WO2023193666A1 - 多链路通信方法及装置 - Google Patents

多链路通信方法及装置 Download PDF

Info

Publication number
WO2023193666A1
WO2023193666A1 PCT/CN2023/085670 CN2023085670W WO2023193666A1 WO 2023193666 A1 WO2023193666 A1 WO 2023193666A1 CN 2023085670 W CN2023085670 W CN 2023085670W WO 2023193666 A1 WO2023193666 A1 WO 2023193666A1
Authority
WO
WIPO (PCT)
Prior art keywords
service indication
link
link service
subfield
per
Prior art date
Application number
PCT/CN2023/085670
Other languages
English (en)
French (fr)
Inventor
李云波
郭宇宸
淦明
李伊青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023193666A1 publication Critical patent/WO2023193666A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present application relates to the field of communication technology, and in particular, to a multi-link communication method and device.
  • the non-access point (non-AP) station (hereinafter referred to as the station STA) has two working modes. One is the non-energy-saving mode, which is active regardless of whether there is data transmission or not. state (active state); the other is energy-saving mode.
  • the site When data needs to be transmitted to the AP site (hereinafter referred to as the access point AP), the site can be in the active state (active state); when there is no need to transmit data to the AP, Sites can be in a doze state to save power.
  • the station can inform the AP whether it is in energy-saving mode by sending a frame to the AP.
  • the specific form is to set the energy-saving bit in the frame control field (frame control field) in the medium access control (MAC) header of the frame to 1. Indicates that the site is in energy-saving mode, otherwise it is in non-energy-saving mode.
  • the AP can buffer the downlink data of the station and wait for the station to wake up before sending the downlink data to the station.
  • the AP can periodically send beacon frames and inform its associated stations whether there is downlink data that needs to be received through the traffic indication map (TIM) TIM element in the beacon frame.
  • TIM traffic indication map
  • Stations that are in energy saving mode will also periodically wake up to receive beacon frames sent by the AP. If not, the station can transition to sleep state; otherwise, the station can choose a time point to wake up and send energy saving detection (PS-Poll) frames. Inform the AP to wake up. This time point is after the beacon frame reception time point.
  • the access point (AP) multi-link device (AP multi-link device, AP MLD) can assign a unique The association identifier (AID) is used as an identifier, so that all stations (STAs) attached to the non-AP MLD can use the same AID.
  • AID The association identifier
  • non-AP MLD indicates TID-to-link mapping, services with different TIDs are transmitted through different link sets. Since there is only 1 bit in the traffic indication map (TIM) element to indicate the non-AP MLD, it is impossible to distinguish which links in the non-AP MLD the cached data needs to be transmitted through. Therefore, the non-AP MLD does not know which links need to wake up and prepare to receive data.
  • the multi-link traffic indication element can be used to indicate on which links the data and MAC management protocol data unit (MAC management protocol data unit, MMPDU) are cached.
  • MMPDU MAC management protocol data unit
  • the current multi-link service indication element has a large overhead, and its signaling overhead can be further reduced.
  • the present application provides a multi-link communication method and device, which can save the signaling overhead of multi-link service indication elements, especially the signaling overhead of the per-link service indication bitmap subfield.
  • embodiments of the present application provide a multi-link communication method.
  • This method can be applied to AP or AP MLD or chip, etc.
  • the chip can be provided in the AP or AP MLD.
  • the method includes:
  • beacon frame including a plurality of multi-link service indication elements, each multi-link service indication element in the plurality of multi-link service indication elements being used to indicate the corresponding non-access point multi-link service indication element.
  • Link device non-AP MLD in one or more Whether there is buffered data on the link; send the beacon frame.
  • the beacon frame includes a multi-link service indication element.
  • This multi-link indication element indicates whether all non-AP MLDs have buffered data on one or more links. All non-AP MLDs shown here -AP MLD refers to the non-AP MLD that has downlink data to be received as indicated by the partial virtual bitmap field in the TIM element.
  • Through multiple per-link service indication bitmap subfields included in the per-link service indication list field of a multi-link indication element it is indicated whether different non-AP MLDs have cached data on one or more links. This will cause the bit length of the service indication bitmap subfield of each link to be the same, for example, m+1. For example, m equals the link with the largest link ID among all non-AP links in the MLD that need to indicate whether there is cached data.
  • the identifier of the road, m is an integer greater than or equal to 0.
  • the beacon frame includes multiple multi-link service indication elements, thereby indicating all non-AP MLDs on one or more links through these multiple multi-link service indication elements. Whether there is cached data on one or more links allows each multi-link service indication element to indicate whether some of the non-AP MLDs in all non-AP MLDs have cached data on one or more links. In this way, the bit length of the per-link service indication bitmap subfield corresponding to a non-AP MLD with a small number of links can be smaller, effectively saving signaling overhead.
  • embodiments of the present application provide a multi-link communication method, which can be applied to STA or non-AP MLD or chips, etc.
  • the chip can be installed in the STA or non-AP MLD.
  • the method includes:
  • beacon frame including a plurality of multi-link service indication elements, each multi-link service indication element in the plurality of multi-link service indication elements being used to indicate the corresponding non-access point multi-link Check whether the non-AP MLD has cached data on one or more links; receive downlink data on the link with cached data according to the beacon frame.
  • receiving downlink data on a link with buffered data according to the beacon frame includes: according to the multi-link service in each multi-link service indication element.
  • the indication control field includes an AID offset that determines the multi-link traffic indication element corresponding to the non-AP MLD that received the beacon frame and/or the per-link traffic indication element corresponding to the non-AP MLD that received the beacon frame.
  • Service indication bitmap subfield a per-link service indication bitmap subfield corresponding to the non-AP MLD that receives the beacon frame is included in the multi-link corresponding to the non-AP MLD that receives the beacon frame In the multi-link service indication element; determine and receive the signal according to the bitmap size subfield included in the multi-link service indication control field in the multi-link service indication element corresponding to the non-AP MLD that receives the beacon frame.
  • the link corresponding to each bit in the per-link service indication bit bitmap subfield corresponding to the non-AP MLD of the beacon frame; according to the per-link service indication bit corresponding to the non-AP MLD that receives the beacon frame The value of each bit in the bitmap subfield determines the link with cached data, and receives downlink data on the link with the cached data.
  • the determination based on the AID offset included in the multi-link service indication control field in each multi-link service indication element is related to the non-zero value of the beacon frame received.
  • the multi-link service indication element corresponding to the AP MLD and/or the per-link service indication bitmap subfield corresponding to the non-AP MLD receiving the beacon frame includes: according to each multi-link service indication element The AID offset included in the multi-link service indication control field, the value of the padding subfield, and the value of the per-link service indication bitmap subfield are determined by receiving the non- The per-link service indication bitmap subfield corresponding to the AP MLD; or, according to the AID offset included in the multi-link service indication control field in each multi-link service indication element, the AID indication subfield determines and The per-link service indication bitmap subfield corresponding to the non-AP MLD that receives the beacon frame.
  • the multi-link service indication element includes a per-link service indication list field, and the per-link service indication list field includes a padding subfield.
  • the per-link service indication list field also includes one or more per-link service indication bitmap subfields, and the per-link service Each bit in the indication bitmap subfield is used to indicate whether there is cached data on the corresponding link, and at least one of the per-link service indication bitmap subfields One bit has a value of 1, and all bits in the padding subfield have a value of 0; the padding subfield is located after the per-link service indication bitmap subfield, and the padding subfield The value of all bits of the padding subfield is 0 for distinguishing the padding subfield from the per-link service indication bitmap subfield, or the value of all the bits of the padding subfield is 0 for indicating
  • the non-AP MLD that receives the beacon frame ends parsing the per-link service indication list field.
  • the non-AP MLD can determine the corresponding multi-link among multiple multi-link service indication elements based on the value characteristics of the padding subfield and the value characteristics of the per-link service indication bitmap subfield.
  • the per-link service indication bitmap subfield in the service indication element is used to know the link with cached data.
  • the per-link service indication list field also includes one or more per-link service indication bitmap subfields, and the per-link service Each bit in the indication bitmap subfield is used to indicate whether there is cached data on the corresponding link, and the bit length of the per-link service indication bitmap subfield is greater than or equal to the per-link service indication. The sum of the number of links associated with the non-AP MLD corresponding to the bitmap subfield.
  • the non-AP MLD can determine the corresponding among multiple multi-link service indication elements based on the relationship between the sum of the number of its associated links and the bit length of the per-link service indication bitmap subfield.
  • the per-link service indication bitmap subfield in the multi-link service indication element is used to learn the links with cached data.
  • the beacon frame further includes a service indication map TIM element, the TIM element includes a partial virtual bitmap field, and the partial virtual bitmap The field is used to indicate the AID corresponding to the multiple multi-link service indication elements;
  • the multi-link service indication element includes a multi-link service indication control field and a per-link service indication list field.
  • the control field includes an association identification AID offset subfield, and the per-link service indication list field includes one or more per-link service indication bitmap subfields, and the AID offset subfield is used to indicate the one or The AID corresponding to the first per-link service indication bitmap subfield among multiple per-link service indication bitmap subfields.
  • the AID offset can be used to indicate one or more multi-link service indication elements corresponding to the AID offset.
  • the non-AP MLD can roughly determine the position of the corresponding per-link service indication bitmap subfield based on the AID offset.
  • the multi-link service indication control field further includes an AID indication subfield, and the AID offset subfield and the AID indication subfield are used to Indicate the AID corresponding to each per-link service indication bitmap subfield in the one or more per-link service indication bitmap subfields.
  • the non-AP MLD can clearly learn the corresponding per-link service indication bitmap subfield.
  • the AID indication subfield is used to indicate the length of the AID corresponding to the one or more per-link service indication bitmap subfields; or , the AID indication subfield is used to indicate the AID corresponding to the last per-link service indication bitmap subfield in the one or more per-link service indication bitmap subfields; or, the AID indicator subfield The field is used to indicate the number of the per-link service indication bitmap subfields.
  • each multi-link service indication element among the plurality of multi-link service indication elements corresponds to the value indicated by the partial virtual bitmap field. Part of the non-AP MLD that caches data.
  • embodiments of the present application provide a communication device for performing the first aspect or any possible implementation manner.
  • the communication device includes means for performing the method of the first aspect or any possible implementation.
  • embodiments of the present application provide a communication device for performing the method in the second aspect or any possible implementation manner.
  • the communication device includes means for performing the method of the second aspect or any possible implementation.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor, configured to execute the method shown in the above first aspect or any possible implementation manner.
  • the processor is configured to execute a program stored in the memory. When the program is executed, the method shown in the first aspect or any possible implementation is executed.
  • the memory is located outside the communication device.
  • the memory is located within the above communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the communication device further includes a transceiver, which is used to receive signals or send signals.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor, configured to execute the method shown in the above second aspect or any possible implementation manner.
  • the processor is configured to execute a program stored in the memory. When the program is executed, the method shown in the above second aspect or any possible implementation is executed.
  • the memory is located outside the communication device.
  • the memory is located within the above communication device.
  • the processor and the memory can also be integrated into one device, that is, the processor and the memory can also be integrated together.
  • the communication device further includes a transceiver, which is used to receive signals or send signals.
  • inventions of the present application provide a communication device.
  • the communication device includes a logic circuit and an interface.
  • the logic circuit is coupled to the interface; the logic circuit is used to generate a beacon frame; and the interface is used to input the message. frame.
  • beacon frame may refer to the method shown in the first aspect or any possible implementation manner, and will not be described in detail here.
  • inventions of the present application provide a communication device.
  • the communication device includes a logic circuit and an interface.
  • the logic circuit is coupled to the interface; the interface is used to input a beacon frame; and the logic circuit is used to respond to the beacon frame. Frames input downstream data on links with cached data.
  • beacon frame may refer to the method shown in the second aspect or any possible implementation manner, and will not be described in detail here.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables any possible implementation of the first aspect or the first aspect. The method shown in the implementation is executed.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store a computer program. When it is run on a computer, it enables any possible implementation of the above second aspect or the second aspect. The method shown in the implementation is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When run on a computer, the computer program product enables the above-mentioned first aspect or any possible implementation of the first aspect. The method shown is executed.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer program or computer code. When run on a computer, the computer program product enables the above-mentioned second aspect or any possible implementation of the second aspect. The method shown is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above first aspect or any possible implementation of the first aspect is executed.
  • embodiments of the present application provide a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above second aspect or any possible implementation of the second aspect is executed.
  • inventions of the present application provide a wireless communication system.
  • the wireless communication system includes a first communication device and a second communication device.
  • the first communication device is configured to perform the above-mentioned first aspect or any of the first aspects.
  • the method shown in the possible implementation manner, the second communication device is configured to perform the method shown in the above second aspect or any possible implementation manner of the second aspect.
  • Figure 1a is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 1b is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 1c is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2a is a schematic structural diagram of a multi-link service indication element provided by an embodiment of the present application.
  • Figure 2b is a schematic structural diagram of a TIM element provided by an embodiment of the present application.
  • Figure 2c is a schematic diagram of the relationship between a multi-link service indication element and a TIM element provided by an embodiment of the present application;
  • Figure 3 is a schematic flowchart of a multi-link communication method provided by an embodiment of the present application.
  • Figure 4a is a schematic structural diagram of a beacon frame provided by an embodiment of the present application.
  • Figure 4b is a schematic structural diagram of a beacon frame provided by an embodiment of the present application.
  • Figure 4c is a schematic structural diagram of a beacon frame provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a sequence for allocating AID provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (items) means two or three and three
  • “and/or” is used to describe the relationship between associated objects, indicating that there can be three relationships.
  • a and/or B can mean: only A exists, only B exists, and A and B exist simultaneously. kind situation, where A and B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items.
  • at least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c"”.
  • the method provided by this application can be applied to wireless local area network (WLAN) systems, such as Wi-Fi, etc.
  • WLAN wireless local area network
  • the method provided in this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 series protocols, such as 802.11a/b/g protocol, 802.11n protocol, 802.11ac protocol, 802.11ax protocol, 802.11 be protocol or next-generation protocols, etc., I will not list them one by one here.
  • the method provided by this application can also be applied to various communication systems, such as Internet of Things (IoT) systems, Vehicle to X (V2X), Narrowband Internet of Things (NB) -IoT) system, used in devices in the Internet of Vehicles, IoT nodes, sensors, etc.
  • IoT Internet of Things
  • V2X Vehicle to X
  • NB Narrowband Internet of Things
  • LTE long-term evolution
  • 5th-generation 5th-generation
  • 6G new communication systems
  • WLAN WLAN
  • IEEE 802.11 series standards the network applied to the IEEE 802.11 series standards
  • HIPERLAN high performance wireless LAN
  • WAN wide area networks
  • the various aspects provided herein may be applicable to any suitable wireless network, regardless of the coverage and wireless access protocols used.
  • the communication system provided by this application can be a WLAN or a cellular network.
  • the method provided by this application can be implemented by a communication device in the wireless communication system or a chip or processor in the communication device.
  • the communication device can be a device that supports one or more A wireless communication device whose links transmit in parallel is, for example, called a multi-link device (MLD). Compared with devices that only support single-link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • MLD multi-link device
  • a multi-link device includes one or more subordinate sites.
  • a subordinate site is a logical site and can work on one link, one frequency band, one channel, etc.
  • the affiliated site can be an access point (AP) or a non-access point station (non-AP STA).
  • AP access point
  • non-AP STA non-access point station
  • this application may refer to the multi-link device whose site is an AP as multi-link AP or multi-link AP device or AP multi-link device (AP multi-link device, AP MLD).
  • a multi-link device whose station is a non-AP STA is called a multi-link STA or multi-link STA device or STA multi-link device (STA multi-link device), or the station it belongs to is a non-AP STA.
  • Multi-link devices are called multi-link non-AP or multi-link non-AP devices or non-AP multi-link devices (non-AP multi-link device, non-AP MLD), etc.
  • the multi-link device whose site is an AP is called AP MLD
  • the multi-link device whose site is a non-AP STA is called non-AP MLD.
  • AP MLD is affiliated with one or more APs
  • STA MLD is affiliated with one or more STAs.
  • the multi-link device (here it can be either a non-AP MLD or an AP MLD) is a communication device with a wireless communication function.
  • the communication device can be a complete device, or can be a chip or a processing system installed in the complete device.
  • the device installed with these chips or processing systems can implement the implementation of the present application under the control of these chips or processing systems.
  • the non-APMLD in the embodiment of the present application has a wireless transceiver function, can support the 802.11 series protocols, and can communicate with APMLD or other non-APMLD.
  • non-APMLD allows users to interact with Any user communication device that communicates with the AP and thereby communicates with the WLAN.
  • non-APMLD can be a tablet, desktop, laptop, notebook, ultra-mobile personal computer (UMPC), handheld computer, netbook, personal digital assistant (PDA), User equipment that can be connected to the Internet, such as mobile phones, or IoT nodes in the Internet of Things, or vehicle-mounted communication devices in the Internet of Vehicles, etc.
  • the non-AP multi-link device can also be the chips and processing systems in the above-mentioned terminals.
  • APMLD can provide services for non-APMLD devices and can support 802.11 series protocols.
  • APMLD can be communication entities such as communication servers, routers, switches, and bridges, or APMLD can include various forms of macro base stations, micro base stations, relay stations, etc.
  • APMLD can also be chips in these various forms of equipment. and processing systems.
  • the 802.11 protocol may include protocols that support 802.11be or are compatible with 802.11be, etc., which will not be listed here.
  • multi-link devices can support high-speed and low-latency transmission.
  • multi-link devices can also be used in more scenarios, such as sensor nodes in smart cities ( For example, smart water meters, smart electricity meters, smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, display screens, TVs, speakers, refrigerators, washing machines, etc.), nodes in the Internet of Things, Entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart offices (such as printers, projectors, etc.), Internet of Vehicles devices in the Internet of Vehicles, and some infrastructure in daily life scenes (such as vending machines, Self-service navigation desks in supermarkets, self-service checkout equipment, self-service ordering machines, etc.).
  • the specific form of the multi-link device is not limited in the embodiments of the present application, and is only an exemplary description.
  • FIG. 1a is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • AP MLD includes AP1, AP2,..., APn
  • non-AP MLD includes STA1, STA2,..., STAn.
  • n shown here is a positive integer.
  • AP MLD and non-AP MLD can communicate in parallel using link 1, link 2,..., link n.
  • STA1 in non-AP MLD is associated with AP1 in AP MLD
  • STA2 in non-AP MLD is associated with AP2 in AP MLD
  • STAn in non-AP MLD is associated with APn in AP MLD wait.
  • one or more STAs in the non-AP MLD and one or more APs in the AP MLD can communicate after establishing an association relationship.
  • the frequency bands in which multi-link devices (including AP MLD and non-AP MLD) work can include but are not limited to: sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • Figure 1b shows a scenario in which AP MLD101 communicates with Non-AP MLD102, Non-AP MLD103 and STA104.
  • AP MLD101 includes subordinate APs 101-1 to AP101-3;
  • Non-AP MLD102 includes three subordinate APs.
  • Non-AP MLD103 includes 2 subordinate STA103-1, STA103-2;
  • STA104-1, STA104 are single-link devices.
  • AP MLD101 can communicate with Non-AP MLD102 using link 1, link 2 and link 3 respectively; use link 2 and link 3 to communicate with Non-AP MLD103; use link 1 to communicate with STA104.
  • STA104 works in the 2.4GHz frequency band; in Non-AP MLD103, STA103-1 works in the 5GHz frequency band, and STA103-2 works in the 6GHz frequency band; in Non-AP MLD102, STA102-1 works in the 2.4GHz frequency band, and STA102- 2 works in the 5GHz band, and STA102-3 works in the 6GHz band.
  • AP101-1 in AP MLD101 working in the 2.4GHz frequency band can transmit uplink or downlink data through link 1 to STA104 and STA102-1 in Non-AP MLD102.
  • AP101-2 in AP MLD101 working in the 5GHz band can transmit uplink or downlink data through link 2 and STA103-1 working in the 5GHz band in Non-AP MLD 103, and can also communicate with Non-AP through link 2 In MLD102, uplink or downlink data is transmitted between STA102-2 working in the 5GHz frequency band.
  • AP101-3 in AP MLD101 working in the 6GHz band can transmit uplink or downlink data through link 3 to STA102-3 in Non-AP MLD102 working in the 6GHz band, and can also communicate with Non-AP MLD through link 3. Transmit uplink or downlink data between STA103-2.
  • Figure 1b only uses AP MLD101 to support three frequency bands (2.4GHz, 5GHz, 6GHz), and each frequency band corresponds to a link.
  • AP MLD101 can work on one or more links among link 1, link 2 or link 3 as an example.
  • AP MLD and Non-AP MLD can also support more or fewer frequency bands, that is, AP MLD and Non-AP MLD can work on more links or fewer links.
  • the embodiments of this application This is not limited. That is to say, the method provided by the embodiment of the present application can be applied not only to multi-link communication, but also to single-link communication.
  • Figure 1c is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the AP MLD shown in the embodiment of this application can be associated with one or more non-AP MLD, or can be associated with one or more legacy STAs (legacy STAs).
  • each per-link service indication bitmap subfield corresponds to an AID.
  • This AID can correspond to traditional STA, single-link MLD (such as STA) or multi-link MLD. (such as non-AP MLD).
  • Multi-link MLD such as non-AP MLD
  • V2X vehicle-to-everything
  • X can represent anything
  • equipment To device equipment To device
  • D2D equipment To device
  • the V2X may include: vehicle to vehicle (V2V), vehicle to infrastructure (V2I), vehicle to pedestrian (V2P) or vehicle to network (vehicle to network, V2N) communication, etc.
  • the beacon frame includes a multi-link traffic indication element and a TIM element.
  • the structure of the multi-link traffic indication element can be as shown in Figure 2a.
  • the structure of the TIM element can be shown in Figure 2b.
  • the multi-link service indication element includes at least one of the following: element identifier (element ID) field, length (length) field, element ID extension (element ID extension) field, multi-link service Indication control (multi-link traffic indication control) field and per-link traffic indication list (per-link traffic indication list) field.
  • the multi-link service indication control field includes a bitmap size subfield, an AID offset subfield and a reserved subfield.
  • the per-link traffic indication list field includes l per-link traffic indication bitmap (per-link traffic indication bitmap) subfields and possible padding subfields. It can be understood that the length of octets occupied by each of the above fields and the length of bits occupied by each subfield can be shown in Figure 2a, and will not be described in detail here.
  • the TIM element includes at least one of the following: element identifier (element ID) field, length field, DTIM count (DTIM count) field, DTIM period (DTIM period) field, bitmap control (bitmap control) fields and partial virtual bitmap fields.
  • element ID field is used to identify the element as a TIM element
  • the length field is used to indicate the length of the TIM element
  • the DTIM count field is used to indicate how many TIM beacon frames will appear before the next DTIM beacon frame arrives.
  • the DTIM period field is used to indicate the period length of the DTIM beacon frame, that is, the arrival interval.
  • Bit 0 of the bitmap control field indicates whether there is downlink multicast data service when the AP sends a DTIM beacon frame.
  • Bits 1 to 7 indicate the offset of part of the virtual bitmap. The offset is in bytes, that is The unit is 8 bits. For example, if the offset is 0, the partial virtual bitmap starts at AID1. If the offset is 1, the partial virtual bitmap starts from AID9. The end bit of the partial virtual bitmap is determined by the length field. Therefore, it is partially virtual Quasibit bitmaps can be up to 251 bytes, or 2008 bits.
  • Each bit in the partial virtual bitmap field corresponds to an AID and is used to indicate whether the site corresponding to the AID has unicast services.
  • each bit in the partial virtual bitmap field corresponds to a multicast AID, which is used to indicate whether a group of sites corresponding to the multicast AID has downlink services.
  • the element ID field, length field, DTIM count field, DTIM period field and bitmap control field occupy 1 byte each.
  • FIG. 2c is a schematic diagram of the relationship between the multi-link service indication element and the TIM element provided by an embodiment of the present application.
  • each non-AP MLD with downlink cache data corresponds to a per-link service indication bitmap subfield.
  • m is the identifier of the link with the largest link identifier among all the links that need to be indicated in the non-AP MLD with cached data
  • m is an integer greater than or equal to 0. That is, the largest link identifier in the link corresponding to the bit with a value of 1 in the l per-link service indication bitmap subfield included in the per-link service indication list field is the value of the bitmap size subfield. value.
  • the bit length of the per-link traffic indication bitmap subfield may be indicated by the bitmap size subfield. For example, if the value of the bitmap size subfield is m, it means that the length of the per-link service indication bitmap subfield is m+1.
  • the value carried in the bitmap size subfield in Figure 2c can be 0010, which means that the bit length of the bitmap size subfield for each link service indication is 3 bits, and the value of each bit represents the corresponding Whether there is cached data on the link, such as whether there is cached data on link ID0 to link ID2.
  • the non-AP MLD can determine the corresponding per-link service indication bitmap subfield based on the value of the AID offset subfield and part of the virtual bitmap field.
  • the number of service indication bitmap subfields per link is 3, as shown in Per-link traffic indication bitmap subfield 1, per-link traffic indication bitmap subfield 2 (not labeled in Figure 2c) and per-link traffic indication bitmap subfield 3.
  • embodiments of the present application provide a multi-link communication method and device, which can further reduce signaling overhead.
  • the method provided by the embodiment of the present application can be applied to the communication system shown in Figure 1a to Figure 1c.
  • the method may be applied to a first communication device and a second communication device, and the first communication device and the second communication device may be any of the above-described Link equipment, for example, the first communication device may include an AP or AP MLD or a chip, etc., and the chip may be provided at the AP or AP MLD, and the second communication device may include a non-AP MLD, STA, or chip, etc., and the chip may Set in non-AP MLD.
  • the first communication device and the second communication device reference may be made to the above, and they will not be described in detail here.
  • Figure 3 is a schematic flowchart of a multi-link communication method provided by an embodiment of the present application. As shown in Figure 3, the method includes:
  • the first communication device generates a beacon frame.
  • the beacon frame includes multiple multi-link service indication elements.
  • Each multi-link service indication element in the multiple multi-link service indication elements is used to indicate the corresponding non -Whether the AP MLD has cached data on one or more links.
  • Each of the plurality of multi-link service indication elements includes a multi-link service indication control field and a per-link service indication list field, the multi-link service indication control field including an AID offset quantum field,
  • the per-link service indication list field includes one or more per-link service indication bitmap subfields, and the AID offset subfield is used to indicate the first of the one or more per-link service indication bitmap subfields. AID corresponding to each link service indication bitmap subfield.
  • the beacon frame also includes a TIM element.
  • the TIM element includes a partial virtual bitmap field.
  • the partial virtual bitmap field is used to indicate the AID corresponding to the multiple multi-link service indication elements.
  • the beacon frame includes a multi-link service indication element, and the first communication device can use this multi-link indication element to indicate that all non-AP MLDs are in one Or whether there is buffered data on multiple links.
  • All non-AP MLDs shown here refer to the non-AP MLDs that have downlink data that need to be received as indicated by part of the virtual bitmap field in the TIM element.
  • the beacon frame includes multiple multi-link service indication elements, and the first communication device can indicate all non-AP MLDs on one or more links through these multiple multi-link service indication elements. Whether there is cached data on one or more links, so that each multi-link service indication element indicates whether some of the non-AP MLDs in all the above non-AP MLDs have cached data on one or more links. That is to say, each of the multiple multi-link service indication elements included in the beacon frame only corresponds to the part of the non-AP MLD that has cached data indicated by the partial virtual bitmap field. non-AP MLD.
  • the non-AP MLD corresponding to each multi-link service indication element in the multiple multi-link service indication elements may be different, or not exactly the same; or, the multiple multi-link service indication elements may The links corresponding to each multi-link service indication element are different or not exactly the same.
  • the plurality of multi-link service indication elements include a first multi-link service indication element and a second multi-link service indication element
  • the first multi-link service indication element includes a first multi-link service indication control field and the first per-link service indication list field
  • the second multi-link service indication element includes the second multi-link service indication control field and the second per-link service indication list field
  • the first per-link service indication list field The difference between the second per-link service indication list field and the second per-link service indication list field may be as follows (note that the following difference is not necessary here): first, the link corresponding to the first per-link service indication list field and the second per-link service indication list field.
  • the corresponding links are different; the maximum value of the link identifier in the link corresponding to the second and second per-link service indication list fields is greater than the maximum value of the link identifier in the link corresponding to the first per-link service indication list field. ; Third, the number of per-link service indication bitmap subfields included in the first per-link service indication list field and the number of per-link service indication bitmap subfields included in the second per-link service indication list field. The numbers are different; fourth, the AID offset in the first multi-link service indication control field is different from the AID offset in the second multi-link service indication control field.
  • FIG. 4a is a schematic structural diagram of a beacon frame provided by an embodiment of the present application.
  • Figure 4a only illustrates two multi-link service indication elements as an example, but this should not be understood as limiting the embodiment of the present application.
  • the AP MLD when the AP MLD generates multiple multi-link service indication elements, it can determine the TIM element and the multi-link service indication element based on the AID of the non-AP MLD with cached data.
  • the AID offset subword in the first multi-link service indication element The value of the segment can be k, and the number of corresponding per-link service indication bitmap subfields can be l1. l1 is an integer greater than or equal to 1.
  • the bitmap size subfield is based on these l1 per-link services.
  • the maximum identifier of the link with cached data in the non-AP MLD corresponding to the indication bitmap subfield is determined.
  • the value of the AID offset subfield in the second multi-link service indication element can be k+x, x is based on the l1 per-link service indication bitmap subfields in the first multi-link service indication element.
  • the number of per-link service indication bitmap subfields can be l2, where l2 is an integer greater than or equal to 1, and the bitmap size subfield is based on the corresponding l2 per-link service indication bitmap subfields.
  • the maximum identification of links with cached data in non-AP MLD is determined.
  • the first multi-link service indication element may correspond to the non-AP MLD of the link with a smaller link ID.
  • the value is 0000, and the bit length of each link service indication bitmap is 1 bit (x is used to represent one bit in Table 1);
  • the second multi-link service indication element can correspond to the largest link ID in the associated link For non-AP MLD with a value of 1, the bitmap size value shown in Table 1 is 0001, and the bit length of each link service indication bitmap is 2 bits;
  • the third multi-link service indication element can correspond to For a non-AP MLD with a maximum link ID of 2 in the associated link, the bitmap size value shown in Table 1 is 0010, and the bit length of each link service indication bitmap is 3 bits; and so on, I won’t list them all here.
  • the first multi-link service indication element among multiple multi-link service indication elements can correspond to a non-AP MLD with a maximum link ID of 0 or 1 in the associated link, as shown in Table 2 of the bitmap size
  • the value is 0001
  • the bit length of each link service indication bitmap is 2 bits (x represents one bit in Table 2)
  • the second multi-link service indication element can correspond to the largest link ID in the associated link
  • the bitmap size value shown in Table 2 is 0010
  • the bit length of each link service indication bitmap is 3 bits (x represents one bit in Table 2 ), and so on.
  • the link corresponding to each multi-link service indication element among the multiple multi-link service indication elements may be determined according to the implementation strategy, which is not limited in this embodiment of the present application.
  • the per-link service indication bitmap subfield can have two methods: Method 1.
  • the bits of the per-link service indication bitmap subfield The length is 1 bit, and the value of this 1 bit is 1.
  • Method 2 The per-link service indication list does not include the per-link service indication bitmap subfield, that is, the per-link service indication bitmap subfield does not need to appear.
  • method two since only one bit in the link bitmap subfield has a value of 1, non-AP MLD can consider that the link corresponding to the bit with a value of 1 in the link bitmap has cache data.
  • method 2 can also be applied to the multi-link service indication element shown in Figure 2a. For example, when the value of the bitmap size subfield is 0, signaling overhead can also be saved through the optimization method provided by method two.
  • the method shown in the embodiment of this application can disperse all non-AP MLDs that need to be indicated in multiple multi-link service indication elements.
  • the per-link service indication bitmap subfield in each multi-link service indication element is The bit lengths can be different, thus saving signaling overhead.
  • AP MLD can allocate AID to non-AP MLD in a certain order.
  • Figure 5 is an example of the order of allocating AIDs.
  • the AIDs are segmented from small to large. The smallest AID is first allocated to the legacy STA (such as an STA that does not support EHT), and then the larger AID is allocated to the association-only site.
  • the value of the bitmap size subfield in the first multi-link service indication element may be 0 (That is, the corresponding number of links is 1). Therefore, the bit length of the service indication bitmap subfield of each link is 1.
  • beacon frame shown in the embodiment of this application is only an example. If other similar frames also have related elements (such as multi-link service indication elements and TIM elements) carried in the beacon frames shown in this application, Functions (or functions such as related fields carried in other similar frames (such as the multi-link service indication control field and the per-link service indication list field)) also belong to the protection scope of this application.
  • the first communication device sends a beacon frame, and correspondingly, the second communication device receives the beacon frame.
  • the second communication device receives downlink data based on the beacon frame on the link with buffered data.
  • the non-AP MLD corresponding to each link service indication bitmap subfield can be determined based on the AID offset subfield and the partial virtual bitmap field.
  • each multi-link service indication element only corresponds to part of the non-AP MLD (that is, part of the non-AP MLD in the non-AP MLD with cached data).
  • the AID offset only indicates the AID corresponding to the first per-link service indication bitmap subfield in the multi-link service indication element corresponding to the AID offset.
  • the non-AP MLD cannot simply determine the corresponding per-link service indication bitmap based on the AID offset subfield and part of the virtual bitmap field. subfield.
  • the non-AP MLD may misread the padding subfield included in the per-link service indication list field. For example, there may be 0 to 7 bits of padding at the end of the per-link service indication list field, so that the bit length of the entire per-link service indication list field is an integer multiple of 8 bits.
  • one multi-link service indication element may only indicate part of the non-AP MLD, some non-AP MLD may mistake the padding subfield as being allocated to themselves. of the per-link traffic indication bitmap subfield, resulting in misreading.
  • the indication element includes l multi-link service indication bitmap subfields, then l can satisfy the following conditions:
  • Length is the value of the Length field in the certain multi-link service indication element
  • L indication is the number of bytes of the multi-link service indication control field in the certain multi-link service indication element
  • Bitmap Size is The value of the bitmap size subfield in the certain multi-link service indication element. It can be understood that the conditions shown above are applicable to each of the multi-link service indication elements.
  • the first communication device can know the number of multi-link service indication bitmap subfields in each multi-link service indication element.
  • the second communication device if the multi-link service indication If the second communication device is not explicitly informed in the element, the second communication device cannot clearly know the number of multi-link service indication bitmap subfields in each multi-link service indication element. Therefore, the embodiments of the present application provide implementation manners one and two. In the implementation manners one and two shown below, although the multi-link service indication element does not explicitly indicate the per-link service indication bitmap subfield number, but the second communication device can still learn its corresponding per-link service indication bitmap subfield through analysis. At the same time, the embodiment of the present application also provides a third implementation. In the third implementation shown below, by adding an AID indication subfield to the multi-link service indication element, the second communication device can clearly know the corresponding link of each link. Service indication bitmap subfield.
  • At least one bit in the per-link service indication bitmap subfield has a value of 1, and all bits in the padding subfield have a value of 0; the padding subfield is located after the per-link service indication bitmap subfield. , the value of all bits in the padding subfield is 0 to distinguish the padding subfield from the per-link service indication bitmap subfield, or the value of all bits in the padding subfield is 0 for indication
  • the non-AP MLD that receives the beacon frame ends parsing the per-link service indication list field.
  • the padding subfield can be distinguished from the per-link service indication bitmap subfield, or used to indicate non-AP MLD End parsing the per-link service indication list field. That is, the padding subfield may be used to indicate that the padding subfield is not a per-link traffic indication bitmap subfield. Therefore, when the AID indicated by the AID offset subfield in the multi-link service indication element is not the AID of a non-AP MLD, the non-AP MLD can determine its corresponding per-link service indication bitmap sub-field based on the above principles. field.
  • the non-AP MLD may determine the first per-link service in the multi-link service indication element corresponding to the AID offset subfield.
  • the indication bitmap subfield is a per-link service indication bitmap subfield sent by the AP MLD to the non-AP MLD. Therefore, a link having cached data is determined based on the first per-link traffic indication bitmap subfield.
  • the multi-link service indication element corresponding to the AID offset subfield may not include the length of the AID or the per-link service indication. Number of bitmap subfields Therefore, the non-AP MLD can determine the corresponding per-link service indication bitmap subfield based on the value of the bit in the per-link service indication bitmap subfield and the value of the bit in the padding subfield.
  • the per-link service indication element when a non-AP MLD discovers that a certain multi-link service indication element may have its own corresponding per-link service indication bitmap subfield, but all its bits are set to 0, then the per-link service indication element will not be Instead of interpreting the route service indication bitmap subfield, it is treated as a padding subfield.
  • the AID offset subfield in a certain multi-link service indication element indicates that the AID is k, that is, the multi-link service indication element must include the per-link service corresponding to the non-AP MLD with the AID of k. Indicates the bitmap subfield. However, the AID of a non-A MLD is k+1.
  • the non-AP MLD When the non-AP MLD obtains the multi-link service indication element, it may compare the multi-link service indication element with the AID of k. The bits following the corresponding per-link service indication bitmap subfield are mistaken for the per-link service indication bitmap subfield corresponding to a certain non-AP MLD (all values are 0). Through implementation method 1, since the values of the bits following the per-link service indication bitmap subfield corresponding to AID k in the multi-link service indication element are all 0, then the certain non-AP MLD can It is not processed but used as a populated subfield.
  • the bit length of the per-link service indication bitmap subfield is greater than or equal to the sum of the number of links associated with the non-AP MLD corresponding to the per-link service indication bitmap subfield.
  • bit length of the per-link service indication bitmap subfield is determined based on the bitmap size subfield
  • the value of the bitmap size subfield is based on one or more non-AP MLDs corresponding to the multi-link indication element. (i.e., some of the non-AP MLDs among all non-AP MLDs shown in the embodiments of this application)
  • the identification of the link with the largest link identification among the links that need to be indicated is determined, so each link service indication bit
  • the bit length of the map subfield is greater than or equal to the number of links associated with the non-AP MLD itself.
  • a non-AP MLD finds that the bit length of the per-link service indication bitmap subfield in the multi-link service element is not sufficient to indicate its own associated link (or enabled link), it determines that the multi-link There is no per-link service indication bitmap subfield related to itself in the service indication element. In other words, when a non-AP MLD finds that the bit length of all per-link service indication bitmap subfields in a multi-link service element is less than the maximum link ID + 1 of its associated link, it determines that the multi-link There is no per-link service indication bitmap subfield related to itself in the link service indication element.
  • adding multiple multi-link service indication elements to the beacon frame not only effectively saves signaling overhead, but also the structure of each multi-link service indication element is different from Figure 2a to Figure 2a. The changes are minimal to the multi-link communication method shown in Figure 2c.
  • the AP MLD selects p based on the association/enabled link between the non-AP MLD and the STA. How to select p is beyond the scope of the standard. p is greater than or equal to k(The Per-Link Traffic Indication List field contains Per-Link Traffic Indication Bitmap subfields that correspond to the AIDs of the non-AP MLDs and STAs starting from the bit numbered k of the traffic indication virtual bitmap.
  • the Per -Link Traffic Indication List field contains l Per-Link Traffic Indication Bitmap subfields,where l is the number of the bits that correspond to the AIDs of the non-AP MLDs and STAs and set to 1,counting from the bit numbered k to the bit numbered p of the traffic indication virtual bitmap,in the Partial Virtual Bitmap subfield of the TIM element that is included in a Beacon frame with the Multi-Link Traffic Indication element.
  • k and p are relative to one multi-link service indication element and extend to multiple multi-link service indication elements, such as each multi-link service indication element in the multiple multi-link service indication elements.
  • k1 to kn can be carried in the AID offset subfield included in each multi-link service indication element, and p1 to pn can be determined independently by the AP MLD.
  • the multi-link service indication control field includes an AID indication subfield, an AID offset subfield and an AID indication subfield for indicating each per-link service indication in the one or more per-link service indication bitmap subfields.
  • the AID corresponding to the bitmap subfield.
  • the AID indication subfield may include an AID length subfield, and the AID length subfield may be used to indicate the length of the AID corresponding to the multi-link service indication element corresponding to the AID length subfield; or, the AID length subfield The field is used to indicate the length of the AID corresponding to one or more per-link service indication bitmap subfields included in the multi-link service indication element corresponding to the AID length subfield. It can be understood that the length of the AID shown above can also be understood as the number of AIDs, or the number of AIDs, etc.
  • Table 3 shows the multi-link service indication control field shown in the embodiment of the present application.
  • the multi-link service indication control field may include a bitmap size subfield, an AID offset subfield, and an AID length subfield.
  • bitmap size subfield and AID offset quantum field please refer to the above and will not be detailed here.
  • the value indicated by the AID offset subfield is k and the value indicated by the AID length subfield is q, which indicates the per-link service indication bits included in the multi-link service indication element corresponding to the AID length subfield.
  • the respective bit lengths shown in Table 3 are only examples and should not be understood as limiting the embodiments of the present application.
  • the method shown in the embodiment of this application introduces the AID Length subfield in the multi-link service indication element, which can be used to indicate that the per-link service indication bitmap subfield carried by the multi-link service indication element corresponds to
  • the non-AP MLD or STA starting from AID k to AID k+q is indicated as 1 in the partial virtual bitmap field in the TIM element, k is carried in the AID offset quantum field, and q is the value of the AID Length field.
  • the TIM element is included in the In the beacon frame in the service indication element.
  • the Per-Link Traffic Indication List field contains Per-Link Traffic Indication Bitmap subfields that correspond to the AIDs of the non-AP MLDs and STAs starting from the bit numbered k of the traffic indication virtual bitmap.
  • the Per-Link Traffic Indication List field contains l Per-Link Traffic Indication Bitmap subfields,where l is the number of the bits that correspond to the AIDs of the non-AP MLDs and STAs and set to 1, counting from the bit numbered k to the bit numbered k+q of the traffic indication virtual bitmap, in the Partial Virtual Bitmap subfield of the TIM element that is included in a Beacon frame with the Multi-Link Traffic Indication element.
  • the number q is indicated in AID Length subfield.
  • q is an integer larger or equal to 0.). It can be understood that the per-link service indication list field shown here is applicable to each per-link service indication list field in a plurality of multi-link service indication elements.
  • the above k and k+q are relative to one multi-link service indication element and extend to multiple multi-link service indication elements.
  • each multi-link service indication element in the multiple multi-link service indication elements corresponds to
  • k1 to kn can be carried in the AID offset subfield included in each multi-link service indication element
  • q1 to qn can be carried in the AID length subfield included in each multi-link service indication element.
  • the AID indication subfield may include an AID end subfield, the AID end subfield being used to indicate one or more per-link traffic indications included in the multi-link traffic indication element corresponding to the AID end subfield.
  • Table 4 shows the multi-link service indication control field shown in the embodiment of the present application.
  • the multi-link service indication control field may include a bitmap size subfield, an AID offset subfield, and an end AID subfield.
  • bitmap size subfield and AID offset quantum field For descriptions of the bitmap size subfield and AID offset quantum field, please refer to the above and will not be detailed here.
  • the end AID subfield may be used to indicate the AID corresponding to the last per-link service indication bitmap subfield in the multi-link service indication element.
  • the Per-Link Traffic Indication List field contains Per-Link Traffic Indication Bitmap subfields that correspond to the AIDs of the non-AP MLDs and STAs starting from the bit numbered k of the traffic indication virtual bitmap.
  • the Per-Link Traffic Indication List field contains l Per-Link Traffic Indication Bitmap subfields, where l is the number of the bits that correspond to the AIDs of the non-AP MLDs and STAs and set to 1, counting from the bit numbered k to the bit numbered p of the traffic indication virtual bitmap,in the Partial Virtual Bitmap subfield of the TIM element that is included in a Beacon frame with the Multi-Link Traffic Indication element.
  • the number p is indicated in Ending AID subfield.The value of p is larger than or equal to k.).
  • the per-link service indication list field shown here is applicable to each per-link service indication list field in a plurality of multi-link service indication elements.
  • the above k and p are relative to one multi-link service indication element and extend to multiple multi-link service indication elements, such as the AID corresponding to each multi-link service indication element in the multiple multi-link service indication elements.
  • k1 to kn can be carried in the AID offset subfield included in each multi-link service indication element
  • p1 to pn can be carried in the end AID subfield included in each multi-link service indication element.
  • the AID indication subfield may include an AID number subfield, and the AID number subfield may be used to indicate a per-link service indication bitmap included in the multi-link service indication element corresponding to the AID number field.
  • the number of subfields, or the AID number subfield can be used to indicate the number of AIDs included in the multi-link service indication element corresponding to the AID number field, or the AID number subfield can be used to indicate The number of non-AP MLDs indicated in the multi-link service indication element corresponding to the AID numeric field.
  • the non-AP MLD can clearly learn the number of per-link service indication bitmap subfields included in the corresponding multi-link service indication element based on the AID numeric fields, and according to the partial virtual bitmap For the AID with cached data indicated in the field, the corresponding per-link service indication bitmap subfield can be clearly known.
  • Table 5 shows the multi-link service indication control field shown in the embodiment of the present application.
  • the multi-link service indication control field may include a bitmap size subfield, an AID offset subfield, and an AID number (which may also be called an AID number) subfield.
  • the AID number subfield may be used to indicate the number of per-link service indication bitmap subfields in the multi-link service indication element.
  • the number of per-link service indication bitmap subfields indicated by the AID number subfield is The number can be a positive integer.
  • the method shown in the embodiment of this application clearly indicates the location of the last per-link service indication bitmap subfield carried by the multi-link service indication element by introducing the Ending AID subfield in the multi-link service indication element. Corresponding AID.
  • the AID indication subfield in the multi-link service indication element by adding the AID indication subfield in the multi-link service indication element, the AID corresponding to each per-link service indication bitmap subfield can be clearly indicated to the non-AP MLD.
  • the method is simple and direct.
  • the method for the second communication device to determine a link with cached data may include: determining and receiving an AID offset included in the multi-link service indication control field in each multi-link service indication element.
  • the multi-link service indication element corresponding to the non-AP MLD of the beacon frame and/or the per-link service indication bitmap subfield corresponding to the non-AP MLD of the receiving beacon frame (such as the above three implementations);
  • Each node corresponding to the non-AP MLD that receives the beacon frame is determined according to the bitmap size subfield included in the multi-link service indication control field in the multi-link service indication element corresponding to the non-AP MLD that receives the beacon frame.
  • the non-AP MLD can determine the AID offset included in the multi-link service indication control field in each multi-link service indication element, the value of the padding subfield, and the per-link service indication bitmap sub-field.
  • the value of the field must correspond to the non-AP MLD that receives the beacon frame.
  • the per-link service indication corresponding to all non-AP MLDs The size of the bitmap subfield (such as bit length) is the same, but in fact the number of links of each non-AP MLD may be very different, so it needs to be based on the non-AP MLD with the largest number of links. indication, resulting in a large signaling overhead for the multi-link service indication element.
  • all non-AP MLDs that need to be indicated are dispersed through multiple multi-link service indication elements, and the size of the per-link service indication bitmap subfield in each multi-link service indication element is are different, thereby saving signaling overhead.
  • different non-AP MLDs are indicated by segments, so that the bit length of the per-link service indication bitmap subfield corresponding to the non-AP MLD with a small number of links can be smaller, effectively saving information. Order overhead.
  • Each multi-link service indication element in the beacon frame shown in Figure 4a includes a multi-link service indication control field and a per-link service indication list field.
  • the multi-link service indication control field includes a bitmap size subfield, AID offset subfield and reserved subfield
  • the per-link service indication list field includes one or more per-link service indication bitmap subfields and padding subfields.
  • the embodiment of the present application also provides a beacon frame, as shown in Figure 4b.
  • Each multi-link service indication element in the beacon frame includes a multi-link service indication control field and a per-link service indication list field.
  • the multi-link service indication control field includes a link bitmap (link bitmap) subfield, an AID offset subfield and a reserved subfield.
  • the per-link service indication list field includes one or more per-link service indication bits.
  • Figure subfield and fill subfield. The difference between Figure 4b and Figure 4a is that the bitmap size subfield in Figure 4a is replaced by the link bitmap subfield in Figure 4b.
  • the first subfield includes a link bitmap subfield.
  • the link bitmap subfield and the per-link service indication bitmap subfield corresponding to the link bitmap subfield can satisfy One or more of the following conditions: Condition 1.
  • the bit length of each link service indication bitmap subfield is equal to the sum of the number of bits in the link bitmap subfield with a value of 1 (or the link bitmap subfield has a value of 1). The sum of the number of bits with a value of 0 in the map subfield).
  • Condition 2 The i-th bit in the link bitmap subfield is used to indicate whether the per-link service indication bitmap subfield includes link indication information with a link identifier equal to i-1.
  • the link The indication information is used to indicate whether there is cached data on the corresponding link, and the i is a positive integer.
  • the link corresponding to each bit in the per-link service indication bitmap subfield is sequentially the same as the link corresponding to the bit with a value of 1 in the link bitmap subfield (or the per-link service indication bit).
  • the link corresponding to each bit in the bitmap subfield is sequentially the same as the link corresponding to the bit with a value of 0 in the link bitmap subfield).
  • the per-link service indication bitmap subfield corresponding to the link bitmap subfield shown in the embodiment of the present application refers to the link bitmap subfield and the per-link service indication bit
  • the map subfield is included in the same multi-link service indication element.
  • each link service indication bitmap subfield includes link indication information with a link identifier equal to i-1. That is, if the value of the i-th bit in the link bitmap subfield is 1, then there is one bit in the link service indication bitmap subfield to indicate that the link identifier is equal to i-1 Whether there is cached data on the link.
  • the relationship between the link bitmap subfield and the per-link service indication bitmap subfield can also be: when the value of the i-th bit in the link bitmap subfield is 0, each link The link service indication bitmap subfield includes link indication information with a link identifier equal to i-1.
  • each link service indication bitmap subfield includes link indication information with a link identifier equal to i-1.
  • An example is given to illustrate the multi-link service indication element provided by the embodiment of the present application.
  • the length of the link bitmap subfield is 16 bits or 8 bits
  • a certain bit in the link bitmap subfield is set to 1, it means that the corresponding link is included in the each link service indication bitmap subfield (that is, the value in the link bitmap subfield is The bit corresponding to 1) indicates (that is, includes the link indication information of the corresponding link).
  • a certain bit in the link bitmap subfield is set to 0, it means that the per-link service indication bitmap subfield does not include the indication of the corresponding link (that is, the link indication of the corresponding link is not included). information).
  • the length of the link bitmap subfield shown above is only an example, and the embodiment of the present application does not limit the length of the link bitmap subfield.
  • the length of the link bitmap subfield may also be 10 bits, 12 bits, or 15 bits, etc., which will not be listed here.
  • the embodiment of the present application also provides a beacon frame, as shown in Figure 4c.
  • Each multi-link service indication element in the beacon frame includes a multi-link service indication control field and a per-link service indication list field.
  • the multi-link service indication control field includes link offset (link offset) subfield, bitmap size subfield, AID offset subfield and reserved subfield.
  • Each link service indication list field includes one or more Per-link traffic indication bitmap subfield and padding subfield.
  • the difference between Figure 4c and Figure 4a is that a link offset subfield is added to the multi-link service indication control field in Figure 4c.
  • the link offset quantum field is used to indicate the link ID of the link corresponding to the first bit in the per-link service indication bitmap subfield corresponding to the link offset quantum field.
  • the bit length of the link service indication bitmap subfield is 4, and the link identifier corresponding to the first bit in the per-link service indication bitmap subfield is 6, that is, the per-link service indication bitmap subfield
  • the value of the link offset subfield is usually the minimum value of the link identifier in the link set to 1 in the per-link service indication bitmap subfield of the non-AP MLD contained in the multi-link service indication element.
  • the value of the link offset subfield is usually the minimum link identifier in the link set to 1 in the per-link service indication bitmap subfield of the non-AP MLD contained in the multi-link service indication element.
  • Value -1 That is, the value of the link offset quantum field can float near the above-mentioned minimum value (such as floating by 1 value, or by 2 values, etc.), which is not limited in the embodiments of the present application.
  • the value of the link offset quantum field is also allowed to be higher than the link set to 1 in the per-link service indication bitmap subfield of the non-AP MLD contained in the multi-link service indication element.
  • the minimum value of the link identifier in is small.
  • This application divides the communication device into functional modules according to the above method embodiments.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 6 to 8 .
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in Figure 6, the communication device includes a processor processing unit 601 and transceiver unit 602.
  • the communication device may be the AP or AP MLD or chip shown above, and the chip may be applied to the AP or AP MLD, etc. That is, the communication device can be used to perform the steps or functions performed by the first communication device in the above method embodiment.
  • the processing unit 601 is used to generate a beacon frame; the transceiver unit 602 is used to output the beacon frame.
  • the processing unit 601 can be used to perform step 301 shown in Figure 3
  • the transceiving unit 602 can be used to perform the sending step in step 302 shown in Figure 3.
  • the communication device may be the STA or non-AP MLD MLD or chip shown above, and the chip may be applied to the STA or non-AP MLD. That is, the communication device can be used to perform the steps or functions performed by the second communication device in the above method embodiment.
  • the transceiver unit 602 is used to input beacon frames; the processing unit 601 is used to input downlink data on a link with buffered data according to the beacon frame.
  • the processing unit 601 is also configured to determine a link with cached data based on the beacon frame.
  • the processing unit 601 is specifically configured to determine the multi-link corresponding to the non-AP MLD of the received beacon frame according to the AID offset included in the multi-link service indication control field in each multi-link service indication element.
  • the bitmap size subfield included in the multi-link service indication control field determines the link corresponding to each bit in the per-link service indication bitmap subfield corresponding to the non-AP MLD of the received beacon frame; according to The value of each bit in the per-link service indication bitmap subfield corresponding to the non-AP MLD that receives the beacon frame determines the link with buffered data.
  • the processing unit 601 is specifically configured to determine the AID offset included in the multi-link service indication control field in each multi-link service indication element, the value of the padding subfield, and the per-link service indication bit.
  • the value of the map subfield determines the per-link service indication bitmap subfield corresponding to the non-AP MLD of the received beacon frame; or, based on the multi-link service indication control field in each multi-link service indication element.
  • the included AID offset and AID indication subfield determine the per-link service indication bitmap subfield corresponding to the non-AP MLD of the received beacon frame.
  • transceiver unit 602 can also be used to perform the receiving step in step 302 shown in Figure 3
  • processing unit 601 can also be used to perform step 303 shown in Figure 3 .
  • the first communication device and the second communication device according to the embodiment of the present application are introduced above.
  • the possible product forms of the first communication device and the second communication device are introduced below. It should be understood that any form of product that has the function of the first communication device described in Figure 6 above, or any form of product that has the function of the second communication device described in Figure 6 above, falls within the scope of this application. Protection scope of the embodiment. It should also be understood that the following description is only an example, and does not limit the product forms of the first communication device and the second communication device in the embodiments of the present application to this.
  • the processing unit 601 can be one or more processors, the transceiving unit 602 can be a transceiver, or the transceiving unit 602 can also be a sending unit and a receiving unit.
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection method between the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver for transmission by the transceiver. After the above information is output by the processor, it may also need to undergo other processing before reaching the transceiver.
  • the process of receiving information (such as receiving a beacon frame) in the above method can be understood as the process of the processor receiving the input information.
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to undergo other processing before being input to the processor.
  • the communication device 70 includes one or more processors 720 and a transceiver 710 .
  • the processor 720 is used to generate a beacon frame; the transceiver 710 is used to send the message to the second communication device. frame.
  • the transceiver 710 is used to receive the beacon frame from the first communication device; the processor 720 is used to perform the processing according to the signal.
  • the standard frame receives downlink data on the link with buffered data.
  • the transceiver may include a receiver and a transmitter, the receiver is used to perform the function (or operation) of receiving, and the transmitter is used to perform the function (or operation) of transmitting. ). and transceivers for communication over transmission media and other equipment/devices.
  • the communication device 70 may also include one or more memories 730 for storing program instructions and/or data.
  • Memory 730 and processor 720 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • Processor 720 may cooperate with memory 730.
  • Processor 720 may execute program instructions stored in memory 730.
  • at least one of the above one or more memories may be included in the processor.
  • connection medium between the above-mentioned transceiver 710, processor 720 and memory 730 is not limited in the embodiment of the present application.
  • the memory 730, the processor 720 and the transceiver 710 are connected through a bus 740 in Figure 7.
  • the bus is represented by a thick line in Figure 7.
  • the connection between other components is only a schematic explanation. , is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., which can be implemented Or execute the disclosed methods, steps and logical block diagrams in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include, but is not limited to, non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (Random Access Memory, RAM), Erasable Programmable ROM (EPROM), Read-Only Memory (ROM) or Compact Disc Read-Only Memory (CD-ROM), etc.
  • Memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and that can be read and/or written by a computer (such as the communication device shown in this application), but is not limited thereto.
  • the memory in the embodiment of the present application can also be a circuit or any other device capable of realizing a storage function, used to store program instructions and/or data.
  • the processor 720 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 730 is mainly used to store software programs and data.
  • the transceiver 710 may include a control circuit and an antenna.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 720 can read the software program in the memory 730, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 720 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 720.
  • the processor 720 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the communication device shown in the embodiment of the present application may also have more components than shown in FIG. 7 , and the embodiment of the present application does not limit this.
  • the methods performed by the processor and transceiver shown above are only examples. For specific steps performed by the processor and transceiver, please refer to the method introduced above.
  • the processing unit 601 may be one or more logic circuits, and the transceiver unit 602 may be an input-output interface, also known as a communication interface, or an interface circuit. , or interface, etc.
  • the transceiver unit 602 may also be a sending unit and a receiving unit.
  • the sending unit may be an output interface
  • the receiving unit may be an input interface.
  • the sending unit and the receiving unit may be integrated into one unit, such as an input-output interface.
  • the communication device shown in FIG. 8 includes a logic circuit 801 and an interface 802 .
  • the above-mentioned processing unit 601 can be implemented by the logic circuit 801, and the transceiver unit 602 can be implemented by the interface 802.
  • the logic circuit 801 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 802 can be a communication interface, an input/output interface, a pin, etc.
  • FIG. 8 takes the above communication device as a chip.
  • the chip includes a logic circuit 801 and an interface 802 .
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiments of this application do not limit the specific connection methods of the logic circuits and interfaces.
  • the logic circuit 801 is used to generate a beacon frame; the interface 802 is used to output the beacon frame.
  • the interface 802 is used to input the beacon frame; the logic circuit 801 is used to process the link with cached data according to the beacon frame. Receive downlink data on the road. It can be understood that the logic circuit 801 is also used to determine the link with cached data based on the beacon frame.
  • the communication device shown in the embodiments of the present application can be implemented in the form of hardware to implement the methods provided in the embodiments of the present application, or can be implemented in the form of software to implement the methods provided in the embodiments of the present application. This is not limited by the embodiments of the present application.
  • An embodiment of the present application also provides a wireless communication system.
  • the wireless communication system includes a first communication device and a second communication device.
  • the first communication device and the second communication device can be used to perform any of the foregoing embodiments (such as method in Figure 3).
  • this application also provides a computer program, which is used to implement the operations and/or processing performed by the first communication device in the method provided by this application.
  • This application also provides a computer program, which is used to implement the operations and/or processing performed by the second communication device in the method provided by this application.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the first communication device in the method provided by this application. and/or processing.
  • This application also provides a computer-readable storage medium that stores computer code.
  • the computer code When the computer code is run on a computer, it causes the computer to perform the operations performed by the second communication device in the method provided by this application. and/or processing.
  • the present application also provides a computer program product.
  • the computer program product includes a computer code or a computer program.
  • the operations performed by the first communication device in the method provided by the present application are performed. /or processing is performed.
  • the present application also provides a computer program product.
  • the computer program product includes a computer code or a computer program.
  • the operations performed by the second communication device in the method provided by the present application are performed. /or processing is performed.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned readable storage media include: U disk, mobile hard disk, read-only memory (ROM), Various media that can store program code, such as random access memory (RAM), magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多链路通信方法及装置,该方法包括:第一通信装置生成信标帧,及发送该信标帧;对应的,第二通信装置接收该信标帧,根据该信标帧在有缓存数据的链路上接收下行数据。信标帧包括多个多链路业务指示元素,该多个多链路业务指示元素中的每个多链路业务指示元素用于指示对应的non-AP MLD在一条或多条链路上是否有缓存数据。该方法有效节省了信令开销。

Description

多链路通信方法及装置
本申请要求于2022年04月08日提交中国专利局、申请号为202210366277.0、申请名称为“多链路通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种多链路通信方法及装置。
背景技术
在802.11协议中,非接入点(non-access point,non-AP)的站点(station,下面简称站点STA)有2种工作模式,一种是非节能模式,不管是否有数据传输,都处于活跃状态(active state);另一种是节能模式,在与AP站点(下面简称接入点AP)需要传输数据时,站点可以处于活跃状态(active state);在没有需要与AP数据传输的时候,站点可以处于休眠状态(doze state),用于节省功耗。站点可以通过发送帧给AP告知其是否处于节能模式,具体形式是通过该帧中的媒介接入控制(medium access control,MAC)头中的帧控制字段(frame control field)中的节能比特置1告知该站点处于节能模式,否则处于非节能模式。为了站点尽可能的节省功耗,AP可以对该站点的下行数据进行缓冲,等待该站点醒来之后再将下行数据发送给站点。但是由于AP的缓冲空间有限,所以AP可以周期性地发送信标帧,通过信标帧中的业务指示地图(traffic indication map,TIM)TIM元素告知其关联的站点是否有下行数据需要接收。处于节能的站点同时也会周期性的醒来接收AP发送的信标帧,如果没有,站点可以转换成休眠状态;否则,站点可以选择一个时间点醒来发送能量节省探测(PS-Poll)帧给AP告知其醒来,该时间点在信标帧接收时间点之后。
在多链路通信中,接入点(access point,AP)多链路设备(AP multi-link device,AP MLD)可以给非接入点多链路设备(non-AP MLD)分配一个唯一的关联标识(association identifier,AID)作为标识,由此该non-AP MLD所附属的所有站点(station,STA)都可以使用同一个AID。当non-AP MLD指示业务标识到链路的映射(TID-to-link mapping)的情况下,不同TID的业务是通过不同的link集合来传输的。由于业务指示位图(traffic indication map,TIM)元素中只有1个比特来指示non-AP MLD,无法区分缓存数据需要通过该non-AP MLD中的哪几个链路来传输,因此non-AP MLD不清楚需要在哪些链路上醒来准备接收数据。为了解决这个问题,可以通过多链路业务指示元素(multi-link traffic indication element)来指示数据和MAC管理协议数据单元(MAC management protocol data unit,MMPDU)是缓存在哪些链路上。
然而,目前多链路业务指示元素的开销较大,其信令开销还可以进一步降低。
发明内容
本申请提供一种多链路通信方法及装置,可以节省多链路业务指示元素的信令开销,尤其是每链路业务指示比特位图子字段的信令开销。
第一方面,本申请实施例提供一种多链路通信方法,该方法可以应用于AP或AP MLD或芯片等,该芯片可以设置于AP或AP MLD中,所述方法包括:
生成信标帧,所述信标帧包括多个多链路业务指示元素,所述多个多链路业务指示元素中的每个多链路业务指示元素用于指示对应的非接入点多链路设备non-AP MLD在一条或多 条链路上是否有缓存数据;发送所述信标帧。
一般的,信标帧包括一个多链路业务指示元素,通过这一个多链路指示元素指示所有的non-AP MLD在一条或多条链路上是否有缓存数据,这里所示的所有的non-AP MLD指的是通过TIM元素中的部分虚拟比特位图字段所指示的有下行数据需要接收的non-AP MLD。通过一个多链路指示元素中每链路业务指示列表字段包括的多个每链路业务指示比特位图子字段分别指示不同的non-AP MLD在一条或多条链路上是否有缓存数据,会导致每链路业务指示比特位图子字段的比特长度相同,如为m+1,如m等于所有的non-AP MLD中需要指示是否有缓存数据的链路中链路标识最大的那个链路的标识,m为大于或等于0的整数。
然而,通过本申请实施例提供的方案,信标帧包括多个多链路业务指示元素,由此通过这多个多链路业务指示元素指示所有的non-AP MLD在一条或多条链路上是否有缓存数据,可使得每个多链路业务指示元素都指示所有的non-AP MLD中的部分non-AP MLD在一条或多条链路上是否有缓存数据。这样链路数目少的non-AP MLD对应的每链路业务指示比特位图子字段的比特长度可以更小,有效节省了信令开销。
第二方面,本申请实施例提供一种多链路通信方法,该方法可以应用于STA或non-AP MLD或芯片等,该芯片可以设置于STA或non-AP MLD中,所述方法包括:
接收信标帧,所述信标帧包括多个多链路业务指示元素,所述多个多链路业务指示元素中每个多链路业务指示元素用于指示对应的非接入点多链路设备non-AP MLD在一条或多条链路上是否有缓存数据;根据所述信标帧在有缓存数据的链路上接收下行数据。
结合第二方面,在一种可能的实现方式中,所述根据所述信标帧在有缓存数据的链路上接收下行数据包括:根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收所述信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段,与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段包含于与接收所述信标帧的non-AP MLD对应的多链路业务指示元素中;根据与接收所述信标帧的non-AP MLD对应的多链路业务指示元素中的多链路业务指示控制字段包括的比特位图大小子字段确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特对应的链路;根据与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特的取值,确定有缓存数据的链路,并在有所述缓存数据的链路上接收下行数据。
结合第二方面,在一种可能的实现方式中,所述根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收所述信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段包括:根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、所述填充子字段的取值以及所述每链路业务指示比特位图子字段的取值确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段;或者,根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、所述AID指示子字段确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段。
结合第一方面或第二方面,在一种可能的实现方式中,所述多链路业务指示元素包括每链路业务指示列表字段,所述每链路业务指示列表字段包括填充子字段。
结合第一方面或第二方面,在一种可能的实现方式中,所述每链路业务指示列表字段还包括一个或多个每链路业务指示比特位图子字段,所述每链路业务指示比特位图子字段中的每个比特用于指示对应链路上是否有缓存数据,所述每链路业务指示比特位图子字段中至少 有一个比特的取值为1,所述填充子字段中的所有比特的取值都为0;所述填充子字段位于所述每链路业务指示比特位图子字段之后,所述填充子字段的所有比特的取值都为0用于区分所述填充子字段和所述每链路业务指示比特位图子字段,或者,所述填充子字段的所有比特的取值都为0用于指示接收所述信标帧的non-AP MLD结束解析所述每链路业务指示列表字段。
本申请实施例中,non-AP MLD可以根据填充子字段的取值特点以及每链路业务指示比特位图子字段的取值特点确定多个多链路业务指示元素中与其对应的多链路业务指示元素中的每链路业务指示比特位图子字段,从而获知其有缓存数据的链路。
结合第一方面或第二方面,在一种可能的实现方式中,所述每链路业务指示列表字段还包括一个或多个每链路业务指示比特位图子字段,所述每链路业务指示比特位图子字段中的每个比特用于指示对应链路上是否有缓存数据,且所述每链路业务指示比特位图子字段的比特长度大于或等于与所述每链路业务指示比特位图子字段对应的non-AP MLD关联的链路数量之和。
本申请实施例中,non-AP MLD可以根据其关联的链路数量之和以及每链路业务指示比特位图子字段的比特长度之间的关系确定多个多链路业务指示元素中与其对应的多链路业务指示元素中的每链路业务指示比特位图子字段,从而获知其有缓存数据的链路。
结合第一方面或第二方面,在一种可能的实现方式中,所述信标帧还包括业务指示地图TIM元素,所述TIM元素包括部分虚拟比特位图字段,所述部分虚拟比特位图字段用于指示所述多个多链路业务指示元素对应的AID;所述多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,所述多链路业务指示控制字段包括关联标识AID偏移量子字段,所述每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段,所述AID偏移量子字段用于指示所述一个或多个每链路业务指示比特位图子字段中的第一个每链路业务指示比特位图子字段对应的AID。
本申请实施例中,由于信标帧包括多个多链路业务指示元素,因此AID偏移量可以用于指示与该AID偏移量对应的多链路业务指示元素中包括的一个或多个每链路业务指示比特位图子字段中的第一个每链路业务指示比特位图子子字段对应的AID。non-AP MLD可以根据AID偏移量大致确定与其对应的每链路业务指示比特位图子字段的位置。
结合第一方面或第二方面,在一种可能的实现方式中,所述多链路业务指示控制字段还包括AID指示子字段,所述AID偏移量子字段和所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段中每个每链路业务指示比特位图子字段对应的AID。
本申请实施例中,通过AID偏移量子字段和AID指示子字段,non-AP MLD可以明确获知与其对应的每链路业务指示比特位图子字段。
结合第一方面或第二方面,在一种可能的实现方式中,所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段对应的AID的长度;或者,所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段中最后一个每链路业务指示比特位图子字段对应的AID;或者,所述AID指示子字段用于指示所述每链路业务指示比特位图子字段的个数。
结合第一方面或第二方面,在一种可能的实现方式中,所述多个多链路业务指示元素中的每个多链路业务指示元素对应所述部分虚拟比特位图字段所指示有缓存数据的non-AP MLD中的部分non-AP MLD。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或任意可能的实现方式 中的方法。该通信装置包括具有执行第一方面或任意可能的实现方式中的方法的单元。
第四方面,本申请实施例提供一种通信装置,用于执行第二方面或任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或任意可能的实现方式中的方法的单元。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第七方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;逻辑电路,用于生成信标帧;接口,用于输入该信标帧。
可理解,关于信标帧的说明可以参考第一方面或任意可能的实现方式所示的方法,这里不再一一详述。
第八方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;接口,用于输入信标帧;逻辑电路,用于根据信标帧在有缓存数据的链路上输入下行数据。
可理解,关于信标帧的说明可以参考第二方面或任意可能的实现方式所示的方法,这里不再一一详述。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现 方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,所述第一通信装置用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述第二通信装置用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
附图说明
图1a是本申请实施例提供的一种通信系统的架构示意图;
图1b是本申请实施例提供的一种通信系统的架构示意图;
图1c是本申请实施例提供的一种通信系统的架构示意图;
图2a是本申请实施例提供的一种多链路业务指示元素的结构示意图;
图2b是本申请实施例提供的一种TIM元素的结构示意图;
图2c是本申请实施例提供的一种多链路业务指示元素与TIM元素的关系示意图;
图3是本申请实施例提供的一种多链路通信方法的流程示意图;
图4a是本申请实施例提供的一种信标帧的结构示意图;
图4b是本申请实施例提供的一种信标帧的结构示意图;
图4c是本申请实施例提供的一种信标帧的结构示意图;
图5是本申请实施例提供的一种分配AID的顺序示意图;
图6是本申请实施例提供的一种通信装置的结构示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种 情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的方法可以应用于无线局域网(wireless local area network,WLAN)系统,如Wi-Fi等。如本申请提供的方法可以适用于电气及电子工程师学会(institute of electrical and electronics engineers,IEEE)802.11系列协议,例如802.11a/b/g协议、802.11n协议、802.11ac协议、802.11ax协议、802.11be协议或下一代的协议等,这里不再一一列举。本申请提供的方法还可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、车联网(vehicle to X,V2X)、窄带物联网(narrow band internet of things,NB-IoT)系统,应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。还可以适用于长期演进(long term evolution,LTE)系统,第五代(5th-generation,5G)通信系统,以及未来通信发展中出现的新的通信系统(如6G)等。
虽然本申请实施例主要以WLAN为例,尤其是应用于IEEE 802.11系列标准的网络为例进行说明。本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络。例如,蓝牙(bluetooth),高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
以下详细介绍本申请涉及的通信系统及装置。
本申请提供的通信系统可以为WLAN或蜂窝网,本申请提供的方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,该通信设备可以是一种支持一条或多条链路并行进行传输的无线通信设备,例如,称为多链路设备(multi-link device,MLD)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。
多链路设备包括一个或多个隶属的站点,隶属的站点是逻辑上的站点,可以工作在一条链路或一个频段或一个信道上等。该隶属的站点可以为接入点(access point,AP)或非接入点站点(non-access point station,non-AP STA)。为描述方便,本申请可以将隶属的站点为AP的多链路设备称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device,AP MLD)。隶属的站点为non-AP STA的多链路设备称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device),或者,隶属的站点为non-AP STA的多链路设备称为多链路non-AP或多链路non-AP设备或non-AP多链路设备(non-AP multi-link device,non-AP MLD)等。下文将隶属的站点为AP的多链路设备称为AP MLD,将隶属的站点为non-AP STA的多链路设备称为non-AP MLD。AP MLD中隶属的AP为一个或多个;STA MLD中隶属的STA为一个或多个。
多链路设备(这里既可以是non-AP MLD,也可以是AP MLD)为具有无线通信功能的通信装置。该通信装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,本申请实施例中的non-APMLD具有无线收发功能,可以支持802.11系列协议,可以与APMLD或其他non-APMLD进行通信。例如,non-APMLD是允许用户与 AP通信进而与WLAN通信的任何用户通信设备。例如,non-APMLD可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等。non-AP多链路设备还可以为上述这些终端中的芯片和处理系统。APMLD可以为non-APMLD提供服务的装置,可以支持802.11系列协议。例如,APMLD可以为通信服务器、路由器、交换机、网桥等通信实体,或,APMLD可以包括各种形式的宏基站,微基站,中继站等,当然APMLD还可以为这些各种形式的设备中的芯片和处理系统。其中,802.11协议可以包括支持802.11be或兼容802.11be的协议等,这里不再一一列举。
可理解的,多链路设备可以支持高速率低时延的传输,随着无线局域网应用场景的不断演进,多链路设备还可以应用于更多场景中,比如为智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显式屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中智能设备(比如,打印机,投影仪等),车联网中的车联网设备,日常生活场景中的一些基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等)。本申请实施例中对于多链路设备的具体形式不做限定,在此仅是示例性说明。
结合以上所示的多链路设备,图1a是本申请实施例提供的一种通信系统的架构示意图。如图1a所示,AP MLD包括AP1,AP2,…,APn,non-AP MLD包括STA1,STA2,…,STAn。这里所示的n为正整数。AP MLD和non-AP MLD可以采用链路1,链路2,…,链路n并行进行通信。non-AP MLD中的STA1与AP MLD中的AP1建立关联关系,non-AP MLD中的STA2与AP MLD中的AP2建立关联关系,non-AP MLD中的STAn与AP MLD中的APn建立关联关系等。由此,non-AP MLD中的一个或多个STA与AP MLD中的一个或多个AP之间建立关联关系之后便可以进行通信。
多链路设备(包括AP MLD和non-AP MLD)工作的频段可以包括但不限于:sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz。
示例性的,图1b示出了AP MLD101与Non-AP MLD102,Non-AP MLD103以及STA104进行通信的场景,AP MLD101包括隶属的AP101-1至AP101-3;Non-AP MLD102包括隶属的三个STA102-1、STA102-2和STA102-3;Non-AP MLD103包括2个隶属的STA103-1,STA103-2;STA104-1,STA104为单链路设备。AP MLD101可以分别采用链路1、链路2和链路3与Non-AP MLD102进行通信;采用链路2和链路3与Non-AP MLD103进行通信;采用链路1与STA104通信。一个示例中,STA104工作在2.4GHz频段;Non-AP MLD103中,STA103-1工作在5GHz频段,STA103-2工作在6GHz频段;Non-AP MLD102中,STA102-1工作在2.4GHz频段,STA102-2工作在5GHz频段,STA102-3工作在6GHz频段。AP MLD101中工作在2.4GHz频段的AP101-1可以通过链路1与STA104和Non-AP MLD102中的STA102-1之间传输上行或下行数据。AP MLD101中工作在5GHz频段的AP101-2可以通过链路2与Non-AP MLD 103中工作在5GHz频段的STA103-1之间传输上行或下行数据,还可通过链路2与和Non-AP MLD102中工作在5GHz频段的STA102-2之间传输上行或下行数据。AP MLD101中工作在6GHz频段的AP101-3可通过链路3与Non-AP MLD102中工作在6GHz频段的STA102-3之间传输上行或下行数据,还可通过链路3与Non-AP MLD中的STA103-2之间传输上行或下行数据。
图1b仅以AP MLD101支持三个频段(2.4GHz,5GHz,6GHz),每个频段对应一条链路, AP MLD101可以工作在链路1、链路2或链路3中的一条或多条链路为例进行示意。实际应用中,AP MLD和Non-AP MLD还可以支持更多或更少的频段,即AP MLD和Non-AP MLD可以工作在更多条链路或更少条链路上,本申请实施例对此并不进行限定。也就是说,本申请实施例提供的方法不仅可以应用于多链路通信,也可以应用于单链路通信。
图1c是本申请实施例提供的一种通信系统的架构示意图。关于图1c所示的通信系统可以参考图1b,即图1c与图1b只是形式所有不同。基于图1b和图1c所示的通信系统,本申请实施例所示的AP MLD可以关联一个或多个non-AP MLD,也可以关联一个或多个传统STA(legacy STA)。结合下文所示的方法,如从AP端来看,每个每链路业务指示比特位图子字段对应一个AID,这个AID可以对应传统STA、单链路MLD(如STA)或者多链路MLD(如non-AP MLD)中的任何一种情况。但是,从STA端来看传统STA不会去读对应的每链路业务指示比特位图子字段,单链路MLD可以读也可以不读对应的每链路业务指示比特位图子字段,但是多链路MLD(如non-AP MLD)一定会读取对应的每链路业务指示比特位图子字段。
本申请所提供的方法可以适用于但不限于:单用户的上/下行传输、多用户的上/下行传输、车与任何事物(vehicle-to-everything,V2X,X可以代表任何事物)、设备到设备(device-todevice,D2D)。例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V),车辆与基础设施(vehicle to infrastructure,V2I)、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
在一种多链路通信的方法中,信标帧包括多链路业务指示元素(multi-link traffic indication element)和TIM元素,该多链路业务指示元素的结构可以如图2a所示,该TIM元素的结构可以如图2b所示。
如图2a所示,该多链路业务指示元素包括以下至少一项:元素标识符(elementidentifier,element ID)字段、长度(length)字段、元素ID扩展(element ID extension)字段、多链路业务指示控制(multi-link traffic indication control)字段和每链路业务指示列表(per-link traffic indication list)字段。其中,多链路业务指示控制字段包括比特位图大小(bitmap size)子字段、AID偏移量(AID offset)子字段和预留子字段。每链路业务指示列表字段包括l个每链路业务指示比特位图(per-link traffic indication bitmap)子字段以及可能的填充(padding)子字段。可理解,对于上述各个字段占用的字节(octets)长度,以及各个子字段占用的比特(bits)长度可以如图2a所示,这里不再一一详述。
一般的,业务指示位图(traffic indication map,TIM)信标帧和发送业务指示位图(delivery traffic indication map,DTIM)信标帧中均携带有业务指示位图(traffic indication map,TIM)元素。如图2c所示,TIM元素包括以下至少一项:元素标识符(element ID)字段、长度字段、DTIM计数(DTIM count)字段、DTIM周期(DTIM period)字段、比特位图控制(bitmap control)字段和部分虚拟比特位图(partial virtual bitmap)字段。示例性的,元素ID字段用于识别该元素为TIM元素;长度字段用于指示该TIM元素的长度;DTIM计数字段用于指示下个DTIM信标帧到达前还有多少个TIM信标帧出现;DTIM周期字段用于指示DTIM信标帧的周期时长,即到达间隔。比特位图控制字段比特0指示AP发送DTIM信标帧时是否有下行的组播数据业务,比特1~7指示部分虚拟比特位图的偏移量,该偏移量以字节为单位,即8比特为单位。举例,如果偏移量为0,部分虚拟比特位图从AID1开始。若偏移量为1,部分虚拟比特位图从AID9开始。部分虚拟比特位图结束位是由长度字段决定。因此部分虚 拟比特位图最长可以为251字节,即2008比特。部分虚拟比特位图字段中每个比特对应一个AID,用于指示该AID对应的站点是否有单播业务。或者部分虚拟比特位图字段中每个比特对应一个组播AID,用于指示组播AID对应的一组站点是否有下行业务。其中,元素ID字段、长度字段、DTIM计数字段、DTIM周期字段和比特位图控制字段分别占据1字节。
结合多链路业务指示元素和TIM元素,图2c是本申请实施例提供的一种多链路业务指示元素与TIM元素的关系示意图。在多链路业务指示元素中,每个有下行缓存数据的non-AP MLD对应一个每链路业务指示比特位图子字段。且所有的每链路业务指示比特位图子字段的大小是相同的如为m+1,该每链路业务指示比特位图子字段中的比特依次对应链路标识(link ID)=0到link ID=m的m+1条链路。其中,m是所有有缓存数据的non-AP MLD中需要指示的链路中链路标识最大的那个链路的标识,m为大于或等于0的整数。即每链路业务指示列表字段包括的l个每链路业务指示比特位图子字段中取值为1的比特所对应的链路中最大的链路标识即为比特位图大小子字段的取值。可以通过比特位图大小子字段指示每链路业务指示比特位图子字段的比特长度。例如,比特位图大小子字段的取值为m,则表示每链路业务指示比特位图子字段的长度为m+1。可理解,图2c中的比特位图大小子字段中承载的数值可以为0010,即表示每链路业务指示比特位图大小子字段的比特长度为3个比特,每个比特的取值表示对应链路上是否有缓存数据,如link ID0至link ID2上是否有缓存数据。举例来说,对于AID=k的non-AP MLD来说,图2c所示的第一个每链路业务指示比特位图子字段(即每链路业务指示比特位图1)承载的数值为010,则表示AID=k的non-AP MLD中link ID0和link ID2上没有缓存数据,link ID1上有缓存数据。对于AID=k+1的non-AP MLD来说,link ID0和link ID2上没有缓存数据,link ID1上有缓存数据。对于AID=k+3的non-AP MLD来说,link ID0和link ID1上有缓存数据,link ID2上有缓存数据。
上述l的取值等于部分虚拟比特位图字段中从AID>=k所对应的比特开始,后续所有比特取值为1的比特数之和,且AID偏移量子字段的取值等于k。由此,每链路业务指示列表字段中的第一个每链路业务指示比特位图子字段对应的AID=k,每链路业务指示比特位图子字段对应的AID是从AID=k开始,并依次与虚拟比特位图字段中从AID=k所对应的比特开始,后续所有比特取值为1的AID对应。即non-AP MLD可以根据AID偏移量子字段的取值以及部分虚拟比特位图字段确定与其对应的每链路业务指示比特位图子字段。图2c中由于部分虚拟比特位图字段中与AID=k对应的比特开始,一共有三个比特的取值为1,因此,每链路业务指示比特位图子字段的个数为3,如每链路业务指示比特位图子字段1、每链路业务指示比特位图子字段2(图2c未标记示出)和每链路业务指示比特位图子字段3。
基于图2a至图2c所示的多链路通信方法可以看出,当non-AP MLD数量很大,或者不同的non-AP MLD所关联的链路数量相差很大时,上述方法的信令开销较大。举例来说,某一个non-AP MLD所关联的链路中只有一条链路(或两条链路等少量链路)缓存有下行数据,该情况下,与该non-AP MLD对应的每链路业务指示比特位图子字段仍需要指示m+1条链路中每条链路上是否缓存有下行数据。
因此,在准确地向non-AP MLD指示其有缓存数据的链路(即准确地指示non-AP MLD在哪些链路上醒来)的基础上,如何减少信令开销亟待解决。
鉴于此,本申请实施例提供了一种多链路通信方法及装置,可以进一步减少信令开销。本申请实施例提供的方法可以应用于如图1a至图1c所示的通信系统。或者,该方法可以应用于第一通信装置和第二通信装置,该第一通信装置和该第二通信装置可以是前文描述的多 链路设备,例如该第一通信装置可以包括AP或AP MLD或芯片等,该芯片可以设置于AP或AP MLD,该第二通信装置可以包括non-AP MLD、STA或芯片等,该芯片可以设置于non-AP MLD。关于第一通信装置和第二通信装置的说明可以参考上文,这里不再一一详述。
图3是本申请实施例提供的一种多链路通信方法的流程示意图。如图3所示,该方法包括:
301、第一通信装置生成信标帧,该信标帧包括多个多链路业务指示元素,该多个多链路业务指示元素中的每个多链路业务指示元素用于指示对应的non-AP MLD在一条或多条链路上是否有缓存数据。
多个多链路业务指示元素中的每个多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,该多链路业务指示控制字段包括AID偏移量子字段,每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段,AID偏移量子字段用于指示该一个或多个每链路业务指示比特位图子字段中的第一个每链路业务指示比特位图子字段对应的AID。
该信标帧还包括TIM元素,该TIM元素包括部分虚拟比特位图字段,该部分虚拟比特位图字段用于指示上述多个多链路业务指示元素对应的AID。
在图2a至图2c所示的多链路通信方法中,信标帧包括一个多链路业务指示元素,第一通信装置可以通过这一个多链路指示元素指示所有的non-AP MLD在一条或多条链路上是否有缓存数据,这里所示的所有的non-AP MLD指的是通过TIM元素中的部分虚拟比特位图字段所指示的有下行数据需要接收的non-AP MLD。
然而,本申请实施例中,信标帧包括多个多链路业务指示元素,第一通信装置可以通过这多个多链路业务指示元素指示所有的non-AP MLD在一条或多条链路上是否有缓存数据,从而每个多链路业务指示元素均指示上述所有的non-AP MLD中的部分non-AP MLD在一条或多条链路上是否有缓存数据。也就是说,信标帧中包括的多个多链路业务指示元素中的每个多链路业务指示元素都只对应部分虚拟比特位图字段所指示有缓存数据的non-AP MLD中的部分non-AP MLD。或者,也可以理解为:多个多链路业务指示元素中每个多链路业务指示元素对应的non-AP MLD可以不同,或者,不完全相同;或者,该多个多链路业务指示元素中每个多链路业务指示元素对应的链路不同,或不完全相同。举例来说,该多个多链路业务指示元素包括第一多链路业务指示元素和第二多链路业务指示元素,第一多链路业务指示元素包括第一多链路业务指示控制字段和第一每链路业务指示列表字段,第二多链路业务指示元素包括第二多链路业务指示控制字段和第二每链路业务指示列表字段,则第一每链路业务指示列表字段与第二每链路业务指示列表字段可以有如下区别(注意这里不是必须有如下区别):第一、第一每链路业务指示列表字段对应的链路与第二每链路业务指示列表字段对应的链路不同;第二、第二每链路业务指示列表字段对应的链路中链路标识的最大值大于第一每链路业务指示列表字段对应的链路中链路标识的最大值;第三、第一每链路业务指示列表字段包括的每链路业务指示比特位图子字段的数量与第二每链路业务指示列表字段包括的每链路业务指示比特位图子字段的数量不同;第四、第一多链路业务指示控制字段中的AID偏移量与第二多链路业务指示控制字段中的AID偏移量不同。
示例性的,图4a是本申请实施例提供的一种信标帧的结构示意图。图4a仅示例性地示出了两个多链路业务指示元素,但是不应将其理解为对本申请实施例的限定。如图4a所示,AP MLD在生成多个多链路业务指示元素时,可以基于有缓存数据的non-AP MLD的AID确定TIM元素和多链路业务指示元素。例如,第一个多链路业务指示元素中的AID偏移量子字 段的取值可以为k,对应的每链路业务指示比特位图子字段的数量可以为l1个,l1为大于或等于1的整数,比特位图大小子字段基于这l1个每链路业务指示比特位图子字段分别对应的non-AP MLD中的有缓存数据的链路的最大标识确定。第二个多链路业务指示元素中的AID偏移量子字段的取值可以为k+x,x基于第一个多链路业务指示元素中的l1个每链路业务指示比特位图子字段对应的AID的最大值,以及TIM元素中的部分虚拟比特位图中从AID=k开始l1个有缓存数据的non-AP MLD之后的有缓存数据的non-AP MLD确定。以及每链路业务指示比特位图子字段的数量可以为l2个,l2为大于或等于1的整数,比特位图大小子字段基于这l2个每链路业务指示比特位图子字段分别对应的non-AP MLD中的有缓存数据的链路的最大标识确定。
示例性的,第一个多链路业务指示元素可以对应link ID较小的链路的non-AP MLD。举例来说,多个多链路业务指示元素中的第一个多链路业务指示元素可以对应仅关联在link ID=0的链路的non-AP MLD,如表1所示的bitmap size的取值为0000,每链路业务指示比特位图的比特长度为1个比特(表1中用x表示一位比特);第二个多链路业务指示元素可以对应关联链路中link ID最大值为1的non-AP MLD,如表1所示的bitmap size的取值为0001,每链路业务指示比特位图的比特长度为2个比特;第三个多链路业务指示元素可以对应关联链路中link ID最大值为2的non-AP MLD,如表1所示的bitmap size的取值为0010,每链路业务指示比特位图的比特长度为3个比特;以此类推,这里不再一一列举。当然,多个多链路业务指示元素中的第一个多链路业务指示元素可以对应关联链路中link ID最大值为0或1的non-AP MLD,如表2所示的bitmap size的取值为0001,每链路业务指示比特位图的比特长度为2个比特(表2中用x表示一位比特);第二个多链路业务指示元素可以对应关联链路中link ID最大值为2或3的non-AP MLD,如表2所示的bitmap size的取值为0010,每链路业务指示比特位图的比特长度为3个比特(表2中用x表示一位比特),以此类推。多个多链路业务指示元素中每个多链路业务指示元素所对应的链路可以依据实现策略而定,本申请实施例对此不作限定。
表1
表2

可理解,表1和表2所示的例子仅为示例,不应将其理解为对本申请实施例的限定。需要说明的是,当比特位图大小子字段的取值是0000时,每链路业务指示比特位图子字段可以有两种方法:方法一、每链路业务指示比特位图子字段的比特长度为1个比特,且该1个比特的取值为1。方法二、每链路业务指示列表中不包括每链路业务指示比特位图子字段,即每链路业务指示比特位图子字段可以不出现。对于方法二来说,由于链路比特位图子字段中只有一个比特的取值为1,则non-AP MLD可以认为链路比特位图中取值为1的比特对应的链路上有缓存数据。通过上述方法二,通过对多链路业务指示元素进行优化,可以进一步减少每链路业务指示列表字段的信令开销。可理解,方法二也可以应用于图2a所示的多链路业务指示元素中。示例性的,当比特位图大小子字段的取值为0时,通过方法二提供的优化方式,也可以节省信令开销。
本申请实施例所示的方法可以将所有需要指示的non-AP MLD分散在多个多链路业务指示元素,每个多链路业务指示元素中的每链路业务指示比特位图子字段的比特长度可以是不同的,从而能够节省信令开销。进一步的,为了避免不同链路数目的non-AP MLD无序地混合在一起,AP MLD可以按照一定的顺序为non-AP MLD分配AID。
图5是分配AID顺序的一个示例,按照AID从小到大进行分段,先把最小的AID分配给传统站点(legacy STA)(如不支持EHT的STA),然后将较大AID分配给仅关联在link ID=0的链路的non-AP MLD,再将更大的AID分配给关联链路中link ID最大值为1的non-AP MLD,…,将最大的一部分AID分配给关联链路中link ID最大值为14(如果存在的话)的non-AP MLD。由此,依据本申请实施例所示的多个多链路业务指示元素,以图5为例,如第一个多链路业务指示元素中的比特位图大小子字段的取值可以为0(即对应的链路数量为1),由此,每链路业务指示比特位图子字段的比特长度为1。第二个多链路业务指示元素中的比特位图大小子字段的取值可以为1(即对应的链路数量为2),由此,每链路业务指示比特位图子字段的比特长度为2,依次用于指示link ID=0的链路上是否有缓存数据,以及link ID=1的链路上是否有缓存数据。
可理解,本申请实施例所示的信标帧仅为示例,如果其他类似帧也具有如本申请所示的信标帧中携带的相关元素(如多链路业务指示元素和TIM元素)的功能(或者,如其他类似帧中携带的相关字段(如多链路业务指示控制字段和每链路业务指示列表字段)的功能),也属于本申请的保护范围。
302、第一通信装置发送信标帧,对应的,第二通信装置接收该信标帧。
303、第二通信装置基于信标帧在有缓存数据的链路上接收下行数据。
在信标帧包括一个多链路业务指示元素时,每链路业务指示比特位图子字段所对应的non-AP MLD可以根据AID偏移量子字段和部分虚拟比特位图字段确定。但是,在信标帧包括多个多链路业务指示元素时,由于每个多链路业务指示元素只对应部分non-AP MLD(即有缓存数据的non-AP MLD中的部分non-AP MLD)以及AID偏移量只指示与该AID偏移量对应的多链路业务指示元素中的第一个每链路业务指示比特位图子字段对应的AID,因此当多链路业务指示元素中包括多个每链路业务指示比特位图子字段时,non-AP MLD无法简单地依据AID偏移量子字段和部分虚拟比特位图字段确定与其对应的每链路业务指示比特位图 子字段。同时,non-AP MLD在解析每链路业务指示比特位图子字段时,可能会误读每链路业务指示列表字段包括的填充子字段。示例性的,在每链路业务指示列表字段的结尾部分可能存在0~7比特的Padding,以使得整个每链路业务指示列表字段的比特长度为8比特的整数倍。当采用多个多链路业务指示元素的时候,由于一个多链路业务指示元素中可能只指示部分的non-AP MLD,因此一些non-AP MLD可能会把padding子字段误认为是分配给自己的每链路业务指示比特位图子字段,从而产生误读。
同时,对于第一通信装置来说,其在生成多个多链路业务指示元素的过程中,假设,本申请实施例所示的多个多链路业务指示元素中的某一个多链路业务指示元素中包括l个多链路业务指示比特位图子字段,则l可以满足如下条件:
其中,Length是该某一个多链路业务指示元素中的Length字段的取值,Lindication是该某一个多链路业务指示元素中的多链路业务指示控制字段的字节数,Bitmap Size是该某一个多链路业务指示元素中的比特位图大小子字段的取值。可理解,以上所示的条件对于多链路业务指示元素中的每一个多链路业务指示元素都适用。
也就是说,第一通信装置可以知道每个多链路业务指示元素中的多链路业务指示比特位图子字段的个数,但是,对于第二通信装置来说,如果多链路业务指示元素中没有明确告知第二通信装置,则该第二通信装置是无法明确获知每个多链路业务指示元素中的多链路业务指示比特位图子字段的个数的。因此,本申请实施例提供了实现方式一和实现方式二,下文所示的实现方式一和实现方式二中虽然多链路业务指示元素中未明确指示每链路业务指示比特位图子字段的个数,但是第二通信装置仍可以通过分析获知与其对应的每链路业务指示比特位图子字段。同时,本申请实施例还提供了实现方式三,下文所示的实现方式三中通过在多链路业务指示元素中增加AID指示子字段,可以使得第二通信装置明确获知与其对应的每链路业务指示比特位图子字段。
实现方式一、
每链路业务指示比特位图子字段中至少有一个比特的取值为1,且填充子字段的所有比特的取值为0;该填充子字段位于每链路业务指示比特位图子字段之后,填充子字段的所有比特的取值都为0用于区分所述填充子字段和每链路业务指示比特位图子字段,或者,填充子字段的所有比特的取值都为0用于指示接信标帧的non-AP MLD结束解析每链路业务指示列表字段。
AP MLD在生成信标帧时,通过将填充子字段的所有比特设置为0,可以将该填充子字段与每链路业务指示比特位图子字段进行区分,或者,用于指示non-AP MLD结束解析每链路业务指示列表字段。也就是说,该填充子字段可以用于指示该填充子字段不是每链路业务指示比特位图子字段。从而,多链路业务指示元素中的AID偏移量子字段所指示的AID不是non-AP MLD的AID时,该non-AP MLD可以根据上述原则确定与其对应的每链路业务指示比特位图子字段。当non-AP MLD的AID是AID偏移量子字段所指示的AID时,该non-AP MLD可以确定与该AID偏移量子字段对应的多链路业务指示元素中的第一个每链路业务指示比特位图子字段是AP MLD发送给该non-AP MLD的每链路业务指示比特位图子字段。从而,基于该第一个每链路业务指示比特位图子字段确定自身有缓存数据的链路。然而,当non-AP MLD的AID不是AID偏移量子字段所指示的AID时,由于与该AID偏移量子字段对应的多链路业务指示元素中可以不包括AID的长度或每链路业务指示比特位图子字段的数 量,因此non-AP MLD可以根据每链路业务指示比特位图子字段中比特的取值以及填充子字段中比特的取值确定与其对应的每链路业务指示比特位图子字段。
示例性的,当一个non-AP MLD发现某一个多链路业务指示元素中可能有自身对应的每链路业务指示比特位图子字段,但是其所有比特都设置为0,则不对该每链路业务指示比特位图子字段进行解读,而是将其当做填充子字段来进行处理。举例来说,某一个多链路业务指示元素中的AID偏移量子字段指示的AID为k,即该多链路业务指示元素中一定包括AID为k的non-AP MLD对应的每链路业务指示比特位图子字段。但是某个non-A MLD的AID为k+1,则该某个non-AP MLD在获取到该多链路业务指示元素时,可能会将该多链路业务指示元素中的与AID为k对应的每链路业务指示比特位图子字段之后的比特误认为该某个non-AP MLD对应的每链路业务指示比特位图子字段(取值均为0)。通过实现方式一,由于该多链路业务指示元素中的与AID为k对应的每链路业务指示比特位图子字段之后的比特的取值都为0,则该某个non-AP MLD可以不对其进行处理,而是作为填充子字段。
实现方式二、
每链路业务指示比特位图子字段的比特长度大于或等于与该每链路业务指示比特位图子字段对应的non-AP MLD关联的链路数量之和。
由于每链路业务指示比特位图子字段的比特长度基于比特位图大小子字段确定,该比特位图大小子字段的取值是基于多链路指示元素对应的一个或多个non-AP MLD(即本申请实施例所示的所有non-AP MLD中的部分non-AP MLD)中需要指示的链路中链路标识最大的那个链路的标识确定的,因此每链路业务指示比特位图子字段的比特长度是大于或等于non-AP MLD自身关联的链路条数的。当一个non-AP MLD发现多链路业务元素中的每链路业务指示比特位图子字段的比特长度都不足以指示其自身关联链路(或enabled链路)时,则确定该多链路业务指示元素中不存在与自身相关的每链路业务指示比特位图子字段。换句话说,当一个non-AP MLD发现多链路业务元素中的所有每链路业务指示比特位图子字段的比特长度小于其关联链路的最大link ID+1时,则确定该多链路业务指示元素中不存在与自身相关的每链路业务指示比特位图子字段。
对于实现方式一和实现方式二来说,信标帧中通过增加多个多链路业务指示元素,不仅有效节省了信令开销,而且每个多链路业务指示元素的结构相对于图2a至图2c所示的多链路通信方法来说改动最小。
上述实现方式一和实现方式二,还可以理解为:每链路业务指示列表字段包括每链路业务指示比特位图子字段,这些每链路业务指示比特位图子字段对应于部分虚拟比特位图字段中从AID=k开始的non-AP MLD和STA。每链路业务指示列表字段包括l个每链路业务指示比特位图子字段,l的数量是部分虚拟比特位图字段中从AID=k到AID=p中取值为1的non-AP MLD和STA的数量之和,该部分虚拟比特位图字段包含于TIM元素中,该TIM元素包含于携带多链路业务指示元素中的信标帧中。AP MLD根据non-AP MLD和STA的关联/使能的链路选择p,如何选择p超出标准范围。p大于或等于k(The Per-Link Traffic Indication List field contains Per-Link Traffic Indication Bitmap subfields that correspond to the AIDs of the non-AP MLDs and STAs starting from the bit numbered k of the traffic indication virtual bitmap.The Per-Link Traffic Indication List field contains l Per-Link Traffic Indication Bitmap subfields,where l is the number of the bits that correspond to the AIDs of the non-AP MLDs and STAs and set to 1,counting from the bit numbered k to the bit numbered p of the traffic indication virtual bitmap,in  the Partial Virtual Bitmap subfield of the TIM element that is included in a Beacon frame with the Multi-Link Traffic Indication element.The number p selected by AP MLD based on the associated/enabled links of associated STA and non-AP MLD,how to select p is out of scope of standard.The value of p is larger than or equal tok.)。可理解,上述k和p是相对于一个多链路业务指示元素而言,扩展到多个多链路业务指示元素,如该多个多链路业务指示元素中每个多链路业务指示元素对应的AID可以依次为:AID=k1到AID=p1、AID=k2到AID=p2、……AID=kn到AID=pn,n表示多链路业务指示元素的个数。其中,k1至kn可以承载于每个多链路业务指示元素包括的AID偏移量子字段,p1至pn可以由AP MLD自主确定。当多链路业务指示元素中包括的每链路业务指示比特位图子字段的个数为1个时,k=p。
实现方式三、
多链路业务指示控制字段包括AID指示子字段,AID偏移量子字段和AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段中每个每链路业务指示比特位图子字段对应的AID。
作为一个示例,AID指示子字段可以包括AID长度子字段,该AID长度子字段可以用于指示与该AID长度子字段对应的多链路业务指示元素对应的AID的长度;或者,该AID长度子字段用于指示与该AID长度子字段对应的多链路业务指示元素中包括的一个或多个每链路业务指示比特位图子字段对应的AID的长度。可理解,以上所示的AID的长度还可以理解为AID的数量,或AID的个数等。
举例来说,表3是本申请实施例示出的多链路业务指示控制字段。如表3所示,该多链路业务指示控制字段可以包括比特位图大小子字段、AID偏移量子字段、AID长度子字段。关于比特位图大小子字段和AID偏移量子字段的说明可以参考上文,这里不在详述。例如,AID偏移量子字段所指示的数值为k,AID长度子字段所指示的数值为q,则表示与该AID长度子字段对应的多链路业务指示元素包括的每链路业务指示比特位图子字段对应的AID依次是AID=k至AID=k+q中在TIM元素中的部分虚拟比特位图中相应比特取值为1的non-AP MLD或STA,q为大于或等于0的整数。当q=0时,则表示多链路业务指示元素中包括的每链路业务指示比特位图子字段的个数为1个。
表3
可理解,表3所示的各个比特长度仅为示例,不应将其理解为对本申请实施例的限定。本申请实施例所示的方法,在多链路业务指示元素中引入了AID Length子字段,可以用来指示该多链路业务指示元素所携带的每链路业务指示比特位图子字段对应从AID k开始到AID k+q在TIM元素中的部分虚拟比特位图字段中指示为1的non-AP MLD或STA,k承载于AID偏移量子字段,q为AID Length字段的数值。
表3所示的例子还可以理解为:每链路业务指示列表字段包括每链路业务指示比特位图子字段,这些每链路业务指示比特位图子字段对应于部分虚拟比特位图字段中从AID=k开始的non-AP MLD和STA。每链路业务指示列表字段包括l个每链路业务指示比特位图子字段,l的数量是部分虚拟比特位图字段中从AID=k到AID=k+q中取值为1的non-AP MLD和STA的数量之和,该部分虚拟比特位图字段包含于TIM元素中,该TIM元素包含于携带多链路 业务指示元素中的信标帧中。q通过AID长度子字段指示,q为大于或等于0的整数(The Per-Link Traffic Indication List field contains Per-Link Traffic Indication Bitmap subfields that correspond to the AIDs of the non-AP MLDs and STAs starting from the bit numbered k of the traffic indication virtual bitmap.The Per-Link Traffic Indication List field contains l Per-Link Traffic Indication Bitmap subfields,where l is the number of the bits that correspond to the AIDs of the non-AP MLDs and STAs and set to 1,counting from the bit numbered k to the bit numbered k+q of the traffic indication virtual bitmap,in the Partial Virtual Bitmap subfield of the TIM element that is included in a Beacon frame with the Multi-Link Traffic Indication element.The number q is indicated in AID Length subfield.q is an integer larger or equal to 0.)。可理解,这里所示的每链路业务指示列表字段适用于多个多链路业务指示元素中的每个每链路业务指示列表字段。上述k和k+q是相对于一个多链路业务指示元素而言,扩展到多个多链路业务指示元素,如该多个多链路业务指示元素中每个多链路业务指示元素对应的AID可以依次为:AID=k1到AID=k1+q1、AID=k2到AID=k2+q2、……AID=kn到AID=kn+qn,n表示多链路业务指示元素的个数。其中,k1至kn可以承载于每个多链路业务指示元素包括的AID偏移量子字段,q1至qn可以承载于每个多链路业务指示元素包括的AID长度子字段。
作为另一个示例,AID指示子字段可以包括AID结束子字段,该AID结束子字段用于指示与该AID结束子字段对应的多链路业务指示元素中包括的一个或多个每链路业务指示比特位图子字段中最后一个每链路业务指示比特位图子字段对应的AID。
举例来说,表4是本申请实施例示出的多链路业务指示控制字段。如表4所示,该多链路业务指示控制字段可以包括比特位图大小子字段、AID偏移量子字段、结束AID子字段。关于比特位图大小子字段和AID偏移量子字段的说明可以参考上文,这里不在详述。该结束AID子字段可以用于指示多链路业务指示元素中的最后一个每链路业务指示比特位图子字段对应的AID。
表4
可理解,表4所示的各个比特长度仅为示例,不应将其理解为对本申请实施例的限定。
表3所示的例子还可以理解为:每链路业务指示列表字段包括每链路业务指示比特位图子字段,这些每链路业务指示比特位图子字段对应于部分虚拟比特位图字段中从AID=k开始的non-AP MLD和STA。每链路业务指示列表字段包括l个每链路业务指示比特位图子字段,l的数量是部分虚拟比特位图字段中从AID=k到AID=p中取值为1的non-AP MLD和STA的数量之和,该部分虚拟比特位图字段包含于TIM元素中,该TIM元素包含于携带多链路业务指示元素中的信标帧中。p通过结束AID子字段指示,p大于或等于k(The Per-Link Traffic Indication List field contains Per-Link Traffic Indication Bitmap subfields that correspond to the AIDs of the non-AP MLDs and STAs starting from the bit numbered k of the traffic indication virtual bitmap.The Per-Link Traffic Indication List field contains l Per-Link Traffic Indication Bitmap subfields,where l is the number of the bits that correspond to the AIDs of the non-AP MLDs and STAs and set to 1,counting from the bit numbered k to the bit numbered p of the traffic indication virtual bitmap,in the Partial Virtual Bitmap subfield of the TIM element that is included in a Beacon frame with the Multi-Link Traffic Indication element.The number p is indicated in  Ending AID subfield.The value of p is larger than or equal to k.)。可理解,这里所示的每链路业务指示列表字段适用于多个多链路业务指示元素中的每个每链路业务指示列表字段。上述k和p是相对于一个多链路业务指示元素而言,扩展到多个多链路业务指示元素,如该多个多链路业务指示元素中每个多链路业务指示元素对应的AID可以依次为:AID=k1到AID=p1、AID=k2到AID=p2、……AID=kn到AID=pn,n表示多链路业务指示元素的个数。其中,k1至kn可以承载于每个多链路业务指示元素包括的AID偏移量子字段,p1至pn可以承载于每个多链路业务指示元素包括的结束AID子字段。
作为又一个示例,AID指示子字段可以包括AID个数子字段,该AID个数子字段可以用于指示与该AID个数字字段对应的多链路业务指示元素中包括的每链路业务指示比特位图子字段的个数,或者,该AID个数子字段可以用于指示与该AID个数字字段对应的多链路业务指示元素中包括的AID的个数,或者,该AID个数子字段可以用于指示与该AID个数字字段对应的多链路业务指示元素中所指示的non-AP MLD的个数。换句话说,non-AP MLD可以根据该AID个数字字段明确获知对应的多链路业务指示元素中所包括的每链路业务指示比特位图子字段的个数,以及根据部分虚拟比特位图字段中所指示的有缓存数据的AID,可以明确获知与其对应的每链路业务指示比特位图子字段。
举例来说,表5是本申请实施例示出的多链路业务指示控制字段。如表5所示,该多链路业务指示控制字段可以包括比特位图大小子字段、AID偏移量子字段、AID个数(也可以称为AID数量)子字段。关于比特位图大小子字段和AID偏移量子字段的说明可以参考上文,这里不在详述。该AID个数子字段可以用于指示多链路业务指示元素中的每链路业务指示比特位图子字段的个数,该AID个数子字段所指示的每链路业务指示比特位图子字段的个数可以为正整数。
表5
可理解,表5所示的各个比特长度仅为示例,不应将其理解为对本申请实施例的限定。
本申请实施例所示的方法,通过在多链路业务指示元素中引入了Ending AID子字段来明确指示该多链路业务指示元素所携带的最后一个每链路业务指示比特位图子字段所对应的AID。
对于实现方式三来说,通过在多链路业务指示元素中增加AID指示子字段可以明确地向non-AP MLD指示每个每链路业务指示比特位图子字段所对应的AID,方法简单且直接。
根据上述三种实现方式,第二通信装置确定有缓存数据的链路的方法可以包括:根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段(如上述三种实现方式);根据与接收信标帧的non-AP MLD对应的多链路业务指示元素中的多链路业务指示控制字段包括的比特位图大小子字段确定与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特对应的链路;根据与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特的取值,确定有缓存数据的链路,并在有缓存数据的链路上接收下行数据。示例性的,non-AP MLD可以根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、填充子字段的取值以及每链路业务指示比特位图子字段的取值确定与接收信标帧的non-AP MLD对应 的每链路业务指示比特位图子字段;或者,根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、AID指示子字段确定与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段。
图2a至图2c所示的多链路通信方法中,使用一个多链路业务指示元素来指示所有有下行缓存数据的non-AP MLD时,所有的non-AP MLD对应的每链路业务指示比特位图子字段的大小(如比特长度)都是相同的,而实际上每个non-AP MLD的链路数目可能差别很大,这样就需要按照链路数目最多的那个non-AP MLD来指示,从而导致多链路业务指示元素信令开销较大。然而,本申请实施例中将所有需要指示的non-AP MLD分散在通过多个多链路业务指示元素,每个多链路业务指示元素中的每链路业务指示比特位图子字段的大小是不同的,从而节省信令开销。
本申请实施例中,通过分段指示不同的non-AP MLD,这样链路数目少的non-AP MLD对应的每链路业务指示比特位图子字段的比特长度可以更小,有效节省了信令开销。
图4a所示的信标帧中的每个多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,多链路业务指示控制字段包括比特位图大小子字段、AID偏移量子字段和预留子字段,每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段和填充子字段。
本申请实施例还提供了一种信标帧,如图4b所示,该信标帧中的每个多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,多链路业务指示控制字段包括链路比特位图(link bitmap)子字段、AID偏移量子字段和预留子字段,每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段和填充子字段。图4b与图4a的不同在于:图4a中的比特位图大小子字段替换为图4b中的链路比特位图子字段。该第一子字段包括链路比特位图(link bitmap)子字段,该链路比特位图子字段以及与该链路比特位图子字段对应的每链路业务指示比特位图子字段可以满足如下一项或多项条件:条件1、每链路业务指示比特位图子字段的比特长度等于该链路比特位图子字段取值为1的比特的数量之和(或者该链路比特位图子字段取值为0的比特的数量之和)。条件2、该链路比特位图子字段中的第i个比特用于指示该每链路业务指示比特位图子字段中是否包括链路标识等于i-1的链路指示信息,该链路指示信息用于指示对应链路上是否有缓存数据,该i为正整数。条件3、每链路业务指示比特位图子字段中每个比特对应的链路依次与链路比特位图子字段中取值为1的比特对应的链路相同(或者每链路业务指示比特位图子字段中每个比特对应的链路依次与链路比特位图子字段中取值为0的比特对应的链路相同)。可理解,本申请实施例所示的与链路比特位图子字段对应的每链路业务指示比特位图子字段指的是该链路比特位图子字段和该每链路业务指示比特位图子字段包含于同一个多链路业务指示元素中。
举例来说,链路比特位图子字段中的第i个比特的取值为1,则每链路业务指示比特位图子字段包括链路标识等于i-1的链路指示信息。也就是说,如果链路比特位图子字段中的第i个比特的取值为1,则每链路业务指示比特位图子字段中的存在一个比特用于指示链路标识等于i-1的链路上是否有缓存数据。当然,链路比特位图子字段与每链路业务指示比特位图子字段之间的关系也可以是:链路比特位图子字段中的第i个比特的取值为0时,每链路业务指示比特位图子字段包括链路标识等于i-1的链路指示信息。为便于描述,下文将以链路比特位图子字段中的第i个比特的取值为1时,每链路业务指示比特位图子字段包括链路标识等于i-1的链路指示信息为例说明本申请实施例提供的多链路业务指示元素。
示例性的,该链路比特位图子字段的长度为16个比特或者8个比特,该链路比特位图子字段中的第i个比特对应link ID=i-1的链路。例如,当链路比特位图子字段中的某一个比特设置为1,则表示每链路业务指示比特位图子字段中包括对应链路(即与链路比特位图子字段中取值为1的比特对应)的指示(即包括对应链路的链路指示信息)。反之,当链路比特位图子字段中的某一个比特设置为0,则表示每链路业务指示比特位图子字段中不包括对应链路的指示(即不包括对应链路的链路指示信息)。可理解,以上所示的链路比特位图子字段的长度仅为示例,本申请实施例对于该链路比特位图子字段的长度不作限定。例如,该链路比特位图子字段的长度还可以是10个比特或12个比特或15个比特等,这里不再一一列举。
可理解,关于图4b所示的多个多链路业务指示元素的说明可以参考上文,这里不再一一详述。
本申请实施例还提供了一种信标帧,如图4c所示,该信标帧中的每个多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,多链路业务指示控制字段包括链路偏移量(link offset)子字段、比特位图大小子字段、AID偏移量子字段和预留子字段,每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段和填充子字段。图4c与图4a的不同在于:图4c中的多链路业务指示控制字段增加了链路偏移量子字段。链路偏移量子字段用于指示与该链路偏移量子字段对应的每链路业务指示比特位图子字段中第一个比特所对应的链路的link ID。
举例来说,链路偏移量子字段的取值为0110(如对应的link ID=6),比特位图大小子字段的取值为0011(如对应的链路数量为4),则每链路业务指示比特位图子字段的比特长度为4,且该每链路业务指示比特位图子字段中第一个比特所对应的链路标识为6,即每链路业务指示比特位图子字段包括link ID=6的链路指示信息(指的是在link ID=6的链路上是否有缓存数据)、link ID=7的链路指示信息、link ID=8的链路指示信息以及link ID=9的链路指示信息。如第一个每链路业务指示比特位图子字段承载的数值为:1101,则表示AID=k的non-AP MLD有缓存数据的链路的ID依次为:6、7、9。
链路偏移量子字段的数值通常为多链路业务指示元素中包含的non-AP MLD的每链路业务指示比特位图子字段中设置为1的链路中的链路标识的最小值。当然,链路偏移量子字段的数值通常为多链路业务指示元素中包含的non-AP MLD的每链路业务指示比特位图子字段中设置为1的链路中的链路标识的最小值-1。即,链路偏移量子字段的数值可以在上述最小值附近浮动(如浮动1个数值,或2个数值等),本申请实施例对此不作限定。示例性的,实际操作中,也允许链路偏移量子字段的数值比多链路业务指示元素中包含的non-AP MLD的每链路业务指示比特位图子字段中设置为1的链路中的链路标识的最小数值小。
可理解,以上所示的各个实现方式中,其中一个实现方式未详细描述的地方,还可以参考其他实现方式。同时,以上所示的各个实现方式,相互之间可以结合,这里不再一一详述。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图6至图8详细描述本申请实施例的通信装置。
图6是本申请实施例提供的一种通信装置的结构示意图,如图6所示,该通信装置包括处 理单元601和收发单元602。
在本申请的一些实施例中,该通信装置可以是上文示出的AP或AP MLD或芯片,该芯片可以应用于AP或AP MLD中等。即该通信装置可以用于执行上文方法实施例中由第一通信装置执行的步骤或功能等。
处理单元601,用于生成信标帧;收发单元602,用于输出该信标帧。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。示例性的,处理单元601可以用于执行图3所示的步骤301,该收发单元602可以用于执行图3所示的步骤302中的发送步骤。
复用图6,在本申请的另一些实施例中,该通信装置可以是上文示出的STA或non-AP MLD第MLD或芯片,该芯片可以应用于STA或non-AP MLD。即该通信装置可以用于执行上文方法实施例中由第二通信装置执行的步骤或功能等。
如收发单元602,用于输入信标帧;处理单元601,用于根据信标帧在有缓存数据的链路上输入下行数据。
示例性的,处理单元601,还用于基于信标帧确定有缓存数据的链路。
示例性的,处理单元601,具体用于根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段;根据与接收信标帧的non-AP MLD对应的多链路业务指示元素中的多链路业务指示控制字段包括的比特位图大小子字段确定与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特对应的链路;根据与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特的取值,确定有缓存数据的链路。
示例性的,处理单元601,具体用于根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、填充子字段的取值以及每链路业务指示比特位图子字段的取值确定与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段;或者,根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、AID指示子字段确定与接收信标帧的non-AP MLD对应的每链路业务指示比特位图子字段。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。示例性的,收发单元602还可以用于执行图3所示的步骤302中的接收步骤,该处理单元601还可以用于执行图3所示的步骤303。
上个各个实施例中,关于信标帧中涉及的多链路业务指示元素、TIM元素、多链路业务指示控制字段、每链路业务指示列表字段、每链路业务指示比特位图子字段、部分虚拟比特位图字段等说明还可以参考上文方法实施例(如图2a至图2c、图3、图4a至图4c、图5)中的介绍,这里不再一一详述。
以上介绍了本申请实施例的第一通信装置和第二通信装置,以下介绍所述第一通信装置和第二通信装置可能的产品形态。应理解,但凡具备上述图6所述的第一通信装置的功能的任何形态的产品,或者,但凡具备上述图6所述的第二通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一通信装置和第二通信装置的产品形态仅限于此。
在一种可能的实现方式中,图6所示的通信装置中,处理单元601可以是一个或多个处理器,收发单元602可以是收发器,或者收发单元602还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息(如发送信标帧)的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息(如接收信标帧)的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
如图7所示,该通信装置70包括一个或多个处理器720和收发器710。
示例性的,当该通信装置用于执行上述第一通信装置执行的步骤或方法或功能时,处理器720,用于生成信标帧;收发器710,用于向第二通信装置发送该信标帧。
示例性的,当该通信装置用于执行上述第二通信装置执行的步骤或方法或功能时,收发器710,用于接收来自第一通信装置的信标帧;处理器720,用于根据信标帧在有缓存数据的链路上接收下行数据。
上个各个实施例中,关于信标帧中涉及的多链路业务指示元素、TIM元素、多链路业务指示控制字段、每链路业务指示列表字段、每链路业务指示比特位图子字段、部分虚拟比特位图字段等说明还可以参考上文方法实施例(如图2a至图2c、图3、图4a至图4c、图5)中的介绍,这里不再一一详述。
在图7所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置70还可以包括一个或多个存储器730,用于存储程序指令和/或数据等。存储器730和处理器720耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器720可能和存储器730协同操作。处理器720可可以执行存储器730中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器710、处理器720以及存储器730之间的具体连接介质。本申请实施例在图7中以存储器730、处理器720以及收发器710之间通过总线740连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、 可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
示例性的,处理器720主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器730主要用于存储软件程序和数据。收发器710可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器720可以读取存储器730中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器720对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器720,处理器720将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图7更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图6所示的通信装置中,处理单元601可以是一个或多个逻辑电路,收发单元602可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元602还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图8所示,图8所示的通信装置包括逻辑电路801和接口802。即上述处理单元601可以用逻辑电路801实现,收发单元602可以用接口802实现。其中,该逻辑电路801可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口802可以为通信接口、输入输出接口、管脚等。示例性的,图8是以上述通信装置为芯片为例出的,该芯片包括逻辑电路801和接口802。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述第一通信装置执行的方法或功能或步骤时,逻辑电路801,用于生成信标帧;接口802,用于输出该信标帧。
示例性的,当通信装置用于执行上述第二通信装置执行的方法或功能或步骤时,接口802,用于输入信标帧;逻辑电路801,用于根据信标帧在有缓存数据的链路上接收下行数据。可理解,逻辑电路801,还用于根据信标帧确定有缓存数据的链路。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
上个各个实施例中,关于信标帧中涉及的多链路业务指示元素、TIM元素、多链路业务指示控制字段、每链路业务指示列表字段、每链路业务指示比特位图子字段、部分虚拟比特 位图字段等说明还可以参考上文方法实施例(如图2a至图2c、图3、图4a至图4c、图5)中的介绍,这里不再一一详述。
对于图8所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,该第一通信装置和该第二通信装置可以用于执行前述任一实施例(如图3)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一通信装置执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二通信装置执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、 随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种多链路通信方法,其特征在于,所述方法包括:
    生成信标帧,所述信标帧包括多个多链路业务指示元素,所述多个多链路业务指示元素中的每个多链路业务指示元素用于指示对应的非接入点多链路设备non-AP MLD在一条或多条链路上是否有缓存数据;
    发送所述信标帧。
  2. 一种多链路通信方法,其特征在于,所述方法包括:
    接收信标帧,所述信标帧包括多个多链路业务指示元素,所述多个多链路业务指示元素中每个多链路业务指示元素用于指示对应的非接入点多链路设备non-AP MLD在一条或多条链路上是否有缓存数据;
    根据所述信标帧在有缓存数据的链路上接收下行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多链路业务指示元素包括每链路业务指示列表字段,所述每链路业务指示列表字段包括填充子字段和一个或多个每链路业务指示比特位图子字段,所述每链路业务指示比特位图子字段中的每个比特用于指示对应链路上是否有缓存数据,所述每链路业务指示比特位图子字段中至少有一个比特的取值为1,所述填充子字段中的所有比特的取值都为0;
    所述填充子字段位于所述每链路业务指示比特位图子字段之后,所述填充子字段的所有比特的取值都为0用于区分所述填充子字段和所述每链路业务指示比特位图子字段,或者,所述填充子字段的所有比特的取值都为0用于指示接收所述信标帧的non-AP MLD结束解析所述每链路业务指示列表字段。
  4. 根据权利要求1或2所述的方法,其特征在于,所述多链路业务指示元素包括每链路业务指示列表字段,所述每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段,所述每链路业务指示比特位图子字段中的每个比特用于指示对应链路上是否有缓存数据,且所述每链路业务指示比特位图子字段的比特长度大于或等于与所述每链路业务指示比特位图子字段对应的non-AP MLD关联的链路数量之和。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述信标帧还包括业务指示地图TIM元素,所述TIM元素包括部分虚拟比特位图字段,所述部分虚拟比特位图字段用于指示所述多个多链路业务指示元素对应的AID;
    所述多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,所述多链路业务指示控制字段包括关联标识AID偏移量子字段,所述每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段,所述AID偏移量子字段用于指示所述一个或多个每链路业务指示比特位图子字段中的第一个每链路业务指示比特位图子字段对应的AID。
  6. 根据权利要求5所述的方法,其特征在于,所述多链路业务指示控制字段还包括AID指示子字段,所述AID偏移量子字段和所述AID指示子字段用于指示所述一个或多个每链路 业务指示比特位图子字段中每个每链路业务指示比特位图子字段对应的AID。
  7. 根据权利要求6所述的方法,其特征在于,所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段对应的AID的长度;或者,
    所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段中最后一个每链路业务指示比特位图子字段对应的AID;或者,
    所述AID指示子字段用于指示所述每链路业务指示比特位图子字段的个数。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述多个多链路业务指示元素中的每个多链路业务指示元素对应所述部分虚拟比特位图字段所指示的有缓存数据的non-AP MLD中的部分non-AP MLD。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述根据所述信标帧在有缓存数据的链路上接收下行数据包括:
    根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收所述信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段,与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段包含于与接收所述信标帧的non-AP MLD对应的多链路业务指示元素中;
    根据与接收所述信标帧的non-AP MLD对应的多链路业务指示元素中的多链路业务指示控制字段包括的比特位图大小子字段确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特对应的链路;
    根据与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特的取值,确定有缓存数据的链路,并在有所述缓存数据的链路上接收下行数据。
  10. 根据权利要求9所述的方法,其特征在于,所述根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收所述信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段包括:
    根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、所述填充子字段的取值以及所述每链路业务指示比特位图子字段的取值确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段;或者,
    根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、所述AID指示子字段确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段。
  11. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于生成信标帧,所述信标帧包括多个多链路业务指示元素,所述多个多链路业务指示元素中的每个多链路业务指示元素用于指示对应的非接入点多链路设备non-AP MLD在一条或多条链路上是否有缓存数据;
    收发单元,用于发送所述信标帧。
  12. 一种通信装置,所述通信装置包括非接入点多链路设备non-AP MLD,其特征在于,所述装置包括:
    收发单元,用于接收信标帧,所述信标帧包括多个多链路业务指示元素,所述多个多链路业务指示元素中每个多链路业务指示元素用于指示对应的非接入点多链路设备non-AP MLD在一条或多条链路上是否有缓存数据;
    处理单元,用于根据所述信标帧在有缓存数据的链路上接收下行数据。
  13. 根据权利要求11或12所述的装置,其特征在于,所述多链路业务指示元素包括每链路业务指示列表字段,所述每链路业务指示列表字段包括填充子字段和一个或多个每链路业务指示比特位图子字段,所述每链路业务指示比特位图子字段中的每个比特用于指示对应链路上是否有缓存数据,所述每链路业务指示比特位图子字段中至少有一个比特的取值为1,所述填充子字段中的所有比特的取值都为0;
    所述填充子字段位于所述每链路业务指示比特位图子字段之后,所述填充子字段的所有比特的取值都为0用于区分所述填充子字段和所述每链路业务指示比特位图子字段,或者,所述填充子字段的所有比特的取值都为0用于指示接收所述信标帧的non-AP MLD结束解析所述每链路业务指示列表字段。
  14. 根据权利要求11或12所述的装置,其特征在于,所述多链路业务指示元素包括每链路业务指示列表字段,所述每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段,所述每链路业务指示比特位图子字段中的每个比特用于指示对应链路上是否有缓存数据,且所述每链路业务指示比特位图子字段的比特长度大于或等于与所述每链路业务指示比特位图子字段对应的non-AP MLD关联的链路数量之和。
  15. 根据权利要求11-14任一项所述的装置,其特征在于,所述信标帧还包括业务指示地图TIM元素,所述TIM元素包括部分虚拟比特位图字段,所述部分虚拟比特位图字段用于指示所述多个多链路业务指示元素对应的AID;
    所述多链路业务指示元素包括多链路业务指示控制字段和每链路业务指示列表字段,所述多链路业务指示控制字段包括关联标识AID偏移量子字段,所述每链路业务指示列表字段包括一个或多个每链路业务指示比特位图子字段,所述AID偏移量子字段用于指示所述一个或多个每链路业务指示比特位图子字段中的第一个每链路业务指示比特位图子字段对应的AID。
  16. 根据权利要求15所述的装置,其特征在于,所述多链路业务指示控制字段还包括AID指示子字段,所述AID偏移量子字段和所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段中每个每链路业务指示比特位图子字段对应的AID。
  17. 根据权利要求16所述的装置,其特征在于,所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段对应的AID的长度;或者,
    所述AID指示子字段用于指示所述一个或多个每链路业务指示比特位图子字段中最后一个每链路业务指示比特位图子字段对应的AID;或者,
    所述AID指示子字段用于指示所述每链路业务指示比特位图子字段的个数。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述多个多链路业务指示元素中的每个多链路业务指示元素对应所述部分虚拟比特位图字段所指示的有缓存数据的non-AP MLD中的部分non-AP MLD。
  19. 根据权利要求12-18任一项所述的装置,其特征在于,所述处理单元,具体用于根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量确定与接收所述信标帧的non-AP MLD对应的多链路业务指示元素和/或与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段,与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段包含于与接收所述信标帧的non-AP MLD对应的多链路业务指示元素中;根据与接收所述信标帧的non-AP MLD对应的多链路业务指示元素中的多链路业务指示控制字段包括的比特位图大小子字段确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特对应的链路;根据与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段中的每个比特的取值,确定有缓存数据的链路,并在有所述缓存数据的链路上接收下行数据。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元,具体用于根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、所述填充子字段的取值以及所述每链路业务指示比特位图子字段的取值确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段;或者,根据每个多链路业务指示元素中的多链路业务指示控制字段包括的AID偏移量、所述AID指示子字段确定与接收所述信标帧的non-AP MLD对应的每链路业务指示比特位图子字段。
  21. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1至10任一项所述的方法被执行。
  22. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1至10任一项所述的方法被执行。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1至10任一项所述的方法被执行。
  24. 一种计算机程序,其特征在于,当所述计算机程序被执行时,权利要求1至10任一项所述的方法被执行。
  25. 一种通信系统,其特征在于,包括第一通信装置和第二通信装置,所述第一通信装置用于执行如权利要求1、3-8任一项所述的方法,所述第二通信装置用于执行如权利要求2-10任一项所述的方法。
PCT/CN2023/085670 2022-04-08 2023-03-31 多链路通信方法及装置 WO2023193666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210366277.0 2022-04-08
CN202210366277.0A CN116963289A (zh) 2022-04-08 2022-04-08 多链路通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023193666A1 true WO2023193666A1 (zh) 2023-10-12

Family

ID=88244038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085670 WO2023193666A1 (zh) 2022-04-08 2023-03-31 多链路通信方法及装置

Country Status (2)

Country Link
CN (1) CN116963289A (zh)
WO (1) WO2023193666A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210185607A1 (en) * 2020-07-29 2021-06-17 Laurent Cariou Multi-link parameters and capability indication
CN113259046A (zh) * 2020-02-12 2021-08-13 联发科技(新加坡)私人有限公司 发送组寻址帧的方法
CN113395731A (zh) * 2020-03-13 2021-09-14 华为技术有限公司 一种数据缓存情况的确定方法及其装置
CN114071506A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 适用于多链路的单播业务指示方法及相关装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259046A (zh) * 2020-02-12 2021-08-13 联发科技(新加坡)私人有限公司 发送组寻址帧的方法
CN113395731A (zh) * 2020-03-13 2021-09-14 华为技术有限公司 一种数据缓存情况的确定方法及其装置
US20210185607A1 (en) * 2020-07-29 2021-06-17 Laurent Cariou Multi-link parameters and capability indication
CN114071506A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 适用于多链路的单播业务指示方法及相关装置

Also Published As

Publication number Publication date
CN116963289A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2021190605A1 (zh) 无线局域网中应用于多链路设备的通信方法及装置
WO2021238578A1 (zh) 无线局域网中的信令信息的交互方法及通信装置
WO2021180177A1 (zh) 一种应用于多链路通信中的功率节省方法和装置
WO2022028610A1 (zh) 适用于多链路的单播业务指示方法及相关装置
US11838848B2 (en) Multi-link device probing method and communication apparatus
WO2022002192A1 (zh) 多链路设备的aid分配方法及相关装置
WO2021180179A1 (zh) 一种数据缓存情况的确定方法及其装置
US20230363000A1 (en) Method for recovering permission to use transmission opportunity and related apparatus
WO2022228360A1 (zh) 通信方法及装置
TWI830080B (zh) 多鏈路通信的探測請求方法及裝置
WO2023193666A1 (zh) 多链路通信方法及装置
WO2023185759A1 (zh) 多链路通信方法及装置
WO2023236821A1 (zh) 多链路通信方法及装置
WO2022262675A1 (zh) 基于多链路通信的探测请求方法及装置
WO2023207223A1 (zh) 多链路的重配置方法及装置
WO2023138414A1 (zh) 多链路通信方法及装置
WO2024099285A1 (zh) 多链路通信方法及装置
WO2023197843A1 (zh) 一种通信的方法和装置
JP7490091B2 (ja) マルチリンクデバイスプロービング方法および通信装置
TWI821009B (zh) P2p鏈路的信息指示方法及相關裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784230

Country of ref document: EP

Kind code of ref document: A1