WO2024099285A1 - 多链路通信方法及装置 - Google Patents

多链路通信方法及装置 Download PDF

Info

Publication number
WO2024099285A1
WO2024099285A1 PCT/CN2023/130051 CN2023130051W WO2024099285A1 WO 2024099285 A1 WO2024099285 A1 WO 2024099285A1 CN 2023130051 W CN2023130051 W CN 2023130051W WO 2024099285 A1 WO2024099285 A1 WO 2024099285A1
Authority
WO
WIPO (PCT)
Prior art keywords
twt
link
field
communication frame
communication
Prior art date
Application number
PCT/CN2023/130051
Other languages
English (en)
French (fr)
Inventor
淦明
林游思
李云波
杨懋
李波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024099285A1 publication Critical patent/WO2024099285A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a multi-link communication method and device.
  • the Institute of Electrical and Electronics Engineers (IEEE) 802.11 next-generation WiFi extremely high throughput (EHT) protocol can not only use the new frequency band above 6GHz to transmit information packets with ultra-large bandwidth, but also use multi-link cooperation technology to aggregate discontinuous multiple links to form ultra-large bandwidth.
  • IEEE 802.11 next-generation WiFi extremely high throughput (EHT) protocol can not only use the new frequency band above 6GHz to transmit information packets with ultra-large bandwidth, but also use multi-link cooperation technology to aggregate discontinuous multiple links to form ultra-large bandwidth.
  • multi-link cooperation technology can also share the medium access control (MAC) layer on multiple links to achieve flexible transmission of information packets, or send information packets of the same service to the same site at the same time.
  • MAC medium access control
  • a device that implements multi-link cooperation technology can be called a multi-link device.
  • Multi-link devices can be associated with each other through a link, thereby quickly establishing associations between multiple links.
  • a target wake time agreement (TWT agreement) can be established for one or more links between MLDs.
  • the present application provides a multi-link communication method and device, which can effectively realize the flexibility of dismantling the TWT protocol.
  • an embodiment of the present application provides a multi-link communication method, the method comprising: generating a communication frame, the communication frame comprising a first field and a second field, the first field being used to indicate one or more links, and the second field being used to indicate the removal of a target wake-up time TWT agreement or TWT planning between multi-link devices; and sending the communication frame.
  • the communication frame can be called a TWT teardown frame, a TWT deletion frame or a TWT information frame, etc.
  • the first field can be called a link information field, such as the first field can be used to carry the link identifier of each link in one or more links, or the first field can be used to carry a bitmap, each bit in the bitmap is used to indicate whether the corresponding link is to be torn down.
  • the second field can include tearing down all TWT agreements (teardown all TWT), or tearing down all TWT agreements established on all links (teardown all TWT setup on all links).
  • the TWT agreement can correspond to a negotiation type of single-user TWT
  • the TWT plan can correspond to a negotiation type of broadcast TWT.
  • the receiving end of the communication frame can effectively know the TWT protocol or TWT plan to be dismantled through these two fields, thereby effectively improving the flexibility of dismantling the TWT protocol.
  • the communication frame is used to indicate the dismantling of all TWT protocols or TWT plans on the one or more links indicated by the first field.
  • the first value may be equal to 1.
  • the value of the second field is the first value
  • the value of the TWT stream identification field in the communication frame is reserved (resvered), or the value of the broadcast TWT identification field is reserved (resvered).
  • the receiving end of the communication frame can dismantle all TWT agreements on one or more links indicated by the first field based on the link indicated by the first field.
  • the receiving end of the communication frame can dismantle one or more TWT agreements on this link.
  • the receiving end of the communication frame can dismantle one or more TWT agreements on each of the multiple links.
  • the receiving end of the communication frame can dismantle all TWT agreements or all TWT plans on one or more links indicated by the first field, which effectively improves the efficiency of dismantling TWT agreements or TWT plans and saves signaling overhead.
  • the communication frame when the value of the second field is the second value, is used to indicate the dismantling of the TWT agreement corresponding to the combination including the TWT flow identifier on each link of the one or more links indicated by the first field; or, the communication frame is used to indicate the dismantling of the TWT plan corresponding to the combination including the broadcast TWT identifier on each link of the one or more links indicated by the first field.
  • the second value may be equal to 0.
  • the receiving end of the communication frame may dismantle the TWT protocol corresponding to the combination including the TWT flow identifier on the link indicated by the first field. For example, if the first field indicates a link, the receiving end of the communication frame may dismantle the TWT protocol corresponding to the combination including the TWT flow identifier on the link indicated by the first field. The receiving end dismantles the TWT protocol (or TWT plan) corresponding to the combination including the TWT flow identifier (broadcast TWT identifier) on the link.
  • the receiving end of the communication frame can dismantle the TWT protocol (or TWT plan) corresponding to the combination including the TWT flow identifier (broadcast TWT identifier) on these multiple links.
  • the receiving end can accurately know the TWT protocol or TWT plan that needs to be dismantled, thereby improving the efficiency and flexibility of dismantling the TWT protocol.
  • the communication frame also includes a third field, and the third field is used to carry the TWT flow identifier; or, the third field is used to carry the broadcast TWT identifier.
  • the third field can carry a specific TWT stream identifier or a broadcast TWT identifier, or the third field can be set to reserved.
  • the receiving end can accurately know the TWT agreement or TWT plan that needs to be dismantled based on the first field, the second field and the third field, thereby improving the efficiency and flexibility of dismantling the TWT agreement.
  • the TWT protocol corresponds to any one of the following combinations including a TWT flow identifier: a combination of the TWT flow identifier, the media access control MAC address of a station on each link of the one or more links indicated by the first field, and the MAC address of the opposite station on each link indicated by the first field; or a combination of the TWT flow identifier, the MAC address of a multi-link device to which the transmitter of the communication frame belongs, the MAC address of the multi-link to which the receiver of the communication frame belongs, and the link indicated by the first field.
  • the content corresponding to the TWT protocol shown above can also be called the elements of the TWT protocol, or the elements used to identify the TWT protocol, or the information used to uniquely identify the TWT protocol, etc.
  • the site and the opposite site shown above are relative to one link.
  • the TWT planning corresponds to any one of the following combinations including a broadcast TWT identifier: a combination of the broadcast TWT identifier and the media access control MAC address of the access station on each link of the one or more links indicated by the first field; or a combination of the broadcast TWT identifier, the MAC address of the multi-link device to which the access station on each link of the one or more links indicated by the first indication and the link indicated by the first field.
  • the content corresponding to the TWT planning shown above can also be called the elements of the TWT planning, or the elements used to identify the TWT planning, or the information used to uniquely identify the TWT planning.
  • the first field is included in a multi-link operation information element in the communication frame.
  • the second field is included in the TWT stream field in the communication frame.
  • an embodiment of the present application provides a multi-link communication method, the method comprising: receiving a communication frame, the communication frame comprising a first field and a second field, the first field being used to indicate one or more links, and the second field being used to indicate the removal of a target wake-up time TWT agreement or TWT plan between multi-link devices; and removing the TWT agreement or TWT plan based on the communication frame.
  • the method further includes: determining the TWT protocol based on any one of the following combinations including a TWT flow identifier: a combination of the TWT flow identifier, a media access control MAC address of a station on each link of the one or more links indicated by the first field, and a MAC address of a counterpart station on each link indicated by the first field; or, a combination of the TWT flow identifier, a MAC address of a multi-link device to which the transmitter of the communication frame belongs, a MAC address of a multi-link to which the receiver of the communication frame belongs, and a link indicated by the first field;
  • the TWT plan is determined based on any one of the following items including a combination of a broadcast TWT identifier; a combination of a broadcast TWT identifier and a media access control MAC address of an access station on each link of the one or more links indicated by the first field; or a combination of the broadcast TWT identifier, a MAC address of a multi-link device to which an access station (such as the sender of the communication frame) on each link of the one or more links indicated by the first field and the link indicated by the first field.
  • the dismantling of the TWT agreement or the TWT plan based on the communication frame includes: when the value of the second field is the first value, dismantling all TWT agreements or all TWT plans on each link of the one or more links indicated by the first field.
  • the dismantling of the TWT agreement or TWT plan based on the communication frame includes:
  • the TWT agreement corresponding to the TWT flow identifier on each link of the one or more links indicated by the first field is dismantled; or, when the value of the second field is the second value, the TWT planning corresponding to the broadcast TWT identifier on each link of the one or more links indicated by the first field is dismantled.
  • the first field is included in a multi-link operation information element in the communication frame.
  • the second field is included in the TWT stream field in the communication frame.
  • an embodiment of the present application provides a multi-link communication method, wherein a plurality of associated links have been established between a multi-link device to which a transmitting end of a communication frame belongs and a multi-link device to which a receiving end of the communication frame belongs, the method comprising:
  • the communication frame including instruction information
  • the instruction information is used to instruct to remove the multiple links established between the multi-link devices TWT protocol or TWT planning on the associated link; sending the communication frame.
  • an embodiment of the present application provides a multi-link communication method, wherein a plurality of associated links have been established between a multi-link device to which a transmitting end of a communication frame belongs and a multi-link device to which a receiving end of the communication frame belongs, the method comprising:
  • the value of the indication information is a first value.
  • the first indication information is included in the TWT stream field in the communication frame.
  • the indication information can be used to carry and remove all TWT agreement fields, or to remove all TWT agreement fields established on all links.
  • the TWT agreement can correspond to the negotiation type of single-user TWT
  • the TWT planning can correspond to the negotiation type of broadcast TWT.
  • the TWT protocol corresponds to any of the following combinations including a TWT flow identifier:
  • the TWT planning corresponds to any one of the following combinations including a broadcast TWT identifier: a combination of the broadcast TWT identifier and the media access control MAC address of the access station on the link indicated by the first field; or a combination of the broadcast TWT identifier, the MAC address of the multi-link device to which the access station on the link indicated by the first field belongs, and the link indicated by the first field.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the first aspect or any possible implementation of the first aspect.
  • the communication device includes a unit having the function of executing the method in the first aspect or any possible implementation of the first aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the second aspect or any possible implementation of the second aspect.
  • the communication device includes a unit having the function of executing the method in the second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the third aspect or any possible implementation of the third aspect.
  • the communication device includes a unit having the function of executing the method in the third aspect or any possible implementation of the third aspect.
  • an embodiment of the present application provides a communication device for executing the method in the fourth aspect or any possible implementation of the fourth aspect.
  • the communication device includes a unit having the function of executing the method in the fourth aspect or any possible implementation of the fourth aspect.
  • the above-mentioned communication device and the communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit For the specific description of the transceiver unit and the processing unit, reference may also be made to the device embodiment shown below.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the first aspect or any possible implementation of the first aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the first aspect or any possible implementation of the first aspect is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the second aspect or any possible implementation of the second aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the second aspect or any possible implementation of the second aspect is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the third aspect or any possible implementation of the third aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the third aspect or any possible implementation of the third aspect is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the fourth aspect or any possible implementation of the fourth aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the fourth aspect or any possible implementation of the fourth aspect is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the logic circuit is used to generate a communication frame; and the interface is used to output the communication frame.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the interface is used to input a communication frame; and the logic circuit is used to dismantle a TWT protocol based on the communication frame.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned third aspect or any possible implementation of the third aspect is executed.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the above-mentioned fourth aspect or any possible implementation of the fourth aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned third aspect or any possible implementation of the third aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned fourth aspect or any possible implementation of the fourth aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned first aspect or any possible implementation of the first aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned second aspect or any possible implementation of the second aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned third aspect or any possible implementation of the third aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned fourth aspect or any possible implementation of the fourth aspect is executed.
  • an embodiment of the present application provides a wireless communication system, which includes a transmitting end and a receiving end, the transmitting end is used to execute the method shown in the above-mentioned first aspect or any possible implementation of the first aspect, and the receiving end is used to execute the method shown in the above-mentioned second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application provides a wireless communication system, which includes a transmitting end and a receiving end, the transmitting end is used to execute the method shown in the above-mentioned third aspect or any possible implementation of the third aspect, and the receiving end is used to execute the method shown in the above-mentioned fourth aspect or any possible implementation of the fourth aspect.
  • FIG. 1a is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG1b is a schematic diagram of the architecture of another communication system provided in an embodiment of the present application.
  • FIG2a is a schematic diagram of a connection method between a multi-link AP and a multi-link STA provided in an embodiment of the present application;
  • FIG2b is a schematic diagram of a connection method between a multi-link AP and a multi-link STA provided in an embodiment of the present application;
  • FIG2c is a schematic diagram of an antenna of a multi-link device provided in an embodiment of the present application.
  • FIG3a is a schematic diagram of a communication scenario provided in an embodiment of the present application.
  • FIG3b is a schematic diagram of a communication scenario provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a flow chart of a multi-link communication method provided in an embodiment of the present application.
  • FIG5a is a flow chart of a method for establishing a TWT agreement provided in an embodiment of the present application
  • FIG5b is a schematic diagram of a scenario for establishing a TWT agreement provided in an embodiment of the present application.
  • FIG6a is a schematic diagram of the structure of a TWT element whose negotiation type is a single-user TWT type provided in an embodiment of the present application;
  • FIG6b is a schematic diagram of the structure of a TWT element whose negotiation type is a broadcast TWT type provided in an embodiment of the present application;
  • FIG7a is a schematic diagram of the structure of a communication frame provided in an embodiment of the present application.
  • FIG7b is a schematic diagram of the structure of a communication frame provided in an embodiment of the present application.
  • FIG7c is a schematic diagram of the structure of a communication frame provided in an embodiment of the present application.
  • FIG7d is a schematic diagram of the structure of a communication frame provided in an embodiment of the present application.
  • FIG8a is a schematic diagram of the structure of a communication frame provided in an embodiment of the present application.
  • FIG8b is a schematic diagram of the structure of a communication frame provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • At least one (item) means one or more
  • “more than one” means two or more
  • “at least two (items)” means two or three and more than three
  • “and/or” is used to describe the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • “Or” means that two relationships may exist, such as only A exists, only B exists; when A and B are not mutually exclusive, it can also mean that there are three relationships, such as only A exists, only B exists, and A and B exist at the same time.
  • the technical solution provided in the embodiment of the present application can be applied to WLAN systems, such as Wi-Fi, etc.
  • the method provided in the embodiment of the present application can be applied to the IEEE 802.11 series of protocols, such as 802.11a/b/g protocol, 802.11n protocol, 802.11ac protocol, 802.11ax protocol, 802.11be protocol or the next generation of protocols, etc., which are not listed here one by one.
  • the technical solution provided in the embodiment of the present application can also be applied to wireless personal area networks (WPAN) based on UWB technology.
  • WPAN wireless personal area networks
  • the method provided in the embodiment of the present application can be applied to the IEEE802.15 series of protocols, such as 802.15.4a protocol, 802.15.4z protocol or 802.15.4ab protocol, or a future generation of UWB WPAN protocol, etc., which are not listed here one by one.
  • the technical solution provided in the embodiments of the present application can also be applied to other types of communication systems, for example, it can be an Internet of Things (IoT) system, a vehicle to X (V2X), a narrow band Internet of Things (NB-IoT) system, devices in the vehicle network, IoT nodes, sensors, etc.
  • IoT Internet of Things
  • V2X vehicle to X
  • NB-IoT narrow band Internet of Things
  • the embodiments of the present application mainly take WLAN as an example, especially the network applied to the IEEE 802.11 series of standards, such as supporting Wi-Fi7, which can also be called extremely high throughput (extremely high-throughput, EHT) system, and supporting Wi-Fi8, which can also be called ultra-high reliability (ultra high reliability, UHR) or ultra-high reliability and throughput (ultra high reliability and throughput, UHRT) system as an example for illustration.
  • Wi-Fi7 which can also be called extremely high throughput (extremely high-throughput, EHT) system
  • Wi-Fi8 which can also be called ultra-high reliability (ultra high reliability, UHR) or ultra-high reliability and throughput (ultra high reliability and throughput, UHRT) system as an example for illustration.
  • UHR ultra high reliability
  • UHRT ultra-high reliability and throughput
  • Bluetooth high performance radio LAN (HIPERLAN) (a wireless standard similar to the IEEE 802.11 standard, mainly used in Europe) and wide area network (WAN) or other networks now known or developed later. Therefore, regardless of the coverage range and wireless access protocol used, the various aspects provided in the embodiments of the present application can be applied to any suitable wireless network.
  • HIPERLAN high performance radio LAN
  • WAN wide area network
  • the method provided in the embodiment of the present application can be implemented by a communication device in a wireless communication system.
  • the communication device can be an access point (AP) or a station (STA).
  • AP access point
  • STA station
  • An access point is a device with wireless communication function, supports communication or perception using WLAN protocol, has the function of communicating or perceiving with other devices (such as stations or other access points) in the WLAN network, and of course, can also have the function of communicating or perceiving with other devices.
  • an access point is equivalent to a bridge connecting a wired network and a wireless network, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • an access point can be called an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or processing system installed in the complete device, etc.
  • the device installed with these chips or processing systems can implement the methods and functions of the embodiments of the present application under the control of the chip or processing system.
  • the AP in the embodiment of the present application is a device that provides services for STA, and can support 802.11 series protocols or subsequent protocols, etc.
  • an access point can be an access point for a terminal (such as a mobile phone) to enter a wired (or wireless) network, which is mainly deployed in homes, buildings, and parks, with a typical coverage radius of tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • the AP can be a communication entity such as a communication server, a router, a switch, a bridge, etc.; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be a chip and processing system in these various forms of devices, so as to realize the methods and functions of the embodiments of the present application.
  • a station is a device with wireless communication function, supports communication or perception using WLAN protocol, and has the ability to communicate or perceive with other stations or access points in the WLAN network.
  • a station can be called a non-access point station (non-AP STA).
  • non-AP STA is any user communication device that allows a user to communicate or perceive with an AP and then communicate with a WLAN.
  • the device with wireless communication function can be a complete device, or a chip or processing system installed in the complete device, etc. The device installed with these chips or processing systems can implement the methods and functions of the embodiments of the present application under the control of the chip or processing system.
  • a station can be a wireless communication chip, a wireless sensor or a wireless communication terminal, etc., and can also be called a user.
  • a station can be a mobile phone supporting Wi-Fi communication function, a tablet supporting Wi-Fi communication function, a set-top box supporting Wi-Fi communication function, a smart TV supporting Wi-Fi communication function, a smart wearable device supporting Wi-Fi communication function, a vehicle-mounted communication device supporting Wi-Fi communication function, and a computer supporting Wi-Fi communication function, etc.
  • WLAN systems can provide high-speed and low-latency transmission. With the continuous evolution of WLAN application scenarios, WLAN systems will be applied to more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry or the banking industry, corporate offices, sports stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehouses, etc.
  • devices supporting WLAN communication or perception can be sensor nodes in smart cities (such as smart water meters, smart electric meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, display screens, televisions, audio, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as wearable devices such as augmented reality (AR), virtual reality (VR), etc.), smart devices in smart offices (such as printers, projectors, loudspeakers, audio, etc.), Internet of Vehicles devices in the Internet of Vehicles, infrastructure in daily life scenes (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and equipment in large sports and music venues, etc.
  • smart cities such as smart water meters, smart electric meters, and smart air detection nodes
  • smart devices in smart homes such as smart cameras, projectors, display screens, televisions, audio, refrigerators, washing machines, etc.
  • nodes in the Internet of Things entertainment terminals (such as wearable devices such
  • access points and sites can be devices used in the Internet of Vehicles, Internet of Things nodes and sensors in the Internet of Things, smart cameras, smart remote controls, smart water meters and electric meters in smart homes, and sensors in smart cities, etc.
  • Internet of Things nodes and sensors in the Internet of Things smart cameras, smart remote controls, smart water meters and electric meters in smart homes, and sensors in smart cities, etc.
  • the communication system to which the method provided in the embodiment of the present application can be applied may include access points and stations.
  • the embodiment of the present application may be applicable to the scenario of communication or perception between AP and STA, between AP and AP, or between STA and STA in WLAN, and the embodiment of the present application is not limited to this.
  • the AP can communicate or perceive with a single STA, or the AP can communicate or perceive with multiple STAs at the same time.
  • the communication or perception between the AP and multiple STAs can be divided into downlink transmission in which the AP sends signals to multiple STAs at the same time, and uplink transmission in which multiple STAs send signals to the AP.
  • WLAN can be supported between AP and STA, between AP and AP, or between STA and STA.
  • the communication protocol may include IEEE 802.11 series protocols, such as the 802.11be standard, and of course also the standards after 802.11be.
  • FIG. 1a is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • the communication system may include one or more APs and one or more STAs.
  • FIG. 1a shows two access points such as AP1 and AP2, and three stations such as STA1, STA2, and STA3. It is understandable that one or more APs may communicate with one or more STAs. Of course, APs may communicate with APs, and STAs may communicate with STAs.
  • the method provided in an embodiment of the present application may be applicable to, but not limited to, single-user uplink/downlink transmission, multi-user uplink/downlink transmission, vehicle-to-everything (V2X, X can represent anything), device-to-device (D2D).
  • the V2X may include: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), or vehicle-to-network (V
  • the STA is a mobile phone and the AP is a router as an example in FIG1a, which does not limit the types of AP and STA in the embodiment of the present application.
  • FIG1a only shows two APs and three STAs by way of example, but the number of APs or STAs can be more or less, and the embodiment of the present application does not limit this.
  • a multi-link device includes one or more subordinate sites, and the subordinate sites are logical sites that can work on a link, a frequency band, or a channel, etc.
  • the subordinate site can be an AP or a non-AP STA.
  • the embodiment of the present application can refer to a multi-link device whose subordinate site is an AP as a multi-link AP or a multi-link AP device or an AP multi-link device (AP multi-link device, AP MLD).
  • a multi-link device whose subordinate site is a non-AP STA is called a multi-link STA or a multi-link STA device or a STA multi-link device (STA multi-link device), or a multi-link device whose subordinate site is a non-AP STA is called a multi-link non-AP or a multi-link non-AP device or a non-AP multi-link device (non-AP multi-link device, non-AP MLD).
  • a multi-link device (which can be either a non-AP MLD or an AP MLD here) is a communication device with a wireless communication function.
  • the communication device can be a complete device, or a chip or processing system installed in the complete device. Devices installed with these chips or processing systems can implement the methods and functions of the embodiments of the present application under the control of these chips or processing systems.
  • the multi-link device MLD can follow the 802.11 series of protocols to achieve wireless communication, for example, follow the Extremely High Throughput (EHT), or follow the 802.11be-based or compatible support 802.11be, so as to achieve communication with other devices.
  • EHT Extremely High Throughput
  • other devices can be multi-link devices or not.
  • Each logical site can work on a link, but multiple logical sites are allowed to work on the same link.
  • the link identifier mentioned below represents a site working on a link, that is, if there are more than one logical site on a link, more than one link identifier is required to represent them.
  • the link identifier mentioned below sometimes also represents the site working on the link.
  • the multi-link device and the other multi-link device can first negotiate or communicate the correspondence between the link identifier and a link or a site on a link, or the AP multi-link device broadcasts a management frame, such as a beacon frame, to indicate the correspondence between the link identifier and a link or a site on a link. Therefore, in data transmission, a large amount of signaling does not need to be transmitted to indicate the link or the site on the link, and the link identifier only needs to be carried, which reduces the signaling overhead and improves the transmission efficiency.
  • a management frame such as a beacon frame
  • one of the multi-link devices is an AP multi-link device and the other multi-link device is a STA multi-link device.
  • the management frame sent such as a multi-link detection response frame
  • the link information field included in the multi-link element can be used to establish a corresponding relationship between a link identifier and a station working on the link.
  • the link sequence number is used to identify a combination of ⁇ the operating class of the link, the channel number, and the BSSID (BSS identier) of the AP (or the MAC address of the AP)>.
  • FIG1b is a schematic diagram of the architecture of another communication system provided by an embodiment of the present application.
  • AP MLD includes AP1, AP2, ..., APn
  • non-AP MLD includes STA1, STA2, ..., STAn.
  • the n shown here is a positive integer.
  • AP MLD and non-AP MLD can communicate in parallel using link 1, link 2, ..., link n.
  • STA1 in non-AP MLD establishes an association relationship with AP1 in AP MLD
  • STA2 in non-AP MLD establishes an association relationship with AP2 in AP MLD
  • STAn in non-AP MLD establishes an association relationship with APn in AP MLD, etc.
  • one or more STAs in non-AP MLD can communicate with one or more APs in AP MLD after establishing an association relationship.
  • the frequency bands in which multi-link devices (including AP MLD and non-AP MLD) operate may include but are not limited to: sub 1GHz, 2.4GHz, 5GHz, 6GHz, and high frequency 60GHz, etc.
  • FIG2a and FIG2b are schematic diagrams of a connection method between a multi-link AP and a multi-link STA provided in an embodiment of the present application.
  • the 802.11 standard focuses on the 802.11 physical layer (physical layer, PHY) and medium access control (medium access control, MAC) layer in a multi-link device, so FIG2a and FIG2b only exemplarily show the PHY and MAC layers.
  • a multi-link device may include a physical layer (physical layer, The physical layer processing circuit can be used to process physical layer signals, and the MAC layer processing circuit can be used to process MAC layer signals. Further, in the MAC layer, it can also be divided into a high-MAC layer (high-MAC as shown in FIG. 2a, high-MAC#1 to high-MAC#n as shown in FIG. 2b) and multiple low-MAC layers (low-MAC#1, low-MAC#2 to low-MAC#n as shown in FIG. 2a and FIG. 2b). As shown in FIG.
  • the multiple APs included in the multi-link AP are independent of each other in the low MAC layer and PHY, and share the high MAC layer.
  • the multiple STAs included in the multi-link STA are independent of each other in the low MAC layer and PHY, and share the high MAC layer.
  • the high MAC layer is connected to multiple low MAC layers respectively, that is, the high MAC layer is shared by multiple links.
  • the multiple APs included in the multi-link AP are independent of each other in the low MAC layer and PHY, and are also independent of each other in the high MAC layer.
  • Multiple STAs of a multi-link STA device are independent of each other in the low MAC layer and PHY, and also independent of each other in the high MAC layer.
  • the high MAC layer mainly completes the allocation of sequence number (SN) and packet number (PN) of the MAC service data unit (MSDU) and encryption and decryption operations.
  • Each low MAC layer mainly completes the assembly of the MAC protocol data unit (MPDU) of its own link, channel access, packet sending and receiving confirmation, etc.
  • the PHY#1 layer, the low MAC#1 layer and the high MAC layer in the multi-link AP can be regarded as AP#1
  • the PHY#2 layer, the low MAC#2 layer and the high MAC layer can be regarded as AP#2
  • the PHY#n layer, the low MAC#n layer and the high MAC layer can be regarded as AP#n, that is, it can be understood that the multi-link AP includes n AP entities.
  • the situation is similar, that is, the high MAC layer in the multi-link STA is also shared by multiple links, the PHY#1 layer, the low MAC#1 layer and the high MAC layer are regarded as STA#1, the PHY#2 layer, the low MAC#2 layer and the high MAC layer are regarded as STA#2, ..., the PHY#n layer, the low MAC#n layer and the high MAC layer are regarded as STA#n, that is, it can be understood that the multi-link STA includes n STA entities.
  • PHY#1 of AP#1 in the multi-link AP is connected to PHY#1 of STA#1 in the multi-link STA, and AP#1 in the multi-link AP and STA#1 in the multi-link STA communicate through a link (link #1 as shown in FIG2a);
  • PHY#2 of AP#2 in the multi-link AP is connected to PHY#2 of STA#2 in the multi-link STA, and AP#2 in the multi-link AP and STA#2 in the multi-link STA communicate through a link (link #2 as shown in FIG2a);
  • PHY#n of AP#n in the multi-link AP is connected to PHY#n of STA#n in the multi-link STA, and AP#n in the multi-link AP and STA#n in the multi-link STA communicate through a link (link #n as shown in FIG2a).
  • FIG2b please refer to FIG2a, which will not be described in detail
  • the high MAC layer or the low MAC layer can be implemented by a processor in the chip system of the multi-link device, and can also be implemented by different processing modules in a chip system.
  • the multi-link device in the embodiment of the present application can be a single-antenna device or a multi-antenna device.
  • it can be a device with more than two antennas.
  • the embodiment of the present application does not limit the number of antennas included in the multi-link device.
  • Figure 2c is an antenna schematic diagram of a multi-link device provided in an embodiment of the present application.
  • Figure 2c takes the AP multi-link device as a multi-antenna and the STA multi-link device as a single antenna as an example, which should not be understood as a limitation on the embodiment of the present application.
  • the multi-link device can allow services of the same access type to be transmitted on different links, and even allow the same data packets to be transmitted on different links; it can also not allow services of the same access type to be transmitted on different links, but allow services of different access types to be transmitted on different links, and the embodiment of the present application does not limit this.
  • the frequency bands in which the multi-link device operates may include but are not limited to: sub 1 GHz, 2.4 GHz, 5 GHz, 6 GHz and high frequency 60 GHz.
  • Figures 3a and 3b show two schematic diagrams of a multi-link device communicating with other devices via multiple links in a wireless local area network.
  • FIG3a shows a scenario in which an AP multi-link device 101 and a STA multi-link device 102 communicate.
  • the AP multi-link device 101 includes subordinate AP101-1 and AP101-2
  • the STA multi-link device 102 includes subordinate STA102-1 and STA102-2.
  • the AP multi-link device 101 and the STA multi-link device 102 communicate using link 1 and link 2 in parallel.
  • FIG3b shows a scenario in which AP MLD101 communicates with Non-AP MLD102, Non-AP MLD103, and STA104.
  • AP MLD101 includes subordinate AP101-1 to AP101-3;
  • Non-AP MLD102 includes three subordinate STA102-1, STA102-2, and STA102-3;
  • Non-AP MLD103 includes two subordinate STA103-1 and STA103-2;
  • STA104 is a single-link device, including STA104-1.
  • AP MLD101 can communicate with Non-AP MLD102 using link 1, link 2, and link 3 respectively; communicate with Non-AP MLD103 using link 2 and link 3; and communicate with STA104 using link 1.
  • STA104 works in the 2.4 GHz frequency band; in Non-AP MLD103, STA103-1 works in the 5 GHz frequency band, and STA103-2 works in the 6 GHz frequency band; in Non-AP MLD102, STA102-1 works in the 2.4 GHz frequency band, STA102-2 works in the 5 GHz frequency band, and STA102-3 works in the 6 GHz frequency band.
  • AP101-1 in AP MLD101 working in the 2.4 GHz frequency band can transmit uplink or downlink data with STA104 and STA102-1 in Non-AP MLD102 through link 1.
  • AP101-2 in AP MLD101 working in the 5 GHz band can transmit uplink or downlink data with STA103-1 in Non-AP MLD 103 working in the 5 GHz band through link 2, and can also transmit uplink or downlink data with STA102-2 in Non-AP MLD102 working in the 5 GHz band through link 2.
  • AP101-3 in AP MLD101 working in the 6 GHz band can transmit uplink or downlink data with STA102-3 in Non-AP MLD102 working in the 6 GHz band through link 3, and can also transmit uplink or downlink data with STA103-2 in Non-AP MLD through link 3.
  • FIG3a only shows that the AP multi-link device supports two frequency bands
  • FIG3b only takes the example that AP MLD101 supports three frequency bands (2.4GHz, 5GHz, 6GHz), each frequency band corresponds to a link
  • AP MLD101 can work on one or more links in link 1, link 2 or link 3.
  • the link On the AP side or the STA side, the link here can also be understood as a station working on the link.
  • AP MLD and Non-AP MLD can also support more or fewer frequency bands, that is, AP MLD and Non-AP MLD can work on more links or fewer links, and the embodiments of the present application do not limit this.
  • FIG. 3a and FIG. 3b are merely simple schematic diagrams and do not constitute any limitation on the protection scope of the embodiments of the present application.
  • the elements related to the TWT agreement include: TWT flow identifier (TWT flow identifier), MAC address of TWT requesting station (MAC address of TWT requesting STA), MAC address of TWT responding station (MAC address of TWT responding STA), wherein the TWT requesting station is the station that sends the TWT element to request the establishment of TWT, wherein the TWT request field in the request type field in the TWT element field is set to 1, and the TWT responding station is the station that sends the TWT element to respond to the establishment of TWT, wherein the TWT request field in the request type field in the TWT element field is set to 0.
  • TWT flow identifier TWT flow identifier
  • MAC address of TWT requesting station MAC address of TWT requesting STA
  • MAC address of TWT responding station MAC address of TWT responding STA
  • the TWT agreement can be dismantled through the above elements.
  • the two communicating parties when dismantling the TWT agreement need to be consistent with the two communicating parties that established the TWT agreement, that is, the MAC addresses of the two communicating parties when dismantling the TWT agreement include the MAC address of the TWT requesting station and the MAC address of the TWT responding station.
  • the single-link transmitter can send a TWT teardown frame to the single-link receiver, thereby directly dismantling the TWT agreement.
  • the TWT agreement on one link can be established by the site corresponding to another link (as shown here, if a link is in a dormant state or a busy state, a TWT agreement can be established for it by another link), or, the TWT agreement on some links can be established by the sites corresponding to other links between multi-link devices except for these links. Therefore, if the TWT agreement is still dismantled using the method of dismantling the TWT agreement shown above, the flexibility of dismantling the TWT agreement will be low.
  • the links established between two multi-link devices include link 1 and link 2, and the TWT agreement of link 2 is established by link 1, that is, the TWT request site and the TWT response site of the TWT agreement of link 2 are the sites corresponding to link 1. If a TWT dismantling frame is sent by a site on link 2, the receiving end of the TWT dismantling frame believes that the MAC address of the TWT establishment request site is the MAC address of the sending site on link 2, rather than the MAC address of the site on link 1 that originally established the TWT agreement, resulting in the site on link 2 being unable to dismantle the TWT agreement established by link 1.
  • an embodiment of the present application provides a multi-link communication method and device, which can effectively improve the flexibility of dismantling the TWT protocol.
  • FIG4 is a flow chart of a multi-link communication method provided in an embodiment of the present application.
  • the method can be applied to the system shown in FIG1a and FIG1b, or the method can be applied to the multi-link device shown in FIG3a and FIG3b.
  • the method provided in the embodiment of the present application is described below using the transmitting end and the receiving end as examples.
  • the transmitting end can be understood as a STA that sends a communication frame
  • the receiving end can be understood as a STA that receives a communication frame.
  • the transmitting end can be understood as a STA in a multi-link device for sending communication frames
  • the receiving end can be understood as a STA in a multi-link device for receiving communication frames.
  • non-AP STA and AP STA are not specifically distinguished, but the method provided in the embodiment of the present application is described with STA.
  • the multi-link devices involved in the communication of both parties in the embodiment of the present application can be AP MLDs, or STA MLDs, or one multi-link device is AP MLD and the other multi-link device is STA MLD, etc., which are not listed one by one here.
  • the embodiments of the present application describe the method provided by the embodiments of the present application based on the transmitting end and the receiving end, but the transmitting end and the receiving end may also have other devices in the process of transmitting information, such as forwarding information between the transmitting end and the receiving end through a forwarding device, etc. Therefore, the mutual transmission of information in the embodiments of the present application can be achieved by technical means that can be accomplished by those skilled in the art, and the embodiments of the present application do not limit other devices other than the transmitting end and the receiving end.
  • FIG5a is a flow chart of a method for establishing a TWT agreement provided in an embodiment of the present application.
  • the method is illustrated by an example of a non-AP MLD initiating a TWT establishment request, and should not be understood as a limitation on the embodiment of the present application.
  • the method includes:
  • the STA in the non-AP MLD sends a TWT establishment request frame, and correspondingly, the AP in the AP MLD receives the TWT establishment request frame.
  • the TWT establishment request frame and the TWT establishment response frame shown in the embodiment of the present application are only examples.
  • the TWT establishment request frame and the TWT establishment response frame can also be collectively referred to as a TWT establishment frame.
  • the difference is that the TWT request in the TWT element in the TWT establishment frame is larger than the TWT request in the TWT element in the TWT establishment frame.
  • Special settings of "1" or "0", or management frames used to establish the TWT protocol, etc. are no longer listed one by one.
  • the AP in the AP MLD can send a confirmation frame to the STA in the non-AP MLD, where the confirmation frame is used to confirm the TWT establishment request frame.
  • step 501 is an optional step.
  • the confirmation frame used to confirm the TWT establishment request frame is also an optional step.
  • the AP in AP MLD sends a TWT establishment response frame, and correspondingly, the STA in non-AP MLD receives the TWT establishment response frame.
  • the STA in the non-AP MLD can send a confirmation frame to the AP in the AP MLD, where the confirmation frame is used for the TWT establishment response frame.
  • the TWT request frame includes a TWT element
  • the TWT establishment response frame includes a TWT element.
  • TWT element includes at least one of the following fields: element number, length, control, and TWT parameter information.
  • control field includes at least one of the following fields: null data packet paging (NDP paging) indication, responder power management (PM) mode (responder PM mode), negotiation type (negotiation type), TWT information frame disabled (TWT information frame disabled), wake-up duration unit (wakeduration unit), link identification bit map exists (or simply bit map exists (bitmap present)), and reserved (reserved).
  • NDP paging null data packet paging
  • PM responder power management
  • negotiation type nodetiation type
  • TWT information frame disabled TWT information frame disabled
  • wake-up duration unit wake-up duration unit
  • link identification bit map exists or simply bit map exists (bitmap present)
  • reserved reserved
  • the negotiation types included in the control field include single-user TWT type and broadcast TWT type.
  • Figure 6a is a structural diagram of a TWT element whose negotiation type is a single-user TWT type provided in an embodiment of the present application.
  • the TWT parameter information field includes at least one of the following: request type (requesttype), target wake-up time (targetwaketime), TWT group assignment (TWT groupassignment), minimum TWT wake-up duration (nominal minimum TWT wake duration), TWT wake-up interval mantissa (TWT wake interval mantissa), TWT channel (TWT channel), empty data packet paging (NDP paging), link identification bitmap (link ID bitmap).
  • FIG. 6b is a structural diagram of a TWT element whose negotiation type is a broadcast TWT type provided in an embodiment of the present application.
  • the TWT parameter information field includes at least one of the following: request type, target wake-up time (determined based on the timing synchronization function (TSF) of the link), minimum TWT wake-up duration, TWT wake-up interval decimal, broadcast TWT channel, and link identification bit map.
  • TSF timing synchronization function
  • the request type in the TWT parameter information field includes at least one of the following: TWT request, TWT setup command, reserved, implicit, flow type, TWT flow identifier, TWT wake interval exponent, and TWT protection.
  • the request type of the TWT parameter information field can include some parameters related to the TWT establishment request and the TWT establishment response. If the value of the TWT request field in the TWT element is 1, it means that the frame corresponding to the TWT element is a TWT establishment request frame. If the value of the TWT request field in the TWT element is 0, it means that the frame corresponding to the TWT element is a TWT establishment response frame.
  • the TWT establishment command field in the TWT element in the TWT establishment request frame can be used to carry the value of "recommended TWT” (the value is 1 at this time), and the TWT establishment command field in the TWT element in the TWT establishment response frame can be used to carry the value of "accept TWT” (the value is 4 at this time), and a TWT agreement is successfully established.
  • the TWT flow identification field includes a TWT flow identification used to identify the request or provision of TWT information.
  • the control field in the TWT element provided in the embodiment of the present application includes a link identification bitmap field
  • the TWT parameter information includes a link identification bitmap field.
  • the link identification bitmap field can be used to indicate whether the TWT parameter information field will appear (or include) a link identification bitmap field.
  • the length of the link identification bitmap field can be determined based on the number of links established between the AP MLD and the non-AP MLD, and this method is highly flexible. Alternatively, the length of the link identification bitmap field can be determined based on the maximum number of links allowed to be established between the AP MLD and the non-AP MLD, and this method is simple.
  • the length of the link identification bitmap field can be fixed, such as 16 bits or 8 bits.
  • the following is an example of the length of the link identification bitmap field being 16 bits.
  • the maximum number shown here is only an example. With the evolution of the standard, the maximum number of links allowed to be established between subsequent multi-link devices may change. When the maximum number changes, the length of the link identification bitmap field shown in the embodiment of the present application may also change. It can be understood that the embodiment of the present application does not limit the name of the link identification bit map field.
  • the link identification bit map field can also be called a bit map field, or a link bit map field, etc., and they are no longer listed one by one.
  • Each bit in the link identification bitmap field has a one-to-one correspondence with a link, and the value of each bit can be used to indicate whether a TWT agreement is established on the corresponding link.
  • the content carried by the link identification bitmap field is: 0010 1110 0000 0001, which corresponds to links 1 to 16 respectively.
  • the value of each bit is 1, which indicates that a TWT agreement is established on the corresponding link, and the value of each bit is 0, which indicates that a TWT agreement is not established on the corresponding link.
  • the above-mentioned link identification bitmap field indicates that a TWT agreement can be established on link 3, link 5, link 6, link 7, and link 16 respectively.
  • the two communicating parties can establish a TWT agreement on link 3, link 5, link 6, link 7, and link 16 through the TWT establishment request frame and the TWT establishment response frame shown in Figure 5a.
  • the flow identifier of the TWT agreement is the flow identifier indicated by the TWT flow identifier field in the request type field, and the flow identifiers of the TWT agreements established on link 3, link 5, link 6, link 7, and link 16 are the same. It can be understood that the flow identifier of the TWT agreement established on link 3 is different from the flow identifier of the TWT agreement established on link 3.
  • the flow identifier of the TWT agreement established on link 5 is different from the flow identifier of the TWT agreement established on link 5, and so on.
  • the TWT flow identifier of each TWT agreement is required to be unique among the multiple TWT agreements established by the MLD requesting to establish TWT and the MLD responding to the establishment of TWT, or, it is unique among the multiple TWT agreements established between the corresponding link AP and STA, thereby effectively ensuring that the TWT agreement specified in the TWT demolition frame is unique, avoiding demolition errors.
  • one bit in the link identification bitmap field can be set to 1. That is to say, generally speaking, there can be a link corresponding to the link corresponding to the link identification bitmap field. The value of the bit corresponding to the link is 1, such as indicating the establishment of a TWT agreement on the corresponding link.
  • multiple bits in the link identification bitmap field may also be set to 1, and this is not limited to the embodiments of the present application.
  • the link identification bitmap shown above is only an example.
  • the link identification bitmap existence field shown above can be replaced by a link identification appearance field or a link identification existence field
  • the link identification bitmap field shown above can be replaced by a link identification field.
  • the link identification appearance field can be used to indicate that the TWT parameter information field will appear (or include) a link identification bitmap field.
  • the link identification field can be used to identify one or more links, so that the communicating parties can establish a TWT agreement on one or more links indicated by the link identification field based on the link identification field.
  • the communicating parties can establish a TWT agreement on one or more links indicated by the link identification field based on the content indicated in the TWT element.
  • the maximum number of links allowed to be established between MLDs is 16, and the length of the link identification field is 4 bits. If the content carried by the link identification field is 0001, it means that a TWT agreement needs to be established on link 1. For example, if the length of the link identification field is 8 bits and the content carried is 0001 0011, it means that a TWT agreement needs to be established on link 1 and link 3. It is understandable that the embodiments of the present application do not limit the length of the link identification field, or the correspondence between the value and meaning of the link identification field.
  • FIG5b is a schematic diagram of a scenario for establishing a TWT agreement provided in an embodiment of the present application.
  • a TWT agreement needs to be established through negotiation between the AP MLD and the non-AP MLD.
  • the AP MLD includes three subordinate AP sites: AP 1, AP 2, and AP 3, which operate at 2.4 GHz, 5 GHz, and 6 GHz, respectively;
  • the non-AP MLD includes three subordinate non-AP sites: STA 1, STA 2, and STA 3.
  • AP MLD and non-AP MLD can transmit management frames through link 1, such as STA 1 sends a TWT establishment request frame to AP 1, and AP1 receives the TWT establishment request frame accordingly, and AP1 sends a TWT establishment response frame to STA1, and STA1 receives the TWT establishment response frame accordingly.
  • STA 1 sends a TWT establishment request frame to AP 1
  • AP1 receives the TWT establishment request frame accordingly
  • STA1 sends a TWT establishment response frame to STA1
  • STA1 receives the TWT establishment response frame accordingly.
  • the description of the TWT establishment request frame and the TWT establishment response frame can be found above and will not be described in detail here.
  • the link identification bitmap included in the TWT element in the TWT establishment request frame is used to indicate that link 2 needs to establish a TWT protocol, then AP MLD and non-AP MLD can establish a TWT protocol for link 2, and the relevant parameters of the TWT protocol are all determined by the TWT element.
  • the target wake-up time of the TWT element is based on the time synchronization function (TSF) of the link indicated by the link identification bitmap, here the TSF of link 2 is used as a reference.
  • TSF time synchronization function
  • the method shown in Figure 4 is described in detail below. As shown in Figure 4, the method includes:
  • the sender generates a communication frame.
  • the transmitting end may be any station (working on an associated link) of a multi-link device to which a STA that has established a TWT protocol belongs, where the station may be an AP or a non-AP STA.
  • the communication frame may be a management frame, which may include a TWT teardown frame, a TWT deletion frame, a TWT teardown request frame, a TWT information frame, etc.
  • the communication frame includes a TWT demolition frame
  • the TWT demolition frame includes at least one of the following information: category, unprotected sub1GHz action (unprotected S1G action) and TWT flow (TWT flow).
  • the TWT stream includes at least one of the following fields: TWT flow identifier (TWT folwidentifier), reservation, negotiation type (negotiationtype), and teardown all TWT agreements (teardown all TWT).
  • TWT flow identifier TWT folwidentifier
  • reservation negotiation type
  • negotiation type no negotiation type
  • teardown all TWT agreements teardown all TWT.
  • the length of the TWT flow identifier field can be 3 bits.
  • the length of the TWT flow identifier field shown here is only an example. As the standard evolves, the length of the TWT flow identifier field can be expanded from 3 bits to more bits, such as 4 bits.
  • the TWT stream includes at least one of the following fields: broadcast TWT identifier, negotiation type (negotiationtype), and teardown all TWT agreements (teardown all TWT).
  • the communication frame provided in the embodiment of the present application is described below in combination with Table 1, Table 2a, and Table 2b.
  • the communication frame may include the following implementation methods:
  • the communication frame includes indication information, and the indication information is used to indicate the removal of the TWT agreement or TWT plan between the MLDs.
  • the indication information can be used to indicate the removal of all TWT agreements or TWT plans between the MLDs.
  • the TWT flow identification field is set to reserved.
  • the teardown all TWT agreements field is used to indicate the removal of all TWTs, that is, all TWTs on a link.
  • the indication information shown in the embodiment of the present application can be understood as being used to indicate the removal of all TWT agreements or TWT plans on all associated links between the MLDs.
  • the indication information may include the teardown all TWT agreement field established on all associated links, or the teardown all TWT agreements established on all links (teardown all TWT setup on all links) field, or the teardown all TWT agreements.
  • the indication information may include the teardown of the TWT plans established on all links, or the teardown of all TWT plans established on all associated links, or the teardown of all TWT agreements.
  • an embodiment of the present application adds an indication information, which is used to indicate the removal of all TWT agreements on all links between MLDs.
  • the communication frame includes at least one of the following information: type, unprotected sub1GHz action, and TWT flow (as shown in Table 1).
  • the TWT flow includes at least one of the following fields: TWT flow identifier, removal of all TWT agreements established on all links (ie, indication information), reservation, negotiation type, and removal of all TWT agreements.
  • the communication frame may include the first field, such as dismantling the TWT agreement in combination with the second implementation method shown below.
  • the indication information may reuse and remove all TWT protocol fields.
  • the communication frame includes the following to Less one piece of information: type, unprotected sub1GHz action and TWT flow (as shown in Table 1).
  • the TWT flow includes at least one of the following fields: TWT flow identifier, reservation, negotiation type and removal of all TWT agreements (i.e., indication information).
  • the communication frame can be used to indicate the removal of all TWT agreements on all links of the MLD to which the transmitter belongs. All links shown here refer to all associated links established between MLDs.
  • the TWT Teardown frame indicates a request to tear down all TWT agreements on all links of the MLD to which the station belongs (A non-AP STA affiliated with a non-AP MLD may tear down all individual TWT agreements setup on all set links by sending a TWT Teardown frame with the Teardown All TWT field set to 1 if the the MLO Link Information element is not present in the TWT Teardown frame.).
  • the examples 1 and 2 shown above are for single-user TWT, and the above method is also applicable to broadcast TWT.
  • the indication information can be carried in the communication frame, as shown in Figure 7c.
  • the indication information can exist in the communication frame in the form of an element, or the indication information can exist in the communication frame in the form of a field. The embodiment of the present application does not limit this.
  • the indication information can reuse and dismantle all TWT protocols, as shown in Figure 7d.
  • the description of the broadcast TWT in Figures 7c and 7d can be adaptively referred to the description of the indication information in the single-user TWT, which will not be described in detail here. It can be understood that the first field in Figures 7a to 7d is only an example, and the specific description of the first field can refer to implementation method two.
  • the purpose of dismantling all TWT protocols can be achieved, and a method of TWT dismantling at the MLD level is implemented.
  • the dismantling of all TWT protocols on all links between MLDs can be indicated by one bit, which effectively improves the efficiency of dismantling TWT protocols and saves signaling overhead.
  • the communication frame includes a first field and a second field, wherein the first field is used to indicate one or more links, and the second field is used to indicate the removal of the TWT agreement between the MLDs.
  • the second field can reuse the demolition all TWT agreement fields in the TWT stream field.
  • the second field can also be the demolition of all TWT agreement fields established on all links as shown in implementation method one.
  • the embodiments of the present application are not limited to this.
  • the following text takes the second field including the demolition of all TWT agreement fields as an example, but it should not be understood as a limitation on the embodiments of the present application.
  • the communication frame can be used to indicate the removal of all TWT protocols on each link of one or more links indicated by the first field.
  • the third field in the communication frame (such as the TWT flow identification field) is set to reserved. That is, when the value of the second field is the first value, the value of the TWT flow identification field in the communication frame is reserved, such as the value of the TWT flow identification field can be 0 (for example only) (such as 000), or the value of the TWT flow identification field is 111 (for example only).
  • all the TWT agreements shown here can be understood as: when the first field indicates a link, all the TWT agreements refer to one or more TWT agreements on the link indicated by the first field; when the first field indicates multiple links, all the TWT agreements refer to all the TWT agreements on each link on the multiple links indicated by the first field.
  • the embodiment of the present application does not limit whether all the TWT agreements on the multiple links are established based on the same TWT establishment request frame.
  • the communication frame does not include the TWT flow identification field (for single-user TWT), or does not include the broadcast TWT identification (for broadcast TWT), that is, the TWT flow identification is set to reserved, and the broadcast TWT identification is set to reserved, so the receiving end of the communication frame can dismantle all TWT agreements on each link on the one or more links indicated by the first field, and whether the TWT agreements on multiple links share TWT parameters is not limited.
  • the first field is used to indicate one or more links including: the first field is used to carry the link identifier of each link in the one or more links; or, the first field is used to carry a link identifier bit map, and the length of the link identifier bit map can be fixed, such as 16 bits.
  • the first field can be used to indicate the link identifier of a link. If the length of the first field is 4 bits, 0001 can indicate link 1, 0010 can indicate link 2, and so on.
  • the first field can carry a link identifier bit map.
  • the link indicated by the first field is link 1, indicating that the TWT protocol on link 1 needs to be dismantled, and they are not listed one by one here.
  • the first field can be used to indicate the link identifiers of multiple links, or the link identifier bit map The field is used to indicate the removal of the TWT protocol on multiple links.
  • the bitmap field and the link identification field which will not be described in detail here.
  • the first field included in the communication frame can be independent of the link identification bitmap field or link identification field in the TWT establishment request frame or the TWT establishment response frame.
  • a TWT agreement has been established on the link indicated by the first field in the communication frame, whether the first field in the communication frame must be the same as the link identification bitmap field or link identification field in a TWT establishment request frame or a TWT establishment response frame is not limited in the embodiment of the present application. It can be understood that the embodiment of the present application does not limit the number of TWT agreements or TWT plans allowed to be established on a link. For example, one TWT agreement can be established on a link, or multiple TWT agreements can be established on a link.
  • the first field may be carried in an element in the communication frame, such as the element may be an element newly added relative to Table 1.
  • the communication frame includes a TWT demolition frame, and the TWT demolition frame includes at least one of the following information: type, to protect sub1GHz action, TWT flow, multi-link operation (MLO) link information element (MLO Link Information element).
  • MLO multi-link operation link information element
  • the MLO link information element includes at least one of the following fields: element identification (element ID), length (length), element identification extension (element ID extension), link identification bitmap.
  • element ID element identification
  • length length
  • element identification extension element ID extension
  • link identification bitmap link identification bitmap
  • the length of the link identification bitmap field shown in Table 5 is only an example.
  • the MLO link information element may include a link identification field, and the length of the link identification field may be 4 bits, etc., which is not limited in the embodiments of the present application.
  • the methods shown in Tables 4 and 5 in the embodiments of the present application can be applied to single-user TWTs or broadcast TWTs, as shown in Figure 8b.
  • the broadcast TWT shown in Figure 8b reference can be made to the description of the single-user TWT, and no further details are given.
  • the communication frame requests the removal of all TWT agreements on one or more links indicated by the Link Identification Bitmap field in the MLO link information element. If the TWT removal frame contains the MLO link information element, the non-AP STA belonging to the non-AP MLD can remove the single-user TWT agreements on all links indicated by the Link Identification Bitmap subfield in the MLO link information element, and the Remove All TWT Agreements field is set to 1.
  • the non-AP STA belonging to the non-AP MLD can send a TWT removal frame to remove all TWT agreements, wherein the Remove All TWT Agreements is set to 1, and all the TWT agreements are respectively established on the links indicated by the Link Identification Bitmap field in the MLO link information element.
  • a non-AP STA affiliated with a non-AP MLD may tear down all individual TWT agreements set up on the link(s) indicated by the Link ID Bitmap subfield of the MLO Link Information element by sending a TWT Teardown frame with the Teardown All TWT field set to 1 if the the MLO Link Information element is present in the TWT Teardown frame.
  • all links shown here refer to links for which TWT agreements need to be torn down as indicated by the link identification bitmap. For example, if the value of the link identification bitmap is 0010 0000 0000, and the value of the Teardown All TWT Agreements field is 1, then the communication frame can be used to indicate the teardown of all TWT agreements on link 3.
  • Example 3 shown above is mainly for single-user TWT, and the above method is also applicable to broadcast TWT.
  • the TWT flow identifier in Example 3 can be replaced with a broadcast TWT identifier.
  • the communication frame can be used to indicate the removal of all TWT plans on each link of one or more links indicated by the first field, and the third field in the communication frame (such as the broadcast TWT identifier field) is set to reserved.
  • the description of the combination corresponding to the TWT protocol involved in Example 4 below is also applicable to Examples 1, 2 and 3, and the embodiments of the present application will not be described in detail one by one.
  • the communication frame can be used to indicate the removal of the first field.
  • the communication frame may be used to indicate the removal of a TWT protocol corresponding to a combination including a TWT stream identifier on one or more links indicated by the first field, or the communication frame may be used to indicate the removal of a TWT protocol corresponding to a combination including a broadcast TWT identifier on one or more links indicated by the first field.
  • the communication frame also includes a third field, which is used to indicate a TWT flow identifier (or a broadcast TWT identifier), such as the third field may be the TWT flow identifier field (or broadcast TWT identifier field) shown above.
  • the TWT protocol is uniquely identified or corresponds to the following combination (it can also be understood that the TWT protocol corresponds to the following combination including the TWT flow identifier): a combination of the TWT flow identifier, the MAC address of the station on the link indicated by the first field, and the MAC address of the opposite station of the link indicated by the first field (or collectively referred to as the MAC address of the station corresponding to the link indicated by the first field).
  • the station and the transmitter of the communication frame belong to the same MLD, and the opposite station and the receiver of the communication frame belong to the same MLD.
  • the TWT protocol is uniquely identified or corresponds to ⁇ TWT flow identifier, the MAC address of the station on the link indicated by the first field, and the MAC address of the opposite station of the link indicated by the first field>.
  • the TWT protocol is uniquely identified or corresponds to the following combination (it can also be understood that the TWT protocol corresponds to the following combination including the TWT flow identifier): a combination of the TWT flow identifier, the MAC address of the STA operating in the link indicated by the by the Link ID Bitmap field, and the MAC address of the peer STA operating in the link indicated by the Link ID Bitmap field.
  • elements related to the TWT protocol include: the TWT flow identifier, the MAC address of the STA operating in the link indicated by the by the Link ID Bitmap field, and the link indicated by the Link ID Bitmap field. That is to say, when the TWT demolition frame is successfully sent or received, the TWT protocol of the MAC address of the corresponding site of the link (such as two sites corresponding to a link) indicated by the corresponding TWT flow number and the link identification field (or bit map field) in the TWT demolition frame can be demolished, or it can be described as: when the TWT demolition frame is successfully sent or received, the TWT protocol of the MAC address of the site of the link indicated by the corresponding TWT flow number and the link identification field (or bit map field) in the TWT demolition frame and the MAC address of the opposite site of the link indicated by the link identification field (or bit map field) in the TWT demolition frame can be demolished.
  • the TWT protocol is uniquely identified or corresponds to the following combination (it can also be understood that the TWT protocol corresponds to the following combination including the TWT flow identifier): a combination of the TWT flow identifier, the MAC address of the MLD of the TWT requesting site (MAC address of TWT requesting MLD), the MAC address of the MLD of the TWT responding site (MAC address of TWT responding MLD), and the link indicated by the link identifier field (or link identifier bitmap field).
  • the TWT protocol is uniquely identified or corresponds to ⁇ TWT flow identifier, the MAC address of the MLD of the TWT requesting site (MAC address of TWT requesting MLD), the MAC address of the MLD of the TWT responding site (MAC address of TWT responding MLD), and the link indicated by the link identifier field (or link identifier bitmap field)>.
  • the TWT agreement corresponding to the TWT Flow Identifier field, the TWT requesting MLD MAC address, the TWT responding MLD MAC address, and link ID of the TWT Teardown frame shall be deleted.
  • the TWT protocol is uniquely identified or corresponds to the following combination (it can also be understood that the TWT protocol corresponds to the following combination including the TWT flow identifier): a combination of the TWT flow identifier, the MAC address of the multi-link device to which the transmitter of the communication frame belongs, the MAC address of the multi-link to which the receiver of the communication frame belongs, and the link indicated by the first field.
  • the MLD of the TWT request site (or TWT response site) and the MAC address of the MLD to which the transmitter (or receiver) of the communication frame belongs are the same, or the MLD of the TWT request site (or TWT response site) and the MAD address of the MLD to which the receiver (or transmitter) of the communication frame belongs are the same.
  • TWT protocol is uniquely identified or corresponded by the combination of ⁇ TWT flow identifier, MAC address of the TWT requesting site, and MAC address of the TWT responding site>, but the TWT requesting site and the TWT responding site can be understood in the following ways:
  • the TWT requesting site is the site that sends the TWT element to request the establishment of TWT, wherein the TWT request field in the request type field in the TWT element field is set to 1
  • the TWT responding site is the site that sends the TWT element to respond to the establishment of TWT, wherein the TWT request field in the request type field in the TWT element field is set to 0.
  • the TWT requesting site and the TWT responding site may establish a TWT agreement for the link corresponding to the TWT requesting site based on the TWT establishment frame.
  • the TWT requesting site and the TWT responding site may establish a TWT agreement for other links (links between MLDs except the link corresponding to the TWT requesting site) based on the TWT establishment frame, or, based on the TWT establishment frame Multiple links establish the TWT protocol.
  • the TWT requesting site is the site that sends the TWT element to request the establishment of TWT, wherein the TWT request field in the request type field in the TWT element field is set to 1
  • the TWT responding site is the site that sends the TWT element to respond to the establishment of TWT, wherein the TWT request field in the request type field in the TWT element field is set to 0.
  • the site requesting the dismantling of the TWT agreement needs to be consistent with the site requesting the establishment of the TWT agreement.
  • the link identification bitmap field or the element where the link identification bitmap field is included is included in the TWT dismantling frame, the TWT requesting site may be inconsistent with the site requesting the establishment of the TWT agreement, so that the sites belonging to the same MLD as the site requesting the establishment of the TWT agreement can all perform the dismantling of the TWT agreement.
  • the TWT requesting site is a site working on the link indicated by the link identification bit map in the TWT element, and the site and the site that sends the TWT element to request the establishment of TWT belong to a multi-link device, wherein the TWT request field in the request type field in the TWT element field is set to 1; the TWT responding site is a counterpart site working on the link indicated by the link identification bit map in the TWT element, and the counterpart site and the site that sends the TWT element to respond to the establishment of TWT belong to the same multi-link device, wherein the TWT request field in the request type field in the TWT element field is set to 0.
  • the TWT requesting site is a site operating on the link indicated by the link identification bit map in the TWT demolition frame, and the site and the site sending the TWT demolition frame belong to a multi-link device
  • the TWT response site is the opposite site operating on the link indicated by the link identification bit map in the TWT demolition frame, and the opposite site and the site receiving the TWT demolition frame belong to a multi-link device.
  • the communication parties can implicitly know the meaning of the TWT request site and the TWT response site by whether there is a link identification bit map field in the TWT dismantling frame. It can be understood that the description of the link identification bit map field shown in A, B, C and D above is only an example, and the link identification bit map field mentioned above can also be replaced by a link identification field.
  • the communication frame requests the dismantling of at least one or more TWT agreements that satisfy the corresponding relationship on the link identification bitmap field in the MLO link information element.
  • the corresponding relationship described here can refer to the above-mentioned methods 1 to 3. It can be understood that the above-mentioned methods 1 to 3 can be used to identify TWT agreements, so the above-mentioned methods 1 to 3 are applicable to TWT agreements, that is, methods 1 to 3 are applicable to the above-mentioned examples 1 to 4. It can be understood that the receiving end can uniquely identify a TWT agreement based on the above-mentioned methods 1 to 3, or the receiving end can determine the TWT agreement based on the above-mentioned methods 1 to 3.
  • a non-AP STA belonging to a non-AP MLD may send a TWT teardown frame to tear down one or more TWT protocols, wherein the negotiation type subfield in the TWT teardown frame is set to 0, and the teardown all TWT protocols field is set to 0, and the one or more TWT protocols are respectively established on the links corresponding to one or more bits set to 1 by the link identification bitmap subfield in the MLO link information element, wherein one TWT protocol corresponds to one link, and the one TWT protocol corresponds to the combination of ⁇ TWT flow identifier, MAC address of the station working on the link indicated by the link identification bitmap, MAC address of the station working on the link opposite end indicated by the link identification bitmap>, or ⁇ TWT flow identifier, MAC address of the station working on the link indicated by the link identification bitmap, MAC address of the station working on the link opposite end indicated by the link identification bitmap, and link indicated by the link identification bitmap field>.
  • a non-AP STA affiliated with a non-AP MLD may tear down one or more TWT agreements by sending a TWT Teardown frame with the Negotiation Type subfield set to 0 and one or more bits in the Link ID Bitmap subfield of the MLO Link Information element set to 1 and Teardown All TWT field set to 0).
  • Example 4 is mainly for single-user TWT, and the above method is also applicable to broadcast TWT.
  • the TWT flow identifier in Example 4 can be replaced with a broadcast TWT identifier.
  • the communication frame can be used to indicate the removal of the TWT plan corresponding to the combination including the broadcast TWT identifier on each link of one or more links indicated by the first field.
  • the TWT plan corresponds to any of the following combinations including the broadcast TWT identifier: a combination of the broadcast TWT identifier and the media access control MAC address of the access site on the link indicated by the first field; or, a combination of the broadcast TWT identifier, the MAC address of the multi-link device to which the access site on the link indicated by the first field belongs, and the link indicated by the first field.
  • the broadcast TWT identifier a combination of the broadcast TWT identifier and the media access control MAC address of the access site on the link indicated by the first field
  • the MAC address of the multi-link device to which the access site on the link indicated by the first field belongs
  • the combination including the TWT flow identifier may include the MAC address of the site on the link indicated by the first field and the MAC address of the opposite site on the link (or the MAC address of the MLD of the TWT requesting site and the MAD address of the MLD of the TWT responding site).
  • the combination including the broadcast TWT identifier may include the MAC address of the access site on the link indicated by the first field, or the MAC address of the MLD to which the access site on the link indicated by the first field belongs.
  • the receiving end can accurately know the TWT protocol or TWT plan that needs to be dismantled, thereby improving the efficiency and flexibility of dismantling the TWT protocol.
  • the communication frame includes the first field but does not include the second field.
  • the first field is used to carry the link identifier of the link, and the communication frame can be used to indicate the removal of the TWT protocol on the link indicated by the first field.
  • the first field carries the link identifier bitmap, and the communication frame can be used to indicate the removal of the TWT protocol on the link corresponding to the bit with a value of 1 in the link identifier bitmap field.
  • the first field may be carried in the MLO link information element shown above.
  • the first value and the MLO link information element, etc. please refer to implementation method 1 or implementation method 2, which will not be described in detail here.
  • the first field may not be independently included in a certain element, but may be included in the communication frame in the form of a field.
  • the communication frame includes the second field and an indication field indicating whether the first field exists. If the indication field occupies 1 bit, optionally, the indication field may be included in the TWT stream field. If the indication field is used to indicate the existence of the first field, and the communication frame includes the first field and the second field, the specific description of the communication frame may refer to the above-mentioned implementation method 2, which will not be described in detail here.
  • the communication frame can be used to indicate the removal of all TWT protocols on all links of the MLD to which the transmitter belongs. All links shown here refer to the associated links established between MLDs.
  • implementation methods 1 to 4 all take the communication frame as a TWT demolition frame as an example. The following will be explained using the communication frame as a TWT information frame as an example.
  • the communication frame is a TWT information frame.
  • the TWT information frame includes at least one of the following information: type, action for protecting sub1GHz, TWT information, and MLO link information element (MLO Link Information element).
  • the TWT information field includes at least one of the following: TWT stream identifier, response request, next TWT request, next TWT field size, all TWTs, and next TWT.
  • all TWT fields are set to a first value, such as 1, and the TWT information frame can be used to at least re-plan all TWTs, and the re-planning includes pausing and/or resuming.
  • all TWT fields can refer to the second field in the above embodiment.
  • the TWT information frame can be used to request re-planning of all TWTs on one or more links indicated by the link identification bitmap field (or link identification field) in the MLO link information element.
  • the communication frame being a TWT information frame
  • the TWT information frame includes all TWT fields and the first field, and the value of all TWT fields in the TWT information frame is the first value.
  • Example 3 in Implementation Method 2 shown above which will not be described in detail here.
  • the TWT information frame can be used to request re-planning of one or more links indicated by the link identification bitmap field in the MLO link information element with the packet
  • the TWT protocol corresponding to the combination of TWT flow identifiers.
  • the TWT information frame includes all TWT fields and the first field, and the description that the values of all TWT fields in the TWT information frame are the second value can be adaptively referred to Example 4 in the second implementation method shown above, and will not be described in detail here.
  • a non-AP STA belonging to a non-AP MLD may send a TWT information frame to re-plan one or more TWT protocols, wherein all TWT fields in the TWT information frame are set to 0, and the one or more TWT protocols are respectively established on the links corresponding to one or more bits of the link identification bitmap subfield in the MLO link information element set to 1, wherein one TWT corresponds to a link, and the one TWT protocol corresponds to the combination of ⁇ TWT flow identifier, MAC address of the station working on the link indicated by the link identification bitmap, MAC address of the station working at the opposite end of the link indicated by the link identification bitmap>, or ⁇ TWT flow identifier, MAC address of the station working on the link indicated by the link identification bitmap, MAC address of the station working at the opposite end of the link indicated by the link identification bitmap, and link indicated by the link identification bitmap field>.
  • a non-AP STA affiliated with a non-AP MLD may reschedule one or more TWT agreements by sending a TWT Information frame with one or more bits in the Link ID Bitmap subfield of the MLO Link Information element set to 1 and All TWT fields set to 0).
  • the TWT information frame indicates a request to re-plan all TWT protocols on all links of the MLD to which the site belongs.
  • the TWT information frame includes all TWT fields, does not include the first field, and the values of all TWT fields in the TWT information frame are the first value.
  • TWT information frame is only an example, and the specific description of the TWT information frame can be adaptively referred to the TWT dismantling frame shown above.
  • the TWT protocol mentioned in the embodiment of the present application can also be replaced by a TWT plan.
  • the TWT protocol is a single-user TWT protocol
  • the TWT plan refers to the broadcast TWT plan. Therefore, for the communication frame being a TWT information frame, the specific description of the broadcast TWT plan can adaptively refer to the single-user TWT protocol, and the embodiment of the present application will not be described in detail one by one.
  • the transmitting end sends a communication frame, and correspondingly, the receiving end receives the communication frame.
  • the receiving end can be the opposite STA working on the same associated link as the transmitting end.
  • the receiving end dismantles the TWT protocol based on the communication frame.
  • step 401 For the description of the communication frame, please refer to step 401.
  • the specific method of dismantling the TWT protocol at the receiving end is only exemplified.
  • the receiving end can dismantle all TWT protocols on all associated links between the MLD to which the receiving end belongs and the MLD to which the transmitting end belongs based on the dismantling of all TWT protocols field established on all links.
  • the communication frame when the communication frame is a TWT demolition frame, combined with implementation method two, the communication frame includes a first field and a second field, and the value of the second field is a first value, then the receiving end can demolish all TWT protocols on one or more links indicated by the first field based on the communication frame.
  • the communication frame when the communication frame is a TWT demolition frame, in combination with implementation method two, the communication frame includes a first field and a second field, and the value of the second field is a second value, then the receiving end can demolish the TWT protocol corresponding to the combination including the TWT flow identifier on one or more links indicated by the first field based on the communication frame.
  • the communication frame includes indication information but does not include an element for carrying the first field.
  • the receiving end can dismantle all TWT protocols on all associated links between the MLD to which the transmitting end belongs and the MLD to which the receiving end belongs based on the communication frame.
  • the above step 403 can be replaced by: the receiving end re-plans the TWT protocol based on the communication frame.
  • the receiving end can re-plan all TWTs on one or more links indicated by the link identification bitmap field (or link identification field) in the MLO link information element based on the TWT information frame.
  • the receiving end can re-plan the TWT protocol corresponding to the combination including the TWT flow identifier on one or more links indicated by the link identification bitmap field in the MLO link information element based on the TWT information frame.
  • the receiving end can re-plan all TWT protocols on all links of the MLD to which the site belongs based on the TWT information frame.
  • the receiving end may also send a confirmation frame, which is used to confirm that the TWT agreement has been successfully dismantled.
  • the receiving end of the communication frame can effectively know through the first field and the second field that it can delete the TWT protocol established by other links, thereby effectively improving the flexibility of dismantling the TWT protocol.
  • the present application divides the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the communication device of the embodiment of the present application will be described in detail below in conjunction with Figures 9 to 11.
  • FIG9 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device includes a processing unit 901 and a transceiver unit 902 .
  • the communication device may be the transmitting end or chip shown above, and the chip may be arranged in the transmitting end. That is, the communication device may be used to execute the steps or functions executed by the transmitting end in the above method embodiments (including FIG. 4, FIG. 5a, and FIG. 5b).
  • the processing unit 901 is used to generate a communication frame; the transceiver unit 902 is used to output the communication frame.
  • the transceiver unit 902 is also used to input a confirmation frame.
  • the communication device may be the receiving end or chip shown above, and the chip may be arranged in the receiving end. That is, the communication device may be used to execute the steps or functions executed by the receiving end in the above method embodiments (including FIG. 4 ).
  • the transceiver unit 902 is used to input the communication frame; the processing unit 901 is used to dismantle the TWT protocol based on the communication frame.
  • the processing unit 901 is also used to identify the TWT agreement (or TWT plan) based on the methods 1 to 3 shown above.
  • the processing unit 901 is specifically used to dismantle (or re-plan) all TWT protocols or all TWT plans on the one or more links indicated by the first field when the value of the second field is the first value.
  • the processing unit 901 is specifically used to, when the value of the second field is a second value, dismantle (or re-plan) the TWT agreement corresponding to the combination including the TWT flow identifier on each link of the one or more links indicated by the first field; or, when the value of the second field is a second value, dismantle (or re-plan) the TWT planning corresponding to the combination including the broadcast TWT identifier on each link of the one or more links indicated by the first field.
  • the transceiver unit 902 is further configured to output a confirmation frame.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example.
  • specific functions or execution steps of the transceiver unit and the processing unit reference can be made to the above-mentioned method embodiment, which will not be described in detail here.
  • the descriptions of the communication frame, the first field, the second field, the third field, the TWT stream field, etc. can also be referred to the introduction in the above method embodiments, and will not be described in detail here.
  • the communication device of the embodiment of the present application is introduced above, and the possible product form of the communication device is introduced below. It should be understood that any product of any form having the functions of the communication device described in FIG. 9 above falls within the protection scope of the embodiment of the present application. It should also be understood that the following introduction is only an example and does not limit the product form of the communication device of the embodiment of the present application to this.
  • the processing unit 901 may be one or more processors
  • the transceiver unit 902 may be a transceiver, or the transceiver unit 902 may also be a sending unit and a receiving unit
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection mode of the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver so that it is transmitted by the transceiver. After the above information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver. Similarly, the process of receiving information in the above method can be understood as the process of the processor receiving the input information.
  • the processor receives the input information
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to be processed in other ways before it is input into the processor.
  • the communication device 100 includes one or more processors 1020 and a transceiver 1010 .
  • the communication device can be used to execute the steps or functions performed by the transmitting end in the above method embodiments (including FIG. 4 ).
  • the processor 1020 is used to generate a communication frame; the transceiver 1010 is used to send a communication frame.
  • the transceiver 1010 is further configured to receive an acknowledgment frame.
  • the communication device can be used to execute the steps or functions performed by the receiving end in the above method embodiments (including FIG. 4 ).
  • the transceiver 1010 is used to receive a communication frame; the processor 1020 is used to dismantle the TWT protocol based on the communication frame.
  • processor 1020 is further used to identify the TWT agreement (or TWT plan) based on methods 1 to 3 shown above.
  • the processor 1020 is specifically configured to, when the value of the second field is the first value, dismantle (or re-plan) all TWT protocols or all TWT plans on the one or more links indicated by the first field.
  • the processor 1020 is specifically used to, when the value of the second field is the second value, dismantle (or re-plan) the TWT agreement corresponding to the combination including the TWT flow identifier on each link of the one or more links indicated by the first field; or, when the value of the second field is the second value, dismantle (or re-plan) the TWT planning corresponding to the combination including the broadcast TWT identifier on each link of the one or more links indicated by the first field.
  • the transceiver 1010 is further configured to send an acknowledgment frame.
  • transceiver and the processor shown in the embodiments of the present application is only an example.
  • specific functions or execution steps of the transceiver and the processor reference can be made to the above-mentioned method embodiments, which will not be described in detail here.
  • the descriptions of the communication frame, the first field, the second field, the third field, the TWT stream field, etc. can also be referred to the introduction in the above method embodiments, and will not be described in detail here.
  • the transceiver may include a receiver and a transmitter, wherein the receiver is used to perform a receiving function (or operation) and the transmitter is used to perform a transmitting function (or operation).
  • the transceiver is used to communicate with other devices/devices via a transmission medium.
  • the communication device 100 may further include one or more memories 1030 for storing program instructions and/or data, etc.
  • the memory 1030 is coupled to the processor 1020.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may operate in conjunction with the memory 1030.
  • the processor 1020 may execute program instructions stored in the memory 1030.
  • at least one of the one or more memories may be included in the processor.
  • connection medium between the above-mentioned transceiver 1010, processor 1020 and memory 1030 is not limited in the embodiment of the present application.
  • the memory 1030, processor 1020 and transceiver 1010 are connected through a bus 1040.
  • the bus is represented by a bold line in FIG. 10.
  • the connection mode between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one bold line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., and may implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include, but is not limited to, non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (RAM), erasable programmable read-only memory (EPROM), read-only memory (ROM) or portable read-only memory (CD-ROM), etc.
  • the memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures and can be read and/or written by a computer (such as the communication device shown in the present application), but is not limited to this.
  • the memory in the embodiments of the present application can also be a circuit or any other device that can realize a storage function, which is used to store program instructions and/or data.
  • the processor 1020 is mainly used to process the communication protocol and communication data, and to control the entire communication device, execute the software program, and process the data of the software program.
  • the memory 1030 is mainly used to store the software program and data.
  • the transceiver 1010 may include a control circuit and an antenna.
  • the control circuit is mainly used to convert the baseband signal and the radio frequency signal and to process the radio frequency signal.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used to receive data input by the user and output data to the user.
  • the processor 1020 can read the software program in the memory 1030, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1020 performs baseband processing on the data to be sent and outputs
  • the baseband signal is sent to the RF circuit, and the RF circuit processes the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1020, which converts the baseband signal into data and processes the data.
  • the RF circuit and antenna may be arranged independently of the processor performing baseband processing.
  • the RF circuit and antenna may be arranged independently of the communication device in a remote manner.
  • the communication device shown in the embodiment of the present application may also have more components than those in FIG10, and the embodiment of the present application is not limited to this.
  • the method performed by the processor and transceiver shown above is only an example, and the specific steps performed by the processor and transceiver can refer to the method described above.
  • the processing unit 901 may be one or more logic circuits, and the transceiver unit 902 may be an input-output interface, or a communication interface, or an interface circuit, or an interface, etc.
  • the transceiver unit 902 may also be a sending unit and a receiving unit, the sending unit may be an output interface, the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input-output interface.
  • the communication device shown in FIG11 includes a logic circuit 1101 and an interface 1102.
  • the above-mentioned processing unit 901 may be implemented with a logic circuit 1101, and the transceiver unit 902 may be implemented with an interface 1102.
  • the logic circuit 1101 may be a chip, a processing circuit, an integrated circuit, or a system on chip (SoC) chip, etc.
  • the interface 1102 may be a communication interface, an input-output interface, a pin, etc.
  • FIG11 is exemplified by taking the above-mentioned communication device as a chip, and the chip includes a logic circuit 1101 and an interface 1102.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection method between the logic circuit and the interface.
  • the communication device can be used to execute the steps or functions performed by the transmitting end in the above method embodiments (including FIG. 4 ).
  • the logic circuit 1101 is used to generate a communication frame; the interface 1102 is used to output the communication frame.
  • interface 1102 is also used to input a confirmation frame.
  • the communication device can be used to execute the steps or functions performed by the receiving end in the above method embodiments (including FIG. 4 ).
  • Interface 1102 is used to input communication frames; logic circuit 1101 is used to dismantle the TWT protocol based on the communication frames.
  • the logic circuit 1101 is also used to identify the TWT agreement (or TWT plan) based on the methods 1 to 3 shown above.
  • the logic circuit 1101 is specifically used to dismantle (or re-plan) all TWT protocols or all TWT plans on the one or more links indicated by the first field when the value of the second field is the first value.
  • the logic circuit 1101 is specifically used to, when the value of the second field is a second value, dismantle (or re-plan) the TWT agreement corresponding to the combination including the TWT flow identifier on each link of the one or more links indicated by the first field; or, when the value of the second field is a second value, dismantle (or re-plan) the TWT planning corresponding to the combination including the broadcast TWT identifier on each link of the one or more links indicated by the first field.
  • the interface 1102 is further configured to output a confirmation frame.
  • the descriptions of the communication frame, the first field, the second field, the third field, the TWT stream field, etc. can also be referred to the introduction in the above method embodiments, and will not be described in detail here.
  • the communication device shown in the embodiment of the present application can implement the method provided in the embodiment of the present application in the form of hardware, or can implement the method provided in the embodiment of the present application in the form of software, etc., and the embodiment of the present application is not limited to this.
  • An embodiment of the present application also provides a wireless communication system, which includes a transmitting end and a receiving end.
  • the transmitting end and the receiving end can be used to execute the method in any of the aforementioned embodiments (such as FIG. 4 ).
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the sending end in the method provided by the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the receiving end in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processing performed by the sending end in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer code.
  • the computer When running on a computer, the computer is enabled to execute the operations and/or processing performed by the receiving end in the method provided in the present application.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, or it can be an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, including a number of instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多链路通信方法及装置,应用于支持IEEE 802.11ax下一代Wi-Fi协议,如802.11be,Wi-Fi 7或EHT,又如802.11be下一代,Wi-Fi 8,UHR等802.11系列协议的无线局域网系统,还可以应用于基于UWB的无线个人局域网系统,感知(sensing)系统等。该方法包括:多链路设备中的站点生成通信帧,发送通信帧;与通信帧的发送站点工作在同一关联链路的对端站点接收该通信帧,基于通信帧拆除TWT协定。通信帧包括第一字段和第二字段,第一字段用于指示一条或多条链路,第二字段用于指示拆除多链路设备之间的TWT协定或TWT规划。本申请实施例可以有效提高拆除TWT协定的灵活性。

Description

多链路通信方法及装置
本申请要求在2022年11月07日提交中国国家知识产权局、申请号为202211385738.5的中国专利申请的优先权,发明名称为“多链路通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种多链路通信方法及装置。
背景技术
电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11下一代WiFi极高吞吐量(extremely high throughput,EHT)协议中除了可以使用新频段6GHz以上超大带宽传输信息包,也可以使用多链路合作技术把不连续的多链路聚合起来形成超大带宽。
多链路合作技术除了可以聚合更大的带宽之外,还可以共享多链路上的介质接入控制(medium access control,MAC)层,实现灵活的传输信息包,或者同时发送同一种业务的信息包给同一个站点。示例性的,实现多链路合作技术的设备可以称为多链路设备。多链路设备之间可以通过一条链路进行关联建立,从而快速实现多条链路进行关联建立。针对MLD之间的一条或多条链路,可以建立目标唤醒时间协定(target wake time agreement,TWT agreement)。
然而,在多链路场景下,如何拆除TWT协定亟待解决。
发明内容
本申请提供一种多链路通信方法及装置,可以有效实现拆除TWT协定的灵活性。
第一方面,本申请实施例提供一种多链路通信方法,所述方法包括:生成通信帧,所述通信帧包括第一字段和第二字段,所述第一字段用于指示一条或多条链路,所述第二字段用于指示拆除多链路设备之间的目标唤醒时间TWT协定或TWT规划;发送所述通信帧。
通信帧可以称为TWT拆除帧、TWT删除帧或TWT信息帧等,第一字段可以称为链路信息字段,如该第一字段可以用于承载一条或多条链路中每条链路的链路标识,或者,该第一字段可以用于承载比特位图,该比特位图中的每个比特用于指示是否拆除对应链路。第二字段可以包括拆除所有TWT协定(teardown all TWT),或者拆除建立在所有链路上的所有TWT协定(teardown all TWT setup on all links)。TWT协定可以对应协商类型为单用户TWT,TWT规划可以对应协商类型为广播TWT。
本申请实施例中,通过第一字段和第二字段,可使得通信帧的接收端通过这两个字段就可以有效获知其拆除的TWT协定或TWT规划,有效提高拆除TWT协定的灵活性。
在一种可能的实现方式中,在所述第二字段的取值为第一值的情况下,所述通信帧用于指示拆除所述第一字段所指示的所述一条或多条链路上的所有TWT协定或TWT规划。
第一值可以等于1。在第二字段的取值为第一值的情况下,通信帧中关于TWT流标识字段的取值为保留(resvered),或者,关于广播TWT标识字段的取值为保留(resvered)。
本申请实施例中,第二字段的取值为第一值时,通信帧的接收端可以基于第一字段所指示的链路拆除第一字段所指示的一条或多条链路上的所有TWT协定。示例性的,一条链路上可以有一个或多个TWT协定,如第一字段指示一条链路时,通信帧的接收端可以拆除这一条链路上的一个或多个TWT协定。又如第一字段指示多条链路时,通信帧的接收端可以拆除该多条链路上每条链路上的一个或多个TWT协定。通过第二字段的取值为第一值可以使得通信帧的接收端拆除第一字段所指示的一条或多条链路上的所有TWT协定或所有TWT规划,有效提高了拆除TWT协定或TWT规划的效率,节省了信令开销。
在一种可能的实现方式中,在所述第二字段的取值为第二值的情况下,所述通信帧用于指示拆除所述第一字段所指示的所述一条或多条链路上每条链路上与包括TWT流标识的组合对应的TWT协定;或者,所述通信帧用于指示拆除所述第一字段所指示的所述一条或多条链路上每条链路上与包括广播TWT标识的组合对应的TWT规划。
第二值可以等于0。在第二字段的取值为第二值的情况下,通信帧的接收端可以拆除第一字段所指示的链路上与包括TWT流标识的组合对应的TWT协定。举例来说,第一字段指示一条链路,则通信帧的接 收端拆除该一条链路上与包括TWT流标识(广播TWT标识)的组合对应的TWT协定(或TWT规划)。又举例来说,第一字段指示多条链路,则通信帧的接收端可以拆除这多条链路上与包括TWT流标识(广播TWT标识)的组合对应的TWT协定(或TWT规划)。
本申请实施例中,通过第二字段的不同取值,以及第一字段来拆除TWT协定,可使得接收端能够精准地获知其需要拆除的TWT协定或TWT规划,提高拆除TWT协定的效率和灵活性。
在一种可能的实现方式中,所述通信帧还包括第三字段,所述第三字段用于承载所述TWT流标识;或者,所述第三字段用于承载所述广播TWT标识。
本申请实施例中,基于第二字段的不同取值,第三字段可以承载具体的TWT流标识或广播TWT标识,或者,第三字段可以设置为保留(resvered)。从而,接收端可以基于第一字段、第二字段和第三字段精准地获知其需要拆除的TWT协定或TWT规划,提高拆除TWT协定的效率和灵活性。
在一种可能的实现方式中,所述TWT协定与如下任一项包括TWT流标识的组合相对应::所述TWT流标识、所述第一字段所指示的所述一条或多条链路上每条链路上站点的介质接入控制MAC地址和所述第一字段所指示的所述每条链路上对端站点的MAC地址的组合;或者,所述TWT流标识、所述通信帧的发送端所属的多链路设备的MAC地址、所述通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的链路的组合。
以上所示的TWT协定对应的内容还可以称为TWT协定的要素,或者,用于识别TWT协定的要素,或者,用于唯一地识别TWT协定的信息等。以上所示的站点和对端站点是相对于一条链路而言的。
在一种可能的实现方式中,所述TWT规划与如下任一项包括广播TWT标识的组合相对应:所述广播TWT标识和所述第一字段所指示的所述一条或多条链路上每条链路上接入站点的介质接入控制MAC地址的组合;或者,所述广播TWT标识、所述第一指示所指示的所述一条或多条链路上每条链路上接入站点所属的多链路设备的MAC地址和所述第一字段所指示的链路的组合。
以上所示的TWT规划对应的内容还可以称为TWT规划的要素,或者,用于识别TWT规划的要素等,或者,用于唯一地识别TWT规划的信息。
在一种可能的实现方式中,所述第一字段包含于所述通信帧中的多链路操作信息元素中。
在一种可能的实现方式中,所述第二字段包含于所述通信帧中的TWT流字段中。
第二方面,本申请实施例提供一种多链路通信方法,所述方法包括:接收通信帧,所述通信帧包括第一字段和第二字段,所述第一字段用于指示一条或多条链路,所述第二字段用于指示拆除多链路设备之间的目标唤醒时间TWT协定或TWT规划;基于所述通信帧拆除所述TWT协定或TWT规划。
在一种可能的实现方式中,所述方法还包括:基于如下任一项包括TWT流标识的组合确定所述TWT协定:TWT流标识、所述第一字段所指示的所述一条或多条链路上每条链路上站点的介质接入控制MAC地址和所述第一字段所指示的所述每条链路上对端站点的MAC地址的组合;或者,TWT流标识、所述通信帧的发送端所属的多链路设备的MAC地址、所述通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的链路的组合;
或者,基于如下任一项包括广播TWT标识的组合确定所述TWT规划;广播TWT标识和所述第一字段所指示的所述一条或多条链路上每条链路上接入站点的介质接入控制MAC地址的组合;或者,所述广播TWT标识、所述第一字段所指示的所述一条或多条链路上每条链路上接入站点(如所述通信帧的发送端)所属的多链路设备的MAC地址和所述第一字段所指示的链路的组合。
在一种可能的实现方式中,所述基于所述通信帧拆除所述TWT协定或所述TWT规划包括:在所述第二字段的取值为第一值的情况下,拆除所述第一字段指示的所述一条或多条链路上每条链路上的所有TWT协定或所有TWT规划。
在一种可能的实现方式中,所述基于所述通信帧拆除所述TWT协定或TWT规划包括:
在所述第二字段的取值为第二值的情况下,拆除所述第一字段指示的所述一条或多条链路上每条链路上与TWT流标识对应的TWT协定;或者,在所述第二字段的取值为第二值的情况下,拆除所述第一字段指示的所述一条或多条链路上每条链路上与广播TWT标识对应的TWT规划。
在一种可能的实现方式中,所述第一字段包含于所述通信帧中的多链路操作信息元素中。
在一种可能的实现方式中,所述第二字段包含于所述通信帧中的TWT流字段中。
第三方面,本申请实施例提供一种多链路通信方法,通信帧的发送端所属的多链路设备与通信帧的接收端所属的多链路设备之间已建立多条关联链路,所述方法包括:
生成通信帧,所述通信帧包括指示信息,所述指示信息用于指示拆除多链路设备之间建立的所述多条 关联链路上的TWT协定或TWT规划;发送所述通信帧。
第四方面,本申请实施例提供一种多链路通信方法,通信帧的发送端所属的多链路设备与通信帧的接收端所属的多链路设备之间已建立多条关联链路,所述方法包括:
接收通信帧,所述通信帧包括指示信息,所述指示信息用于指示拆除多链路设备之间建立的所述多条关联链路上的TWT协定或TWT规划;基于所述通信帧拆除多链路设备之间建立的所述多条关联链路上的TWT协定或TWT规划。
结合第三方面或第四方面,在一种可能的实现方式中,所述指示信息的取值为第一值。
结合第三方面或第四方面,在一种可能的实现方式中,所述第指示信息包含于所述通信帧中的TWT流字段中。
指示信息可以用于承载拆除所有TWT协定字段,或者拆除建立在所有链路上的所有TWT协定字段。TWT协定可以对应协商类型为单用户TWT,TWT规划可以对应协商类型为广播TWT。
结合第三方面或第四方面,在一种可能的实现方式中,所述TWT协定与如下任一项包括TWT流标识的组合相对应:
所述TWT流标识、所述第一字段所指示的所述一条链路上站点的介质接入控制MAC地址和所述第一字段所指示的所述一条链路上对端站点的MAC地址的组合;或者,所述TWT流标识、所述通信帧的发送端所属的多链路设备的MAC地址、所述通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的链路的组合;
所述TWT规划与如下任一项包括广播TWT标识的组合相对应:所述广播TWT标识和所述第一字段所指示的所述一条链路上接入站点的介质接入控制MAC地址的组合;或者,所述广播TWT标识、所述第一字段所指示的所述一条链路上接入站点所属的多链路设备的MAC地址和所述第一字段所指示的链路的组合。
第五方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第六方面,本申请实施例提供一种通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第七方面,本申请实施例提供一种通信装置,用于执行第三方面或第三方面的任意可能的实现方式中的方法。该通信装置包括具有执行第三方面或第三方面的任意可能的实现方式中的方法的单元。
第八方面,本申请实施例提供一种通信装置,用于执行第四方面或第四方面的任意可能的实现方式中的方法。该通信装置包括具有执行第四方面或第四方面的任意可能的实现方式中的方法的单元。
在第三方面、第四方面、第五方面、第六方面中,上述通信装置和通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第九方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第十方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第十一方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第三方面或第三方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第三方面或第三方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第十二方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第四方面或第四方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第十三方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于生成通信帧;所述接口,用于输出该通信帧。
第十四方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述接口,用于输入通信帧;所述逻辑电路,用于基于该通信帧拆除TWT协定。
关于第十三方面和第十四方面的具体说明,还可以参考下文所示的方法实施例。
第十五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十七方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第三方面或第三方面的任意可能的实现方式所示的方法被执行。
第十八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
第十九方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第二十方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第二十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得上述第三方面或第三方面的任意可能的实现方式所示的方法被执行。
第二十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
第二十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第二十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第二十五方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第三方面或第三方面的任意可能的实现方式所示的方法被执行。
第二十六方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第四方面或第四方面的任意可能的实现方式所示的方法被执行。
第二十七方面,本申请实施例提供一种无线通信系统,该无线通信系统包括发送端和接收端,所述发送端用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述接收端用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
第二十八方面,本申请实施例提供一种无线通信系统,该无线通信系统包括发送端和接收端,所述发送端用于执行上述第三方面或第三方面的任意可能的实现方式所示的方法,所述接收端用于执行上述第四方面或第四方面的任意可能的实现方式所示的方法。
附图说明
图1a是本申请实施例提供的一种通信系统的架构示意图;
图1b是本申请实施例提供的另一种通信系统的架构示意图;
图2a是本申请实施例提供的一种多链路AP和多链路STA之间的连接方式示意图;
图2b是本申请实施例提供的一种多链路AP和多链路STA之间的连接方式示意图;
图2c是本申请实施例提供的多链路设备的天线示意图;
图3a是本申请实施例提供的一种通信场景的示意图;
图3b是本申请实施例提供的一种通信场景的示意图;
图4是本申请实施例提供的一种多链路通信方法的流程示意图;
图5a是本申请实施例提供的一种建立TWT协定的方法流程示意图;
图5b是本申请实施例提供的建立TWT协定的场景示意图;
图6a是本申请实施例提供的一种协商类型为单用户TWT类型的TWT元素的结构示意图;
图6b是本申请实施例提供的一种协商类型为广播TWT类型的TWT元素的结构示意图;
图7a是本申请实施例提供的一种通信帧的结构示意图;
图7b是本申请实施例提供的一种通信帧的结构示意图;
图7c是本申请实施例提供的一种通信帧的结构示意图;
图7d是本申请实施例提供的一种通信帧的结构示意图;
图8a是本申请实施例提供的一种通信帧的结构示意图;
图8b是本申请实施例提供的一种通信帧的结构示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。“或”表示可以存在两种关系,如只存在A、只存在B;在A和B互不排斥时,也可以表示存在三种关系,如只存在A、只存在B、同时存在A和B。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请实施例提供的技术方案可以应用于WLAN系统,如Wi-Fi等。如本申请实施例提供的方法可以适用于IEEE 802.11系列协议,例如802.11a/b/g协议、802.11n协议、802.11ac协议、802.11ax协议、802.11be协议或下一代的协议等,这里不再一一列举。本申请实施例提供的技术方案还可以应用于基于UWB技术的无线个人局域网(wireless personal area network,WPAN)。如本申请实施例提供的方法可以适用于IEEE802.15系列协议,例如802.15.4a协议、802.15.4z协议或802.15.4ab协议,或者未来某代UWB WPAN协议等,这里不再一一列举。本申请实施例提供的技术方案还可以应用于其他各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等,或者,还可以适用于长期演进(long term evolution,LTE)系统,第五代(5th-generation,5G)通信系统,以及未来 通信发展中出现的新的通信系统等。
虽然本申请实施例主要以WLAN为例,尤其是应用于IEEE 802.11系列标准的网络,例如支持Wi-Fi7,又可称为极高吞吐量(extremely high-throughput,EHT)的系统,又如支持Wi-Fi8,又可称为超高可靠性(ultra high reliability,UHR)或超高可靠性和吞吐量(ultra high reliability and throughput,UHRT)的系统为例进行说明。本领域技术人员容易理解,本申请实施例涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,蓝牙(bluetooth),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请实施例提供的各种方面可以适用于任何合适的无线网络。
本申请实施例提供的方法可以由无线通信系统中的通信装置实现。例如,该通信装置可以是接入点(access point,AP)或站点(station,STA)。
接入点是一种具有无线通信功能的装置,支持采用WLAN协议进行通信或感知,具有与WLAN网络中其他设备(比如站点或其他接入点)通信或感知的功能,当然,还可以具有与其他设备通信或感知的功能。或者,接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能等。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议或后续协议等。例如,接入点可以为终端(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。又例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
站点是一种具有无线通信功能的装置,支持采用WLAN协议进行通信或感知,具有与WLAN网络中的其他站点或接入点通信或感知的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信或感知进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。又例如,站点可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信或感知的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如增强现实(augmented reality,AR),虚拟现实(virtual reality,VR)等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。示例性的,例如,接入点和站点可以是应用于车联网中的设备,物联网中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
示例性的,本申请实施例提供的方法可以应用的通信系统可以包括接入点和站点。例如,本申请实施例可以适用于WLAN中AP与STA之间、AP与AP之间、或STA与STA之间通信或感知的场景,本申请实施例对此不作限定。可选地,AP可以与单个STA通信或感知,或者,AP同时与多个STA通信或感知。具体地,AP与多个STA通信或感知又可以分为AP同时给多个STA发送信号的下行传输,以及多个STA向AP发送信号的上行传输。其中,AP和STA之间、AP与AP之间、或STA与STA可以支持WLAN 通信协议,该通信协议可以包括IEEE802.11系列的协议,比如可以适用于802.11be标准,当然也同样适用于802.11be以后的标准。
图1a是本申请实施例提供的一种通信系统的架构示意图。该通信系统可以包括一个或多个AP以及一个或多个STA。图1a中示出了两个接入点如AP1和AP2,以及三个站点如STA1、STA2和STA3。可理解,一个或多个AP可以与一个或多个STA通信。当然,AP与AP之间可以通信,STA与STA之间可以通信。本申请实施例所提供的方法可以适用于但不限于:单用户的上/下行传输、多用户的上/下行传输、车与任何事物(vehicle-to-everything,V2X,X可以代表任何事物)、设备到设备(device-todevice,D2D)。例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V),车辆与基础设施(vehicle to infrastructure,V2I)、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
可理解,图1a中以STA为手机、AP为路由器作为一种示例,并不表示对本申请实施例中的AP、STA类型进行限定。同时,图1a仅示例性的示出了两个AP和三个STA,但是该AP或STA的数量还可以更多或更少,本申请实施例对此不作限定。
多链路设备包括一个或多个隶属的站点,隶属的站点是逻辑上的站点,可以工作在一条链路或一个频段或一个信道上等。该隶属的站点可以为AP或non-AP STA。为描述方便,本申请实施例可以将隶属的站点为AP的多链路设备称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device,AP MLD)。隶属的站点为non-AP STA的多链路设备称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device),或者,隶属的站点为non-AP STA的多链路设备称为多链路non-AP或多链路non-AP设备或non-AP多链路设备(non-AP multi-link device,non-AP MLD)。多链路设备(这里既可以是non-AP MLD,也可以是AP MLD)为具有无线通信功能的通信装置。该通信装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请实施例的方法和功能。
多链路设备MLD可以遵循802.11系列协议实现无线通信,例如,遵循极高吞吐率(Extremely High Throughput,EHT),或遵循基于802.11be或兼容支持802.11be,从而实现与其他设备的通信,当然其他设备可以是多链路设备,也可以不是多链路设备。
每个逻辑的站点可以工作在一条链路上,但允许多个逻辑站点工作在同一条链路上,下文提到的链路标识表征的是工作在一条链路上的一个站点,即如果一条链路上有多于1个逻辑上的站点,则需要多于1个链路标识表征他们,下文提到的链路标识有时也表示工作在该条链路上的站点。一个多链路设备与另一个多链路设备在数据传输时,在通信之前,该一个多链路设备与该另一个多链路设备可以先协商或沟通链路标识与一条链路或一条链路上的站点的对应关系,或者,AP多链路设备通过广播的管理帧,比如信标帧,指示链路标识与一条链路或一条链路上的站点的对应关系。因此在数据传输中,可以不传输大量的信令用来指示链路或链路上的站点,携带链路标识即可,降低了信令开销,提升了传输效率。
下面以上述一个多链路设备为AP多链路设备,上述另一个多链路设备为STA多链路设备为例进行举例说明。一个示例中,AP多链路设备在建立基本服务集(basic service set,BSS)时,发送的管理帧如多链路探测响应帧,会携带一个或多个多链路元素,该多链路元素包括的链路信息字段可以用于建立一个链路标识与工作在该链路上的站点的对应关系。链路序号用来标识一个组合<链路所在的操作种类(operating class),信道号(channel number),AP的BSSID(BSS identier)(或者AP的MAC地址)>。
图1b是本申请实施例提供的另一种通信系统的架构示意图。如图1b所示,AP MLD包括AP1,AP2,…,APn,non-AP MLD包括STA1,STA2,…,STAn。这里所示的n为正整数。AP MLD和non-AP MLD可以采用链路1,链路2,…,链路n并行进行通信。non-AP MLD中的STA1与AP MLD中的AP1建立关联关系,non-AP MLD中的STA2与AP MLD中的AP2建立关联关系,non-AP MLD中的STAn与AP MLD中的APn建立关联关系等。由此,non-AP MLD中的一个或多个STA与AP MLD中的一个或多个AP之间建立关联关系之后便可以进行通信。多链路设备(包括AP MLD和non-AP MLD)工作的频段可以包括但不限于:sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz等。
图2a和图2b是本申请实施例提供的一种多链路AP和多链路STA之间的连接方式示意图。802.11标准关注多链路设备中的802.11物理层(physical layer,PHY)和介质接入控制(mediumaccess control,MAC)层部分,因此图2a和图2b仅示例性地示出PHY和MAC层。
如图2a和图2b所示,多链路设备(如多链路AP和多链路STA)可以包括物理层(physical layer, PHY)处理电路(如图2a所示的PHY#1、PHY#2和PHY#n)和介质接入控制(medium access control,MAC)层处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。进一步,在MAC层中,还可以分为一个高MAC(high-MAC)层(如图2a所示的高MAC、如图2b所示的高MAC#1至高MAC#n)和多个低MAC(low-MAC)层(如图2a和图2b所示的低MAC#1、低MAC#2至低MAC#n)。如图2a所示,多链路AP中包括的多个AP在低MAC层和PHY互相独立,共用高MAC层。多链路STA中包括的多个STA在低MAC层和PHY互相独立,共用高MAC层。高MAC层与多个低MAC层分别相连,即高MAC层由多个链路共享。如图2b所示,多链路AP包括的多个AP在低MAC层和PHY互相独立,在高MAC层也互相独立。多链路STA设备的多个STA在低MAC层和PHY互相独立,在高MAC层也互相独立。高MAC层主要完成MAC服务数据单元(MAC service data unit,MSDU)的序列号(sequence number,SN)和包序号(packet number,PN)的分配以及加密解密等操作。每个低MAC层主要完成各自链路的MAC协议数据单元(MAC protocol data unit,MPDU)的组装、信道接入、包发送和接收确认等操作。
在图2a中,多链路AP中的PHY#1层、低MAC#1层和高MAC层可以视为AP#1,PHY#2层、低MAC#2层和高MAC层可以视为AP#2,……,PHY#n层、低MAC#n层和高MAC层可以视为AP#n,也就是可以理解为多链路AP中包括n个AP实体。在多链路STA中,情况是类似的,即多链路STA中的高MAC层也由多个链路共享,PHY#1层、低MAC#1层和高MAC层视为STA#1,PHY#2层、低MAC#2层和高MAC层视为STA#2,……,PHY#n层、低MAC#n层和高MAC层视为STA#n,也就是可以理解为多链路STA中包括n个STA实体。如图2a所示,多链路AP中的AP#1的PHY#1和多链路STA中的STA#1的PHY#1连接,多链路AP中的AP#1和多链路STA中的STA#1通过链路(如图2a所示的链路#1)实现通信;多链路AP中的AP#2的PHY#2和多链路STA中的STA#2的PHY#2连接,多链路AP中的AP#2和多链路STA中的STA#2通过链路(如图2a所示的链路#2)实现通信;多链路AP中的AP#n的PHY#n和多链路STA中的STA#n的PHY#n连接,多链路AP中的AP#n和多链路STA中的STA#n通过链路(如图2a所示的链路#n)实现通信。关于图2b的说明可以参考图2a,这里不再详述。
示例性的,该高MAC层或低MAC层都可以由多链路设备的芯片系统中的一个处理器实现,还可以分别由一个芯片系统中的不同处理模块实现。示例性的,本申请实施例中的多链路设备可以是单个天线的设备,也可以是多天线的设备。例如,可以是两个以上天线的设备。本申请实施例对于多链路设备包括的天线的数目并不进行限定。图2c是本申请实施例提供的多链路设备的天线示意图。图2c中是以AP多链路设备为多天线,STA多链路设备为单天线为例,不应将其理解为对本申请实施例的限定。在本申请实施例中,多链路设备可以允许同一接入类型的业务在不同链路上传输,甚至允许相同的数据包在不同链路上传输;也可以不允许同一接入类型的业务在不同链路上传输,但允许不同接入类型的业务在不同的链路上传输,本申请实施例对此不作限定。
多链路设备工作的频段可以包括但不限于:sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz。图3a、图3b示出了无线局域网中多链路设备与其他设备通过多条链路进行通信的两种示意图。
图3a示出了一种AP多链路设备101和STA多链路设备102通信的场景,AP多链路设备101包括隶属的AP101-1和AP101-2,STA多链路设备102包括隶属的STA102-1和STA102-2,且AP多链路设备101和STA多链路设备102采用链路1和链路2并行进行通信。
示例性的,图3b示出了AP MLD101与Non-AP MLD102,Non-AP MLD103以及STA104进行通信的场景,AP MLD101包括隶属的AP101-1至AP101-3;Non-AP MLD102包括隶属的三个STA102-1、STA102-2和STA102-3;Non-AP MLD103包括2个隶属的STA103-1,STA103-2;STA104为单链路设备,包括STA104-1。AP MLD101可以分别采用链路1、链路2和链路3与Non-AP MLD102进行通信;采用链路2和链路3与Non-AP MLD103进行通信;采用链路1与STA104通信。一个示例中,STA104工作在2.4GHz频段;Non-AP MLD103中,STA103-1工作在5GHz频段,STA103-2工作在6GHz频段;Non-AP MLD102中,STA102-1工作在2.4GHz频段,STA102-2工作在5GHz频段,STA102-3工作在6GHz频段。AP MLD101中工作在2.4GHz频段的AP101-1可以通过链路1与STA104和Non-AP MLD102中的STA102-1之间传输上行或下行数据。AP MLD101中工作在5GHz频段的AP101-2可以通过链路2与Non-AP MLD 103中工作在5GHz频段的STA103-1之间传输上行或下行数据,还可通过链路2与和Non-AP MLD102中工作在5GHz频段的STA102-2之间传输上行或下行数据。AP MLD101中工作在6GHz频段的AP101-3可通过链路3与Non-AP MLD102中工作在6GHz频段的STA102-3之间传输上行或下行数据,还可通过链路3与Non-AP MLD中的STA103-2之间传输上行或下行数据。
需要说明的是,图3a仅示出了AP多链路设备支持2个频段,图3b仅以AP MLD101支持三个频段(2.4GHz,5GHz,6GHz),每个频段对应一条链路,AP MLD101可以工作在链路1、链路2或链路3中的一条或多条链路为例进行示意。在AP侧或者STA侧,这里的链路还可以理解为工作在该链路上的站点。实际应用中,AP MLD和Non-AP MLD还可以支持更多或更少的频段,即AP MLD和Non-AP MLD可以工作在更多条链路或更少条链路上,本申请实施例对此并不进行限定。
需要说明的是,图3a和图3b只是简单的示意图,对本申请实施例的保护范围不构成任何的限定。
目前的协议中,与TWT协定相关的要素包括:TWT流标识(TWT flow identifier)、TWT请求站点的MAC地址(MAC address of TWT requesting STA)、TWT响应站点的MAC地址(MAC address of TWT responding STA),其中中TWT请求站点是发送TWT元素去请求建立TWT的站点,其中TWT元素字段中的请求类型字段中TWT请求字段设置成1,TWT响应站点是发送TWT元素去响应建立TWT的站点,其中TWT元素字段中的请求类型字段中TWT请求字段设置成0。通过上述要素可以拆除TWT协定,如目前涉及的拆除TWT协定的方法中,拆除TWT协定时的通信双方需要与建立TWT协定的通信双方保持一致,即拆除TWT协定的通信双方的MAC地址包括TWT请求站点的MAC地址和TWT响应站点的MAC地址。该种方法对于单链路场景来说,通信双方在一条链路上建立的TWT协定需要拆除时,单链路发送端可以向单链路接收端发送TWT拆除帧(TWT teardown frame),从而可以直接拆除该TWT协定。上述方法应用在单链路场景时,方便简单且可行性高。可理解,TWT协定的具体说明可以参考802.11标准协议中REVmedraft2.0的相关描述,本申请实施例不再一一详述。
然而,上述方法应用于多链路场景时,多链路设备之间一般会关联多条链路,一条链路上的TWT协定可以由另一条链路对应的站点建立(如这里所示的一条链路处于休眠状态或忙碌状态,则可以由另一条链路为其建立TWT协定),或者,一些链路上的TWT协定可以由多链路设备之间除该一些链路之外的其他链路对应的站点建立,由此仍利用上述所示的拆除TWT协定的方法拆除TWT协定,则会导致拆除TWT协定的灵活性不高。示例性的,两个多链路设备之间建立的链路包括链路1和链路2,由链路1建立链路2的TWT协定,即该链路2的TWT协定的TWT请求站点和TWT响应站点为链路1对应的站点。如果由链路2上的站点发送TWT拆除帧,则TWT拆除帧的接收端认为TWT建立请求站点的MAC地址是该链路2上发送站点的MAC地址,而不是当初建立该TWT协定的链路1上站点的MAC地址,导致链路2上站点无法拆除由链路1建立的TWT协定。
鉴于此,本申请实施例提供一种多链路通信方法及装置,可以有效提高拆除TWT协定的灵活性。
图4是本申请实施例提供的一种多链路通信方法的流程示意图,该方法可以应用于如图1a、图1b所示的系统,或者,该方法可以应用于如图3a和图3b所示的多链路设备。为便于描述,下文均以发送端和接收端为例说明本申请实施例提供的方法。发送端可以理解为发送通信帧的STA,接收端可以理解为接收通信帧的STA。或者,该发送端可以理解为用于发送通信帧的多链路设备中的STA,接收端可以理解为用于接收通信帧的多链路设备中的STA。可理解,在本申请的一些实施例中未具体区分non-AP STA和AP STA,而是均以STA说明本申请实施例提供的方法。本申请实施例通信双方涉及的多链路设备可以均为AP MLD,或者均为STA MLD,或者一个多链路设备为AP MLD,另一个多链路设备为STA MLD等,这里不再一一列举。可理解,本申请实施例是以发送端和接收端两侧来描述本申请实施例提供的方法的,但是该发送端和接收端在传输信息的过程中,还可以有其他装置的存在,如通过转发装置来转发发送端与接收端之间的信息等。因此,本申请实施例中信息的互相传递以本领域技术人员可以完成的技术手段实现即可,本申请实施例对于发送端和接收端之外的其他装置不作限定。
在介绍图4所示的方法之前,以下详细介绍本申请实施例提供的建立TWT协定的方法。当然,下文所示的建立TWT协定的方法仅为示例,不应将其理解为对本申请实施例的限定。在实际应用中,还可以存在其他建立TWT协定的方法,不再一一列举。
图5a是本申请实施例提供的一种建立TWT协定的方法流程示意图。该方法是以non-AP MLD发起TWT建立请求为例示出的,不应将其理解为对本申请实施例的限定。如图5a所示,该方法包括:
501、non-AP MLD中的STA发送TWT建立请求帧,对应的,AP MLD中的AP接收该TWT建立请求帧。
可理解,本申请实施例所示的TWT建立请求帧和TWT建立响应帧仅为示例,如该TWT建立请求帧和该TWT建立响应帧还可以统称为TWT建立帧,区别在于TWT建立帧中的TWT元素中的TWT请求比 特设置”1”或者”0”,或者用于建立TWT协定的管理帧等,不再一一列举。
可选的,在AP MLD中的AP接收到TWT建立请求帧之后,可以向non-AP MLD中的STA发送确认帧,该确认帧用于确认TWT建立请求帧。
可理解,步骤501是可选的步骤。或者,用于确认TWT建立请求帧的确认帧也是可选的步骤。
502、AP MLD中的AP发送TWT建立响应帧,对应的,non-AP MLD中的STA接收该TWT建立响应帧。
可选的,在non-AP MLD中的STA接收到TWT建立响应帧之后,可以向AP MLD中的AP发送确认帧,该确认帧用于TWT建立响应帧。
以下详细介绍TWT建立请求帧和TWT建立响应帧。
TWT请求帧包括TWT元素,以及TWT建立响应帧包括TWT元素。关于TWT请求帧和TWT响应帧中的其他元素,本申请实施例不再一一示出。TWT元素包括如下至少一项字段:元素号、长度、控制、TWT参数信息。示例性的,控制字段包括如下至少一项字段:空数据包寻呼(null data packet paging,NDP paging)指示、响应者功率管理(powermanagement,PM)模式(responder PM mode)、协商类型(negotiationtype)、TWT信息帧禁用(TWT informationframedisabled)、醒来时长单位(wakedurationunit)、链路标识比特位图存在(或简称为比特位图存在(bitmappresent))、保留(reserved)。
控制字段包括的协商类型包括单用户TWT类型和广播TWT类型。图6a是本申请实施例提供的一种协商类型为单用户TWT类型的TWT元素的结构示意图。如图6a所示,当协商类型指示单用户TWT类型时,则TWT参数信息字段包括如下至少一项:请求类型(requesttype)、目标唤醒时间(targetwaketime)、TWT组分配(TWT groupassignment)、最小TWT醒来时长(nominal minimum TWT wake duration)、TWT醒来间隔小数(TWT wake interval mantissa)、TWT信道(TWT channel)、空数据包寻呼(NDP paging)、链路标识比特位图(link ID bitmap)。图6b是本申请实施例提供的一种协商类型为广播TWT类型的TWT元素的结构示意图。如图6b所示,当协商类型指示广播TWT类型时,则TWT参数信息字段包括如下至少一项:请求类型、目标唤醒时间(基于链路的定时同步功能(timing synchronization function,TSF)确定)、最小TWT醒来时长、TWT醒来间隔小数、广播TWT信道、链路标识比特位图。
示例性的,TWT参数信息字段中的请求类型包括如下至少一项:TWT请求、TWT建立命令(TWT setup command)、保留、隐式(implicit)、流类型(flow type)、TWT流标识(TWT flow identifier)、TWT醒来间隔指数(TWT wake interval exponent)、TWT保护。
TWT参数信息字段的请求类型中可以包括一些与TWT建立请求和TWT建立响应相关的参数。如TWT元素中的TWT请求字段的取值为1则表示与该TWT元素对应的帧为TWT建立请求帧。该TWT元素中的TWT请求字段的取值为0,则表示与该TWT元素对应的帧为TWT建立响应帧。比如,在TWT协商过程中,TWT建立请求帧中TWT元素中的TWT建立命令字段可以用来承载“建议TWT”的值(此时值为1),TWT建立响应帧中的TWT元素中的TWT建立命令字段可以用来承载“接受TWT”的值(此时值为4),此时一个TWT协定就被成功建立。
可理解,关于以上所示的各个字段的说明可以参考相关标准或协议等,本申请实施例不再一一详述。
以下详细说明本申请实施例涉及的TWT流标识字段、链路标识比特位图存在字段和链路标识比特位图字段。
TWT流标识字段包括TWT流标识用于标识请求或提供TWT信息。
为实现通过一条链路为其他链路进行TWT协商,因此本申请实施例提供的TWT元素中的控制字段包括链路标识比特位图存在字段,TWT参数信息包括链路标识比特位图字段。示例性的,链路标识比特位图存在字段可以用于指示TWT参数信息字段是否会出现(或包括)链路标识比特位图字段。链路标识比特位图字段的长度可以基于AP MLD与non-AP MLD之间建立的链路的条数确定,该种方式灵活高。或者,该链路标识比特位图字段的长度可以基于AP MLD与non-AP MLD之间允许建立链路的最多条数确定,该种方式简单。或者,链路标识比特位图字段的长度可以是固定的,如16个比特或8个比特等。为便于描述,下文均以链路标识比特位图字段的长度为16个比特为例进行说明。当然,这里所示的最多条数仅为示例,随着标准的演进,后续多链路设备之间允许建立链路的最多条数可能会发生变化。在最多条数发生变化时,本申请实施例所示的链路标识比特位图字段的长度也可以发生变化。可理解,本申请实施例对于链路标识比特位图字段的名称不作限定,如链路标识比特位图字段还可以称为比特位图字段,或者链路比特位图字段等,不再一一列举。
链路标识比特位图字段中每个比特与链路是一一对应的关系,每个比特的取值可以用于指示是否在对应链路上建立TWT协定。举例来说,链路标识比特位图字段承载的内容为:0010 1110 0000 0001,依次对应链路1至链路16,以每个比特的取值为1表示建立对应链路上的TWT协定,以每个比特的取值为0表示不建立对应链路上的TWT协定,则上述链路标识比特位图字段表示可以在链路3、链路5、链路6、链路7、链路16上分别建立TWT协定。在TWT建立请求帧中的链路标识比特位图字段和TWT建立响应帧中的链路标识比特位图字段的取值相同的情况下,通过图5a所示的TWT建立请求帧以及TWT建立响应帧通信双方可以在链路3、链路5、链路6、链路7、链路16上建立TWT协定。TWT协定的流标识为请求类型字段中的TWT流标识字段所指示的流标识,链路3、链路5、链路6、链路7、链路16上建立的TWT协定的流标识相同。可理解,链路3上建立的TWT协定的流标识与链路3已建立的TWT协定的流标识均不相同,同样的,链路5上建立的TWT协定的流标识与链路5已建立的TWT协定的流标识均不相同,以此类推。可选的,每个TWT协定的TWT流标识要求在请求建立TWT的MLD和响应建立TWT的MLD建立的多个TWT协定中是唯一的,或者,在对应链路AP与STA之间建立的多个TWT协定中是唯一的,由此可以有效保证TWT拆除帧中指定的TWT协定是唯一的,避免拆除失误的情况。一般来说,链路标识比特位图字段中可以有1比特设置为1。也就是说,一般来说,链路标识比特位图字段所对应的链路上可以有一条链路所对应的比特的取值为1,如表示建立对应链路上的TWT协定。当然,链路标识比特位图字段中也可以有多个比特设置为1,本申请实施例对此不作限定。
可理解,以上所示的链路标识比特位图仅为示例,如在实际应用中,上文所示的链路标识比特位图存在字段可以替换为链路标识出现字段或链路标识存在字段,上文所示的链路标识比特位图字段可以替换为链路标识字段。链路标识出现字段可以用于指示TWT参数信息字段会出现(或包括)链路标识比特位图字段。链路标识字段可以用于标识一条或多条链路,由此通信双方可以基于该链路标识字段在其所指示的一条或多条链路上建立TWT协定。示例性的,通信双方可以基于TWT元素中所指示的内容在链路标识字段所指示的一条或多条链路上建立TWT协定。举例来说,MLD之间允许建立的最多链路为16条,链路标识字段的长度为4个比特。如链路标识字段承载的内容为0001,则表示需要在链路1上建立TWT协定。又如链路标识字段的长度为8个比特,承载的内容为0001 0011,则表示需要在链路1、链路3上建立TWT协定。可理解,关于链路标识字段的长度,或者,链路标识字段的取值与含义之间的对应关系,本申请实施例不作限定。
为进一步理解本申请实施例提供的建立TWT协定的方法,以下举例说明。
图5b是本申请实施例提供的建立TWT协定的场景示意图。如图5b所示,AP MLD和non-AP MLD之间需要通过协商建立TWT协定。如AP MLD包括三个附属AP站点:AP 1,AP 2和AP 3,分别工作在2.4GHz,5GHz和6GHz;non-AP MLD包括三个附属non-AP站点:STA 1,STA 2和STA 3。该AP MLD和Non-AP MLD之间已经有三条链路建立了关联:链路1:在AP 1和STA 1之间;链路2:在AP 2和STA2之间;链路3:在AP 3和STA 3之间。
示例性的,AP MLD和non-AP MLD可以通过链路1传输管理帧,如STA 1向AP 1发送TWT建立请求帧,对应的,AP1接收该TWT建立请求帧,以及AP1向STA1发送TWT建立响应帧,对应的,STA1接收该TWT建立响应帧。关于TWT建立请求帧和TWT建立响应帧的说明可以上文,这里不再详述。示例性的,TWT建立请求帧中的TWT元素包括的链路标识比特位图用于指示链路2需要建立TWT协定,则AP MLD和non-AP MLD可以为该链路2建立TWT协定,且该TWT协定的相关参数均由TWT元素确定。其中TWT元素的目标唤醒时间是以链路标识比特位图指示的链路的时间同步函数(time synchronization function,TSF)为参考,这里是链路2的TSF为参考。
以上所示的建立TWT协定的方法仅为示例,不应将其理解为对本申请实施例的限定。
以下详细介绍图4所示的方法。如图4所示,该方法包括:
401、发送端生成通信帧。
本申请实施例中,发送端可以为已建立TWT协定的STA所隶属的多链路设备的任一站点(工作在关联链路上),这里站点可以是AP,也可以非AP STA。通信帧可以为管理帧,该通信帧可以包括TWT拆除帧(TWT teardown frame),或TWT删除帧,或TWT拆除请求帧,或TWT信息帧等。
示例性的,如表1所示,通信帧包括TWT拆除帧,该TWT拆除帧包括如下至少一项信息:种类(category)、未保护sub1GHz行动(unprotected S1G action)和TWT流(TWT flow)。
表1
TWT流字段中的协商类型字段的取值为0或1时对应单用户TWT,TWT流字段中的协商类型字段的取值为2或3时对应广播TWT。当协商类型字段对应单用户TWT时,如表2a所示,TWT流包括如下至少一项字段:TWT流标识(TWT folwidentifier)、保留、协商类型(negotiationtype)和拆除所有TWT协定(teardown all TWT)。示例性的,TWT流标识字段的长度可以为3个比特。当然,这里所示的TWT流标识字段的长度仅为示例,如随着标准的演进,TWT流标识字段的长度可以由3个比特拓展到更多比特,比如4个比特等。
示例性的,当协商类型字段的取值为3时,如表2b所示,TWT流包括如下至少一项字段:广播TWT标识、协商类型(negotiationtype)和拆除所有TWT协定(teardown all TWT)。
表2a
表2b
可理解,表2a和表2b所示的各个字段的长度(或称为各个字段占用的比特数)仅为示例,不应将其理解为对本申请实施例的限定。
以下结合表1、表2a、表2b对本申请实施例提供的通信帧进行说明,该通信帧可以包括如下几种实现方式:
实现方式一、
通信帧包括指示信息,该指示信息用于指示拆除MLD之间的TWT协定或TWT规划。示例性的,该指示信息可以用于指示拆除MLD之间的所有TWT协定或TWT规划。对于单链路场景来说,表2a中的拆除所有TWT协定字段的取值为1时,则TWT流标识字段设置为保留。该情况下,拆除所有TWT协定字段用于指示拆除所有TWT,即一条链路上的所有TWT。然而,本申请实施例所示的指示信息可以理解为用于指示拆除MLD之间的所有关联链路上的所有TWT协定或TWT规划。示例性的,对于单用户TWT来说,指示信息可以包括拆除建立在所有关联链路上的TWT协定字段,或拆除建立在所有链路上的所有TWT协定(teardown all TWT setup on all links)字段,或者拆除所有TWT协定。示例性的,对于广播TWT来说,该指示信息可以包括拆除建立在所有链路上的TWT规划,或拆除建立在所有关联链路上的所有TWT规划,或者拆除所有TWT协定。
例子1
示例性的,在表2a的基础上,本申请实施例新增一个指示信息,该指示信息用于指示拆除MLD之间的所有链路上的所有TWT协定。示例性的,通信帧包括如下至少一项信息:种类、未保护sub1GHz行动和TWT流(如表1)。如表3所示或如图7a所示,TWT流包括如下至少一项字段:TWT流标识、拆除建立在所有链路上的所有TWT协定(即指示信息)、保留、协商类型和拆除所有TWT协定。
表3
举例来说,拆除建立在所有链路上的所有TWT协定字段的取值为1,则该字段可以用于指示请求拆除发送端所属MLD的所有链路上的所有TWT协定,该所有链路指的是两个MLD(通信帧的发送端隶属的MLD与通信帧的接收端隶属的MLD)之间建立的关联链路。又举例来说,拆除建立在所有链路上的所有TWT协定字段的取值为0,则该字段可以用于指示不请求拆除发送端所属MLD的所有链路上的所有TWT协定。该情况下,通信帧中可以包括第一字段,如结合下文所示的实现方式二拆除TWT协定。
例子2
示例性的,指示信息可以复用拆除所有TWT协定字段。示例性的,如图7b所示,通信帧包括如下至 少一项信息:种类、未保护sub1GHz行动和TWT流(如表1)。如表2a所示或如图7b所示,TWT流包括如下至少一项字段:TWT流标识、保留、协商类型和拆除所有TWT协定(即指示信息)。在拆除所有TWT协定字段的取值为1,且通信帧中不包括用于承载第一字段的元素,则通信帧可以用于指示拆除发送端所属MLD的所有链路上的所有TWT协定。这里所示的所有链路指的是MLD之间建立的所有关联链路。
示例性的,当拆除所有TWT协定字段设置成1时,以及TWT拆除帧不携带MLO链路信息元素,该TWT拆除帧指示请求拆除站点所属的MLD的所有链路上的所有的TWT协定(A non-AP STA affiliated with a non-AP MLD may tear down all individual TWT agreements setup on all setup links by sending a TWT Teardown frame with the Teardown All TWT field set to 1if the the MLO Link Information element is not present in the TWT Teardown frame.)。
可理解,以上所示的取值与对应的含义之间的关系仅为示例,不应将其理解为对本申请实施例的限定。如拆除建立在所有链路上的所有TWT协定字段的取值为0,则该字段可以用于指示请求拆除发送端所属MLD的所有链路上的所有TWT协定,该所有链路指的是MLD之间建立的关联链路。拆除建立在所有链路上的所有TWT协定字段的取值为1,则该字段可以用于指示不请求拆除发送端所属MLD的所有链路上的所有TWT协定。
以上所示的例子1和例子2均是针对单用户TWT来说的,对于广播TWT,上述方法同样适用。由于广播TWT中的TWT流中未预留有保留字段,因此指示信息可以承载于通信帧中,如图7c所示,该指示信息可以以元素的形式存在于通信帧中,或者,该指示信息可以以字段的形式存在于通信帧中,本申请实施例对此不作限定。或者,指示信息可以复用拆除所有TWT协定,如图7d所示。关于图7c和图7d的广播TWT的说明可以适应性地参考单用户TWT中的指示信息的说明,这里不再详述。可理解,图7a至图7d中的第一字段仅为示例,对于第一字段的具体说明可以参考实现方式二。
本申请实施例中,在TWT流字段中新增指示信息或复用拆除所有TWT协定,可以实现拆除所有TWT协定的目的,实现了MLD级别的TWT拆除的方法。通过一个比特就可以指示拆除MLD之间的所有链路上的所有TWT协定,有效提高了拆除TWT协定的效率,节省了信令开销。
实现方式二、
通信帧包括第一字段和第二字段,该第一字段用于指示一条或多条链路,该第二字段用于指示拆除MLD之间的TWT协定。
可选的,第二字段可以复用TWT流字段中的拆除所有TWT协定字段。可选的,第二字段还可以是实现方式一所示的拆除建立在所有链路上的所有TWT协定字段。本申请实施例对此不作限定。为便于描述,下文均以第二字段包括拆除所有TWT协定字段为例,但是不应将其理解为对本申请实施例的限定。
例子3
作为一个示例,在第二字段的取值为第一值的情况下,通信帧可以用于指示拆除该第一字段所指示的一条或多条链路上每条链路上的所有TWT协定。通信帧中的第三字段(如TWT流标识字段)设置为保留。也就是说,在第二字段的取值为第一值的情况下,通信帧中用于承载TWT流标识字段的取值为保留,如TWT流标识字段的取值可以为0(仅为示例)(如000),或者,TWT流标识字段的取值为111(仅为示例)。
可理解,这里所示的所有TWT协定可以理解为:在第一字段指示一条链路时,该所有TWT协定指的是第一字段所指示的一条链路上的一个或多TWT协定;在第一字段指示多条链路时,该所有TWT协定指的是第一字段所指示的多条链路上每条链路上的所有TWT协定。在第一字段指示多条链路时,本申请实施例对于这多条链路上的所有TWT协定之间是否是基于同一个TWT建立请求帧建立不作限定。由于在第二字段的取值为第一值时,通信帧中不包括TWT流标识字段(对于单用户TWT),或不包括广播TWT标识(对于广播TWT),即TWT流标识设置为保留,广播TWT标识设置为保留,因此通信帧的接收端可以拆除第一字段所指示的一条或多条链路上每条链路上的所有TWT协定,多条链路上的TWT协定是否共享TWT参数不作限定。
示例性的,第一字段用于指示一条或多条链路包括:第一字段用于承载一条或多条链路中每条链路的链路标识;或者,第一字段用于承载链路标识比特位图,该链路标识比特位图的长度可以是固定的,如16个比特。作为一个示例,第一字段可以用于指示一条链路的链路标识,如第一字段的长度为4个比特,则0001可以指示链路1,0010可以指示链路2,依次类推。作为一个示例,第一字段可以承载链路标识比特位图,如第一字段的取值为0000 0000 0000 0001(1表示需要拆除对应链路的TWT协定,0表示不需要拆除对应链路的TWT协定),则第一字段指示的链路为链路1,表示需要拆除链路1上的TWT协定,这里不再一一列举。作为另一个示例,第一字段可以用于指示多条链路的链路标识,或者,链路标识比特位图 字段用于指示拆除多条链路上的TWT协定。关于第一字段的说明可以参考上文关于比特位图字段和链路标识字段的说明,这里不再详述。
需要说明的是,通信帧中所包括的第一字段与TWT建立请求帧或TWT建立响应帧中的链路标识比特位图字段或链路标识字段可以是独立的。只要通信帧中的第一字段所指示的链路上已经建立有TWT协定即可,对于通信帧中的第一字段是否必须与某个TWT建立请求帧或某个TWT建立响应帧中的链路标识比特位图字段或链路标识字段相同,本申请实施例不作限定。可理解,本申请实施例对于一条链路上所允许建立的TWT协定或TWT规划的数量不作限定。示例性的,一条链路上可以建立一个TWT协定,或者,一条链路上可以建立多个TWT协定。
示例性的,第一字段可以承载于通信帧中的一个元素中,如该元素可以是相对于表1新增的一个元素。示例性的,如表4所示或图8a,通信帧包括TWT拆除帧,该TWT拆除帧包括如下至少一项信息:种类、为保护sub1GHz行动、TWT流、多链路操作(multi-link operation,MLO)链路信息元素(MLO Link Information element)。
表4
可理解,本申请实施例所示的MLO链路信息元素的名称仅为示例,不应将其理解为对本申请实施例的限定。
示例性的,以第一字段用于承载链路标识比特位图为例,如表5所示或图8a,MLO链路信息元素包括如下至少一项字段:元素标识(element ID)、长度(length)、元素标识扩展(element ID extension)、链路标识比特位图。可理解,表5所示的链路标识比特位图字段的长度仅为示例,如MLO链路信息元素中可以包括链路标识字段,该链路标识字段的长度可以为4个比特等,本申请实施例不作限定。可理解,本申请实施例关于表4和表5所示的方法可以适用于单用户TWT,也可以适用于广播TWT,如图8b。对于图8b所示的广播TWT的具体说明可以参考单用户TWT的描述,不再一一详述。
表5
以第一值等于1,第二字段为拆除所有TWT协定为例,当拆除所有TWT协定设置为1时,以及通信帧中携带MLO链路信息元素,则该通信帧请求拆除MLO链路信息元素中链路标识比特位图字段指示的一条或多条链路上所有的TWT协定。若TWT拆除帧存在MLO链路信息元素,则隶属于non-AP MLD的non-AP STA可以拆除该MLO链路信息元素中的链路标识比特位图子字段所指示的所有链路上的单用户TWT协定,且拆除所有TWT协定字段设置为1。隶属于non-AP MLD的non-AP STA可以发送一个TWT拆除帧拆除所有的TWT协定,其中,拆除所有TWT协定设置为1,该所有的TWT协定是分别建立在由MLO链路信息元素中的链路标识比特位图字段所指示的链路上。(A non-AP STA affiliated with a non-AP MLD may tear down all individual TWT agreements setup on the link(s)indicated by the Link ID Bitmap subfield of the MLO Link Information element by sending a TWT Teardown frame with the Teardown All TWT field set to 1 if the the MLO Link Information element is present in the TWT Teardown frame.)可理解,这里所示的所有链路指的是通过链路标识比特位图所指示的需要拆除TWT协定的链路。如链路标识比特位图的取值为0010 0000 0000 0000,拆除所有TWT协定字段的取值为1,则通信帧可以用于指示拆除链路3上的所有TWT协定。
可理解,以上所示的例子3主要是针对单用户TWT来说的,对于广播TWT,上述方法同样适用。示例性的,应用于广播TWT时,例子3中的TWT流标识可以替换为广播TWT标识,如在第二字段的取值为第一值的情况下,通信帧可以用于指示拆除该第一字段所指示的一条或多条链路上每条链路上的所有TWT规划,通信帧中的第三字段(如广播TWT标识字段)设置为保留。可理解,下文例子4中涉及的TWT协定所对应的组合的说明同样适用于例子1、例子2和例子3,本申请实施例不再一一详述。
例子4
作为另一个示例,在第二字段的取值为第二值的情况下,通信帧可以用于指示拆除该第一字段所指示 的一条或多条链路上与包括TWT流标识的组合对应的TWT协定,或者,通信帧可以用于指示拆除第一字段所指示的一条或多条链路上与包括广播TWT标识的组合对应的TWT协定。
示例性的,通信帧还包括第三字段,该第三字段用于指示TWT流标识(或广播TWT标识),如第三字段可以为上文所示的TWT流标识字段(或广播TWT标识字段)。
方式一、TWT协定由以下组合唯一识别或对应(也可以理解为TWT协定与如下包括TWT流标识的组合相对应):TWT流标识、第一字段所指示的链路上的站点的MAC地址以及第一字段所指示的所述链路的对端站点的MAC地址(或者统称为第一字段所指示的链路所对应的站点的MAC地址)的组合。其中该站点与通信帧的发送端隶属于同一个MLD,该对端站点与通信帧的接收端隶属于同一个MLD。或者,上述描述也可以替换为:TWT协定由<TWT流标识、第一字段所指示的链路上的站点的MAC地址以及第一字段所指示的所述链路的对端站点的MAC地址>唯一识别或对应。示例性的,TWT协定由以下组合唯一识别或对应(也可以理解为TWT协定与如下包括TWT流标识的组合相对应):TWT流标识、工作在链路标识比特位图所指示的链路上的站点的MAC地址(MAC address of the STA operating in the link indicated by the by the Link ID Bitmap field)和工作在链路标识比特位图所指示的链路对端的站点的MAC地址(MAC address of the peer STA operating in the link indicated by the Link ID Bitmap field)的组合。可选的,TWT协定相关的要素包括:TWT流标识、工作在链路标识比特位图所指示的链路上的站点的MAC地址和工作在链路标识比特位图所指示的链路对端的站点的MAC地址以及链路标识比特位图字段所指示的链路。也就是说,当TWT拆除帧成功发送或接收,对应TWT流号、TWT拆除帧中的链路标识字段(或比特位图字段)所指示的链路对应站点(如一条链路上对应的两个站点)的MAC地址的TWT协定可以被拆除,或者描述为:当TWT拆除帧成功发送或接收,对应TWT流号、TWT拆除帧中的链路标识字段(或比特位图字段)所指示的链路的站点的MAC地址、TWT拆除帧中的链路标识字段(或比特位图字段)所指示的链路的对端站点的MAC地址的TWT协定可以被拆除。
方式二、TWT协定由以下组合唯一识别或对应(也可以理解为TWT协定与如下包括TWT流标识的组合相对应):TWT流标识、TWT请求站点的MLD的MAC地址(MAC address of TWT requesting MLD)、TWT响应站点的MLD的MAC地址(MAC address of TWT responding MLD)和链路标识字段(或链路标识比特位图字段)所指示的链路的组合。或者,上述描述也可以替换为:TWT协定由<TWT流标识、TWT请求站点的MLD的MAC地址(MAC address of TWT requesting MLD)、TWT响应站点的MLD的MAC地址(MAC address of TWT responding MLD)、链路标识字段(或链路标识比特位图字段)所指示的链路>唯一识别或对应。示例性的,当TWT拆除帧成功发送或接收,对应TWT流号、请求TWT协定的MLD的MAC地址、响应请求的MLD的MAC地址和TWT拆除帧中的链路标识字段(或链路标识比特位图字段)所指示的链路对应的TWT协定可以被拆除(When a TWT Teardown frame is successfully transmitted or received,the TWT agreement corresponding to the TWT Flow Identifier field,the TWT requesting MLD MAC address,the TWT responding MLD MAC address,and link ID of the TWT Teardown frame shall be deleted)。或者,TWT协定由以下组合唯一识别或对应(也可以理解为TWT协定与如下包括TWT流标识的组合相对应):TWT流标识、通信帧的发送端所属的多链路设备的MAC地址、通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的链路的组合。一般来说,TWT请求站点(或TWT响应站点)的MLD和通信帧的发送端(或接收端)所属的MLD的MAC地址相同,或者,TWT请求站点(或TWT响应站点)的MLD和通信帧的接收端(或发送端)所属的MLD的MAD地址相同。
通过MLD的MAC地址绑定TWT协定,可以有效避免AP MLD与non-AP MLD关联链路之后,non-AP MLD中的STA请求去关联,导致TWT请求站点的MAC地址无效的问题。
方式三、TWT协定由<TWT流标识、TWT请求站点的MAC地址,TWT响应站点的MAC地址>组合唯一识别或对应,但是TWT请求站点和TWT响应站点可以有如下几种理解:
A.链路标识比特位图字段或者链路标识比特位图字段所在的元素不出现在TWT建立帧时,TWT请求站点是发送TWT元素去请求建立TWT的站点,其中TWT元素字段中的请求类型字段中TWT请求字段设置成1,TWT响应站点是发送TWT元素去响应建立TWT的站点,其中TWT元素字段中的请求类型字段中TWT请求字段设置成0。示例性的,在TWT建立帧中不包括链路标识比特位图字段或不包括链路标识比特位图字段所在的元素时,TWT请求站点和该TWT响应站点可以基于该TWT建立帧为该TWT请求站点所对应的链路建立TWT协定。示例性的,在TWT建立帧中包括链路标识比特位图字段或包括链路标识比特位图字段所在的元素时,则TWT请求站点和该TWT响应站点可以基于该TWT建立帧为其他链路(MLD之间除TWT请求站点对应的链路之外的链路)建立TWT协定,或者,基于该TWT建立帧为 多条链路建立TWT协定。
B.链路标识比特位图字段或者链路标识比特位图字段所在的元素不出现在TWT拆除帧时,TWT请求站点是发送TWT元素去请求建立TWT的站点,其中TWT元素字段中的请求类型字段中TWT请求字段设置成1,TWT响应站点是发送TWT元素去响应建立TWT的站点,其中TWT元素字段中的请求类型字段中TWT请求字段设置成0。示例性的,在TWT拆除帧中不包括链路标识比特位图字段或不包括链路标识比特位图字段所在的元素时,请求拆除TWT协定的站点需要与请求建立TWT协定的站点一致。示例性的,在TWT拆除帧中包括链路标识比特位图字段或包括链路标识比特位图字段所在的元素时,则TWT请求站点可以与请求建立TWT协定的站点不一致,从而可使得与请求建立TWT协定的站点隶属于同一MLD的站点均可以进行TWT协定的拆除。
C.链路标识比特位图字段或者链路标识比特位图字段所在的元素出现在TWT建立帧时,TWT请求站点是工作在TWT元素中链路标识比特位图所指示的链路上的站点,该站点与发送TWT元素去请求建立TWT的站点隶属于一个多链路设备,其中TWT元素字段中的请求类型字段中TWT请求字段设置成1;TWT响应站点是工作在TWT元素中链路标识比特位图所指示的链路上的对端站点,该对端站点与发送TWT元素去响应建立TWT的站点隶属于同一个多链路设备,其中TWT元素字段中的请求类型字段中TWT请求字段设置成0。
D.链路标识比特位图字段或者链路标识比特位图字段所在的元素出现在TWT拆除帧时,TWT请求站点是工作在TWT拆除帧中链路标识比特位图所指示的链路上的站点,该站点与发送TWT拆除帧的站点隶属于一个多链路设备,TWT响应站点是工作在TWT拆除帧中链路标识比特位图所指示的链路上的对端站点,该对端站点与接收TWT拆除帧的站点隶属于一个多链路设备。
关于以上C和D的说明可以参考本申请实施例所示的方式一和方式二的说明,这里不再详述。对于上述A和B来说,当链路标识比特位图字段或者链路标识比特位图字段所在的元素不出现TWT建立帧,和/或,不出现在TWT拆除帧,则可以表示请求拆除TWT协定的站点是建立TWT协定的站点,即建立TWT协定的链路所对应的站点的MAC地址需要与请求拆除TWT协定的站点的MAC地址一致。由此,本申请实施例中,通过TWT拆除帧中是否存在链路标识比特位图字段,可以使得通信双方隐式地获知TWT请求站点和TWT响应站点的意义。可理解,上述A、B、C和D所示的链路标识比特位图字段的说明仅为示例,如上述链路标识比特位图字段还可以替换为链路标识字段。
示例性的,以第二值等于0,第二字段为拆除所有TWT协定为例,当拆除所有TWT协定字段设置为0时,以及通信帧中携带MLO链路信息元素,则该通信帧请求拆除MLO链路信息元素中链路标识比特位图字段至少的一条或多条链路上满足对应关系的TWT协定。这里所述的对应关系可以参考上述方式一至方式三。可理解,上述所示的方式一至方式三可以用于识别TWT协定,因此上述所示的方式一至方式三对于TWT协定均适用,即方式一至方式三对于上述例子1至例子4均适用。可理解,接收端可以基于上述方式一至方式三唯一地识别一个TWT协定,或者,接收端可以基于上述方式一至方式三确定TWT协定。
示例性的,隶属于non-AP MLD的non-AP STA可以发送一个TWT拆除帧去拆除一个或多个TWT协定,其中,TWT拆除帧中的协商类型子字段设置为0,拆除所有TWT协定字段设置为0,该一个或多个TWT协定是分别建立在由MLO链路信息元素中的链路标识比特位图子字段设置为1的一个或多个比特对应的链路上,其中,一个TWT协定对应一条链路,该一个TWT协定分别对应组合<TWT流标识、工作在链路标识比特位图所指示的链路上的站点的MAC地址、工作在链路标识比特位图所指示的链路对端的站点的MAC地址>,或者<TWT流标识、工作在链路标识比特位图所指示的链路上的站点的MAC地址、工作在链路标识比特位图所指示的链路对端的站点的MAC地址以及链路标识比特位图字段所指示的链路>。(A non-AP STA affiliated with a non-AP MLD may tear down one or more TWT agreements by sending a TWT Teardown frame with the Negotiation Type subfield set to 0 and one or more bits in the Link ID Bitmap subfield of the MLO Link Information element set to 1 and Teardown All TWT field set to 0)。
可理解,例子4主要是针对单用户TWT来说的,对于广播TWT,上述方法同样适用。示例性的,应用于广播TWT时,例子4中的TWT流标识可以替换为广播TWT标识,如在第二字段的取值为第二值的情况下,通信帧可以用于指示拆除该第一字段所指示的一条或多条链路上每条链路上与包括广播TWT标识的组合对应的TWT规划。示例性的,TWT规划与如下任一项包括广播TWT标识的组合相对应:广播TWT标识和第一字段所指示的链路上接入站点的介质接入控制MAC地址的组合;或者,广播TWT标识、第一字段所指示的链路上接入站点所属的多链路设备的MAC地址和第一字段所指示的所述链路的组合。关于第一字段以及MLO链路信息元素的说明可以参考表4和表5,本申请实施例不再一一详述。可理解, 对于单用户TWT来说,包括TWT流标识的组合中包括第一字段所指示的链路上站点的MAC地址以及该链路上对端站点的MAC地址(或TWT请求站点的MLD的MAC地址和TWT响应站点的MLD的MAD地址)。对于广播TWT来说,包括广播TWT标识的组合中可以包括第一字段所指示的链路上接入站点的MAC地址、或该第一字段所指示的链路上接入站点所属的MLD的MAC地址。
本申请实施例中,通过第二字段的不同取值,以及第一字段来拆除TWT协定,可使得接收端能够精准地获知其需要拆除的TWT协定或TWT规划,提高拆除TWT协定的效率和灵活性。
实现方式三、
通信帧中包括第一字段,不包括第二字段。举例来说,第一字段用于承载链路的链路标识,则通信帧可以用于指示拆除第一字段所指示的链路上的TWT协定。又举例来说,第一字段承载链路标识比特位图,则通信帧可以用于指示拆除链路标识比特位图字段中取值为1的比特所对应的链路上的TWT协定。
示例性的,第一字段可以承载于上文所示的MLO链路信息元素中。关于第一值以及MLO链路信息元素等说明可以参考实现方式一或实现方式二,这里不再详述。
实现方式四、
第一字段可以不独立包含于某一个元素中,而是以字段的形式包含于通信帧中。如通信帧包括第二字段和是否存在第一字段的指示字段。如该指示字段占用1个比特,可选的,该指示字段可以包含于TWT流字段。如指示字段用于指示存在第一字段,且通信帧中包括第一字段和第二字段,则关于通信帧具体说明可以参考上述实现方式二,这里不再详述。又如指示字段用于指示不存在第一字段,通信帧中包括第二字段,第二字段的取值为第一值,则通信帧可以用于指示拆除发送端所属MLD的所有链路上的所有TWT协定。这里所示的所有链路指的是MLD之间建立的关联链路。
以上关于表1、表2a、表2b、表3、表4、表5,实现方式一至实现方式四均是以通信帧为TWT拆除帧为例,以下将以通信帧为TWT信息帧为例进行说明。
通信帧为TWT信息帧。示例性的,如表6所示,该TWT信息帧包括如下至少一项信息:种类、为保护sub1GHz行动、TWT信息、MLO链路信息元素(MLO Link Information element)。
表6
示例性的,如表7所示,TWT信息字段包括如下至少一项:TWT流标识,响应请求,下一个TWT请求,下一个TWT字段大小,所有TWT,下一个TWT。
表7
示例性的,所有TWT字段置第一值,比如1,则可以TWT信息帧可以用于至少重新规划所有的TWT,重新规划包括暂停,和/或恢复。
所有TWT字段的作用可以参考上述实施例中的第二字段。示例性的,示例性的,当所有TWT字段设置为1时,以及TWT信息帧中携带第一字段(参考上述MLO链路信息元素),则该TWT信息帧可以用于请求重新规划MLO链路信息元素中链路标识比特位图字段(或链路标识字段)指示的一条或多条链路上所有的TWT。关于通信帧为TWT信息帧,该TWT信息帧包括所有TWT字段和第一字段,且该TWT信息帧中的所有TWT字段的取值为第一值的说明可以参考上文所示的实现方式二中的例子3,这里不再一一详述。
示例性的,当所有TWT字段设置为0时,以及TWT信息帧中携带MLO链路信息元素,则该TWT信息帧可以用于请求重新规划MLO链路信息元素中链路标识比特位图字段指示的一条或多条链路上与包 括TWT流标识的组合对应的TWT协定。关于通信帧为TWT信息帧,该TWT信息帧包括所有TWT字段和第一字段,且该TWT信息帧中的所有TWT字段的取值为第二值的说明可以适应性地参考上文所示的实现方式二中的例子4,这里不再一一详述。
示例性的,隶属于non-AP MLD的non-AP STA可以发送一个TWT信息帧去重新规划一个或多个TWT协定,其中,TWT信息帧中的所有TWT字段设置为0,该一个或多个TWT协定是分别建立在由MLO链路信息元素中的链路标识比特位图子字段设置为1的一个或多个比特对应的链路上,其中一个TWT对应一条链路,该一个TWT协定分别对应组合<TWT流标识、工作在链路标识比特位图所指示的链路上的站点的MAC地址、工作在链路标识比特位图所指示的链路对端的站点的MAC地址>,或者<TWT流标识、工作在链路标识比特位图所指示的链路上的站点的MAC地址、工作在链路标识比特位图所指示的链路对端的站点的MAC地址以及链路标识比特位图字段所指示的链路>。(A non-AP STA affiliated with a non-AP MLD may reschedule one or more TWT agreements by sending a TWT Information frame with one or more bits in the Link ID Bitmap subfield of the MLO Link Information element set to 1 and All TWT field set to 0)。
示例性的,当所有TWT字段设置成1时,以及TWT信息帧不携带MLO链路信息元素,该TWT信息帧指示请求重新规划站点所属的MLD的所有链路上的所有的TWT协定。关于通信帧为TWT信息帧,该TWT信息帧包括所有TWT字段,不包括第一字段,且该TWT信息帧中的所有TWT字段的取值为第一值的说明可以参考上文所示的实现方式一,这里不再一一详述。
可理解,以上关于TWT信息帧的说明仅为示例,对于TWT信息帧的具体描述可以适应性地参考上文所示的TWT拆除帧。
需要说明的是,本申请实施例提到的TWT协定也可以替换为TWT规划。通常来说TWT协定是单用户TWT协定,而TWT规划是指广播的TWT规划。因此,对于通信帧为TWT信息帧,广播的TWT规划的具体说明可以适应性地参考单用户TWT协定,本申请实施例不再一一详述。
402、发送端发送通信帧,对应的,接收端接收该通信帧。
接收端可以为与发送端工作在同一关联链路上的对端STA
403、接收端基于通信帧拆除TWT协定。
关于通信帧的说明可以参考步骤401,这里仅示例性地说明接收端拆除TWT协定的具体方式。
作为一个示例,通信帧为TWT拆除帧时,结合实现方式一,接收端可以基于拆除建立在所有链路上的所有TWT协定字段拆除接收端所属的MLD与发送端所属的MLD之间的所有关联链路上的所有TWT协定。
作为另一个示例,通信帧为TWT拆除帧时,结合实现方式二,通信帧包括第一字段和第二字段,且第二字段的取值为第一值,则接收端可以基于该通信帧拆除第一字段所指示的一条或多条链路上的所有TWT协定。
作为又一个示例,通信帧为TWT拆除帧时,结合实现方式二,通信帧包括第一字段和第二字段,且第二字段的取值为第二值,则接收端可以基于该通信帧拆除该第一字段所指示的一条或多条链路上的与包括TWT流标识的组合对应的TWT协定。
作为又一个示例,通信帧包括指示信息,且不包括用于承载第一字段的元素,接收端可以基于该通信帧拆除发送端所属MLD与接收端所属MLD之间的所有关联链路上的所有TWT协定。
可选的,通信帧为TWT信息帧时,上述步骤403可以替换为:接收端基于通信帧重新规划TWT协定。示例性的,当所有TWT字段设置为1以及TWT信息帧中携带第一字段,则接收端可以基于该TWT信息帧重新规划MLO链路信息元素中链路标识比特位图字段(或链路标识字段)指示的一条或多条链路上所有的TWT。示例性的,当所有TWT字段设置为0以及TWT信息帧中携带MLO链路信息元素,则接收端可以基于该TWT信息帧重新规划MLO链路信息元素中链路标识比特位图字段指示的一条或多条链路上与包括TWT流标识的组合对应的TWT协定。示例性的,示例性的,当所有TWT字段设置成1以及TWT信息帧不携带MLO链路信息元素,则接收端可以基于该TWT信息帧重新规划站点所属的MLD的所有链路上的所有的TWT协定。
在一种可能的实现方式中,接收端还可以发送确认帧,该确认帧用于确认TWT协定被成功拆除。
本申请实施例中,通信帧的接收端通过第一字段和第二字段可以有效获知其可以删除由其他链路建立的TWT协定,有效提高拆除TWT协定的灵活性。
需要说明的是,本申请所示的实施例均以“字段”为例示出,未具体区分“字段”和“子字段”等。虽然本申请所示的实施例未对“字段”和“子字段”进行具体区分,但是本领域技术人员可以适应性地区 分本申请所示的各个字段(或各个元素与字段)之间的关系。可选的,在实际应用中,本申请实施例所示的字段、元素等也可以用信息的形式表示,因此,本申请实施例对于字段、子字段、元素、指示信息等内容的表示形式不作限定。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图11详细描述本申请实施例的通信装置。
图9是本申请实施例提供的一种通信装置的结构示意图,如图9所示,该通信装置包括处理单元901和收发单元902。
在本申请的一些实施例中,该通信装置可以是上文示出的发送端或芯片,该芯片可以设置于发送端中。即该通信装置可以用于执行上文方法实施例(包括图4、图5a、图5b)中由发送端执行的步骤或功能等。
处理单元901,用于生成通信帧;收发单元902,用于输出通信帧。
示例性的,收发单元902,还用于输入确认帧。
在本申请的另一些实施例中,该通信装置可以是上文示出的接收端或芯片,该芯片可以设置于接收端中。即该通信装置可以用于执行上文方法实施例(包括图4)中由接收端执行的步骤或功能等。
收发单元902,用于输入通信帧;处理单元901,用于基于该通信帧拆除TWT协定。
可理解,关于处理单元901拆除TWT协定的具体说明可以参考上文所示的方法实施例,这里不再详述。
示例性的,处理单元901,还用于基于上文所示的方式一至方式三识别TWT协定(或TWT规划)。
示例性的,处理单元901,具体用于在上述第二字段的取值为第一值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上的所有TWT协定或所有TWT规划。
示例性的,处理单元901,具体用于在上述第二字段的取值为第二值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上每条链路上与包括TWT流标识的组合对应的TWT协定;或者,在上述第二字段的取值为第二值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上每条链路上与包括广播TWT标识的组合对应的TWT规划。
示例性的,收发单元902,还用于输出确认帧。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
上个各个实施例中,关于通信帧、第一字段、第二字段、第三字段、TWT流字段等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
以上介绍了本申请实施例的通信装置,以下介绍所述通信装置可能的产品形态。应理解,但凡具备上述图9所述的通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的通信装置的产品形态仅限于此。
在一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个处理器,收发单元902可以是收发器,或者收发单元902还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如图10所示,该通信装置100包括一个或多个处理器1020和收发器1010。
在本申请的一些实施例中,该通信装置可以用于执行上文方法实施例(包括图4)中由发送端执行的步骤或功能等。
处理器1020,用于生成通信帧;收发器1010,用于发送通信帧。
示例性的,收发器1010,还用于接收确认帧。
在本申请的另一些实施例中,该通信装置可以用于执行上文方法实施例(包括图4)中由接收端执行的步骤或功能等。
收发器1010,用于接收通信帧;处理器1020,用于基于该通信帧拆除TWT协定。
示例性的,处理器1020,还用于基于上文所示的方式一至方式三识别TWT协定(或TWT规划)。
示例性的,处理器1020,具体用于在上述第二字段的取值为第一值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上的所有TWT协定或所有TWT规划。
示例性的,处理器1020,具体用于在上述第二字段的取值为第二值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上每条链路上与包括TWT流标识的组合对应的TWT协定;或者,在上述第二字段的取值为第二值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上每条链路上与包括广播TWT标识的组合对应的TWT规划。
示例性的,收发器1010,还用于发送确认帧。
可理解,本申请实施例示出的收发器和处理器的具体说明仅为示例,对于收发器和处理器的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
上个各个实施例中,关于通信帧、第一字段、第二字段、第三字段、TWT流字段等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
在图10所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置100还可以包括一个或多个存储器1030,用于存储程序指令和/或数据等。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可可以执行存储器1030中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及收发器1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
示例性的,处理器1020主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1030主要用于存储软件程序和数据。收发器1010可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1020可以读取存储器1030中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1020对待发送的数据进行基带处理后,输出 基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1020,处理器1020将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图10更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图9所示的通信装置中,处理单元901可以是一个或多个逻辑电路,收发单元902可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元902还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图11所示,图11所示的通信装置包括逻辑电路1101和接口1102。即上述处理单元901可以用逻辑电路1101实现,收发单元902可以用接口1102实现。其中,该逻辑电路1101可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1102可以为通信接口、输入输出接口、管脚等。示例性的,图11是以上述通信装置为芯片为例出的,该芯片包括逻辑电路1101和接口1102。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,该通信装置可以用于执行上文方法实施例(包括图4)中由发送端执行的步骤或功能等。
逻辑电路1101,用于生成通信帧;接口1102,用于输出该通信帧。
示例性的,接口1102,还用于输入确认帧。
在本申请的又一些实施例中,该通信装置可以用于执行上文方法实施例(包括图4)中由接收端执行的步骤或功能等。
接口1102,用于输入通信帧;逻辑电路1101,用于基于该通信帧拆除TWT协定。
示例性的,逻辑电路1101,还用于基于上文所示的方式一至方式三识别TWT协定(或TWT规划)。
示例性的,逻辑电路1101,具体用于在上述第二字段的取值为第一值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上的所有TWT协定或所有TWT规划。
示例性的,逻辑电路1101,具体用于在上述第二字段的取值为第二值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上每条链路上与包括TWT流标识的组合对应的TWT协定;或者,在上述第二字段的取值为第二值的情况下,拆除(或重新规划)上述第一字段指示的上述一条或多条链路上每条链路上与包括广播TWT标识的组合对应的TWT规划。
示例性的,接口1102,还用于输出确认帧。
可理解,本申请实施例示出的逻辑电路和接口的具体说明仅为示例,对于逻辑电路和接口的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
上个各个实施例中,关于通信帧、第一字段、第二字段、第三字段、TWT流字段等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括发送端和接收端,该发送端和该接收端可以用于执行前述任一实施例(如图4)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由接收端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由发送端执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码 在计算机上运行时,使得计算机执行本申请提供的方法中由接收端执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由发送端执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由接收端执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种多链路通信方法,其特征在于,所述方法包括:
    生成通信帧,所述通信帧包括第一字段和第二字段,所述第一字段用于指示一条链路,所述第二字段用于指示拆除多链路设备之间的目标唤醒时间TWT协定或TWT规划;
    发送所述通信帧。
  2. 根据权利要求1所述的方法,其特征在于,在所述第二字段的取值为第一值的情况下,所述通信帧用于指示拆除所述第一字段所指示的所述一条链路上的所有TWT协定或TWT规划。
  3. 根据权利要求1所述的方法,其特征在于,在所述第二字段的取值为第二值的情况下,所述通信帧用于指示拆除所述第一字段所指示的所述一条链路上与包括TWT流标识的组合对应的TWT协定;或者,所述通信帧用于指示拆除所述第一字段所指示的所述一条链路上与包括广播TWT标识的组合对应的TWT规划。
  4. 根据权利要求3所述的方法,其特征在于,所述通信帧还包括第三字段,所述第三字段用于承载所述TWT流标识;或者,所述第三字段用于承载所述广播TWT标识。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述TWT协定与如下任一项包括TWT流标识的组合相对应:
    所述TWT流标识、所述第一字段所指示的所述一条链路上站点的介质接入控制MAC地址和所述第一字段所指示的所述一条链路上对端站点的MAC地址的组合;或者,
    所述TWT流标识、所述通信帧的发送端所属的多链路设备的MAC地址、所述通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的所述一条链路的组合;
    所述TWT规划与如下任一项包括广播TWT标识的组合相对应:
    所述广播TWT标识和所述第一字段所指示的所述一条链路上接入站点的介质接入控制MAC地址的组合;或者,
    所述广播TWT标识、所述第一字段所指示的所述一条链路上接入站点所属的多链路设备的MAC地址和所述第一字段所指示的所述一条链路的组合。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一字段包含于所述通信帧中的多链路操作信息元素中。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第二字段包含于所述通信帧中的TWT流字段中。
  8. 一种多链路通信方法,其特征在于,所述方法包括:
    接收通信帧,所述通信帧包括第一字段和第二字段,所述第一字段用于指示一条链路,所述第二字段用于指示拆除多链路设备之间的目标唤醒时间TWT协定或TWT规划;
    基于所述通信帧拆除所述TWT协定或TWT规划。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    基于如下任一项包括TWT流标识的组合确定所述TWT协定:
    所述TWT流标识、所述第一字段所指示的所述一条链路上站点的介质接入控制MAC地址和所述第一字段所指示的所述一条链路上对端站点的MAC地址的组合;或者,
    所述TWT流标识、所述通信帧的发送端所属的多链路设备的MAC地址、所述通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的所述一条链路的组合;
    或者,基于如下任一项包括广播TWT标识的组合确定所述TWT规划;
    所述广播TWT标识和所述第一字段所指示的所述一条链路上接入站点的介质接入控制MAC地址的组合;或者,
    所述广播TWT标识、所述第一字段所指示的所述一条链路上接入站点所属的多链路设备的MAC地址和所述第一字段所指示的所述一条链路的组合。
  10. 根据权利要求8或9所述的方法,其特征在于,所述基于所述通信帧拆除所述TWT协定或所述TWT规划包括:
    在所述第二字段的取值为第一值的情况下,拆除所述第一字段指示的所述一条链路上的所有TWT协定或所有TWT规划。
  11. 根据权利要求8或9所述的方法,其特征在于,所述基于所述通信帧拆除所述TWT协定或TWT规划包括:
    在所述第二字段的取值为第二值的情况下,拆除所述第一字段指示的所述一条链路上与包括TWT流标识的组合对应的TWT协定;或者,
    在所述第二字段的取值为第二值的情况下,拆除所述第一字段指示的所述一条链路上与包括广播TWT标识的组合对应的TWT规划。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述第一字段包含于所述通信帧中的多链路操作信息元素中。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第二字段包含于所述通信帧中的TWT流字段中。
  14. 一种多链路通信方法,其特征在于,通信帧的发送端所属的多链路设备与所述通信帧的接收端所属的多链路设备之间已建立多条关联链路,所述方法包括:
    生成所述通信帧,所述通信帧包括指示信息,所述指示信息用于指示拆除多链路设备之间建立的所述多条关联链路上的TWT协定或TWT规划;
    发送所述通信帧。
  15. 一种多链路通信方法,其特征在于,通信帧的发送端所属的多链路设备与所述通信帧的接收端所属的多链路设备之间已建立多条关联链路,所述方法包括:
    接收所述通信帧,所述通信帧包括指示信息,所述指示信息用于指示拆除多链路设备之间建立的所述多条关联链路上的TWT协定或TWT规划;
    基于所述通信帧拆除多链路设备之间建立的所述多条关联链路上的TWT协定或TWT规划。
  16. 根据权利要求14或15所述的方法,其特征在于,所述指示信息的取值为第一值。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述指示信息包含于所述通信帧中的TWT流字段中。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述TWT协定与如下任一项包括TWT流标识的组合相对应:
    所述TWT流标识、所述第一字段所指示的所述一条链路上站点的介质接入控制MAC地址和所述第一字段所指示的所述一条链路上对端站点的MAC地址的组合;或者,
    所述TWT流标识、所述通信帧的发送端所属的多链路设备的MAC地址、所述通信帧的接收端所属的多链路的MAC地址和所述第一字段所指示的所述一条链路的组合;
    所述TWT规划与如下任一项包括广播TWT标识的组合相对应:
    所述广播TWT标识和所述第一字段所指示的所述一条链路上接入站点的介质接入控制MAC地址的组合;或者,
    所述广播TWT标识、所述第一字段所指示的所述一条链路上接入站点所属的多链路设备的MAC地址和所述第一字段所指示的所述一条链路的组合。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1-18任一项所述方法的单元。
  20. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1-18任一项所述的方法被执行。
  21. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1-18任一项所述的方法被执行。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,所述计算机程序被执行时,如权利要求1-18任一项所述的方法被执行。
  23. 一种计算机程序,其特征在于,所述计算机程序被执行时,如权利要求1-18任一项所述的方法被执行。
  24. 一种通信系统,其特征在于,所述通信系统包括发送端和接收端,所述发送端用于执行如权利要求1-7任一项所述的方法,所述接收端用于执行如权利要求8-13任一项所述的方法;或者,所述发送端用于执行如权利要求14、16、17或18任一项所述的方法,所述接收端用于执行如权利要求15-18任一项所述的方法。
PCT/CN2023/130051 2022-11-07 2023-11-07 多链路通信方法及装置 WO2024099285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211385738.5A CN117997977A (zh) 2022-11-07 2022-11-07 多链路通信方法及装置
CN202211385738.5 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024099285A1 true WO2024099285A1 (zh) 2024-05-16

Family

ID=90896419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130051 WO2024099285A1 (zh) 2022-11-07 2023-11-07 多链路通信方法及装置

Country Status (2)

Country Link
CN (1) CN117997977A (zh)
WO (1) WO2024099285A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144637A1 (en) * 2019-11-11 2021-05-13 Nxp Usa, Inc. Target wake time negotiation in a multi-link wireless lan system
CN114175750A (zh) * 2019-05-24 2022-03-11 马维尔亚洲私人有限公司 使用若干通信链路的wlan中的节能和组寻址帧
WO2022222153A1 (en) * 2021-04-23 2022-10-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and devices for restricted target wake time operation for latency sensitive traffic in wireless local area networks
CN115250542A (zh) * 2021-04-25 2022-10-28 华为技术有限公司 通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175750A (zh) * 2019-05-24 2022-03-11 马维尔亚洲私人有限公司 使用若干通信链路的wlan中的节能和组寻址帧
US20210144637A1 (en) * 2019-11-11 2021-05-13 Nxp Usa, Inc. Target wake time negotiation in a multi-link wireless lan system
WO2022222153A1 (en) * 2021-04-23 2022-10-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and devices for restricted target wake time operation for latency sensitive traffic in wireless local area networks
CN115250542A (zh) * 2021-04-25 2022-10-28 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN117997977A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2021190605A1 (zh) 无线局域网中应用于多链路设备的通信方法及装置
WO2021238578A1 (zh) 无线局域网中的信令信息的交互方法及通信装置
WO2021197174A1 (zh) 接入点ap多链路设备发现方法及相关装置
WO2022002220A1 (zh) 多链路设备的探测方法及通信装置
CN113556720A (zh) 接入点ap多链路设备发现方法及相关装置
KR20230172587A (ko) 통신 방법 및 장치
TW202231111A (zh) 傳輸機會的使用權恢復方法及相關裝置
JP2023532708A (ja) マルチリンクデバイスのためのaid割当て方法および関連装置
US20230354276A1 (en) Time resource allocation and receiving method and related apparatus
WO2024099285A1 (zh) 多链路通信方法及装置
TWI830080B (zh) 多鏈路通信的探測請求方法及裝置
WO2024120531A1 (zh) 多链路通信方法及装置
WO2023193666A1 (zh) 多链路通信方法及装置
WO2023185759A1 (zh) 多链路通信方法及装置
WO2024037326A1 (zh) 基于信道竞争的通信方法和装置
WO2022262675A1 (zh) 基于多链路通信的探测请求方法及装置
WO2023236821A1 (zh) 多链路通信方法及装置
WO2024067536A1 (zh) 基于流分类服务的通信方法及装置
TWI821009B (zh) P2p鏈路的信息指示方法及相關裝置
EP4322700A1 (en) Non-simultaneous transmitting and receiving capability indication method, apparatus, and system
WO2024140165A1 (zh) 天线配对方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887974

Country of ref document: EP

Kind code of ref document: A1