WO2024057863A1 - Ventilation system - Google Patents

Ventilation system Download PDF

Info

Publication number
WO2024057863A1
WO2024057863A1 PCT/JP2023/030512 JP2023030512W WO2024057863A1 WO 2024057863 A1 WO2024057863 A1 WO 2024057863A1 JP 2023030512 W JP2023030512 W JP 2023030512W WO 2024057863 A1 WO2024057863 A1 WO 2024057863A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
air
nozzle
airflow
blowing
Prior art date
Application number
PCT/JP2023/030512
Other languages
French (fr)
Japanese (ja)
Inventor
祐司 尾崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024057863A1 publication Critical patent/WO2024057863A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/10Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provisions for automatically changing direction of output air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/072Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser of elongated shape, e.g. between ceiling panels

Definitions

  • the present disclosure relates to a ventilation system.
  • the blower device of Patent Document 1 includes a plurality of nozzles of equal length.
  • the nozzle is provided with an inlet and an outlet. Then, high-pressure air flows into the nozzle through the inlet, and the high-pressure air inside the nozzle is blown out from the outlet.
  • the plurality of nozzles are provided with gaps so that the respective outlets are on the same plane, and this gap forms an induced wind path for air attracted by the air flow blown out from the outlets on the outside of the nozzles.
  • the blower device includes a damper mechanism that changes the opening area of the inlet of the nozzle, and adjusts the blowing range by adjusting the opening area of the inlet of the nozzle.
  • An object of the present disclosure is to provide an air blowing system that can change the air blowing direction while simplifying the structure of the nozzle.
  • a blowing system includes a nozzle unit, a blowing device, and a control device.
  • the nozzle unit includes at least two nozzles each having a hollow elongated housing extending along a first direction, and arranged side by side along a second direction intersecting the first direction. has.
  • the air blower is disposed above the nozzle unit and blows air from a first end to a second end of the nozzle unit in the first direction.
  • the control device controls the blower.
  • An air outlet extending along the first direction is formed on a lower surface of each housing of the at least two nozzles. The air outlet blows the air sent into the housing to the outside of the housing.
  • FIG. 1 is a perspective view showing a ventilation system according to an embodiment.
  • FIG. 2 is a perspective view showing a blower unit included in the blower system.
  • FIG. 3 is a side sectional view showing the same blower unit as above.
  • FIG. 4 is a bottom view of the same blower unit as above.
  • FIG. 5A is a plan view showing the right end of the nozzle included in the blower unit.
  • FIG. 5B is a plan view showing the left end of the nozzle included in the air blowing unit.
  • FIG. 6 is a diagram showing a part of the air blowing unit same as the above.
  • FIG. 7 is a diagram showing the airflow directly below the air blowing system.
  • FIG. 8 is a diagram showing oblique airflow in the air blowing system.
  • FIG. 1 is a perspective view showing a ventilation system according to an embodiment.
  • FIG. 2 is a perspective view showing a blower unit included in the blower system.
  • FIG. 3 is a side
  • FIG. 9 is a perspective view showing a ventilation unit included in the ventilation system of the first modification.
  • FIG. 10 is a side sectional view showing the same air blowing unit as above.
  • FIG. 11 is a diagram showing the airflow directly below the air blowing system.
  • FIG. 12 is a diagram showing the first oblique airflow in the air blowing system.
  • FIG. 13 is a diagram showing a second oblique airflow in the ventilation system same as above.
  • the present embodiment generally relates to a ventilation system. More particularly, the present disclosure relates to a blowing system comprising at least two nozzles formed in a hollow elongated shape and arranged in parallel.
  • the X-axis, Y-axis, and Z-axis that are orthogonal to each other in FIG. 1 are defined.
  • one of the two directions along the X axis is defined as the right direction, and the other direction is defined as the left direction.
  • one direction out of both directions along the Y axis is defined as the front direction, and the other direction is defined as the rear direction.
  • one direction among the two directions along the Z-axis is defined as an upward direction, and the other direction is defined as a downward direction.
  • FIG. 1 shows the ventilation system VS1 of this embodiment.
  • the ventilation system VS1 is used, for example, in facilities such as office buildings, offices, stores, factories, or commercial facilities. Moreover, the ventilation system VS1 may be used in a residential unit of an apartment complex, a detached house, or the like. Although the ventilation system VS1 is assumed to be installed in buildings such as facilities and houses, it may be installed in structures other than buildings.
  • the ventilation system VS1 of this embodiment includes a nozzle unit 1, a ventilation device 3, and a control device 4.
  • the nozzle unit 1 has at least two nozzles 10. At least two nozzles 10 each have a hollow elongated housing 10a extending along the first direction, and are arranged side by side along a second direction intersecting the first direction. .
  • the blower device 3 is arranged above the nozzle unit 1 and blows air from the first end 1a to the second end 1b of the nozzle unit 1 in the first direction.
  • the control device 4 controls the blower device 3 .
  • An air outlet 10b extending along the first direction is formed on the lower surface of each housing 10a of at least two nozzles 10. The air outlet 10b blows out the air sent into the interior of the housing 10a to the outside of the housing 10a.
  • the control device 4 controls the air blowing device 3, so that the air blowing direction can be made variable without providing the nozzle with a damper mechanism as in Patent Document 1 mentioned above. That is, the air blowing system VS1 can make the air blowing direction variable while simplifying the structure of the nozzle 10.
  • the first direction corresponds to the left-right direction along the X-axis
  • the second direction corresponds to the front-rear direction along the Y-axis.
  • the ventilation system VS1 is installed in the room R1.
  • the room R1 is a space where people exist, such as a working space, a conference room, a rest room, a waiting room, a reception room, and a living room.
  • the upper surface of the room R1 is a ceiling R11, and the lower surface of the room R1 is a floor R12.
  • the ventilation system VS1 includes a nozzle unit 1, a ventilation device 3, and a control device 4.
  • the nozzle unit 1 has eight nozzles 10.
  • the ventilation system VS1 further includes a first nozzle blower 21 and a second nozzle blower 22.
  • the nozzle unit 1, the first nozzle blower 21, and the second nozzle blower 22 constitute a blower unit U1.
  • the ventilation system VS1 further includes an operation terminal 5 and a human sensor 6.
  • the air blower unit U1 is fixed to the lower surface of the ceiling R11 with a hanging bolt or wire (not shown).
  • the blower unit U1 includes a nozzle unit 1, a first nozzle blower 21, and a second nozzle blower 22, as shown in FIGS. 2-4.
  • the nozzle unit 1 includes eight nozzles 10.
  • the nozzle 10 has a hollow rectangular plate-shaped housing 10a whose long sides extend in the left-right direction along the X-axis.
  • a rectangular opening with long sides extending in the left-right direction is formed as an air outlet 10b on the lower surface of the housing 10a.
  • the air outlet 10b is formed at the center in the front-rear direction on the lower surface of the housing 10a.
  • the casings 10a of the eight nozzles 10 are arranged in parallel in the front-rear direction along the Y-axis.
  • the front surface of the housing 10a of the nozzle 10 faces the rear surface of the housing 10a of the nozzle 10 adjacent to the front, and the rear surface of the housing 10a of the nozzle 10 faces the front surface of the housing 10a of the nozzle 10 adjacent to the rear. are doing.
  • the housing 10a is made of, for example, a resin material, but may also be made of a lightweight metal material such as aluminum.
  • a partition plate 10c is provided at the center in the longitudinal direction of the housing 10a.
  • the partition plate 10c divides the internal space of the housing 10a into two spaces: a right space 10d, which is a space on the right side, and a left space 10e, which is a space on the left side.
  • an opening 10f is formed at the right end of the housing 10a, and the right space 10d communicates with the outside of the housing 10a via the opening 10f.
  • an opening 10g is formed at the left end of the housing 10a, and the left space 10e communicates with the outside of the housing 10a via the opening 10g.
  • a plurality of fins 10h are provided on the lower surface of each of the right space 10d and the left space 10e, arranged in the left-right direction at regular intervals along the X-axis. ing.
  • the fin 10h has a plate shape extending upward from the lower surface of each of the right space 10d and the left space 10e, and the fin 10h has a plate shape extending upward from the lower surface of each of the right space 10d and left space 10e. (a part of the lower side of each space 10e) is closed.
  • a plurality of fins 10h are positioned so as to partition the air outlet 10b at regular intervals along the X-axis.
  • the first nozzle blower 21 is a cross flow fan. As shown in FIGS. 2 to 4, the first nozzle blower 21 includes a hollow rectangular housing 21a, and has a fan 21b inside the housing 21a. The first nozzle blower 21 is provided at the right end (first end) 1a of the nozzle unit 1, and the left surface of the housing 21a faces the right end surface of the nozzle unit 1.
  • the housing 21a is connected to a duct (not shown), and air is supplied from the duct, and an air outlet 21c (see FIG. 3) is formed on the left side of the housing 21a.
  • the air blown out to the left from the air outlet 21c by the rotation of the fan 21b flows into the right space 10d through the opening 10f of each nozzle 10 of the nozzle unit 1. That is, the first nozzle blower 21 sends air from the opening 10f of each nozzle 10 to the right space 10d, thereby generating an internal airflow F11 (see FIG. 3) that flows from the opening 10f to the left in the right space 10d. .
  • the internal airflow F11 is rectified by the fins 10h in the right space 10d, and is blown downward from the air outlet 10b on the lower surface of the housing 10a. Note that, as shown in FIG. 5A, it is preferable that the width of the lower part of the right space 10d in the front-rear direction becomes narrower as it goes downward.
  • the second nozzle blower 22 is a cross flow fan. As shown in FIGS. 2 to 4, the second nozzle blower 22 includes a hollow rectangular housing 22a and a fan 22b inside the housing 22a. The second nozzle blower 22 is provided at the left end (second end) 1b of the nozzle unit 1, and the right surface of the housing 22a faces the left end surface of the nozzle unit 1.
  • the housing 22a is connected to a duct (not shown), and air is supplied from the duct, and an air outlet 22c (see FIG. 3) is formed on the right side of the housing 22a. The air blown out to the right from the air outlet 22c as the fan 22b rotates flows into the left space 10e through the opening 10g of each nozzle 10 of the nozzle unit 1.
  • the second nozzle blower 22 sends air into the left space 10e from the opening 10f of each nozzle 10, thereby generating an internal airflow F12 (see FIG. 3) that flows from the opening 10g to the right in the left space 10e. .
  • the internal airflow F12 is rectified by the fins 10h in the left space 10e, and is blown downward from the air outlet 10b on the lower surface of the housing 10a. Note that, as shown in FIG. 5B, it is preferable that the width of the lower part of the left space 10e in the front-rear direction becomes narrower toward the bottom.
  • each of the eight nozzles 10 making up the nozzle unit 1 generates the air flow F2 by blowing air downward from the elongated air outlet 10b on the lower surface of the housing 10a.
  • FIG. 6 shows arbitrary two nozzles 10 which are arrange
  • an attraction path 91 shown in FIG. 6 is formed between two nozzles 10 adjacent in the front-back direction.
  • the attraction path 91 is a space that is sandwiched from the front and back between the rear surface of the casing 10a of the front nozzle 10 and the front surface of the casing 10a of the rear nozzle 10, and is open from above and below. Then, when each of the two nozzles 10 arranged side by side generates a blast air flow F2 blowing downward from the air outlet 10b, the attraction path 91 becomes a negative pressure, and the attraction path 91 has a space above the two nozzles 10. The air in the upper space 92 is drawn from top to bottom. The air attracted from the top to the bottom of the attraction path 91 is blown out from the attraction path 91 downward. The air blown downward from the attraction path 91 generates an attraction airflow F3 that flows downward from the attraction path 91.
  • an induced airflow F3 is generated between the two blast airflows F2 generated by two adjacent nozzles 10, and a descending airflow F1 is created by combining the blast airflow F2 and the induced airflow F3. generated.
  • the downdraft F1 is blown out from the nozzle unit 1 downward.
  • the flow rate of the descending air flow F1 at the air outlet 10b is taken as the amount of air blown by the nozzle unit 1
  • the amount of air blown from the nozzle unit 1 increases as each rotational speed of the fans 21b and 22b increases, and each rotational speed of the fans 21b and 22b increases. As the value decreases, the amount of air blown from the nozzle unit 1 decreases.
  • the rotational speeds of the fans 21b and 22b are controlled by the control device 4.
  • Air blower 3 is a cross flow fan.
  • the blower device 3 is arranged above the nozzle unit 1, sucks in surrounding air, and blows the air from the right end (first end) 1a to the left end (second end) 1b of the nozzle unit 1.
  • the blower device 3 is arranged above the first nozzle blower 21 (or above the right end 1a of the nozzle unit 1).
  • the blower device 3 is fixed to the lower surface of the ceiling R11 with a hanging bolt or wire (not shown).
  • the blower device 3 includes a hollow rectangular housing 3a, and has a fan 3b inside the housing 3a.
  • An air outlet 3c is formed on the left side of the housing 3a. The air blown out to the left from the air outlet 3c by the rotation of the fan 3b turns into an airflow F21 that flows above the nozzle unit 1 from right to left.
  • the amount of air blown by the blower 3 increases as the rotational speed of the fan 3b increases. Further, as the rotational speed of the fan 3b decreases, the amount of air blown by the air blower 3 decreases.
  • the rotation speed of the fan 3b is controlled by the control device 4.
  • Control device 4 controls at least the blower device 3.
  • the control device 4 controls the blower device 3, the first nozzle blower 21, and the second nozzle blower 22.
  • the control device 4 performs wired communication or wireless communication with the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, thereby controlling the blower device 3, the first nozzle blower 21, and the second nozzle blower 22.
  • the amount of air blown by each blower 22 is controlled.
  • the control device 4 acquires an operation signal from the operation terminal 5 and a sensor signal from the human sensor 6 by performing wired communication or wireless communication with the operation terminal 5 and the human sensor 6.
  • the wired communication is, for example, wired communication via a twisted pair cable, a dedicated communication line, or a LAN (Local Area Network) cable.
  • the wireless communication is, for example, wireless communication compliant with standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), or low power wireless that does not require a license (specific low power wireless).
  • the operating terminal 5 includes a switch or a touch panel for instructing each operation of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, and accepts user operations.
  • the operation terminal 5 then transmits an operation signal according to the user's operation to the control device 4.
  • the operation terminal 5 accepts operations such as operation, stop, and direction of air blowing.
  • the control device 4 controls the operation and stop of each of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, and the amount of air blown during operation.
  • the human sensor 6 detects the presence or absence of a person in the room R1 and the position of the person, and transmits the detection result to the control device 4 as a sensor signal. Based on the sensor signal received from the human sensor 6, the control device 4 controls the operation and stop of each of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, and the amount of air blown during operation. .
  • control device 4 controls the operation and operation of each of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22 based on the user's operation received by the operation terminal 5 and the detection result of the human sensor 6. You can switch between stops and adjust the amount of air flow during each operation.
  • the control device 4 controls the air blower 3, the first nozzle blower 21, and the second nozzle blower 22 to generate air below the nozzle unit 1. Adjust the direction of airflow. In this embodiment, the control device 4 puts the first nozzle blower 21 and the second nozzle blower 22 into operation, and then controls the operation, stopping, and air flow rate of the blower 3 to control the nozzle unit 1. The direction of the airflow generated downward (blow direction) is variable.
  • FIG. 7 shows the airflow generated below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation and the blower 3 is in a stopped state.
  • the airflow F31 directly below is shown.
  • the descending airflow F1 is blown downward from the nozzle unit 1.
  • the air flow F21 is not blown out from the air outlet 3c of the air blower 3. Therefore, the descending airflow F1 blown downward from the nozzle unit 1 proceeds directly below (vertically downward), and below the nozzle unit 1, the downward airflow F31 that proceeds directly below is generated.
  • FIG. 8 shows the airflow generated below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation and the blower device 3 is also in operation.
  • the oblique airflow F32 is shown as an airflow.
  • the descending airflow F1 is blown downward from the nozzle unit 1. Further, above the nozzle unit 1, a blowing air flow F21 is blown out from the blowing port 3c of the blowing device 3 to the left. The blast airflow F21 flowing from right to left above the nozzle unit 1 is attracted by the downward airflow F1 blowing out from the nozzle unit 1 and is pulled downward, passing between two nozzles 10 adjacent in the front and back direction and moving to the left. Proceed diagonally downward. As a result, the descending airflow F1 is attracted by the blowing airflow F21 that advances diagonally downward to the left below the nozzle unit 1, and the descending airflow F1 also advances diagonally downward to the left. Therefore, below the nozzle unit 1, an oblique airflow F32 that moves diagonally downward to the left is generated.
  • the control device 4 periodically switches between operating and stopping the blower 3 to periodically control the direct airflow F31 (see Fig. 7) and the oblique airflow F32 (see Fig. 8). You can switch to As a result, the air blowing system VS1 can generate a swing airflow in which the direct airflow F31 and the oblique airflow F32 are alternately generated below the nozzle unit 1.
  • control device 4 can periodically change the traveling direction of the oblique airflow F32 (see FIG. 8) by periodically increasing and decreasing the amount of air blown by the blower device 3.
  • the control device 4 alternately repeats an increase period in which the amount of air blown by the air blower 3 is increased and a decrease period in which the amount of air blown by the air blower 3 is decreased.
  • the air blowing system VS1 can generate a swing airflow in which the traveling direction of the oblique airflow F32 changes continuously below the nozzle unit 1.
  • control device 4 realizes a swing airflow that continuously changes between the direct airflow F31 and the oblique airflow F32 by periodically increasing and decreasing the airflow amount of the airflow device 3 between zero and a target value. can.
  • the control device 4 controls the blower device 3 to generate the direct airflow F31 and the diagonal airflow F32. Further, the swing airflow can be generated by the control device 4 switching between operating and stopping the blower device 3 or periodically changing the amount of air blown by the blower device 3. That is, the air blowing system VS1 can make the air blowing direction variable without providing a damper mechanism in the nozzle. That is, the air blowing system VS1 can make the air blowing direction variable while simplifying the structure of the nozzle 10.
  • FIGS. 9 and 10 show a blower unit U2 as a modified example of the blower unit. Note that other configurations are similar to those in the above-described embodiment, and similar configurations are denoted by the same reference numerals and description thereof will be omitted.
  • the blower unit U2 is obtained by adding a blower device 3 arranged above the second nozzle blower 22 (or above the left end 1b of the nozzle unit 1) to the blower unit U1.
  • a blower device 3 arranged above the second nozzle blower 22 (or above the left end 1b of the nozzle unit 1)
  • the blower 3 placed above the first nozzle blower 21 will be referred to as the first blower 31
  • the blower 3 placed above the second nozzle blower 22 will be referred to as the second blower 32. do.
  • a ventilation port 3c is formed on the right side of the casing 3a of the second ventilation device 32.
  • the air blown out to the right from the air outlet 3c by the rotation of the fan 3b becomes an airflow F22 (see FIG. 10) that flows above the nozzle unit 1 from left to right.
  • the control device 4 controls the first blower 31 , the second blower 32 , the first nozzle blower 21 , the first blower 31 , the second blower 32 , the first nozzle blower 21 , It is possible to switch between operation and stop of each of the second nozzle blowers 22 and adjust the amount of air blown during each operation. Therefore, the control device 4 puts the first nozzle blower 21 and the second nozzle blower 22 into operation, and then controls the operation, stopping, and air blowing amount of the first blower 31 and the second blower 32. , adjust the direction of airflow (blow direction) generated below the nozzle unit 1.
  • FIG. 11 shows the flow of the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation and the first blower 31 and second blower 32 are in a stopped state.
  • a direct airflow F41 which is an airflow generated downward, is shown.
  • the descending airflow F1 is blown downward from the nozzle unit 1.
  • the airflows F21 and F22 are not blown out from the respective ventilation ports 3c of the first ventilation device 31 and the second ventilation device 32, respectively. Therefore, the downward airflow F1 blown downward from the nozzle unit 1 proceeds directly below (vertically downward), and below the nozzle unit 1, the downward airflow F41 that proceeds directly below is generated.
  • FIG. 12 shows the flow of air below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation, and the first blower 31 is also in operation.
  • a first oblique airflow F42 which is a generated airflow, is shown.
  • the second air blower 32 is in a stopped state.
  • the descending airflow F1 is blown downward from the nozzle unit 1.
  • the air flow F21 is blown out from the air outlet 3c of the first air blower 31 to the left.
  • the blast airflow F21 flowing from right to left above the nozzle unit 1 is attracted by the downward airflow F1 blowing out from the nozzle unit 1 and is pulled downward, passing between two nozzles 10 adjacent in the front and back direction and moving to the left. Proceed diagonally downward.
  • the descending airflow F1 is attracted by the blowing airflow F21 that advances diagonally downward to the left below the nozzle unit 1, and the descending airflow F1 also advances diagonally downward to the left. Therefore, below the nozzle unit 1, a first diagonal airflow F42 that moves diagonally downward to the left is generated.
  • FIG. 13 shows the flow of air below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation, and the second blower 32 is also in operation.
  • a second oblique airflow F43 which is a generated airflow, is shown.
  • the first air blower 31 is in a stopped state.
  • the descending airflow F1 is blown downward from the nozzle unit 1. Further, above the nozzle unit 1, a blowing air flow F22 is blown out to the right from the blowing port 3c of the second blowing device 32.
  • the blast airflow F22 flowing from left to right above the nozzle unit 1 is attracted by the downward airflow F1 blowing out from the nozzle unit 1 and is drawn downward, passing between two nozzles 10 adjacent in the front and back direction and moving to the right. Proceed diagonally downward.
  • the descending airflow F1 is attracted by the blowing airflow F22 that advances diagonally downward to the right below the nozzle unit 1, and the descending airflow F1 also advances diagonally downward to the right. Therefore, below the nozzle unit 1, a second oblique airflow F43 that moves diagonally downward to the right is generated.
  • the control device 4 can switch between operation and stop of each of the first blower device 31 and the second blower device 32. Therefore, the control device 4 alternately switches the operating period of the first blower 31 and the second blower 32 to create a first diagonal airflow F42 (see FIG. 12) and a second diagonal airflow F43 (see FIG. 13)) is preferably switched periodically.
  • the blower system VS1 can generate a swing airflow in which the first oblique airflow F42 and the second oblique airflow F43 are alternately generated below the nozzle unit 1. That is, the ventilation system VS1 can expand the variable range of the ventilation direction by controlling the first ventilation device 31 and the second ventilation device 32.
  • the control device 4 when the control device 4 alternately switches the operating period of the first air blower 31 and the operating period of the second air blower 32, the control device 4 controls the operation period of the first air blower 31 and the operation period of the second air blower 32. In between, a full stop period may be provided in which both the first blower 31 and the second blower 32 are stopped.
  • the air blowing system VS1 can realize a swing airflow that repeatedly occurs below the nozzle unit 1 in the order of the first oblique airflow F42 ⁇ directly below airflow F41 ⁇ second oblique airflow F43 ⁇ directly below airflow F41 ⁇ first oblique airflow F42. Therefore, the ventilation system VS1 can generate a smooth swing airflow.
  • the control device 4 increases the air flow rate of the first air blower 31 from zero to the first target value, and then decreases it to zero during the operation period of the first air blower 31.
  • the traveling direction of the first oblique airflow F42 changes continuously below the nozzle unit 1.
  • the control device 4 preferably increases the amount of air blown by the second blower 32 from zero to the second target value, and then decreases it to zero.
  • the traveling direction of the second oblique airflow F43 changes continuously below the nozzle unit 1. Therefore, the air blowing system VS1 can smoothly change the air blowing direction, and can realize a swing airflow in which the traveling directions of the first oblique airflow F42 and the second oblique airflow F43 change continuously.
  • the traveling direction of the first oblique airflow F42 gradually changes from directly below to the left, and then gradually returns from the left to directly below.
  • the traveling direction of the first oblique airflow F42 returns to the direct downward direction
  • the operating period of the first air blower 31 ends, and the operating period of the second air blower 32 begins.
  • the traveling direction of the second oblique airflow F43 gradually changes from directly below to the right, and then gradually returns from the right to directly below.
  • the traveling direction of the second oblique airflow F43 returns to the direct downward direction
  • the operating period of the second blower 32 ends, and the operating period of the first blower 31 starts.
  • control device 4 may continuously change the blowing direction of the swing airflow by continuously adjusting the ratio between the blowing amount of the first blowing device 31 and the blowing amount of the second blowing device 32. .
  • the control device 4 controls the first blower 31 and the second blower 32 to generate the direct airflow F41, the first diagonal airflow F42, and the second diagonal airflow F43. can.
  • the control device 4 switches between operating and stopping the first blower device 31 and the second blower device 32, or periodically changes the amount of air blown by the first blower device 31 and the second blower device 32. , can generate swing airflow. That is, the air blowing system VS1 can make the air blowing direction variable without providing a damper mechanism in the nozzle. That is, the air blowing system VS1 can make the air blowing direction variable while simplifying the structure of the nozzle 10.
  • Each of the first nozzle blower 21, the second nozzle blower 22, and the blower 3 may be other than a crossflow fan, for example, a sirocco fan or a propeller fan.
  • each of the first nozzle blower 21, the second nozzle blower 22, and the blower device 3 may take in air through a duct or may take in air around the casing.
  • the blower units U1 and U2 may be configured to include a duct through which high-pressure air flows.
  • each nozzle 10 of the nozzle unit 1 is supplied with air from a duct.
  • the number of nozzles 10 that the nozzle unit 1 has may be two or more.
  • the structure to which the blower units U1 and U2 are attached is not limited to the ceiling R11, but may be another structure such as a pedestal provided above the room R1.
  • the ventilation system (VS1) of the first aspect includes a nozzle unit (1), a ventilation device (3), and a control device (4).
  • the nozzle unit (1) has at least two nozzles (10).
  • the at least two nozzles (10) each have a hollow elongated housing (10a) extending along the first direction, and are lined up along a second direction intersecting the first direction. Placed.
  • the blower device (3) is arranged above the nozzle unit (1) and blows air from the first end (1a) to the second end (1b) in the first direction of the nozzle unit (1).
  • the control device (4) controls the blower device (3).
  • An air outlet (10b) extending along the first direction is formed on the lower surface of each housing (10a) of the at least two nozzles (10). The air outlet (10b) blows the air sent into the housing (10a) to the outside of the housing (10a).
  • the above-described air blowing system (VS1) can make the air blowing direction variable while simplifying the structure of the nozzle (10).
  • control device (4) preferably adjusts the amount of air blown by the ventilation device (3).
  • the above-mentioned air blowing system (VS1) can smoothly change the air blowing direction by adjusting the air blowing amount of the air blower (3).
  • control device (4) may periodically increase or decrease the amount of air blown by the ventilation device (3). preferable.
  • the above-mentioned ventilation system (VS1) can generate swing airflow.
  • the ventilation device (3) is a first ventilation device (31), and a second ventilation device (32). It is preferable to further include.
  • the second air blower (32) is arranged above the nozzle unit (1) and blows air from the second end (1b) toward the first end (1a) in the first direction.
  • the control device (4) controls the first air blower (31) and the second air blower (32).
  • the above-mentioned ventilation system (VS1) can expand the variable range of the ventilation direction by controlling the first ventilation device (31) and the second ventilation device (32).
  • the control device (4) controls the operation period of the first ventilation device (31) and the operation period of the second ventilation device (32). It is preferable to alternately switch the operation period.
  • the above-mentioned ventilation system (VS1) can generate swing airflow over a wider range.
  • the control device (4) controls the operation period of the first ventilation device (31) and the operation period of the second ventilation device (32). It is preferable to provide a full stop period in which both the first blower (31) and the second blower (32) are stopped between the operating periods.
  • the above-mentioned ventilation system (VS1) can generate a smooth swing airflow.
  • control device (4) controls the first ventilation device (31) and the second ventilation system.
  • the amount of air blown by each device (32) is adjusted.
  • the above-mentioned air blowing system (VS1) can smoothly change the air blowing direction by adjusting the amount of air blown by each of the first air blower (31) and the second air blower (32).
  • the control device (4) controls the operation of the first ventilation device (31) during the operation period of the first ventilation device (31). It is preferable that the amount of air blown is increased from zero to the first target value and then decreased to zero. Preferably, the control device (4) increases the amount of air blown by the second blower (32) from zero to the second target value and then decreases it to zero during the operation period of the second blower (32).
  • the above-mentioned air blowing system (VS1) can smoothly change the air blowing direction.
  • VS1 Air blowing system 1 Nozzle unit 1a Right end (first end) 1b Left end (second end) 10 nozzle 10a housing 10b ventilation port 3 ventilation device 31 first ventilation device 32 second ventilation device 4 control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air-Flow Control Members (AREA)

Abstract

The present disclosure addresses the problem of providing a ventilation system in which the ventilation direction can be changed while the structure of a nozzle is simplified. In the ventilation system (VS1), a nozzle unit (1) has at least two nozzles (10). The at least two nozzles (10) each have a hollow elongated housing (10a) extending along a first direction, and the nozzles are lined up along a second direction that intersects the first direction. A ventilation device (3) is placed above the nozzle unit (1), and the ventilation device blows air from a first end (1a) toward a second end (1b) in the first direction of the nozzle unit (1). A control device (4) controls the ventilation device (3). Ventilation ports (10b) extending along the first direction are formed in the lower surfaces of the housings (10a) of the at least two nozzles (10). Air that has been sent into the housings (10a) is blown by the ventilation ports (10b) out of the housings (10a).

Description

送風システムventilation system
 本開示は、送風システムに関する。 The present disclosure relates to a ventilation system.
 特許文献1の送風装置は、複数の等しい長さのノズルを備える。ノズルには流入口及び吹出口が設けられている。そして、高圧空気が流入口を通ってノズル内に流入し、ノズル内の高圧空気は吹出口から吹き出す。複数のノズルは、それぞれの吹出口が同一面となるように間隙を設けて備えられ、この間隙によって、吹出口から吹き出す空気流に誘引される空気の誘引風路がノズルの外側に形成される。そして、送風装置は、ノズルの流入口の開口面積を可変とするダンパ機構を備えており、ノズルの流入口の開口面積を調整することで、送風範囲を調整する。 The blower device of Patent Document 1 includes a plurality of nozzles of equal length. The nozzle is provided with an inlet and an outlet. Then, high-pressure air flows into the nozzle through the inlet, and the high-pressure air inside the nozzle is blown out from the outlet. The plurality of nozzles are provided with gaps so that the respective outlets are on the same plane, and this gap forms an induced wind path for air attracted by the air flow blown out from the outlets on the outside of the nozzles. . The blower device includes a damper mechanism that changes the opening area of the inlet of the nozzle, and adjusts the blowing range by adjusting the opening area of the inlet of the nozzle.
 特許文献1のような送風装置では、送風方向を可変とするために、ノズルの流入口の開口面積を可変とするダンパ機構をノズルに設ける必要があった。この結果、ノズルの構造が複雑になっていた。 In the blower device such as Patent Document 1, in order to make the blowing direction variable, it was necessary to provide the nozzle with a damper mechanism that made the opening area of the inlet of the nozzle variable. As a result, the structure of the nozzle has become complicated.
特開2018-3658号公報JP 2018-3658 Publication
 本開示の目的は、ノズルの構造を簡易としながら送風方向を可変とすることができる送風システムを提供することである。 An object of the present disclosure is to provide an air blowing system that can change the air blowing direction while simplifying the structure of the nozzle.
 本開示の一態様に係る送風システムは、ノズルユニットと、送風装置と、制御装置と、を備える。前記ノズルユニットは、第1方向に沿って延びる中空の長尺形状に形成された筐体をそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置された少なくとも2つのノズルを有する。前記送風装置は、前記ノズルユニットの上方に配置されて、前記ノズルユニットの前記第1方向における第1端から第2端に向かって送風する。前記制御装置は、前記送風装置を制御する。前記少なくとも2つのノズルの各筐体の下面には、前記第1方向に沿って延びる送風口が形成される。前記送風口は、前記筐体の内部に送り込まれた空気を、前記筐体の外部に吹き出す。 A blowing system according to one aspect of the present disclosure includes a nozzle unit, a blowing device, and a control device. The nozzle unit includes at least two nozzles each having a hollow elongated housing extending along a first direction, and arranged side by side along a second direction intersecting the first direction. has. The air blower is disposed above the nozzle unit and blows air from a first end to a second end of the nozzle unit in the first direction. The control device controls the blower. An air outlet extending along the first direction is formed on a lower surface of each housing of the at least two nozzles. The air outlet blows the air sent into the housing to the outside of the housing.
図1は、実施形態の送風システムを示す斜視図である。FIG. 1 is a perspective view showing a ventilation system according to an embodiment. 図2は、同上の送風システムが備える送風ユニットを示す斜視図である。FIG. 2 is a perspective view showing a blower unit included in the blower system. 図3は、同上の送風ユニットを示す側面断面図である。FIG. 3 is a side sectional view showing the same blower unit as above. 図4は、同上の送風ユニットを示す下面図である。FIG. 4 is a bottom view of the same blower unit as above. 図5Aは、同上の送風ユニットが備えるノズルの右端を示す平面図である。図5Bは、同上の送風ユニットが備えるノズルの左端を示す平面図である。FIG. 5A is a plan view showing the right end of the nozzle included in the blower unit. FIG. 5B is a plan view showing the left end of the nozzle included in the air blowing unit. 図6は、同上の送風ユニットの一部を示す図である。FIG. 6 is a diagram showing a part of the air blowing unit same as the above. 図7は、同上の送風システムにおける直下気流を示す図である。FIG. 7 is a diagram showing the airflow directly below the air blowing system. 図8は、同上の送風システムにおける斜め気流を示す図である。FIG. 8 is a diagram showing oblique airflow in the air blowing system. 図9は、第1変形例の送風システムが備える送風ユニットを示す斜視図である。FIG. 9 is a perspective view showing a ventilation unit included in the ventilation system of the first modification. 図10は、同上の送風ユニットを示す側面断面図である。FIG. 10 is a side sectional view showing the same air blowing unit as above. 図11は、同上の送風システムにおける直下気流を示す図である。FIG. 11 is a diagram showing the airflow directly below the air blowing system. 図12は、同上の送風システムにおける第1斜め気流を示す図である。FIG. 12 is a diagram showing the first oblique airflow in the air blowing system. 図13は、同上の送風システムにおける第2斜め気流を示す図である。FIG. 13 is a diagram showing a second oblique airflow in the ventilation system same as above.
 本実施形態は、一般に、送風システムに関する。より詳細には、本開示は、中空の長尺形状に形成されて並列に配置された少なくとも2つのノズルを備える送風システムに関する。 The present embodiment generally relates to a ventilation system. More particularly, the present disclosure relates to a blowing system comprising at least two nozzles formed in a hollow elongated shape and arranged in parallel.
 なお、以下に説明する実施形態は、本開示の実施形態の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。 Note that the embodiment described below is only an example of the embodiment of the present disclosure. The present disclosure is not limited to the following embodiments, and various changes can be made depending on the design etc. as long as the effects of the present disclosure can be achieved.
 また、以下の説明では、特に断りのない限り、図1において、互いに直交するX軸、Y軸、及びZ軸を規定する。便宜的に、X軸に沿う両方向のうち一方向を右方向とし、他方向を左方向とする。また、Y軸に沿う両方向のうち一方向を前方向とし、他方向を後方向とする。また、Z軸に沿う両方向のうち一方向を上方向とし、他方向を下方向とする。 Furthermore, in the following description, unless otherwise specified, the X-axis, Y-axis, and Z-axis that are orthogonal to each other in FIG. 1 are defined. For convenience, one of the two directions along the X axis is defined as the right direction, and the other direction is defined as the left direction. Furthermore, one direction out of both directions along the Y axis is defined as the front direction, and the other direction is defined as the rear direction. Furthermore, one direction among the two directions along the Z-axis is defined as an upward direction, and the other direction is defined as a downward direction.
 (実施形態)
 (1)概略
 図1は、本実施形態の送風システムVS1を示す。送風システムVS1は、例えばオフィスビル、事務所、店舗、工場、又は商業施設などの施設に用いられる。また、送風システムVS1は、集合住宅の住戸、戸建て住宅などで用いられてもよい。送風システムVS1は、施設及び住宅などの建造物に設置されることを想定しているが、建造物以外の構造物に設置されてもよい。
(Embodiment)
(1) Outline FIG. 1 shows the ventilation system VS1 of this embodiment. The ventilation system VS1 is used, for example, in facilities such as office buildings, offices, stores, factories, or commercial facilities. Moreover, the ventilation system VS1 may be used in a residential unit of an apartment complex, a detached house, or the like. Although the ventilation system VS1 is assumed to be installed in buildings such as facilities and houses, it may be installed in structures other than buildings.
 本実施形態の送風システムVS1は、ノズルユニット1と、送風装置3と、制御装置4と、を備える。ノズルユニット1は、少なくとも2つのノズル10を有する。少なくとも2つのノズル10は、第1方向に沿って延びる中空の長尺形状に形成された筐体10aをそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置されている。送風装置3は、ノズルユニット1の上方に配置されて、ノズルユニット1の第1方向における第1端1aから第2端1bに向かって送風する。制御装置4は、送風装置3を制御する。少なくとも2つのノズル10の各筐体10aの下面には、第1方向に沿って延びる送風口10bが形成される。送風口10bは、筐体10aの内部に送り込まれた空気を、筐体10aの外部に吹き出す。 The ventilation system VS1 of this embodiment includes a nozzle unit 1, a ventilation device 3, and a control device 4. The nozzle unit 1 has at least two nozzles 10. At least two nozzles 10 each have a hollow elongated housing 10a extending along the first direction, and are arranged side by side along a second direction intersecting the first direction. . The blower device 3 is arranged above the nozzle unit 1 and blows air from the first end 1a to the second end 1b of the nozzle unit 1 in the first direction. The control device 4 controls the blower device 3 . An air outlet 10b extending along the first direction is formed on the lower surface of each housing 10a of at least two nozzles 10. The air outlet 10b blows out the air sent into the interior of the housing 10a to the outside of the housing 10a.
 上述の構成を有する送風システムVS1では、制御装置4が送風装置3を制御することで、上述の特許文献1のようなダンパ機構をノズルに設けることなく、送風方向を可変とすることができる。すなわち、送風システムVS1は、ノズル10の構造を簡易としながら送風方向を可変とすることができる。 In the air blowing system VS1 having the above configuration, the control device 4 controls the air blowing device 3, so that the air blowing direction can be made variable without providing the nozzle with a damper mechanism as in Patent Document 1 mentioned above. That is, the air blowing system VS1 can make the air blowing direction variable while simplifying the structure of the nozzle 10.
 なお、本実施形態では、第1方向はX軸に沿う左右方向に相当し、第2方向はY軸に沿う前後方向に相当する。 Note that in this embodiment, the first direction corresponds to the left-right direction along the X-axis, and the second direction corresponds to the front-rear direction along the Y-axis.
 (2)詳細
 図1に示すように、送風システムVS1は部屋R1に設置されている。部屋R1は、ワーキングスペース、会議室、休憩室、待合室、応接室、及び居間などのように、人が存在する空間である。部屋R1の上面は天井R11であり、部屋R1の下面は床R12である。
(2) Details As shown in FIG. 1, the ventilation system VS1 is installed in the room R1. The room R1 is a space where people exist, such as a working space, a conference room, a rest room, a waiting room, a reception room, and a living room. The upper surface of the room R1 is a ceiling R11, and the lower surface of the room R1 is a floor R12.
 送風システムVS1は、ノズルユニット1、送風装置3、及び制御装置4を備える。ノズルユニット1は、8つのノズル10を有する。また、送風システムVS1は、第1ノズル送風機21、及び第2ノズル送風機22を更に備えることが好ましい。ここで、ノズルユニット1、第1ノズル送風機21、及び第2ノズル送風機22は、送風ユニットU1を構成する。 The ventilation system VS1 includes a nozzle unit 1, a ventilation device 3, and a control device 4. The nozzle unit 1 has eight nozzles 10. Moreover, it is preferable that the ventilation system VS1 further includes a first nozzle blower 21 and a second nozzle blower 22. Here, the nozzle unit 1, the first nozzle blower 21, and the second nozzle blower 22 constitute a blower unit U1.
 また、送風システムVS1は、操作端末5、及び人感センサ6を更に備えることが好ましい。 Moreover, it is preferable that the ventilation system VS1 further includes an operation terminal 5 and a human sensor 6.
 (2.1)送風ユニット
 送風ユニットU1は、天井R11の下面に図示しない吊りボルト又はワイヤなどで固定されている。送風ユニットU1は、図2-図4に示すように、ノズルユニット1、第1ノズル送風機21、及び第2ノズル送風機22を備える。
(2.1) Air Blower Unit The air blower unit U1 is fixed to the lower surface of the ceiling R11 with a hanging bolt or wire (not shown). The blower unit U1 includes a nozzle unit 1, a first nozzle blower 21, and a second nozzle blower 22, as shown in FIGS. 2-4.
 ノズルユニット1は、8つのノズル10を備える。ノズル10は、X軸に沿って左右方向に長辺が延びた中空の矩形板状の筐体10aを有する。筐体10aの下面には、左右方向に長辺が延びた矩形状の開口が送風口10bとして形成されている。送風口10bは、筐体10aの下面において、前後方向の中心に形成されている。そして、8つのノズル10の各筐体10aは、Y軸に沿って前後方向に並んで並列に配置されている。ノズル10の筐体10aの前面は、前方に隣接するノズル10の筐体10aの後面と対向し、ノズル10の筐体10aの後面は、後方に隣接するノズル10の筐体10aの前面と対向している。筐体10aは、例えば樹脂材料によって形成されるが、アルミニウムなどの軽量の金属材料によって形成されてもよい。 The nozzle unit 1 includes eight nozzles 10. The nozzle 10 has a hollow rectangular plate-shaped housing 10a whose long sides extend in the left-right direction along the X-axis. A rectangular opening with long sides extending in the left-right direction is formed as an air outlet 10b on the lower surface of the housing 10a. The air outlet 10b is formed at the center in the front-rear direction on the lower surface of the housing 10a. The casings 10a of the eight nozzles 10 are arranged in parallel in the front-rear direction along the Y-axis. The front surface of the housing 10a of the nozzle 10 faces the rear surface of the housing 10a of the nozzle 10 adjacent to the front, and the rear surface of the housing 10a of the nozzle 10 faces the front surface of the housing 10a of the nozzle 10 adjacent to the rear. are doing. The housing 10a is made of, for example, a resin material, but may also be made of a lightweight metal material such as aluminum.
 筐体10aの内部空間において、筐体10aの長手方向における中央部には仕切り板10cが設けられている。仕切り板10cは、筐体10aの内部空間を、右側の空間である右空間10d及び左側の空間である左空間10eの2つの空間に分割する。 In the internal space of the housing 10a, a partition plate 10c is provided at the center in the longitudinal direction of the housing 10a. The partition plate 10c divides the internal space of the housing 10a into two spaces: a right space 10d, which is a space on the right side, and a left space 10e, which is a space on the left side.
 図5Aに示すように、筐体10aの右端には開口10fが形成されており、右空間10dは開口10fを介して筐体10aの外部に連通している。図5Bに示すように、筐体10aの左端には開口10gが形成されており、左空間10eは開口10gを介して筐体10aの外部に連通している。 As shown in FIG. 5A, an opening 10f is formed at the right end of the housing 10a, and the right space 10d communicates with the outside of the housing 10a via the opening 10f. As shown in FIG. 5B, an opening 10g is formed at the left end of the housing 10a, and the left space 10e communicates with the outside of the housing 10a via the opening 10g.
 図3、図4、図5A及び図5Bに示すように、右空間10d及び左空間10eのそれぞれの下面には、複数のフィン10hがX軸に沿って一定間隔で左右方向に並んで設けられている。フィン10hは、右空間10d及び左空間10eのそれぞれの下面から上方に延びる板形状であり、X軸に沿う方向から見て、右空間10d及び左空間10eのそれぞれの下部(右空間10d及び左空間10eのそれぞれの下側の一部)を塞いでいる。図4に示すように、ノズル10の筐体10aを下方から見ると、複数のフィン10hが送風口10bをX軸に沿って一定間隔で区切るように位置している。 As shown in FIG. 3, FIG. 4, FIG. 5A, and FIG. 5B, a plurality of fins 10h are provided on the lower surface of each of the right space 10d and the left space 10e, arranged in the left-right direction at regular intervals along the X-axis. ing. The fin 10h has a plate shape extending upward from the lower surface of each of the right space 10d and the left space 10e, and the fin 10h has a plate shape extending upward from the lower surface of each of the right space 10d and left space 10e. (a part of the lower side of each space 10e) is closed. As shown in FIG. 4, when the housing 10a of the nozzle 10 is viewed from below, a plurality of fins 10h are positioned so as to partition the air outlet 10b at regular intervals along the X-axis.
 第1ノズル送風機21は、クロスフローファンである。第1ノズル送風機21は、図2-図4に示すように、中空の矩形体状の筐体21aを備えて、筐体21aの内部にファン21bを有している。第1ノズル送風機21はノズルユニット1の右端(第1端)1aに設けられており、筐体21aの左面はノズルユニット1の右端面に対向している。筐体21aは図示しないダクトに接続して、ダクトから空気を供給され、筐体21aの左面には送風口21c(図3参照)が形成されている。そして、ファン21bが回転することで送風口21cから左方へ吹き出した空気は、ノズルユニット1の各ノズル10の開口10fを介して右空間10dに流れ込む。すなわち、第1ノズル送風機21は、各ノズル10の開口10fから右空間10dに空気を送り込むことで、右空間10dに開口10fから左方に向かって流れる内部気流F11(図3参照)を発生させる。内部気流F11は、右空間10d内のフィン10hによって整流されて、筐体10aの下面の送風口10bから下方に吹き出す。なお、図5Aに示すように、右空間10dの下部の前後方向の幅は、下へ向かうほど狭くなることが好ましい。 The first nozzle blower 21 is a cross flow fan. As shown in FIGS. 2 to 4, the first nozzle blower 21 includes a hollow rectangular housing 21a, and has a fan 21b inside the housing 21a. The first nozzle blower 21 is provided at the right end (first end) 1a of the nozzle unit 1, and the left surface of the housing 21a faces the right end surface of the nozzle unit 1. The housing 21a is connected to a duct (not shown), and air is supplied from the duct, and an air outlet 21c (see FIG. 3) is formed on the left side of the housing 21a. Then, the air blown out to the left from the air outlet 21c by the rotation of the fan 21b flows into the right space 10d through the opening 10f of each nozzle 10 of the nozzle unit 1. That is, the first nozzle blower 21 sends air from the opening 10f of each nozzle 10 to the right space 10d, thereby generating an internal airflow F11 (see FIG. 3) that flows from the opening 10f to the left in the right space 10d. . The internal airflow F11 is rectified by the fins 10h in the right space 10d, and is blown downward from the air outlet 10b on the lower surface of the housing 10a. Note that, as shown in FIG. 5A, it is preferable that the width of the lower part of the right space 10d in the front-rear direction becomes narrower as it goes downward.
 第2ノズル送風機22は、クロスフローファンである。第2ノズル送風機22は、図2-図4に示すように、中空の矩形体状の筐体22aを備えて、筐体22aの内部にファン22bを有している。第2ノズル送風機22はノズルユニット1の左端(第2端)1bに設けられており、筐体22aの右面はノズルユニット1の左端面に対向している。筐体22aは図示しないダクトに接続して、ダクトから空気を供給され、筐体22aの右面には送風口22c(図3参照)が形成されている。そして、ファン22bが回転することで送風口22cから右方へ吹き出した空気は、ノズルユニット1の各ノズル10の開口10gを介して左空間10eに流れ込む。すなわち、第2ノズル送風機22は、各ノズル10の開口10fから左空間10eに空気を送り込むことで、左空間10eに開口10gから右方に向かって流れる内部気流F12(図3参照)を発生させる。内部気流F12は、左空間10e内のフィン10hによって整流されて、筐体10aの下面の送風口10bから下方に吹き出す。なお、図5Bに示すように、左空間10eの下部の前後方向の幅は、下へ向かうほど狭くなることが好ましい。 The second nozzle blower 22 is a cross flow fan. As shown in FIGS. 2 to 4, the second nozzle blower 22 includes a hollow rectangular housing 22a and a fan 22b inside the housing 22a. The second nozzle blower 22 is provided at the left end (second end) 1b of the nozzle unit 1, and the right surface of the housing 22a faces the left end surface of the nozzle unit 1. The housing 22a is connected to a duct (not shown), and air is supplied from the duct, and an air outlet 22c (see FIG. 3) is formed on the right side of the housing 22a. The air blown out to the right from the air outlet 22c as the fan 22b rotates flows into the left space 10e through the opening 10g of each nozzle 10 of the nozzle unit 1. That is, the second nozzle blower 22 sends air into the left space 10e from the opening 10f of each nozzle 10, thereby generating an internal airflow F12 (see FIG. 3) that flows from the opening 10g to the right in the left space 10e. . The internal airflow F12 is rectified by the fins 10h in the left space 10e, and is blown downward from the air outlet 10b on the lower surface of the housing 10a. Note that, as shown in FIG. 5B, it is preferable that the width of the lower part of the left space 10e in the front-rear direction becomes narrower toward the bottom.
 すなわち、図6に示すように、ノズルユニット1を構成する8つのノズル10のそれぞれは、筐体10aの下面の長尺の送風口10bから下方へ空気を吹き出すことで、送風気流F2を生成する。なお、図6は、ノズルユニット1を構成する8つのノズル10のうち、Y軸に沿って前後方向に隣り合って配置されている任意の2つのノズル10を示す。 That is, as shown in FIG. 6, each of the eight nozzles 10 making up the nozzle unit 1 generates the air flow F2 by blowing air downward from the elongated air outlet 10b on the lower surface of the housing 10a. . In addition, FIG. 6 shows arbitrary two nozzles 10 which are arrange|positioned adjacently in the front-back direction along the Y-axis among the eight nozzles 10 which comprise the nozzle unit 1.
 ここで、前後方向に隣り合う2つのノズル10の間には、図6に示す誘引経路91が形成されている。誘引経路91は、前側のノズル10の筐体10aの後面と後側のノズル10の筐体10aの前面とに前後から挟まれて、上方及び下方を開放した空間である。そして、並んで配置された2つのノズル10のそれぞれが送風口10bから下方へ吹き出す送風気流F2を生成すると、誘引経路91は負圧となり、誘引経路91には、2つのノズル10の上方の空間である上部空間92の空気が上から下に向かって誘引される。誘引経路91を上から下に向かって誘引された空気は、誘引経路91から下方に吹き出す。誘引経路91から下方に吹き出す空気は、誘引経路91から下に向かって流れる誘引気流F3を生成する。 Here, an attraction path 91 shown in FIG. 6 is formed between two nozzles 10 adjacent in the front-back direction. The attraction path 91 is a space that is sandwiched from the front and back between the rear surface of the casing 10a of the front nozzle 10 and the front surface of the casing 10a of the rear nozzle 10, and is open from above and below. Then, when each of the two nozzles 10 arranged side by side generates a blast air flow F2 blowing downward from the air outlet 10b, the attraction path 91 becomes a negative pressure, and the attraction path 91 has a space above the two nozzles 10. The air in the upper space 92 is drawn from top to bottom. The air attracted from the top to the bottom of the attraction path 91 is blown out from the attraction path 91 downward. The air blown downward from the attraction path 91 generates an attraction airflow F3 that flows downward from the attraction path 91.
 この結果、ノズルユニット1の下方では、隣り合う2つのノズル10によって生成された2つの送風気流F2の間に誘引気流F3が発生し、送風気流F2と誘引気流F3とが合わさった下降気流F1が生成される。下降気流F1はノズルユニット1から下に向かって吹き出す。 As a result, below the nozzle unit 1, an induced airflow F3 is generated between the two blast airflows F2 generated by two adjacent nozzles 10, and a descending airflow F1 is created by combining the blast airflow F2 and the induced airflow F3. generated. The downdraft F1 is blown out from the nozzle unit 1 downward.
 送風口10bにおける下降気流F1の流量をノズルユニット1の送風量とすると、ファン21b、22bの各回転速度が上昇する程、ノズルユニット1の送風量は増加し、ファン21b、22bの各回転速度が低下する程、ノズルユニット1の送風量は減少する。ファン21b、22bの各回転速度は、制御装置4によって制御される。 If the flow rate of the descending air flow F1 at the air outlet 10b is taken as the amount of air blown by the nozzle unit 1, the amount of air blown from the nozzle unit 1 increases as each rotational speed of the fans 21b and 22b increases, and each rotational speed of the fans 21b and 22b increases. As the value decreases, the amount of air blown from the nozzle unit 1 decreases. The rotational speeds of the fans 21b and 22b are controlled by the control device 4.
 (2.2)送風装置
 送風装置3は、クロスフローファンである。送風装置3は、ノズルユニット1の上方に配置されて、周囲の空気を吸い込んで、ノズルユニット1の右端(第1端)1aから左端(第2端)1bに向かって送風する。
(2.2) Air blower The air blower 3 is a cross flow fan. The blower device 3 is arranged above the nozzle unit 1, sucks in surrounding air, and blows the air from the right end (first end) 1a to the left end (second end) 1b of the nozzle unit 1.
 具体的に図3に示すように、送風装置3は、第1ノズル送風機21の上方(又はノズルユニット1の右端1aの上方)に配置されている。送風装置3は、天井R11の下面に図示しない吊りボルト又はワイヤなどで固定されている。送風装置3は、中空の矩形体状の筐体3aを備えて、筐体3aの内部にファン3bを有している。筐体3aの左面には送風口3cが形成されている。そして、ファン3bが回転することで送風口3cから左方へ吹き出した空気は、ノズルユニット1の上方を右から左へ向かって流れる送風気流F21となる。 Specifically, as shown in FIG. 3, the blower device 3 is arranged above the first nozzle blower 21 (or above the right end 1a of the nozzle unit 1). The blower device 3 is fixed to the lower surface of the ceiling R11 with a hanging bolt or wire (not shown). The blower device 3 includes a hollow rectangular housing 3a, and has a fan 3b inside the housing 3a. An air outlet 3c is formed on the left side of the housing 3a. The air blown out to the left from the air outlet 3c by the rotation of the fan 3b turns into an airflow F21 that flows above the nozzle unit 1 from right to left.
 送風口3cにおける送風気流F21の流量を送風装置3の送風量とすると、ファン3bの回転速度が上昇する程、送風装置3の送風量は増加する。また、ファン3bの回転速度が低下する程、送風装置3の送風量は減少する。ファン3bの回転速度は、制御装置4によって制御される。 Assuming that the flow rate of the air flow F21 at the air outlet 3c is the amount of air blown by the blower 3, the amount of air blown by the blower 3 increases as the rotational speed of the fan 3b increases. Further, as the rotational speed of the fan 3b decreases, the amount of air blown by the air blower 3 decreases. The rotation speed of the fan 3b is controlled by the control device 4.
 (2.3)制御装置
 制御装置4は、少なくとも送風装置3を制御する。本実施形態では、制御装置4は、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22を制御する。
(2.3) Control device The control device 4 controls at least the blower device 3. In this embodiment, the control device 4 controls the blower device 3, the first nozzle blower 21, and the second nozzle blower 22.
 制御装置4は、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22との間で、有線通信又は無線通信を行うことで、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22の各送風量を制御する。また、制御装置4は、操作端末5及び人感センサ6との間で、有線通信又は無線通信を行うことで、操作端末5から操作信号を取得し、人感センサ6からセンサ信号を取得する。なお、有線通信は、例えばツイストペアケーブル、専用通信線、またはLAN(Local Area Network)ケーブルなどを介した有線通信である。無線通信は、例えばWi-Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)又は免許を必要としない小電力無線(特定小電力無線)等の規格に準拠した無線通信である。 The control device 4 performs wired communication or wireless communication with the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, thereby controlling the blower device 3, the first nozzle blower 21, and the second nozzle blower 22. The amount of air blown by each blower 22 is controlled. Further, the control device 4 acquires an operation signal from the operation terminal 5 and a sensor signal from the human sensor 6 by performing wired communication or wireless communication with the operation terminal 5 and the human sensor 6. . Note that the wired communication is, for example, wired communication via a twisted pair cable, a dedicated communication line, or a LAN (Local Area Network) cable. The wireless communication is, for example, wireless communication compliant with standards such as Wi-Fi (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), or low power wireless that does not require a license (specific low power wireless).
 操作端末5は、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22の各動作を指示するためのスイッチ又はタッチパネルなどを備えており、ユーザの操作を受け付ける。そして、操作端末5は、ユーザの操作に応じた操作信号を制御装置4へ送信する。具体的に、操作端末5は、運転、停止、及び送風方向などの操作を受け付ける。制御装置4は、操作端末5から受け取った操作信号に基づいて、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22のそれぞれの運転、停止、及び運転時の送風量を制御する。 The operating terminal 5 includes a switch or a touch panel for instructing each operation of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, and accepts user operations. The operation terminal 5 then transmits an operation signal according to the user's operation to the control device 4. Specifically, the operation terminal 5 accepts operations such as operation, stop, and direction of air blowing. Based on the operation signal received from the operation terminal 5, the control device 4 controls the operation and stop of each of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, and the amount of air blown during operation.
 人感センサ6は、部屋R1内の人の有無、及び人の位置を検出し、検出結果をセンサ信号として制御装置4へ送信する。制御装置4は、人感センサ6から受け取ったセンサ信号に基づいて、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22のそれぞれの運転、停止、及び運転時の送風量を制御する。 The human sensor 6 detects the presence or absence of a person in the room R1 and the position of the person, and transmits the detection result to the control device 4 as a sensor signal. Based on the sensor signal received from the human sensor 6, the control device 4 controls the operation and stop of each of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22, and the amount of air blown during operation. .
 したがって、制御装置4は、操作端末5が受け付けたユーザの操作、及び人感センサ6の検出結果に基づいて、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22のそれぞれの運転及び停止を切り替え、それぞれの運転時の送風量を調整することができる。 Therefore, the control device 4 controls the operation and operation of each of the blower device 3, the first nozzle blower 21, and the second nozzle blower 22 based on the user's operation received by the operation terminal 5 and the detection result of the human sensor 6. You can switch between stops and adjust the amount of air flow during each operation.
 (2.4)送風システムの動作
 送風システムVS1では、制御装置4が、送風装置3、第1ノズル送風機21、及び第2ノズル送風機22を制御することで、ノズルユニット1の下方に生成される気流の方向を調整する。本実施形態では、制御装置4は、第1ノズル送風機21及び第2ノズル送風機22をそれぞれ運転状態としたうえで、送風装置3の運転、停止、送風量を調整することで、ノズルユニット1の下方に生成される気流の方向(送風方向)を可変とする。
(2.4) Operation of the air blowing system In the air blowing system VS1, the control device 4 controls the air blower 3, the first nozzle blower 21, and the second nozzle blower 22 to generate air below the nozzle unit 1. Adjust the direction of airflow. In this embodiment, the control device 4 puts the first nozzle blower 21 and the second nozzle blower 22 into operation, and then controls the operation, stopping, and air flow rate of the blower 3 to control the nozzle unit 1. The direction of the airflow generated downward (blow direction) is variable.
 (2.4.1)直下気流
 図7は、第1ノズル送風機21及び第2ノズル送風機22が運転状態であり、送風装置3が停止状態であるときにノズルユニット1の下方に生成される気流である直下気流F31を示す。
(2.4.1) Airflow Directly Below FIG. 7 shows the airflow generated below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation and the blower 3 is in a stopped state. The airflow F31 directly below is shown.
 この場合、下降気流F1がノズルユニット1から下方に吹き出している。一方、送風装置3の送風口3cからは、送風気流F21が吹き出していない。したがって、ノズルユニット1から下方に吹き出した下降気流F1は直下方向(鉛直下向き)に進み、ノズルユニット1の下方では、直下方向に進む直下気流F31が生成される。 In this case, the descending airflow F1 is blown downward from the nozzle unit 1. On the other hand, the air flow F21 is not blown out from the air outlet 3c of the air blower 3. Therefore, the descending airflow F1 blown downward from the nozzle unit 1 proceeds directly below (vertically downward), and below the nozzle unit 1, the downward airflow F31 that proceeds directly below is generated.
 (2.4.2)斜め気流
 図8は、第1ノズル送風機21及び第2ノズル送風機22が運転状態であり、かつ、送風装置3も運転状態であるときにノズルユニット1の下方に生成される気流である斜め気流F32を示す。
(2.4.2) Oblique airflow FIG. 8 shows the airflow generated below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation and the blower device 3 is also in operation. The oblique airflow F32 is shown as an airflow.
 この場合、下降気流F1がノズルユニット1から下方に吹き出している。また、ノズルユニット1の上方では、送風気流F21が送風装置3の送風口3cから左方へ吹き出している。ノズルユニット1の上方で右から左へ流れる送風気流F21は、ノズルユニット1から吹き出している下降気流F1に誘引されて下方へ引き寄せられ、前後方向に隣り合う2つのノズル10の間を通って左斜め下方向に進む。この結果、下降気流F1はノズルユニット1の下方で左斜め下方向に進む送風気流F21に誘引され、下降気流F1も左斜め下方向に進む。したがって、ノズルユニット1の下方では、左斜め下方向に進む斜め気流F32が生成される。 In this case, the descending airflow F1 is blown downward from the nozzle unit 1. Further, above the nozzle unit 1, a blowing air flow F21 is blown out from the blowing port 3c of the blowing device 3 to the left. The blast airflow F21 flowing from right to left above the nozzle unit 1 is attracted by the downward airflow F1 blowing out from the nozzle unit 1 and is pulled downward, passing between two nozzles 10 adjacent in the front and back direction and moving to the left. Proceed diagonally downward. As a result, the descending airflow F1 is attracted by the blowing airflow F21 that advances diagonally downward to the left below the nozzle unit 1, and the descending airflow F1 also advances diagonally downward to the left. Therefore, below the nozzle unit 1, an oblique airflow F32 that moves diagonally downward to the left is generated.
 送風装置3の送風量が大きい程(送風気流F21の風量が大きい程)、斜め気流F32の進行方向は水平方向に近くなる。また、送風装置3の送風量が小さい程(送風気流F21の風量が小さい程)、斜め気流F32の進行方向は直下方向に近くなる。すなわち、制御装置4は、送風装置3の送風量を調整することで、斜め気流F32の進行方向を制御できる。 The larger the air volume of the air blower 3 (the larger the air volume of the air flow F21), the closer the direction of movement of the oblique air flow F32 becomes to the horizontal direction. Moreover, the smaller the air flow rate of the air blower 3 (the smaller the air flow rate of the air flow F21), the closer the direction of movement of the oblique air flow F32 becomes to the direct downward direction. That is, the control device 4 can control the traveling direction of the oblique airflow F32 by adjusting the amount of air blown by the blower 3.
 (2.4.3)スイング気流
 制御装置4は、送風装置3の運転及び停止を周期的に切り替えることで、直下気流F31(図7参照)と斜め気流F32(図8参照)とを周期的に切り替えることができる。この結果、送風システムVS1は、ノズルユニット1の下方において直下気流F31と斜め気流F32とが交互に発生するスイング気流を生成できる。
(2.4.3) Swing airflow The control device 4 periodically switches between operating and stopping the blower 3 to periodically control the direct airflow F31 (see Fig. 7) and the oblique airflow F32 (see Fig. 8). You can switch to As a result, the air blowing system VS1 can generate a swing airflow in which the direct airflow F31 and the oblique airflow F32 are alternately generated below the nozzle unit 1.
 また、制御装置4は、送風装置3の送風量を周期的に増減させることで、斜め気流F32(図8参照)の進行方向を周期的に変化させることができる。制御装置4は、送風装置3の送風量を増加させる増加期間と送風装置3の送風量を減少させる減少期間とを交互に繰り返す。この結果、送風システムVS1は、ノズルユニット1の下方において斜め気流F32の進行方向が連続的に変化するスイング気流を生成できる。 Furthermore, the control device 4 can periodically change the traveling direction of the oblique airflow F32 (see FIG. 8) by periodically increasing and decreasing the amount of air blown by the blower device 3. The control device 4 alternately repeats an increase period in which the amount of air blown by the air blower 3 is increased and a decrease period in which the amount of air blown by the air blower 3 is decreased. As a result, the air blowing system VS1 can generate a swing airflow in which the traveling direction of the oblique airflow F32 changes continuously below the nozzle unit 1.
 なお、制御装置4は、送風装置3の送風量をゼロと目標値との間で周期的に増減させることで、直下気流F31と斜め気流F32との間で連続的に変化するスイング気流を実現できる。 In addition, the control device 4 realizes a swing airflow that continuously changes between the direct airflow F31 and the oblique airflow F32 by periodically increasing and decreasing the airflow amount of the airflow device 3 between zero and a target value. can.
 上述のように、送風システムVS1では、制御装置4が送風装置3を制御することで、直下気流F31及び斜め気流F32を生成できる。また、制御装置4が送風装置3の運転及び停止を切り替えたり、送風装置3の送風量を周期的に変化させたりすることで、スイング気流を生成できる。すなわち、送風システムVS1は、ダンパ機構をノズルに設けることなく、送風方向を可変とすることができる。すなわち、送風システムVS1は、ノズル10の構造を簡易としながら送風方向を可変とすることができる。 As described above, in the blower system VS1, the control device 4 controls the blower device 3 to generate the direct airflow F31 and the diagonal airflow F32. Further, the swing airflow can be generated by the control device 4 switching between operating and stopping the blower device 3 or periodically changing the amount of air blown by the blower device 3. That is, the air blowing system VS1 can make the air blowing direction variable without providing a damper mechanism in the nozzle. That is, the air blowing system VS1 can make the air blowing direction variable while simplifying the structure of the nozzle 10.
 (3)第1変形例
 図9及び図10は、送風ユニットの変形例として、送風ユニットU2を示す。なお、他の構成は上述の実施形態と同様であり、同様の構成には同一の符号を付して、説明は省略する。
(3) First Modified Example FIGS. 9 and 10 show a blower unit U2 as a modified example of the blower unit. Note that other configurations are similar to those in the above-described embodiment, and similar configurations are denoted by the same reference numerals and description thereof will be omitted.
 送風ユニットU2は、第2ノズル送風機22の上方(又はノズルユニット1の左端1bの上方)に配置された送風装置3を、送風ユニットU1に追加したものである。なお、以下の説明では、第1ノズル送風機21の上方に配置された送風装置3を第1送風装置31とし、第2ノズル送風機22の上方に配置された送風装置3を第2送風装置32とする。 The blower unit U2 is obtained by adding a blower device 3 arranged above the second nozzle blower 22 (or above the left end 1b of the nozzle unit 1) to the blower unit U1. In the following description, the blower 3 placed above the first nozzle blower 21 will be referred to as the first blower 31, and the blower 3 placed above the second nozzle blower 22 will be referred to as the second blower 32. do.
 第2送風装置32の筐体3aの右面には送風口3cが形成されている。そして、ファン3bが回転することで送風口3cから右方へ吹き出した空気は、ノズルユニット1の上方を左から右へ向かって流れる送風気流F22(図10参照)となる。 A ventilation port 3c is formed on the right side of the casing 3a of the second ventilation device 32. The air blown out to the right from the air outlet 3c by the rotation of the fan 3b becomes an airflow F22 (see FIG. 10) that flows above the nozzle unit 1 from left to right.
 本変形例では、制御装置4が、操作端末5が受け付けたユーザの操作、及び人感センサ6の検出結果に基づいて、第1送風装置31、第2送風装置32、第1ノズル送風機21、及び第2ノズル送風機22のそれぞれの運転及び停止を切り替え、それぞれの運転時の送風量を調整することができる。そこで、制御装置4は、第1ノズル送風機21及び第2ノズル送風機22をそれぞれ運転状態としたうえで、第1送風装置31及び第2送風装置32の運転、停止、送風量を制御することで、ノズルユニット1の下方に生成される気流の方向(送風方向)を調整する。 In this modification, the control device 4 controls the first blower 31 , the second blower 32 , the first nozzle blower 21 , the first blower 31 , the second blower 32 , the first nozzle blower 21 , It is possible to switch between operation and stop of each of the second nozzle blowers 22 and adjust the amount of air blown during each operation. Therefore, the control device 4 puts the first nozzle blower 21 and the second nozzle blower 22 into operation, and then controls the operation, stopping, and air blowing amount of the first blower 31 and the second blower 32. , adjust the direction of airflow (blow direction) generated below the nozzle unit 1.
 (3.1)直下気流
 図11は、第1ノズル送風機21及び第2ノズル送風機22が運転状態であり、第1送風装置31及び第2送風装置32が停止状態であるときにノズルユニット1の下方に生成される気流である直下気流F41を示す。
(3.1) Airflow Directly Below FIG. 11 shows the flow of the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation and the first blower 31 and second blower 32 are in a stopped state. A direct airflow F41, which is an airflow generated downward, is shown.
 この場合、下降気流F1がノズルユニット1から下方に吹き出している。一方、第1送風装置31及び第2送風装置32の各送風口3cからは、送風気流F21、F22がそれぞれ吹き出していない。したがって、ノズルユニット1から下方に吹き出した下降気流F1は直下方向(鉛直下向き)に進み、ノズルユニット1の下方では、直下方向に進む直下気流F41が生成される。 In this case, the descending airflow F1 is blown downward from the nozzle unit 1. On the other hand, the airflows F21 and F22 are not blown out from the respective ventilation ports 3c of the first ventilation device 31 and the second ventilation device 32, respectively. Therefore, the downward airflow F1 blown downward from the nozzle unit 1 proceeds directly below (vertically downward), and below the nozzle unit 1, the downward airflow F41 that proceeds directly below is generated.
 (3.2)第1斜め気流
 図12は、第1ノズル送風機21及び第2ノズル送風機22が運転状態であり、かつ、第1送風装置31も運転状態であるときにノズルユニット1の下方に生成される気流である第1斜め気流F42を示す。このとき、第2送風装置32は停止状態である。
(3.2) First oblique airflow FIG. 12 shows the flow of air below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation, and the first blower 31 is also in operation. A first oblique airflow F42, which is a generated airflow, is shown. At this time, the second air blower 32 is in a stopped state.
 この場合、下降気流F1がノズルユニット1から下方に吹き出している。また、ノズルユニット1の上方では、送風気流F21が第1送風装置31の送風口3cから左方へ吹き出している。ノズルユニット1の上方で右から左へ流れる送風気流F21は、ノズルユニット1から吹き出している下降気流F1に誘引されて下方へ引き寄せられ、前後方向に隣り合う2つのノズル10の間を通って左斜め下方向に進む。この結果、下降気流F1はノズルユニット1の下方で左斜め下方向に進む送風気流F21に誘引され、下降気流F1も左斜め下方向に進む。したがって、ノズルユニット1の下方では、左斜め下方向に進む第1斜め気流F42が生成される。 In this case, the descending airflow F1 is blown downward from the nozzle unit 1. Moreover, above the nozzle unit 1, the air flow F21 is blown out from the air outlet 3c of the first air blower 31 to the left. The blast airflow F21 flowing from right to left above the nozzle unit 1 is attracted by the downward airflow F1 blowing out from the nozzle unit 1 and is pulled downward, passing between two nozzles 10 adjacent in the front and back direction and moving to the left. Proceed diagonally downward. As a result, the descending airflow F1 is attracted by the blowing airflow F21 that advances diagonally downward to the left below the nozzle unit 1, and the descending airflow F1 also advances diagonally downward to the left. Therefore, below the nozzle unit 1, a first diagonal airflow F42 that moves diagonally downward to the left is generated.
 第1送風装置31の送風量が大きい程(送風気流F21の風量が大きい程)、第1斜め気流F42の進行方向は水平方向に近くなる。また、第1送風装置31の送風量が小さい程(送風気流F21の風量が小さい程)、第1斜め気流F42の進行方向は直下方向に近くなる。すなわち、制御装置4は、第1送風装置31の送風量を調整することで、第1斜め気流F42の進行方向を制御できる。 The larger the air volume of the first air blower 31 (the larger the air volume of the air flow F21), the closer the traveling direction of the first oblique air flow F42 becomes to the horizontal direction. Furthermore, the smaller the air flow rate of the first air blower 31 (the smaller the air flow rate of the air flow F21), the closer the traveling direction of the first oblique air flow F42 becomes to the direct downward direction. That is, the control device 4 can control the traveling direction of the first oblique airflow F42 by adjusting the amount of air blown by the first air blower 31.
 (3.3)第2斜め気流
 図13は、第1ノズル送風機21及び第2ノズル送風機22が運転状態であり、かつ、第2送風装置32も運転状態であるときにノズルユニット1の下方に生成される気流である第2斜め気流F43を示す。このとき、第1送風装置31は停止状態である。
(3.3) Second oblique airflow FIG. 13 shows the flow of air below the nozzle unit 1 when the first nozzle blower 21 and the second nozzle blower 22 are in operation, and the second blower 32 is also in operation. A second oblique airflow F43, which is a generated airflow, is shown. At this time, the first air blower 31 is in a stopped state.
 この場合、下降気流F1がノズルユニット1から下方に吹き出している。また、ノズルユニット1の上方では、送風気流F22が第2送風装置32の送風口3cから右方へ吹き出している。ノズルユニット1の上方で左から右へ流れる送風気流F22は、ノズルユニット1から吹き出している下降気流F1に誘引されて下方へ引き寄せられ、前後方向に隣り合う2つのノズル10の間を通って右斜め下方向に進む。この結果、下降気流F1はノズルユニット1の下方で右斜め下方向に進む送風気流F22に誘引され、下降気流F1も右斜め下方向に進む。したがって、ノズルユニット1の下方では、右斜め下方向に進む第2斜め気流F43が生成される。 In this case, the descending airflow F1 is blown downward from the nozzle unit 1. Further, above the nozzle unit 1, a blowing air flow F22 is blown out to the right from the blowing port 3c of the second blowing device 32. The blast airflow F22 flowing from left to right above the nozzle unit 1 is attracted by the downward airflow F1 blowing out from the nozzle unit 1 and is drawn downward, passing between two nozzles 10 adjacent in the front and back direction and moving to the right. Proceed diagonally downward. As a result, the descending airflow F1 is attracted by the blowing airflow F22 that advances diagonally downward to the right below the nozzle unit 1, and the descending airflow F1 also advances diagonally downward to the right. Therefore, below the nozzle unit 1, a second oblique airflow F43 that moves diagonally downward to the right is generated.
 第2送風装置32の送風量が大きい程(送風気流F22の風量が大きい程)、第2斜め気流F43の進行方向は水平方向に近くなる。また、第2送風装置32の送風量が小さい程(送風気流F22の風量が小さい程)、第2斜め気流F43の進行方向は直下方向に近くなる。すなわち、制御装置4は、第2送風装置32の送風量を調整することで、第2斜め気流F43の進行方向を制御できる。 The larger the air volume of the second air blower 32 (the larger the air volume of the air flow F22), the closer the traveling direction of the second oblique air flow F43 becomes to the horizontal direction. Moreover, the smaller the air flow rate of the second air blower 32 (the smaller the air flow rate of the air flow F22), the closer the traveling direction of the second oblique air flow F43 becomes to the direct downward direction. That is, the control device 4 can control the traveling direction of the second oblique airflow F43 by adjusting the amount of air blown by the second blower 32.
 (3.4)スイング気流
 制御装置4は、第1送風装置31及び第2送風装置32のそれぞれの運転及び停止を切り替えることができる。そこで、制御装置4は、第1送風装置31の運転期間と第2送風装置32の運転期間とを交互に切り替えることで、第1斜め気流F42(図12参照)と第2斜め気流F43(図13参照)とを周期的に切り替えることが好ましい。この結果、送風システムVS1は、ノズルユニット1の下方において第1斜め気流F42と第2斜め気流F43とが交互に発生するスイング気流を生成できる。すなわち、送風システムVS1は、第1送風装置31及び第2送風装置32を制御することで、送風方向の可変範囲を拡げることができる。
(3.4) Swing Air Flow The control device 4 can switch between operation and stop of each of the first blower device 31 and the second blower device 32. Therefore, the control device 4 alternately switches the operating period of the first blower 31 and the second blower 32 to create a first diagonal airflow F42 (see FIG. 12) and a second diagonal airflow F43 (see FIG. 13)) is preferably switched periodically. As a result, the blower system VS1 can generate a swing airflow in which the first oblique airflow F42 and the second oblique airflow F43 are alternately generated below the nozzle unit 1. That is, the ventilation system VS1 can expand the variable range of the ventilation direction by controlling the first ventilation device 31 and the second ventilation device 32.
 また、制御装置4は、第1送風装置31の運転期間と第2送風装置32の運転期間とを交互に切り替える際に、第1送風装置31の運転期間と第2送風装置32の運転期間との間に、第1送風装置31と第2送風装置32との両方を停止させる全停止期間を設けてもよい。この場合、送風システムVS1は、ノズルユニット1の下方において第1斜め気流F42→直下気流F41→第2斜め気流F43→直下気流F41→第1斜め気流F42の順に繰り返し発生するスイング気流を実現できる。したがって、送風システムVS1は、滑らかなスイング気流を生成できる。 Moreover, when the control device 4 alternately switches the operating period of the first air blower 31 and the operating period of the second air blower 32, the control device 4 controls the operation period of the first air blower 31 and the operation period of the second air blower 32. In between, a full stop period may be provided in which both the first blower 31 and the second blower 32 are stopped. In this case, the air blowing system VS1 can realize a swing airflow that repeatedly occurs below the nozzle unit 1 in the order of the first oblique airflow F42→directly below airflow F41→second oblique airflow F43→directly below airflow F41→first oblique airflow F42. Therefore, the ventilation system VS1 can generate a smooth swing airflow.
 また、制御装置4は、第1送風装置31の運転期間において、第1送風装置31の送風量をゼロから第1目標値まで増加させた後に、ゼロまで減少させることが好ましい。この場合、ノズルユニット1の下方において第1斜め気流F42の進行方向が連続的に変化する。同様に、制御装置4は、第2送風装置32の運転期間において、第2送風装置32の送風量をゼロから第2目標値まで増加させた後に、ゼロまで減少させることが好ましい。この場合、ノズルユニット1の下方において第2斜め気流F43の進行方向が連続的に変化する。したがって、送風システムVS1は、送風方向を滑らかに変化させることができ、第1斜め気流F42及び第2斜め気流F43の各進行方向が連続的に変化するスイング気流を実現できる。 Furthermore, it is preferable that the control device 4 increases the air flow rate of the first air blower 31 from zero to the first target value, and then decreases it to zero during the operation period of the first air blower 31. In this case, the traveling direction of the first oblique airflow F42 changes continuously below the nozzle unit 1. Similarly, during the operation period of the second blower 32, the control device 4 preferably increases the amount of air blown by the second blower 32 from zero to the second target value, and then decreases it to zero. In this case, the traveling direction of the second oblique airflow F43 changes continuously below the nozzle unit 1. Therefore, the air blowing system VS1 can smoothly change the air blowing direction, and can realize a swing airflow in which the traveling directions of the first oblique airflow F42 and the second oblique airflow F43 change continuously.
 具体的に、第1送風装置31の運転期間では、第1斜め気流F42の進行方向は、直下方向から左方向に徐々に変化した後、左方向から直下方向に徐々に戻る。第1斜め気流F42の進行方向が直下方向に戻ると、第1送風装置31の運転期間が終了し、第2送風装置32の運転期間が開始される。第2送風装置32の運転期間では、第2斜め気流F43の進行方向は、直下方向から右方向に徐々に変化した後、右方向から直下方向に徐々に戻る。第2斜め気流F43の進行方向が直下方向に戻ると、第2送風装置32の運転期間が終了し、第1送風装置31の運転期間が開始される。前述の動作を繰り返すことで、第1斜め気流F42及び第2斜め気流F43の各進行方向が連続的に変化するスイング気流が実現される。 Specifically, during the operation period of the first blower device 31, the traveling direction of the first oblique airflow F42 gradually changes from directly below to the left, and then gradually returns from the left to directly below. When the traveling direction of the first oblique airflow F42 returns to the direct downward direction, the operating period of the first air blower 31 ends, and the operating period of the second air blower 32 begins. During the operation period of the second blower device 32, the traveling direction of the second oblique airflow F43 gradually changes from directly below to the right, and then gradually returns from the right to directly below. When the traveling direction of the second oblique airflow F43 returns to the direct downward direction, the operating period of the second blower 32 ends, and the operating period of the first blower 31 starts. By repeating the above-described operation, a swing airflow in which the traveling directions of the first oblique airflow F42 and the second oblique airflow F43 change continuously is realized.
 また、制御装置4は、第1送風装置31の送風量と第2送風装置32の送風量との比率を連続的に調整することで、スイング気流の送風方向を連続的に変化させてもよい。 Further, the control device 4 may continuously change the blowing direction of the swing airflow by continuously adjusting the ratio between the blowing amount of the first blowing device 31 and the blowing amount of the second blowing device 32. .
 上述のように、第1変形例では、制御装置4が第1送風装置31及び第2送風装置32を制御することで、直下気流F41、第1斜め気流F42、及び第2斜め気流F43を生成できる。また、制御装置4が第1送風装置31及び第2送風装置32の運転及び停止を切り替えたり、第1送風装置31及び第2送風装置32の各送風量を周期的に変化させたりすることで、スイング気流を生成できる。すなわち、送風システムVS1は、ダンパ機構をノズルに設けることなく、送風方向を可変とすることができる。すなわち、送風システムVS1は、ノズル10の構造を簡易としながら送風方向を可変とすることができる。 As described above, in the first modification, the control device 4 controls the first blower 31 and the second blower 32 to generate the direct airflow F41, the first diagonal airflow F42, and the second diagonal airflow F43. can. In addition, the control device 4 switches between operating and stopping the first blower device 31 and the second blower device 32, or periodically changes the amount of air blown by the first blower device 31 and the second blower device 32. , can generate swing airflow. That is, the air blowing system VS1 can make the air blowing direction variable without providing a damper mechanism in the nozzle. That is, the air blowing system VS1 can make the air blowing direction variable while simplifying the structure of the nozzle 10.
 (4)第2変形例
 第1ノズル送風機21、第2ノズル送風機22、及び送風装置3のそれぞれは、クロスフローファン以外であってもよく、例えばシロッコファン、又はプロペラファンであってもよい。
(4) Second Modification Each of the first nozzle blower 21, the second nozzle blower 22, and the blower 3 may be other than a crossflow fan, for example, a sirocco fan or a propeller fan.
 また、第1ノズル送風機21、第2ノズル送風機22、及び送風装置3のそれぞれの吸気は、ダクト経由で吸気する構成、及び筐体の周囲の空気を吸気する構成のいずれであってもよい。 Furthermore, each of the first nozzle blower 21, the second nozzle blower 22, and the blower device 3 may take in air through a duct or may take in air around the casing.
 送風ユニットU1、U2は、送風装置3を備える代わりに、高圧空気が流れるダクトを備える構成であってもよい。この場合、ノズルユニット1の各ノズル10は、ダクトから空気を供給される。 Instead of having the blower device 3, the blower units U1 and U2 may be configured to include a duct through which high-pressure air flows. In this case, each nozzle 10 of the nozzle unit 1 is supplied with air from a duct.
 ノズルユニット1が有するノズル10の数は2つ以上であればよい。 The number of nozzles 10 that the nozzle unit 1 has may be two or more.
 また、送風ユニットU1、U2が取り付けられる構造体は天井R11に限定されず、部屋R1の上方に設けられた架台などの他の構造体であってもよい。 Furthermore, the structure to which the blower units U1 and U2 are attached is not limited to the ceiling R11, but may be another structure such as a pedestal provided above the room R1.
 また、上述の実施形態、及び変形例の各構成のそれぞれは、適宜組み合わせることができ、各構成による効果を同様に得ることができる。 Moreover, each of the configurations of the above-described embodiment and modified example can be combined as appropriate, and the effects of each configuration can be similarly obtained.
 (5)まとめ
 上述の実施形態に係る第1の態様の送風システム(VS1)は、ノズルユニット(1)と、送風装置(3)と、制御装置(4)と、を備える。ノズルユニット(1)は、少なくとも2つのノズル(10)を有する。少なくとも2つのノズル(10)は、第1方向に沿って延びる中空の長尺形状に形成された筐体(10a)をそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置される。送風装置(3)は、ノズルユニット(1)の上方に配置されて、ノズルユニット(1)の第1方向における第1端(1a)から第2端(1b)に向かって送風する。制御装置(4)は、送風装置(3)を制御する。少なくとも2つのノズル(10)の各筐体(10a)の下面には、第1方向に沿って延びる送風口(10b)が形成される。送風口(10b)は、筐体(10a)の内部に送り込まれた空気を、筐体(10a)の外部に吹き出す。
(5) Summary The ventilation system (VS1) of the first aspect according to the above-described embodiment includes a nozzle unit (1), a ventilation device (3), and a control device (4). The nozzle unit (1) has at least two nozzles (10). The at least two nozzles (10) each have a hollow elongated housing (10a) extending along the first direction, and are lined up along a second direction intersecting the first direction. Placed. The blower device (3) is arranged above the nozzle unit (1) and blows air from the first end (1a) to the second end (1b) in the first direction of the nozzle unit (1). The control device (4) controls the blower device (3). An air outlet (10b) extending along the first direction is formed on the lower surface of each housing (10a) of the at least two nozzles (10). The air outlet (10b) blows the air sent into the housing (10a) to the outside of the housing (10a).
 上述の送風システム(VS1)は、ノズル(10)の構造を簡易としながら送風方向を可変とすることができる。 The above-described air blowing system (VS1) can make the air blowing direction variable while simplifying the structure of the nozzle (10).
 上述の実施形態に係る第2の態様の送風システム(VS1)では、第1の態様において、制御装置(4)は、送風装置(3)の送風量を調整することが好ましい。 In the second aspect of the ventilation system (VS1) according to the above-described embodiment, in the first aspect, the control device (4) preferably adjusts the amount of air blown by the ventilation device (3).
 上述の送風システム(VS1)は、送風装置(3)の送風量を調整することで、送風方向を滑らかに変化させることができる。 The above-mentioned air blowing system (VS1) can smoothly change the air blowing direction by adjusting the air blowing amount of the air blower (3).
 上述の実施形態に係る第3の態様の送風システム(VS1)では、第1又は第2の態様において、制御装置(4)は、送風装置(3)の送風量を周期的に増減させることが好ましい。 In the ventilation system (VS1) of the third aspect according to the above-described embodiment, in the first or second aspect, the control device (4) may periodically increase or decrease the amount of air blown by the ventilation device (3). preferable.
 上述の送風システム(VS1)は、スイング気流を生成できる。 The above-mentioned ventilation system (VS1) can generate swing airflow.
 上述の実施形態に係る第4の態様の送風システム(VS1)では、第1の態様において、前記送風装置(3)は、第1送風装置(31)であり、第2送風装置(32)を更に備えることが好ましい。第2送風装置(32)は、ノズルユニット(1)の上方に配置されて、第1方向における第2端(1b)から第1端(1a)に向かって送風する。制御装置(4)は、第1送風装置(31)及び第2送風装置(32)を制御する。 In the ventilation system (VS1) of the fourth aspect according to the above-described embodiment, in the first aspect, the ventilation device (3) is a first ventilation device (31), and a second ventilation device (32). It is preferable to further include. The second air blower (32) is arranged above the nozzle unit (1) and blows air from the second end (1b) toward the first end (1a) in the first direction. The control device (4) controls the first air blower (31) and the second air blower (32).
 上述の送風システム(VS1)は、第1送風装置(31)及び第2送風装置(32)を制御することで、送風方向の可変範囲を拡げることができる。 The above-mentioned ventilation system (VS1) can expand the variable range of the ventilation direction by controlling the first ventilation device (31) and the second ventilation device (32).
 上述の実施形態に係る第5の態様の送風システム(VS1)では、第4の態様において、制御装置(4)は、第1送風装置(31)の運転期間と第2送風装置(32)の運転期間とを交互に切り替えることが好ましい。 In the ventilation system (VS1) of the fifth aspect according to the above-described embodiment, in the fourth aspect, the control device (4) controls the operation period of the first ventilation device (31) and the operation period of the second ventilation device (32). It is preferable to alternately switch the operation period.
 上述の送風システム(VS1)は、より広い範囲にスイング気流を生成できる。 The above-mentioned ventilation system (VS1) can generate swing airflow over a wider range.
 上述の実施形態に係る第6の態様の送風システム(VS1)では、第5の態様において、制御装置(4)は、第1送風装置(31)の運転期間と第2送風装置(32)の運転期間との間に、第1送風装置(31)と第2送風装置(32)との両方を停止させる全停止期間を設けることが好ましい。 In the ventilation system (VS1) of the sixth aspect according to the above-described embodiment, in the fifth aspect, the control device (4) controls the operation period of the first ventilation device (31) and the operation period of the second ventilation device (32). It is preferable to provide a full stop period in which both the first blower (31) and the second blower (32) are stopped between the operating periods.
 上述の送風システム(VS1)は、滑らかなスイング気流を生成できる。 The above-mentioned ventilation system (VS1) can generate a smooth swing airflow.
 上述の実施形態に係る第7の態様の送風システム(VS1)では、第4乃至第6の態様のいずれか1つにおいて、制御装置(4)は、第1送風装置(31)及び第2送風装置(32)のそれぞれの送風量を調整することが好ましい。 In the ventilation system (VS1) of the seventh aspect according to the above-described embodiment, in any one of the fourth to sixth aspects, the control device (4) controls the first ventilation device (31) and the second ventilation system. Preferably, the amount of air blown by each device (32) is adjusted.
 上述の送風システム(VS1)は、第1送風装置(31)及び第2送風装置(32)のそれぞれの送風量を調整することで、送風方向を滑らかに変化させることができる。 The above-mentioned air blowing system (VS1) can smoothly change the air blowing direction by adjusting the amount of air blown by each of the first air blower (31) and the second air blower (32).
 上述の実施形態に係る第8の態様の送風システム(VS1)では、第7の態様において、制御装置(4)は、第1送風装置(31)の運転期間において、第1送風装置(31)の送風量をゼロから第1目標値まで増加させた後に、ゼロまで減少させることが好ましい。制御装置(4)は、第2送風装置(32)の運転期間において、第2送風装置(32)の送風量をゼロから第2目標値まで増加させた後に、ゼロまで減少させることが好ましい。 In the ventilation system (VS1) of the eighth aspect according to the above-described embodiment, in the seventh aspect, the control device (4) controls the operation of the first ventilation device (31) during the operation period of the first ventilation device (31). It is preferable that the amount of air blown is increased from zero to the first target value and then decreased to zero. Preferably, the control device (4) increases the amount of air blown by the second blower (32) from zero to the second target value and then decreases it to zero during the operation period of the second blower (32).
 上述の送風システム(VS1)は、送風方向を滑らかに変化させることができる。 The above-mentioned air blowing system (VS1) can smoothly change the air blowing direction.
 VS1 送風システム
 1 ノズルユニット
 1a 右端(第1端)
 1b 左端(第2端)
 10 ノズル
 10a 筐体
 10b 送風口
 3 送風装置
 31 第1送風装置
 32 第2送風装置
 4 制御装置
VS1 Air blowing system 1 Nozzle unit 1a Right end (first end)
1b Left end (second end)
10 nozzle 10a housing 10b ventilation port 3 ventilation device 31 first ventilation device 32 second ventilation device 4 control device

Claims (8)

  1.  第1方向に沿って延びる中空の長尺形状に形成された筐体をそれぞれ有して、第1方向に交差する第2方向に沿って並んで配置された少なくとも2つのノズルを有するノズルユニットと、
     前記ノズルユニットの上方に配置されて、前記ノズルユニットの前記第1方向における第1端から第2端に向かって送風する送風装置と、
     前記送風装置を制御する制御装置と、を備え、
     前記少なくとも2つのノズルの各筐体の下面には、前記第1方向に沿って延びる送風口が形成され、
     前記送風口は、前記筐体の内部に送り込まれた空気を、前記筐体の外部に吹き出す
     送風システム。
    A nozzle unit having at least two nozzles each having a hollow elongated housing extending along the first direction and arranged side by side along a second direction intersecting the first direction; ,
    a blower device that is disposed above the nozzle unit and blows air from a first end toward a second end of the nozzle unit in the first direction;
    A control device that controls the blower,
    An air outlet extending along the first direction is formed on the lower surface of each housing of the at least two nozzles,
    The air blowing system is such that the air blowing port blows out the air sent into the interior of the housing to the outside of the housing.
  2.  前記制御装置は、前記送風装置の送風量を調整する
     請求項1の送風システム。
    The air blowing system according to claim 1, wherein the control device adjusts the amount of air blown by the air blowing device.
  3.  前記制御装置は、前記送風装置の送風量を周期的に増減させる
     請求項1又は2の送風システム。
    The air blowing system according to claim 1 or 2, wherein the control device periodically increases or decreases the amount of air blown by the air blower.
  4.  前記送風装置は、第1送風装置であり、
     前記ノズルユニットの上方に配置されて、前記第1方向における前記第2端から前記第1端に向かって送風する第2送風装置を更に備え、
     前記制御装置は、前記第1送風装置及び前記第2送風装置を制御する
     請求項1の送風システム。
    The blower is a first blower,
    further comprising a second blowing device that is disposed above the nozzle unit and blows air from the second end toward the first end in the first direction,
    The ventilation system according to claim 1, wherein the control device controls the first ventilation device and the second ventilation device.
  5.  前記制御装置は、前記第1送風装置の運転期間と前記第2送風装置の運転期間とを交互に切り替える
     請求項4の送風システム。
    The blowing system according to claim 4, wherein the control device alternately switches between an operating period of the first blowing device and an operating period of the second blowing device.
  6.  前記制御装置は、前記第1送風装置の運転期間と前記第2送風装置の運転期間との間に、前記第1送風装置と前記第2送風装置との両方を停止させる全停止期間を設ける
     請求項5の送風システム。
    The control device provides a full stop period in which both the first air blower and the second air blower are stopped between the operation period of the first air blower and the operation period of the second air blower. Item 5. Air blowing system.
  7.  前記制御装置は、前記第1送風装置及び前記第2送風装置のそれぞれの送風量を調整する
     請求項4乃至6のいずれか1つの送風システム。
    The blowing system according to any one of claims 4 to 6, wherein the control device adjusts the amount of air blown by each of the first blowing device and the second blowing device.
  8.  前記制御装置は、
      前記第1送風装置の運転期間において、前記第1送風装置の送風量をゼロから第1目標値まで増加させた後に、ゼロまで減少させ、
      前記第2送風装置の運転期間において、前記第2送風装置の送風量をゼロから第2目標値まで増加させた後に、ゼロまで減少させる
     請求項7の送風システム。
    The control device includes:
    During the operation period of the first blower, increasing the air flow rate of the first blower from zero to a first target value, and then decreasing it to zero;
    The blowing system according to claim 7, wherein during the operation period of the second blowing device, the amount of air blown by the second blowing device is increased from zero to a second target value, and then is decreased to zero.
PCT/JP2023/030512 2022-09-16 2023-08-24 Ventilation system WO2024057863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-148382 2022-09-16
JP2022148382 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024057863A1 true WO2024057863A1 (en) 2024-03-21

Family

ID=90274916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030512 WO2024057863A1 (en) 2022-09-16 2023-08-24 Ventilation system

Country Status (1)

Country Link
WO (1) WO2024057863A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015114A (en) * 2011-07-06 2013-01-24 Panasonic Corp Fan device
JP2018003596A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Blower module
JP2018003658A (en) * 2016-06-30 2018-01-11 パナソニックIpマネジメント株式会社 Blower module and air cleaner with blasting function
JP2019148170A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Blower device and blower device with air cleaning function
JP2019148171A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Blower device
WO2022091439A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Blower device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015114A (en) * 2011-07-06 2013-01-24 Panasonic Corp Fan device
JP2018003596A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Blower module
JP2018003658A (en) * 2016-06-30 2018-01-11 パナソニックIpマネジメント株式会社 Blower module and air cleaner with blasting function
JP2019148170A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Blower device and blower device with air cleaning function
JP2019148171A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Blower device
WO2022091439A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Blower device

Similar Documents

Publication Publication Date Title
JP5828134B2 (en) Blower
JP3731397B2 (en) Blower, air conditioner, and blower method
JP5053686B2 (en) Air conditioning method
CN105864899A (en) Air conditioner indoor unit and air conditioner
JP6444224B2 (en) Air conditioner indoor unit
JP7050222B2 (en) Blower
JP6454871B2 (en) Blower
JP2009150580A (en) Air conditioning device
WO2024057863A1 (en) Ventilation system
JP2002372268A (en) Displacement ventilation system
JP6745427B2 (en) Blower
JP7217596B2 (en) air conditioning system
JP2019020096A (en) Air conditioner
JPS62178836A (en) Air conditioner
CN210980256U (en) Air exhaust device
CN208920280U (en) Air conditioner indoor unit and air conditioner with same
JP7097244B2 (en) Blow-out mechanism and blower
JP6434842B2 (en) Air conditioning system
JP2012247117A (en) Desk having air conditioning function
JP3070924B1 (en) Building air conditioning structure
JP2002039606A (en) Air supply fan unit
JP3188751U (en) Air conditioning system
CN205747170U (en) Air conditioner indoor unit and air conditioner
WO2024101206A1 (en) Ventilation system
JPH06249463A (en) Air conditioner operated under control of air layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865220

Country of ref document: EP

Kind code of ref document: A1