転写基材を剥離し、透明導電積層体とし、該透明導電積層体の補助電極層と埋込樹脂層とからなる面上に透明導電層を成膜することにより、本発明の透明導電性積層体を製造することができる。
(Laminate formation process)
In the production of the transparent conductive laminate of the present invention, a step of laminating different laminates by a laminating method or the like may be included. For example, as one aspect, a laminate comprising a transfer substrate / auxiliary electrode layer and a laminate comprising an embedded resin layer / transparent gas barrier layer / primer layer / transparent substrate are laminated to form a transfer substrate / auxiliary electrode. A laminate comprising a layer / embedded resin layer / transparent gas barrier layer / primer layer / transparent substrate may be used. As another aspect, a laminate comprising a transfer substrate / auxiliary electrode layer / embedded resin layer and a laminate comprising a transparent gas barrier layer / primer layer / transparent substrate are laminated to form a transfer substrate / auxiliary electrode layer. A laminate comprising: / embedded resin layer / transparent gas barrier layer / primer layer / transparent substrate may be used. As still another embodiment, a laminate comprising a transfer substrate / auxiliary electrode layer / embedded resin layer / adhesion layer and a laminate comprising a transparent gas barrier layer / primer layer / transparent substrate are laminated, or a transfer substrate / A laminate comprising an auxiliary electrode layer / embedded resin layer and a laminate comprising an adhesion layer / transparent gas barrier layer / primer layer / transparent substrate are laminated to form a transfer substrate / auxiliary electrode layer / embedded resin layer / It is good also as a laminated body containing the adhesion layer which consists of adhesion layer / transparent gas barrier layer / primer layer / transparent substrate. In either case, the transfer substrate is then peeled off from the transfer substrate / auxiliary electrode interface side to form a transparent conductive laminate, and the surface comprising the auxiliary electrode layer and the embedded resin layer of the transparent conductive laminate By forming a transparent conductive layer thereon, the transparent conductive laminate of the present invention can be produced.
 本製造方法によれば、優れた光学特性及び屈曲性を同時に有する透明導電性積層体を製造することができる。 According to this production method, a transparent conductive laminate having excellent optical properties and flexibility can be produced.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例、比較例で作製した、透明導電積層体、及び透明導電性積層体について以下の評価、測定を行った。結果を表1、表2-1、及び表2-2に示す。
(a)弾性率
 埋込樹脂層ならびに密着層(埋込樹脂層は透明導電積層体形成後、密着層は形成後)に関し、ダイナミック超微小硬度計(島津製作所社製,商品名「DUH-W201S」)を使用して、以下の測定条件で負荷-除荷試験を行い、得られた除荷曲線の傾きから弾性率を算出した。
 弾性率は、実施例記載の通り測定してもよいし、透明導電積層体作製後に透明導電積層体を、例えば、ダイヤモンドナイフ等で斜めにカットし、測定箇所を露出させた後、露出させた測定箇所に対し、ダイナミック超微小硬度計の圧子が垂直に接触するようにして測定してもよいし、エッチング等により測定箇所上に積層されている他の層を除去して、測定箇所を露出させてから測定してもよい。
<ダイナミック超微小硬度計測定条件>
 圧子:三角錐圧子 稜間角115°
 試験モード:負荷-除荷モード
 試験力:1mN
 負荷速度:0.142mN/sec
 保持時間:5sec
 測定温度:25℃、70℃
(b)ガラス転移温度Tg
 実施例、比較例において、後述するように、所定の樹脂溶液を用い、厚み1mmのスライドガラス上に埋込樹脂層を形成し、粘弾性測定装置(ネッチジャパン社製、DMA242 E Artemis)を用いて、測定周波数10Hzの引張モードで0~200℃の測定範囲において、埋込樹脂層の貯蔵弾性率E’を測定した。また、損失弾性率E''を測定し、得られた損失正接tanδ(=E''/E’)のピーク値を与える測定温度をガラス転移温度Tgとした。同様に、密着層についても所定の塗液を用い、密着層を形成し、ガラス転移温度Tgを算出した。
(c)ヘーズ
 ヘーズは、濁度計(日本電色工業社製、HAZE METER NDH5000)を用いて、JIS K 7136に準じて測定した。
(d)シート抵抗値ρ
 非接触式抵抗測定器(ナプソン社製、型式:EC-80P)を用いて、シート抵抗値ρを測定した。
(e)水蒸気透過率(WVTR)
 水蒸気透過率計(MOCON社製社製、装置名:AQUATRAN)を用い、JIS K7129に従い、40℃90%RHにおける透明ガスバリア層を有する透明導電性積層体の水蒸気透過率(g・m-2・day-1)を測定した。
(f)転写性
 硬化後の埋込樹脂層Aと転写基材がジッピングなく、補助電極層を埋込樹脂層側に転写出来た場合は○、ジッピングの発生または転写基材と接着した場合は×として評価した。
 本発明において、ジッピングとは、「転写基材上の補助電極層を転写基材から埋込樹脂層側に転写する際に、転写基材の補助電極層が滑らかに剥離せず、パリパリと音を立てながら剥がれたり止まったりを繰り返す現象」を意味する。転写を行う際、ジッピングが発生することで、補助電極層が転写基材から剥離せず、転写されない部分が発生してしまうことがある。
(g)耐乾式成膜性
 補助電極層と埋込樹脂層からなる面に透明導電層を乾式成膜法で50nm成膜する際の、乾式成膜前後でのヘーズを測定し、下記の基準に従い耐乾式成膜性を評価した。耐乾式成膜性とは、乾式成膜による、ヘーズの値の変動をいう。
〇:ヘーズの上昇が10%以下である場合
△:ヘーズの上昇が10%超50%以下である場合
×:ヘーズの上昇が50%超である場合
(h)屈曲性
 繰り返し屈曲試験機(ユアサ工機社製)を用いて、屈曲部が50mmφとなるよう透明導電性積層体の透明導電層が上に凸となるよう、100回屈曲させる前後のシート抵抗値ρを測定し、下記の基準に従い屈曲性を評価した。
〇:シート抵抗値の変化が±0.5Ω/□以下である場合
△:シート抵抗値の変化が±0.5Ω/sq超±1Ω/□以下である場合
×:シート抵抗値の変化が±1Ω/□超である場合
(i)耐湿熱性
 60℃95%RH環境下で1000時間保管し、その後23℃50%RH環境下で24時間保管した後に、密着性およびシート抵抗値を評価した。
 密着性は、透明導電層から、埋込樹脂層ならびに密着層の膜厚に応じて、碁盤目状に1mmないし2mm幅のクロスカットを選択し、ガスバリア層に刃先が到達するよう施し、その碁盤目状にクロスカットされた透明導電層面に粘着テープ(ニチバン社製、セロテープ(登録商標))を貼り、JIS K5600-5-6(クロスカット法)の碁盤目テープ法に準拠して、セロテープ(登録商標)剥離試験を行い、下記の基準に従い、透明導電層、埋込樹脂層、密着層の密着性を評価した。なお、密着性に関しては、下記基準により判定した。
○:JIS K5600-5-6の表1における評価結果の分類が0~2
×:JIS K5600-5-6の表1における評価結果の分類が3~5
 シート抵抗値は前述のシート抵抗値ρと同様の方法で測定した。
The following evaluation and measurement were performed on the transparent conductive laminate and the transparent conductive laminate prepared in Examples and Comparative Examples. The results are shown in Table 1, Table 2-1, and Table 2-2.
(A) Modulus of elasticity With respect to the embedded resin layer and the adhesion layer (the embedded resin layer is formed after forming the transparent conductive laminate and the adhesion layer is formed), a dynamic ultra-hardness meter (made by Shimadzu Corporation, trade name “DUH- W201S ") was used to perform a load-unloading test under the following measurement conditions, and the elastic modulus was calculated from the slope of the obtained unloading curve.
The elastic modulus may be measured as described in the examples, or after the transparent conductive laminate was prepared, the transparent conductive laminate was cut obliquely with, for example, a diamond knife, and the measurement location was exposed and then exposed. Measurements may be made so that the indenter of the dynamic ultra-micro hardness tester is in vertical contact with the measurement location, or other layers stacked on the measurement location may be removed by etching, etc. You may measure after exposing.
<Dynamic microhardness meter measurement conditions>
Indenter: Triangular pyramid indenter Angle between ridges 115 °
Test mode: Load-unload mode Test force: 1 mN
Load speed: 0.142 mN / sec
Holding time: 5 sec
Measurement temperature: 25 ° C, 70 ° C
(B) Glass transition temperature Tg
In Examples and Comparative Examples, as described later, a predetermined resin solution is used, an embedded resin layer is formed on a slide glass having a thickness of 1 mm, and a viscoelasticity measuring apparatus (manufactured by Netch Japan Co., Ltd., DMA242 E Artemis) is used. Thus, the storage elastic modulus E ′ of the embedded resin layer was measured in a measurement range of 0 to 200 ° C. in a tensile mode with a measurement frequency of 10 Hz. Further, the loss elastic modulus E ″ was measured, and the measurement temperature giving the peak value of the obtained loss tangent tan δ (= E ″ / E ′) was defined as the glass transition temperature Tg. Similarly, for the adhesion layer, a predetermined coating liquid was used to form an adhesion layer, and the glass transition temperature Tg was calculated.
(C) Haze Haze was measured according to JIS K 7136 using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., HAZE METER NDH5000).
(D) Sheet resistance value ρ
The sheet resistance value ρ was measured using a non-contact type resistance measuring device (manufactured by Napson Corporation, model: EC-80P).
(E) Water vapor transmission rate (WVTR)
Using a water vapor transmission meter (manufactured by MOCON, device name: AQUATRAN), according to JIS K7129, the water vapor transmission rate of the transparent conductive laminate having a transparent gas barrier layer at 40 ° C. and 90% RH (g · m −2 · day −1 ) was measured.
(F) Transferability If the cured resin layer A and the transfer substrate are not zipped and the auxiliary electrode layer can be transferred to the embedded resin layer side, ○, if zipping occurs or adheres to the transfer substrate It evaluated as x.
In the present invention, zipping is “when the auxiliary electrode layer on the transfer substrate is transferred from the transfer substrate to the embedded resin layer side, the auxiliary electrode layer of the transfer substrate does not peel smoothly, and the sound is crispy. It means a phenomenon that repeats peeling or stopping while standing. When transferring, zipping may occur, and the auxiliary electrode layer may not be peeled off from the transfer substrate, and a portion that is not transferred may occur.
(G) Dry-type film-forming property The haze before and after dry-type film formation was measured when a transparent conductive layer was formed to a thickness of 50 nm on the surface composed of the auxiliary electrode layer and the embedded resin layer by the dry-type film formation method. Then, the dry film-forming property was evaluated. The dry film forming resistance refers to fluctuations in the haze value due to dry film formation.
◯: When haze rise is 10% or less Δ: When haze rise is more than 10% and 50% or less x: When haze rise is more than 50% (h) Flexibility Repeated bending tester (YUASA) Using the Koki Co., Ltd.), the sheet resistance value ρ before and after bending 100 times so that the transparent conductive layer of the transparent conductive laminate is convex so that the bent portion is 50 mmφ is measured, and the following standard The flexibility was evaluated according to the following.
◯: When the change in sheet resistance value is ± 0.5Ω / □ or less Δ: When the change in sheet resistance value is more than ± 0.5Ω / sq ± 1Ω / □ or less ×: Change in sheet resistance value ± In the case of exceeding 1Ω / □ (i) Moisture and heat resistance After storage for 1000 hours in an environment of 60 ° C. and 95% RH and then for 24 hours in an environment of 23 ° C. and 50% RH, adhesion and sheet resistance were evaluated.
The adhesion is selected from a transparent conductive layer according to the thickness of the embedded resin layer and the adhesion layer, and a cross cut with a 1 to 2 mm width is selected in a grid pattern so that the cutting edge reaches the gas barrier layer. Adhesive tape (cello tape (registered trademark) manufactured by Nichiban Co., Ltd.) is pasted on the transparent conductive layer surface that is cross-cut into a grid shape, and in accordance with the cross-cut tape method of JIS K5600-5-6 (cross-cut method) (Registered Trademark) A peel test was performed, and the adhesion of the transparent conductive layer, the embedded resin layer, and the adhesion layer was evaluated according to the following criteria. In addition, about adhesiveness, it determined by the following reference | standard.
○: The classification of evaluation results in Table 1 of JIS K5600-5-6 is 0-2
×: The classification of the evaluation results in Table 1 of JIS K5600-5-6 is 3-5
The sheet resistance value was measured by the same method as the sheet resistance value ρ described above.
(実施例1)
 厚み1mmのスライドガラス上に、下記UV硬化系アクリル樹脂溶液Aをアプリケーターにて塗布し、90℃で2分間乾燥したのち、剥離シートB〔シリコーン剥離処理したポリエチレンテレフタレートフィルム〕(リンテック社製、SP-PET381031、厚さ38μm)と貼合し、コンベア式UV照射装置(ヘレウス社製、高圧水銀灯)を用いて積算光量として250mJ/cmとなるよう塗布面から照射し、埋込樹脂層Aを得た。なお、硬化後の膜厚は50μmであった。この埋込樹脂層Aを剥離シートBから剥離し、貯蔵弾性率E’及び損失弾性率E''を測定し、得られた損失正接tanδからガラス転移温度Tgを測定した。
※UV硬化系アクリル樹脂溶液A
 UV硬化系アクリル樹脂(日本合成化学社製, UT5746、固形分80質量%、酢酸エチル溶液)100質量部に対して、光開始剤(BASF社製、Irgacure819)を1.5質量部加えた溶液。
Example 1
The following UV curable acrylic resin solution A was applied on a slide glass having a thickness of 1 mm with an applicator, dried at 90 ° C. for 2 minutes, and then release sheet B [polyethylene terephthalate film subjected to silicone release treatment] (SP manufactured by Lintec Corporation, SP -PET 381031, thickness 38 μm), and using a conveyor type UV irradiation device (manufactured by Heraeus, high-pressure mercury lamp), the integrated light is irradiated from the coated surface so that the integrated light amount is 250 mJ / cm 2. Obtained. The film thickness after curing was 50 μm. The embedded resin layer A was peeled from the release sheet B, the storage elastic modulus E ′ and the loss elastic modulus E ″ were measured, and the glass transition temperature Tg was measured from the obtained loss tangent tan δ.
* UV curable acrylic resin solution A
A solution obtained by adding 1.5 parts by mass of a photoinitiator (Irgacure 819, manufactured by BASF) to 100 parts by mass of UV curable acrylic resin (manufactured by Nippon Synthetic Chemical Co., Ltd., UT5746, solid content 80% by mass, ethyl acetate solution) .
 無アルカリガラス(コーニング社製、EagleXG、100mm角、0.7mm厚)上にUV硬化系アクリル樹脂組成物Aを上述と同様の塗布・硬化条件で硬化後の膜厚が25μmとなるよう埋込樹脂層Aを形成し、ヘーズHa0を測定した。結果を表1に示す。このように形成した埋込樹脂層Aに対して、下記条件にて透明導電層であるITO層をスパッタ法にて成膜し、成膜後のヘーズHa1を測定した。
※透明導電層成膜条件
・ターゲット:ITO(JX日鉱日石金属社製、SnO-5wt%)
・手法:DCマグネトロンスパッタリング
・印加方式:DC500W
・基材加熱:なし
・キャリアガス:アルゴン(Ar)
・成膜圧力:0.6Pa
Embed UV curable acrylic resin composition A on alkali-free glass (Corning, EagleXG, 100 mm square, 0.7 mm thickness) so that the film thickness after curing is 25 μm under the same coating and curing conditions as described above. The resin layer A was formed and haze Ha0 was measured. The results are shown in Table 1. An ITO layer, which is a transparent conductive layer, was formed by sputtering on the embedded resin layer A thus formed under the following conditions, and haze H a1 after the film formation was measured.
※ transparent conductive layer deposition conditions Target: ITO (JX Nippon Mining & Metals Co., SnO 2 -5wt%)
・ Method: DC magnetron sputtering ・ Application method: DC500W
・ Substrate heating: None ・ Carrier gas: Argon (Ar)
・ Film pressure: 0.6Pa
[透明導電積層体Aの作製]
 銀細線からなる補助電極層を印刷するための金属ペースト(導電性組成物)として、銀ペースト(三ツ星ベルト社製、商品名:低温焼成導電ペーストMDot(登録商標))を用い、線幅30μm、ピッチ1200μmのハニカム構造を有するスクリーン版(印刷面積100mm角)を用いて、スクリーン印刷機(マイクロ・テック社製、型名:MT-320TV)にて転写基材上に補助電極層を印刷により形成した。印刷後、70℃で1分間の仮乾燥を行なったのち、コンベア式熱風/IR焼成炉にて、150℃で10分間焼成を行なった。ここで用いた転写基材は、東洋紡社製のPET A4100(100μm厚)とし、未処理面を電極の印刷面とした。得られた電極の幅は40μm、高さは7μmであった。
 次に、後述する透明ガスバリア層を有する透明基材の、透明ガスバリア層側の面にUV硬化系アクリル樹脂組成物Aをアプリケーターにて塗布し、90℃で2分間乾燥した。UV硬化系アクリル樹脂組成物Aを設けた面と前述した転写基材上に設けた補助電極層面とをラミネートし、転写基材/補助電極層/埋込樹脂層A/ガスバリア層/プライマー層/透明基材の積層体Aを得た。この積層体Aに対して、透明ガスバリア層を有する透明基材側からコンベア式UV照射機(ヘレウス社製、高圧水銀灯)により、積算光量として250mJ/cmとなるよう照射し、積層体A中の埋込樹脂層Aを硬化させた(硬化後の埋込樹脂層Aの厚さ:25μm)。最後に、埋込樹脂層Aと補助電極層からなる界面側から転写基材を剥離することで、透明基材上に、透明ガスバリア層を介し、開口部を有する補助電極層と埋込樹脂層Aとからなる複合層が積層された透明導電積層体Aを作製し、ダイナミック超微小表面硬度計により、埋込樹脂層Aの25℃および70℃における弾性率、及びヘーズHb0を測定した。
 次に、補助電極層側に、前述した透明導電層成膜条件と同様に、透明導電層を50nm成膜し、透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。
[Preparation of transparent conductive laminate A]
As a metal paste (conductive composition) for printing an auxiliary electrode layer made of a thin silver wire, a silver paste (manufactured by Mitsuboshi Belting Co., Ltd., trade name: low-temperature fired conductive paste MDot (registered trademark)) was used, and the line width was 30 μm, Using a screen plate (printing area 100 mm square) having a honeycomb structure with a pitch of 1200 μm, an auxiliary electrode layer is formed on a transfer substrate by printing with a screen printing machine (manufactured by Micro Tech, model name: MT-320TV). did. After printing, temporary drying was performed at 70 ° C. for 1 minute, followed by baking at 150 ° C. for 10 minutes in a conveyor type hot air / IR baking furnace. The transfer substrate used here was PET A4100 (100 μm thickness) manufactured by Toyobo Co., Ltd., and the untreated surface was used as the electrode printing surface. The obtained electrode had a width of 40 μm and a height of 7 μm.
Next, the UV curable acrylic resin composition A was applied to the transparent gas barrier layer side surface of the transparent substrate having the transparent gas barrier layer described later with an applicator and dried at 90 ° C. for 2 minutes. Laminating the surface provided with the UV curable acrylic resin composition A and the auxiliary electrode layer surface provided on the transfer substrate described above, transfer substrate / auxiliary electrode layer / embedded resin layer A / gas barrier layer / primer layer / A laminate A of transparent substrates was obtained. The laminated body A is irradiated with a conveyor-type UV irradiator (manufactured by Heraeus, high-pressure mercury lamp) from the transparent substrate side having the transparent gas barrier layer so that the accumulated light amount becomes 250 mJ / cm 2. The embedded resin layer A was cured (thickness of the embedded resin layer A after curing: 25 μm). Finally, the transfer base material is peeled off from the interface side consisting of the embedded resin layer A and the auxiliary electrode layer, so that the auxiliary electrode layer and the embedded resin layer having openings through the transparent gas barrier layer on the transparent base material. A transparent conductive laminate A in which a composite layer composed of A was laminated was prepared, and the elastic modulus and haze H b0 of the embedded resin layer A at 25 ° C. and 70 ° C. were measured with a dynamic ultra-small surface hardness meter. .
Next, on the auxiliary electrode layer side, the transparent conductive layer was formed to a thickness of 50 nm in the same manner as the transparent conductive layer formation conditions described above to form a transparent conductive laminate, and the haze H b1 , sheet resistance value ρ, water vapor transmission rate ( WVTR) was measured.
〈透明ガスバリア層の作製〉
 透明基材(ポリエチレンナフタレート、帝人デュポンフィルム社製、PENQ65HWA、100μm厚)上に、下記のプライマー層形成用溶液をバーコート法により塗布し、70℃で、1分間加熱乾燥した後、UV光照射ライン(Fusion UV Systems JAPAN社製、高圧水銀灯;積算光量100mJ/cm、ピーク強度1.466W、ライン速度20m/分、パス回数2回)を用いてUV光照射を行い、厚さ1μmのプライマー層を形成した。
 得られたプライマー層上に、ペルヒドロポリシラザン含有液(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をスピンコート法により塗布し、得られた塗膜を120℃で2分間加熱することにより、厚み200nmのペルヒドロポリシラザン層を形成した。さらに、得られたペルヒドロポリシラザン層に、下記の条件により、アルゴン(Ar)をプラズマイオン注入し、プラズマイオン注入したペルヒドロポリシラザン層(以下、「無機層A」という。)を形成した。
 次いで、無機層A上に、ペルヒドロポリシラザン層の厚みを150nmとしたこと以外は無機層Aと同様に酸窒化珪素層(無機層B)を2層繰り返し形成し、透明ガスバリア層を積層した。
※プライマー層形成用溶液
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20質量部をメチルイソブチルケトン100質量部に溶解させた後、光重合性開始剤(BASF社製、商品名:Irgacure127)を、固形分に対して3質量%となるように添加した溶液。
 プラズマイオン注入は、下記の装置を用い、以下の注入条件で行った。
〈プラズマイオン注入装置〉
RF電源:型番号「RF56000」、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
〈プラズマイオン注入条件〉
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波数 13.56MHz、印加電力 1000 W
・チャンバー内圧:0.2Pa
・パルス幅:5sec
・処理時間(イオン注入時間):200sec
・搬送速度:0.2m/min
<Preparation of transparent gas barrier layer>
On the transparent substrate (polyethylene naphthalate, manufactured by Teijin DuPont Films, PENQ65HWA, 100 μm thick), the following primer layer forming solution was applied by the bar coating method, dried at 70 ° C. for 1 minute, and then UV light. UV light irradiation was performed using an irradiation line (Fusion UV Systems JAPAN, high-pressure mercury lamp; integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, line speed 20 m / min, number of passes twice), and a thickness of 1 μm A primer layer was formed.
On the obtained primer layer, a perhydropolysilazane-containing liquid (manufactured by AZ Electronic Materials, trade name: AZNL110A-20) is applied by spin coating, and the obtained coating film is heated at 120 ° C. for 2 minutes. Thus, a perhydropolysilazane layer having a thickness of 200 nm was formed. Further, argon (Ar) was plasma ion-implanted into the obtained perhydropolysilazane layer under the following conditions to form a perhydropolysilazane layer (hereinafter referred to as “inorganic layer A”) in which plasma ions were implanted.
Next, two silicon oxynitride layers (inorganic layer B) were repeatedly formed on the inorganic layer A in the same manner as the inorganic layer A except that the thickness of the perhydropolysilazane layer was 150 nm, and a transparent gas barrier layer was laminated.
* Primer layer forming solution After dissolving 20 parts by mass of dipentaerythritol hexaacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: A-DPH) in 100 parts by mass of methyl isobutyl ketone, a photopolymerizable initiator (manufactured by BASF) , Trade name: Irgacure 127) added to 3% by mass with respect to the solid content.
Plasma ion implantation was performed using the following apparatus under the following implantation conditions.
<Plasma ion implantation system>
RF power source: Model number “RF56000”, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd. <Plasma ion implantation conditions>
・ Plasma generated gas: Ar
・ Gas flow rate: 100sccm
・ Duty ratio: 0.5%
・ Repetition frequency: 1000Hz
・ Applied voltage: -10kV
-RF power supply: frequency 13.56 MHz, applied power 1000 W
-Chamber internal pressure: 0.2 Pa
・ Pulse width: 5 sec
・ Processing time (ion implantation time): 200 sec
・ Conveying speed: 0.2m / min
(実施例2)
 下記のUV硬化系アクリル樹脂溶液Bを用いて埋込樹脂層Bを形成したこと以外は、実施例1と同様に透明導電積層体Bを作製し、ダイナミック超微小表面硬度計により、埋込樹脂層Bの25℃および70℃における弾性率、及び透明導電積層体BのヘーズHb0を測定した。次いで、透明導電層を積層することにより透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。また、実施例1と同様に、埋込樹脂層Bのガラス転移温度Tgを測定した。
※UV硬化系アクリル樹脂溶液B
 UV硬化系ウレタンアクリレート樹脂(日本合成化学製、 UT5746、固形分80質量%、酢酸エチル溶液)100質量部に対して、UV硬化系アクリル樹脂(東洋インキ社製、UA-A1)を10質量部、光開始剤(BASF社製、Irgacure819)を1.5質量部加えた溶液。
(Example 2)
A transparent conductive laminate B was prepared in the same manner as in Example 1 except that the embedded resin layer B was formed using the following UV curable acrylic resin solution B, and embedded using a dynamic ultra-small surface hardness meter. The elastic modulus at 25 ° C. and 70 ° C. of the resin layer B and the haze H b0 of the transparent conductive laminate B were measured. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were measured. Further, as in Example 1, the glass transition temperature Tg of the embedded resin layer B was measured.
* UV curable acrylic resin solution B
10 parts by weight of UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.) per 100 parts by weight of UV curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical, UT5746, solid content 80% by mass, ethyl acetate solution) A solution obtained by adding 1.5 parts by mass of a photoinitiator (Irgacure 819, manufactured by BASF).
(比較例1)
 下記UV硬化系アクリル樹脂溶液Cを用いて埋込樹脂層Cを形成したこと以外は、実施例1と同様に透明導電積層体Cを作製した。なお、埋込樹脂層Cの25℃および70℃における弾性率は測定したが、転写性不良のため、透明導電積層体CのヘーズHb0、ヘーズHb1等の測定はしなかった。また、実施例1と同様に、埋込樹脂層Cのガラス転移温度Tgを測定した。
※UV硬化系アクリル樹脂溶液C
UV硬化系アクリル樹脂(日本合成化学製、UT5746、固形分80質量%、酢酸エチル溶液)100質量部に対して、UV硬化系アクリル樹脂(東洋インキ社製、UA-A1)を50部、光開始剤(BASF社製、Irgacure819)を1.5質量部加えた溶液。
(Comparative Example 1)
A transparent conductive laminate C was produced in the same manner as in Example 1 except that the embedded resin layer C was formed using the following UV curable acrylic resin solution C. Although the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer C was measured, haze H b0 , haze H b1, etc. of the transparent conductive laminate C were not measured due to poor transferability. Further, in the same manner as in Example 1, the glass transition temperature Tg of the embedded resin layer C was measured.
* UV curable acrylic resin solution C
50 parts of UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.) for 100 parts by mass of UV curable acrylic resin (manufactured by Nippon Synthetic Chemical, UT5746, solid content 80% by mass, ethyl acetate solution), light A solution obtained by adding 1.5 parts by mass of an initiator (Irgacure 819, manufactured by BASF).
(比較例2)
 下記UV硬化系アクリル樹脂溶液Dを用いて埋込樹脂層Dを形成したこと以外は、実施例1と同様に透明導電積層体Dを作製した。なお、埋込樹脂層Dの25℃および70℃における弾性率は測定したが、転写性不良のため、透明導電積層体DのヘーズHb0、ヘーズHb1等の測定はしなかった。また、実施例1と同様に、埋込樹脂層Dのガラス転移温度Tgを測定した。
※UV硬化系アクリル樹脂溶液D
UV硬化系アクリル樹脂(東洋インキ社製、UA-A1)からなる溶液。
(Comparative Example 2)
A transparent conductive laminate D was produced in the same manner as in Example 1 except that the embedded resin layer D was formed using the following UV curable acrylic resin solution D. Although the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer D was measured, the haze H b0 , haze H b1, etc. of the transparent conductive laminate D were not measured because of poor transferability. Further, in the same manner as in Example 1, the glass transition temperature Tg of the embedded resin layer D was measured.
* UV curable acrylic resin solution D
A solution comprising a UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.).
(実施例3)
 厚み1mmのスライドガラス上に、下記密着層塗液Aをアプリケーターにて塗布し、90℃で2分間乾燥したのち、剥離シートB〔シリコーン剥離処理したポリエチレンテレフタレートフィルム〕(リンテック社製、SP-PET381031、厚さ38μm)と貼合し、コンベア式UV照射装置(ヘレウス社製、高圧水銀灯)を用いて積算光量として250mJ/cmとなるよう塗布面から照射し、密着層Aを得た。なお、硬化後の膜厚は50μmであった。この密着層Aを剥離シートBから剥離し、貯蔵弾性率E’及び損失弾性率E''を測定し、得られた損失正接tanδからガラス転移温度Tgを測定した。
※密着層塗液A
 UV硬化系アクリル樹脂(東洋インキ製、UA-A1、固形分100質量%)からなる塗液。
 実施例1と同様に補助電極層付き転写基材を作製した。この転写基材の補助電極層面側にUV硬化系アクリル樹脂溶液Aをアプリケーターにて塗工し、90℃で2分間乾燥させ、転写基材/補助電極層/埋込樹脂層A(未硬化)の積層体Bを形成した。
 また、実施例1と同様に形成した透明ガスバリア層を有する透明基材の透明ガスバリア層側に密着層A(UV硬化系アクリル樹脂(東洋インキ社製、UA-A1))をアプリケーターにて塗工し、密着層A側からコンベア式UV照射機(ヘレウス社製、高圧水銀灯)により、積算光量として250mJ/cmとなるよう照射し、密着層A/透明ガスバリア層/プライマー層/透明基材の積層体C(硬化後の密着層Aの厚さ:5μm)を形成した。
 ここで、ダイナミック超微小表面硬度計により、積層体Cの密着層Aの25℃における弾性率を測定した。
 次に、積層体Bの埋込樹脂層Aと積層体Cの密着層Aをラミネータにて貼合し、透明樹脂基材側からコンベア式UV照射機(ヘレウス社製、高圧水銀灯)により、積算光量として250mJ/cmとなるよう照射し、積層体B中の埋込樹脂層Aを硬化させた(硬化後の埋込樹脂層Aの厚さ:25μm)。最後に、埋込樹脂層Aと補助電極層からなる界面から転写基材を剥離することで、透明樹脂基材上に、透明ガスバリア層および密着層Aを介し、開口部を有する補助電極層と埋込樹脂層Aとからなる複合層が積層された透明導電積層体Eを作製し、ダイナミック超微小表面硬度計により、埋込樹脂層Aの25℃及び70℃における弾性率、及びヘーズHc0を測定した。
 さらに、実施例1と同様に透明導電層を50nm成膜し透明導電性積層体とし、ヘーズHc1、シート抵抗値ρ、水蒸気透過率(WVTR)を評価した。
(Example 3)
The following adhesion layer coating liquid A was applied onto a slide glass having a thickness of 1 mm with an applicator, dried at 90 ° C. for 2 minutes, and then release sheet B [polyethylene terephthalate film subjected to silicone release treatment] (SP-PET 381031 manufactured by Lintec Corporation). , And a thickness of 38 μm) was applied and irradiated from the coated surface using a conveyor-type UV irradiation device (manufactured by Heraeus, high-pressure mercury lamp) so that the integrated light amount was 250 mJ / cm 2 , thereby obtaining an adhesion layer A. The film thickness after curing was 50 μm. The adhesion layer A was peeled from the release sheet B, the storage elastic modulus E ′ and the loss elastic modulus E ″ were measured, and the glass transition temperature Tg was measured from the obtained loss tangent tan δ.
* Adhesion layer coating solution A
A coating solution comprising a UV curable acrylic resin (manufactured by Toyo Ink, UA-A1, solid content: 100% by mass).
A transfer substrate with an auxiliary electrode layer was prepared in the same manner as in Example 1. The UV curable acrylic resin solution A is applied to the auxiliary electrode layer side of the transfer substrate with an applicator and dried at 90 ° C. for 2 minutes, and the transfer substrate / auxiliary electrode layer / embedded resin layer A (uncured) A laminate B was formed.
In addition, an adhesion layer A (UV curable acrylic resin (UA-A1 manufactured by Toyo Ink Co., Ltd.)) was applied with an applicator to the transparent gas barrier layer side of the transparent substrate having the transparent gas barrier layer formed in the same manner as in Example 1. Then, irradiation is performed from the adhesion layer A side by a conveyor type UV irradiator (manufactured by Heraeus, high-pressure mercury lamp) so that the integrated light amount is 250 mJ / cm 2, and the adhesion layer A / transparent gas barrier layer / primer layer / transparent substrate A laminate C (thickness of the adhesion layer A after curing: 5 μm) was formed.
Here, the elastic modulus at 25 ° C. of the adhesion layer A of the laminate C was measured with a dynamic ultra-small surface hardness meter.
Next, the embedded resin layer A of the laminate B and the adhesion layer A of the laminate C are bonded with a laminator, and integrated from the transparent resin substrate side by a conveyor type UV irradiator (manufactured by Heraeus, high-pressure mercury lamp). Irradiation was performed so that the amount of light was 250 mJ / cm 2 to cure the embedded resin layer A in the laminate B (thickness of the embedded resin layer A after curing: 25 μm). Finally, by peeling the transfer substrate from the interface composed of the embedded resin layer A and the auxiliary electrode layer, the auxiliary electrode layer having an opening on the transparent resin substrate via the transparent gas barrier layer and the adhesion layer A A transparent conductive laminate E in which a composite layer composed of the embedded resin layer A is laminated is manufactured, and the elastic modulus at 25 ° C. and 70 ° C. of the embedded resin layer A and haze H are measured by a dynamic ultra-small surface hardness meter. c0 was measured.
Furthermore, a transparent conductive layer was formed to a thickness of 50 nm in the same manner as in Example 1 to obtain a transparent conductive laminate, and haze H c1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were evaluated.
(実施例4)
 密着層Aの膜厚を25μmに変更したこと以外は、実施例1と同様に透明導電積層体Fを作製し、透明導電積層体FのヘーズHc0を評価した。次いで、透明導電層を積層することにより透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。
Example 4
A transparent conductive laminate F was produced in the same manner as in Example 1 except that the film thickness of the adhesion layer A was changed to 25 μm, and the haze H c0 of the transparent conductive laminate F was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were measured.
(実施例5)
 密着層Aの膜厚を50μmに変更したこと以外は、実施例1と同様に透明導電積層体Gを作製し、透明導電積層体GのヘーズHc0を評価した。次いで、透明導電層を積層することにより透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。
(Example 5)
A transparent conductive laminate G was produced in the same manner as in Example 1 except that the thickness of the adhesion layer A was changed to 50 μm, and the haze H c0 of the transparent conductive laminate G was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were measured.
(実施例6)
 密着層Aの膜厚を75μmに変更したこと以外は、実施例1と同様に透明導電積層体Hを作製し、透明導電積層体HのヘーズHc0を評価した。次いで、透明導電層を積層することにより透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。
(Example 6)
A transparent conductive laminate H was produced in the same manner as in Example 1 except that the film thickness of the adhesion layer A was changed to 75 μm, and the haze H c0 of the transparent conductive laminate H was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were measured.
(実施例7)
 実施例3において、埋込樹脂層Aを下記UV硬化系アクリル樹脂溶液Eからなる埋込樹脂層Eに変更し、ダイコーターで転写基材直上が1μmの厚み(硬化後)となるよう塗工し、70℃で30秒間乾燥させる一方、密着層Aを下記密着層塗液Bからなる密着層Bに変更し、バーコーターにて10μmの厚み(硬化後)となるよう塗工し硬化させ、さらに埋込樹脂層Eと密着層Bを貼合したこと以外は、実施例3と同様の方法で透明導電積層体Iを作製し、ダイナミック超微小表面硬度計により埋込樹脂層Eの25℃および70℃における弾性率、及び透明導電積層体IのヘーズHc0を測定した。なお、貼合前の硬化後の密着層Bの25℃における弾性率は、実施例3と同様、ダイナミック超微小表面硬度計により測定した。
 次いで、透明導電層を積層することにより透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。
 また、実施例1と同じ方法で、厚み1mmのスライドガラス上に、UV硬化系アクリル樹脂溶液Eを用い、埋込樹脂層Eを作製し(硬化後の膜厚;50μm)、ガラス転移温度Tgを測定した。さらに、実施例3と同じ方法で、厚み1mmのスライドガラス上に、密着層塗液Bを用い、密着層Bを作製し(硬化後の膜厚:50μm)、ガラス転移温度Tgを測定した。
※UV硬化系アクリル樹脂溶液E
 無機微粒子を含むUV硬化系アクリル樹脂(JSR社製, オプスターZ7530、固形分73質量%、メチルエチルケトン溶液)を、メチルエチルケトンを希釈溶媒として加えて、固形分を30重量%となるよう調整した溶液。
※密着層塗液B
 UV硬化系アクリル樹脂(東亜合成社製、UVX6125、固形分100重量%)100質量部に対して、光開始剤(BASF社製、Irgacure819)を1質量部、シランカップリング剤(信越化学工業製、KBM903)を1質量部加えた塗液。
(Example 7)
In Example 3, the embedded resin layer A is changed to an embedded resin layer E made of the following UV curable acrylic resin solution E, and coating is performed with a die coater so that the thickness directly above the transfer substrate is 1 μm (after curing). Then, while drying at 70 ° C. for 30 seconds, the adhesion layer A is changed to the adhesion layer B composed of the following adhesion layer coating liquid B, and coated and cured to a thickness of 10 μm (after curing) with a bar coater, Further, except that the embedded resin layer E and the adhesion layer B were bonded, a transparent conductive laminate I was prepared in the same manner as in Example 3, and the embedded resin layer E 25 was measured with a dynamic ultra-small surface hardness meter. The elastic modulus at ° C. and 70 ° C. and the haze H c0 of the transparent conductive laminate I were measured. In addition, the elasticity modulus in 25 degreeC of the contact | adherence layer B after hardening before bonding was measured with the dynamic ultra fine surface hardness meter similarly to Example 3.
Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were measured.
Further, in the same manner as in Example 1, an embedded resin layer E was produced on a slide glass having a thickness of 1 mm using a UV curable acrylic resin solution E (film thickness after curing; 50 μm), and the glass transition temperature Tg. Was measured. Furthermore, the adhesion layer B was produced on the 1 mm-thick slide glass by the same method as Example 3 using the adhesion layer coating liquid B (film thickness after curing: 50 μm), and the glass transition temperature Tg was measured.
* UV curable acrylic resin solution E
A solution prepared by adding a UV curable acrylic resin containing inorganic fine particles (manufactured by JSR, Opstar Z7530, solid content 73 mass%, methyl ethyl ketone solution) as a diluent solvent to adjust the solid content to 30 wt%.
* Adhesion layer coating solution B
1 part by weight of photoinitiator (BASF, Irgacure 819) and 100 parts by weight of silane coupling agent (Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by weight of UV curable acrylic resin (Toa Gosei Co., Ltd., UVX6125, solid content 100% by weight) , KBM903) to which 1 part by mass is added.
(実施例8)
 密着層Aの硬化後の厚さを100μmとしたこと以外は、実施例3と同様に透明導電積層体Jを作製し、透明導電積層体JのヘーズHc0を評価した。次いで、透明導電層を積層することにより透明導電性積層体とし、ヘーズHb1、シート抵抗値ρ、水蒸気透過率(WVTR)を測定した。
(Example 8)
A transparent conductive laminate J was prepared in the same manner as in Example 3 except that the thickness of the adhesion layer A after curing was 100 μm, and the haze H c0 of the transparent conductive laminate J was evaluated. Next, the transparent conductive layer was laminated to obtain a transparent conductive laminate, and haze H b1 , sheet resistance value ρ, and water vapor transmission rate (WVTR) were measured.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、埋込樹脂層の弾性率を制御することで、優れた光学特性(ヘーズ小)及び屈曲性を有する透明導電性積層体が得られることが分かった。また、表2-1、表2-2から明らかなように、埋込樹脂層の弾性率より低い弾性率を有する密着層と埋込樹脂層とを積層することで、より屈曲性及び密着性に優れた、透明導電性積層体が得られることが分かった。 As is apparent from Table 1, it was found that a transparent conductive laminate having excellent optical properties (small haze) and flexibility can be obtained by controlling the elastic modulus of the embedded resin layer. Further, as is clear from Tables 2-1 and 2-2, by laminating an adhesion layer having an elastic modulus lower than that of the embedded resin layer and the embedded resin layer, more flexibility and adhesion can be obtained. It was found that a transparent conductive laminate excellent in the above can be obtained.
 本発明の透明導電性積層体は、優れた光学特性及び屈曲性を同時に有し、さらにシート抵抗値が小さいことから、大面積化を必要とするフレキシブルな太陽電池素子や有機エレクトロルミネッセンス素子等のデバイス等にも用いることもできる。 The transparent conductive laminate of the present invention has excellent optical properties and flexibility at the same time, and further has a small sheet resistance value, such as flexible solar cell elements and organic electroluminescence elements that require a large area. It can also be used for devices.
1A,1B:透明導電性積層体
2:透明基材
3:埋込樹脂層
4:補助電極層
5:透明導電層
6:プライマー層
7:透明ガスバリア層
8:密着層
9:開口部
 
1A, 1B: transparent conductive laminate 2: transparent substrate 3: embedded resin layer 4: auxiliary electrode layer 5: transparent conductive layer 6: primer layer 7: transparent gas barrier layer 8: adhesion layer 9: opening

Claims (13)

  1.  透明基材上に、少なくとも埋込樹脂層、補助電極層、及び透明導電層を含む透明導電性積層体であって、前記透明導電層が金属酸化物からなり、前記埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである、透明導電性積層体。 A transparent conductive laminate comprising at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer on a transparent substrate, wherein the transparent conductive layer is made of a metal oxide, and the embedded resin layer has a temperature of 25 ° C. A transparent conductive laminate having an elastic modulus at 3000 to 8000 MPa and an elastic modulus at 70 ° C. of 1000 to 7000 MPa.
  2.  前記埋込樹脂層のガラス転移温度が90℃以上である、請求項1に記載の透明導電性積層体。 The transparent conductive laminate according to claim 1, wherein the embedded resin layer has a glass transition temperature of 90 ° C. or higher.
  3.  前記埋込樹脂層の膜厚が0.1~100μmである、請求項1又は2に記載の透明導電性積層体。 The transparent conductive laminate according to claim 1 or 2, wherein the thickness of the embedded resin layer is 0.1 to 100 µm.
  4.  前記透明導電性積層体が、さらに前記埋込樹脂層の透明導電層とは反対の面上に密着層を含む、請求項1~3のいずれか1項に記載の透明導電性積層体。 The transparent conductive laminate according to any one of claims 1 to 3, wherein the transparent conductive laminate further comprises an adhesion layer on a surface of the embedded resin layer opposite to the transparent conductive layer.
  5.  前記密着層のガラス転移温度が40℃以上である、請求項4に記載の透明導電性積層体。 The transparent conductive laminate according to claim 4, wherein the adhesion layer has a glass transition temperature of 40 ° C. or higher.
  6.  前記密着層の膜厚が1~120μmである、請求項4又は5に記載の透明導電性積層体。 6. The transparent conductive laminate according to claim 4, wherein the adhesion layer has a thickness of 1 to 120 μm.
  7.  前記密着層の25℃における弾性率が100~3000MPaである、請求項4~6のいずれか1項に記載の透明導電性積層体。 The transparent conductive laminate according to any one of claims 4 to 6, wherein the adhesive layer has an elastic modulus at 25 ° C of 100 to 3000 MPa.
  8.  前記透明導電性積層体が、さらに透明基材上に透明ガスバリア層を含む、請求項1~7のいずれか1項に記載の透明導電性積層体。 The transparent conductive laminate according to any one of claims 1 to 7, wherein the transparent conductive laminate further comprises a transparent gas barrier layer on a transparent substrate.
  9.  前記透明導電性積層体が、さらに前記埋込樹脂層と透明ガスバリア層との間に密着層を含む、請求項8に記載の透明導電性積層体。 The transparent conductive laminate according to claim 8, wherein the transparent conductive laminate further comprises an adhesion layer between the embedded resin layer and the transparent gas barrier layer.
  10.  前記金属酸化物がスパッタ法で成膜される、請求項1に記載の透明導電性積層体。 The transparent conductive laminate according to claim 1, wherein the metal oxide is formed by sputtering.
  11.  請求項1~10のいずれか1項に記載の透明導電性積層体を有する、太陽電池素子又は有機エレクトロルミネッセンス素子。 A solar cell element or organic electroluminescence element comprising the transparent conductive laminate according to any one of claims 1 to 10.
  12.  透明基材上に、少なくとも埋込樹脂層、補助電極層、及び透明導電層を含み、該透明導電層が金属酸化物からなり、前記埋込樹脂層の25℃における弾性率が3000~8000MPaであり、かつ70℃における弾性率が1000~7000MPaである、透明導電性積層体の製造方法であって、前記補助電極層を形成する工程、該補助電極層の開口部、又は、補助電極層上及び開口部に前記埋込樹脂層を形成する工程、及び前記透明導電層を形成する工程を含む、透明導電性積層体の製造方法。 On the transparent substrate, at least an embedded resin layer, an auxiliary electrode layer, and a transparent conductive layer are formed. The transparent conductive layer is made of a metal oxide, and the elastic modulus at 25 ° C. of the embedded resin layer is 3000 to 8000 MPa. And a method of producing a transparent conductive laminate having an elastic modulus at 70 ° C. of 1000 to 7000 MPa, the step of forming the auxiliary electrode layer, an opening of the auxiliary electrode layer, or on the auxiliary electrode layer And a process for forming the embedded resin layer in the opening, and a process for forming the transparent conductive layer.
  13.  さらに、密着層を形成する工程及び/又は透明ガスバリア層を形成する工程を含む、請求項12に記載の透明導電性積層体の製造方法。
     
    Furthermore, the manufacturing method of the transparent conductive laminated body of Claim 12 including the process of forming an adhesion layer, and / or the process of forming a transparent gas barrier layer.
PCT/JP2018/011632 2017-03-31 2018-03-23 Transparent conductive laminate and production method therefor WO2018180961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-073254 2017-03-31
JP2017073254 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018180961A1 true WO2018180961A1 (en) 2018-10-04

Family

ID=63675985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011632 WO2018180961A1 (en) 2017-03-31 2018-03-23 Transparent conductive laminate and production method therefor

Country Status (2)

Country Link
TW (1) TW201840261A (en)
WO (1) WO2018180961A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279308A (en) * 1988-09-14 1990-03-19 Seiko Epson Corp Electrode forming method
WO2005041217A1 (en) * 2003-10-28 2005-05-06 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, method for manufacturing same and device using transparent conductive multilayer body
JP2005332705A (en) * 2004-05-20 2005-12-02 Fujimori Kogyo Co Ltd Transparent electrode substrate, its manufacturing method and dye-sensitized solar cell using it
JP2009146640A (en) * 2007-12-12 2009-07-02 Konica Minolta Holdings Inc Method for manufacturing conductive material, transparent conductive film, and organic electroluminescent device
WO2009157244A1 (en) * 2008-06-24 2009-12-30 コニカミノルタホールディングス株式会社 Electrically conductive transparent substrate, method for production of electrically conductive transparent substrate, and electrochemical display element
JP2010179642A (en) * 2009-02-09 2010-08-19 Toda Kogyo Corp Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and method of manufacturing transparent conductive substrate
JP2013102055A (en) * 2011-11-08 2013-05-23 Oike Ind Co Ltd Transparent electrode substrate and method for manufacturing the same
JP2013524536A (en) * 2010-04-06 2013-06-17 メルク パテント ゲーエムベーハー New electrode
JP2014216175A (en) * 2013-04-25 2014-11-17 リンテック株式会社 Method of producing transparent conductive laminate and transparent conductive laminate
WO2016157987A1 (en) * 2015-03-27 2016-10-06 リンテック株式会社 Film for transparent conductive layer lamination, method for manufacturing same, and transparent conductive film
WO2017077933A1 (en) * 2015-11-06 2017-05-11 リンテック株式会社 Film for transparent conductive layer lamination, method for producing same, and transparent conductive film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279308A (en) * 1988-09-14 1990-03-19 Seiko Epson Corp Electrode forming method
WO2005041217A1 (en) * 2003-10-28 2005-05-06 Sumitomo Metal Mining Co., Ltd. Transparent conductive multilayer body, method for manufacturing same and device using transparent conductive multilayer body
JP2005332705A (en) * 2004-05-20 2005-12-02 Fujimori Kogyo Co Ltd Transparent electrode substrate, its manufacturing method and dye-sensitized solar cell using it
JP2009146640A (en) * 2007-12-12 2009-07-02 Konica Minolta Holdings Inc Method for manufacturing conductive material, transparent conductive film, and organic electroluminescent device
WO2009157244A1 (en) * 2008-06-24 2009-12-30 コニカミノルタホールディングス株式会社 Electrically conductive transparent substrate, method for production of electrically conductive transparent substrate, and electrochemical display element
JP2010179642A (en) * 2009-02-09 2010-08-19 Toda Kogyo Corp Transparent conductive substrate, transparent conductive substrate for dye-sensitized solar cell, and method of manufacturing transparent conductive substrate
JP2013524536A (en) * 2010-04-06 2013-06-17 メルク パテント ゲーエムベーハー New electrode
JP2013102055A (en) * 2011-11-08 2013-05-23 Oike Ind Co Ltd Transparent electrode substrate and method for manufacturing the same
JP2014216175A (en) * 2013-04-25 2014-11-17 リンテック株式会社 Method of producing transparent conductive laminate and transparent conductive laminate
WO2016157987A1 (en) * 2015-03-27 2016-10-06 リンテック株式会社 Film for transparent conductive layer lamination, method for manufacturing same, and transparent conductive film
WO2017077933A1 (en) * 2015-11-06 2017-05-11 リンテック株式会社 Film for transparent conductive layer lamination, method for producing same, and transparent conductive film

Also Published As

Publication number Publication date
TW201840261A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6626998B2 (en) Gas barrier pressure-sensitive adhesive sheet, method for producing the same, electronic member and optical member
KR102168722B1 (en) Gas barrier film, method for producing same, gas barrier film laminate, member for electronic devices, and electronic device
JP6460630B2 (en) Gas barrier film laminate, manufacturing method thereof, and electronic device
US20150064429A1 (en) Gas barrier film laminate, member for electronic device, and electronic device
KR101474322B1 (en) Zinc oxide-based conductive multilayer structure, process for producing same, and electronic device
JP6603808B2 (en) GAS BARRIER FILM, SOLAR CELL, AND METHOD FOR PRODUCING GAS BARRIER FILM
TWI624363B (en) Laminated body, manufacturing method thereof, member for electronic device, and electronic device
JP6291679B2 (en) Method for producing surface protective film for transparent conductive substrate, surface protective film for transparent conductive substrate, and laminate
JP2014216175A (en) Method of producing transparent conductive laminate and transparent conductive laminate
JP6787584B2 (en) Film for laminating transparent conductive layer, its manufacturing method, and transparent conductive film
JP6816916B2 (en) Manufacturing method of transparent conductive laminate and transparent conductive laminate
WO2018180961A1 (en) Transparent conductive laminate and production method therefor
JP2017177445A (en) Laminae and protective film
JP2019188747A (en) Conductive film with protective film
WO2011142454A1 (en) Transparent conductive film, manufacturing method therefor, and electronic device using a transparent conductive film
JP2017095575A (en) Gas barrier adhesive sheet and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777966

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP