WO2024101206A1 - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
WO2024101206A1
WO2024101206A1 PCT/JP2023/039153 JP2023039153W WO2024101206A1 WO 2024101206 A1 WO2024101206 A1 WO 2024101206A1 JP 2023039153 W JP2023039153 W JP 2023039153W WO 2024101206 A1 WO2024101206 A1 WO 2024101206A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
nozzle
conditioned
blower
housing
Prior art date
Application number
PCT/JP2023/039153
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 尾崎
和宏 谷口
憲 山本
辰弥 渡辺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024101206A1 publication Critical patent/WO2024101206A1/en

Links

Images

Definitions

  • This disclosure relates to a ventilation system.
  • the blower in Patent Document 1 is equipped with multiple nozzles of equal length.
  • the nozzles are provided with an inlet and an outlet. High-pressure air flows into the nozzle through the inlet, and the high-pressure air in the nozzle is blown out from the outlet.
  • the multiple nozzles are provided with gaps so that the respective outlets are on the same plane, and these gaps form an induction air path outside the nozzle for air that is attracted by the airflow blown out from the outlet.
  • the blower is equipped with a damper mechanism that changes the opening area of the nozzle inlet, and the opening area of the nozzle inlet is adjusted to adjust the blowing range.
  • the objective of this disclosure is to provide an air blowing system that can vary the air blowing area while simplifying the nozzle structure.
  • the air blowing system is installed in a space from which an air conditioner blows out first conditioned air.
  • the air blowing system includes a nozzle unit and an air blowing device.
  • the nozzle units each have a housing formed in a hollow, elongated shape extending along a first direction, and have at least two nozzles arranged side by side along a second direction intersecting the first direction.
  • the air blowing device draws in the first conditioned air and blows out the second conditioned air.
  • the housing has a first surface portion and a second surface portion that face a third direction intersecting the first direction and the second direction.
  • the first surface portion has an air blowing port that extends along the first direction.
  • the air blowing port blows out the air sent into the inside of the housing to the outside of the housing.
  • the air blowing device is located on the side of the second surface portion of the housing with respect to the nozzle unit, and blows out the second conditioned air from the first end to the second end of the nozzle unit in the first direction.
  • FIG. 1 is a perspective view showing a ventilation system according to an embodiment.
  • FIG. 2 is a front view showing a main part of the above-mentioned ventilation system.
  • FIG. 3 is a perspective view showing a main part of the above-mentioned ventilation system.
  • FIG. 4 is a front view showing the blower unit provided in the blower system.
  • FIG. 5 is a cross-sectional view showing a part of the above-mentioned ventilation system.
  • FIG. 6 is a plan view showing an upper end of a nozzle provided in the above-mentioned blowing system.
  • FIG. 7 is a diagram showing a part of the blower unit included in the above blower system.
  • FIG. 8 is a block diagram showing a part of the above-mentioned air blowing system.
  • FIG. 9 is an explanatory diagram showing the operation of the above air blowing system during heating.
  • FIG. 10 is an explanatory diagram showing a warm air current in the above-mentioned ventilation system.
  • FIG. 11 is an explanatory diagram showing the operation of the above air blowing system during cooling.
  • FIG. 12 is an explanatory diagram showing a cool air flow in the above-mentioned ventilation system.
  • FIG. 13 is a cross-sectional view showing a part of the air blowing system of the second modified example.
  • FIG. 14 is a cross-sectional view showing a part of the air blowing system of the third modified example.
  • FIG. 15 is a block diagram showing a part of the above-mentioned air blowing system.
  • FIG. 16 is a block diagram showing a part of the air blowing system of the fourth modified example.
  • FIG. 17 is a cross-sectional view showing a part of the air blowing system of the fifth modified example.
  • the present embodiment generally relates to an air blowing system. More specifically, the present disclosure relates to an air blowing system having at least two nozzles formed in a hollow, elongated shape and arranged in parallel.
  • an X-axis, a Y-axis, and a Z-axis that are perpendicular to each other are defined in FIG. 1.
  • one of the two directions along the X-axis is defined as the forward direction, and the other as the rearward direction.
  • one of the two directions along the Y-axis is defined as the leftward direction, and the other as the rightward direction.
  • one of the two directions along the Z-axis is defined as the upward direction, and the other as the downward direction.
  • FIG. 1 shows a ventilation system VS1 according to the present embodiment.
  • the ventilation system VS1 is used in facilities such as office buildings, offices, stores, factories, or commercial facilities.
  • the ventilation system VS1 may also be used in apartment buildings, detached houses, and the like.
  • the ventilation system VS1 is intended to be installed in buildings such as facilities and houses, but may also be installed in structures other than buildings.
  • the air blowing system VS1 of this embodiment is installed in the space R1 from which the air conditioner 8 blows out the first conditioned air A1 (see FIG. 5).
  • the air blowing system VS1 includes a nozzle unit 1 and an air blowing device 3.
  • the nozzle unit 1 has at least two nozzles 10.
  • the at least two nozzles 10 each have a housing 10a formed in a hollow, elongated shape extending along the first direction, and are arranged side by side along a second direction intersecting the first direction.
  • the air blowing device 3 sucks in the first conditioned air A1 and blows out the second conditioned air A2 (see FIG. 5).
  • the housing 10a has a first surface 101 (see FIG. 3) and a second surface 102 (see FIG.
  • the first surface 101 has an air outlet 10b (see FIG. 2) that extends along the first direction.
  • the air outlet 10b blows the air sent into the housing 10a to the outside of the housing 10a.
  • the air blower 3 is located on the second surface 102 side of the housing 10a relative to the nozzle unit 1, and blows out the second conditioned air A2 from the first end to the second end of the nozzle unit 1 in the first direction.
  • the nozzle unit 1 draws in the second conditioned air A2 blown out by the air blowing device 3 along the first direction, and can vary the blowing area of the second conditioned air A2 blown out from the first surface portion 101.
  • the air blowing system VS1 can vary the blowing area while simplifying the structure of the nozzle 10.
  • the first direction corresponds to the vertical direction (up-down direction) along the Z axis
  • the second direction corresponds to the left-right direction along the Y axis
  • the third direction corresponds to the front-back direction along the X axis.
  • the first end of the nozzle unit 1 corresponds to the upper end 1a of the nozzle unit 1
  • the second end of the nozzle unit 1 corresponds to the lower end 1b of the nozzle unit 1.
  • the air blowing system VS1 is installed in a space R1.
  • the space R1 is a space where people exist, such as a working space, a conference room, a break room, a waiting room, a reception room, a living room, etc., and an air conditioner 8 is installed in the space R1.
  • the upper surface of the space R1 is a ceiling R11, and the lower surface of the space R1 is a floor R12.
  • the air blowing system VS1 includes a nozzle unit 1, an air blower 3, and a control device 4.
  • the nozzle unit 1 has six nozzles 10.
  • the air blowing system VS1 preferably further includes a nozzle blower 2.
  • the nozzle unit 1 and the nozzle blower 2 constitute an air blowing unit U1.
  • the air blowing system VS1 preferably further includes an operation terminal 5, and a temperature sensor 6.
  • each of the six nozzles 10 constituting the nozzle unit 1 has a housing 10a formed in a hollow, elongated shape extending along the vertical direction.
  • the six housings 10a are arranged side-by-side in the left-right direction with gaps between them.
  • the nozzle unit 1 can be considered as having a plate shape extending along the Z-Y plane as a whole, and can also be used as a partition that spatially divides the space R1.
  • the nozzle unit 1 is installed in the space R1 together with the partition P1, so that a space surrounded by the nozzle unit 1 and the partition P1 can be formed within the space R1.
  • the air conditioning device 8 is an air conditioner having heating and cooling functions, and is embedded in the ceiling R11 as shown in Fig. 1.
  • the air conditioning device 8 blows out the first conditioned air A1 into the space R1.
  • the air conditioning device 8 has an air outlet shaped to fit along the outer periphery of the housing of the air conditioning device 8, and blows out the first conditioned air A1 diagonally downward from the air outlet.
  • the air conditioning device 8 blows out warm air as the first conditioned air A1.
  • the air conditioning device 8 blows out cold air as the first conditioned air A1.
  • blower unit U1 is fixed to the underside of the ceiling R11 or a T-bar with a hanging bolt or wire (not shown). As shown in Figures 2 to 5, the blower unit U1 includes a nozzle unit 1 and a nozzle blower 2.
  • the nozzle unit 1 has six nozzles 10 spaced apart from one another and aligned in the left-right direction, and a base 11.
  • the nozzle 10 has a hollow rectangular plate-like housing 10a whose long sides extend vertically along the Z axis.
  • the housing 10a has a rectangular front surface 101, a rear surface 102, a left surface 103, a right surface 104, a top surface 105, and a bottom surface 106.
  • a rectangular opening with a long side extending vertically is formed as an air outlet 10b on the front surface 101 of the housing 10a.
  • the air outlet 10b is formed in the center of the front surface 101 of the housing 10a in the left-right direction.
  • the housings 10a of the six nozzles 10 are arranged in a line in the left-right direction along the Y axis, with a gap between them.
  • the left surface 103 of the housing 10a of a nozzle 10 faces the right surface 104 of the housing 10a of the nozzle 10 adjacent to the left with a gap
  • the right surface 104 of the housing 10a of a nozzle 10 faces the left surface 103 of the housing 10a of the nozzle 10 adjacent to the right with a gap.
  • the housing 10a is formed of, for example, a resin material, but may also be formed of a lightweight metal material such as aluminum.
  • the housing 10a defines an internal space 10c surrounded by a front surface 101, a rear surface 102, a left surface 103, a right surface 104, a top surface 105, and a bottom surface 106. As shown in FIG. 6, an air intake port 10d is formed in the top surface 105 of the housing 10a. The internal space 10c is connected to the outside of the housing 10a via the air intake port 10d. The bottom surface 106 of the housing 10a has an inner peripheral surface 10f that faces the internal space 10c.
  • multiple fins 10e are arranged vertically at regular intervals on the rear surface of the front portion 101 of the internal space 10c.
  • the fins 10e are plate-shaped extending rearward from the front portion 101 of the internal space 10c, and block the front portion of the internal space 10c (a part of the front side of the internal space 10c) when viewed from the direction along the Z axis.
  • the multiple fins 10e are positioned so as to separate the air outlet 10b at regular intervals along the Z axis.
  • the fins 10e have the function of straightening the air blown out from the air outlet 10b to the outside of the housing 10a.
  • the nozzle blower 2 is provided at the upper end 1a of the nozzle unit 1.
  • the nozzle blower 2 has a hollow rectangular housing 2a and has a fan 2b inside the housing 2a.
  • the fan 2b is preferably a cross-flow fan.
  • the housing 2a is connected to a duct D1, and air is supplied from the duct D1. When the fan 2b rotates, the air blown out from the fan 2b is blown downward from the bottom surface of the housing 2a.
  • the bottom surface of the housing 2a faces the upper end surface portion 105 of the nozzle 10, and when the fan 2b rotates, the air blown out from the fan 2b flows into the internal space 10c through the intake port 10d of the nozzle 10.
  • the nozzle blower 2 sends air from the intake port 10d of each nozzle 10 into the internal space 10c, generating an internal airflow F0 (see FIG. 5) that flows downward from the intake port 10d in the internal space 10c.
  • the internal airflow F0 is rectified by the fins 10e in the internal space 10c and blows forward from the air outlet 10b in the front part 101 of the housing 10a.
  • FIG. 6 it is preferable that the width of the front part of the internal space 10c in the left-right direction narrows toward the front.
  • the base 11 is a long rectangular plate to which the lower end 1b of the nozzle unit 1 is fixed.
  • the lower end surface portions 106 of the six housings 10a are fixed to the base 11 (see FIG. 5). Then, by placing the base 11 on the floor R12, the six nozzles 10 are installed on the floor R12 so that the housings 10a extend vertically.
  • each of the six nozzles 10 that make up the nozzle unit 1 generates a nozzle airflow F2 by blowing air forward from the long air outlet 10b in the front portion 101 of the housing 10a.
  • Figure 7 shows any two nozzles 10 that are arranged next to each other in the left-right direction along the Y axis out of the six nozzles 10 that make up the nozzle unit 1.
  • an induction path 91 shown in FIG. 7 is formed between two nozzles 10 adjacent to each other in the left-right direction.
  • the induction path 91 is a space that is sandwiched between the right surface 104 of the housing 10a of the left nozzle 10 and the left surface 103 of the housing 10a of the right nozzle 10, and is open to the front and rear.
  • the induction path 91 becomes negative pressure, and air in the rear space 92, which is the space behind the two nozzles 10, is drawn from the rear to the front into the induction path 91.
  • the air drawn from the rear to the front through the induction path 91 is blown forward from the induction path 91.
  • the air blown forward from the induction path 91 generates an induction airflow F3 that flows forward from the induction path 91.
  • an induced airflow F3 is generated between the two nozzle airflows F2 generated by the two adjacent nozzles 10 below and in front of the nozzle unit 1, and a mixed airflow F1 is generated in which the nozzle airflow F2 and the induced airflow F3 combine.
  • the mixed airflow F1 is blown out forward from the nozzle unit 1.
  • Control device 4 may also control the rotation speed of fan 2b. In this case, if the flow rate of mixed air flow F1 is the air volume of nozzle unit 1, the higher the rotation speed of fan 2b, the greater the air volume of nozzle unit 1, and the lower the rotation speed of fan 2b, the smaller the air volume of nozzle unit 1.
  • the blower 3 is a cross-flow fan, and is fixed to the underside of the ceiling R11 or a T-bar with a hanging bolt or wire (not shown), and is disposed behind the upper end 1a of the nozzle unit 1 (or behind the nozzle unit 1).
  • the blower 3 sucks in the first conditioned air A1 blown out by the air conditioner 8, and blows out the second conditioned air A2 from the upper end (first end) 1a towards the lower end (second end) 1b of the nozzle unit 1 (see FIG. 5).
  • the blower 3 has a hollow rectangular housing 3a and a fan 3b inside the housing 3a.
  • An intake port 3c is formed on the top surface of the housing 3a
  • an air outlet 3d is formed on the bottom surface of the housing 3a.
  • the blower 3 rotates, the first conditioned air A1 is sucked into the housing 3a from the intake port 3c, and the second conditioned air A2 is blown downward from the air outlet 3d.
  • the second conditioned air A2 blown downward from the air outlet 3d flows from the top to the bottom behind the nozzle unit 1.
  • the blower 3 is preferably located in the flow path of the first conditioned air A1 blown out by the air conditioner 8.
  • the blower 3 is located diagonally below the air conditioner 8.
  • the flow rate of the second conditioned air A2 at the air outlet 3d is the air volume of the blower 3, the higher the rotation speed of the fan 3b, the greater the air volume of the blower 3, and the lower the rotation speed of the fan 3b, the smaller the air volume of the blower 3.
  • the operation, stop, and rotation speed of the fan 3b are controlled by the control device 4.
  • the operation terminal 5 is equipped with a switch or a touch panel for instructing the operation of the blower 3, and accepts user operations.
  • the operation terminal 5 then transmits an air blowing operation signal corresponding to the user operation to the control device 4.
  • the operation terminal 5 accepts operations such as operating and stopping the blower system VS1.
  • the control device 4 controls the operation, stopping, and air blowing volume during operation of the blower 3, as well as the operation and stopping of the nozzle blower 2.
  • the operation terminal 5 is, for example, a smartphone, a tablet terminal, or a dedicated terminal.
  • the temperature sensor 6 is installed near the air conditioner 8 and detects the temperature of the first conditioned air A1 blown out by the air conditioner 8.
  • the temperature sensor 6 generates a temperature signal including the detection result of the temperature of the first conditioned air A1, and outputs the temperature signal to the control device 4.
  • the control device 4 controls the amount of air blown by the blower 3 during operation.
  • the temperature sensor 6 is preferably located in the flow path of the first conditioned air A1 blown out by the air conditioner 8.
  • the blower 3 is located diagonally below the air conditioner 8 and between the air conditioner 8 and the blower 3 in the vertical direction.
  • FIG. 8 is a block diagram relating to the control performed by the control device 4.
  • the control device 4 controls the operation, stop, and blowing volume of the blower 3 by performing wired or wireless communication with the blower 3.
  • the control device 4 also controls the operation and stop of the nozzle blower 2 by performing wired or wireless communication with the nozzle blower 2.
  • the control device 4 also acquires a blowing operation signal from the operation terminal 5 and a temperature signal from the temperature sensor 6 by performing wired or wireless communication with the operation terminal 5 and the temperature sensor 6.
  • the wired communication is, for example, wired communication via a twisted pair cable, a dedicated communication line, or a LAN (Local Area Network) cable.
  • the wireless communication is, for example, wireless communication that complies with standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), or low-power radio that does not require a license (specific low-power radio).
  • the control device 4 can therefore switch between operating and stopping the blower device 3 and adjust the amount of air blown during operation based on the user's operation received by the operation terminal 5 and the detection results of the temperature sensor 6.
  • the control device 4 can also switch between operating and stopping the nozzle blower 2 based on the user's operation received by the operation terminal 5.
  • control device 4 comprises a computer system. That is, in the control device 4, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) reads and executes a program stored in a memory, thereby realizing some or all of the functions of the control device 4.
  • the control device 4 has a processor that operates according to a program as its main hardware configuration. The type of processor is not important as long as it can realize the functions by executing a program.
  • the processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration).
  • IC integrated circuit
  • LSI System LSI
  • VLSI Very Large Scale Integration
  • ULSI Ultra Large Scale Integration
  • FPGAs Field programmable gate arrays
  • reconfigurable logic devices which can reconfigure the connections within the LSI or set up circuit partitions within the LSI, can also be used for the same purpose.
  • Multiple electronic circuits may be integrated on one chip or may be provided on multiple chips. Multiple chips may be arranged in a centralized manner or in a distributed manner.
  • the control device 4 may be realized as either a single computer device or multiple computer devices linked to each other.
  • the control device 4 may also be constructed as a cloud computing system.
  • the control device 4 of this embodiment controls the amount of air sent from the air blower 3 based on the detection results of the temperature sensor 6, thereby performing air supply control according to the operating state of the air conditioner 8.
  • the air supply control in the air supply system VS1 will be described in detail below.
  • control device 4 controls the amount of air blown by the blower 3 to adjust the area through which the airflow generated in front of the nozzle unit 1 flows.
  • control device 4 operates the nozzle blower 2 and then adjusts the amount of air blown by the blower 3 to vary the area through which the airflow generated in front of the nozzle unit 1 flows (air blowing area).
  • control device 4 includes an operation determination unit 4a and an air volume control unit 4b.
  • the operation determination unit 4a determines the operation state of the air conditioner 8. In this embodiment, the operation determination unit 4a monitors the temperature of the first conditioned air A1 based on the temperature signal received from the temperature sensor 6. The operation determination unit 4a then determines the operation state of the air conditioner 8 based on the temperature of the first conditioned air A1. In particular, it is preferable for the operation determination unit 4a to determine whether the operation state of the air conditioner 8 is heating operation or cooling operation. If the temperature of the first conditioned air A1 is equal to or higher than the threshold value, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "heating operation".
  • the operation determination unit 4a determines the operation state of the air conditioner 8 to be "cooling operation". Alternatively, the operation determination unit 4a may also acquire data on at least one of the room temperature and the outdoor air temperature, and determine the operation state of the air conditioner 8 based on the temperature of the first conditioned air A1 and the room temperature, the temperature of the first conditioned air A1 and the outdoor air temperature, or the temperature of the first conditioned air A1, the room temperature, and the outdoor air temperature.
  • the air volume control unit 4b controls the volume of the second conditioned air A2 sent by the air blower 3 based on the determination result of the operating state of the air conditioner 8. In particular, it is preferable for the air volume control unit 4b to make the volume of air sent when the operating state is heating operation larger than the volume of air sent when the operating state is cooling operation. Below, the air volume control during heating operation and the air volume control during cooling operation are described in detail.
  • the air conditioner 8 is performing heating operation and blowing warm air downward as the first conditioned air A1.
  • the nozzle blower 2 is also in operation, and the blower 3 is also in operation.
  • the operation determination unit 4a of the control device 4 determines the operation state of the air conditioner 8 as "heating operation” based on the temperature signal received from the temperature sensor 6. If the operation state of the air conditioner 8 is "heating operation”, the air volume control unit 4b of the control device 4 controls the air volume of the blower 3 to "large”. The “large” air volume of the blower 3 is larger than the "small” air volume of the blower 3 during cooling operation described below. If the air volume of the blower 3 is "large”, the flow rate of the second conditioned air A2 blown downward by the blower 3 that has sucked in the first conditioned air A1 increases. At this time, the second conditioned air A2 flows vigorously from the upper end 1a to the lower end 1b of the nozzle unit 1 behind the nozzle unit 1, and most of the second conditioned air A2 reaches the lower end 1b of the nozzle unit 1.
  • the nozzle blower 2 is in operation, and the nozzle airflow F2 is blown forward from the front surface of the nozzle unit 1 (the blowing port 10b of each nozzle 10).
  • a portion of the second conditioned air A2 flowing from top to bottom behind the nozzle unit 1 is attracted to the nozzle airflow F2 blowing out from the front surface of the nozzle unit 1 and drawn forward.
  • the second conditioned air A2 drawn forward forms an induced airflow F31 as an induced airflow F3 passing between two nozzles 10 adjacent in the left-right direction.
  • the velocity vector of the induced airflow F31 is a composite vector of the velocity vector of the second conditioned air A2 and the velocity vector of the nozzle airflow F2, and the induced airflow F31 proceeds diagonally downward and forward.
  • the warm air flow F11 shown in FIG. 10 is generated as a mixed air flow F1 by the above-mentioned induced air flow F31 and the nozzle air flow F2, and the warm air flow F11 advances in a downward diagonal direction.
  • the air flow rate of the blower 3 is "large", and the flow rate of the second conditioned air A2 blown downward by the blower 3 is large.
  • the induced air flow F31 is mainly generated in the area closer to the lower end 1b of the nozzle unit 1 than to the upper end 1a (i.e., the lower part of the nozzle unit 1) (see FIG. 9). Therefore, the warm air flow F11 mainly blows forward from the lower part of the nozzle unit 1, and the blowing area G1 of the warm air flow F11 is the lower front side of the nozzle unit 1.
  • the air supply system VS1 can improve the comfort of person H1 through heating. Also, because the warm air current F11 blows out toward the lower part of space R1, the air supply system VS1 can generate convection within space R1 during heating, making it possible to uniform the temperature distribution within space R1.
  • the air conditioner 8 is in cooling operation and blows cool air downward as the first conditioned air A1.
  • the nozzle blower 2 is in operation, and the blower 3 is also in operation.
  • the operation determination unit 4a of the control device 4 determines that the operating state of the air conditioner 8 is "cooling operation” based on the temperature signal received from the temperature sensor 6. If the operating state of the air conditioner 8 is "cooling operation", the air volume control unit 4b of the control device 4 controls the air volume of the blower 3 to "small". The “small" air volume of the blower 3 is smaller than the "large” air volume of the blower 3 during heating operation. If the air volume of the blower 3 is "small”, the flow rate of the second conditioned air A2 blown downward by the blower 3 that has sucked in the first conditioned air A1 becomes smaller. At this time, the second conditioned air A2 flows from the upper end 1a to the lower end 1b of the nozzle unit 1 behind the nozzle unit 1, but most of the second conditioned air A2 does not reach the lower end 1b of the nozzle unit 1.
  • the nozzle blower 2 is in operation, and the nozzle airflow F2 is blown forward from the front surface of the nozzle unit 1 (the blowing port 10b of each nozzle 10).
  • a portion of the second conditioned air A2 flowing from top to bottom behind the nozzle unit 1 is attracted to the nozzle airflow F2 blowing out from the front surface of the nozzle unit 1 and drawn forward.
  • the second conditioned air A2 drawn forward forms an induced airflow F32 as an induced airflow F3 passing between two nozzles 10 adjacent in the left-right direction.
  • the velocity vector of the induced airflow F32 is a resultant vector of the velocity vector of the second conditioned air A2 and the velocity vector of the nozzle airflow F2, and the induced airflow F32 proceeds diagonally downward and forward.
  • the cold air flow F12 shown in FIG. 12 is generated as a mixed air flow F1 by the above-mentioned induced air flow F32 and the nozzle air flow F2, and the cold air flow F12 advances in a downward diagonal direction.
  • the air flow rate of the blower 3 is "small", and the flow rate of the second conditioned air A2 blown downward by the blower 3 is small.
  • the induced air flow F32 is mainly generated in the area closer to the upper end 1a than the lower end 1b of the nozzle unit 1 (i.e., the upper part of the nozzle unit 1) (see FIG. 11). Therefore, the cold air flow F12 mainly blows forward from the upper part of the nozzle unit 1, and the blowing area G2 of the cold air flow F12 is on the upper front side of the nozzle unit 1.
  • the air supply system VS1 can improve the comfort of person H1 through cooling. Also, because the cold air current F12 blows out toward the upper part of space R1, the air supply system VS1 can generate convection within space R1 during cooling, making it possible to uniform the temperature distribution within space R1.
  • the ventilation system VS1 is equipped with an operation determination unit 4a and an air volume control unit 4b, so that the airflow can be sent to a ventilation area according to the operating state of the air conditioner 8.
  • the operation determination unit 4a also determines whether the operating state of the air conditioner 8 is heating operation or cooling operation. Furthermore, the air volume control unit 4b makes the air volume of the air blower 3 when the operating state is heating operation larger than the air volume of the air blower 3 when the operating state is cooling operation. As a result, the air blowing system VS1 can send a warm air flow F11 to the air blowing area G1 when the air conditioner 8 is in heating operation, and can send a cold air flow F12 to the air blowing area G2 when the air conditioner 8 is in cooling operation.
  • the air supply system VS1 further includes a temperature sensor 6 that detects the temperature of the first conditioned air A1, and the operation determination unit 4a determines the operation state based on the temperature of the first conditioned air A1. As a result, the operation determination unit 4a can accurately determine the operation state of the air conditioner 8.
  • the six nozzles 10 constituting the nozzle unit 1 each have a housing 10a formed in a hollow, elongated shape extending along the vertical direction.
  • the blower 3 blows out the second conditioned air A2 from the upper end 1a to the lower end 1b of the nozzle unit 1.
  • the air volume control unit 4b makes the air volume of the blower 3 when the operating state is heating operation larger than the air volume of the blower 3 when the operating state is cooling operation.
  • the blower system VS1 can generate a warm air flow F11 that advances toward the vicinity of the feet of the person H1 in the space R1.
  • the blower system VS1 can generate a cold air flow F12 that advances toward the vicinity of the head of the person H1 in the space R1.
  • the blower system VS1 can set the blowing areas G1 and G2 appropriate for the operating state of the air conditioner 8 according to the operating state of the air conditioner 8.
  • the air volume control unit 4b of the control device 4 may control the nozzle air volume, which is the volume of air blown out from the air outlet 10b of the nozzle 10 to the outside of the housing 10a. That is, the air volume control unit 4b not only controls the volume of the second conditioned air A2 (see FIG. 5) blown out from the air outlet 3d of the blower 3, but also controls the nozzle air volume, which is the volume of the nozzle airflow F2 (see FIG. 7) blown out from the air outlet 10b of the nozzle 10. It is preferable that the air volume control unit 4b makes the nozzle air volume when the operating state of the air conditioner 8 is the heating operation smaller than the nozzle air volume when the operating state of the air conditioner 8 is the cooling operation.
  • air in space R1 is supplied to nozzle blower 2 via duct D1, and nozzle blower 2 supplies the air in space R1 to nozzle 10.
  • duct D1 and nozzle blower 2 circulate the air in space R1
  • nozzle airflow F2 is circulated air obtained by circulating the air in space R1.
  • the ratio of nozzle airflow F2 contained in mixed airflow F1 i.e., the ratio of circulated air contained in mixed airflow F1 is referred to as the mixing ratio.
  • the nozzle airflow rate when the air conditioner 8 is in heating operation is smaller than the nozzle airflow rate when the air conditioner 8 is in cooling operation. Therefore, the mixing ratio during heating operation is lower than the mixing ratio during cooling operation. As a result, the temperature difference between the mixed airflow F1 (warm airflow F11 in FIG. 10) of the nozzle airflow F2 and the induced airflow F3 and the surrounding air (circulating air) in the space R1 becomes large, and the comfort of the person H1 due to heating can be further improved.
  • the wind speed of the nozzle airflow F2 decreases, the amount of the second conditioned air A2 attracted to the nozzle airflow F2 at the upper part of the nozzle unit 1 decreases, and the amount of the second conditioned air A2 attracted to the nozzle airflow F2 at the lower part of the nozzle unit 1 can be sufficiently secured.
  • the second conditioned air A2 is more likely to be drawn forward near the feet of person H1, and a sufficient amount of warm air flow F11 can be sent to the area near the feet of person H1.
  • the nozzle airflow rate when the air conditioner 8 is in cooling operation is greater than the nozzle airflow rate when the air conditioner 8 is in heating operation. Therefore, the mixing ratio during cooling operation is higher than the mixing ratio during heating operation. As a result, the temperature difference between the mixed airflow F1 (cold airflow F12 in FIG. 12) of the nozzle airflow F2 and the induced airflow F3 and the surrounding air (circulating air) in the space R1 is reduced, and the draft feeling caused by cooling can be suppressed.
  • the wind speed of the nozzle airflow F2 increases, and the amount of the second conditioned air A2 attracted by the nozzle airflow F2 at the top of the nozzle unit 1 increases.
  • the second conditioned air A2 is more likely to be attracted forward above the head of the person H1, and the cold airflow F12 is less likely to directly hit the person H1.
  • the air blowing system VS1 further includes a duct D2.
  • the duct D2 is a cylinder that connects a duct connection port from which the air conditioner 8 blows out the first conditioned air A1 and the air intake port 3c of the air blower 3.
  • the duct D2 connects between the air conditioner 8 and the air blower 3, and guides the first conditioned air A1 blown out by the air conditioner 8 to the air blower 3.
  • the first conditioned air A1 blown out by the air conditioner 8 flows inside the duct D2 and is sucked into the air blower 3.
  • the first conditioned air A1 can be efficiently supplied to the blower 3. Therefore, the blower system VS1 can blow out air currents (warm air current F11, cold air current F12) that include the air conditioning effect of the air conditioner 8 forward of the nozzle unit 1.
  • air currents warm air current F11, cold air current F12
  • Third Modification Fig. 14 shows a third modification of the embodiment.
  • the air blowing system VS1 further includes an auxiliary air blowing device 7.
  • the auxiliary air blowing device 7 is located between the air conditioner 8 and the air blowing device 3 in the vertical direction, and blows air sucked in from above the auxiliary air blowing device 7 out below the auxiliary air blowing device 7.
  • the first conditioned air A1 blown out by the air conditioner 8 is sucked into the air blowing device 3 via the auxiliary air blowing device 7.
  • the first conditioned air A1 can be efficiently supplied to the blower 3. Therefore, the blower system VS1 can blow out air currents (warm air current F11, cold air current F12) that include the air conditioning effect of the air conditioner 8 forward of the nozzle unit 1.
  • air currents warm air current F11, cold air current F12
  • FIG. 15 is a block diagram relating to control by the control device 4 of the third modified example.
  • the control device 4 controls the auxiliary blower device 7 in addition to the blower device 3.
  • the control device 4 further includes an auxiliary control unit 4c.
  • the auxiliary control unit 4c controls the auxiliary blower device 7 to an operating state at the same time as the blower device 3. In other words, the control device 4 operates the blower device 3 and the auxiliary blower device 7 in synchronization.
  • the auxiliary control unit 4c may also make the airflow rate of the auxiliary blower 7 proportional to the airflow rate of the blower 3. Specifically, if the operating state of the air conditioner 8 is "heating operation", the auxiliary control unit 4c controls the airflow rate of the auxiliary blower 7 to "high”, and if the operating state of the air conditioner 8 is "cooling operation", the auxiliary control unit 4c controls the airflow rate of the auxiliary blower 7 to "low”. In this case, the auxiliary blower 7, together with the blower 3, can change the airflow area of the blower system VS1.
  • FIG. 16 is a block diagram relating to control by the control device 4 of a fourth modification.
  • the air supply system VS1 has a signal acquisition unit 6A instead of the temperature sensor 6.
  • the signal acquisition unit 6A acquires an air conditioning operation signal for operating the air conditioner 8.
  • the air conditioning operation signal is a signal transmitted from an operation terminal (air conditioning operation terminal) of the air conditioner 8 to the air conditioner 8 by wireless or wired communication, and instructs the air conditioner 8 to perform heating operation, cooling operation, etc.
  • the signal acquisition unit 6A acquires the air conditioning operation signal by intercepting the air conditioning operation signal on the communication path, or by having the air conditioner 8 transmit the air conditioning operation signal.
  • the operation determination unit 4a determines the operation state of the air conditioner 8 based on the air conditioning operation signal. For example, if the air conditioning operation signal is a signal instructing the air conditioner 8 to operate in heating mode, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "heating operation.” If the air conditioning operation signal is a signal instructing the air conditioner 8 to operate in cooling mode, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "cooling operation.”
  • the air volume control unit 4b controls the air volume of the blower 3 to "high” if the operating state of the air conditioner 8 is “heating operation”, and controls the air volume of the blower 3 to "low” if the operating state of the air conditioner 8 is "cooling operation”.
  • the operation determination unit 4a can accurately determine the operating state of the air conditioning device 8.
  • FIG. 17 shows part of the configuration of a ventilation system VS1 of a fifth modification.
  • the fifth modified air supply system VS1 further includes an addition device K1 that adds an active ingredient to the air blown out from the air outlet 10b of the nozzle 10.
  • the addition device K1 is placed inside the housing 2a of the nozzle blower 2.
  • the addition device K1 adds the active ingredient to the air (internal airflow F0) sent from the nozzle blower 2 to the internal space 10c.
  • the nozzle airflow F2 (see FIG. 7) containing the active ingredient is blown out from the blower port 10b, generating an airflow containing the active ingredient.
  • the additional device K1 generates an active ingredient by discharging electricity.
  • the additional device K1 has a pair of electrodes, and water is held in one of the pair of electrodes.
  • the additional device K1 applies a voltage between the pair of electrodes, causing a discharge between the pair of electrodes, thereby generating radicals as the active ingredient, and electrostatically atomizing the water held in the electrodes.
  • the additional device K1 generates nanometer-sized charged fine water particles that contain radicals in the fine droplets of electrostatically atomized water.
  • the radicals are the basis for useful effects in a variety of situations, including sterilization, deodorization, moisturization, freshness preservation, and virus inactivation.
  • the additional device K1 may also generate a discharge between a pair of electrodes without holding water in the electrodes. In this case, the additional device K1 generates air ions as an active ingredient by the discharge generated between the pair of electrodes.
  • the additional device K1 may also generate fragrance components or hypochlorous acid as active ingredients.
  • the addition device K1 may also be disposed inside the housing 3a of the blower device 3. In this case, the active ingredient is added to the second conditioned air A2 blown out by the blower device 3.
  • the air volume control unit 4b may control the volume of the second conditioned air A2 sent by the air blower 3 based on user operation performed on the operation terminal 5 or the like, the position of the person H1 in the space R1 detected by the human presence sensor, the timing result of the timer, etc.
  • the air blowing system VS1 allows manual control of the air blowing area, automatic control based on the position of the person H1, schedule control, etc.
  • the nozzle blower 2 may be something other than a crossflow fan, for example a centrifugal fan or a propeller fan.
  • the nozzle blower 2 may take in air either through a duct or by taking in the air around the housing 2a.
  • the number of nozzles 10 in the nozzle unit 1 may be two or more.
  • the structure to which the air blower unit U1 is attached may be any structure located at the top of the space R1, such as a ceiling or a stand.
  • the air blowing system (VS1) of the first aspect according to the embodiment is installed in a space (R1) from which an air conditioner (8) blows out a first conditioned air (A1).
  • the air blowing system (VS1) includes a nozzle unit (1) and an air blowing device (3).
  • the nozzle unit (1) has at least two nozzles (10) arranged side by side along a second direction intersecting the first direction, each of which has a housing (10a) formed in a hollow elongated shape extending along a first direction.
  • the air blowing device (3) sucks in the first conditioned air (A1) and blows out the second conditioned air (A2).
  • the housing (10a) has a first surface portion (101) and a second surface portion (102) facing a third direction intersecting the first direction and the second direction.
  • An air blowing port (10b) extending along the first direction is formed in the first surface portion (101).
  • the air outlet (10b) blows the air sent into the inside of the housing (10a) out to the outside of the housing (10a).
  • the air blower (3) is located on the second surface portion (102) side of the housing (10a) with respect to the nozzle unit (1), and blows out the second conditioned air (A2) from the first end (1a) to the second end (1b) in the first direction of the nozzle unit (1).
  • the above-mentioned air blowing system (VS1) can vary the air blowing area (G1, G2) while simplifying the structure of the nozzle (10).
  • the second aspect of the air supply system (VS1) preferably further includes an air volume control unit (4b) that controls the volume of the second conditioned air (A2) sent by the air supply device (3).
  • the above-mentioned air blowing system (VS1) can vary the air blowing area (G1, G2) while simplifying the structure of the nozzle (10).
  • the third aspect of the air blowing system (VS1) preferably further includes an operation determination unit (4a) that determines the operation state of the air conditioner (8).
  • the air volume control unit (4b) controls the volume of the second conditioned air (A2) blown by the air blower (3) based on the determination result of the operation state.
  • the above-mentioned ventilation system (VS1) can send airflows (F11, F12) to ventilation areas (G1, G2) according to the operating state of the air conditioner (8).
  • the operation determination unit (4a) determines whether the operating state is heating operation or cooling operation.
  • the above-mentioned ventilation system (VS1) can send airflows (F11, F12) to ventilation areas (G1, G2) corresponding to the heating operation and cooling operation of the air conditioner (8).
  • the air volume control unit (4b) sets the air volume when the operating state is heating operation to be larger than the air volume when the operating state is cooling operation.
  • the above-mentioned ventilation system (VS1) can send airflows (F11, F12) to ventilation areas (G1, G2) corresponding to the heating operation and cooling operation of the air conditioner (8).
  • the air volume control unit (4b) controls the nozzle air volume, which is the volume of air blown out from the air outlet (10b) to the outside of the housing (10a).
  • the air volume control unit (4b) makes the nozzle air volume when the operating state is heating operation smaller than the nozzle air volume when the operating state is cooling operation.
  • the above-mentioned ventilation system (VS1) can improve the thermal comfort felt by people in the space (R1).
  • the air supply system (VS1) in any one of the 3rd to 6th aspects, it is preferable that the air supply system (VS1) further includes a temperature sensor (6) that detects the temperature of the first conditioned air (A1).
  • the operation determination unit (4a) determines the operation state based on the temperature of the first conditioned air (A1).
  • the above-mentioned ventilation system (VS1) can accurately determine the operating state of the air conditioner (8).
  • the air supply system (VS1) further includes a signal acquisition unit (6A) that acquires an air conditioning operation signal for operating the air conditioner (8).
  • the operation determination unit (4a) determines the operation state based on the air conditioning operation signal.
  • the above-mentioned ventilation system (VS1) can accurately determine the operating state of the air conditioner (8).
  • the ventilation system (VS1) of the fifteenth aspect of the embodiment in any one of the first to fourteenth aspects, preferably further includes a duct (D2) that guides the first conditioned air (A1) blown out by the air conditioner (8) to the ventilation device (3).
  • the above-mentioned ventilation system (VS1) can blow out airflows (F11, F12) that include the air conditioning effect of the air conditioner (8).
  • the ventilation system (VS1) of the 16th aspect of the embodiment in any one of the first to 14th aspects, preferably further includes an auxiliary ventilation device (7) that sucks in the first conditioned air (A1) blown out by the air conditioner (8) and blows the first conditioned air (A1) toward the ventilation device (3).
  • the above-mentioned ventilation system (VS1) can blow out airflows (F11, F12) that include the air conditioning effect of the air conditioner (8).
  • the ventilation system (VS1) of the seventeenth aspect of the embodiment is preferably any one of the first to sixteenth aspects, further comprising an adding device (K1) that adds an active ingredient to the air.
  • the above-mentioned air supply system (VS1) can blow out air containing active ingredients such as radicals, fragrances, or hypochlorous acid, thereby improving the environment in the space (R1).
  • active ingredients such as radicals, fragrances, or hypochlorous acid
  • the first direction is a vertical direction.
  • the nozzle unit (1) can also be used as a partition.
  • the first end (1a) is located above the second end (1b).
  • the above-mentioned ventilation system (VS1) can improve the comfort of people in the space (R1) and achieve a more uniform temperature distribution within the space (R1).
  • VS1 Blowing system 1 Nozzle unit 1a Upper end (first end) 1b Lower end (second end) REFERENCE SIGNS LIST 10 Nozzle 101 First surface 102 Second surface 10a Housing 10b Air outlet 3 Blower 4a Operation determination unit 4b Air volume control unit 6 Temperature sensor 6A Signal acquisition unit 7 Auxiliary blower 8 Air conditioner A1 First conditioned air A2 Second conditioned air D2 Duct K1 Additional device R1 Space

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

The present disclosure addresses the problem of providing a ventilation system in which the ventilation direction can be changed while the structure of a nozzle is simplified. A ventilation system (VS1) includes a nozzle unit (1) and a ventilation device (3). The nozzle unit (1) includes at least two nozzles (10). The at least two nozzles (10) each have a hollow elongated housing (10a) extending along a first direction, and the nozzles are lined up along a second direction. The housing (10a) includes a first surface portion and a second surface portion that are opposed to a third direction. The first surface portion is provided with a ventilation port extending along the first direction. Air that has been fed into the housing (10a) is blown to the outside through the ventilation port. The ventilation device (3) is located on the second surface side of the housing (10a) with respect to the nozzle unit (1), and blows second conditioned air from a first end (1a) toward a second end (1b) of the nozzle unit (1).

Description

送風システムVentilation system
 本開示は、送風システムに関する。 This disclosure relates to a ventilation system.
 特許文献1の送風装置は、複数の等しい長さのノズルを備える。ノズルには流入口及び吹出口が設けられている。そして、高圧空気が流入口を通ってノズル内に流入し、ノズル内の高圧空気は吹出口から吹き出す。複数のノズルは、それぞれの吹出口が同一面となるように間隙を設けて備えられ、この間隙によって、吹出口から吹き出す空気流に誘引される空気の誘引風路がノズルの外側に形成される。そして、送風装置は、ノズルの流入口の開口面積を可変とするダンパ機構を備えており、ノズルの流入口の開口面積を調整することで、送風範囲を調整する。 The blower in Patent Document 1 is equipped with multiple nozzles of equal length. The nozzles are provided with an inlet and an outlet. High-pressure air flows into the nozzle through the inlet, and the high-pressure air in the nozzle is blown out from the outlet. The multiple nozzles are provided with gaps so that the respective outlets are on the same plane, and these gaps form an induction air path outside the nozzle for air that is attracted by the airflow blown out from the outlet. The blower is equipped with a damper mechanism that changes the opening area of the nozzle inlet, and the opening area of the nozzle inlet is adjusted to adjust the blowing range.
 特許文献1のような送風装置では、送風領域を可変とするために、ノズルの流入口の開口面積を可変とするダンパ機構をノズルに設ける必要があった。この結果、ノズルの構造が複雑になっていた。 In a blower device like that in Patent Document 1, in order to vary the blowing area, it was necessary to provide the nozzle with a damper mechanism that varies the opening area of the nozzle inlet. As a result, the nozzle structure was complicated.
特開2018-3658号公報JP 2018-3658 A
 本開示の目的は、ノズルの構造を簡易としながら送風領域を可変とすることができる送風システムを提供することである。 The objective of this disclosure is to provide an air blowing system that can vary the air blowing area while simplifying the nozzle structure.
 本開示の一態様に係る送風システムは、空調装置が第1調和空気を吹き出す空間に設置される。前記送風システムは、ノズルユニットと、送風装置と、を備える。前記ノズルユニットは、第1方向に沿って延びる中空の長尺形状に形成された筐体をそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置された少なくとも2つのノズルを有する。前記送風装置は、前記第1調和空気を吸い込み、第2調和空気を吹き出す。前記筐体は、前記第1方向及び前記第2方向に交差する第3方向に対向する第1面部及び第2面部を有する。前記第1面部には、前記第1方向に沿って延びる送風口が形成されている。前記送風口は、前記筐体の内部に送り込まれた空気を、前記筐体の外部に吹き出す。前記送風装置は、前記ノズルユニットに対して前記筐体の前記第2面部の側に位置し、前記ノズルユニットの前記第1方向における第1端から第2端に向かって前記第2調和空気を吹き出す。 The air blowing system according to one aspect of the present disclosure is installed in a space from which an air conditioner blows out first conditioned air. The air blowing system includes a nozzle unit and an air blowing device. The nozzle units each have a housing formed in a hollow, elongated shape extending along a first direction, and have at least two nozzles arranged side by side along a second direction intersecting the first direction. The air blowing device draws in the first conditioned air and blows out the second conditioned air. The housing has a first surface portion and a second surface portion that face a third direction intersecting the first direction and the second direction. The first surface portion has an air blowing port that extends along the first direction. The air blowing port blows out the air sent into the inside of the housing to the outside of the housing. The air blowing device is located on the side of the second surface portion of the housing with respect to the nozzle unit, and blows out the second conditioned air from the first end to the second end of the nozzle unit in the first direction.
図1は、実施形態の送風システムを示す斜視図である。FIG. 1 is a perspective view showing a ventilation system according to an embodiment. 図2は、同上の送風システムの要部を示す前面図である。FIG. 2 is a front view showing a main part of the above-mentioned ventilation system. 図3は、同上の送風システムの要部を示す斜視図である。FIG. 3 is a perspective view showing a main part of the above-mentioned ventilation system. 図4は、同上の送風システムが備える送風ユニットを示す前面図である。FIG. 4 is a front view showing the blower unit provided in the blower system. 図5は、同上の送風システムの一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of the above-mentioned ventilation system. 図6は、同上の送風システムが備えるノズルの上端を示す平面図である。FIG. 6 is a plan view showing an upper end of a nozzle provided in the above-mentioned blowing system. 図7は、同上の送風システムが備える送風ユニットの一部を示す図である。FIG. 7 is a diagram showing a part of the blower unit included in the above blower system. 図8は、同上の送風システムの一部を示すブロック図である。FIG. 8 is a block diagram showing a part of the above-mentioned air blowing system. 図9は、同上の送風システムの暖房時の動作を示す説明図である。FIG. 9 is an explanatory diagram showing the operation of the above air blowing system during heating. 図10は、同上の送風システムにおける暖気流を示す説明図である。FIG. 10 is an explanatory diagram showing a warm air current in the above-mentioned ventilation system. 図11は、同上の送風システムの冷房時の動作を示す説明図である。FIG. 11 is an explanatory diagram showing the operation of the above air blowing system during cooling. 図12は、同上の送風システムにおける冷気流を示す説明図である。FIG. 12 is an explanatory diagram showing a cool air flow in the above-mentioned ventilation system. 図13は、第2変形例の送風システムの一部を示す断面図である。FIG. 13 is a cross-sectional view showing a part of the air blowing system of the second modified example. 図14は、第3変形例の送風システムの一部を示す断面図である。FIG. 14 is a cross-sectional view showing a part of the air blowing system of the third modified example. 図15は、同上の送風システムの一部を示すブロック図である。FIG. 15 is a block diagram showing a part of the above-mentioned air blowing system. 図16は、第4変形例の送風システムの一部を示すブロック図である。FIG. 16 is a block diagram showing a part of the air blowing system of the fourth modified example. 図17は、第5変形例の送風システムの一部を示す断面図である。FIG. 17 is a cross-sectional view showing a part of the air blowing system of the fifth modified example.
 本実施形態は、一般に、送風システムに関する。より詳細には、本開示は、中空の長尺形状に形成されて並列に配置された少なくとも2つのノズルを備える送風システムに関する。 The present embodiment generally relates to an air blowing system. More specifically, the present disclosure relates to an air blowing system having at least two nozzles formed in a hollow, elongated shape and arranged in parallel.
 なお、以下に説明する実施形態は、本開示の実施形態の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。 Note that the embodiment described below is merely one example of an embodiment of the present disclosure. The present disclosure is not limited to the following embodiment, and various modifications are possible depending on the design, etc., as long as the effects of the present disclosure can be achieved.
 また、以下の説明では、特に断りのない限り、図1において、互いに直交するX軸、Y軸、及びZ軸を規定する。便宜的に、X軸に沿う両方向のうち一方向を前方向とし、他方向を後方向とする。また、Y軸に沿う両方向のうち一方向を左方向とし、他方向を右方向とする。また、Z軸に沿う両方向のうち一方向を上方向とし、他方向を下方向とする。 In the following description, unless otherwise specified, an X-axis, a Y-axis, and a Z-axis that are perpendicular to each other are defined in FIG. 1. For convenience, one of the two directions along the X-axis is defined as the forward direction, and the other as the rearward direction. Furthermore, one of the two directions along the Y-axis is defined as the leftward direction, and the other as the rightward direction. Furthermore, one of the two directions along the Z-axis is defined as the upward direction, and the other as the downward direction.
 (実施形態)
 (1)概略
 図1は、本実施形態の送風システムVS1を示す。送風システムVS1は、例えばオフィスビル、事務所、店舗、工場、又は商業施設などの施設に用いられる。また、送風システムVS1は、集合住宅の住戸、戸建て住宅などで用いられてもよい。送風システムVS1は、施設及び住宅などの建造物に設置されることを想定しているが、建造物以外の構造物に設置されてもよい。
(Embodiment)
(1) Overview Fig. 1 shows a ventilation system VS1 according to the present embodiment. The ventilation system VS1 is used in facilities such as office buildings, offices, stores, factories, or commercial facilities. The ventilation system VS1 may also be used in apartment buildings, detached houses, and the like. The ventilation system VS1 is intended to be installed in buildings such as facilities and houses, but may also be installed in structures other than buildings.
 本実施形態の送風システムVS1は、空調装置8が第1調和空気A1(図5参照)を吹き出す空間R1に設置される。送風システムVS1は、ノズルユニット1と、送風装置3と、を備える。ノズルユニット1は、少なくとも2つのノズル10を有する。少なくとも2つのノズル10は、第1方向に沿って延びる中空の長尺形状に形成された筐体10aをそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置されている。送風装置3は、第1調和空気A1を吸い込み、第2調和空気A2(図5参照)を吹き出す。筐体10aは、第1方向及び第2方向に交差する第3方向に対向する第1面部101(図3参照)及び第2面部102(図3参照)を有する。第1面部101には、第1方向に沿って延びる送風口10b(図2参照)が形成されている。送風口10bは、筐体10aの内部に送り込まれた空気を、筐体10aの外部に吹き出す。送風装置3は、ノズルユニット1に対して筐体10aの第2面部102の側に位置し、ノズルユニット1の第1方向における第1端から第2端に向かって第2調和空気A2を吹き出す。 The air blowing system VS1 of this embodiment is installed in the space R1 from which the air conditioner 8 blows out the first conditioned air A1 (see FIG. 5). The air blowing system VS1 includes a nozzle unit 1 and an air blowing device 3. The nozzle unit 1 has at least two nozzles 10. The at least two nozzles 10 each have a housing 10a formed in a hollow, elongated shape extending along the first direction, and are arranged side by side along a second direction intersecting the first direction. The air blowing device 3 sucks in the first conditioned air A1 and blows out the second conditioned air A2 (see FIG. 5). The housing 10a has a first surface 101 (see FIG. 3) and a second surface 102 (see FIG. 3) that face a third direction intersecting the first and second directions. The first surface 101 has an air outlet 10b (see FIG. 2) that extends along the first direction. The air outlet 10b blows the air sent into the housing 10a to the outside of the housing 10a. The air blower 3 is located on the second surface 102 side of the housing 10a relative to the nozzle unit 1, and blows out the second conditioned air A2 from the first end to the second end of the nozzle unit 1 in the first direction.
 上述の構成を有する送風システムVS1では、ノズルユニット1は、送風装置3が第1方向に沿って吹き出した第2調和空気A2を引き込んで、第1面部101から吹き出す第2調和空気A2の送風領域を可変とすることができる。すなわち、送風システムVS1は、ノズル10の構造を簡易としながら送風領域を可変とすることができる。 In the air blowing system VS1 having the above-mentioned configuration, the nozzle unit 1 draws in the second conditioned air A2 blown out by the air blowing device 3 along the first direction, and can vary the blowing area of the second conditioned air A2 blown out from the first surface portion 101. In other words, the air blowing system VS1 can vary the blowing area while simplifying the structure of the nozzle 10.
 なお、本実施形態では、第1方向はZ軸に沿う鉛直方向(上下方向)に相当し、第2方向はY軸に沿う左右方向に相当し、第3方向はX軸に沿う前後方向に相当する。 In this embodiment, the first direction corresponds to the vertical direction (up-down direction) along the Z axis, the second direction corresponds to the left-right direction along the Y axis, and the third direction corresponds to the front-back direction along the X axis.
 また、本実施形態では、ノズルユニット1の第1端はノズルユニット1の上端1aに相当し、ノズルユニット1の第2端はノズルユニット1の下端1bに相当する。 In addition, in this embodiment, the first end of the nozzle unit 1 corresponds to the upper end 1a of the nozzle unit 1, and the second end of the nozzle unit 1 corresponds to the lower end 1b of the nozzle unit 1.
 (2)詳細
 図1に示すように、送風システムVS1は空間R1に設置されている。空間R1は、ワーキングスペース、会議室、休憩室、待合室、応接室、及び居間などのように、人が存在する空間であり、空調装置8が設置されている。空間R1の上面は天井R11であり、空間R1の下面は床R12である。
(2) Details As shown in Fig. 1, the air blowing system VS1 is installed in a space R1. The space R1 is a space where people exist, such as a working space, a conference room, a break room, a waiting room, a reception room, a living room, etc., and an air conditioner 8 is installed in the space R1. The upper surface of the space R1 is a ceiling R11, and the lower surface of the space R1 is a floor R12.
 送風システムVS1は、ノズルユニット1、送風装置3、及び制御装置4を備える。ノズルユニット1は、6つのノズル10を有する。また、送風システムVS1は、ノズル送風機2を更に備えることが好ましい。ここで、ノズルユニット1、及びノズル送風機2は、送風ユニットU1を構成する。また、送風システムVS1は、操作端末5、及び温度センサ6を更に備えることが好ましい。 The air blowing system VS1 includes a nozzle unit 1, an air blower 3, and a control device 4. The nozzle unit 1 has six nozzles 10. The air blowing system VS1 preferably further includes a nozzle blower 2. Here, the nozzle unit 1 and the nozzle blower 2 constitute an air blowing unit U1. The air blowing system VS1 preferably further includes an operation terminal 5, and a temperature sensor 6.
 また、ノズルユニット1を構成する6つのノズル10は、鉛直方向に沿って延びる中空の長尺形状に形成された筐体10aをそれぞれ有する。そして、6つの筐体10aは、互いに隙間を空けて、左右方向に沿って並んで配置されている。この結果、ノズルユニット1は、全体としてZ-Y平面に沿って延びる板形状であるとみなすことができ、空間R1内を空間的に仕切るパーテーションとしても利用できる。図1では、ノズルユニット1がパーテーションP1とともに空間R1内に設置されることで、ノズルユニット1及びパーテーションP1とで囲まれた空間を空間R1内に形成できる。 Furthermore, each of the six nozzles 10 constituting the nozzle unit 1 has a housing 10a formed in a hollow, elongated shape extending along the vertical direction. The six housings 10a are arranged side-by-side in the left-right direction with gaps between them. As a result, the nozzle unit 1 can be considered as having a plate shape extending along the Z-Y plane as a whole, and can also be used as a partition that spatially divides the space R1. In FIG. 1, the nozzle unit 1 is installed in the space R1 together with the partition P1, so that a space surrounded by the nozzle unit 1 and the partition P1 can be formed within the space R1.
 (2.1)空調装置
 空調装置8は、暖房機能及び冷房機能を有するエアーコンディショナであり、図1に示すように天井R11に埋込配設されている。空調装置8は、第1調和空気A1を空間R1に吹き出す。本実施形態では、空調装置8は、空調装置8の筐体の外周縁に沿う形状の送風口を有しており、送風口から斜め下方向に第1調和空気A1を吹き出す。空調装置8は、暖房運転時では、第1調和空気A1として暖気を吹き出す。空調装置8は、冷房運転時では、第1調和空気A1として冷気を吹き出す。
(2.1) Air Conditioning Device The air conditioning device 8 is an air conditioner having heating and cooling functions, and is embedded in the ceiling R11 as shown in Fig. 1. The air conditioning device 8 blows out the first conditioned air A1 into the space R1. In this embodiment, the air conditioning device 8 has an air outlet shaped to fit along the outer periphery of the housing of the air conditioning device 8, and blows out the first conditioned air A1 diagonally downward from the air outlet. During heating operation, the air conditioning device 8 blows out warm air as the first conditioned air A1. During cooling operation, the air conditioning device 8 blows out cold air as the first conditioned air A1.
 (2.2)送風ユニット
 送風ユニットU1は、天井R11の下面又はTバーなどに図示しない吊りボルト又はワイヤなどで固定されている。送風ユニットU1は、図2-図5に示すように、ノズルユニット1、及びノズル送風機2を備える。
(2.2) Blower unit The blower unit U1 is fixed to the underside of the ceiling R11 or a T-bar with a hanging bolt or wire (not shown). As shown in Figures 2 to 5, the blower unit U1 includes a nozzle unit 1 and a nozzle blower 2.
 ノズルユニット1は、互いに間隔を空けて左右方向に並ぶ6つのノズル10、及びベース11を備える。 The nozzle unit 1 has six nozzles 10 spaced apart from one another and aligned in the left-right direction, and a base 11.
 ノズル10は、Z軸に沿って鉛直方向に長辺が延びた中空の矩形板状の筐体10aを有する。筐体10aは、矩形状の前面部101、後面部102、左面部103、右面部104、上端面部105、及び下端面部106を備える。 The nozzle 10 has a hollow rectangular plate-like housing 10a whose long sides extend vertically along the Z axis. The housing 10a has a rectangular front surface 101, a rear surface 102, a left surface 103, a right surface 104, a top surface 105, and a bottom surface 106.
 筐体10aの前面部101には、鉛直方向に長辺が延びた矩形状の開口が送風口10bとして形成されている。送風口10bは、筐体10aの前面部101において、左右方向の中心に形成されている。そして、6つのノズル10の各筐体10aは、Y軸に沿って左右方向に並んで、互いに隙間を空けて配置されている。ノズル10の筐体10aの左面部103は、左方に隣接するノズル10の筐体10aの右面部104と隙間を空けて対向し、ノズル10の筐体10aの右面部104は、右方に隣接するノズル10の筐体10aの左面部103と隙間を空けて対向している。筐体10aは、例えば樹脂材料によって形成されるが、アルミニウムなどの軽量の金属材料によって形成されてもよい。 A rectangular opening with a long side extending vertically is formed as an air outlet 10b on the front surface 101 of the housing 10a. The air outlet 10b is formed in the center of the front surface 101 of the housing 10a in the left-right direction. The housings 10a of the six nozzles 10 are arranged in a line in the left-right direction along the Y axis, with a gap between them. The left surface 103 of the housing 10a of a nozzle 10 faces the right surface 104 of the housing 10a of the nozzle 10 adjacent to the left with a gap, and the right surface 104 of the housing 10a of a nozzle 10 faces the left surface 103 of the housing 10a of the nozzle 10 adjacent to the right with a gap. The housing 10a is formed of, for example, a resin material, but may also be formed of a lightweight metal material such as aluminum.
 筐体10aの内部には、前面部101、後面部102、左面部103、右面部104、上端面部105、及び下端面部106で囲まれた内部空間10cが形成されている。そして、図6に示すように、筐体10aの上端面部105には吸気口10dが形成されている。内部空間10cは、吸気口10dを介して筐体10aの外部に連通している。筐体10aの下端面部106は、内部空間10cに面している内周面10fを有する。 The housing 10a defines an internal space 10c surrounded by a front surface 101, a rear surface 102, a left surface 103, a right surface 104, a top surface 105, and a bottom surface 106. As shown in FIG. 6, an air intake port 10d is formed in the top surface 105 of the housing 10a. The internal space 10c is connected to the outside of the housing 10a via the air intake port 10d. The bottom surface 106 of the housing 10a has an inner peripheral surface 10f that faces the internal space 10c.
 図4、図5、図6に示すように、内部空間10cの前面部101の後面には、複数のフィン10eが一定間隔で鉛直方向に並んで設けられている。フィン10eは、内部空間10cの前面部101から後方に延びる板形状であり、Z軸に沿う方向から見て、内部空間10cの前部(内部空間10cの前側の一部)を塞いでいる。図4に示すように、ノズル10の筐体10aを前方から見ると、複数のフィン10eが送風口10bをZ軸に沿って一定間隔で区切るように位置している。フィン10eは、送風口10bから筐体10aの外部へ吹き出す空気を整流する機能を有する。 As shown in Figures 4, 5, and 6, multiple fins 10e are arranged vertically at regular intervals on the rear surface of the front portion 101 of the internal space 10c. The fins 10e are plate-shaped extending rearward from the front portion 101 of the internal space 10c, and block the front portion of the internal space 10c (a part of the front side of the internal space 10c) when viewed from the direction along the Z axis. As shown in Figure 4, when the housing 10a of the nozzle 10 is viewed from the front, the multiple fins 10e are positioned so as to separate the air outlet 10b at regular intervals along the Z axis. The fins 10e have the function of straightening the air blown out from the air outlet 10b to the outside of the housing 10a.
 ノズル送風機2は、ノズルユニット1の上端1aに設けられている。ノズル送風機2は、中空の矩形体状の筐体2aを備えて、筐体2aの内部にファン2bを有している。ファン2bは、クロスフローファンであることが好ましい。筐体2aはダクトD1に接続して、ダクトD1から空気を供給される。ファン2bが回転することでファン2bから吹き出した空気は、筐体2aの下面から下方へ吹き出す。筐体2aの下面はノズル10の上端面部105に対向しており、ファン2bが回転することでファン2bから吹き出した空気は、ノズル10の吸気口10dを通って内部空間10cに流れ込む。すなわち、ノズル送風機2は、各ノズル10の吸気口10dから内部空間10cに空気を送り込むことで、内部空間10cに吸気口10dから下方に向かって流れる内部気流F0(図5参照)を発生させる。内部気流F0は、内部空間10c内のフィン10eによって整流されて、筐体10aの前面部101の送風口10bから前方に吹き出す。なお、図6に示すように、内部空間10cの前部の左右方向の幅は、前へ向かうほど狭くなることが好ましい。 The nozzle blower 2 is provided at the upper end 1a of the nozzle unit 1. The nozzle blower 2 has a hollow rectangular housing 2a and has a fan 2b inside the housing 2a. The fan 2b is preferably a cross-flow fan. The housing 2a is connected to a duct D1, and air is supplied from the duct D1. When the fan 2b rotates, the air blown out from the fan 2b is blown downward from the bottom surface of the housing 2a. The bottom surface of the housing 2a faces the upper end surface portion 105 of the nozzle 10, and when the fan 2b rotates, the air blown out from the fan 2b flows into the internal space 10c through the intake port 10d of the nozzle 10. In other words, the nozzle blower 2 sends air from the intake port 10d of each nozzle 10 into the internal space 10c, generating an internal airflow F0 (see FIG. 5) that flows downward from the intake port 10d in the internal space 10c. The internal airflow F0 is rectified by the fins 10e in the internal space 10c and blows forward from the air outlet 10b in the front part 101 of the housing 10a. As shown in FIG. 6, it is preferable that the width of the front part of the internal space 10c in the left-right direction narrows toward the front.
 ベース11は、長尺の矩形板状であり、ノズルユニット1の下端1bが固定される。すなわち、ベース11には、6つの筐体10aの下端面部106が固定されている(図5参照)。そして、ベース11が床R12に載置されることで、6つのノズル10は、筐体10aが鉛直方向に延びるように床R12に設置される。 The base 11 is a long rectangular plate to which the lower end 1b of the nozzle unit 1 is fixed. In other words, the lower end surface portions 106 of the six housings 10a are fixed to the base 11 (see FIG. 5). Then, by placing the base 11 on the floor R12, the six nozzles 10 are installed on the floor R12 so that the housings 10a extend vertically.
 そして、図7に示すように、ノズルユニット1を構成する6つのノズル10のそれぞれは、筐体10aの前面部101の長尺の送風口10bから前方へ空気を吹き出すことで、ノズル気流F2を生成する。なお、図7は、ノズルユニット1を構成する6つのノズル10のうち、Y軸に沿って左右方向に隣り合って配置されている任意の2つのノズル10を示す。 As shown in Figure 7, each of the six nozzles 10 that make up the nozzle unit 1 generates a nozzle airflow F2 by blowing air forward from the long air outlet 10b in the front portion 101 of the housing 10a. Note that Figure 7 shows any two nozzles 10 that are arranged next to each other in the left-right direction along the Y axis out of the six nozzles 10 that make up the nozzle unit 1.
 ここで、左右方向に隣り合う2つのノズル10の間には、図7に示す誘引経路91が形成されている。誘引経路91は、左側のノズル10の筐体10aの右面部104と右側のノズル10の筐体10aの左面部103とに左右から挟まれて、前方及び後方を開放した空間である。そして、並んで配置された2つのノズル10のそれぞれが送風口10bから前方へ吹き出すノズル気流F2を生成すると、誘引経路91は負圧となり、誘引経路91には、2つのノズル10の後方の空間である後方空間92の空気が後から前に向かって誘引される。誘引経路91を後から前に向かって誘引された空気は、誘引経路91から前方に吹き出す。誘引経路91から前方に吹き出す空気は、誘引経路91から前に向かって流れる誘引気流F3を生成する。 Here, an induction path 91 shown in FIG. 7 is formed between two nozzles 10 adjacent to each other in the left-right direction. The induction path 91 is a space that is sandwiched between the right surface 104 of the housing 10a of the left nozzle 10 and the left surface 103 of the housing 10a of the right nozzle 10, and is open to the front and rear. When each of the two nozzles 10 arranged side by side generates a nozzle airflow F2 that blows forward from the air outlet 10b, the induction path 91 becomes negative pressure, and air in the rear space 92, which is the space behind the two nozzles 10, is drawn from the rear to the front into the induction path 91. The air drawn from the rear to the front through the induction path 91 is blown forward from the induction path 91. The air blown forward from the induction path 91 generates an induction airflow F3 that flows forward from the induction path 91.
 この結果、ノズルユニット1の前下方では、隣り合う2つのノズル10によって生成された2つのノズル気流F2の間に誘引気流F3が発生し、ノズル気流F2と誘引気流F3とが合わさった混合気流F1が生成される。混合気流F1はノズルユニット1から前に向かって吹き出す。 As a result, an induced airflow F3 is generated between the two nozzle airflows F2 generated by the two adjacent nozzles 10 below and in front of the nozzle unit 1, and a mixed airflow F1 is generated in which the nozzle airflow F2 and the induced airflow F3 combine. The mixed airflow F1 is blown out forward from the nozzle unit 1.
 ファン2bの運転、及び停止は、制御装置4によって制御される。また、制御装置4は、ファン2bの回転速度を制御してもよい。この場合、混合気流F1の流量をノズルユニット1の送風量とすると、ファン2bの回転速度が上昇する程、ノズルユニット1の送風量は増加し、ファン2bの回転速度が低下する程、ノズルユニット1の送風量は減少する。 The operation and stopping of fan 2b is controlled by control device 4. Control device 4 may also control the rotation speed of fan 2b. In this case, if the flow rate of mixed air flow F1 is the air volume of nozzle unit 1, the higher the rotation speed of fan 2b, the greater the air volume of nozzle unit 1, and the lower the rotation speed of fan 2b, the smaller the air volume of nozzle unit 1.
 (2.3)送風装置
 送風装置3は、クロスフローファンであり、天井R11の下面又はTバーなどに図示しない吊りボルト又はワイヤなどで固定されて、ノズルユニット1の上端1aの後方(又はノズルユニット1の後方)に配置されている。送風装置3は、空調装置8が吹き出した第1調和空気A1を吸い込み、ノズルユニット1の上端(第1端)1aから下端(第2端)1bに向かって第2調和空気A2を吹き出す(図5参照)。
(2.3) Blower The blower 3 is a cross-flow fan, and is fixed to the underside of the ceiling R11 or a T-bar with a hanging bolt or wire (not shown), and is disposed behind the upper end 1a of the nozzle unit 1 (or behind the nozzle unit 1). The blower 3 sucks in the first conditioned air A1 blown out by the air conditioner 8, and blows out the second conditioned air A2 from the upper end (first end) 1a towards the lower end (second end) 1b of the nozzle unit 1 (see FIG. 5).
 具体的に、図5に示すように、送風装置3は、中空の矩形体状の筐体3aを備えて、筐体3aの内部にファン3bを有している。筐体3aの上面には吸気口3cが形成され、筐体3aの下面には送風口3dが形成されている。ファン3bが回転すると、吸気口3cから筐体3a内に第1調和空気A1を吸い込み、送風口3dから下方へ第2調和空気A2を吹き出す。送風口3dから下方へ吹き出した第2調和空気A2は、ノズルユニット1の後方を上から下へ向かって流れる。本実施形態では、送風装置3は、空調装置8が吹き出した第1調和空気A1の流路に位置することが好ましい。図5では、送風装置3は、空調装置8の斜め下方に位置する。 Specifically, as shown in FIG. 5, the blower 3 has a hollow rectangular housing 3a and a fan 3b inside the housing 3a. An intake port 3c is formed on the top surface of the housing 3a, and an air outlet 3d is formed on the bottom surface of the housing 3a. When the fan 3b rotates, the first conditioned air A1 is sucked into the housing 3a from the intake port 3c, and the second conditioned air A2 is blown downward from the air outlet 3d. The second conditioned air A2 blown downward from the air outlet 3d flows from the top to the bottom behind the nozzle unit 1. In this embodiment, the blower 3 is preferably located in the flow path of the first conditioned air A1 blown out by the air conditioner 8. In FIG. 5, the blower 3 is located diagonally below the air conditioner 8.
 送風口3dにおける第2調和空気A2の流量を送風装置3の送風量とすると、ファン3bの回転速度が上昇する程、送風装置3の送風量は増加し、ファン3bの回転速度が低下する程、送風装置3の送風量は減少する。ファン3bの運転、停止、及び回転速度は、制御装置4によって制御される。 If the flow rate of the second conditioned air A2 at the air outlet 3d is the air volume of the blower 3, the higher the rotation speed of the fan 3b, the greater the air volume of the blower 3, and the lower the rotation speed of the fan 3b, the smaller the air volume of the blower 3. The operation, stop, and rotation speed of the fan 3b are controlled by the control device 4.
 (2.4)操作端末
 操作端末5は、送風装置3の動作を指示するためのスイッチ又はタッチパネルなどを備えており、ユーザの操作を受け付ける。そして、操作端末5は、ユーザの操作に応じた送風操作信号を制御装置4へ送信する。具体的に、操作端末5は、送風システムVS1の運転、及び停止などの操作を受け付ける。制御装置4は、操作端末5から受け取った送風操作信号に基づいて、送風装置3の運転、停止、及び運転時の送風量、並びにノズル送風機2の運転、及び停止を制御する。
(2.4) Operation Terminal The operation terminal 5 is equipped with a switch or a touch panel for instructing the operation of the blower 3, and accepts user operations. The operation terminal 5 then transmits an air blowing operation signal corresponding to the user operation to the control device 4. Specifically, the operation terminal 5 accepts operations such as operating and stopping the blower system VS1. Based on the air blowing operation signal received from the operation terminal 5, the control device 4 controls the operation, stopping, and air blowing volume during operation of the blower 3, as well as the operation and stopping of the nozzle blower 2.
 操作端末5は、例えばスマートフォン、タブレット端末、又は専用端末である。 The operation terminal 5 is, for example, a smartphone, a tablet terminal, or a dedicated terminal.
 (2.5)温度センサ
 温度センサ6は、図5に示すように、空調装置8の近傍に設置されて、空調装置8が吹き出す第1調和空気A1の温度を検出する。温度センサ6は、第1調和空気A1の温度の検出結果を含む温度信号を生成し、温度信号を制御装置4へ出力する。制御装置4は、温度センサ6から受け取った温度信号に基づいて、送風装置3の運転時の送風量を制御する。
(2.5) Temperature Sensor As shown in Fig. 5, the temperature sensor 6 is installed near the air conditioner 8 and detects the temperature of the first conditioned air A1 blown out by the air conditioner 8. The temperature sensor 6 generates a temperature signal including the detection result of the temperature of the first conditioned air A1, and outputs the temperature signal to the control device 4. Based on the temperature signal received from the temperature sensor 6, the control device 4 controls the amount of air blown by the blower 3 during operation.
 本実施形態では、温度センサ6は、空調装置8が吹き出した第1調和空気A1の流路に位置することが好ましい。図5では、送風装置3は、空調装置8の斜め下方において、鉛直方向において空調装置8と送風装置3との間に位置する。 In this embodiment, the temperature sensor 6 is preferably located in the flow path of the first conditioned air A1 blown out by the air conditioner 8. In FIG. 5, the blower 3 is located diagonally below the air conditioner 8 and between the air conditioner 8 and the blower 3 in the vertical direction.
 (2.6)制御装置
 図8は、制御装置4による制御に関するブロック図である。
(2.6) Control Device FIG. 8 is a block diagram relating to the control performed by the control device 4.
 制御装置4は、送風装置3との間で、有線通信又は無線通信を行うことで、送風装置3の運転、停止、及び送風量を制御する。また、制御装置4は、ノズル送風機2との間で、有線通信又は無線通信を行うことで、ノズル送風機2の運転、及び停止を制御する。また、制御装置4は、操作端末5及び温度センサ6との間で、有線通信又は無線通信を行うことで、操作端末5から送風操作信号を取得し、温度センサ6から温度信号を取得する。なお、有線通信は、例えばツイストペアケーブル、専用通信線、またはLAN(Local Area Network)ケーブルなどを介した有線通信である。無線通信は、例えばWi-Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)又は免許を必要としない小電力無線(特定小電力無線)等の規格に準拠した無線通信である。 The control device 4 controls the operation, stop, and blowing volume of the blower 3 by performing wired or wireless communication with the blower 3. The control device 4 also controls the operation and stop of the nozzle blower 2 by performing wired or wireless communication with the nozzle blower 2. The control device 4 also acquires a blowing operation signal from the operation terminal 5 and a temperature signal from the temperature sensor 6 by performing wired or wireless communication with the operation terminal 5 and the temperature sensor 6. The wired communication is, for example, wired communication via a twisted pair cable, a dedicated communication line, or a LAN (Local Area Network) cable. The wireless communication is, for example, wireless communication that complies with standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), or low-power radio that does not require a license (specific low-power radio).
 したがって、制御装置4は、操作端末5が受け付けたユーザの操作、及び温度センサ6の検出結果に基づいて、送風装置3の運転及び停止を切り替え、運転時の送風量を調整することができる。また、制御装置4は、操作端末5が受け付けたユーザの操作に基づいて、ノズル送風機2の運転及び停止を切り替えることができる。 The control device 4 can therefore switch between operating and stopping the blower device 3 and adjust the amount of air blown during operation based on the user's operation received by the operation terminal 5 and the detection results of the temperature sensor 6. The control device 4 can also switch between operating and stopping the nozzle blower 2 based on the user's operation received by the operation terminal 5.
 制御装置4は、コンピュータシステムを備えることが好ましい。すなわち、制御装置4では、CPU(Central Processing Unit)、又はMPU(Micro Processing Unit)などのプロセッサがメモリに記憶されているプログラムを読み出して実行することによって、制御装置4の一部又は全部の機能が実現される。制御装置4は、プログラムに従って動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路で構成される。ここでは、ICやLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができる再構成可能な論理デバイスも同じ目的で使うことができる。複数の電子回路は、一つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは集約して配置されてもよいし、分散して配置されてもよい。 It is preferable that the control device 4 comprises a computer system. That is, in the control device 4, a processor such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) reads and executes a program stored in a memory, thereby realizing some or all of the functions of the control device 4. The control device 4 has a processor that operates according to a program as its main hardware configuration. The type of processor is not important as long as it can realize the functions by executing a program. The processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or an LSI (Large Scale Integration). Here, it is called an IC or LSI, but the name changes depending on the degree of integration, and it may be called a system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Field programmable gate arrays (FPGAs), which are programmed after the LSI is manufactured, or reconfigurable logic devices, which can reconfigure the connections within the LSI or set up circuit partitions within the LSI, can also be used for the same purpose. Multiple electronic circuits may be integrated on one chip or may be provided on multiple chips. Multiple chips may be arranged in a centralized manner or in a distributed manner.
 また、制御装置4は、1台のコンピュータ装置、及び互いに連携した複数台のコンピュータ装置のいずれで実現されていてもよい。また、制御装置4は、クラウドコンピューティングシステムとして構築されていてもよい。 The control device 4 may be realized as either a single computer device or multiple computer devices linked to each other. The control device 4 may also be constructed as a cloud computing system.
 本実施形態の制御装置4は、温度センサ6の検出結果に基づいて送風装置3の送風量を制御することで、空調装置8の運転状態に応じた送風制御を行う。以下、送風システムVS1における送風制御について詳述する。 The control device 4 of this embodiment controls the amount of air sent from the air blower 3 based on the detection results of the temperature sensor 6, thereby performing air supply control according to the operating state of the air conditioner 8. The air supply control in the air supply system VS1 will be described in detail below.
 (2.7)送風装置の送風制御
 送風システムVS1では、制御装置4が、送風装置3による第2調和空気A2の送風量を制御することで、ノズルユニット1の前方に生成される気流が流れる領域を調整する。本実施形態では、制御装置4は、ノズル送風機2を運転状態としたうえで、送風装置3の送風量を調整することで、ノズルユニット1の前方に生成される気流が流れる領域(送風領域)を可変とする。
(2.7) Air blowing control of the blower In the blower system VS1, the control device 4 controls the amount of air blown by the blower 3 to adjust the area through which the airflow generated in front of the nozzle unit 1 flows. In this embodiment, the control device 4 operates the nozzle blower 2 and then adjusts the amount of air blown by the blower 3 to vary the area through which the airflow generated in front of the nozzle unit 1 flows (air blowing area).
 具体的に、制御装置4は、図8に示すように、運転判定部4a、及び風量制御部4bを備える。 Specifically, as shown in FIG. 8, the control device 4 includes an operation determination unit 4a and an air volume control unit 4b.
 運転判定部4aは、空調装置8の運転状態を判定する。本実施形態では、運転判定部4aは、温度センサ6から受け取った温度信号に基づいて、第1調和空気A1の温度を監視する。そして、運転判定部4aは、第1調和空気A1の温度に基づいて、空調装置8の運転状態を判定する。特に、運転判定部4aは、空調装置8の運転状態が暖房運転及び冷房運転のいずれであるかを判定することが好ましい。運転判定部4aは、第1調和空気A1の温度が閾値以上であれば、空調装置8の運転状態を「暖房運転」と判定する。運転判定部4aは、第1調和空気A1の温度が閾値未満であれば、空調装置8の運転状態を「冷房運転」と判定する。あるいは、運転判定部4aは、室温及び外気温の少なくとも一方のデータも取得し、第1調和空気A1の温度と室温、第1調和空気A1の温度と外気温、又は第1調和空気A1の温度と室温と外気温に基づいて、空調装置8の運転状態を判定してもよい。 The operation determination unit 4a determines the operation state of the air conditioner 8. In this embodiment, the operation determination unit 4a monitors the temperature of the first conditioned air A1 based on the temperature signal received from the temperature sensor 6. The operation determination unit 4a then determines the operation state of the air conditioner 8 based on the temperature of the first conditioned air A1. In particular, it is preferable for the operation determination unit 4a to determine whether the operation state of the air conditioner 8 is heating operation or cooling operation. If the temperature of the first conditioned air A1 is equal to or higher than the threshold value, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "heating operation". If the temperature of the first conditioned air A1 is less than the threshold value, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "cooling operation". Alternatively, the operation determination unit 4a may also acquire data on at least one of the room temperature and the outdoor air temperature, and determine the operation state of the air conditioner 8 based on the temperature of the first conditioned air A1 and the room temperature, the temperature of the first conditioned air A1 and the outdoor air temperature, or the temperature of the first conditioned air A1, the room temperature, and the outdoor air temperature.
 風量制御部4bは、空調装置8の運転状態の判定結果に基づいて、送風装置3による第2調和空気A2の送風量を制御する。特に、風量制御部4bは、運転状態が暖房運転であるときの送風量を、運転状態が冷房運転であるときの送風量よりも大きくすることが好ましい。以下、暖房運転時の送風制御、及び冷房運転時の送風制御について詳述する。 The air volume control unit 4b controls the volume of the second conditioned air A2 sent by the air blower 3 based on the determination result of the operating state of the air conditioner 8. In particular, it is preferable for the air volume control unit 4b to make the volume of air sent when the operating state is heating operation larger than the volume of air sent when the operating state is cooling operation. Below, the air volume control during heating operation and the air volume control during cooling operation are described in detail.
 (2.7.1)暖房運転時の送風制御
 図9では、空調装置8が暖房運転をして、第1調和空気A1として暖気を下方へ吹き出している。また、ノズル送風機2が運転状態であり、かつ、送風装置3も運転状態である。
9, the air conditioner 8 is performing heating operation and blowing warm air downward as the first conditioned air A1. The nozzle blower 2 is also in operation, and the blower 3 is also in operation.
 この場合、制御装置4の運転判定部4aは、温度センサ6から受け取った温度信号に基づいて、空調装置8の運転状態を「暖房運転」と判定する。制御装置4の風量制御部4bは、空調装置8の運転状態が「暖房運転」であれば、送風装置3の送風量を「大」に制御する。送風装置3の送風量「大」は、後述の冷房運転時における送風装置3の送風量「小」よりも大きい。送風装置3の送風量が「大」であれば、第1調和空気A1を吸い込んだ送風装置3が下方へ吹き出す第2調和空気A2の流量が大きくなる。このとき、第2調和空気A2は、ノズルユニット1の後方において、ノズルユニット1の上端1aから下端1bに向かって勢いよく流れ、第2調和空気A2の大部分はノズルユニット1の下端1bにまで到達する。 In this case, the operation determination unit 4a of the control device 4 determines the operation state of the air conditioner 8 as "heating operation" based on the temperature signal received from the temperature sensor 6. If the operation state of the air conditioner 8 is "heating operation", the air volume control unit 4b of the control device 4 controls the air volume of the blower 3 to "large". The "large" air volume of the blower 3 is larger than the "small" air volume of the blower 3 during cooling operation described below. If the air volume of the blower 3 is "large", the flow rate of the second conditioned air A2 blown downward by the blower 3 that has sucked in the first conditioned air A1 increases. At this time, the second conditioned air A2 flows vigorously from the upper end 1a to the lower end 1b of the nozzle unit 1 behind the nozzle unit 1, and most of the second conditioned air A2 reaches the lower end 1b of the nozzle unit 1.
 また、ノズル送風機2は運転状態であり、ノズルユニット1の前面(各ノズル10の送風口10b)からはノズル気流F2が前方へ吹き出している。而して、ノズルユニット1の後方で上から下へ流れる第2調和空気A2の一部は、ノズルユニット1の前面から吹き出しているノズル気流F2に誘引されて前方へ引き寄せられる。前方へ引き寄せられた第2調和空気A2は、左右方向に隣り合う2つのノズル10の間を通る誘引気流F3として、誘引気流F31を形成する。誘引気流F31の速度ベクトルは、第2調和空気A2の速度ベクトルとノズル気流F2の速度ベクトルとの合成ベクトルであり、誘引気流F31は、斜め前下方向に進む。 In addition, the nozzle blower 2 is in operation, and the nozzle airflow F2 is blown forward from the front surface of the nozzle unit 1 (the blowing port 10b of each nozzle 10). Thus, a portion of the second conditioned air A2 flowing from top to bottom behind the nozzle unit 1 is attracted to the nozzle airflow F2 blowing out from the front surface of the nozzle unit 1 and drawn forward. The second conditioned air A2 drawn forward forms an induced airflow F31 as an induced airflow F3 passing between two nozzles 10 adjacent in the left-right direction. The velocity vector of the induced airflow F31 is a composite vector of the velocity vector of the second conditioned air A2 and the velocity vector of the nozzle airflow F2, and the induced airflow F31 proceeds diagonally downward and forward.
 そして、上述の誘引気流F31及びノズル気流F2による混合気流F1として、図10に示す暖気流F11が生成され、暖気流F11は前斜め下方向に進む。ここで、空調装置8が暖房運転をしているとき、送風装置3の送風量が「大」であり、送風装置3が下方へ吹き出す第2調和空気A2の流量が大きい。この結果、誘引気流F31は、ノズルユニット1の上端1aより下端1bに近い領域(すなわち、ノズルユニット1の下部)で主に発生する(図9参照)。したがって、暖気流F11は、主にノズルユニット1の下部から前方へ吹き出し、暖気流F11の送風領域G1は、ノズルユニット1の前方の下側になる。 Then, the warm air flow F11 shown in FIG. 10 is generated as a mixed air flow F1 by the above-mentioned induced air flow F31 and the nozzle air flow F2, and the warm air flow F11 advances in a downward diagonal direction. Here, when the air conditioner 8 is in heating operation, the air flow rate of the blower 3 is "large", and the flow rate of the second conditioned air A2 blown downward by the blower 3 is large. As a result, the induced air flow F31 is mainly generated in the area closer to the lower end 1b of the nozzle unit 1 than to the upper end 1a (i.e., the lower part of the nozzle unit 1) (see FIG. 9). Therefore, the warm air flow F11 mainly blows forward from the lower part of the nozzle unit 1, and the blowing area G1 of the warm air flow F11 is the lower front side of the nozzle unit 1.
 すなわち、暖気流F11が空間R1内の人H1の足元付近に向かって進むので、送風システムVS1は、暖房による人H1の快適性を向上させることができる。また、暖気流F11が空間R1の下部に向かって吹き出るので、送風システムVS1は、暖房時の空間R1内に対流を発生させて、空間R1内の温度分布を均一化することも可能である。 In other words, because the warm air current F11 flows toward the area near the feet of person H1 in space R1, the air supply system VS1 can improve the comfort of person H1 through heating. Also, because the warm air current F11 blows out toward the lower part of space R1, the air supply system VS1 can generate convection within space R1 during heating, making it possible to uniform the temperature distribution within space R1.
 (2.7.2)冷房運転時の送風制御
 図11では、空調装置8が冷房運転をして、第1調和空気A1として冷気を下方へ吹き出している。また、ノズル送風機2が運転状態であり、かつ、送風装置3も運転状態である。
11, the air conditioner 8 is in cooling operation and blows cool air downward as the first conditioned air A1. The nozzle blower 2 is in operation, and the blower 3 is also in operation.
 この場合、制御装置4の運転判定部4aは、温度センサ6から受け取った温度信号に基づいて、空調装置8の運転状態を「冷房運転」と判定する。制御装置4の風量制御部4bは、空調装置8の運転状態が「冷房運転」であれば、送風装置3の送風量を「小」に制御する。送風装置3の送風量「小」は、暖房運転時における送風装置3の送風量「大」よりも小さい。送風装置3の送風量が「小」であれば、第1調和空気A1を吸い込んだ送風装置3が下方へ吹き出す第2調和空気A2の流量が小さくなる。このとき、第2調和空気A2は、ノズルユニット1の後方において、ノズルユニット1の上端1aから下端1bに向かって流れるが、第2調和空気A2の大部分はノズルユニット1の下端1bにまで到達しない。 In this case, the operation determination unit 4a of the control device 4 determines that the operating state of the air conditioner 8 is "cooling operation" based on the temperature signal received from the temperature sensor 6. If the operating state of the air conditioner 8 is "cooling operation", the air volume control unit 4b of the control device 4 controls the air volume of the blower 3 to "small". The "small" air volume of the blower 3 is smaller than the "large" air volume of the blower 3 during heating operation. If the air volume of the blower 3 is "small", the flow rate of the second conditioned air A2 blown downward by the blower 3 that has sucked in the first conditioned air A1 becomes smaller. At this time, the second conditioned air A2 flows from the upper end 1a to the lower end 1b of the nozzle unit 1 behind the nozzle unit 1, but most of the second conditioned air A2 does not reach the lower end 1b of the nozzle unit 1.
 また、ノズル送風機2は運転状態であり、ノズルユニット1の前面(各ノズル10の送風口10b)からはノズル気流F2が前方へ吹き出している。而して、ノズルユニット1の後方で上から下へ流れる第2調和空気A2の一部は、ノズルユニット1の前面から吹き出しているノズル気流F2に誘引されて前方へ引き寄せられる。前方へ引き寄せられた第2調和空気A2は、左右方向に隣り合う2つのノズル10の間を通る誘引気流F3として、誘引気流F32を形成する。誘引気流F32の速度ベクトルは、第2調和空気A2の速度ベクトルとノズル気流F2の速度ベクトルとの合成ベクトルであり、誘引気流F32は、斜め前下方向に進む。 In addition, the nozzle blower 2 is in operation, and the nozzle airflow F2 is blown forward from the front surface of the nozzle unit 1 (the blowing port 10b of each nozzle 10). Thus, a portion of the second conditioned air A2 flowing from top to bottom behind the nozzle unit 1 is attracted to the nozzle airflow F2 blowing out from the front surface of the nozzle unit 1 and drawn forward. The second conditioned air A2 drawn forward forms an induced airflow F32 as an induced airflow F3 passing between two nozzles 10 adjacent in the left-right direction. The velocity vector of the induced airflow F32 is a resultant vector of the velocity vector of the second conditioned air A2 and the velocity vector of the nozzle airflow F2, and the induced airflow F32 proceeds diagonally downward and forward.
 そして、上述の誘引気流F32及びノズル気流F2による混合気流F1として、図12に示す冷気流F12が生成され、冷気流F12は前斜め下方向に進む。ここで、空調装置8が冷房運転をしているとき、送風装置3の送風量が「小」であり、送風装置3が下方へ吹き出す第2調和空気A2の流量が小さい。この結果、誘引気流F32は、ノズルユニット1の下端1bより上端1aに近い領域(すなわち、ノズルユニット1の上部)で主に発生する(図11参照)。したがって、冷気流F12は、主にノズルユニット1の上部から前方へ吹き出し、冷気流F12の送風領域G2は、ノズルユニット1の前方の上側になる。 Then, the cold air flow F12 shown in FIG. 12 is generated as a mixed air flow F1 by the above-mentioned induced air flow F32 and the nozzle air flow F2, and the cold air flow F12 advances in a downward diagonal direction. Here, when the air conditioner 8 is in cooling operation, the air flow rate of the blower 3 is "small", and the flow rate of the second conditioned air A2 blown downward by the blower 3 is small. As a result, the induced air flow F32 is mainly generated in the area closer to the upper end 1a than the lower end 1b of the nozzle unit 1 (i.e., the upper part of the nozzle unit 1) (see FIG. 11). Therefore, the cold air flow F12 mainly blows forward from the upper part of the nozzle unit 1, and the blowing area G2 of the cold air flow F12 is on the upper front side of the nozzle unit 1.
 すなわち、冷気流F12が空間R1内の人H1の頭上付近に向かって進むので、冷気流F12が人H1に直接当たらず、送風システムVS1は、冷房による人H1の快適性を向上させることができる。また、冷気流F12が空間R1の上部に向かって吹き出るので、送風システムVS1は、冷房時の空間R1内に対流を発生させて、空間R1内の温度分布を均一化することも可能である。 In other words, because the cold air current F12 moves toward the area above the head of person H1 in space R1, the cold air current F12 does not directly hit person H1, and the air supply system VS1 can improve the comfort of person H1 through cooling. Also, because the cold air current F12 blows out toward the upper part of space R1, the air supply system VS1 can generate convection within space R1 during cooling, making it possible to uniform the temperature distribution within space R1.
 (2.7.3)利点
 上述の送風システムVS1は、ノズル10の構造を簡易としながら送風領域を可変とすることができる。
(2.7.3) Advantages The above-described air blowing system VS1 can vary the air blowing area while simplifying the structure of the nozzle 10.
 また、送風システムVS1は、運転判定部4a及び風量制御部4bを備えることで、空調装置8の運転状態に応じた送風領域に気流を送ることができる。 In addition, the ventilation system VS1 is equipped with an operation determination unit 4a and an air volume control unit 4b, so that the airflow can be sent to a ventilation area according to the operating state of the air conditioner 8.
 また、運転判定部4aは空調装置8の運転状態が暖房運転及び冷房運転のいずれであるかを判定する。さらに、風量制御部4bは、運転状態が暖房運転であるときの送風装置3の送風量を、運転状態が冷房運転であるときの送風装置3の送風量よりも大きくする。この結果、送風システムVS1は、空調装置8の暖房運転時には送風領域G1に暖気流F11を送ることができ、空調装置8の冷房運転時には送風領域G2に冷気流F12を送ることができる。 The operation determination unit 4a also determines whether the operating state of the air conditioner 8 is heating operation or cooling operation. Furthermore, the air volume control unit 4b makes the air volume of the air blower 3 when the operating state is heating operation larger than the air volume of the air blower 3 when the operating state is cooling operation. As a result, the air blowing system VS1 can send a warm air flow F11 to the air blowing area G1 when the air conditioner 8 is in heating operation, and can send a cold air flow F12 to the air blowing area G2 when the air conditioner 8 is in cooling operation.
 また、送風システムVS1は、第1調和空気A1の温度を検出する温度センサ6を更に備えて、運転判定部4aは、第1調和空気A1の温度に基づいて、運転状態を判定する。この結果、運転判定部4aは、空調装置8の運転状態を精度よく判定できる。 The air supply system VS1 further includes a temperature sensor 6 that detects the temperature of the first conditioned air A1, and the operation determination unit 4a determines the operation state based on the temperature of the first conditioned air A1. As a result, the operation determination unit 4a can accurately determine the operation state of the air conditioner 8.
 また、ノズルユニット1を構成する6つのノズル10は、鉛直方向に沿って延びる中空の長尺形状に形成された筐体10aをそれぞれ有する。そして、送風装置3は、ノズルユニット1の上端1aから下端1bに向かって第2調和空気A2を吹き出す。さらに、風量制御部4bは、運転状態が暖房運転であるときの送風装置3の送風量を、運転状態が冷房運転であるときの送風装置3の送風量よりも大きくする。この結果、送風システムVS1は、空調装置8が暖房運転をしているときには、空間R1内の人H1の足元付近に向かって進む暖気流F11を生成できる。また、送風システムVS1は、空調装置8が冷房運転をしているときには、空間R1内の人H1の頭上付近に向かって進む冷気流F12を生成できる。すなわち、送風システムVS1は、空調装置8の運転状態に応じて、運転状態に適した送風領域G1、G2を設定できる。この結果、空間R1内の人H1の快適性を向上させたり(頭寒足熱)、空間R1内の温度分布の均一化を図ったりできる。 The six nozzles 10 constituting the nozzle unit 1 each have a housing 10a formed in a hollow, elongated shape extending along the vertical direction. The blower 3 blows out the second conditioned air A2 from the upper end 1a to the lower end 1b of the nozzle unit 1. Furthermore, the air volume control unit 4b makes the air volume of the blower 3 when the operating state is heating operation larger than the air volume of the blower 3 when the operating state is cooling operation. As a result, when the air conditioner 8 is performing heating operation, the blower system VS1 can generate a warm air flow F11 that advances toward the vicinity of the feet of the person H1 in the space R1. When the air conditioner 8 is performing cooling operation, the blower system VS1 can generate a cold air flow F12 that advances toward the vicinity of the head of the person H1 in the space R1. In other words, the blower system VS1 can set the blowing areas G1 and G2 appropriate for the operating state of the air conditioner 8 according to the operating state of the air conditioner 8. As a result, it is possible to improve the comfort of person H1 in space R1 (cold head, warm feet) and to achieve a more uniform temperature distribution within space R1.
 (3)第1変形例
 制御装置4の風量制御部4bは、ノズル10の送風口10bから筐体10aの外部に吹き出される空気の送風量であるノズル送風量を制御してもよい。すなわち、風量制御部4bは、送風装置3の送風口3dから吹き出される第2調和空気A2(図5参照)の送風量を制御するだけでなく、ノズル10の送風口10bから吹き出されるノズル気流F2(図7参照)の送風量であるノズル送風量も制御する。そして、風量制御部4bは、空調装置8の運転状態が暖房運転であるときのノズル送風量を、空調装置8の運転状態が冷房運転であるときのノズル送風量よりも小さくすることが好ましい。
(3) First Modification The air volume control unit 4b of the control device 4 may control the nozzle air volume, which is the volume of air blown out from the air outlet 10b of the nozzle 10 to the outside of the housing 10a. That is, the air volume control unit 4b not only controls the volume of the second conditioned air A2 (see FIG. 5) blown out from the air outlet 3d of the blower 3, but also controls the nozzle air volume, which is the volume of the nozzle airflow F2 (see FIG. 7) blown out from the air outlet 10b of the nozzle 10. It is preferable that the air volume control unit 4b makes the nozzle air volume when the operating state of the air conditioner 8 is the heating operation smaller than the nozzle air volume when the operating state of the air conditioner 8 is the cooling operation.
 以下では、空間R1内の空気をダクトD1を介してノズル送風機2へ供給し、ノズル送風機2は、空間R1内の空気をノズル10へ供給している。すなわち、ダクトD1及びノズル送風機2は、空間R1内の空気を循環させており、ノズル気流F2は空間R1内の空気を循環させた循環空気である。また、混合気流F1に含まれるノズル気流F2の比率、すなわち混合気流F1に含まれる循環空気の比率を混合比率とする。 In the following, air in space R1 is supplied to nozzle blower 2 via duct D1, and nozzle blower 2 supplies the air in space R1 to nozzle 10. In other words, duct D1 and nozzle blower 2 circulate the air in space R1, and nozzle airflow F2 is circulated air obtained by circulating the air in space R1. In addition, the ratio of nozzle airflow F2 contained in mixed airflow F1, i.e., the ratio of circulated air contained in mixed airflow F1, is referred to as the mixing ratio.
 空調装置8の運転状態が暖房運転であるときのノズル送風量は、空調装置8の運転状態が冷房運転であるときのノズル送風量よりも小さくなる。したがって、暖房運転時の混合比率は、冷房運転時の混合比率よりも低くなる。この結果、ノズル気流F2と誘引気流F3とが合わさった混合気流F1(図10の暖気流F11)と、空間R1内の周辺空気(循環空気)と、の温度差が大きくなり、暖房による人H1の快適性を更に向上させることができる。また、暖房運転時のノズル送風量を冷房運転時のノズル送風量より小さくすることで、ノズル気流F2の風速が低下し、ノズルユニット1の上部でノズル気流F2に誘引される第2調和空気A2の量は減少し、ノズルユニット1の下部でノズル気流F2に誘引される第2調和空気A2の量を十分に確保できる。この結果、第2調和空気A2が人H1の足元付近で前方へ誘引されやすくなり、人H1の足元付近へ十分な暖気流F11を送ることができる。 The nozzle airflow rate when the air conditioner 8 is in heating operation is smaller than the nozzle airflow rate when the air conditioner 8 is in cooling operation. Therefore, the mixing ratio during heating operation is lower than the mixing ratio during cooling operation. As a result, the temperature difference between the mixed airflow F1 (warm airflow F11 in FIG. 10) of the nozzle airflow F2 and the induced airflow F3 and the surrounding air (circulating air) in the space R1 becomes large, and the comfort of the person H1 due to heating can be further improved. In addition, by making the nozzle airflow rate during heating operation smaller than the nozzle airflow rate during cooling operation, the wind speed of the nozzle airflow F2 decreases, the amount of the second conditioned air A2 attracted to the nozzle airflow F2 at the upper part of the nozzle unit 1 decreases, and the amount of the second conditioned air A2 attracted to the nozzle airflow F2 at the lower part of the nozzle unit 1 can be sufficiently secured. As a result, the second conditioned air A2 is more likely to be drawn forward near the feet of person H1, and a sufficient amount of warm air flow F11 can be sent to the area near the feet of person H1.
 空調装置8の運転状態が冷房運転であるときのノズル送風量は、空調装置8の運転状態が暖房運転であるときのノズル送風量よりも大きくなる。したがって、冷房運転時の混合比率は、暖房運転時の混合比率よりも高くなる。この結果、ノズル気流F2と誘引気流F3とが合わさった混合気流F1(図12の冷気流F12)と、空間R1内の周辺空気(循環空気)と、の温度差が小さくなり、冷房によるドラフト感を抑制できる。また、冷房運転時のノズル送風量を暖房運転時のノズル送風量より大きくすることで、ノズル気流F2の風速が上昇し、ノズルユニット1の上部でノズル気流F2に誘引される第2調和空気A2の量が増加する。この結果、第2調和空気A2が人H1の頭上で前方へ誘引されやすくなり、冷気流F12が人H1に直接当たり難くなる。 The nozzle airflow rate when the air conditioner 8 is in cooling operation is greater than the nozzle airflow rate when the air conditioner 8 is in heating operation. Therefore, the mixing ratio during cooling operation is higher than the mixing ratio during heating operation. As a result, the temperature difference between the mixed airflow F1 (cold airflow F12 in FIG. 12) of the nozzle airflow F2 and the induced airflow F3 and the surrounding air (circulating air) in the space R1 is reduced, and the draft feeling caused by cooling can be suppressed. In addition, by making the nozzle airflow rate during cooling operation greater than the nozzle airflow rate during heating operation, the wind speed of the nozzle airflow F2 increases, and the amount of the second conditioned air A2 attracted by the nozzle airflow F2 at the top of the nozzle unit 1 increases. As a result, the second conditioned air A2 is more likely to be attracted forward above the head of the person H1, and the cold airflow F12 is less likely to directly hit the person H1.
 (4)第2変形例
 図13は、実施形態の第2変形例を示す。第2変形例では、送風システムVS1は、ダクトD2を更に備える。ダクトD2は、空調装置8が第1調和空気A1を吹き出すダクト接続口と、送風装置3の吸気口3cとを接続する筒体である。すなわち、ダクトD2は、空調装置8と送風装置3との間を接続して、空調装置8が吹き出した第1調和空気A1を送風装置3まで導く。空調装置8が吹き出した第1調和空気A1は、ダクトD2の内部を流れて、送風装置3に吸い込まれる。
(4) Second Modification Fig. 13 shows a second modification of the embodiment. In the second modification, the air blowing system VS1 further includes a duct D2. The duct D2 is a cylinder that connects a duct connection port from which the air conditioner 8 blows out the first conditioned air A1 and the air intake port 3c of the air blower 3. In other words, the duct D2 connects between the air conditioner 8 and the air blower 3, and guides the first conditioned air A1 blown out by the air conditioner 8 to the air blower 3. The first conditioned air A1 blown out by the air conditioner 8 flows inside the duct D2 and is sucked into the air blower 3.
 第2変形例では、第1調和空気A1を効率よく送風装置3に供給できる。したがって、送風システムVS1は、空調装置8による空調効果を含む気流(暖気流F11、冷気流F12)を、ノズルユニット1の前方へ吹き出すことができる。 In the second modified example, the first conditioned air A1 can be efficiently supplied to the blower 3. Therefore, the blower system VS1 can blow out air currents (warm air current F11, cold air current F12) that include the air conditioning effect of the air conditioner 8 forward of the nozzle unit 1.
 (5)第3変形例
 図14は、実施形態の第3変形例を示す。第3変形例では、送風システムVS1は、補助送風装置7を更に備える。補助送風装置7は、鉛直方向において、空調装置8と送風装置3との間に位置して、補助送風装置7の上方から吸い込んだ空気を補助送風装置7の下方へ吹き出す。空調装置8が吹き出した第1調和空気A1は、補助送風装置7を介して、送風装置3に吸い込まれる。
(5) Third Modification Fig. 14 shows a third modification of the embodiment. In the third modification, the air blowing system VS1 further includes an auxiliary air blowing device 7. The auxiliary air blowing device 7 is located between the air conditioner 8 and the air blowing device 3 in the vertical direction, and blows air sucked in from above the auxiliary air blowing device 7 out below the auxiliary air blowing device 7. The first conditioned air A1 blown out by the air conditioner 8 is sucked into the air blowing device 3 via the auxiliary air blowing device 7.
 第3変形例では、第1調和空気A1を効率よく送風装置3に供給できる。したがって、送風システムVS1は、空調装置8による空調効果を含む気流(暖気流F11、冷気流F12)を、ノズルユニット1の前方へ吹き出すことができる。 In the third modified example, the first conditioned air A1 can be efficiently supplied to the blower 3. Therefore, the blower system VS1 can blow out air currents (warm air current F11, cold air current F12) that include the air conditioning effect of the air conditioner 8 forward of the nozzle unit 1.
 図15は、第3変形例の制御装置4による制御に関するブロック図である。制御装置4は、送風装置3に加えて、補助送風装置7も制御する。具体的に、制御装置4は、補助制御部4cを更に備える。補助制御部4cは、送風装置3と同時に補助送風装置7も運転状態に制御する。すなわち、制御装置4は、送風装置3と補助送風装置7とを同期させて運転する。 FIG. 15 is a block diagram relating to control by the control device 4 of the third modified example. The control device 4 controls the auxiliary blower device 7 in addition to the blower device 3. Specifically, the control device 4 further includes an auxiliary control unit 4c. The auxiliary control unit 4c controls the auxiliary blower device 7 to an operating state at the same time as the blower device 3. In other words, the control device 4 operates the blower device 3 and the auxiliary blower device 7 in synchronization.
 また、補助制御部4cは、補助送風装置7の送風量を、送風装置3の送風量に比例させてもよい。具体的に、補助制御部4cは、空調装置8の運転状態が「暖房運転」であれば、補助送風装置7の送風量を「大」に制御し、空調装置8の運転状態が「冷房運転」であれば、補助送風装置7の送風量を「小」に制御する。この場合、補助送風装置7は、送風装置3とともに、送風システムVS1の送風領域を変化させることができる。 The auxiliary control unit 4c may also make the airflow rate of the auxiliary blower 7 proportional to the airflow rate of the blower 3. Specifically, if the operating state of the air conditioner 8 is "heating operation", the auxiliary control unit 4c controls the airflow rate of the auxiliary blower 7 to "high", and if the operating state of the air conditioner 8 is "cooling operation", the auxiliary control unit 4c controls the airflow rate of the auxiliary blower 7 to "low". In this case, the auxiliary blower 7, together with the blower 3, can change the airflow area of the blower system VS1.
 (6)第4変形例
 図16は、第4変形例の制御装置4による制御に関するブロック図である。
(6) Fourth Modification FIG. 16 is a block diagram relating to control by the control device 4 of a fourth modification.
 第4変形例では、送風システムVS1は、温度センサ6の代わりに、信号取得部6Aを備える。信号取得部6Aは、空調装置8を操作するための空調操作信号を取得する。空調操作信号は、空調装置8の操作端末(空調操作端末)から無線通信又は有線通信によって空調装置8へ送信される信号であり、空調装置8の暖房運転、冷房運転などを指示する。信号取得部6Aは、通信経路上の空調操作信号を傍受する、又は空調装置8から空調操作信号を送信させることで、空調操作信号を取得する。 In the fourth modified example, the air supply system VS1 has a signal acquisition unit 6A instead of the temperature sensor 6. The signal acquisition unit 6A acquires an air conditioning operation signal for operating the air conditioner 8. The air conditioning operation signal is a signal transmitted from an operation terminal (air conditioning operation terminal) of the air conditioner 8 to the air conditioner 8 by wireless or wired communication, and instructs the air conditioner 8 to perform heating operation, cooling operation, etc. The signal acquisition unit 6A acquires the air conditioning operation signal by intercepting the air conditioning operation signal on the communication path, or by having the air conditioner 8 transmit the air conditioning operation signal.
 そして、運転判定部4aは、空調操作信号に基づいて、空調装置8の運転状態を判定する。例えば、空調操作信号が空調装置8の暖房運転を指示する信号であれば、運転判定部4aは、空調装置8の運転状態を「暖房運転」と判定する。空調操作信号が空調装置8の冷房運転を指示する信号であれば、運転判定部4aは、空調装置8の運転状態を「冷房運転」と判定する。 Then, the operation determination unit 4a determines the operation state of the air conditioner 8 based on the air conditioning operation signal. For example, if the air conditioning operation signal is a signal instructing the air conditioner 8 to operate in heating mode, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "heating operation." If the air conditioning operation signal is a signal instructing the air conditioner 8 to operate in cooling mode, the operation determination unit 4a determines the operation state of the air conditioner 8 to be "cooling operation."
 風量制御部4bは、上述の実施形態と同様に、空調装置8の運転状態が「暖房運転」であれば、送風装置3の送風量を「大」に制御し、空調装置8の運転状態が「冷房運転」であれば、送風装置3の送風量を「小」に制御する。 As in the above embodiment, the air volume control unit 4b controls the air volume of the blower 3 to "high" if the operating state of the air conditioner 8 is "heating operation", and controls the air volume of the blower 3 to "low" if the operating state of the air conditioner 8 is "cooling operation".
 このように、運転判定部4aは、空調装置8の運転状態を精度よく判定できる。 In this way, the operation determination unit 4a can accurately determine the operating state of the air conditioning device 8.
 (7)第5変形例
 図17は、第5変形例の送風システムVS1の構成の一部を示す。
(7) Fifth Modification FIG. 17 shows part of the configuration of a ventilation system VS1 of a fifth modification.
 第5変形例の送風システムVS1は、ノズル10の送風口10bから吹き出す空気に有効成分を付加する付加装置K1を更に備える。 The fifth modified air supply system VS1 further includes an addition device K1 that adds an active ingredient to the air blown out from the air outlet 10b of the nozzle 10.
 図17では、付加装置K1は、ノズル送風機2の筐体2aの内部に配置される。付加装置K1は、ノズル送風機2から内部空間10cへ送り込まれる空気(内部気流F0)に有効成分を付加する。この結果、有効成分を含むノズル気流F2(図7参照)が送風口10bから吹き出し、有効成分を含む気流が発生する。 In FIG. 17, the addition device K1 is placed inside the housing 2a of the nozzle blower 2. The addition device K1 adds the active ingredient to the air (internal airflow F0) sent from the nozzle blower 2 to the internal space 10c. As a result, the nozzle airflow F2 (see FIG. 7) containing the active ingredient is blown out from the blower port 10b, generating an airflow containing the active ingredient.
 例えば、付加装置K1は放電によって有効成分を生成する。具体的に、付加装置K1は、一対の電極を有しており、一対の電極の一方の電極に水を保持させておく。そして、付加装置K1は、一対の電極間に電圧を印加することにより、一対の電極間に放電を生じさせることによって、有効成分としてラジカルを生成し、かつ、電極に保持されている水を静電霧化する。而して、付加装置K1は、静電霧化された水の微細液滴中にラジカルを含有しているナノメータサイズの帯電微粒子水を生成する。ラジカルは、除菌、脱臭、保湿、保鮮、ウイルスの不活性化にとどまらず、様々な場面で有用な効果を奏する基となる。 For example, the additional device K1 generates an active ingredient by discharging electricity. Specifically, the additional device K1 has a pair of electrodes, and water is held in one of the pair of electrodes. The additional device K1 applies a voltage between the pair of electrodes, causing a discharge between the pair of electrodes, thereby generating radicals as the active ingredient, and electrostatically atomizing the water held in the electrodes. Thus, the additional device K1 generates nanometer-sized charged fine water particles that contain radicals in the fine droplets of electrostatically atomized water. The radicals are the basis for useful effects in a variety of situations, including sterilization, deodorization, moisturization, freshness preservation, and virus inactivation.
 また、付加装置K1は、電極に水を保持させることなく、一対の電極間に放電を生じさせてもよい。この場合、付加装置K1は、一対の電極間に生じる放電によって、有効成分として空気イオンを生成する。 The additional device K1 may also generate a discharge between a pair of electrodes without holding water in the electrodes. In this case, the additional device K1 generates air ions as an active ingredient by the discharge generated between the pair of electrodes.
 また、付加装置K1は、有効成分として、香り成分、又は次亜塩素酸などを発生させてもよい。 The additional device K1 may also generate fragrance components or hypochlorous acid as active ingredients.
 また、付加装置K1は、送風装置3の筐体3aの内部に配置されてもよい。この場合、送風装置3が吹き出す第2調和空気A2に有効成分が付加される。 The addition device K1 may also be disposed inside the housing 3a of the blower device 3. In this case, the active ingredient is added to the second conditioned air A2 blown out by the blower device 3.
 (8)第6変形例
 風量制御部4bは、操作端末5などに施されたユーザの操作、人感センサによって検出された空間R1内の人H1の位置、及びタイマの計時結果などに基づいて、送風装置3による第2調和空気A2の送風量を制御してもよい。この場合、送風システムVS1では、送風領域の手動制御、人H1の位置に基づく自動制御、スケジュール制御などが可能となる。
(8) Sixth Modification The air volume control unit 4b may control the volume of the second conditioned air A2 sent by the air blower 3 based on user operation performed on the operation terminal 5 or the like, the position of the person H1 in the space R1 detected by the human presence sensor, the timing result of the timer, etc. In this case, the air blowing system VS1 allows manual control of the air blowing area, automatic control based on the position of the person H1, schedule control, etc.
 ノズル送風機2は、クロスフローファン以外であってもよく、例えばシロッコファン、又はプロペラファンであってもよい。 The nozzle blower 2 may be something other than a crossflow fan, for example a centrifugal fan or a propeller fan.
 また、ノズル送風機2の吸気は、ダクト経由で吸気する構成、及び筐体2aの周囲の空気を吸気する構成のいずれであってもよい。 The nozzle blower 2 may take in air either through a duct or by taking in the air around the housing 2a.
 ノズルユニット1が有するノズル10の数は2つ以上であればよい。 The number of nozzles 10 in the nozzle unit 1 may be two or more.
 また、送風ユニットU1が取り付けられる構造体は、天井、架台などのように、空間R1の上部に位置する構造体であればよい。 The structure to which the air blower unit U1 is attached may be any structure located at the top of the space R1, such as a ceiling or a stand.
 また、上述の実施形態、及び変形例の各構成のそれぞれは、適宜組み合わせることができ、各構成による効果を同様に得ることができる。 Furthermore, each of the configurations of the above-mentioned embodiments and variations can be combined as appropriate, and the effects of each configuration can be obtained in the same way.
 (9)まとめ
 実施形態に係る第1の態様の送風システム(VS1)は、空調装置(8)が第1調和空気(A1)を吹き出す空間(R1)に設置される。送風システム(VS1)は、ノズルユニット(1)と、送風装置(3)と、を備える。ノズルユニット(1)は、第1方向に沿って延びる中空の長尺形状に形成された筐体(10a)をそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置された少なくとも2つのノズル(10)を有する。送風装置(3)は、第1調和空気(A1)を吸い込み、第2調和空気(A2)を吹き出す。筐体(10a)は、第1方向及び第2方向に交差する第3方向に対向する第1面部(101)及び第2面部(102)を有する。第1面部(101)には、第1方向に沿って延びる送風口(10b)が形成される。送風口(10b)は、筐体(10a)の内部に送り込まれた空気を、筐体(10a)の外部に吹き出す。送風装置(3)は、ノズルユニット(1)に対して筐体(10a)の第2面部(102)の側に位置し、ノズルユニット(1)の第1方向における第1端(1a)から第2端(1b)に向かって第2調和空気(A2)を吹き出す。
(9) Summary The air blowing system (VS1) of the first aspect according to the embodiment is installed in a space (R1) from which an air conditioner (8) blows out a first conditioned air (A1). The air blowing system (VS1) includes a nozzle unit (1) and an air blowing device (3). The nozzle unit (1) has at least two nozzles (10) arranged side by side along a second direction intersecting the first direction, each of which has a housing (10a) formed in a hollow elongated shape extending along a first direction. The air blowing device (3) sucks in the first conditioned air (A1) and blows out the second conditioned air (A2). The housing (10a) has a first surface portion (101) and a second surface portion (102) facing a third direction intersecting the first direction and the second direction. An air blowing port (10b) extending along the first direction is formed in the first surface portion (101). The air outlet (10b) blows the air sent into the inside of the housing (10a) out to the outside of the housing (10a). The air blower (3) is located on the second surface portion (102) side of the housing (10a) with respect to the nozzle unit (1), and blows out the second conditioned air (A2) from the first end (1a) to the second end (1b) in the first direction of the nozzle unit (1).
 上述の送風システム(VS1)は、ノズル(10)の構造を簡易としながら送風領域(G1、G2)を可変とすることができる。 The above-mentioned air blowing system (VS1) can vary the air blowing area (G1, G2) while simplifying the structure of the nozzle (10).
 実施形態に係る第2の態様の送風システム(VS1)は、第1の態様において、送風装置(3)による第2調和空気(A2)の送風量を制御する風量制御部(4b)を更に備えることが好ましい。 The second aspect of the air supply system (VS1) according to the first aspect of the embodiment preferably further includes an air volume control unit (4b) that controls the volume of the second conditioned air (A2) sent by the air supply device (3).
 上述の送風システム(VS1)は、ノズル(10)の構造を簡易としながら送風領域(G1、G2)を可変とすることができる。 The above-mentioned air blowing system (VS1) can vary the air blowing area (G1, G2) while simplifying the structure of the nozzle (10).
 実施形態に係る第3の態様の送風システム(VS1)は、第2の態様において、空調装置(8)の運転状態を判定する運転判定部(4a)を更に備えることが好ましい。風量制御部(4b)は、運転状態の判定結果に基づいて、送風装置(3)による第2調和空気(A2)の送風量を制御する。 The third aspect of the air blowing system (VS1) according to the second aspect of the embodiment preferably further includes an operation determination unit (4a) that determines the operation state of the air conditioner (8). The air volume control unit (4b) controls the volume of the second conditioned air (A2) blown by the air blower (3) based on the determination result of the operation state.
 上述の送風システム(VS1)は、空調装置(8)の運転状態に応じた送風領域(G1、G2)に気流(F11、F12)を送ることができる。 The above-mentioned ventilation system (VS1) can send airflows (F11, F12) to ventilation areas (G1, G2) according to the operating state of the air conditioner (8).
 実施形態に係る第4の態様の送風システム(VS1)では、第3の態様において、運転判定部(4a)は、運転状態が暖房運転及び冷房運転のいずれであるかを判定することが好ましい。 In the fourth aspect of the air supply system (VS1) according to the embodiment, in the third aspect, it is preferable that the operation determination unit (4a) determines whether the operating state is heating operation or cooling operation.
 上述の送風システム(VS1)は、空調装置(8)の暖房運転、冷房運転にそれぞれ応じた送風領域(G1、G2)に気流(F11、F12)を送ることができる。 The above-mentioned ventilation system (VS1) can send airflows (F11, F12) to ventilation areas (G1, G2) corresponding to the heating operation and cooling operation of the air conditioner (8).
 実施形態に係る第5の態様の送風システム(VS1)では、第4の態様において、風量制御部(4b)は、運転状態が暖房運転であるときの送風量を、運転状態が冷房運転であるときの送風量よりも大きくすることが好ましい。 In the fifth aspect of the air blowing system (VS1) according to the embodiment, in the fourth aspect, it is preferable that the air volume control unit (4b) sets the air volume when the operating state is heating operation to be larger than the air volume when the operating state is cooling operation.
 上述の送風システム(VS1)は、空調装置(8)の暖房運転、冷房運転にそれぞれ応じた送風領域(G1、G2)に気流(F11、F12)を送ることができる。 The above-mentioned ventilation system (VS1) can send airflows (F11, F12) to ventilation areas (G1, G2) corresponding to the heating operation and cooling operation of the air conditioner (8).
 実施形態に係る第8の態様の送風システム(VS1)では、第4の態様において、風量制御部(4b)は、送風口(10b)から筐体(10a)の外部に吹き出される空気の送風量であるノズル送風量を制御することが好ましい。風量制御部(4b)は、運転状態が暖房運転であるときのノズル送風量を、運転状態が冷房運転であるときのノズル送風量よりも小さくする。 In the air blowing system (VS1) of the eighth aspect of the embodiment, in the fourth aspect, it is preferable that the air volume control unit (4b) controls the nozzle air volume, which is the volume of air blown out from the air outlet (10b) to the outside of the housing (10a). The air volume control unit (4b) makes the nozzle air volume when the operating state is heating operation smaller than the nozzle air volume when the operating state is cooling operation.
 上述の送風システム(VS1)は、空間(R1)内の人が感じる温熱的な快適性を向上させることができる。 The above-mentioned ventilation system (VS1) can improve the thermal comfort felt by people in the space (R1).
 実施形態に係る第13、第11、第6及び第9の態様の送風システム(VS1)は、第3乃至第6の態様のいずれか1つにおいて、第1調和空気(A1)の温度を検出する温度センサ(6)を更に備えることが好ましい。運転判定部(4a)は、第1調和空気(A1)の温度に基づいて、運転状態を判定する。 In the 13th, 11th, 6th and 9th aspects of the air supply system (VS1) according to the embodiment, in any one of the 3rd to 6th aspects, it is preferable that the air supply system (VS1) further includes a temperature sensor (6) that detects the temperature of the first conditioned air (A1). The operation determination unit (4a) determines the operation state based on the temperature of the first conditioned air (A1).
 上述の送風システム(VS1)は、空調装置(8)の運転状態を精度よく判定できる。 The above-mentioned ventilation system (VS1) can accurately determine the operating state of the air conditioner (8).
 実施形態に係る第14、第12、第7及び第10の態様の送風システム(VS1)は、第3乃至第6の態様のいずれか1つにおいて、空調装置(8)を操作するための空調操作信号を取得する信号取得部(6A)を更に備えることが好ましい。運転判定部(4a)は、空調操作信号に基づいて、運転状態を判定する。 In the fourteenth, twelfth, seventh and tenth aspects of the air supply system (VS1) according to any one of the third to sixth aspects, it is preferable that the air supply system (VS1) further includes a signal acquisition unit (6A) that acquires an air conditioning operation signal for operating the air conditioner (8). The operation determination unit (4a) determines the operation state based on the air conditioning operation signal.
 上述の送風システム(VS1)は、空調装置(8)の運転状態を精度よく判定できる。 The above-mentioned ventilation system (VS1) can accurately determine the operating state of the air conditioner (8).
 実施形態に係る第15の態様の送風システム(VS1)は、第1乃至第14の態様のいずれか1つにおいて、空調装置(8)が吹き出した第1調和空気(A1)を送風装置(3)まで導くダクト(D2)を更に備えることが好ましい。 The ventilation system (VS1) of the fifteenth aspect of the embodiment, in any one of the first to fourteenth aspects, preferably further includes a duct (D2) that guides the first conditioned air (A1) blown out by the air conditioner (8) to the ventilation device (3).
 上述の送風システム(VS1)は、空調装置(8)による空調効果を含む気流(F11、F12)を吹き出すことができる。 The above-mentioned ventilation system (VS1) can blow out airflows (F11, F12) that include the air conditioning effect of the air conditioner (8).
 実施形態に係る第16の態様の送風システム(VS1)は、第1乃至第14の態様のいずれか1つにおいて、空調装置(8)が吹き出した第1調和空気(A1)を吸い込んで、第1調和空気(A1)を送風装置(3)に向かって吹き出す補助送風装置(7)を更に備えることが好ましい。 The ventilation system (VS1) of the 16th aspect of the embodiment, in any one of the first to 14th aspects, preferably further includes an auxiliary ventilation device (7) that sucks in the first conditioned air (A1) blown out by the air conditioner (8) and blows the first conditioned air (A1) toward the ventilation device (3).
 上述の送風システム(VS1)は、空調装置(8)による空調効果を含む気流(F11、F12)を吹き出すことができる。 The above-mentioned ventilation system (VS1) can blow out airflows (F11, F12) that include the air conditioning effect of the air conditioner (8).
 実施形態に係る第17の態様の送風システム(VS1)は、第1乃至第16の態様のいずれか1つにおいて、空気に有効成分を付加する付加装置(K1)を更に備えることが好ましい。 The ventilation system (VS1) of the seventeenth aspect of the embodiment is preferably any one of the first to sixteenth aspects, further comprising an adding device (K1) that adds an active ingredient to the air.
 上述の送風システム(VS1)は、ラジカル、香り、又は次亜塩素酸などの有効成分を含む空気を吹き出すことができるので、空間(R1)の環境を改善できる。 The above-mentioned air supply system (VS1) can blow out air containing active ingredients such as radicals, fragrances, or hypochlorous acid, thereby improving the environment in the space (R1).
 実施形態に係る第18の態様の送風システム(VS1)は、第1乃至第17の態様のいずれか1つにおいて、第1方向は鉛直方向であることが好ましい。 In the 18th aspect of the ventilation system (VS1) according to the embodiment, in any one of the 1st to 17th aspects, it is preferable that the first direction is a vertical direction.
 上述の送風システム(VS1)では、ノズルユニット(1)をパーテーションとしても利用できる。 In the above-mentioned air blowing system (VS1), the nozzle unit (1) can also be used as a partition.
 実施形態に係る第19の態様の送風システム(VS1)は、第18の態様において、第1端(1a)は、第2端(1b)より上方に位置することが好ましい。 In the 19th embodiment of the ventilation system (VS1) of the 18th embodiment, it is preferable that the first end (1a) is located above the second end (1b).
 上述の送風システム(VS1)は、空間(R1)内の人の快適性を向上させたり、空間(R1)内の温度分布の均一化を図ったりできる。 The above-mentioned ventilation system (VS1) can improve the comfort of people in the space (R1) and achieve a more uniform temperature distribution within the space (R1).
 VS1 送風システム
 1 ノズルユニット
 1a 上端(第1端)
 1b 下端(第2端)
 10 ノズル
 101 第1面部
 102 第2面部
 10a 筐体
 10b 送風口
 3 送風装置
 4a 運転判定部
 4b 風量制御部
 6 温度センサ
 6A 信号取得部
 7 補助送風装置
 8 空調装置
 A1 第1調和空気
 A2 第2調和空気
 D2 ダクト
 K1 付加装置
 R1 空間
VS1 Blowing system 1 Nozzle unit 1a Upper end (first end)
1b Lower end (second end)
REFERENCE SIGNS LIST 10 Nozzle 101 First surface 102 Second surface 10a Housing 10b Air outlet 3 Blower 4a Operation determination unit 4b Air volume control unit 6 Temperature sensor 6A Signal acquisition unit 7 Auxiliary blower 8 Air conditioner A1 First conditioned air A2 Second conditioned air D2 Duct K1 Additional device R1 Space

Claims (19)

  1.  空調装置が第1調和空気を吹き出す空間に設置された送風システムであって、
     第1方向に沿って延びる中空の長尺形状に形成された筐体をそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置された少なくとも2つのノズルを有するノズルユニットと、
     前記第1調和空気を吸い込み、第2調和空気を吹き出す送風装置と、を備え、
     前記筐体は、前記第1方向及び前記第2方向に交差する第3方向に対向する第1面部及び第2面部を有し、
     前記第1面部には、前記第1方向に沿って延びる送風口が形成され、
     前記送風口は、前記筐体の内部に送り込まれた空気を、前記筐体の外部に吹き出し、
     前記送風装置は、前記ノズルユニットに対して前記筐体の前記第2面部の側に位置し、前記ノズルユニットの前記第1方向における第1端から第2端に向かって前記第2調和空気を吹き出す
     送風システム。
    An air conditioning system installed in a space from which a first conditioned air is blown out,
    a nozzle unit having at least two nozzles arranged side by side along a second direction intersecting the first direction, the nozzle unit having a housing formed in a hollow elongated shape extending along a first direction;
    a blower device that draws in the first conditioned air and blows out the second conditioned air,
    the housing has a first surface portion and a second surface portion that face each other in a third direction that intersects with the first direction and the second direction,
    The first surface portion has an air outlet formed therein, the air outlet extending along the first direction.
    The air outlet blows the air sent into the housing to the outside of the housing,
    The air blowing device is located on the second surface side of the housing with respect to the nozzle unit, and blows out the second conditioned air from a first end toward a second end in the first direction of the nozzle unit.
  2.  前記送風装置による前記第2調和空気の送風量を制御する風量制御部を更に備える
     請求項1の送風システム。
    The air blowing system according to claim 1 , further comprising an air volume control unit that controls an air volume of the second conditioned air blown by the air blowing device.
  3.  前記空調装置の運転状態を判定する運転判定部を更に備え、
     前記風量制御部は、前記運転状態の判定結果に基づいて、前記第2調和空気の送風量を制御する
     請求項2の送風システム。
    An operation determination unit that determines an operation state of the air conditioner is further provided,
    The air blowing system according to claim 2 , wherein the air volume control unit controls the volume of the second conditioned air based on a result of the determination of the operating state.
  4.  前記運転判定部は、前記運転状態が暖房運転及び冷房運転のいずれであるかを判定する
     請求項3の送風システム。
    The air blowing system according to claim 3 , wherein the operation determination unit determines whether the operating state is a heating operation or a cooling operation.
  5.  前記風量制御部は、前記運転状態が前記暖房運転であるときの前記送風量を、前記運転状態が前記冷房運転であるときの前記送風量よりも大きくする
     請求項4の送風システム。
    The air blowing system according to claim 4 , wherein the air volume control unit sets the air volume when the operating state is the heating operation to be larger than the air volume when the operating state is the cooling operation.
  6.  前記第1調和空気の温度を検出する温度センサを更に備え、
     前記運転判定部は、前記第1調和空気の温度に基づいて、前記運転状態を判定する
     請求項5の送風システム。
    Further comprising a temperature sensor for detecting a temperature of the first conditioned air,
    The air blowing system according to claim 5 , wherein the operation determination unit determines the operation state based on a temperature of the first conditioned air.
  7.  前記空調装置を操作するための空調操作信号を取得する信号取得部を更に備え、
     前記運転判定部は、前記空調操作信号に基づいて、前記運転状態を判定する
     請求項5の送風システム。
    A signal acquisition unit that acquires an air conditioning operation signal for operating the air conditioning device,
    The air blowing system according to claim 5 , wherein the operation determination unit determines the operation state based on the air conditioning operation signal.
  8.  前記風量制御部は、
      前記送風口から前記筐体の外部に吹き出される前記空気の送風量であるノズル送風量を制御し、
      前記運転状態が前記暖房運転であるときの前記ノズル送風量を、前記運転状態が前記冷房運転であるときの前記ノズル送風量よりも小さくする
     請求項4の送風システム。
    The air volume control unit is
    controlling a nozzle blowing amount, which is an amount of the air blown out from the blowing port to the outside of the housing;
    The ventilation system according to claim 4 , wherein the nozzle airflow rate when the operating state is the heating operation is set to be smaller than the nozzle airflow rate when the operating state is the cooling operation.
  9.  前記第1調和空気の温度を検出する温度センサを更に備え、
     前記運転判定部は、前記第1調和空気の温度に基づいて、前記運転状態を判定する
     請求項8の送風システム。
    Further comprising a temperature sensor for detecting a temperature of the first conditioned air,
    The air blowing system according to claim 8 , wherein the operation determination unit determines the operation state based on a temperature of the first conditioned air.
  10.  前記空調装置を操作するための空調操作信号を取得する信号取得部を更に備え、
     前記運転判定部は、前記空調操作信号に基づいて、前記運転状態を判定する
     請求項8の送風システム。
    A signal acquisition unit that acquires an air conditioning operation signal for operating the air conditioning device,
    The air blowing system according to claim 8 , wherein the operation determination unit determines the operation state based on the air conditioning operation signal.
  11.  前記第1調和空気の温度を検出する温度センサを更に備え、
     前記運転判定部は、前記第1調和空気の温度に基づいて、前記運転状態を判定する
     請求項4の送風システム。
    Further comprising a temperature sensor for detecting a temperature of the first conditioned air,
    The air blowing system according to claim 4 , wherein the operation determination unit determines the operation state based on a temperature of the first conditioned air.
  12.  前記空調装置を操作するための空調操作信号を取得する信号取得部を更に備え、
     前記運転判定部は、前記空調操作信号に基づいて、前記運転状態を判定する
     請求項4の送風システム。
    A signal acquisition unit that acquires an air conditioning operation signal for operating the air conditioning device,
    The air blowing system according to claim 4 , wherein the operation determination unit determines the operation state based on the air conditioning operation signal.
  13.  前記第1調和空気の温度を検出する温度センサを更に備え、
     前記運転判定部は、前記第1調和空気の温度に基づいて、前記運転状態を判定する
     請求項3の送風システム。
    Further comprising a temperature sensor for detecting a temperature of the first conditioned air,
    The air blowing system according to claim 3 , wherein the operation determination unit determines the operation state based on a temperature of the first conditioned air.
  14.  前記空調装置を操作するための空調操作信号を取得する信号取得部を更に備え、
     前記運転判定部は、前記空調操作信号に基づいて、前記運転状態を判定する
     請求項3の送風システム。
    A signal acquisition unit that acquires an air conditioning operation signal for operating the air conditioning device,
    The air blowing system according to claim 3 , wherein the operation determination unit determines the operation state based on the air conditioning operation signal.
  15.  前記空調装置が吹き出した前記第1調和空気を前記送風装置まで導くダクトを更に備える
     請求項1の送風システム。
    The ventilation system according to claim 1 , further comprising a duct that guides the first conditioned air blown out by the air conditioner to the ventilation device.
  16.  前記空調装置が吹き出した前記第1調和空気を吸い込んで、前記第1調和空気を前記送風装置に向かって吹き出す補助送風装置を更に備える
     請求項1の送風システム。
    The ventilation system according to claim 1 , further comprising an auxiliary ventilation device that sucks in the first conditioned air blown out by the air conditioner and blows out the first conditioned air towards the ventilation device.
  17.  前記空気に有効成分を付加する付加装置を更に備える
     請求項1の送風システム。
    The ventilation system of claim 1 , further comprising an adding device for adding an active ingredient to the air.
  18.  前記第1方向は鉛直方向である
     請求項1の送風システム。
    The ventilation system according to claim 1 , wherein the first direction is a vertical direction.
  19.  前記第1端は、前記第2端より上方に位置する
     請求項18の送風システム。
    The ventilation system of claim 18 , wherein the first end is located above the second end.
PCT/JP2023/039153 2022-11-10 2023-10-30 Ventilation system WO2024101206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022180579 2022-11-10
JP2022-180579 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024101206A1 true WO2024101206A1 (en) 2024-05-16

Family

ID=91032850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039153 WO2024101206A1 (en) 2022-11-10 2023-10-30 Ventilation system

Country Status (1)

Country Link
WO (1) WO2024101206A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294452A (en) * 1987-05-26 1988-12-01 Matsushita Electric Works Ltd Air quantity adjusting device for air conditioner
JPH04350444A (en) * 1991-02-28 1992-12-04 Hitachi Ltd Air conditioner
JPH09264557A (en) * 1996-03-26 1997-10-07 Daikin Ind Ltd Air conditioner
JP2001174024A (en) * 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2009002602A (en) * 2007-06-22 2009-01-08 Panasonic Corp Air-conditioner
JP2011085351A (en) * 2009-10-16 2011-04-28 Takasago Thermal Eng Co Ltd Displacement ventilation equipment for large-spaced room
JP2017125652A (en) * 2016-01-14 2017-07-20 パナソニックIpマネジメント株式会社 Ceiling embedded type indoor unit
JP2017187264A (en) * 2016-05-31 2017-10-12 高砂熱学工業株式会社 Clean room apparatus and air circulation unit
JP2019027770A (en) * 2017-07-25 2019-02-21 新日本空調株式会社 Air conditioning control method
JP2019116840A (en) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 Blower
JP2019148171A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Blower device
WO2020050228A1 (en) * 2018-09-06 2020-03-12 日本スピンドル製造株式会社 Booth and spouting device
WO2022091439A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Blower device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294452A (en) * 1987-05-26 1988-12-01 Matsushita Electric Works Ltd Air quantity adjusting device for air conditioner
JPH04350444A (en) * 1991-02-28 1992-12-04 Hitachi Ltd Air conditioner
JPH09264557A (en) * 1996-03-26 1997-10-07 Daikin Ind Ltd Air conditioner
JP2001174024A (en) * 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd Air conditioner
JP2009002602A (en) * 2007-06-22 2009-01-08 Panasonic Corp Air-conditioner
JP2011085351A (en) * 2009-10-16 2011-04-28 Takasago Thermal Eng Co Ltd Displacement ventilation equipment for large-spaced room
JP2017125652A (en) * 2016-01-14 2017-07-20 パナソニックIpマネジメント株式会社 Ceiling embedded type indoor unit
JP2017187264A (en) * 2016-05-31 2017-10-12 高砂熱学工業株式会社 Clean room apparatus and air circulation unit
JP2019027770A (en) * 2017-07-25 2019-02-21 新日本空調株式会社 Air conditioning control method
JP2019116840A (en) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 Blower
JP2019148171A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Blower device
WO2020050228A1 (en) * 2018-09-06 2020-03-12 日本スピンドル製造株式会社 Booth and spouting device
WO2022091439A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Blower device

Similar Documents

Publication Publication Date Title
Melikov Personalized ventilation.
JP5053686B2 (en) Air conditioning method
JP6036383B2 (en) Blower system
JP3731397B2 (en) Blower, air conditioner, and blower method
JP2019105383A (en) Air conditioning unit
JP2024042108A (en) Clean room equipment and air circulation units
WO2024101206A1 (en) Ventilation system
JPS62178836A (en) Air conditioner
JP3680223B2 (en) 1 air conditioner
JP2007085660A (en) Air conditioning system
JP2007198648A (en) Personal air conditioning system
JP2012247117A (en) Desk having air conditioning function
JP2024072594A (en) Ventilation system
WO2023210307A1 (en) Air blowing system
JPH11141954A (en) Central air-conditioning system
WO2004042286A1 (en) Natural wind air-conditioning system
JP2024058458A (en) Ventilation system
JP2009156510A (en) Individual air conditioning device
WO2024057863A1 (en) Ventilation system
JP7335289B2 (en) Ventilation system and ventilation method
JPH06249463A (en) Air conditioner operated under control of air layer
JP5670529B1 (en) Server rack indoor system
KR20240037729A (en) Individual air conditioning system automatically controlled by smart watch
Katramiz et al. Individual control of the frequency of intermittent personalized ventilation and its effect on cross-contamination in an office space
JPH05288378A (en) Clean room