WO2024099383A1 - 半导体工艺腔室及其承载装置 - Google Patents

半导体工艺腔室及其承载装置 Download PDF

Info

Publication number
WO2024099383A1
WO2024099383A1 PCT/CN2023/130617 CN2023130617W WO2024099383A1 WO 2024099383 A1 WO2024099383 A1 WO 2024099383A1 CN 2023130617 W CN2023130617 W CN 2023130617W WO 2024099383 A1 WO2024099383 A1 WO 2024099383A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding
ring
insulating
plate
holes
Prior art date
Application number
PCT/CN2023/130617
Other languages
English (en)
French (fr)
Inventor
李俊衡
纪克红
李冬冬
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2024099383A1 publication Critical patent/WO2024099383A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of semiconductor process equipment, and in particular to a carrier device and a semiconductor process chamber comprising the carrier device.
  • the Physical Vapor Deposition (PVD) process refers to a semiconductor processing process that uses physical methods to deposit a metal film on a wafer.
  • the wafer In the field of semiconductor processing technology, the wafer is generally supported by a base or a wafer support rod.
  • a metal film has been deposited on the back of the wafer except for the edge area, and a metal film needs to be deposited on the front of the wafer, in order to avoid damaging the metal film on the back of the wafer, the wafer can only be supported by contacting the edge of the wafer.
  • wafer placement and removal is usually achieved through the cooperation of ejector pins and a carrier plate, that is, the ejector pins can pass through the ejector pin holes on the carrier plate to above the carrying surface of the carrier plate.
  • the robot first places the wafer on the top of the multiple ejector pins that have passed through, and then the carrier plate rises to retract the ejector pins under the carrying surface of the carrier plate, so that the carrier plate receives the wafer for the corresponding process. After the process is completed, the carrier plate descends, allowing the ejector pins to pass through again and lift the wafer so that the robot can take the wafer away.
  • the cleanliness of the carrier plate in the existing semiconductor process chamber tends to gradually decrease as the process progresses, and the carrier plate needs to be disassembled and maintained regularly to prevent pollutants and particulate matter on the carrier plate from affecting the semiconductor process effect.
  • the carrier plate has many parts, and the disassembly and assembly time is long, which seriously affects the machine production capacity. Therefore, how to improve the maintenance efficiency of the carrier plate and ensure the machine production capacity has become a technical problem that needs to be solved urgently in this field.
  • the present invention aims to provide a carrier device and a semiconductor process chamber, wherein the carrier device can improve the maintenance efficiency of the carrier plate and improve the production capacity of the machine.
  • a carrying device for being arranged in a cavity body of a semiconductor process chamber, the carrying device comprising a carrying plate and a plurality of supporting members, the carrying plate having a plurality of avoidance holes corresponding to the positions of the plurality of supporting members and penetrating the carrying plate in the height direction, and the carrying plate being capable of performing lifting and lowering movements relative to the supporting members, so that the top end of the supporting member can pass through the avoidance holes to the top of the carrying plate and lift the wafer on the carrying plate or retract into the avoidance holes and place the wafer on the carrying plate, the carrying device further comprising a plurality of matching sleeves, the plurality of matching sleeves being correspondingly arranged in the plurality of avoidance holes, the outer surface of the matching sleeves being in contact with the outer wall of the avoidance holes, and the supporting members being capable of passing through the matching sleeves at corresponding positions.
  • the carrying device also includes a lifting assembly for driving the carrying plate to perform lifting motion
  • the carrying plate includes an RF feeding plate and an insulating assembly
  • the insulating assembly is connected between the lifting assembly and the RF feeding plate, and has a supporting surface for supporting wafers, the supporting surface is higher than the top surface of the RF feeding plate, and is used to support the wafers carried on the supporting members when the top ends of the multiple supporting members are relatively lowered below the supporting surface.
  • the avoidance hole includes an insulating avoidance structure formed in the insulating assembly
  • the matching sleeve includes an insulating sleeve arranged in the insulating avoidance structure
  • the insulating sleeve has a first set of holes
  • the support member can pass through the first set of holes in the insulating sleeve in a vertical direction.
  • the insulating assembly comprises an insulating plate, a middle insulating ring and a top insulating ring, the bottom of the insulating plate is connected to the lifting assembly, the bottom of the middle insulating ring is arranged on the insulating plate, the RF feeding plate is arranged above the middle insulating ring, the top insulating ring surrounds the RF feeding plate and is arranged on the top of the middle insulating ring, and the top insulating ring has the supporting surface;
  • the insulation avoidance structure includes a plurality of first avoidance gaps formed on the inner circumferential wall of the top insulation ring corresponding one-to-one to the positions of the plurality of support members, and a plurality of second avoidance gaps formed in the middle insulation ring, and the plurality of insulation kits are arranged one-to-one in the plurality of second avoidance gaps.
  • the carrier plate further includes a shielding component.
  • the cavity includes a loading cavity and a process cavity located at the top of the loading cavity and connected thereto.
  • a shielding cylinder is provided on the inner side of the side wall of the process cavity.
  • the lifting assembly can drive the carrying plate to rise to a position where the shielding assembly contacts the bottom end of the shielding cylinder, so as to separate the process cavity inside the process cavity from the loading cavity inside the loading cavity through the shielding cylinder, the shielding assembly and the carrying plate, and electrically connect the shielding cylinder to the shielding assembly.
  • the avoidance hole also includes a shielding avoidance structure formed in the shielding assembly
  • the mating sleeve also includes a conductive sleeve arranged in the shielding avoidance structure, the conductive sleeve supports the insulating sleeve one-to-one, and the conductive sleeve has a second set of holes, and the support member can pass through the second set of holes in a vertical direction.
  • the hole walls of the first set of holes and the hole walls of the second set of holes are both surface-treated surfaces, and the roughness of the hole walls of the first set of holes is greater than the roughness of the remaining surfaces of the insulating sleeve, and the roughness of the hole walls of the second set of holes is greater than the roughness of the remaining surfaces of the conductive sleeve.
  • one of the top of the conductive kit and the bottom of the insulating kit is formed with at least one positioning protrusion
  • the other of the top of the conductive kit and the bottom of the insulating kit is formed with at least one positioning groove, and the positioning protrusions are accommodated in the corresponding positioning grooves one by one.
  • the shielding assembly includes a supporting connecting plate, a grounding shielding ring and a top shielding member, wherein the supporting connecting plate is arranged at the bottom of the insulating assembly and is grounded through the lifting assembly, the grounding shielding ring is arranged around the outside of the insulating assembly, and the top shielding member is arranged around the outside of the insulating assembly and is arranged on the top surface of the grounding shielding ring; the shielding avoidance structure is formed on In the grounded shielding ring;
  • the lifting assembly can drive the carrying plate to rise to a position where the top shielding member contacts the bottom end of the shielding cylinder, so as to separate the process chamber inside the process chamber from the loading chamber inside the loading chamber through the shielding cylinder, the top shielding member and the carrying plate, and electrically connect the shielding cylinder to the supporting connecting plate through the top shielding member.
  • the conductive sleeve comprises a conductive main body portion and a conductive extension portion, the second sleeve hole is formed in the conductive main body portion, and the conductive extension portion is located radially outside the conductive main body portion;
  • the shielding avoidance structure includes a kit positioning groove formed on the top surface of the grounding shielding ring and a kit positioning hole extending from the bottom of the kit positioning groove to the bottom of the grounding shielding ring, the kit positioning groove extends along the radial direction of the grounding shielding ring to connect with the inner circumferential side surface of the grounding shielding ring, the conductive main body is arranged in the kit positioning hole and the conductive extension part is fixedly arranged in the kit positioning groove.
  • the supporting device also includes a plurality of first positioning pins and a plurality of first fixing screws
  • the bottom of the kit positioning groove is formed with a plurality of first pin holes and a plurality of first threaded holes penetrating to the bottom of the grounding shielding ring
  • the conductive extension portion is formed with a plurality of first positioning holes and a plurality of first mounting holes penetrating the conductive extension portion along the axial direction of the supporting plate
  • a plurality of first positioning pins pass through the plurality of first positioning holes and the corresponding first pin holes one by one
  • a plurality of first fixing screws pass through the plurality of first mounting holes and the corresponding first threaded holes one by one, so as to fix the grounding shielding ring to the plurality of conductive extension portions.
  • annular support groove connected to the inner hole of the top insulating ring is formed on the top surface of the top insulating ring, the bottom surface of the annular support groove is formed as the support surface, and the side wall of the annular support groove is used to limit the wafer placed on the support surface.
  • the carrying device further comprises a connecting ring, which is arranged around the axis of the carrying plate and is used for fixed connection with the cavity;
  • the support member includes a columnar portion and a connecting portion, wherein the connecting portion is fixedly connected to the connecting ring.
  • the columnar portion extends in a vertical direction, and the top end of the columnar portion is used to pass through the corresponding avoidance hole and support the wafer, the connecting portion extends in a radial direction of the carrier plate, and one end of the connecting portion facing the axis of the carrier plate is fixedly connected to the bottom end of the columnar portion.
  • a receiving groove is formed on the top end face of the columnar portion, and the receiving groove extends to the side of the columnar portion toward the axis of the supporting plate, the bottom surface of the receiving groove is used to support the wafer, and the side wall of the receiving groove is used to limit the edge of the wafer.
  • the orthographic projection shape of the columnar portion on the horizontal plane is a square
  • the orthographic projection shape of the inner hole of the matching sleeve on the horizontal plane corresponds to the orthographic projection shape of the columnar portion on the horizontal plane.
  • the bearing device further includes a plurality of second positioning pins and a plurality of second fixing screws.
  • a plurality of support positioning grooves are formed on the top of the connecting ring, and the connecting parts are arranged in the support positioning grooves one by one.
  • a second pin hole and a second threaded hole are formed at the bottom of the supporting positioning groove, which penetrate to the bottom of the connecting ring.
  • a second positioning hole and a second mounting hole are formed on the connecting part which penetrate the connecting part along the axial direction of the supporting plate.
  • a plurality of second positioning pins pass through the plurality of second positioning holes and the corresponding second pin holes one by one, and a plurality of second fixing screws pass through the plurality of second mounting holes and the corresponding second threaded holes one by one, so as to fix the connecting ring with the plurality of connecting parts.
  • a semiconductor process chamber comprising a chamber body and the aforementioned carrying device.
  • a matching sleeve is provided in the avoidance hole of the carrier plate, and the support member passes through the matching sleeve and extends out of or retracts into the avoidance hole, so that when the semiconductor process is carried out, particles floating down from above the carrier plate will adhere to the matching sleeve after entering the avoidance hole.
  • FIG. 1( a ) is a schematic structural diagram of a semiconductor process chamber in the related art
  • FIG. 1( b ) is a schematic diagram of the semiconductor process chamber in FIG. 1( a ) in another state;
  • FIG. 2 is a schematic structural diagram of the wafer support assembly in FIG. 1( a );
  • FIG. 3 is a schematic structural diagram of a semiconductor process chamber provided by an embodiment of the present invention.
  • FIG4 is a partial enlarged schematic diagram of the semiconductor process chamber in FIG3 ;
  • FIG. 5 is a schematic top view of a top insulating ring in a semiconductor process chamber provided by an embodiment of the present invention.
  • FIG6 is a partial enlarged schematic diagram of the semiconductor process chamber in FIG3 ;
  • FIG. 7 is a top view schematically showing the connection relationship between the ground shielding ring and the conductive sleeve in the semiconductor process chamber provided by an embodiment of the present invention
  • FIG. 8 is a cross-sectional schematic diagram of the connection relationship between the ground shielding ring and the conductive sleeve in the semiconductor process chamber provided by an embodiment of the present invention
  • FIG. 9 is a schematic top view of a semiconductor process chamber provided in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the structure of a connecting ring in a semiconductor process chamber provided by an embodiment of the present invention.
  • FIG11 is a schematic cross-sectional view of the connecting ring in FIG10 ;
  • FIG. 12 is a schematic structural diagram of a support member in a semiconductor process chamber provided by an embodiment of the present invention.
  • FIG13 is a schematic top view of the support member in FIG12;
  • FIG. 14 is a schematic structural diagram of an insulation kit in a semiconductor process chamber provided by an embodiment of the present invention.
  • FIG. 15 is a schematic top view of the insulation kit in FIG. 14 .
  • a carrying device which is arranged in a cavity 100 of a semiconductor process chamber, as shown in Figures 3 and 9, the carrying device includes a carrying plate 200 and a plurality of support members 400, the carrying plate 200 has a plurality of avoidance holes corresponding to the positions of the plurality of support members 400 and penetrating the carrying plate 200 along the height direction, and the carrying plate 200 can be lifted and lowered relative to the support members 400, so that the top end of the support member 400 can pass through the avoidance hole to the top of the carrying plate 200 and lift the wafer 10 on the carrying plate 200 or retract into the avoidance hole and place the wafer 10 on the carrying plate 200, the carrying device also includes a plurality of matching sleeves 209, the plurality of matching sleeves 209 are arranged in the plurality of avoidance holes in a one-to-one correspondence, the outer surface of the matching sleeve 209 is in contact with the outer wall of the avoidance hole, and the support member 400
  • a matching sleeve 209 is provided in the avoidance hole of the carrier plate 200, and the support member 400 passes through the matching sleeve 209 and extends out of or retracts into the avoidance hole. Therefore, when the semiconductor process is carried out, the particles floating down from the top of the carrier plate 200 will adhere to the matching sleeve 209 after entering the avoidance hole.
  • the carrying device further includes a lifting assembly for driving the carrying plate 200 to perform lifting motion.
  • the lifting assembly may include a driving assembly (not shown in the figure) and a lifting shaft 310, an avoidance hole is formed on the bottom wall of the cavity 100, the bottom end of the lifting shaft 310 is connected to the driving assembly, and the top end of the lifting shaft 310 passes through the avoidance hole into the cavity 100 and is fixedly connected to the bottom of the carrier plate 200.
  • the lifting assembly further includes The lifting assembly includes a bellows 321, which is sleeved on the lifting shaft 310, and the top of the bellows 321 is sealed and connected to the bottom of the carrier plate 200, and the bottom of the bellows 321 is sealed and connected to the avoidance through hole, so as to isolate the interior of the cavity 100 from the external space.
  • the lifting assembly further includes a bottom flange 322, which is fixedly arranged at the bottom of the carrier plate 200 and is used to seal the bottom end of the bellows 321 with the avoidance through hole.
  • the interior of the lifting shaft 310 has a wiring hole that passes through the axial direction of the lifting shaft 310 , and the cables and pipes of the external components can be connected to the carrier plate 200 through the wiring hole to provide electrical signals or cooling water, etc. to the carrier plate 200 .
  • the carrier plate 200 includes an RF feeding plate 240 and an insulating component, the insulating component is connected between the lifting component and the RF feeding plate 240, and has a supporting surface C for supporting the wafer 10, the supporting surface C is higher than the top surface of the RF feeding plate 240, and is used to support the wafer 10 carried on the multiple supporting members 400 when the top ends of the multiple supporting members 400 are relatively lowered to below the supporting surface C.
  • the supporting surface C of the insulating component is higher than the top surface of the RF feeding plate 240, so that when the carrier plate rises to a position higher than the top end of the supporting member 400, the wafer will be supported by the supporting surface C instead, so that the RF feeding plate 240 can always be prevented from directly contacting the bottom surface of the wafer, thereby ensuring the integrity of the film layer on the back side of the wafer 10 and improving the wafer product yield.
  • the above-mentioned avoidance hole includes an insulating avoidance structure formed in an insulating assembly
  • the mating sleeve 209 includes an insulating sleeve 250 arranged in the insulating avoidance structure
  • the insulating sleeve 250 has a first set of holes 251
  • the support member 400 can pass through the first set of holes 251 in the insulating sleeve 250 in a vertical direction.
  • the avoidance hole includes an insulating avoidance structure formed in the insulating component, and an insulating sleeve 250 is provided in the insulating avoidance structure, so that the insulating sleeve 250 is used to replace the inner wall of the avoidance hole, and a gap is formed between the insulating sleeve 250 and the support member 400.
  • the particles floating down from the top of the carrier plate will adhere to the inner wall of the first set of holes 251 of the insulating sleeve 250.
  • only the insulating sleeve 250 can be removed for separate cleaning, and there is no need to remove the insulating component and other structures from the carrier plate.
  • the carrier 200 can be removed from the carrier, which simplifies the maintenance operations of the carrier and the semiconductor process chamber.
  • the inventors of the present invention also discovered during their research that in the existing solution, when the carrier plate 200 rises to a certain position (when the top surface of the carrier plate 200 is higher than the support surface B of the support rod 22), as shown in FIG1(b), the top surface of the carrier plate 200 will be used to provide support for the wafer 10. At this time, the top surface of the carrier plate 200 will still damage the metal film deposited on the back of the wafer.
  • the insulating assembly includes an insulating plate 210, a middle insulating ring 220 and a top insulating ring 230, the bottom of the insulating plate 210 is connected to the lifting assembly, the bottom of the middle insulating ring 220 is arranged on the insulating plate 210, the RF feeding plate 240 is arranged above the middle insulating ring 220, the top insulating ring 230 surrounds the RF feeding plate 240 and is arranged on the top of the middle insulating ring 220, the top insulating ring 230 has the above-mentioned supporting surface C for supporting the wafer 10, the supporting surface C is higher than the top surface of the RF feeding plate 240, and is used to support the wafers 10 carried on the multiple supporting members 400 when the top ends of the multiple supporting members 400 are relatively lowered to below the supporting surface C.
  • the above-mentioned insulation avoidance structure includes a plurality of first avoidance gaps 234 formed on the inner wall of the top insulation ring 230 corresponding to the positions of the plurality of support members 400, and a plurality of second avoidance gaps formed in the middle insulation ring 220, and a plurality of insulation kits 250 are arranged in the plurality of second avoidance gaps corresponding to each other.
  • the top insulating ring 230 surrounds the RF feeding plate 240, and the supporting surface C of the top insulating ring 230 is higher than the top surface of the RF feeding plate 240. Therefore, when the carrier plate rises to a position higher than the top of the support member 400, the wafer will be supported by the supporting surface C of the top insulating ring 230, thereby always avoiding direct contact between the RF feeding plate 240 and the bottom surface of the wafer, thereby ensuring the integrity of the film layer on the back side of the wafer 10 and improving the wafer product yield.
  • the insulation avoidance structure includes a second avoidance gap formed at the edge of the middle insulation ring 220, so that the insulation sleeve 250 is used to replace the middle insulation ring 220 to provide the inner wall of the first set of holes 251 that form a gap with the support member 400.
  • the particles floating down from the top of the carrier plate adhere to the inner wall of the first set of holes 251 of the insulating kit 250.
  • only the insulating kit 250 can be removed for separate cleaning. There is no need to remove the middle insulating ring 220 and other structures from the carrier plate 200, which simplifies the maintenance operations of the semiconductor process chamber.
  • annular support groove 233 connected to the inner hole of the top insulating ring 230 is formed on the top surface of the top insulating ring 230, the bottom surface of the annular support groove 233 is formed as a support surface C, and the side wall of the annular support groove 233 is used to limit the wafer 10 placed on the support surface C.
  • the insulating plate 210, the middle insulating ring 220, the top insulating ring 230 and the plurality of insulating sets 250 are all made of insulating materials, for example, ceramic materials.
  • the RF feeding plate 240 is used to connect to the lower power supply through the cable inside the lifting shaft 310 to provide RF signals to the wafer 10 above it during the semiconductor process.
  • the top insulating ring 230 includes an insulating ring extension portion 231 and an insulating ring main body portion 232, the insulating ring extension portion 231 is arranged around the outside of the insulating ring main body portion 232, and the bottom surface of the insulating ring extension portion 231 is flush with the bottom surface of the insulating ring main body portion 232.
  • a first annular receiving groove is formed on the top edge of the middle insulating ring 220, and the middle insulating ring 220 supports the top insulating ring 230 through the bottom of the first annular receiving groove, and the radial dimension of the second avoidance gap along the middle insulating ring 220 is greater than the radial dimension of the first annular receiving groove along the middle insulating ring 220.
  • the insulating sleeve 250 includes an insulating body 252 and an insulating extension 253, the top of the insulating body 252 is flush with the top of the middle insulating ring 220, and the top of the insulating extension 253 is flush with the bottom of the first annular receiving groove.
  • the middle insulating ring 220 includes an insulating ring main body and an extension portion 221 arranged around the top outside of the insulating ring main body, and the second avoidance gap is formed in the extension portion 221 .
  • the carrier plate 200 further includes a shielding assembly.
  • the chamber 100 includes a loading chamber 110 and a process chamber 120 located at the top of the loading chamber 110.
  • a shielding cylinder 123 is provided on the inner side of the side wall of the process chamber 120.
  • the lifting assembly can drive the carrier plate 200 to rise to a position where the shielding assembly contacts the bottom end of the shielding cylinder 123, so as to separate the process chamber inside the process chamber 120 from the loading chamber inside the loading chamber 110 through the shielding cylinder 123, the shielding assembly and the carrier plate 200, and electrically connect the shielding cylinder 123 to the shielding assembly.
  • the bottom end of the shielding cylinder 123 extends to the loading chamber 110 to facilitate electrical connection with the shielding assembly.
  • the above-mentioned avoidance hole also includes a shielding avoidance structure formed in the shielding assembly
  • the mating sleeve 209 includes a conductive sleeve 290 arranged in the shielding avoidance structure, and the conductive sleeve 290 supports the insulating sleeve 250 one by one, and the conductive sleeve 290 has a second set of holes 291, and the support member 400 can pass through the second set of holes 291 in the vertical direction.
  • the shielding assembly can separate the process chamber inside the process chamber 120 from the loading chamber inside the loading chamber 110 when the carrier plate 200 is raised to contact the bottom end of the shielding tube 123, and at the same time separate the electric field in the process chamber from the electric field below, thereby ensuring the process effect of the semiconductor process inside the semiconductor process chamber.
  • the shielding assembly is provided with a shielding avoidance structure corresponding to the support member 400, and the shielding avoidance structure is provided with a conductive sleeve 290, so that the avoidance hole is partially formed in the conductive sleeve 290, that is, the conductive sleeve 290 is used to replace the shielding assembly to provide the inner wall of the second set of holes 291 that form a gap with the support member 400.
  • the semiconductor process is performed, particles floating down from the top of the carrier plate adhere to the inner wall of the second set of holes 291 of the conductive sleeve 290.
  • the shielding assembly includes a supporting connecting plate 260, a grounding shielding ring 270 and a top shielding member 280.
  • the supporting connecting plate 260 is arranged at the bottom of the insulating assembly (i.e., the insulating plate 210) and is grounded through the lifting assembly.
  • the grounding shielding ring 270 is arranged around the insulating assembly.
  • the top shield 280 surrounds the outside of the insulating assembly (i.e., the extension 221 of the middle insulating ring 220) and is arranged on the top surface of the ground shield ring 270 (i.e., the top edge of the ground shield exceeds the extension 221 and supports the bottom of the ground shield ring 270).
  • the shield avoidance structure is formed in the ground shield ring 270.
  • the lifting assembly can drive the carrying plate 200 to rise to a position where the top shielding member 280 contacts the bottom end of the shielding cylinder 123, so as to separate the process chamber inside the process chamber 120 from the loading chamber inside the loading chamber 110 through the shielding cylinder 123, the top shielding member 280 and the carrying plate 200, and electrically connect the shielding cylinder 123 to the supporting connecting plate 260 through the top shielding member 280.
  • the support connecting plate 260, the grounding shielding ring 270, the top shielding member 280 and the conductive sleeve 290 are all conductors (for example, they can be made of metal).
  • the top shielding member 280 is electrically connected to the support connecting plate 260 through the grounding shielding ring 270 and the conductive sleeve 290, and then grounded through the support connecting plate 260 and the corresponding circuit connection inside the lifting shaft 310.
  • the process chamber inside the process chamber 120 is separated from the loading chamber inside the loading chamber 110, and at the same time, the electric field in the process chamber is separated from the electric field below, thereby ensuring the process effect of the semiconductor process carried out inside the semiconductor process chamber.
  • the ground shielding ring 270 is formed with a shielding avoidance structure at a position corresponding to the support member 400, and a conductive sleeve 290 is provided in the shielding avoidance structure, so that the avoidance hole is partially formed in the conductive sleeve 290, that is, the conductive sleeve 290 is used to replace the ground shielding ring 270 to provide the inner wall of the second set of holes 291 that form a gap with the support member 400.
  • the semiconductor process is performed, particles floating down from the top of the carrier plate adhere to the inner wall of the second set of holes 291 of the conductive sleeve 290.
  • the process chamber 120 includes a support ring 121 and a ceramic ring 122.
  • the bottom end of the ceramic ring 122 is connected to the loading chamber through the support ring 121.
  • the top opening of 110 is sealed and connected.
  • the shielding cylinder 123 is coaxial with the ceramic ring 122 and is arranged on the inner wall of the ceramic ring 122 .
  • the hole walls of the first set of holes 251 and the hole walls of the second set of holes 291 are both surface-treated surfaces, and the roughness of the hole walls of the first set of holes 251 is greater than the roughness of the remaining surfaces of the insulating kit 250, and the roughness of the hole walls of the second set of holes 291 is greater than the roughness of the remaining surfaces of the conductive kit 290.
  • the hole walls of the first set of holes 251 and the hole walls of the second set of holes 291 are surface treated to increase their roughness, thereby increasing the adsorption capacity of pollutants and particulate matter by the insulating kit 250 and the conductive kit 290, reducing the cleaning and maintenance frequency of the carrier plate, and further ensuring the machine's production capacity.
  • At least one positioning protrusion 294 is formed on the top of the conductive sleeve 290, and at least one positioning groove is formed on the bottom of the insulating sleeve 250, and the positioning protrusions 294 are accommodated in the corresponding positioning grooves of the insulating sleeve 250 one by one.
  • at least one positioning protrusion 294 can also be formed on the bottom of the insulating sleeve 250, and at least one positioning groove can be formed on the top of the conductive sleeve 290.
  • the conductive sleeve 290 includes a conductive main body 292 and a conductive extension 293, the second set of holes 291 is formed in the conductive main body 292, and the conductive extension 293 is located radially outside the conductive main body 292.
  • the shielding avoidance structure includes a kit positioning groove 271 formed on the top surface of the grounding shielding ring 270 and a kit positioning hole 272 extending from the bottom of the kit positioning groove 271 to the bottom of the grounding shielding ring 270, the kit positioning groove 271 extends along the radial direction of the grounding shielding ring 270 to connect with the inner circumferential side surface of the grounding shielding ring 270, the conductive main body 292 is arranged in the kit positioning hole 272 and the conductive extension part 293 is fixedly arranged in the kit positioning groove 271.
  • the carrier plate 200 further includes a The RF connecting plate 201, the lower cooling plate 202 and the upper cooling plate 203 are stacked in sequence from bottom to top between the lifting shaft 310, and the RF connecting plate 201 is used to transmit the signal in the cable inside the lifting shaft 310 to the RF feeding plate 240, and the lower cooling plate 202 and the upper cooling plate 203 are used to be connected to the cooling pipeline inside the lifting shaft 310 to cool the RF feeding plate 240 through the circulating coolant.
  • the conductive sleeve 290 can be fixedly connected to the grounding shielding ring 270 by pins and threaded fasteners.
  • the supporting device also includes a plurality of first positioning pins 273 and a plurality of first fixing screws 274.
  • the bottom of the sleeve positioning groove 271 is formed with a plurality of first pin holes and a plurality of first threaded holes that penetrate to the bottom of the grounding shielding ring 270.
  • the conductive extension portion 293 is formed with a plurality of first positioning holes and a plurality of first mounting holes that penetrate the conductive extension portion 293 along the axial direction of the supporting plate 200.
  • the plurality of first positioning pins 273 pass through the plurality of first positioning holes and the corresponding first pin holes one by one, and the plurality of first fixing screws 274 pass through the plurality of first mounting holes and the corresponding first threaded holes one by one to fix the grounding shielding ring 270 with the plurality of conductive extension portions 293.
  • the carrying device also includes a connecting ring 500, which is arranged around the axis of the carrying plate 200 and is fixedly connected to the cavity 100; as shown in Figures 3, 6 and 12, the support member 400 includes a columnar portion 410 and a connecting portion 420, the connecting portion 420 is fixedly connected to the connecting ring 500, the columnar portion 410 extends in a vertical direction, and the top of the columnar portion 410 is used to pass through the corresponding avoidance hole and support the wafer, the connecting portion 420 extends along the radial direction of the carrying plate 200, and the end of the connecting portion 420 facing the axis of the carrying plate 200 is fixedly connected to the bottom end of the columnar portion 410.
  • the support member 400 includes a columnar portion 410 and a connecting portion 420, the connecting portion 420 is fixedly connected to the connecting ring 500, the columnar portion 410 extends in a vertical direction, and the top of the columnar portion 410 is used to pass through the corresponding avoidance hole and support the wafer
  • Figures 1(a) and 1(b) are schematic diagrams of the structure of a semiconductor process chamber in the related art.
  • the reaction chamber structure includes a cavity 100, a carrier plate 200 disposed in the cavity 100, and a wafer support assembly 20.
  • the wafer support assembly 20 includes a connecting ring 21 and three support rods 22 (i.e., ejector pins) fixedly disposed on the connecting ring 21 and evenly distributed along the circumferential direction.
  • the connecting ring 21 is fixedly connected to the bottom surface of the cavity 100, and the carrier plate 200 can be raised and lowered in the cavity 100.
  • FIG2 is a schematic diagram of the structure of the wafer support assembly 20, wherein the top of the support rod 22 has a support limiter 23, and the support limiter 23 has a limiter surface A and a support surface B.
  • the support surface B of the support rod 22 provides support for the edge of the wafer 10 without damaging the metal film deposited on the back of the wafer.
  • the limiter surface A is an inclined surface, which can guide and limit the wafer and ensure the stability of the horizontal position of the wafer.
  • the inventor of the present invention also found in the research that the main reason for the problem of too fast contamination of the carrier plate when the existing semiconductor process chamber is used for semiconductor process is that the avoidance hole formed on the carrier plate 200 and matched with the support rod 22 needs to be designed to allow the support rod 22 and the support limiter 23 at the top to pass freely, so a large gap needs to be left between the inner wall of the avoidance hole and the support rod 22.
  • the gap cannot be completely covered, so it will cause the particles in the cavity 100 to easily fall into the gap and be adsorbed on the hole wall of the avoidance hole and the surface of the components of the carrier plate, causing contamination of the carrier plate.
  • the cross-sectional area of the columnar portion 410 at any height is not greater than the cross-sectional area at any height below it.
  • the cross-sectional area of the columnar portion 410 at any height is not greater than the cross-sectional area at any height below it, so that after the top end of the columnar portion 410 passes through the avoidance hole upward, the cross-sectional area of the portion located in the avoidance hole is not less than the cross-sectional area of the portion passing through to the top of the carrier plate 200, and then, when the shape and size of the avoidance hole correspond to the maximum cross-sectional area of the columnar portion 410, the columnar portion 410 can always maintain the filling effect on the internal space of the avoidance hole.
  • the gap between the columnar portion 410 and the inner wall of the avoidance hole will not expand after the top end of the columnar portion 410 passes through to the top of the carrier plate 200, thereby reducing the number of particles entering the gap between the columnar portion 410 and the inner wall of the avoidance hole, thereby ensuring
  • the surface cleanliness of the structure such as the carrier plate 200 is improved, the maintenance cycle of the semiconductor process chamber is extended, and the production efficiency of the machine is guaranteed.
  • a receiving groove 411 is formed on the top end face of the columnar portion 410, and the receiving groove 411 extends to the side of the columnar portion 410 toward the axis of the carrier plate 200.
  • the bottom surface of the receiving groove 411 is used to support the wafer 10, and the side wall of the receiving groove 411 is used to limit the edge of the wafer 10.
  • the horizontal projection shape of the columnar portion 410 is square, and the horizontal projection shape of the inner hole of the matching sleeve 209 (i.e., the first set of holes 251 and the second set of holes 291) corresponds to the horizontal projection shape of the columnar portion 410.
  • the horizontal projection shapes of the columnar portion 410 and the inner hole of the matching sleeve 209 are both square, so that the ridge structure on the hole wall of the inner hole of the matching sleeve 209 can be used to improve the adsorption effect of the matching sleeve 209 on particulate matter, thereby reducing the number of particles attached to the surfaces of other components, and further ensuring the surface cleanliness of structural components such as the carrier plate 200.
  • the connecting portion 420 of the support member 400 can be fixedly connected to the connecting ring 500 by means of a pin and a threaded fastener.
  • the bearing device further includes a plurality of second positioning pins 520 and a plurality of second fixing screws 530.
  • a plurality of support positioning grooves 510 are formed on the top of the connecting ring 500.
  • the bearing device further includes a plurality of second positioning pins 520 and a plurality of second fixing screws 530.
  • the connecting portions 420 are arranged in the support positioning grooves 510 one by one, and the bottom of the support positioning grooves 510 A second pin hole 511 and a second threaded hole 512 are formed extending through the bottom of the connecting ring 500, and a second positioning hole 430 and a second mounting hole 440 are formed on the connecting part 420 extending through the connecting part 420 along the axial direction of the supporting plate 200.
  • a plurality of second positioning pins 520 pass through the plurality of second positioning holes 430 and the corresponding second pin holes 511 in a one-to-one correspondence, and a plurality of second fixing screws 530 pass through the plurality of second mounting holes 440 and the corresponding second threaded holes 512 in a one-to-one correspondence to fix the connecting ring 500 to the plurality of connecting parts 420.
  • the second positioning pin 520 and the support positioning groove 510 on the connecting ring 500 jointly realize the horizontal position limitation of the connecting portion 420 of the support member 400, and the second threaded hole 512 realizes the fastening connection between the connecting portion 420 and the connecting ring 500, thereby ensuring the relative position accuracy between the columnar portion 410 of the support member 400 and the connecting ring 500, and further ensuring the alignment accuracy between the columnar portion 410 and the avoidance hole.
  • the support positioning grooves 510 extend in the radial direction of the connecting ring 500 , and a second pin hole 511 and a second threaded hole 512 are formed in each of the support positioning grooves 510 .
  • the support positioning groove 510 extends radially along the connecting ring 500, and each support member 400 is aligned with the connecting ring 500 only by a second positioning pin 520, so that the horizontal position of the connecting part 420 is limited by the combination of the side wall of the support positioning groove 510 and the second positioning pin 520, thereby simplifying the device structure while ensuring the alignment accuracy between the columnar part 410 and the avoidance hole.
  • the connecting portion 420 includes an extension portion 421 and a limiting portion 422 that are connected to each other, the extension portion 421 and the limiting portion 422 are distributed along the radial direction of the connecting ring 500, the extension portion 421 is connected between the limiting portion 422 and the bottom end of the columnar portion 410, and the dimension of the extension portion 421 along the radial direction perpendicular to the connecting ring 500 is greater than the dimension of the extension portion 421 along the radial direction perpendicular to the connecting ring 500, and the side wall of the support positioning groove 510 is used to limit the side wall of the extension portion 421 to limit the circumferential position of the support member 400.
  • a plurality of protrusions 550 extending in the direction toward the axis of the connecting ring 500 and corresponding to the circumferential positions of the plurality of support positioning grooves 510 are formed on the inner wall of the connecting ring 500, and the support positioning grooves 510 extend to the protrusions 550. That is, the connecting ring 500 is widened only at the supplementary position where the support member 400 is provided, and the cross section is narrowed at other positions, thereby reducing the overall weight of the connecting ring 500, ensuring the verticality of the plurality of columnar portions 410, and further ensuring the alignment accuracy between the columnar portions 410 and the avoidance holes.
  • the bearing device further includes a support adapter 600, and the bottom of the connecting ring 500 is fixedly connected to the bottom wall of the cavity 100 through the support adapter 600.
  • the connection ring 500 is connected so that the bottom surface of the connection ring 500 and the bottom wall of the cavity 100 are spaced relatively in the vertical direction.
  • the support adapter 600 includes an upper flange, a lower flange and a connecting column connected therebetween.
  • the connecting ring 500 has a connecting portion 540, and the connecting portion 540 is fastened and connected to the upper flange of the support adapter 600 by a fastener (such as a bolt), and the lower flange of the support adapter 600 is fastened and connected to the bottom wall of the gas 100 by a fastener (such as a bolt).
  • the semiconductor process chamber includes a chamber body 100 and the above-mentioned carrying device provided in an embodiment of the present invention.
  • a matching sleeve 209 is provided in the avoidance hole of the carrier plate 200, and the support member 400 passes through the matching sleeve 209 and extends out of or retracts into the avoidance hole. Therefore, when the semiconductor process is carried out, particles floating down from the top of the carrier plate 200 will adhere to the matching sleeve 209 after entering the avoidance hole.
  • the lifting assembly may include a driving assembly and a lifting shaft 310, an avoidance hole is formed on the bottom wall of the cavity 100, the bottom end of the lifting shaft 310 is connected to the driving assembly, and the top end of the lifting shaft 310 passes through the avoidance hole into the cavity 100 and is fixedly connected to the bottom of the carrying plate 200.
  • the lifting assembly further includes a bellows 321, which is sleeved on the lifting shaft 310, and the top of the bellows 321 is sealed and connected to the bottom of the carrier plate 200, and the bottom of the bellows 321 is sealed and connected to the avoidance through hole, thereby isolating the interior of the chamber 100 from the external space.
  • the lifting assembly further includes a bottom flange 322, which is fixedly arranged at the bottom of the carrier plate 200 and is used to seal the bellows 321. The bottom end is sealed and connected to the avoidance through hole.
  • the carrier plate 200 further includes a shielding assembly
  • the chamber 100 includes a loading chamber 110 and a process chamber 120 located at the top of the loading chamber 110
  • a shielding cylinder 123 is provided on the inner side of the side wall of the process chamber 120
  • the lifting assembly can drive the carrier plate 200 to rise to a position where the shielding assembly contacts the bottom end of the shielding cylinder 123, so as to separate the process chamber inside the process chamber 120 from the loading chamber inside the loading chamber 110 through the shielding cylinder 123 and the carrier plate 200, and electrically connect the shielding cylinder 123 to the shielding assembly.
  • the bottom end of the shielding cylinder 123 extends to the loading chamber 110 to facilitate electrical connection with the shielding assembly.
  • the above-mentioned avoidance hole also includes a shielding avoidance structure formed in the shielding assembly
  • the mating sleeve 209 includes a conductive sleeve 290 arranged in the shielding avoidance structure, and the conductive sleeve 290 supports the insulating sleeve 250 one by one, and the conductive sleeve 290 has a second set of holes 291, and the support member 400 can pass through the second set of holes 291 in the vertical direction.
  • the process chamber 120 includes a support ring 121 and a ceramic ring 122, and the bottom end of the ceramic ring 122 is sealedly connected to the top opening of the loading chamber 110 through the support ring 121.
  • the shielding cylinder 123 is coaxial with the ceramic ring 122 and is arranged on the inner wall of the ceramic ring 122.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明提供一种半导体工艺腔室及其承载装置,该装置包括承载盘和多个支撑件,承载盘中具有与多个支撑件位置一一对应且沿高度方向贯穿承载盘的多个避让孔,且承载盘能够相对于支撑件作升降运动,以使支撑件的顶端能够由避让孔中穿出至承载盘上方并托起承载盘上的晶圆或缩回至避让孔中并将晶圆放置在承载盘上,承载装置还包括多个配合套,多个配合套一一对应地设置在多个避让孔中,配合套的外表面与避让孔的外壁贴合,且支撑件能够穿过对应位置的配合套。在本发明中,颗粒在进入避让孔中后会附着在配合套上,需要清洗时可以只将配合套取下进行单独清洗,简化承载装置及半导体工艺腔室的维护操作。本发明还提供一种半导体工艺腔室。

Description

半导体工艺腔室及其承载装置 技术领域
本发明涉及半导体工艺设备领域,具体地,涉及一种承载装置和一种包括该承载装置的半导体工艺腔室。
背景技术
物理气相沉积(Physical Vapor Deposition,PVD)工艺是指利用物理方法在晶圆上沉积金属薄膜的半导体加工工艺。在半导体加工技术领域,一般通过基座或晶圆支撑杆承载晶圆。当晶圆背面除边缘区域外已经沉积有金属薄膜,需要再对晶圆的正面进行金属薄膜沉积时,为了避免对晶圆背面的金属薄膜造成破坏,只能选择通过与晶圆的边缘位置接触的方式对晶圆进行支撑。
在现有的半导体工艺腔室中,通常通过顶针与承载盘配合实现晶圆取放,即,顶针能够经由承载盘上的顶针孔穿出至承载盘的承载面上方,在向半导体工艺腔室中传入晶圆时,机械手先向穿出的多根顶针的顶部放置晶圆,而后承载盘升起,使顶针缩回承载盘的承载面下方,使承载盘承接晶圆进行相应工艺,工艺结束后承载盘下降,使顶针再次穿出并将晶圆顶起,以便机械手将晶圆取走。
然而,现有的半导体工艺腔室中承载盘的洁净度往往会随着工艺进行而逐渐下降,需定期对承载盘进行拆卸维护,以避免承载盘上的污染物、颗粒物影响半导体工艺效果。而承载盘零部件较多,拆卸、装配用时较长,严重影响机台产能。因此,如何提高承载盘的维护效率、保证机台产能,成为本领域亟待解决的技术问题。
发明内容
本发明旨在提供一种承载装置和半导体工艺腔室,该承载装置能够提高承载盘的维护效率、提高机台产能。
为实现上述目的,作为本发明的一个方面,提供一种承载装置,用于设置在半导体工艺腔室的腔体中,所述承载装置包括承载盘和多个支撑件,所述承载盘中具有与多个所述支撑件位置一一对应且沿高度方向贯穿所述承载盘的多个避让孔,且所述承载盘能够相对于所述支撑件作升降运动,以使所述支撑件的顶端能够由所述避让孔中穿出至所述承载盘上方并托起所述承载盘上的晶圆或缩回至所述避让孔中并将所述晶圆放置在所述承载盘上,所述承载装置还包括多个配合套,多个所述配合套一一对应地设置在多个所述避让孔中,所述配合套的外表面与所述避让孔的外壁贴合,且所述支撑件能够穿过对应位置的所述配合套。
可选地,所述承载装置还包括升降组件,用于驱动所述承载盘作升降运动,所述承载盘包括射频馈入板和绝缘组件,所述绝缘组件连接在所述升降组件与所述射频馈入板之间,且具有用于支撑晶圆的支撑面,所述支撑面高于所述射频馈入板的顶面,用于在多个所述支撑件的顶端相对降低至所述支撑面下方时支撑所述支撑件上承载的晶圆。
可选地,所述避让孔包括形成在所述绝缘组件中的绝缘避让结构,所述配合套包括设置在所述绝缘避让结构中的绝缘套件,所述绝缘套件具有第一套孔,所述支撑件能够沿竖直方向穿过所述绝缘套件中的第一套孔。
可选地,所述绝缘组件包括绝缘板、中部绝缘环和顶部绝缘环,所述绝缘板的底部与所述升降组件连接,所述中部绝缘环的底部设置在所述绝缘板上,所述射频馈入板设置在所述中部绝缘环的上方,所述顶部绝缘环环绕所述射频馈入板设置在所述中部绝缘环的顶部,所述顶部绝缘环具有所述支撑面;
所述绝缘避让结构包括形成于所述顶部绝缘环的内周壁上的与多个所述支撑件位置一一对应的多个第一避让缺口,以及形成于所述中部绝缘环中的多个第二避让缺口,多个所述绝缘套件一一对应地设置在多个所述第二避让缺口中。
可选地,所述承载盘还包括屏蔽组件,
所述腔体包括加载腔体和位于所述加载腔体顶部,且与之连通的工艺腔体,所述工艺腔体的侧壁内侧设置有屏蔽筒,所述升降组件能够驱动所述承载盘升高至使所述屏蔽组件与所述屏蔽筒的底端接触的位置处,以通过所述屏蔽筒、所述屏蔽组件和所述承载盘将所述工艺腔体内部的工艺腔与所述加载腔体内部的加载腔隔开,并使所述屏蔽筒与所述屏蔽组件电连接。
可选地,所述避让孔还包括形成在所述屏蔽组件中的屏蔽避让结构,所述配合套还包括设置在所述屏蔽避让结构中的导电套件,所述导电套件一一对应地支撑所述绝缘套件,且所述导电套件具有第二套孔,所述支撑件能够沿竖直方向穿过所述第二套孔。
可选地,所述第一套孔的孔壁和所述第二套孔的孔壁均为经过表面处理的表面,且所述第一套孔的孔壁的粗糙度大于所述绝缘套件其余表面的粗糙度,所述第二套孔的孔壁的粗糙度大于所述导电套件其余表面的粗糙度。
可选地,所述导电套件的顶部和所述绝缘套件的底部中的一者形成有至少一个定位凸起,所述导电套件的顶部和所述绝缘套件的底部中的另一者形成有至少一个定位凹槽,所述定位凸起一一对应地容置于对应的所述定位凹槽中。
可选地,所述屏蔽组件包括支撑连接板、接地屏蔽环和顶部屏蔽件,所述支撑连接板设置在所述绝缘组件的底部且通过所述升降组件接地,所述接地屏蔽环环绕设置在所述绝缘组件的外侧,所述顶部屏蔽件环绕在所述绝缘组件的外侧,且设置在所述接地屏蔽环的顶面上;所述屏蔽避让结构形成在 所述接地屏蔽环中;
所述升降组件能够驱动所述承载盘升高至使所述顶部屏蔽件与所述屏蔽筒的底端接触的位置处,以通过所述屏蔽筒、所述顶部屏蔽件和所述承载盘将所述工艺腔体内部的工艺腔与所述加载腔体内部的加载腔隔开,并使所述屏蔽筒通过所述顶部屏蔽件与所述支撑连接板电连接。
可选地,所述导电套件包括导电主体部和导电延伸部,所述第二套孔形成在所述导电主体部中,所述导电延伸部位于所述导电主体部沿径向的外侧;
所述屏蔽避让结构包括形成在所述接地屏蔽环的顶面上的套件定位槽和由所述套件定位槽的底部贯穿至所述接地屏蔽环底部的套件定位孔,所述套件定位槽沿所述接地屏蔽环的径向延伸至与所述接地屏蔽环的内周侧面相接,所述导电主体部设置在所述套件定位孔中且所述导电延伸部固定设置在所述套件定位槽中。
可选地,所述承载装置还包括多个第一定位销和多个第一固定螺钉,所述套件定位槽的底部形成有贯穿至所述接地屏蔽环底部的多个第一销钉孔和多个第一螺纹孔,所述导电延伸部上形成有沿所述承载盘的轴向贯穿所述导电延伸部的多个第一定位孔和多个第一安装孔,多个所述第一定位销一一对应地穿过多个所述第一定位孔以及对应的所述第一销钉孔,多个所述第一固定螺钉一一对应地穿过多个所述第一安装孔以及对应的所述第一螺纹孔,以将所述接地屏蔽环与多个所述导电延伸部固定连接。
可选地,所述顶部绝缘环的顶面上形成有与所述顶部绝缘环的内孔相接的环形支撑槽,所述环形支撑槽的底面形成为所述支撑面,且所述环形支撑槽的侧壁用于对所述支撑面上放置的晶圆进行限位。
可选地,所述承载装置还包括连接环,所述连接环环绕所述承载盘的轴线设置且用于与所述腔体固定连接;
所述支撑件包括柱状部和连接部,所述连接部与所述连接环固定连接, 所述柱状部沿竖直方向延伸,且所述柱状部的顶端用于穿过对应的所述避让孔并支撑所述晶圆,所述连接部沿所述承载盘的径向延伸,且所述连接部朝向所述承载盘的轴线的一端与所述柱状部的底端固定连接。
可选地,所述柱状部的顶端端面上形成有容纳槽,所述容纳槽朝向所述承载盘的轴线的一侧延伸至所述柱状部的侧面,所述容纳槽的底面用于支撑所述晶圆,且所述容纳槽的侧壁用于对所述晶圆的边缘进行限位。
可选地,所述柱状部在水平面上的正投影形状为方形,所述配合套的内孔在水平面上的正投影形状与所述柱状部在水平面上的正投影形状对应。
可选地,所述承载装置还包括多个第二定位销和多个第二固定螺钉,
所述连接环的顶部形成有多个支撑定位槽,所述连接部一一对应地设置在所述支撑定位槽中,所述支撑定位槽的底部形成有贯穿至所述连接环底部的第二销钉孔和第二螺纹孔,所述连接部上形成有沿所述承载盘的轴向贯穿所述连接部的第二定位孔和第二安装孔,多个所述第二定位销一一对应地穿过多个所述第二定位孔以及对应的所述第二销钉孔,多个所述第二固定螺钉一一对应地穿过多个所述第二安装孔以及对应的所述第二螺纹孔,以将所述连接环与多个所述连接部固定连接。
作为本发明的第二个方面,提供一种半导体工艺腔室,包括腔体和前面所述的承载装置。
在本发明提供的承载装置和半导体工艺腔室中,承载盘的避让孔中设置有配合套,支撑件穿过配合套由避让孔中伸出或缩入避让孔中,从而在进行半导体工艺时,由承载盘上方飘下的颗粒在进入避让孔中后会附着在配合套上,当避让孔中附着的颗粒物过多需要清洗以恢复承载盘的洁净度时,可以只将配合套取下进行单独清洗,不必将承载盘中的各部件一一拆下,简化了半导体工艺腔室的维护操作,缩短了维护操作中拆卸、装配承载盘花费的时间,进而提高了承载盘的维护效率、保证了机台产能。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1(a)是相关技术中一种半导体工艺腔室的结构示意图;
图1(b)是图1(a)中半导体工艺腔室在另一种状态下的示意图;
图2是图1(a)中晶圆支撑组件的结构示意图;
图3是本发明实施例提供的半导体工艺腔室的结构示意图;
图4是图3中半导体工艺腔室的局部放大示意图;
图5是本发明实施例提供的半导体工艺腔室中顶部绝缘环的俯视示意图;
图6是图3中半导体工艺腔室的局部放大示意图;
图7是本发明实施例提供的半导体工艺腔室中接地屏蔽环与导电套件之间连接关系的俯视示意图;
图8是本发明实施例提供的半导体工艺腔室中接地屏蔽环与导电套件之间连接关系的剖面示意图;
图9是本发明实施例提供的半导体工艺腔室的俯视示意图;
图10是本发明实施例提供的半导体工艺腔室中连接环的结构示意图;
图11是图10中连接环的剖面示意图;
图12是本发明实施例提供的半导体工艺腔室中支撑件的结构示意图;
图13是图12中支撑件的俯视示意图;
图14是本发明实施例提供的半导体工艺腔室中绝缘套件的结构示意图;
图15是图14中绝缘套件的俯视示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
为解决上述技术问题,作为本发明的一个方面,提供一种承载装置,该承载装置设置在半导体工艺腔室的腔体100中,如图3、图9所示,该承载装置包括承载盘200和多个支撑件400,承载盘200中具有与多个支撑件400位置一一对应且沿高度方向贯穿承载盘200的多个避让孔,且承载盘200能够相对于支撑件400作升降运动,以使支撑件400的顶端能够由避让孔中穿出至承载盘200上方并托起承载盘200上的晶圆10或缩回至避让孔中并将晶圆10放置在承载盘200上,承载装置还包括多个配合套209,多个配合套209一一对应地设置在多个避让孔中,配合套209的外表面与避让孔的外壁贴合,且支撑件400能够穿过对应位置的配合套209。
在本发明提供的承载装置中,承载盘200的避让孔中设置有配合套209,支撑件400穿过配合套209由避让孔中伸出或缩入避让孔中,从而在进行半导体工艺时,由承载盘200上方飘下的颗粒在进入避让孔中后会附着在配合套209上,当避让孔中附着的颗粒物过多需要清洗以恢复承载盘200的洁净度时,可以只将配合套209取下进行单独清洗,不必将承载盘200中的各部件一一拆下,简化了承载装置以及半导体工艺腔室的维护操作,缩短了维护操作中拆卸、装配承载盘200花费的时间,进而提高了承载盘的维护效率、保证了机台产能。
作为本发明的一种可选实施方式,承载装置还包括升降组件,用于驱动承载盘200作升降运动。
作为本发明的一种可选实施方式,如图3所示,升降组件可以包括驱动组件(图中未示出)和升降轴310,腔体100的底壁上形成有避让通孔,升降轴310的底端与驱动组件连接,升降轴310的顶端穿过避让通孔进入腔体100中并与承载盘200的底部固定连接。
为保证半导体工艺腔室的气密性,优选地,如图3所示,升降组件还包 括波纹管321,波纹管321套设在升降轴310上,且波纹管321的顶端与承载盘200的底部密封连接,波纹管321的底端与避让通孔密封连接,从而将腔体100的内部与外部空间隔绝。可选地,如图3所示,升降组件还包括底法兰322,底法兰322固定设置在承载盘200的底部,且用于将波纹管321的底端与避让通孔密封连接。
优选地,如图3所示,升降轴310的内部具有沿升降轴310的轴线方向贯通的走线孔,外部组件的电缆、管路能够通过走线孔与承载盘200连接,以向承载盘200提供电信号或冷却水等。
作为本发明的一种可选实施方式,如图3至图6所示,承载盘200包括射频馈入板240和绝缘组件,绝缘组件连接在升降组件与射频馈入板240之间,且具有用于支撑晶圆10的支撑面C,支撑面C高于射频馈入板240的顶面,用于在多个支撑件400的顶端相对降低至支撑面C下方时支撑多个支撑件400上承载的晶圆10。在本发明实施例中,绝缘组件的支撑面C高于射频馈入板240的顶面,从而在承载盘上升至高于支撑件400的顶端时,会改为由支撑面C支撑晶圆,从而始终能够避免射频馈入板240与晶圆的底面直接接触,保证了晶圆10背面膜层的完整性,提高了晶圆产品良率。
作为本发明的一种可选实施方式,上述避让孔包括形成在绝缘组件中的绝缘避让结构,配合套209包括设置在绝缘避让结构中的绝缘套件250,绝缘套件250具有第一套孔251,支撑件400能够沿竖直方向穿过绝缘套件250中的第一套孔251。
在本发明实施例中,避让孔包括绝缘组件中形成的绝缘避让结构,绝缘避让结构中设置有绝缘套件250,从而利用绝缘套件250代替避让孔的内壁,与支撑件400之间形成空隙。在进行半导体工艺时,由承载盘顶部飘下的颗粒会附着在绝缘套件250的第一套孔251的内壁上,当颗粒物过多需要清洗时,可以只将绝缘套件250取下进行单独清洗,不必将绝缘组件等结构由承 载盘200上拆下,简化了承载装置以及半导体工艺腔室的维护操作。
本发明的发明人在研究中还发现,在现有方案中,如当承载盘200上升到某一位置时(承载盘200的顶面高于支撑杆22的支撑面B时),如图1(b)所示,会改为通过承载盘200的顶面对晶圆10提供支撑,此时承载盘200的顶面仍然会破坏晶圆背面沉积的金属薄膜。
为解决上述技术问题,作为本发明的一种优选实施方式,如图3至图6所示,绝缘组件包括绝缘板210、中部绝缘环220和顶部绝缘环230,绝缘板210的底部与升降组件连接,中部绝缘环220的底部设置在绝缘板210上,射频馈入板240设置在中部绝缘环220的上方,顶部绝缘环230环绕射频馈入板240设置在中部绝缘环220的顶部,顶部绝缘环230具有用于支撑晶圆10的上述支撑面C,支撑面C高于射频馈入板240的顶面,且用于在多个支撑件400的顶端相对降低至支撑面C下方时支撑多个支撑件400上承载的晶圆10。
上述绝缘避让结构包括形成于顶部绝缘环230的内周壁上的与多个支撑件400位置一一对应的多个第一避让缺口234,以及形成于中部绝缘环220中的多个第二避让缺口,多个绝缘套件250一一对应地设置在多个第二避让缺口中。
在本发明实施例中,顶部绝缘环230环绕射频馈入板240,且顶部绝缘环230的支撑面C高于射频馈入板240的顶面,从而在承载盘上升至高于支撑件400的顶端时,会改为由顶部绝缘环230的支撑面C支撑晶圆,从而始终能够避免射频馈入板240与晶圆的底面直接接触,保证了晶圆10背面膜层的完整性,提高了晶圆产品良率。
此外,在本发明实施例中,绝缘避让结构包括形成在中部绝缘环220边缘的第二避让缺口,从而利用绝缘套件250代替中部绝缘环220,提供与支撑件400之间形成空隙的第一套孔251的内壁。在进行半导体工艺时,由承 载盘顶部飘下的颗粒附着在绝缘套件250的第一套孔251的内壁上,当颗粒物过多需要清洗时,可以只将绝缘套件250取下进行单独清洗,不必将中部绝缘环220等结构由承载盘200上拆下,简化了半导体工艺腔室的维护操作。
作为本发明的一种可选实施方式,如图5、图6所示,顶部绝缘环230的顶面上形成有与顶部绝缘环230的内孔相接的环形支撑槽233,环形支撑槽233的底面形成为支撑面C,且环形支撑槽233的侧壁用于对支撑面C上放置的晶圆10进行限位。
在本发明实施例中,绝缘板210、中部绝缘环220、顶部绝缘环230和多个绝缘套件250均为绝缘材质,例如,可以为陶瓷材质。射频馈入板240用于通过升降轴310内部的电缆与下电源连接,以在半导体工艺中向其上方的晶圆10提供射频信号。
作为本发明的一种可选实施方式,如图4至图6所示,顶部绝缘环230包括绝缘环外延部231和绝缘环主体部232,绝缘环外延部231环绕设置在绝缘环主体部232的外侧,且绝缘环外延部231的底面与绝缘环主体部232的底面平齐。
作为本发明的一种可选实施方式,如图3、图4、图6所示,中部绝缘环220的顶部边缘形成有第一环形容纳槽,且中部绝缘环220通过第一环形容纳槽的底部支撑顶部绝缘环230,第二避让缺口沿中部绝缘环220径向的尺寸大于第一环形容纳槽沿中部绝缘环220径向的尺寸。如图14、图15所示,绝缘套件250包括绝缘主体部252和绝缘延伸部253,绝缘主体部252的顶部与中部绝缘环220的顶部平齐,绝缘延伸部253的顶部与第一环形容纳槽的底部平齐。
作为本发明的一种优选实施方式,如图3、图6所示,中部绝缘环220包括绝缘环主体部和环绕设置在绝缘环主体部顶端外侧的外延部221,第二避让缺口形成在外延部221中。
承载盘200还包括屏蔽组件,如图3所示,腔体100包括加载腔体110和位于加载腔体110顶部的工艺腔体120,工艺腔体120的侧壁内侧设置有屏蔽筒123,升降组件能够驱动承载盘200升高至使屏蔽组件与屏蔽筒123的底端接触的位置处,以通过屏蔽筒123、屏蔽组件和承载盘200将工艺腔体120内部的工艺腔与加载腔体110内部的加载腔隔开,并使屏蔽筒123与屏蔽组件电连接。可选地,屏蔽筒123的底端延伸至加载腔体110,以便于与屏蔽组件电连接。
作为本发明的一种可选实施方式,上述避让孔还包括形成在屏蔽组件中的屏蔽避让结构,配合套209包括设置在屏蔽避让结构中的导电套件290,且导电套件290一一对应地支撑绝缘套件250,且导电套件290具有第二套孔291,支撑件400能够沿竖直方向穿过该第二套孔291。
在本发明实施例中,屏蔽组件能够在承载盘200升高至其与屏蔽筒123的底端接触时,将工艺腔体120内部的工艺腔与加载腔体110内部的加载腔隔开,同时将工艺腔中的电场与下方电场隔开,保证半导体工艺腔室内部半导体工艺的工艺效果。
并且,在本发明实施例中,屏蔽组件对应于支撑件400处形成有屏蔽避让结构,屏蔽避让结构中设置有导电套件290,从而使避让孔部分形成在导电套件290中,即,利用导电套件290代替屏蔽组件提供与支撑件400之间形成空隙的第二套孔291的内壁。在进行半导体工艺时,由承载盘顶部飘下的颗粒附着在导电套件290的第二套孔291的内壁上,当颗粒物过多需要清洗时,可以只将导电套件290取下进行单独清洗,不必将屏蔽组件等结构由承载盘200上拆下,简化了承载装置以及半导体工艺腔室的维护操作。
作为本发明的一种可选实施方式,屏蔽组件包括支撑连接板260、接地屏蔽环270和顶部屏蔽件280,支撑连接板260设置在绝缘组件(即,绝缘板210)的底部且通过升降组件接地,接地屏蔽环270环绕设置在绝缘组件 (即,绝缘环主体部)的外侧,顶部屏蔽件280环绕在绝缘组件(即,中部绝缘环220的外延部221)的外侧,且设置在接地屏蔽环270的顶面上(即,接地屏蔽的顶面边缘超出外延部221并对接地屏蔽环270的底部进行支撑)。如图3、图7、图8所示,屏蔽避让结构形成在接地屏蔽环270中。
升降组件能够驱动承载盘200升高至使顶部屏蔽件280与屏蔽筒123的底端接触的位置处,以通过屏蔽筒123、顶部屏蔽件280和承载盘200将工艺腔体120内部的工艺腔与加载腔体110内部的加载腔隔开,并使屏蔽筒123通过顶部屏蔽件280与支撑连接板260电连接。
在本发明实施例中,支撑连接板260、接地屏蔽环270、顶部屏蔽件280和导电套件290均为导体(例如,可以为金属材质),顶部屏蔽件280通过接地屏蔽环270以及导电套件290与支撑连接板260电连接,进而通过支撑连接板260与升降轴310内部的相应电路连接实现接地,进而在承载盘200升高至顶部屏蔽件280与屏蔽筒123的底端接触时,将工艺腔体120内部的工艺腔与加载腔体110内部的加载腔隔开,同时将工艺腔中的电场与下方电场隔开,保证半导体工艺腔室内部所进行的半导体工艺的工艺效果。
并且,在本发明实施例中,接地屏蔽环270在对应于支撑件400处形成有屏蔽避让结构,屏蔽避让结构中设置有导电套件290,从而使避让孔部分形成在导电套件290中,即,利用导电套件290代替接地屏蔽环270提供与支撑件400之间形成空隙的第二套孔291的内壁。在进行半导体工艺时,由承载盘顶部飘下的颗粒附着在导电套件290的第二套孔291的内壁上,当颗粒物过多需要清洗时,可以只将导电套件290取下进行单独清洗,不必将接地屏蔽环270等结构由承载盘200上拆下,简化了承载装置以及半导体工艺腔室的维护操作。
作为本发明的一种可选实施方式,如图3、图9所示,工艺腔体120包括支撑环121和陶瓷环122,陶瓷环122的底端通过支撑环121与加载腔体 110的顶部开口密封连接。屏蔽筒123与陶瓷环122同轴并设置在陶瓷环122的内壁上。
为提高绝缘套件250及导电套件290对污染物、颗粒物的吸附量,作为本发明的一种优选实施方式,第一套孔251的孔壁和第二套孔291的孔壁均为经过表面处理的表面,且第一套孔251的孔壁的粗糙度大于绝缘套件250其余表面的粗糙度,第二套孔291的孔壁的粗糙度大于导电套件290其余表面的粗糙度。
在本发明实施例中,第一套孔251的孔壁和第二套孔291的孔壁均经过表面处理使其粗糙度增大,从而能够提高绝缘套件250及导电套件290对污染物、颗粒物的吸附量,降低承载盘的清理维护频率,进一步保证机台产能。
为进一步保证柱状部410与避让孔之间的对位精确性,作为本发明的一种优选实施方式,如图6至图8所示,导电套件290的顶部形成有至少一个定位凸起294,绝缘套件250的底部形成有至少一个定位凹槽,定位凸起294一一对应地容置于对应的绝缘套件250的定位凹槽中。当然,在实际应用中,也可以在绝缘套件250的底部形成有至少一个定位凸起294,且在导电套件290的顶部形成有至少一个定位凹槽。
作为本发明的一种可选实施方式,如图6、图7所示,导电套件290包括导电主体部292和导电延伸部293,第二套孔291形成在导电主体部292中,导电延伸部293位于导电主体部292沿径向的外侧。
如图7所示,屏蔽避让结构包括形成在接地屏蔽环270的顶面上的套件定位槽271和由套件定位槽271的底部贯穿至接地屏蔽环270底部的套件定位孔272,套件定位槽271沿接地屏蔽环270的径向延伸至与接地屏蔽环270的内周侧面相接,导电主体部292设置在套件定位孔272中且导电延伸部293固定设置在套件定位槽271中。
可选地,如图3所示,承载盘200还包括位于绝缘板210与射频馈入板 240之间且由下至上依次层叠设置的射频连接板201、下冷却板202和上冷却板203,射频连接板201用于将升降轴310内部的电缆中的信号传输至射频馈入板240,下冷却板202和上冷却板203用于与升降轴310内部的冷却管路连接,以通过循环的冷却液对射频馈入板240进行降温。
作为本发明的一种可选实施方式,导电套件290可以通过销钉与螺纹紧固件实现与接地屏蔽环270固定连接,具体地,如图6至图8所示,承载装置还包括多个第一定位销273和多个第一固定螺钉274,套件定位槽271的底部形成有贯穿至接地屏蔽环270底部的多个第一销钉孔和多个第一螺纹孔,导电延伸部293上形成有沿承载盘200的轴线方向贯穿导电延伸部293的多个第一定位孔和多个第一安装孔,多个第一定位销273一一对应地穿过多个第一定位孔以及对应的第一销钉孔,多个第一固定螺钉274一一对应地穿过多个第一安装孔以及对应的第一螺纹孔,以将接地屏蔽环270与多个导电延伸部293固定连接。
作为本发明的一种可选实施方式,如图3、图6所示,承载装置还包括连接环500,连接环500环绕承载盘200的轴线设置且与腔体100固定连接;如图3、图6、图12所示,支撑件400包括柱状部410和连接部420,连接部420与连接环500固定连接,柱状部410沿竖直方向延伸,且柱状部410的顶端用于穿过对应的避让孔并支撑晶圆,连接部420沿承载盘200的径向延伸,且连接部420朝向承载盘200的轴线的一端与柱状部410的底端固定连接。
图1(a)、图1(b)是相关技术中一种半导体工艺腔室的结构示意图,如图1(a)、图1(b)所示,反应腔室结构包括腔体100和设置在腔体100中的承载盘200以及晶圆支撑组件20,晶圆支撑组件20包括连接环21和固定设置在连接环21上且沿圆周方向均匀分布的三个支撑杆22(即顶针),连接环21与腔体100的底面固定连接,承载盘200可以在腔体100内上下升降。
图2是晶圆支撑组件20的结构示意图,支撑杆22的顶端具有支撑限位部23,支撑限位部23具有限位面A和支撑面B。在晶圆10背面除边缘区域外已经沉积了金属薄膜的情况下,支撑杆22的支撑面B对晶圆10的边缘提供支撑,不会对晶圆背面已经沉积的金属薄膜造成破坏。并且限位面A为斜面,能够起到对晶圆的导向及限位作用,保证晶圆水平位置的稳定性。
本发明的发明人在研究中还发现,在采用该现有的半导体工艺腔室进行半导体工艺时,常出现承载盘污染过快的问题的主要原因在于:承载盘200上形成的与支撑杆22配合的避让孔需设计为使支撑杆22及其顶端的支撑限位部23均能够自由通过,因而该避让孔的内壁与支撑杆22之间需要留有较大的孔隙,而当支撑杆22上放置晶圆10的时候,如图1(a)所示,该孔隙并不能被完全遮蔽,因此会导致腔体100内的颗粒容易飘落到该孔隙内并被吸附在避让孔的孔壁及承载盘的部件表面上,造成承载盘的污染。当颗粒的数量积累到一定程度时,就需要将承载盘中吸附颗粒的部件进行整体的更换清洗,从而缩短了维护周期,影响了生产效率,且为半导体工艺腔室的使用维护带来了不便。
为解决上述技术问题,作为本发明的一种优选实施方式,如图3、图6所示,柱状部410在任意高度的横截面面积不大于其下方任意高度的横截面面积。
在本发明实施例中,柱状部410在任意高度的横截面面积不大于其下方任意高度的横截面面积,从而在柱状部410的顶端向上穿过避让孔后,其位于避让孔中的部分的横截面不小于穿出至承载盘200上方部分的横截面,进而在避让孔的形状及大小均与柱状部410的最大横截面对应的情况下,柱状部410始终能够保持对避让孔内部空间的填充效果。即,柱状部410与避让孔的内壁之间的缝隙不会在柱状部410的顶端穿出至承载盘200上方后扩大,从而能够减少进入柱状部410与避让孔内壁之间缝隙的颗粒数量,进而保证 了承载盘200等结构的表面洁净度,延长了半导体工艺腔室的维护周期,并保证了机台生产效率。
作为本发明的一种可选实施方式,如图12、图13所示,柱状部410的顶端端面上形成有容纳槽411,容纳槽411朝向承载盘200的轴线的一侧延伸至柱状部410的侧面,容纳槽411的底面用于支撑晶圆10,且容纳槽411的侧壁用于对晶圆10的边缘进行限位。
为保证承载盘200等结构部件的表面洁净度,作为本发明的一种优选实施方式,如图9、图13所示,柱状部410的水平投影形状为方形,配合套209的内孔(即第一套孔251以及二套孔291)的水平投影形状与柱状部410的水平投影形状对应。
在本发明实施例中,柱状部410和配合套209的内孔的水平投影形状均为方形,从而可以利用配合套209的内孔的孔壁上的棱结构提高配合套209对颗粒物的吸附效果,进而减少附着在其他部件表面的颗粒数量,进一步保证承载盘200等结构部件的表面洁净度。
作为本发明的一种可选实施方式,支撑件400的连接部420可以通过销钉与螺纹紧固件实现与连接环500固定连接,具体地,如图6、图13所示,承载装置还包括多个第二定位销520和多个第二固定螺钉530,连接环500的顶部形成有多个支撑定位槽510,承载装置还包括多个第二定位销520和多个第二固定螺钉530,连接部420一一对应地设置在支撑定位槽510中,支撑定位槽510的底部形成有贯穿至连接环500底部的第二销钉孔511和第二螺纹孔512,连接部420上形成有沿承载盘200的轴线方向贯穿连接部420的第二定位孔430和第二安装孔440,多个第二定位销520一一对应地穿过多个第二定位孔430以及对应的第二销钉孔511,多个第二固定螺钉530一一对应地穿过多个第二安装孔440以及对应的第二螺纹孔512,以将连接环500与多个连接部420固定连接。
在本发明实施例中,第二定位销520与连接环500上的支撑定位槽510共同实现对支撑件400的连接部420进行水平位置的限位,第二螺纹孔512实现将连接部420与连接环500紧固连接,从而保证了支撑件400的柱状部410与连接环500之间的相对位置精确性,进而保证了柱状部410与避让孔之间的对位精确性。
优选地,如图10所示,支撑定位槽510沿连接环500的径向延伸,且每个支撑定位槽510中形成有一个第二销钉孔511和一个第二螺纹孔512。
在本发明实施例中,支撑定位槽510沿连接环500的径向延伸,且每个支撑件400仅通过一个第二定位销520与连接环500对位,从而利用支撑定位槽510的侧壁与第二定位销520组合实现对连接部420进行水平位置的限位,在简化装置结构的同时保证了柱状部410与避让孔之间的对位精确性。
作为本发明的一种可选实施方式,如图13所示,连接部420包括相互连接的延长部421和限位部422,延长部421与限位部422沿连接环500的径向分布,延长部421连接在限位部422与柱状部410的底端之间,且延长部421沿垂直于连接环500的径向方向的尺寸大于延长部421沿垂直于连接环500的径向方向的尺寸,支撑定位槽510的侧壁用于对延长部421的侧壁进行限位,以对支撑件400的周向位置进行限位。
作为本发明的一种优选实施方式,如图6、图10所示,连接环500的内壁上形成有沿朝向连接环500轴线方向延伸且与多个支撑定位槽510周向位置一一对应的多个凸起部550,支撑定位槽510延伸至凸起部550。即,连接环500仅在设置有支撑件400的补位扩宽,其余位置横截面缩窄,从而减轻了连接环500的整体重量,保证了多个柱状部410的竖直度,进一步保证了柱状部410与避让孔之间的对位精确性。
作为本发明的一种可选实施方式,如图3所示,承载装置还包括支撑转接件600,连接环500的底部通过支撑转接件600与腔体100的底壁固定连 接,以使连接环500的底面与腔体100的底壁沿竖直方向相对间隔。
作为本发明的一种可选实施方式,如图3所示,支撑转接件600包括上法兰盘、下法兰盘和连接在二者之间的连接柱。如图10所示,连接环500具有连接部540,连接部540通过紧固件(例如螺栓)与支撑转接件600的上法兰盘紧固连接,支撑转接件600的下法兰盘通过紧固件(例如螺栓)与气体100的底壁紧固连接。
作为本发明的第二个方面,提供一种半导体工艺腔室,如图3所示,半导体工艺腔室包括腔体100和本发明实施例提供的上述承载装置。
在本发明提供的半导体工艺腔室中,承载盘200的避让孔中设置有配合套209,支撑件400穿过配合套209由避让孔中伸出或缩入避让孔中,从而在进行半导体工艺时,由承载盘200上方飘下的颗粒在进入避让孔中后会附着在配合套209上,当避让孔中附着的颗粒物过多需要清洗以恢复承载盘200的洁净度时,可以只将配合套209取下进行单独清洗,不必将承载盘200中的各部件一一拆下,简化了半导体工艺腔室的维护操作,缩短了维护操作中拆卸、装配承载盘200花费的时间,进而提高了承载盘的维护效率、保证了机台产能。
作为本发明的一种可选实施方式,如图3所示,升降组件可以包括驱动组件和升降轴310,腔体100的底壁上形成有避让通孔,升降轴310的底端与驱动组件连接,升降轴310的顶端穿过避让通孔进入腔体100中并与承载盘200的底部固定连接。
为保证半导体工艺腔室的气密性,优选地,如图3所示,升降组件还包括波纹管321,波纹管321套设在升降轴310上,且波纹管321的顶端与承载盘200的底部密封连接,波纹管321的底端与避让通孔密封连接,从而将腔体100的内部与外部空间隔绝。可选地,如图3所示,升降组件还包括底法兰322,底法兰322固定设置在承载盘200的底部,且用于将波纹管321 的底端与避让通孔密封连接。
作为本发明的一种优选实施方式,如图3所示,承载盘200还包括屏蔽组件,腔体100包括加载腔体110和位于加载腔体110顶部的工艺腔体120,工艺腔体120的侧壁内侧设置有屏蔽筒123,升降组件能够驱动承载盘200升高至使屏蔽组件与屏蔽筒123的底端接触的位置处,以通过屏蔽筒123和承载盘200将工艺腔体120内部的工艺腔与加载腔体110内部的加载腔隔开,并使屏蔽筒123与屏蔽组件电连接。可选地,屏蔽筒123的底端延伸至加载腔体110,以便于与屏蔽组件电连接。
作为本发明的一种可选实施方式,上述避让孔还包括形成在屏蔽组件中的屏蔽避让结构,配合套209包括设置在屏蔽避让结构中的导电套件290,且导电套件290一一对应地支撑绝缘套件250,且导电套件290具有第二套孔291,支撑件400能够沿竖直方向穿过该第二套孔291。
作为本发明的一种可选实施方式,如图3、图9所示,工艺腔体120包括支撑环121和陶瓷环122,陶瓷环122的底端通过支撑环121与加载腔体110的顶部开口密封连接。屏蔽筒123与陶瓷环122同轴并设置在陶瓷环122的内壁上。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (17)

  1. 一种承载装置,用于设置在半导体工艺腔室的腔体中,其特征在于,所述承载装置包括承载盘和多个支撑件,所述承载盘中具有与多个所述支撑件位置一一对应且沿高度方向贯穿所述承载盘的多个避让孔,且所述承载盘能够相对于所述支撑件作升降运动,以使所述支撑件的顶端能够由所述避让孔中穿出至所述承载盘上方并托起所述承载盘上的晶圆或缩回至所述避让孔中并将所述晶圆放置在所述承载盘上,所述承载装置还包括多个配合套,多个所述配合套一一对应地设置在多个所述避让孔中,所述配合套的外表面与所述避让孔的外壁贴合,且所述支撑件能够穿过对应位置的所述配合套。
  2. 根据权利要求1所述的承载装置,其特征在于,所述承载装置还包括升降组件,用于驱动所述承载盘作升降运动,所述承载盘包括射频馈入板和绝缘组件,所述绝缘组件连接在所述升降组件与所述射频馈入板之间,且具有用于支撑晶圆的支撑面,所述支撑面高于所述射频馈入板的顶面,用于在多个所述支撑件的顶端相对降低至所述支撑面下方时支撑所述支撑件上承载的晶圆。
  3. 根据权利要求2所述的承载装置,其特征在于,所述避让孔包括形成在所述绝缘组件中的绝缘避让结构,所述配合套包括设置在所述绝缘避让结构中的绝缘套件,所述绝缘套件具有第一套孔,所述支撑件能够沿竖直方向穿过所述第一套孔。
  4. 根据权利要求3所述的承载装置,其特征在于,所述绝缘组件包括绝缘板、中部绝缘环和顶部绝缘环,所述绝缘板的底部与所述升降组件连接,所述中部绝缘环的底部设置在所述绝缘板上,所述射频馈入板设置在所述中部绝缘环的上方,所述顶部绝缘环环绕所述射频馈入板设置在所述中部绝缘 环的顶部,所述顶部绝缘环具有所述支撑面;
    所述绝缘避让结构包括形成于所述顶部绝缘环的内周壁上的与多个所述支撑件位置一一对应的多个第一避让缺口,以及形成于所述中部绝缘环中的多个第二避让缺口,多个所述绝缘套件一一对应地设置在多个所述第二避让缺口中。
  5. 根据权利要求3所述的承载装置,其特征在于,所述承载盘还包括屏蔽组件,
    所述腔体包括加载腔体和位于所述加载腔体顶部,且与之连通的工艺腔体,所述工艺腔体的侧壁内侧设置有屏蔽筒,所述升降组件能够驱动所述承载盘升高至使所述屏蔽组件与所述屏蔽筒的底端接触的位置处,以通过所述屏蔽筒、所述屏蔽组件和所述承载盘将所述工艺腔体内部的工艺腔与所述加载腔体内部的加载腔隔开,并使所述屏蔽筒与所述屏蔽组件电连接。
  6. 根据权利要求5所述的承载装置,其特征在于,所述避让孔还包括形成在所述屏蔽组件中的屏蔽避让结构,所述配合套还包括设置在所述屏蔽避让结构中的导电套件,所述导电套件一一对应地支撑所述绝缘套件,且所述导电套件具有第二套孔,所述支撑件能够沿竖直方向穿过所述第二套孔。
  7. 根据权利要求6所述的承载装置,其特征在于,所述第一套孔的孔壁和所述第二套孔的孔壁均为经过表面处理的表面,且所述第一套孔的孔壁的粗糙度大于所述绝缘套件其余表面的粗糙度,所述第二套孔的孔壁的粗糙度大于所述导电套件其余表面的粗糙度。
  8. 根据权利要求6所述的承载装置,其特征在于,所述导电套件的顶部和所述绝缘套件的底部中的一者形成有至少一个定位凸起,所述导电套件的顶部和所述绝缘套件的底部中的另一者形成有至少一个定位凹槽,所述定 位凸起一一对应地容置于对应的所述定位凹槽中。
  9. 根据权利要求6所述的承载装置,其特征在于,所述屏蔽组件包括支撑连接板、接地屏蔽环和顶部屏蔽件,所述支撑连接板设置在所述绝缘组件的底部且通过所述升降组件接地,所述接地屏蔽环环绕设置在所述绝缘组件的外侧,所述顶部屏蔽件环绕在所述绝缘组件的外侧,且设置在所述接地屏蔽环的顶面上;所述屏蔽避让结构形成在所述接地屏蔽环中;
    所述升降组件能够驱动所述承载盘升高至使所述顶部屏蔽件与所述屏蔽筒的底端接触的位置处,以通过所述屏蔽筒、所述顶部屏蔽件和所述承载盘将所述工艺腔体内部的工艺腔与所述加载腔体内部的加载腔隔开,并使所述屏蔽筒通过所述顶部屏蔽件与所述支撑连接板电连接。
  10. 根据权利要求9所述的承载装置,其特征在于,所述导电套件包括导电主体部和导电延伸部,所述第二套孔形成在所述导电主体部中,所述导电延伸部位于所述导电主体部沿径向的外侧;
    所述屏蔽避让结构包括形成在所述接地屏蔽环的顶面上的套件定位槽和由所述套件定位槽的底部贯穿至所述接地屏蔽环底部的套件定位孔,所述套件定位槽沿所述接地屏蔽环的径向延伸至与所述接地屏蔽环的内周侧面相接,所述导电主体部设置在所述套件定位孔中且所述导电延伸部固定设置在所述套件定位槽中。
  11. 根据权利要求10所述的承载装置,其特征在于,所述承载装置还包括多个第一定位销和多个第一固定螺钉,所述套件定位槽的底部形成有贯穿至所述接地屏蔽环底部的多个第一销钉孔和多个第一螺纹孔,所述导电延伸部上形成有沿所述承载盘的轴向贯穿所述导电延伸部的多个第一定位孔和多个第一安装孔,多个所述第一定位销一一对应地穿过多个所述第一定位孔以及对应的所述第一销钉孔,多个所述第一固定螺钉一一对应地穿过多个 所述第一安装孔以及对应的所述第一螺纹孔,以将所述接地屏蔽环与多个所述导电延伸部固定连接。
  12. 根据权利要求4所述的承载装置,其特征在于,所述顶部绝缘环的顶面上形成有与所述顶部绝缘环的内孔相接的环形支撑槽,所述环形支撑槽的底面形成为所述支撑面,且所述环形支撑槽的侧壁用于对所述支撑面上放置的晶圆进行限位。
  13. 根据权利要求1至12中任意一项所述的承载装置,其特征在于,所述承载装置还包括连接环,所述连接环环绕所述承载盘的轴线设置且用于与所述腔体固定连接;
    所述支撑件包括柱状部和连接部,所述连接部与所述连接环固定连接,所述柱状部沿竖直方向延伸,且所述柱状部的顶端用于穿过对应的所述避让孔并支撑所述晶圆,所述连接部与所述柱状部的底端固定连接。
  14. 根据权利要求13所述的承载装置,其特征在于,所述柱状部的顶端端面上形成有容纳槽,所述容纳槽朝向所述承载盘的轴线的一侧延伸至所述柱状部的侧面,所述容纳槽的底面用于支撑所述晶圆,且所述容纳槽的侧壁用于对所述晶圆的边缘进行限位。
  15. 根据权利要求13所述的承载装置,其特征在于,所述柱状部在水平面上的正投影形状为方形,所述配合套的内孔在水平面上的正投影形状与所述柱状部在水平面上的正投影形状对应。
  16. 根据权利要求13所述的承载装置,其特征在于,所述承载装置还包括多个第二定位销和多个第二固定螺钉,
    所述连接环的顶部形成有多个支撑定位槽,所述连接部一一对应地设置 在所述支撑定位槽中,所述支撑定位槽的底部形成有贯穿至所述连接环底部的第二销钉孔和第二螺纹孔,所述连接部上形成有沿所述承载盘的轴向贯穿所述连接部的第二定位孔和第二安装孔,多个所述第二定位销一一对应地穿过多个所述第二定位孔以及对应的所述第二销钉孔,多个所述第二固定螺钉一一对应地穿过多个所述第二安装孔以及对应的所述第二螺纹孔,以将所述连接环与多个所述连接部固定连接。
  17. 一种半导体工艺腔室,其特征在于,包括腔体和如权利要求1至16中任意一项所述的承载装置。
PCT/CN2023/130617 2022-11-10 2023-11-09 半导体工艺腔室及其承载装置 WO2024099383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211405433.6A CN115881614A (zh) 2022-11-10 2022-11-10 半导体工艺腔室及其承载装置
CN202211405433.6 2022-11-10

Publications (1)

Publication Number Publication Date
WO2024099383A1 true WO2024099383A1 (zh) 2024-05-16

Family

ID=85759615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130617 WO2024099383A1 (zh) 2022-11-10 2023-11-09 半导体工艺腔室及其承载装置

Country Status (2)

Country Link
CN (1) CN115881614A (zh)
WO (1) WO2024099383A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115881614A (zh) * 2022-11-10 2023-03-31 北京北方华创微电子装备有限公司 半导体工艺腔室及其承载装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045948A (ja) * 2001-07-30 2003-02-14 Kyocera Corp ウエハ支持体
TWM307186U (en) * 2006-07-24 2007-03-01 Collaborated Service Solution Improved semiconductor platform
KR100840971B1 (ko) * 2007-02-28 2008-06-24 세메스 주식회사 기판 서포트 및 이를 갖는 기판 코팅 장치
JP2010153678A (ja) * 2008-12-26 2010-07-08 Hitachi High-Technologies Corp プラズマ処理装置及びプラズマ処理装置の運転方法
JP2011238825A (ja) * 2010-05-12 2011-11-24 Tokyo Electron Ltd プラズマ処理装置及び半導体装置の製造方法
US20170018515A1 (en) * 2015-07-15 2017-01-19 Renesas Electronics Corporation Method for manufacturing semiconductor device, semiconductor manufacturing apparatus, and wafer lift pin-hole cleaning jig
CN111501000A (zh) * 2020-04-26 2020-08-07 北京北方华创微电子装备有限公司 承载装置及工艺腔室
CN115881614A (zh) * 2022-11-10 2023-03-31 北京北方华创微电子装备有限公司 半导体工艺腔室及其承载装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045948A (ja) * 2001-07-30 2003-02-14 Kyocera Corp ウエハ支持体
TWM307186U (en) * 2006-07-24 2007-03-01 Collaborated Service Solution Improved semiconductor platform
KR100840971B1 (ko) * 2007-02-28 2008-06-24 세메스 주식회사 기판 서포트 및 이를 갖는 기판 코팅 장치
JP2010153678A (ja) * 2008-12-26 2010-07-08 Hitachi High-Technologies Corp プラズマ処理装置及びプラズマ処理装置の運転方法
JP2011238825A (ja) * 2010-05-12 2011-11-24 Tokyo Electron Ltd プラズマ処理装置及び半導体装置の製造方法
US20170018515A1 (en) * 2015-07-15 2017-01-19 Renesas Electronics Corporation Method for manufacturing semiconductor device, semiconductor manufacturing apparatus, and wafer lift pin-hole cleaning jig
CN111501000A (zh) * 2020-04-26 2020-08-07 北京北方华创微电子装备有限公司 承载装置及工艺腔室
CN115881614A (zh) * 2022-11-10 2023-03-31 北京北方华创微电子装备有限公司 半导体工艺腔室及其承载装置

Also Published As

Publication number Publication date
CN115881614A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US10468282B2 (en) Method and apparatus for substrate transfer and radical confinement
WO2024099383A1 (zh) 半导体工艺腔室及其承载装置
CN1199247C (zh) 等离子体刻蚀处理装置及其维护方法
KR101919674B1 (ko) 프로세스 챔버 및 반도체 가공 장비
US6123804A (en) Sectional clamp ring
WO2009091189A2 (en) Substrate holder, substrate supporting apparatus, substrate processing apparatus, and substrate processing method using the same
KR20090110852A (ko) 구성가능한 베벨 에처
KR20130103604A (ko) 기판 열처리 기구
CN112397366B (zh) 一种承载装置及半导体反应腔室
CN103208410A (zh) 等离子体处理装置
US20020179245A1 (en) Plasma processing apparatus and maintenance method therefor
CN112470249B (zh) 具有聚焦环调整组件的等离子处理设备
KR102168255B1 (ko) 다른 크기의 워크피스를 취급하기 위한 장치 및 방법
KR20120008854A (ko) 기판처리장치
KR100920384B1 (ko) 평판표시소자 제조장치의 리프트 핀 모듈
TWI809544B (zh) 等離子體處理裝置及其末端執行器、邊緣環、晶圓處理方法、邊緣環更換方法及晶圓的取放方法
CN111334782A (zh) 半导体设备及其电极装置
CN104733367A (zh) 起模销组合件及具有起模销组合件的衬底处理设备
CN112151436B (zh) 压环组件及半导体工艺腔室
CN107305858B (zh) 顶针机构及预清洗腔室
US11881375B2 (en) Common substrate and shadow ring lift apparatus
KR101394110B1 (ko) 배치식 기판 지지 장치 및 이를 구비하는 기판 처리 장치
KR20090012882A (ko) 반도체 식각 설비의 행거형 캐소드 전극
CN118039524A (zh) 一种等离子体处理腔、半导体处理系统、机械手及方法
TW202329765A (zh) 電漿處理設備可更換部件之儲存匣