WO2024099461A1 - 机车制动控制系统及控制方法 - Google Patents

机车制动控制系统及控制方法 Download PDF

Info

Publication number
WO2024099461A1
WO2024099461A1 PCT/CN2023/132602 CN2023132602W WO2024099461A1 WO 2024099461 A1 WO2024099461 A1 WO 2024099461A1 CN 2023132602 W CN2023132602 W CN 2023132602W WO 2024099461 A1 WO2024099461 A1 WO 2024099461A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
control
inlet
way valve
Prior art date
Application number
PCT/CN2023/132602
Other languages
English (en)
French (fr)
Inventor
任向杰
王帅帅
纪奕沛
朱冠汶
Original Assignee
中车制动系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车制动系统有限公司 filed Critical 中车制动系统有限公司
Publication of WO2024099461A1 publication Critical patent/WO2024099461A1/zh

Links

Definitions

  • the present application belongs to the field of locomotive brake control, and specifically relates to a locomotive brake control system and control method.
  • the locomotive brake control system is one of the most important core systems of the locomotive.
  • a key function of the system is to control the pressure of the brake cylinder.
  • the locomotive brake control system realizes the braking and relief functions of the locomotive by controlling the brake cylinder pressure value.
  • the conventional practice of brake cylinder pressure control is to control the pre-control pressure through a high-frequency solenoid valve, and then output the brake cylinder pressure consistent with the pre-control pressure through a relay valve.
  • the pre-control pressure control part that is prone to failure is usually backed up.
  • the existing locomotive brake control systems mainly include the CCBII system developed by Knorr-Bremse and the Eurotrol system developed by Faiveley. Both brake control systems use mechanical air distribution valves to redundancy the brake cylinder pressure pre-control part. On the one hand, this redundant control method greatly reduces the pressure control accuracy of the brake cylinder when the mechanical valve type is redundantly controlled. On the other hand, the brake cylinder pressure control cannot be achieved when the brake cylinder relay valve fails.
  • CN111634304A discloses a locomotive brake control system and control method, including an average pipe control system and a brake cylinder control system, wherein the average pipe control system can compare the brake cylinder pre-control pressure and the average pipe pre-control pressure, and output the larger pressure as the average pipe pressure; the brake cylinder control system can compare the brake cylinder pre-control pressure and the average pipe pressure, and output the larger pressure as the brake cylinder pressure to achieve braking; redundancy of the two control systems can be achieved.
  • the present application provides a locomotive brake control system and control method; multiple redundancy can be achieved to improve the reliability of the system.
  • the locomotive brake control system provided in the first aspect of the present application includes an average pipe control module, a brake cylinder control module and a total wind; wherein:
  • the averaging tube control module includes a first inflation solenoid valve and a first exhaust solenoid valve connected to the total air, which can control the pressure of the input total air to output the required first pre-control pressure P1 through inflation action and exhaust action.
  • the average pipe control module also includes a first relay valve and a first switching valve; wherein the first pre-control pressure P1 reaches the control port of the first relay valve; the inlet of the first relay valve is connected to the total air, and the outlet of the first relay valve outputs the amplified The first pilot pressure is used as the average pipe pressure PA.
  • the first branch PA1 of the average pipe pressure PA is connected to the first inlet of the first two-way valve of the brake cylinder control module through a pipeline; the second branch PA2 of the average pipe pressure PA is connected to the inlet of the first switching valve through a pipeline; the outlet of the second switching valve can output the second branch PA2 to the first inlet of the third two-way valve of the brake cylinder control module.
  • the brake cylinder control module includes a second charging solenoid valve and a second exhaust solenoid valve connected to the total air, which can control the pressure of the input total air to output the required second pre-control pressure P2 through charging and exhausting actions.
  • the brake cylinder control module further includes a second switching valve, a mechanical three-way valve and a first two-way valve; wherein the second pre-control pressure P2 is connected to a first inlet of the second switching valve.
  • the mechanical three-way valve is a mechanical valve capable of outputting a third pre-control pressure P3.
  • the first inlet of the mechanical three-way valve is connected to the train pipe to provide a wind source; the outlet of the mechanical three-way valve is connected to the second inlet of the second switching valve to output the third pre-control pressure P3.
  • the second switching valve can switch between the first inlet and the second inlet to select the second pre-control pressure P2 or the third pre-control pressure P3 , and the outlet of the second switching valve is connected to the second inlet of the first two-way valve.
  • the outlet of the first two-way valve is connected to the control port of the second relay valve to select the larger pressure between the first inlet and the second inlet of the first two-way valve as the fourth pre-control pressure P4 to be output to the control port of the second relay valve.
  • the inlet of the second relay valve is connected to the main air, and the outlet thereof is connected to the second inlet of the third two-way valve, so as to output the amplified fourth pre-control pressure as the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • the outlet of the third two-way valve is connected to the brake cylinder to select the larger pressure between the first inlet and the second inlet of the third two-way valve as the second brake cylinder pressure PB2 to be output to the brake cylinder for braking.
  • the brake cylinder control module further includes a second two-way valve, a pressure reducing valve and an emergency pressure increasing valve; wherein,
  • the outlet of the first two-way valve is connected to the first inlet of the second two-way valve, so as to select the larger pressure between the first inlet and the second inlet of the first two-way valve as the fourth pre-control pressure P4 to be output to the first inlet of the second two-way valve (here, P4 is no longer directly output to the control port of the second relay valve);
  • the inlet of the pressure reducing valve is connected to the total air, and the outlet of the pressure reducing valve is connected to the inlet of the emergency pressure boosting valve; the outlet of the emergency pressure boosting valve outputs the fifth pre-control pressure P5 to the second inlet of the second two-way valve; the control port of the emergency pressure boosting valve is connected to the train pipe to provide a control air source, open or close the emergency pressure boosting valve, so as to open or cut off the output of the fifth pre-control pressure P5;
  • the outlet of the second two-way valve is connected to the control port of the second relay valve to select the larger pressure between the first inlet and the second inlet of the second two-way valve as the sixth pre-control pressure P6 (instead of the fourth pre-control pressure P4 when there is no second two-way valve) to be output to the control port of the second relay valve.
  • the mechanical three-way valve selects a regulating three-way valve; the second inlet of the mechanical three-way valve is connected to the working air cylinder, and when the pressure of the train pipe changes, the train pipe and the working air cylinder achieve dynamic balance.
  • a first pre-control air cylinder is provided on the pipeline where the first pre-control pressure P1 is located, and is capable of storing compressed air to provide an air source as the first pre-control pressure P1.
  • a second pre-control air cylinder is provided on the pipeline where the sixth pre-control pressure P6 is located, and is used to store compressed air to provide an air source as the sixth pre-control pressure P6.
  • an effective air cylinder is provided on the pipeline where the third pre-control pressure P3 is located, which is used to store compressed air to provide an air source as the third pre-control pressure P3.
  • the second switching valve is a mechanical switching valve having a control port; when there is an air source at its control port, the second pre-control pressure P2 is connected; when there is no air source at its control port, it switches to connecting to the third pre-control pressure P3.
  • the brake cylinder control module is provided with an electric control valve for controlling the second switching valve to switch between a second pre-control pressure P2 and a third pre-control pressure P3, wherein the inlet of the electric control valve is connected to the total air, and the outlet thereof is connected to the control port of the second switching valve; wherein the electric control valve is configured as follows: when energized, the total air and the control port of the second switching valve are connected so that the second switching valve is connected to the second pre-control pressure P2; when power is lost, the total air and the control port of the second switching valve are cut off so that the second switching valve is connected to the third pre-control pressure P3.
  • the locomotive brake control method provided in the second aspect of the present application may adopt the locomotive brake control system described in any of the above embodiments, including at least one of the following three states:
  • the first inflation solenoid valve and the first exhaust solenoid valve control the pressure of the input total air to the required first pre-control pressure P1 through inflation and exhaust actions, acting on the control port of the first relay valve; the total air is input at the inlet of the first relay valve, and after flow amplification, the outlet of the first relay valve outputs the average pipe pressure PA, and the first branch PA1 of the average pipe pressure reaches the first inlet of the first two-way valve of the brake cylinder control module.
  • the first switching valve is in a closed state, and does not provide the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve.
  • the second inflation solenoid valve and the second exhaust solenoid valve control the pressure of the input total air to output the required second pre-control pressure P2 through inflation action and exhaust action.
  • the electric control valve is energized, and the total air reaches the control port of the second switching valve, so that the second pre-control pressure P2 enters the second switching valve and reaches the second inlet of the first two-way valve.
  • the first two-way valve takes the larger of the first branch PA1 of the average pipe pressure and the second pre-control pressure P2, and outputs the fourth pre-control pressure P4 to act on the control port of the second relay valve; the total air is input into the inlet of the second relay valve, and after flow amplification, the outlet of the second relay valve outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • the third two-way valve outputs the first brake cylinder pressure PB1 as the second brake cylinder pressure PB2 to the brake cylinder to achieve braking.
  • the first inflation solenoid valve and the first exhaust solenoid valve control the pressure of the input total air to the required first pre-control pressure P1 through inflation and exhaust actions, and act on the control port of the first relay valve; the total air is input at the inlet of the first relay valve, and after flow amplification, the outlet of the first relay valve outputs the average pipe pressure PA, and the first branch PA1 of the average pipe pressure reaches the first inlet of the first two-way valve of the brake cylinder control module.
  • the first switching valve is in a closed state and cannot provide the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve.
  • the brake cylinder control module cannot normally output the second pre-control pressure P2.
  • the electric control valve loses power and no air source reaches the control port of the second switching valve, causing the second switching valve to switch to the mechanical three-way valve.
  • the mechanical three-way valve generates a third pre-control pressure P3 according to the pressure change of the train pipe and outputs it to the second inlet of the first two-way valve.
  • the first two-way valve takes the larger of the first branch PA1 of the average pipe pressure and the third pre-control pressure P3, outputs the fourth pre-control pressure P4, and acts on the control port of the second relay valve; the total air is input into the inlet of the second relay valve, and after flow amplification, the outlet of the second relay valve outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • the third two-way valve outputs the first brake cylinder pressure PB1 as the second brake cylinder pressure PB2 to the brake cylinder to achieve braking.
  • the first inflation solenoid valve and the first exhaust solenoid valve control the pressure of the input total air to the required first pre-control pressure P1 through inflation and exhaust actions, and act on the control port of the first relay valve; the total air is input at the inlet of the first relay valve, and after flow amplification, the average pipe pressure PA is output at the outlet of the first relay valve.
  • the first branch PA1 of the average pipe pressure reaches the first inlet of the first two-way valve of the brake cylinder control module; the first switching valve is in an open state, providing the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve.
  • the second relay valve fails and the first brake cylinder pressure PB1 cannot be effectively output.
  • the third two-way valve outputs the second branch PA2 of the average pipe pressure as the second brake cylinder pressure PB2, which reaches the brake cylinder to achieve braking.
  • the brake cylinder control module has a second two-way valve, a pressure reducing valve, and an emergency pressure increasing valve:
  • the first two-way valve takes the larger of the first branch pressure PA1 of the average pipe pressure and the second pre-control pressure P2, and outputs a fourth pre-control pressure P4 to the first inlet of the second two-way valve.
  • the emergency boost valve When the pressure of the train pipe drops to the threshold, the emergency boost valve is turned on, and the fifth pre-control pressure P5 is output to the second inlet of the second two-way valve.
  • the second two-way valve takes the larger of the fourth pre-control pressure P4 and the fifth pre-control pressure P5, outputs the sixth pre-control pressure P6 (instead of the fourth pre-control pressure P4 when there is no second two-way valve), and acts on the control port of the second relay valve; the inlet of the second relay valve inputs the total air, and after the flow is amplified, the outlet of the second relay valve outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • the emergency boost valve When the pressure of the train pipe is higher than the threshold, the emergency boost valve is in a closed state; at this time, the second two-way valve only obtains the fourth pre-control pressure P4, outputs the sixth pre-control pressure P6, and acts on the control port of the second relay valve; the total air is input to the inlet of the second relay valve, and after flow amplification, the outlet of the second relay valve outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • the first two-way valve takes the larger of the first branch PA1 of the average pipe pressure and the third pre-control pressure P3, and outputs the fourth pre-control pressure P4 to the first inlet of the second two-way valve.
  • the emergency boost valve When the pressure of the train pipe drops to the threshold, the emergency boost valve is turned on, and the fifth pre-control pressure P5 is output to the second inlet of the second two-way valve.
  • the second two-way valve takes the larger of the fourth pre-control pressure P4 and the fifth pre-control pressure P5, outputs the sixth pre-control pressure P6 (instead of the fourth pre-control pressure P4 when there is no second two-way valve), and acts on the control port of the second relay valve; the inlet of the second relay valve inputs the total air, and after the flow is amplified, the outlet of the second relay valve outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • the emergency boost valve When the pressure of the train pipe is higher than the threshold, the emergency boost valve is in a closed state; at this time, the second two-way valve only obtains the fourth pre-control pressure P4, outputs the sixth pre-control pressure P6, and acts on the control port of the second relay valve; the total air is input to the inlet of the second relay valve, and after flow amplification, the outlet of the second relay valve outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve.
  • a locomotive brake control system when the charging and exhaust solenoid valve or the second relay valve controlling the brake cylinder fails, multiple redundancies such as a mechanical three-way valve, an average pipe pressure, and an emergency boost valve can be used to achieve Redundant control of brake cylinder pressure.
  • FIG1 is a schematic diagram of a control system in a normal working state according to an embodiment
  • FIG2 is a schematic diagram of the operation of a brake cylinder control module in a fault state in an implementation manner
  • FIG3 is a schematic diagram of the operation of a second relay valve in a fault state in an embodiment
  • 1 average pipe control module 101 first charging solenoid valve, 102 first exhaust solenoid valve, 103 first relay valve, 104 first switching valve, 105 first pre-control air cylinder; 2 brake cylinder control module, 201 second charging solenoid valve, 202 second exhaust solenoid valve, 203 second switching valve, 204 mechanical three-way valve, 205 first two-way valve, 206 working air cylinder, 207 acting air cylinder, 208 electric control valve, 209 second two-way valve, 210 pressure reducing valve, 211 emergency boosting valve, 212 second relay valve, 213 second pre-control air cylinder, 214 third two-way valve, 215 brake cylinder; 3 total air; 4 train pipe.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • the relay valve in this application has a flow amplification function, which provides a wind source through the inlet so that the pressure of the gas output at the outlet is consistent with the pressure provided by the control port.
  • the two-way valve in this application has a pressure comparison selection function, which automatically compares the pressure of the two inlets and selects the one with higher pressure to output from the outlet. Both the relay valve and the two-way valve are mechanical valves, which can effectively deal with power failure.
  • the first embodiment of the present application provides a locomotive brake control system, as shown in Figures 1-3, including an average pipe control module 1, a brake cylinder control module 2 and a total wind 3.
  • a locomotive brake control system as shown in Figures 1-3, including an average pipe control module 1, a brake cylinder control module 2 and a total wind 3.
  • the average pipe control module 1 includes a first charging solenoid valve 101 connected to the total air 3 and a first exhaust solenoid valve 102, both can control the pressure of the input total air 3 to the required first pre-control pressure P1 through the inflation action and the exhaust action.
  • the setting of the total air, the first inflation solenoid valve and the first exhaust solenoid valve here belongs to the conventional setting mode in the field, and can be implemented by the technical solution in the prior art, for example, the first total air, the first solenoid valve and the second solenoid valve in CN111634304A are adopted.
  • the average pipe control module 1 also includes a first relay valve 103 and a first switching valve 104.
  • the first pre-control pressure P1 is connected to the control port of the first relay valve 103, the inlet of the first relay valve 103 is connected to the total air 3, and its outlet outputs the amplified first pre-control pressure as the average pipe pressure PA.
  • the first branch PA1 of the average pipe pressure PA is connected to the first inlet of the first two-way valve 205 of the brake cylinder control module 2 through a pipeline; the second branch PA2 of the average pipe pressure PA (as a backup) is connected to the inlet of the first switching valve 104 through a pipeline; when the first switching valve 104 is opened, the second branch PA2 output through the outlet of the first switching valve 104 reaches the first inlet of the third two-way valve 214 of the brake cylinder control module 2.
  • the first switching valve 104 can be a solenoid valve, which opens when powered and closes when powered off.
  • a first pre-control air cylinder 105 is also provided on the pipeline where the first pre-control pressure P1 is located.
  • the first pre-control air cylinder 105 can store compressed air to provide an air source as the first pre-control pressure P1.
  • the brake cylinder control module 2 includes a second charging solenoid valve 201 and a second exhaust solenoid valve 202 connected to the total air 3, which can control the pressure of the input total air 3 to be output as the required second pre-control pressure P2 through charging and exhausting actions.
  • the setting of the total air, the second charging solenoid valve and the second exhaust solenoid valve here also belongs to the conventional setting mode in the field, and can also be implemented by the technical solution in the prior art, such as the second total air, the third solenoid valve and the fourth solenoid valve in CN111634304A.
  • the brake cylinder control module 2 further includes a second switching valve 203 , a mechanical three-way valve 204 and a first two-way valve 205 .
  • the second pre-control pressure P2 is connected to a first inlet of the second switching valve 203 .
  • the mechanical three-way valve 204 is a mechanical valve capable of outputting a third pre-control pressure P3.
  • the mechanical three-way valve 204 may be a regulating three-way valve.
  • the regulating three-way valve works by changing the position of the valve core to change the direction and size of the fluid channel.
  • the valve core can change its position by manual means or automatic control. If the flow rate needs to be increased, the valve core will move toward the inlet to make it easier for the fluid to pass through the flow channel. On the contrary, if the flow rate needs to be reduced, the valve core will move toward the outlet, covering a portion of the pipeline and reducing the flow rate.
  • the first inlet of the mechanical three-way valve 204 is connected to the train pipe 4 (also called the brake pipe), which provides the air source; the second inlet of the mechanical three-way valve 204 is connected to the working air cylinder 206.
  • the train pipe 4 also called the brake pipe
  • the outlet of the mechanical three-way valve 204 is connected to the second inlet of the second switching valve 203 so as to output the third pre-control pressure P3.
  • the pipeline where the third pre-control pressure P3 is located can also be provided with an acting air cylinder 207 for storing compressed air to provide The air supply source serves as the third pre-control pressure P3.
  • the mechanical three-way valve 204 uses the pressure of the train pipe 4 to charge the working air cylinder 206. When the pressure of the train pipe 4 drops, the pressure of the working air cylinder 206 will be connected to the working air cylinder 207 to control the working air cylinder 207 to generate a corresponding pressure. When the train is depressurized, the mechanical three-way valve 204 controls the train pipe pressure to output the required third pre-control pressure P3.
  • the first inlet of the second switching valve 203 is connected to the second pre-control pressure P2, the second inlet is connected to the third pre-control pressure P3, and the outlet is connected to the second inlet of the first two-way valve 205; it is used to switch the connection between the second pre-control pressure P2 or the third pre-control pressure P3, and output to the second inlet of the first two-way valve 205.
  • the second switching valve 203 is a mechanical switching valve with a control port, and when there is an air source at its control port, the second pre-control pressure P2 is connected; when there is no air source at its control port, it switches to the third pre-control pressure P3.
  • the brake cylinder control module 2 is further provided with an electric control valve 208 for controlling the second switching valve 203 to switch between the second pre-control pressure P2 (first inlet) and the third pre-control pressure P3 (second inlet), wherein the inlet of the electric control valve 208 is connected to the total air 3, and the outlet is connected to the control port of the second switching valve 203.
  • the electric control valve 208 When the electric control valve 208 is powered on, it opens to connect the total air 3 and the control port of the second switching valve 203, so that the first inlet of the second switching valve 203 is connected to the second pre-control pressure P2 and outputs it to the first two-way valve 205; when the electric control valve 208 is powered off, it closes to cut off the total air 3 and the control port of the second switching valve 203, so that the second inlet of the second switching valve 203 is connected to the third pre-control pressure P3 and outputs it to the first two-way valve 205. That is, when power is lost, the second switching valve 203 will automatically switch to connect to its second inlet (connect to the mechanical three-way valve 204).
  • the first inlet of the first two-way valve 205 is connected to the outlet of the first relay valve 103 (i.e., connected to the first branch PA1 of the average pipe pressure PA), and the second inlet of the first two-way valve 205 is connected to the outlet of the second switching valve 203.
  • the outlet of the first two-way valve 205 is connected to the first inlet of the second two-way valve 209, so as to select the larger pressure of the first inlet and the second inlet of the first two-way valve 205 as the fourth pre-control pressure P4 (i.e., P4 is the larger pressure between PA1 and P2, or P4 is the larger pressure between PA1 and P3) and output to the first inlet of the second two-way valve 209.
  • the brake cylinder control module 2 is also provided with a pressure reducing valve 210 and an emergency pressure boosting valve 211; wherein the inlet of the pressure reducing valve 210 is connected to the total air 3, and the outlet thereof is connected to the inlet of the emergency pressure boosting valve 211; the outlet of the emergency pressure boosting valve 211 outputs the fifth pre-control pressure P5 to the second inlet of the second two-way valve 209; the control port of the emergency pressure boosting valve 211 is controlled by the air source from the train pipe 4 to open or close the pipeline between the pressure reducing valve 210 and the second inlet of the second two-way valve 209 to open or cut off the output of the fifth pre-control pressure P5.
  • the emergency pressure boosting valve 211 When the pressure of the air source of the train pipe 4 is sufficient, the emergency pressure boosting valve 211 is controlled to be in a closed state; when the pressure of the air source of the train pipe 4 drops to a threshold value, the emergency pressure boosting valve 211 is controlled to be in an open state, so that the air source from the pressure reducing valve 210 reaches the second two-way valve 209 as the fifth pre-control pressure P5.
  • the first inlet of the second two-way valve 209 is connected to the outlet of the first two-way valve 205.
  • the second inlet of the second two-way valve 209 is connected to the outlet of the emergency boost valve 211; in addition, the outlet of the second two-way valve 209 is connected to the control port of the second relay valve 212; the larger pressure of the first inlet and the second inlet of the second two-way valve 209 is selected as the sixth pre-control pressure P6 (that is, P6 is the larger pressure between P4 and P5) and output to the control port of the second relay valve 212.
  • a second pre-control air cylinder 213 can also be set on the pipeline where the sixth pre-control pressure P6 is located, which is used to store compressed air to provide a wind source as the sixth pre-control pressure P6.
  • the inlet of the second relay valve 212 is connected to the main air 3, and the outlet thereof is connected to the second inlet of the third two-way valve 214, so as to output the amplified sixth pre-control pressure as the first brake cylinder pressure PB1 to the second inlet of the third two-way valve 214.
  • the first inlet of the third two-way valve 214 is connected to the outlet of the first switching valve 104 (i.e., the second branch PA2 of the average pipe pressure PA), and the outlet of the third two-way valve 214 is connected to the brake cylinder 215, so as to select the larger pressure between the first inlet and the second inlet of the third two-way valve 214 as the second brake cylinder pressure PB2 (i.e., PB2 is the larger pressure between PB1 and PA2) and output it to the brake cylinder for braking.
  • PB2 the larger pressure between PB1 and PA2
  • the total wind in the present application can refer to the total wind in the same place, or the total wind in different places (such as the branch of the total wind), and can refer to the total wind from the total air cylinder.
  • multiple sensors especially pressure sensors, can be set to measure the pressure in different parts to increase or reduce pressure, or to give early warning, etc., which can be understood by those skilled in the art.
  • various electrically controlled valves in the present application such as various solenoid valves, etc., their states of power on or off, and the aforementioned various sensors can be controlled by a control unit, and the control unit can use various processors that can meet the conditions, such as CPU, PLC, industrial computer, computer and other hardware, and store programs that can realize corresponding functions in a memory through programming, and execute these programs through the control unit to realize various functions.
  • This is a conventional control means that can be thought of, and it can be understood by those skilled in the art.
  • a second embodiment of the present application provides a locomotive brake control method, which adopts the locomotive brake control system described in any of the above embodiments, including at least one of the following states:
  • the first inflation solenoid valve 101 and the first exhaust solenoid valve 102 control the pressure of the input total air 3 to the required first pre-control pressure P1 through inflation action and exhaust action, and output it to the first pre-control air cylinder 105.
  • the first pre-control pressure P1 also acts on the control port of the first relay valve 103.
  • the total air 3 is input to the inlet of the first relay valve 103.
  • the outlet of the first relay valve 103 outputs the average pipe pressure PA.
  • the first branch PA1 of the average pipe pressure reaches the first inlet of the first two-way valve 205 of the brake cylinder control module 2.
  • the first switching valve 104 loses power and is in a closed state, and does not provide the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve 214 .
  • the second inflation solenoid valve 201 and the second exhaust solenoid valve 202 control the pressure of the input total air 3 to be output as the required second pre-control pressure P2 through inflation action and exhaust action.
  • the electric control valve 208 is energized and opened, and the total air 3 reaches the control port of the second switching valve 203 , so that the second pre-control pressure P2 enters the second switching valve 203 and reaches the second inlet of the first two-way valve 205 .
  • the first two-way valve 205 takes the larger of the first branch pressure PA1 of the average pipe pressure and the second pre-control pressure P2 , and outputs a fourth pre-control pressure P4 to the first inlet of the second two-way valve 209 .
  • the emergency boost valve 211 When the pressure of the train pipe 4 drops to a threshold value, the emergency boost valve 211 is turned on, and outputs the fifth pre-control pressure P5 to the second inlet of the second two-way valve 209.
  • the second two-way valve 209 takes the larger of the fourth pre-control pressure P4 and the fifth pre-control pressure P5, and outputs the sixth pre-control pressure P6 to the second pre-control air cylinder 213.
  • the emergency boost valve 211 When the pressure of the train pipe 4 is higher than the threshold, the emergency boost valve 211 is in a closed state; at this time, the second two-way valve 209 only obtains the fourth pre-control pressure P4 and outputs the sixth pre-control pressure P6 to the second pre-control air cylinder 213.
  • the sixth pre-control pressure P6 also acts on the control port of the second relay valve 212.
  • the total air 3 is input to the inlet of the second relay valve 212.
  • the outlet of the second relay valve 212 outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve 214.
  • the third two-way valve 214 outputs the first brake cylinder pressure PB1 as the second brake cylinder pressure PB2 to the brake cylinder 215 to achieve braking.
  • the second charging solenoid valve 201 or the second exhaust solenoid valve 202 fails, or the brake cylinder loses power.
  • the first inflation solenoid valve 101 and the first exhaust solenoid valve 102 control the pressure of the input total air 3 to the required first pre-control pressure P1 through inflation action and exhaust action, and output it to the first pre-control air cylinder 105.
  • the first pre-control pressure P1 also acts on the control port of the first relay valve 103.
  • the total air 3 is input to the inlet of the first relay valve 103.
  • the outlet of the first relay valve 103 outputs the average pipe pressure PA.
  • the first branch PA1 of the average pipe pressure reaches the first inlet of the first two-way valve 205 of the brake cylinder control module 2.
  • the first switching valve 104 loses power and is in a closed state, and is unable to provide the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve 214 .
  • the working mode of the average tube control module here is similar to or the same as the working mode of the average tube control module under normal working conditions.
  • the second charging solenoid valve 201 and the second exhaust solenoid valve 202 fail and cannot normally output the second pre-control pressure P2.
  • the electric control valve 208 loses power and closes, and no air source reaches the control port of the second switching valve 203, causing the second switching valve 203 to switch to the mechanical three-way valve 204.
  • the mechanical three-way valve 204 generates a third pre-control pressure P3 according to the pressure change of the train pipe 4, and outputs it to the second inlet of the first two-way valve 205.
  • the first two-way valve 205 takes the larger of the first branch pressure PA1 of the average pipe pressure and the third pre-control pressure P3 , and outputs the fourth pre-control pressure P4 to the first inlet of the second two-way valve 209 .
  • the emergency boost valve 211 When the pressure of the train pipe 4 drops to a threshold value, the emergency boost valve 211 is turned on, and outputs the fifth pre-control pressure P5 to the second inlet of the second two-way valve 209.
  • the second two-way valve 209 takes the larger of the fourth pre-control pressure P4 and the fifth pre-control pressure P5, and outputs the sixth pre-control pressure P6 to the second pre-control air cylinder 213.
  • the emergency boost valve 211 When the pressure of the train pipe 4 is higher than the threshold, the emergency boost valve 211 is in a closed state; at this time, the second two-way valve 209 only obtains the fourth pre-control pressure P4 and outputs the sixth pre-control pressure P6 to the second pre-control air cylinder 213.
  • the sixth pre-control pressure P6 also acts on the control port of the second relay valve 212.
  • the total air 3 is input to the inlet of the second relay valve 212.
  • the outlet of the second relay valve 212 outputs the first brake cylinder pressure PB1 to the second inlet of the third two-way valve 214.
  • the third two-way valve 214 outputs the first brake cylinder pressure PB1 as the second brake cylinder pressure PB2 to the brake cylinder 215 to achieve braking.
  • the average pipe control module can continue to provide the first branch PA1 of the average pipe pressure; at the same time, the mechanical three-way valve 204 can also output the third pre-control pressure P3, so as to achieve double insurance.
  • the average pipe control module 1 controls the first switching valve 104 to be energized and open, and directly outputs the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve 214 to provide the brake cylinder pressure.
  • the first inflation solenoid valve 101 and the first exhaust solenoid valve 102 control the pressure of the input total air 3 to the required first pre-control pressure P1 through inflation action and exhaust action, and output it to the first pre-control air cylinder 105.
  • the first pre-control pressure P1 also acts on the control port of the first relay valve 103.
  • the total air 3 is input to the inlet of the first relay valve 103.
  • the outlet of the first relay valve 103 outputs the average pipe pressure PA.
  • the first branch PA1 of the average pipe pressure reaches the first inlet of the first two-way valve 205 of the brake cylinder control module 2.
  • the first switching valve 104 is energized and opened to provide the second branch PA2 of the average pipe pressure to the first inlet of the third two-way valve 214.
  • the second relay valve 212 fails and the first brake cylinder pressure PB1 cannot be effectively output.
  • the third two-way valve 214 outputs the second branch PA2 of the average pipe pressure as the second brake cylinder pressure PB2 to the brake cylinder 215 to achieve braking.
  • this embodiment can at least achieve the following functions:
  • the first branch PA1 of the average pipe pressure can be automatically switched for redundant control, or the mechanical three-way valve 204 can be automatically switched for redundant control.
  • the electric control valve 208 is powered on and opened during normal operation, and is powered off and closed during redundant operation; when the brake cylinder control module loses power, the mechanical three-way valve can also be used to redundantly control the pressure of the brake cylinder.
  • the emergency boost valve 211 controls the air source to use the train pipe pressure. When the train pipe pressure is exhausted, the emergency boost valve 211 automatically conducts and outputs the fifth pre-control pressure P5 to the second two-way valve 209 to provide pre-control pressure for the brake cylinder control module.
  • the sixth pre-control pressure P6 cannot be output as the first brake cylinder pressure PB1.
  • the first switching valve 104 is energized and opened through the averaging pipe control module, and the branch pressure of the averaging pipe is directly output to the brake cylinder to provide the brake cylinder pressure.
  • the functional modules are partitioned, the brake cylinder pressure-related functions are controlled in the brake cylinder control module, and the average pipe pressure function is controlled in the average pipe control module.
  • the other functional module performs redundant control, and the brake system functions are used normally, thereby improving the availability of the system.
  • the corresponding module can be replaced after the maintenance conditions are met, thereby improving the maintainability of the system.

Landscapes

  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

本申请提供了一种机车制动控制系统及控制方法,该系统包括平均管控制模块、制动缸控制模块和总风;当控制制动缸的充排气电磁阀或第二中继阀故障时,可以使用机械三通阀、平均管压力、紧急增压阀等多重冗余,实现对制动缸压力的冗余控制。

Description

机车制动控制系统及控制方法
本申请要求在2023年07月24日提交中国专利局、申请号为2023109090356、发明名称为“机车制动控制系统及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于机车制动控制领域,具体地涉及一种机车制动控制系统及控制方法。
背景技术
机车制动控制系统是机车最重要的核心系统之一,该系统的一项关键功能是控制制动缸的压力,机车制动控制系统通过控制制动缸压力值来实现机车的制动和缓解功能。制动缸压力控制采用的常规做法是通过高频电磁阀控制预控压力,然后经过中继阀输出与预控压力一致的制动缸压力,为了避免制动缸控制失效对机车运行造成影响,通常对易出现故障的预控压力控制部分进行备份。
现有机车制动控制系统主要有克诺尔公司开发的CCBII系统和法维莱公司开发的Eurotrol系统,这两种制动控制系统均采用机械空气分配阀对制动缸压力预控部分进行冗余,这种冗余控制方式一方面在机械阀类冗余控制时大幅降低了制动缸的压力控制精度,另一方面在制动缸中继阀发生故障时无法实现制动缸压力控制。
CN111634304A公开了一种机车制动控制系统及控制方法,包括平均管控制系统和制动缸控制系统,其中,平均管控制系统可以比较制动缸预控压力和平均管预控压力,并输出较大压力作为平均管压力;制动缸控制系统可以比较制动缸预控压力和平均管压力,并输出较大压力作为制动缸压力,去实现制动;可以实现两个控制系统的冗余。
发明内容
针对现有技术中存在的一些问题,本申请提供了一种机车制动控制系统及控制方法;可以实现多重冗余,提高系统的可靠性。
本申请第一方面提供的机车制动控制系统,包括平均管控制模块,制动缸控制模块和总风;其中:
所述平均管控制模块包括与总风相连的第一充气电磁阀和第一排气电磁阀,二者能够通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1。
所述平均管控制模块还包括第一中继阀和第一切换阀;其中,第一预控压力P1到达第一中继阀的控制端口;第一中继阀的入口连接至总风,第一中继阀的出口输出放大后的 第一预控压力作为平均管压力PA。
平均管压力PA的第一分支PA1通过管路连接至制动缸控制模块的第一双向阀的第一入口;平均管压力PA的第二分支PA2通过管路连接至所述的第一切换阀的入口;第二切换阀的出口能够输出第二分支PA2到达制动缸控制模块的第三双向阀的第一入口。
所述制动缸控制模块包括与总风相连的第二充气电磁阀和第二排气电磁阀,二者能够通过充气动作和排气动作将输入的总风的压力控制输出为所需的第二预控压力P2。
所述制动缸控制模块还包括第二切换阀、机械三通阀和第一双向阀;其中,第二预控压力P2连接至第二切换阀的第一入口。
所述机械三通阀为能够输出第三预控压力P3的机械阀。所述机械三通阀的第一入口连接列车管,以提供风源;所述机械三通阀的出口连接至第二切换阀的第二入口,以输出第三预控压力P3。
第二切换阀能够在第一入口和第二入口之间切换,以选择第二预控压力P2或第三预控压力P3,第二切换阀的出口连通至第一双向阀的第二入口。
第一双向阀的出口连接至第二中继阀的控制端口,以选择第一双向阀的第一入口和第二入口中的压力较大者作为第四预控压力P4输出至第二中继阀的控制端口。
所述第二中继阀的入口连接总风,其出口连接至第三双向阀的第二入口,以将放大后的第四预控压力作为第一制动缸压力PB1输出至第三双向阀的第二入口。
第三双向阀的出口连接至制动缸,以选择第三双向阀的第一入口和第二入口中的压力较大者作为第二制动缸压力PB2输出至制动缸,以进行制动。
在一些实施例中,所述制动缸控制模块还包括第二双向阀、减压阀和紧急增压阀;其中,
第一双向阀的出口连接至第二双向阀的第一入口,以选择第一双向阀的第一入口和第二入口中的压力较大者作为第四预控压力P4输出至第二双向阀的第一入口(此处,P4不再直接输出至第二中继阀的控制端口);
减压阀的入口连接至总风,减压阀的出口连接至紧急增压阀的入口;所述紧急增压阀的出口输出第五预控压力P5至第二双向阀的第二入口;所述紧急增压阀的控制端口连接列车管,以提供控制风源,打开或关闭紧急增压阀,以开启或切断第五预控压力P5的输出;
第二双向阀的出口连接至第二中继阀的控制端口,以选择第二双向阀的第一入口和第二入口中的压力较大者作为第六预控压力P6(代替没有第二双向阀时的第四预控压力P4)输出至第二中继阀的控制端口。
在一些实施例中,所述机械三通阀选择调节型三通阀;所述机械三通阀的第二入口连接工作风缸,当列车管的压力变化时,列车管与工作风缸实现动平衡。
在一些实施例中,第一预控压力P1所在管路上设置有第一预控风缸,能够储存压缩空气,以提供风源作为第一预控压力P1。
在一些实施例中,第六预控压力P6所在的管路上设置有第二预控风缸,用于储存压缩空气,以提供风源作为第六预控压力P6。
在一些实施例中,第三预控压力P3所在的管路上设置有作用风缸,用于储存压缩空气,以提供风源作为第三预控压力P3。
在一些实施例中,所述第二切换阀为具有控制端口的机械切换阀;当其控制端口有风源时,连通第二预控压力P2;当其控制端口没有风源时,切换至连通第三预控压力P3。
在一些实施例中,所述制动缸控制模块中设置有用于控制第二切换阀在第二预控压力P2和第三预控压力P3之间进行切换的电控阀,其中,所述电控阀的入口与总风相连,其出口与第二切换阀的控制端口相连;其中所述电控阀配置为:得电时,连通总风和第二切换阀的控制端口,以使第二切换阀连通第二预控压力P2;失电时,切断总风和第二切换阀的控制端口,以使第二切换阀连通第三预控压力P3。
本申请第二方面提供的机车制动控制方法,可以采用前文任意实施例所述的机车制动控制系统,包括以下三种状态中的至少一种:
(1)正常工作状态:
在平均管控制模块中:
所述第一充气电磁阀和第一排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1,作用在第一中继阀的控制端口;第一中继阀的入口输入总风,经过流量放大后,第一中继阀的出口输出平均管压力PA,该平均管压力的第一分支PA1到达制动缸控制模块的第一双向阀的第一入口。
所述第一切换阀处于关闭状态,不提供平均管压力的第二分支PA2至第三双向阀的第一入口。
在制动缸控制模块中:
所述第二充气电磁阀和第二排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第二预控压力P2。
电控阀得电,总风到达第二切换阀的控制端口,使得所述第二预控压力P2进入第二切换阀并到达第一双向阀的第二入口。
所述第一双向阀在平均管压力的第一分支PA1和第二预控压力P2中取大,输出第四预控压力P4作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
所述第三双向阀将第一制动缸压力PB1输出为第二制动缸压力PB2,并到达制动缸,以实现制动。
(2)制动缸控制模块故障状态
在平均管控制模块中:
所述第一充气电磁阀和第一排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1,并作用在第一中继阀的控制端口;第一中继阀的入口输入总风,经过流量放大后,第一中继阀的出口输出平均管压力PA,该平均管压力的第一分支PA1到达制动缸控制模块的第一双向阀的第一入口。
所述第一切换阀处于关闭状态,无法提供平均管压力的第二分支PA2至第三双向阀的第一入口。
在制动缸控制模块中:
所述制动缸控制模块中无法正常地输出第二预控压力P2。
电控阀失电,没有风源到达第二切换阀的控制端口,使得第二切换阀切换至连接机械三通阀,所述机械三通阀根据列车管的压力变化产生第三预控压力P3,并输出至第一双向阀的第二入口。
所述第一双向阀在平均管压力的第一分支PA1和第三预控压力P3中取大,输出第四预控压力P4,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
所述第三双向阀将第一制动缸压力PB1输出为第二制动缸压力PB2,并到达制动缸,以实现制动。
(3)第二中继阀故障状态
在平均管控制模块中:
所述第一充气电磁阀和第一排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1,并作用在第一中继阀的控制端口;第一中继阀的入口输入总风,经过流量放大后,第一中继阀的出口输出平均管压力PA。
其中,平均管压力的第一分支PA1到达制动缸控制模块的第一双向阀的第一入口;所述第一切换阀处于开启状态,将平均管压力的第二分支PA2提供至第三双向阀的第一入口。
在制动缸控制模块中:
第二中继阀故障,第一制动缸压力PB1无法有效输出。
所述第三双向阀将平均管压力的第二分支PA2输出为第二制动缸压力PB2,并到达制动缸,以实现制动。
在一些实施例中,当制动缸控制模块具有第二双向阀、减压阀和紧急增压阀时:
对于(1)正常工作状态:
所述第一双向阀在平均管压力的第一分支PA1和第二预控压力P2中取大,输出第四预控压力P4至第二双向阀的第一入口。
当列车管的压力降低至阈值时,紧急增压阀导通,输出第五预控压力P5至第二双向阀的第二入口。所述第二双向阀在第四预控压力P4和第五预控压力P5中取大,输出第六预控压力P6(代替没有第二双向阀时的第四预控压力P4),并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
当列车管的压力高于阈值时,紧急增压阀为关闭状态;此时,所述第二双向阀仅获取第四预控压力P4,输出第六预控压力P6,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
对于(2)制动缸控制模块故障状态:
所述第一双向阀在平均管压力的第一分支PA1和第三预控压力P3中取大,输出第四预控压力P4至第二双向阀的第一入口。
当列车管的压力降低至阈值时,紧急增压阀导通,输出第五预控压力P5至第二双向阀的第二入口。所述第二双向阀在第四预控压力P4和第五预控压力P5中取大,输出第六预控压力P6(代替没有第二双向阀时的第四预控压力P4),并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
当列车管的压力高于阈值时,紧急增压阀为关闭状态;此时,所述第二双向阀仅获取第四预控压力P4,输出第六预控压力P6,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
与现有技术相比,本申请的有益效果为:
本申请至少一种实施方式提供的机车制动控制系统,当控制制动缸的充排气电磁阀或第二中继阀故障时,可以使用机械三通阀、平均管压力、紧急增压阀等多重冗余,实现对 制动缸压力的冗余控制。
附图说明
图1是一种实施方式的控制系统在正常工作状态下的工作示意图;
图2是一种实施方式的制动缸控制模块故障状态下的工作示意图;
图3是一种实施方式的第二中继阀故障状态下的工作示意图;
图中编号:1平均管控制模块,101第一充气电磁阀,102第一排气电磁阀,103第一中继阀,104第一切换阀,105第一预控风缸;2制动缸控制模块,201第二充气电磁阀,202第二排气电磁阀,203第二切换阀,204机械三通阀,205第一双向阀,206工作风缸,207作用风缸,208电控阀,209第二双向阀,210减压阀,211紧急增压阀,212第二中继阀,213第二预控风缸,214第三双向阀,215制动缸;3总风;4列车管。
具体实施方式
以下结合具体实施方式对本申请的技术方案进行详实的阐述,然而应当理解,在没有进一步叙述的情况下,一个实施方式中的元件、结构和特征也可以有益地结合到其他实施方式中。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请中的中继阀具有流量放大功能,通过入口提供风源,使得出口输出气体的压力与控制端口提供的压力一致。本申请中的双向阀具有压力比较选择功能,会自动比较两个入口的压力大小,并选择压力高者从出口输出。中继阀和双向阀均选择机械阀,可以有效地应对失电状态。
本申请的第一种实施方式提供了一种机车制动控制系统,如图1-3所示,包括平均管控制模块1,制动缸控制模块2和总风3。其中:
(1)平均管控制模块
所述平均管控制模块1包括与总风3相连的第一充气电磁阀101和第一排气电磁阀 102,二者能够通过充气动作和排气动作将输入的总风3的压力控制输出为所需的第一预控压力P1。此处的总风、第一充气电磁阀和第一排气电磁阀的设置属于本领域的常规设置方式,可以采用现有技术中的技术方案实现,例如采用CN111634304A中的第一总风,第一电磁阀和第二电磁阀。
所述平均管控制模块1还包括第一中继阀103和第一切换阀104。所述第一预控压力P1连接至第一中继阀103的控制端口,第一中继阀103的入口连接至总风3,其出口输出放大后的第一预控压力作为平均管压力PA。该平均管压力PA的第一分支PA1通过管路连接至制动缸控制模块2的第一双向阀205的第一入口;该平均管压力PA的第二分支PA2(作为备用)通过管路连接至所述的第一切换阀104的入口;当第一切换阀104打开时,经过第一切换阀104的出口输出的第二分支PA2到达制动缸控制模块2的第三双向阀214的第一入口。所述第一切换阀104可为电磁阀,得电时打开,失电时关闭。
第一预控压力P1所在管路上还设置有第一预控风缸105,该第一预控风缸105可以储存压缩空气,以提供风源作为第一预控压力P1。
(2)制动缸控制模块
所述制动缸控制模块2包括与总风3相连的第二充气电磁阀201和第二排气电磁阀202,二者能够通过充气动作和排气动作将输入的总风3的压力控制输出为所需的第二预控压力P2。此处的总风、第二充气电磁阀和第二排气电磁阀的设置也属于本领域的常规设置方式,也可以采用现有技术中的技术方案实现,例如采用CN111634304A中的第二总风,第三电磁阀和第四电磁阀。
所述制动缸控制模块2还包括第二切换阀203、机械三通阀204和第一双向阀205。其中,第二预控压力P2连接至第二切换阀203的第一入口。
如图2所示,所述机械三通阀204为能够输出第三预控压力P3的机械阀。在一实施方式中,机械三通阀204可选择调节型三通阀。调节型三通阀工作原理是通过改变阀芯的位置来改变流体渠道的方向和大小。阀芯可以通过手动装置或自动控制来改变其位置。如果需要增加流量,阀芯会移向入口,使流体更容易通过流道。相反,如果需要减少流量,阀芯会移向出口,覆盖一部分管道,减少流量。
所述机械三通阀204的第一入口连接列车管4(也叫制动管),由其提供风源;所述机械三通阀204的第二入口连接工作风缸206,当列车管4压力变化时,列车管4与工作风缸206实现动平衡。机械三通阀204的出口连接至第二切换阀203的第二入口,以能够输出第三预控压力P3。
第三预控压力P3所在的管路上还可以设置作用风缸207,用于储存压缩空气,以提 供风源作为第三预控压力P3。
机械三通阀204使用列车管4的压力充风至工作风缸206。当列车管4的压力下降后,工作风缸206的压力会与作用风缸207导通,控制作用风缸207产生相应压力。当列车减压后,机械三通阀204将列车管压力控制输出为所需的第三预控压力P3。
所述第二切换阀203的第一入口连通第二预控压力P2,其第二入口连通第三预控压力P3,出口连通至第一双向阀205的第二入口;用于切换连接第二预控压力P2或第三预控压力P3,并输出至第一双向阀205的第二入口。
在一种实施方式中,所述第二切换阀203为具有控制端口的机械切换阀,当其控制端口有风源时,连通第二预控压力P2;当其控制端口没有风源时,切换至连通第三预控压力P3。更具体地,所述制动缸控制模块2中还设置有用于控制第二切换阀203在第二预控压力P2(第一入口)和第三预控压力P3(第二入口)之间进行切换的电控阀208,其中,所述电控阀208的入口与总风3相连,其出口与第二切换阀203的控制端口相连。所述电控阀208得电时打开,连通总风3和第二切换阀203的控制端口,使得第二切换阀203的第一入口连通第二预控压力P2,并输出至第一双向阀205;所述电控阀208失电时关闭,切断总风3和第二切换阀203的控制端口,使得第二切换阀203的第二入口连通第三预控压力P3,并输出至第一双向阀205。即当失电时,第二切换阀203会自动切换到连通其第二入口(连接机械三通阀204)。
如前所述,第一双向阀205的第一入口连接第一中继阀103的出口(即连接平均管压力PA的第一分支PA1),第一双向阀205的第二入口连接第二切换阀203的出口。此外,第一双向阀205的出口连接至第二双向阀209的第一入口,以选择第一双向阀205的第一入口和第二入口中的压力较大者作为第四预控压力P4(即:P4为PA1和P2之中压力较大者,或P4为PA1和P3之中压力较大者)输出至第二双向阀209的第一入口。
作为一种应急的手段,所述制动缸控制模块2还设置有减压阀210和紧急增压阀211;其中,减压阀210的入口连接至总风3,其出口连接至紧急增压阀211的入口;所述紧急增压阀211的出口输出第五预控压力P5至第二双向阀209的第二入口;所述紧急增压阀211的控制端口由来自列车管4的风源控制,以打开或关闭减压阀210至第二双向阀209的第二入口之间的管路,以开启或切断第五预控压力P5的输出。当列车管4的风源的压力足够时,紧急增压阀211被控制为关闭状态;当列车管4的风源的压力下降至阈值时,紧急增压阀211被控制为打开状态,使得来自减压阀210的风源到达第二双向阀209,作为第五预控压力P5。
如前所述,第二双向阀209的第一入口连接第一双向阀205的出口,第二双向阀209 的第二入口连接紧急增压阀211的出口;此外,第二双向阀209的出口连接至第二中继阀212的控制端口;以选择第二双向阀209的第一入口和第二入口中的压力较大者作为第六预控压力P6(即:P6为P4和P5之中压力较大者)输出至第二中继阀212的控制端口。第六预控压力P6所在的管路上还可以设置第二预控风缸213,用于储存压缩空气,以提供风源作为第六预控压力P6。
所述第二中继阀212的入口连接总风3,其出口连接至第三双向阀214的第二入口,以将放大后的第六预控压力作为第一制动缸压力PB1输出至第三双向阀214的第二入口。第三双向阀214的第一入口连接第一切换阀104的出口(即平均管压力PA的第二分支PA2),第三双向阀214的出口连接至制动缸215,以选择第三双向阀214的第一入口和第二入口中的压力较大者作为第二制动缸压力PB2(即:PB2为PB1和PA2之中压力较大者)输出至制动缸,以进行制动。
值得理解的是,本申请中的总风可以指同一处的总风,也可以是不同处的总风(例如总风的分支),均可指来自总风缸的总风。本申请中的控制系统中还可以设置多个传感器,尤其是压力传感器,用于测量不同部位的压力,以增压或减压,或进行预警等,这是本领域的技术人员可以理解的。此外,本申请中的各种电控阀门,例如各种电磁阀等,其得电或失电等状态,以及前述的各种传感器可以由控制单元来进行控制,所述控制单元可以采用各种能够满足条件的处理器,例如CPU,PLC,工控机,计算机等硬件,通过编程并将能够实现相应功能的程序储存在存储器中,通过控制单元对这些程序的执行,以实现各种功能。这是所能够想到的常规的控制手段,也是本领域的技术人员可以理解的。
本申请的第二种实施方式提供了一种机车制动控制方法,采用前文任意实施方式所述的机车制动控制系统,包括以下状态中的至少一种:
(1)正常工作状态(如图1所示):
在平均管控制模块中:
所述第一充气电磁阀101和第一排气电磁阀102通过充气动作和排气动作将输入的总风3的压力控制输出为所需的第一预控压力P1,并输出至第一预控风缸105。
所述第一预控压力P1还作用在第一中继阀103的控制端口,第一中继阀103的入口输入总风3,经过流量放大后,第一中继阀103的出口输出平均管压力PA,该平均管压力的第一分支PA1到达制动缸控制模块2的第一双向阀205的第一入口。
所述第一切换阀104失电,处于关闭状态,不提供平均管压力的第二分支PA2至第三双向阀214的第一入口。
在制动缸控制模块中:
所述第二充气电磁阀201和第二排气电磁阀202通过充气动作和排气动作将输入的总风3的压力控制输出为所需的第二预控压力P2。
电控阀208得电而打开,总风3到达第二切换阀203的控制端口,使得所述第二预控压力P2进入第二切换阀203并到达第一双向阀205的第二入口。
所述第一双向阀205在平均管压力的第一分支PA1和第二预控压力P2中取大,输出第四预控压力P4至第二双向阀209的第一入口。
当列车管4的压力降低至阈值时,紧急增压阀211导通,输出第五预控压力P5至第二双向阀209的第二入口。所述第二双向阀209在第四预控压力P4和第五预控压力P5中取大,输出第六预控压力P6至第二预控风缸213。
当列车管4的压力高于阈值时,紧急增压阀211为关闭状态;此时,所述第二双向阀209仅获取第四预控压力P4,输出第六预控压力P6至第二预控风缸213。
第六预控压力P6还作用在第二中继阀212的控制端口,第二中继阀212的入口输入总风3,经过流量放大后,第二中继阀212的出口输出第一制动缸压力PB1至第三双向阀214的第二入口。
所述第三双向阀214将第一制动缸压力PB1输出为第二制动缸压力PB2,并到达制动缸215,以实现制动。
(2)制动缸控制模块故障状态(如图2所示)
当制动缸控制模块中出现故障时,例如第二充气电磁阀201,第二排气电磁阀202故障,或者制动缸失电等。
在平均管控制模块中:
所述第一充气电磁阀101和第一排气电磁阀102通过充气动作和排气动作将输入的总风3的压力控制输出为所需的第一预控压力P1,并输出至第一预控风缸105。
所述第一预控压力P1还作用在第一中继阀103的控制端口,第一中继阀103的入口输入总风3,经过流量放大后,第一中继阀103的出口输出平均管压力PA,该平均管压力的第一分支PA1到达制动缸控制模块2的第一双向阀205的第一入口。
所述第一切换阀104失电,处于关闭状态,无法提供平均管压力的第二分支PA2至第三双向阀214的第一入口。
本处平均管控制模块的工作方式与正常工作状态下的平均管控制模块的工作方式是相似或相同的。
在制动缸控制模块中:
所述第二充气电磁阀201和第二排气电磁阀202故障,无法正常地输出第二预控压力P2。
此时,电控阀208失电而关闭,没有风源到达第二切换阀203的控制端口,使得第二切换阀203切换至连接机械三通阀204,所述机械三通阀204根据列车管4的压力变化产生第三预控压力P3,并输出至第一双向阀205的第二入口。
所述第一双向阀205在平均管压力的第一分支PA1和第三预控压力P3中取大,输出第四预控压力P4至第二双向阀209的第一入口。
当列车管4的压力降低至阈值时,紧急增压阀211导通,输出第五预控压力P5至第二双向阀209的第二入口。所述第二双向阀209在第四预控压力P4和第五预控压力P5中取大,输出第六预控压力P6至第二预控风缸213。
当列车管4的压力高于阈值时,紧急增压阀211为关闭状态;此时,所述第二双向阀209仅获取第四预控压力P4,输出第六预控压力P6至第二预控风缸213。
第六预控压力P6还作用在第二中继阀212的控制端口,第二中继阀212的入口输入总风3,经过流量放大后,第二中继阀212的出口输出第一制动缸压力PB1至第三双向阀214的第二入口。
所述第三双向阀214将第一制动缸压力PB1输出为第二制动缸压力PB2,并到达制动缸215,以实现制动。
在该情况下,平均管控制模块可以继续提供平均管压力的第一分支PA1;同时,机械三通阀204也可以输出第三预控压力P3,从而可以实现双保险。
(3)第二中继阀故障状态(如图3所示)
当第二中继阀212故障时,无法将前文所述的第六预控压力P6输出为第一制动缸压力PB1,此时,平均管控制模块1控制第一切换阀104得电而打开,将平均管压力的第二分支PA2直接输出至第三双向阀214的第一入口,提供制动缸压力。具体实现如下:
在平均管控制模块中:
所述第一充气电磁阀101和第一排气电磁阀102通过充气动作和排气动作将输入的总风3的压力控制输出为所需的第一预控压力P1,并输出至第一预控风缸105。
所述第一预控压力P1还作用在第一中继阀103的控制端口,第一中继阀103的入口输入总风3,经过流量放大后,第一中继阀103的出口输出平均管压力PA。
其中,平均管压力的第一分支PA1到达制动缸控制模块2的第一双向阀205的第一入口。所述第一切换阀104得电而打开,将平均管压力的第二分支PA2提供至第三双向阀214的第一入口。
在制动缸控制模块中:
第二中继阀212故障,第一制动缸压力PB1无法有效输出。
所述第三双向阀214将平均管压力的第二分支PA2输出为第二制动缸压力PB2,并到达制动缸215,以实现制动。
本实施方式中所述步骤的顺序仅仅为描述顺序,在实际操作中,可以根据实际需求进行调整,因此该描述顺序并不构成对本申请的绝对限制。
本实施方式通过上述设置,至少可以实现以下功能:
(1)当制动缸控制模块中第二充气和第二排气电磁阀出现压力控制故障时,可自动切换平均管压力的第一分支PA1进行冗余控制,也可以自动切换机械三通阀204进行冗余控制。
(2)制动缸控制模块中,电控阀208正常工作时得电打开,冗余工作时失电而关闭;当制动缸控制模块失电时,同样可以实现机械三通阀冗余控制制动缸的压力。
(3)紧急增压阀211控制风源使用列车管压力,当列车管压力排空后,紧急增压阀211自动导通输出第五预控压力P5至第二双向阀209,为制动缸控制模块提供预控压力。
(4)当第二中继阀212故障时,无法将第六预控压力P6输出为第一制动缸压力PB1,通过平均管控制模块控制第一切换阀104得电而打开,将平均管的分支压力直接输出至制动缸,提供制动缸压力。
(5)本申请中功能模块分区处理,制动缸控制模块中进行制动缸压力相关功能控制,平均管控制模块中进行平均管压力功能控制。当一个模块出现故障时,另一个功能模块进行冗余控制,制动系统功能正常使用,提高了系统的可用性。当一个模块故障时,待具备检修条件后,再进行对应模块的更换处理,提高了系统的可维护性。
所述的实施方式仅仅是对本申请的优选实施方式进行描述,并非对本申请的范围进行限定,在不脱离本申请设计精神的前提下,本领域普通技术人员对本申请的技术方案作出的各种变形和改进,均应落入本申请权利要求书确定的保护范围内。

Claims (10)

  1. 一种机车制动控制系统,其特征在于,包括平均管控制模块,制动缸控制模块和总风;其中:
    所述平均管控制模块包括与总风相连的第一充气电磁阀和第一排气电磁阀,二者能够通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1;
    所述平均管控制模块还包括第一中继阀和第一切换阀;其中,第一预控压力P1到达第一中继阀的控制端口;第一中继阀的入口连接至总风,第一中继阀的出口输出放大后的第一预控压力作为平均管压力PA;平均管压力PA的第一分支PA1通过管路连接至制动缸控制模块的第一双向阀的第一入口;平均管压力PA的第二分支PA2通过管路连接至所述的第一切换阀的入口;第二切换阀的出口能够输出第二分支PA2到达制动缸控制模块的第三双向阀的第一入口;
    所述制动缸控制模块包括与总风相连的第二充气电磁阀和第二排气电磁阀,二者能够通过充气动作和排气动作将输入的总风的压力控制输出为所需的第二预控压力P2;
    所述制动缸控制模块还包括第二切换阀、机械三通阀和第一双向阀;其中,第二预控压力P2连接至第二切换阀的第一入口;
    所述机械三通阀为能够输出第三预控压力P3的机械阀;所述机械三通阀的第一入口连接列车管,以提供风源;所述机械三通阀的出口连接至第二切换阀的第二入口,以输出第三预控压力P3;
    第二切换阀配置为能够在其第一入口和第二入口之间切换,以选择第二预控压力P2或第三预控压力P3,第二切换阀的出口连通至第一双向阀的第二入口;
    第一双向阀的出口连接至第二中继阀的控制端口,以选择第一双向阀的第一入口和第二入口中的压力较大者作为第四预控压力P4输出至第二中继阀的控制端口;
    所述第二中继阀的入口连接总风,其出口连接至第三双向阀的第二入口,以将放大后的第四预控压力作为第一制动缸压力PB1输出至第三双向阀的第二入口;
    第三双向阀的出口连接至制动缸,以选择第三双向阀的第一入口和第二入口中的压力较大者作为第二制动缸压力PB2输出至制动缸,以进行制动。
  2. 根据权利要求1所述的机车制动控制系统,其特征在于,所述制动缸控制模块还包括第二双向阀、减压阀和紧急增压阀;其中,
    第一双向阀的出口连接至第二双向阀的第一入口,以选择第一双向阀的第一入口和第 二入口中的压力较大者作为第四预控压力P4输出至第二双向阀的第一入口;
    减压阀的入口连接至总风,减压阀的出口连接至紧急增压阀的入口;所述紧急增压阀的出口输出第五预控压力P5至第二双向阀的第二入口;所述紧急增压阀的控制端口连接列车管,以提供控制风源,用于开启或关闭紧急增压阀;
    第二双向阀的出口连接至第二中继阀的控制端口,以选择第二双向阀的第一入口和第二入口中的压力较大者作为第六预控压力P6输出至第二中继阀的控制端口。
  3. 根据权利要求2所述的机车制动控制系统,其特征在于,所述机械三通阀选择调节型三通阀;所述机械三通阀的第二入口连接工作风缸,当列车管的压力变化时,列车管与工作风缸实现动平衡。
  4. 根据权利要求1-3任一项所述的机车制动控制系统,其特征在于,所述第二切换阀为具有控制端口的机械切换阀;当其控制端口有风源时,连通第二预控压力P2;当其控制端口没有风源时,切换至连通第三预控压力P3。
  5. 根据权利要求4所述的机车制动控制系统,其特征在于,所述制动缸控制模块中设置有用于控制第二切换阀在第二预控压力P2和第三预控压力P3之间进行切换的电控阀;其中,所述电控阀的入口与总风相连,其出口与第二切换阀的控制端口相连;其中所述电控阀配置为:得电时,连通总风和第二切换阀的控制端口,以使第二切换阀连通第二预控压力P2;失电时,切断总风和第二切换阀的控制端口,以使第二切换阀连通第三预控压力P3。
  6. 根据权利要求1-3和5任一项所述的机车制动控制系统,其特征在于,第一预控压力P1所在管路上设置有第一预控风缸,能够储存压缩空气,以提供风源作为第一预控压力P1;第三预控压力P3所在的管路上设置有作用风缸,用于储存压缩空气,以提供风源作为第三预控压力P3。
  7. 根据权利要求2或3所述的机车制动控制系统,其特征在于,第六预控压力P6所在的管路上设置有第二预控风缸,用于储存压缩空气,以提供风源作为第六预控压力P6。
  8. 一种机车制动控制方法,其特征在于,采用权利要求1-7任一项所述的机车制动控制系统,该方法包括以下三种状态中的至少一种:
    (1)正常工作状态:
    在平均管控制模块中:
    所述第一充气电磁阀和第一排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1,作用在第一中继阀的控制端口;第一中继阀的入口输入总风,经过流量放大后,第一中继阀的出口输出平均管压力PA;该平均管压力的第 一分支PA1到达制动缸控制模块的第一双向阀的第一入口;
    所述第一切换阀处于关闭状态,不提供平均管压力的第二分支PA2至第三双向阀的第一入口;
    在制动缸控制模块中:
    所述第二充气电磁阀和第二排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第二预控压力P2;
    第二切换阀的第一入口连通,使得所述第二预控压力P2进入第二切换阀并到达第一双向阀的第二入口;
    所述第一双向阀在平均管压力的第一分支PA1和第二预控压力P2中取大,输出第四预控压力P4,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口;
    所述第三双向阀将第一制动缸压力PB1输出为第二制动缸压力PB2,并到达制动缸,以实现制动;
    (2)制动缸控制模块故障状态
    在平均管控制模块中:
    所述第一充气电磁阀和第一排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1,并作用在第一中继阀的控制端口;第一中继阀的入口输入总风,经过流量放大后,第一中继阀的出口输出平均管压力PA,该平均管压力的第一分支PA1到达制动缸控制模块的第一双向阀的第一入口;
    所述第一切换阀处于关闭状态,无法提供平均管压力的第二分支PA2至第三双向阀的第一入口;
    在制动缸控制模块中:
    所述制动缸控制模块中无法正常地输出第二预控压力P2;
    第二切换阀切换至第二入口连通,使得第二切换阀切换至连接机械三通阀,输入第三预控压力P3,并输出至第一双向阀的第二入口;
    所述第一双向阀在平均管压力的第一分支PA1和第三预控压力P3中取大,输出第四预控压力P4,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口;
    所述第三双向阀将第一制动缸压力PB1输出为第二制动缸压力PB2,并到达制动缸,以实现制动;
    (3)第二中继阀故障状态
    在平均管控制模块中:
    所述第一充气电磁阀和第一排气电磁阀通过充气动作和排气动作将输入的总风的压力控制输出为所需的第一预控压力P1,并作用在第一中继阀的控制端口;第一中继阀的入口输入总风,经过流量放大后,第一中继阀的出口输出平均管压力PA;其中,平均管压力的第一分支PA1到达制动缸控制模块的第一双向阀的第一入口;所述第一切换阀处于开启状态,将平均管压力的第二分支PA2提供至第三双向阀的第一入口;
    在制动缸控制模块中:
    第二中继阀故障,第一制动缸压力PB1无法有效输出;此时,所述第三双向阀将平均管压力的第二分支PA2输出为第二制动缸压力PB2,并到达制动缸,以实现制动。
  9. 根据权利要求8所述的机车制动控制方法,其特征在于,当制动缸控制模块具有第二双向阀、减压阀和紧急增压阀时:
    对于(1)正常工作状态:
    所述第一双向阀在平均管压力的第一分支PA1和第二预控压力P2中取大,输出第四预控压力P4至第二双向阀的第一入口;
    当列车管的压力降低至阈值时,紧急增压阀导通,输出第五预控压力P5至第二双向阀的第二入口;所述第二双向阀在第四预控压力P4和第五预控压力P5中取大,输出第六预控压力P6,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口;
    当列车管的压力高于阈值时,紧急增压阀关闭;此时,所述第二双向阀仅获取第四预控压力P4,输出第六预控压力P6,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口;
    对于(2)制动缸控制模块故障状态:
    所述第一双向阀在平均管压力的第一分支PA1和第三预控压力P3中取大,输出第四预控压力P4至第二双向阀的第一入口;
    当列车管的压力降低至阈值时,紧急增压阀导通,输出第五预控压力P5至第二双向阀的第二入口;所述第二双向阀在第四预控压力P4和第五预控压力P5中取大,输出第六预控压力P6,并作用在第二中继阀的控制端口;第二中继阀的入口输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口;
    当列车管的压力高于阈值时,紧急增压阀关闭;此时,所述第二双向阀仅获取第四预控压力P4,输出第六预控压力P6,并作用在第二中继阀的控制端口;第二中继阀的入口 输入总风,经过流量放大后,第二中继阀的出口输出第一制动缸压力PB1至第三双向阀的第二入口。
  10. 根据权利要求8所述的机车制动控制方法,其特征在于,当制动缸控制模块具有电控阀时,在(1)正常工作状态中,电控阀得电而打开,使得第二切换阀的第一入口连通;在(2)制动缸控制模块故障状态中,电控阀失电而关闭,使得第二切换阀切换至第二入口连通。
PCT/CN2023/132602 2023-07-24 2023-11-20 机车制动控制系统及控制方法 WO2024099461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310909035.6A CN116811819A (zh) 2023-07-24 2023-07-24 机车制动控制系统及控制方法
CN202310909035.6 2023-07-24

Publications (1)

Publication Number Publication Date
WO2024099461A1 true WO2024099461A1 (zh) 2024-05-16

Family

ID=88118474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132602 WO2024099461A1 (zh) 2023-07-24 2023-11-20 机车制动控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN116811819A (zh)
WO (1) WO2024099461A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116811819A (zh) * 2023-07-24 2023-09-29 中车制动系统有限公司 机车制动控制系统及控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764276A1 (de) * 2005-09-08 2007-03-21 MAN Nutzfahrzeuge Aktiengesellschaft Druckluftbremsanlage für ein Kraftfahrzeug
CN111634304A (zh) * 2019-03-01 2020-09-08 中车青岛四方车辆研究所有限公司 一种机车制动控制系统及控制方法
CN212796891U (zh) * 2020-05-29 2021-03-26 中车株洲电力机车有限公司 一种城轨车辆用直通制动机的紧急制动控制系统
CN113002584A (zh) * 2021-03-31 2021-06-22 中车青岛四方车辆研究所有限公司 机车制动缸和平均管压力控制系统及控制方法
CN113212405A (zh) * 2021-06-01 2021-08-06 中车青岛四方车辆研究所有限公司 一种机车后备制动装置及其控制方法、机车
CN114750737A (zh) * 2022-05-30 2022-07-15 中车制动系统有限公司 机车制动控制系统及控制方法
CN115675563A (zh) * 2022-09-27 2023-02-03 中车制动系统有限公司 一种适配动车组和机车的无动力回送控制系统及其车辆
CN116811819A (zh) * 2023-07-24 2023-09-29 中车制动系统有限公司 机车制动控制系统及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764276A1 (de) * 2005-09-08 2007-03-21 MAN Nutzfahrzeuge Aktiengesellschaft Druckluftbremsanlage für ein Kraftfahrzeug
CN111634304A (zh) * 2019-03-01 2020-09-08 中车青岛四方车辆研究所有限公司 一种机车制动控制系统及控制方法
CN212796891U (zh) * 2020-05-29 2021-03-26 中车株洲电力机车有限公司 一种城轨车辆用直通制动机的紧急制动控制系统
CN113002584A (zh) * 2021-03-31 2021-06-22 中车青岛四方车辆研究所有限公司 机车制动缸和平均管压力控制系统及控制方法
CN113212405A (zh) * 2021-06-01 2021-08-06 中车青岛四方车辆研究所有限公司 一种机车后备制动装置及其控制方法、机车
CN114750737A (zh) * 2022-05-30 2022-07-15 中车制动系统有限公司 机车制动控制系统及控制方法
CN115675563A (zh) * 2022-09-27 2023-02-03 中车制动系统有限公司 一种适配动车组和机车的无动力回送控制系统及其车辆
CN116811819A (zh) * 2023-07-24 2023-09-29 中车制动系统有限公司 机车制动控制系统及控制方法

Also Published As

Publication number Publication date
CN116811819A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2024099461A1 (zh) 机车制动控制系统及控制方法
WO2019238138A1 (zh) 机车制动控制系统及控制方法
EP3636504B1 (en) A system for controlling backup air brake for a locomotive
CN113002584B (zh) 机车制动缸和平均管压力控制系统及控制方法
US7434895B2 (en) Electronic equalizing reservoir controller with pneumatic penalty override and reduction limiting
CN209921327U (zh) 一种轨道列车制动系统
WO2019096111A1 (zh) 一种机车及其后备制动设备
JPS61244658A (ja) 電気車用空気ブレ−キ制御装置
CN113104058B (zh) 轨道车辆空气制动控制单元、制动控制装置及方法
CN211287963U (zh) 调速系统压力油罐复合自动补气装置
US5788338A (en) Train brake pipe remote pressure control system and motor-driven regulating valve therefor
CN112193229A (zh) 一种轨道交通车辆制动系统及制动控制方法
CN112303294A (zh) 一种四个电磁阀组成的串并联结构的气动控制装置
CN111661025B (zh) 一种机车制动机平均管压力控制方法及装置
CN115214583A (zh) 一种铁路货车电空制动阀的控制系统
CN113586951B (zh) 一种气路控制装置及方法
CN113027848A (zh) 一种高可靠性电磁阀控制系统
CN217951965U (zh) 一种天然气调压站火警关断阀执行机构控制系统
CN115009246B (zh) 适配既有轨道工程车制动系统的微机控制空气制动装置
US20220105917A1 (en) Locomotive braking control system and control method
CN219948174U (zh) 一种改进型机车车辆风源系统溢流装置
CN213685400U (zh) 四个电磁阀组成的串并联结构的气动控制装置
CN113734131B (zh) 一种机车,风源系统及其控制方法
CN213236979U (zh) 双作用气动执行器驱动的阀门联锁控制系统
US20240149856A1 (en) Redundant governor apparatus for a vehicle air brake charging system