WO2021180177A1 - 一种应用于多链路通信中的功率节省方法和装置 - Google Patents

一种应用于多链路通信中的功率节省方法和装置 Download PDF

Info

Publication number
WO2021180177A1
WO2021180177A1 PCT/CN2021/080237 CN2021080237W WO2021180177A1 WO 2021180177 A1 WO2021180177 A1 WO 2021180177A1 CN 2021080237 W CN2021080237 W CN 2021080237W WO 2021180177 A1 WO2021180177 A1 WO 2021180177A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
field
bitmap
station
bits
Prior art date
Application number
PCT/CN2021/080237
Other languages
English (en)
French (fr)
Inventor
淦明
郭宇宸
梁丹丹
于健
李云波
李伊青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21766875.5A priority Critical patent/EP4109980A4/en
Publication of WO2021180177A1 publication Critical patent/WO2021180177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a power saving method and device applied to multi-link communication.
  • the Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard is based on the existing Orthogonal Frequency Division Multiplexing (OFDM) technology. Further adopt Orthogonal Frequency Division Multiple Access (OFDMA, Orthogonal Frequency Division Multiple Access) technology. OFDMA technology supports multiple nodes to send and receive data at the same time, thereby achieving multi-site diversity gain.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDMA technology supports multiple nodes to send and receive data at the same time, thereby achieving multi-site diversity gain.
  • FCC Federal Communications Commission
  • 6GHz 6GHz
  • 802.11ax standard workers expanded the working range of 802.11ax devices from 2.4GHz, 5GHz to 2.4GHz, 5GHz and 6GHz in the 802.11ax project authorization application (PAR, Project Authorization Requests).
  • IEEE 802.11 next-generation WiFi protocol (EHT, extremely high throughput) devices need to be forward compatible, so they will also support the working spectrum of 802.11ax devices, that is, 2.4GHz, 5GHz and 6GHz frequency bands will be supported. According to the newly opened free 6GHz frequency band, based on the channel division of this frequency band, the supported bandwidth can exceed the maximum bandwidth supported at 5GHz of 160MHz, such as 320MHz.
  • IEEE 802.11ax next-generation WiFi-extremely high throughput can also increase the peak value through more streams, such as increasing the number of streams to 16 streams, and the cooperation of multiple frequency bands (2.4GHz, 5GHz and 6GHz). Throughput. In the same frequency band, the peak throughput can also be improved by means of multiple channel cooperation, and the delay of service transmission can be reduced.
  • multi-frequency bands or multi-channels are collectively referred to as multi-link.
  • each multiple link establishes a different BSS (Basic Service Set), and only one link can follow this link at a time.
  • BSS Basic Service Set
  • the IEEE 802.11 next-generation WiFi extremely high throughput (EHT) protocol not only uses the continuous ultra-large bandwidth of the new frequency band 6GHz, but also uses multi-link cooperation technology to aggregate discontinuous multiple links to form an ultra-large bandwidth.
  • multi-link cooperation technology can also use multi-link cooperation technology to send data packets to the same site at the same time.
  • multi-link devices use multiple links to communicate in parallel, which greatly improves the transmission rate.
  • multiple links need to be in working state at the same time, they need to consume more energy and consume more power. Therefore, How to reduce the power of multi-link equipment is crucial.
  • the embodiments of the present application provide a power saving method and device applied to multi-link communication, which can reduce the power consumption of a multi-link site.
  • a power saving method applied to multi-link communication is provided, which is applied to a first multi-link device, and a station in the first multi-link device works on one of a plurality of links, A station in the first multi-link device sends a notification frame to the second device on one link, and the notification frame is used to indicate whether multiple stations in the first multi-link device are in an awake state. It is understandable that this solution can report that one or more stations included in the multi-link device are in the awake state on one link, avoiding multiple other STAs working on multiple links from reporting one by one. Its waking state reduces the power consumption of multi-link devices and improves transmission efficiency.
  • yet another power saving method applied to multi-link communication including: a second device receives a notification frame sent from a station of the first multi-link device on one link, the notification The frame is used to indicate whether multiple stations in the first multi-link device are in an awake state; one station in the first multi-link device is working on a link; the second device according to the notification Frame to determine the station in the awake state in the first multilink device.
  • a method for notifying a cache service includes: a second device generates a medium access control layer (medium access control layer, MAC) frame, where the MAC frame includes a link identification bitmap and more The data (More data) bit, the link identification bitmap includes multiple bits, one bit corresponds to one station on one of the multiple links, and the more data bits include 1 bit, and the link identification bit is The combination of the picture and the more data bits is used to indicate whether the station on the link corresponding to the link identification bitmap has a buffer buffer service to be received, and the MAC frame is sent.
  • MAC medium access control layer
  • a method for notifying a cache service includes: a first device receives a medium access control layer (medium access control layer, MAC) frame, where the MAC frame includes a link identification bitmap and more The data (More data) bit, the link identification bitmap includes multiple bits, one bit corresponds to one station on one of the multiple links, and the more data bits include 1 bit, and the link identification bit is The combination of the image and the more data bits is used to indicate whether the stations on the link corresponding to the link identification bitmap have buffer services to be received; the first device, according to the link identification bitmap and the more data bits Determine which sites in the first device have cache services to be received.
  • MAC medium access control layer
  • a communication device which is applied to a first multi-link device, and includes a processing unit, configured to generate a notification frame, where the notification frame is used to indicate whether multiple stations in the first multi-link device In an awake state; a station in the first multi-link device works on a link; a transceiver unit for sending the notification frame to the second device on a link
  • a communication device which is applied to a second device, including:
  • a transceiver unit configured to receive a notification frame sent from a station of the first multilink device on a link, where the notification frame is used to indicate whether multiple stations in the first multilink device are in an awake state;
  • a station in the first multi-link device works on one link;
  • a processing unit configured to determine, according to the notification frame, a station in the first multi-link device that is in an awake state.
  • a communication device applied to a first device, and includes: a transceiver unit for receiving a medium access control layer (MAC) frame, the MAC frame including a link identification bit Figure and more data (More data) bit, the link identification bit bitmap includes multiple bits, one bit corresponds to one station on one of the multiple links, and the more data bits include 1 bit.
  • the combination of the link identification bitmap and the more data bits is used to indicate whether the station on the link corresponding to the link identification bitmap has buffer services to be received; the processing unit is used to compare the link identification bitmap with all The more data bits are used to determine which stations in the first device have buffer services to be received.
  • a communication device which is applied to a second device, and includes: a processing unit configured to generate a medium access control layer (MAC) frame, the MAC frame including a link identification bit Bitmap and more data (More data) bits.
  • the link identification bitmap includes multiple bits. One bit corresponds to one station on one of the multiple links. More data bits include 1 bit.
  • the link identification bitmap combined with the more data bits is used to indicate whether the station on the link corresponding to the link identification bitmap has buffering services to be received, and the transceiver unit is used to send MAC frames.
  • the communication device of the fifth aspect to the eighth aspect described above may be a chip, wherein the processing unit may be a processing circuit of the chip, the transceiver unit may be an input/output interface circuit, and the processing circuit may be used to process signaling or data provided by input and output Information, the input and output interface circuit can be used to input and output data or signaling information for the chip.
  • the processing unit may be a processing circuit of the chip
  • the transceiver unit may be an input/output interface circuit
  • the processing circuit may be used to process signaling or data provided by input and output Information
  • the input and output interface circuit can be used to input and output data or signaling information for the chip.
  • a computer-readable storage medium stores computer program code.
  • the processor Perform any of the above methods.
  • the tenth aspect of the embodiments of the present application provides a computer program product that stores computer software instructions executed by the above-mentioned processor, and the computer software instructions include a program for executing the solution described in the above-mentioned aspect.
  • An eleventh aspect of the embodiments of the present application provides a communication device, which includes a processor, and may also include a transceiver and a memory.
  • the transceiver is used to send and receive information or to communicate with other network elements;
  • the memory Used to store computer-executable instructions;
  • the processor is used to execute the computer-executed instructions to support the communication device to implement the method described in any of the above aspects.
  • the twelfth aspect of the embodiments of the present application provides a communication device, which may exist in the form of a chip product.
  • the structure of the device includes a processor and may also include a memory for coupling with the processor, The program instructions and data necessary for the device are saved, and the processor is used to execute the program instructions stored in the memory to support the communication device to execute the method described in any of the above aspects.
  • the thirteenth aspect of the embodiments of the present application provides a communication device that can exist in the form of a chip product.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit. , So that the device executes the method described in any one of the foregoing aspects.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • Figure 2 (a) is a schematic structural diagram of a multi-link device provided by an embodiment of this application.
  • Figure 2(b) is a schematic structural diagram of another multi-link device provided by an embodiment of this application.
  • Figure 3(a) is a schematic diagram of a multi-link communication provided by an embodiment of this application.
  • Figure 3(b) is a schematic diagram of another multi-link communication provided by an embodiment of this application.
  • FIG. 4 is an interactive schematic diagram of a power saving method applied to multi-link communication according to an embodiment of the application
  • FIG. 5 is a schematic diagram of the frame structure of a PS-Poll frame provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of communication between multi-link devices according to an embodiment of this application.
  • FIG. 7 is a schematic diagram of interaction of a method for notifying a cache service according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of another communication between multi-link devices according to an embodiment of this application.
  • FIG. 9 is an interactive schematic diagram of another power saving method applied to multi-link communication according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of the composition of a communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of the composition of another communication device provided by an embodiment of the application.
  • the embodiment of the present application provides a communication method applied to a wireless communication system, which can achieve the effect of reducing the power consumption of a multi-link device.
  • the wireless communication system may be a wireless local area network or a cellular network.
  • the method may be implemented by a communication device in a wireless communication system or a chip or a processor in the communication device.
  • the communication device may be a type that supports multiple A wireless communication device that transmits in parallel through links is, for example, called a multi-link device (multi-link device) or a multi-band device (multi-band device). Compared with devices that only support single link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • the multi-link device includes one or more affiliated STAs (affiliated STA), and the affiliated STA is a logical station and can work on one link.
  • the subordinate station may be an access point (Access Point, AP) or a non-Access Point station (non-Access Point Station, non-AP STA).
  • this application refers to a multi-link device whose station is an AP may be called a multi-link AP or a multi-link AP device or an AP multi-link device (AP multi-link device), and the station to which it belongs is a non-
  • the multi-link device of the AP STA may be called a multi-link STA or a multi-link STA device or an STA multi-link device (STA multi-link device).
  • STA multi-link device STA multi-link device.
  • “multi-link device includes subordinate STA” is also briefly described as “multi-link device includes STA” in the embodiment of the present application.
  • a multi-link device includes multiple logical sites, and each logical site works on a link, but allows multiple logical sites to work on the same link.
  • the link identification mentioned below characterizes a station working on a link, that is, if there are more than one station on a link, more than one link identification is required to characterize them.
  • the link mentioned below sometimes also refers to the station working on that link.
  • the link identifier can be used to identify a link or a station on a link.
  • the multi-link AP device and the multi-link STA device may first negotiate or communicate the corresponding relationship between the link identifier and a link or a station on a link. Therefore, in data transmission, there is no need to transmit a large amount of signaling information to indicate a link or a station on the link, and it is sufficient to carry a link identifier, which reduces signaling overhead and improves transmission efficiency.
  • each link identification information field can suggest a link identification Correspondence with stations working on a link.
  • Each link identification information field includes a link identification, and also includes one or more of MAC address, operation set, and channel number, where one or more of MAC address, operation set, and channel number can indicate a link.
  • the multi-link AP device and the multi-link site device negotiate multiple link identification information fields.
  • the multi-link AP device or multi-link site device will use the link identification to characterize a station in the multi-link device, and the link identification can also characterize the MAC address of the station and the working set of operations , One or more attributes in the channel number.
  • the MAC address can also be replaced with the association identifier of the multi-link AP device after the association.
  • the link identification (is a numeric ID)
  • the meaning of the characterization includes not only the operation set where the link is located, the channel number, but also the identification of the station working on the link , Such as the MAC address or AID of the site.
  • Multi-link devices can follow the 802.11 series of protocols to achieve wireless communication, for example, follow Extremely High Throughput (EHT) sites, or follow 802.11be-based or compatible 802.11be-supported sites to achieve communication with other devices, of course
  • EHT Extremely High Throughput
  • Other devices can be multi-link devices or not.
  • Fig. 1 uses a wireless local area network as an example to introduce an application scenario diagram of an embodiment of the present application.
  • the application scenario shown in FIG. 1 includes: a multi-link AP device 101 and a multi-link STA device 102, where the multi-link AP device is a multi-link device that provides services for multi-link STA devices.
  • the link STA device can communicate with the multi-link AP device through multiple links, so as to achieve the effect of improving throughput.
  • the wireless local area network may also include other devices, such as a multi-link STA103 and a single-link STA104.
  • the number of multi-link APs and multi-link STAs in FIG. 1 is only exemplary.
  • FIG 2 shows a schematic diagram of the structure of a multi-link device.
  • the 802.11 standard focuses on the 802.11 physical layer (PHY) and the media access control (MAC) layer in multi-link devices.
  • PHY physical layer
  • MAC media access control
  • FIG 2(a) multiple STAs included in the multi-link device are independent of each other at the Low MAC (Low MAC) layer and the PHY layer, and also independent at the High MAC (High MAC) layer.
  • FIG 2(b) multiple STAs included in the multi-link device are independent of each other at the Low MAC (Low MAC) layer and the PHY layer, and share the High MAC (High MAC) layer.
  • the multi-link STA device can adopt a high-MAC layer independent structure, and the multi-link AP device adopts a structure shared by the high MAC layer; it can also be a multi-link STA device adopts a high MAC layer.
  • the multi-link AP device adopts a structure that is independent of the high MAC layer; it can also be that the multi-link STA device adopts the structure shared by the high MAC layer, and the multi-link AP device also adopts the structure shared by the high MAC layer; It is also possible that the multi-link STA device adopts a structure in which the high MAC layer is independent of each other, and the multi-link AP device also adopts a structure in which the high MAC layer is independent of each other.
  • the embodiment of the present application does not limit the schematic diagram of the internal structure of the multi-link device, and FIG. 2 is only an exemplary illustration.
  • the high MAC layer or the low MAC layer may be implemented by one processor in the chip system of the multi-link device, and may also be implemented by different processing modules in one chip system.
  • the multi-link device in the embodiment of the present application may be a device with a single antenna or a device with multiple antennas.
  • it can be a device with more than two antennas.
  • the embodiment of the present application does not limit the number of antennas included in the multi-link device.
  • the multi-link device may allow the same access type of service to be transmitted on different links, and even allow the same data packet to be transmitted on different links; it may also not allow the same access type of service Transmission on different links, but allows different access types of services to be transmitted on different links.
  • the available frequency bands for multi-link devices include: sub 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • Figure 3 shows two schematic diagrams of multi-link devices communicating with other devices through multiple links in a wireless local area network.
  • Figure 3(a) shows a schematic diagram of a multi-link AP device 101 communicating with a multi-link STA device 102.
  • the multi-link AP device 101 includes AP101-1 and AP101-2 subordinates, and the multi-link STA device 102 Including subordinate STA102-1 and STA102-2, and the multi-link AP device 101 and the multi-link STA device 102 use link 1 and link 2 to communicate in parallel.
  • FIG. 3(b) shows a schematic diagram of the communication between the multi-link AP device 101 and the multi-link STA device 102, a schematic diagram of the multi-link STA device 103 and the STA 104 communicating, and the multi-link AP device 101 includes a subordinate AP 101-1 To AP101-3, the multilink STA device 102 includes two subordinate STA102-1 and STA102-2, and the multilink STA device 103 includes two subordinate STA103-1, STA103-2, and STA103-3.
  • STA104 is a single Link device, multi-link AP device can use link 1 and link 3 to communicate with multi-link STA device 102, use link 2 and link 3 to communicate with multi-link 103, use link 1 and STA104 communication.
  • the STA104 works in the 2.4GHz frequency band
  • the multi-link STA device 103 includes STA103-1 and STA103-2, the STA103-1 works in the 5GHz frequency band, and the STA103-2 works in the 6GHz frequency band
  • the multi-link STA device 102 includes STA102 -1 and STA102-2, STA102-1 works in the 2.4GHz frequency band, and STA102-2 works in the 6GHz frequency band.
  • the AP 101-1 working in the 2.4 GHz frequency band in the multi-link AP device can transmit uplink or downlink data between the STA 104 and the STA 102-2 in the multi-link STA device 102 through the link 1.
  • the AP 101-2 working in the 5 GHz frequency band in the multi-link AP device can transmit uplink or downlink data between the STA 103-1 in the multi-link STA device 103 working in the 5 GHz frequency band through the link 2.
  • AP101-3 working in the 6GHz frequency band in the multi-link AP device 101 can transmit uplink or downlink data between the STA102-2 working in the 6GHz frequency band in the multi-link STA device 102 through link 3, and can also transmit data through link 3. It transmits uplink or downlink data with the STA103-2 in the multi-link STA device.
  • Figure 3(a) only shows that the multi-link AP device supports two frequency bands
  • Figure 3(b) only supports three frequency bands (2.4GHz, 5GHz, 6GHz) with the multi-link AP device.
  • Each frequency band corresponds to one link
  • the multi-link AP device 101 can work on one or more of link 1, link 2, or link 3 as an example for illustration.
  • the link On the AP side or the STA side, the link here can also be understood as a station working on the link.
  • multi-link AP devices and multi-link STA devices can also support more or fewer frequency bands, that is, multi-link AP devices and multi-link STA devices can work on more or fewer links.
  • this embodiment of the present application does not limit this.
  • the multi-link device is a device with wireless communication function.
  • the device may be a complete device, or a chip or processing system installed in the complete device.
  • the device is equipped with these chips or processing systems.
  • the methods and functions of the embodiments of the present application can be implemented under the control of these chips or processing systems.
  • the multi-link STA in the embodiment of the present application has a wireless transceiver function, may support 802.11 series protocols, and can communicate with a multi-link AP or other multi-link STAs or single-link devices, for example, a multi-link STA It is any user communication device that allows the user to communicate with the AP and then with the WLAN.
  • a multi-link STA can be a tablet computer, desktop, laptop, notebook computer, Ultra-mobile Personal Computer (UMPC), handheld computer, netbook, personal digital assistant (Personal Digital Assistant, PDA) , Mobile phones and other user equipment that can be connected to the Internet, or Internet of Things nodes in the Internet of Things, or in-vehicle communication devices in the Internet of Vehicles, etc.
  • the multi-link STA can also be the chips and processing systems in these terminals.
  • the multi-link AP in the embodiment of the present application provides services for the multi-link STA, and can support the 802.11 series of protocols.
  • a multi-link AP may be a communication entity such as a communication server, a router, a switch, or a bridge, or the multi-link AP may include various forms of macro base stations, micro base stations, relay stations, etc., of course, a multi-link AP is also It may be the chips and processing systems in these various forms of equipment, so as to realize the methods and functions of the embodiments of the present application.
  • multi-link devices can support high-speed and low-latency transmission.
  • multi-link devices can also be applied in more scenarios, such as sensor nodes in smart cities (for example, Smart water meters, smart electricity meters, smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, display screens, TVs, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart offices (such as printers, projectors, etc.), connected vehicles in the Internet of Vehicles, and some infrastructure in daily life scenarios (such as vending machines, supermarkets, etc.) Self-service navigation station, self-service cash register equipment, self-service ordering machine, etc.).
  • the specific forms of the multi-link STA and the multi-link AP are not particularly limited, which are only exemplary descriptions here.
  • the 802.11 protocol may be a protocol that supports 802.11be or is compatible with 802.11be.
  • multi-link equipment uses multiple links to communicate in parallel to greatly increase the transmission rate, but when multi-link communication is used, multiple links need to be in working state, so more energy and power consumption are required. The overhead will be greater, so how to reduce the power of the multi-link device is crucial.
  • the energy-saving technologies involved in 802.11ax include TIM (traffic indication map) energy-saving technology, TWT (target wake-up time, target wake-up time) energy-saving technology, APSD (automatic power save delivery, automatic energy-saving transmission) energy-saving technology Wait.
  • TIM traffic indication map
  • TWT target wake-up time, target wake-up time
  • APSD automatic power save delivery, automatic energy-saving transmission
  • STAs usually have two working modes, one is a non-energy-saving mode and the other is an energy-saving mode.
  • the STA works in the non-energy-saving mode
  • the STA is in an awake state (awake state, which may also be referred to as an awake state) regardless of whether there is data transmission.
  • the STA can be in the awake state when transmitting data with the AP; when there is no data transmission between the STA and the AP, the STA can be in the doze state to save power consumption .
  • the STA is in the energy-saving mode, you can send a frame to the AP.
  • the energy-saving bit in the frame control field in the MAC header of the frame is set to 1 to inform the AP that the STA is in the energy-saving mode.
  • the MAC header in the frame The energy-saving bit in the frame control field of the frame control field is set to 0 to inform the AP that the STA is in the non-energy-saving mode.
  • the AP can buffer the downlink service of the STA, wait for the STA to wake up, and then send the downlink service to the STA.
  • the AP will periodically carry a TIM element in the 802.11 beacon frame to inform its associated STA whether there is any downlink service reception.
  • the STA working in the energy-saving mode will periodically wake up to receive the beacon frame sent by the AP, and determine whether the AP is transmitting its downlink services. If not, the STA can switch to the dormant state.
  • the STA can choose a time to wake up and send an energy-saving polling frame (PS-poll frame) to the AP to inform the AP that the STA is in an awake state.
  • This time point can be related to the receiving beacon frame.
  • the time period is the same or different.
  • the above-mentioned 802.11 beacon frames can be divided into two types, one is a traffic indication map (traffic indication map, TIM) beacon frame, and the other is a delivery traffic indication map (delivery traffic indication map). , DTIM) beacon frame.
  • the DTIM beacon frame Compared with the TIM beacon frame, the DTIM beacon frame not only indicates the buffered unicast information, but also indicates the multicast information buffered by the AP.
  • Each beacon frame (beacon) contains a TIM element field, and the TIM element field is used to indicate which STA managed by the AP has downlink data buffered in the AP.
  • the frame format of the TIM element field is shown in Table 1 below.
  • the element ID (identifier) field is used to identify the element as a TIM element.
  • the length field is used to indicate the length of the TIM element.
  • the DTIM period (DTIM Period) field indicates the period duration of the DTIM beacon frame, that is, the arrival interval, in the unit of the beacon frame period.
  • the DTIM count (DTIM count) field is used to indicate how many TIM beacon frames appear before the next DTIM beacon frame arrives.
  • the DTIM count field is a count value, and the count value changes. When the value of the DTIM count field is 0, it means that the beacon frame is a DTIM beacon frame, otherwise the beacon frame is a TIM beacon frame, that is, when the value of the DTIM count field is not 0, it means that the beacon frame is TIM beacon frame. For example, if DTIM Period is set to 1, then in each TIM element field, DTIM count is equal to 0, so each beacon frame is a DTIM beacon frame.
  • the first bit (bit 0) in the bitmap control (Bitmap control) field in Table 1 indicates whether the AP sends DTIM beacon frames with downlink multicast services, and the bits 1 ⁇ in the bitmap control (Bitmap control) field 7 indicates the offset of part of the virtual bitmap.
  • the offset is in bytes, that is, 8 bits.
  • Each bit in the partial virtual bitmap field maps one STA. When the value of this bit is 1, it means that the STA corresponding to this bit has downlink data buffered in the AP. For example, if the offset is 0, part of the virtual bitmap starts from the association identifier (AID) 1. If the offset is 1, part of the virtual bitmap starts from AID9. The end bit of part of the virtual bitmap is determined by the length field. Therefore, the longest part of the virtual bitmap is 251 bytes, that is, 2008 bits.
  • the TIM element field Indicates that the STAs corresponding to AID2, AID3, AID6, and AID7 have downlink data buffered in the AP.
  • the bits 1-7 in the bitmap control field indicate that the offset of part of the virtual bitmap is 1, and the part of the virtual bitmap field is 01100110, the TIM element The field indicates that the STAs corresponding to AID10, AID11, AID14, and AID15 have downlink data buffered in the AP.
  • the AP if the AP is working in a multi-basic service set identifier (BSSID) mode, that is, in addition to the basic service set (BSS) that transmits the BSSID, the AP also includes multiple non-transmitting BSSIDs BSS.
  • the maximum allowable number of multiple BSSID sets is 2 n BSSs, where n is the value indicated by the MaxBSSID Indicator field in the multiple BSSID element.
  • bits 1 to 2 n -1 of the partial virtual bitmap field are used to indicate the downlink multicast service corresponding to the BSS that does not transmit the BSSID.
  • Bit 2 n is combined with the indication of the offset of the sub-virtual bitmap to indicate whether the STA corresponding to each AID has downlink unicast services.
  • the 802.11-2016 protocol further optimizes the length of some virtual bitmaps. For example, the method A and method B recorded in the 802.11-2016 protocol are adopted. And the method C stipulated in the subsequent draft of the 802.11ah protocol. These methods are all applicable to the embodiments of this application. If the AP is working in the multi-BSSID mode, that is, in addition to the BSS that transmits the BSSID, the AP also includes multiple BSSs that do not transmit the BSSID.
  • the maximum allowable number of BSSs in a multi-BSSID set is 2n, where n is indicated by the MaxBSSID Indicator field in the multi-BSSID element.
  • bits 1 to 2n-1 of the partial virtual bitmap field are used to indicate the corresponding multicast data service of the BSS that does not transmit the BSSID.
  • Bit 2n is combined with the indication of the offset of the sub-virtual bitmap to indicate whether the STA corresponding to each AID has downlink unicast data services.
  • the embodiment of the present application provides a power saving method suitable for multi-link devices.
  • the subordinate STA in the multi-link device can report on a link that one or more stations included in the multi-link device are in the awake state, thereby avoiding Other STAs report their waking status one by one, achieving the effect of reducing the power consumption of multi-link equipment and improving the spectrum utilization.
  • the embodiment of the present application also provides another power saving method used in multi-link devices, adopting a new buffer service notification method to inform the multi-link sites whether the sites in the multi-link sites have buffer services, avoiding multi-link
  • the stations in the station equipment wake up periodically to receive the beacon frame sent by the AP, so as to achieve the effect of power saving.
  • the first embodiment provides a power saving method, which is applied to multi-link communication.
  • This method is a power saving method suitable for multi-link devices.
  • the subordinate STA in the multi-link device reports that multiple stations included in it are awake on one link, avoiding one or more stations from reporting separately Its waking state achieves the effect of reducing power consumption of multi-link equipment and improving spectrum utilization.
  • FIG. 4 shows a schematic flowchart of a power saving method applied to multi-link communication according to Embodiment 1. The method includes:
  • One station in the first multilink device generates a notification frame, where the notification frame is used to inform the second device whether multiple stations in the first multilink device are in an awake state.
  • the first multi-link device includes a plurality of stations, and each station works on a link.
  • the notification frame may be generated by one station, or the notification frame may be generated by multiple stations, or the notification frame may be generated by the processing unit in the first multi-link device, and the processing unit may be shared by multiple stations of.
  • the second device may be a second multi-link device, or not a multi-link device, but a single-link device.
  • the first multi-link device is a multi-link STA device
  • the second device is a multi-link AP device.
  • the first multi-link device is a multi-link STA device 102.
  • the second device is the multi-link AP device 101.
  • the first multilink device sends the notification frame to the second device on a link, where the notification frame is used to inform the second device whether the multiple stations in the first multilink device are awake State (awake state).
  • the station that sends the notification frame may be the primary station in the first multilink device, which sends the notification frame on the primary link.
  • the second device can determine which stations in the first multilink device are in the awake state.
  • the notification frame can also only inform whether a station in the first multi-link device is in the awake state, and the station that is notified of the status may not be the station that sent the notification frame, but other stations in the first multi-link device.
  • the STA 102-1 in the first multi-link device sends a notification frame, it indicates that the STA 102-2 is in the awake state.
  • the second device can subsequently communicate with the STA 102-2, which can realize the switching of the communication site, which also means that the switching of the communication link can be realized, so that the communication between the first multi-link device and the second device is more flexible.
  • the first multi-link device may actively send the notification frame to the second device, indicating which stations in the first multi-link device are in an awake state.
  • the first multi-link device may determine which stations have buffer services to be received (such as downlink services) based on other frames or signaling information before step S101, so as to send a notification frame.
  • the station of the multi-link site device may also be in the awake state for other reasons. For example, if there is an uplink service to be sent to other devices, the first multi-link device may also report that it is in the awake state through a notification frame.
  • the site that sends the notification frame may be one of the multiple sites that have cache services to be received or that have cache services to be sent, or other sites, such as the main site, where the main site can also be For one or more.
  • the main site can also be For one or more.
  • multiple sites that have a buffer service to be received or that have a buffer service to be sent do not all need to send notification frames on multiple links, but only one site is required to send a notification frame, which reduces the power consumption of the multi-link device.
  • the second device can determine which stations in the first multilink device are in the awake state.
  • the multiple sites that have buffered services to be received or that have buffered services to be sent may be part or all of the multiple sites included in the first multilink device.
  • the first multi-link device is a multi-link STA device, including 3 STA2, 2 of which have buffer services to be received, or all 3 STA2 have buffer services to be received, of course, it can also be one STA2 There are buffer services to be received.
  • a cache service to be received can also be understood as a cache service for other devices (such as the second device) to be sent to these multiple sites, and a cache service to be sent can be understood as a cache service to be sent to other devices (such as the second device) .
  • the buffer service to be received can be called a downlink buffer service, or a downlink data service or a downlink service.
  • Etc.; the buffer service to be sent can be referred to as an uplink buffer service, and can also be referred to as an uplink data service or an uplink service.
  • the method further includes S103 and S104,
  • S103 Receive a MAC frame from a second device, where the MAC frame is used to indicate whether the multiple stations in the first multilink device have buffer services to be received;
  • the first multilink device determines, according to the MAC frame, that there is a station to be received with a buffered traffic (buffered traffic) in the first multilink device.
  • the method further includes: S105, the second device sends a buffer service to one or more stations in an awake state, or the first multi-link device sends a buffer service to the second device.
  • the notification frame may carry information to indicate whether one or more stations in the first multi-link device are in an awake state.
  • the duration/ID field in the notification frame can be used to indicate that one or more stations in the first multilink device are in an awake state, and other fields in the MAC header in the notification frame, such as the HT-control field, can also be used.
  • the notification frame can be a PS-Poll frame, or other frames, such as a data frame (including empty data frames).
  • the trigger frame-empty data frame in the automatic power saving delivery APSD (automatic power save delivery, APSD), where APSD is again There are unscheduled unscheduled and scheduled scheduled.
  • the following uses the PS-Poll frame as an example to describe in detail how to indicate whether one or more stations in the first multilink device are in an awake state (also referred to as an awake state) through the PS-Poll frame.
  • the PS-Poll frame includes a duration (duration)/ID (identifier) field, and the duration/ID field can be used to indicate that one or more stations in the first multilink device are in an awake state.
  • the duration/ID field includes 2 bytes (16 bits), of which these 16 bits are denoted as B0 to B15 (B0-B15).
  • B0 to B15 B0 to B15
  • the value of the B0 bit included in B0-B15 is 0, indicating that the PS-Poll frame is a BDT PS-Poll frame (BDT, bidirectional TXOP, bidirectional transmission opportunity), and the bit after the B0B1 bit in the duration/ID field (B2- B15) Indicate the duration.
  • the PS-Poll frame also includes: frame control field, BSSID (RA) field (Basic service set identifier, receiver address, receiving address), TA field (transmitter address, sending address) and FCS field (Frame check sequence, frame check sequence) and so on.
  • BSSID Base service set identifier, receiver address, receiving address
  • TA transmitter address, sending address
  • FCS field Full check sequence, frame check sequence
  • the method of using the duration/ID field bits to indicate that one or more stations are in an awake state includes but is not limited to:
  • the first method All or part of the bits after the duration/ID field are used to indicate that one or more stations are in an awake state.
  • the value of B0B1 in the duration/ID field is 10, and the value of B0B1 is 10, which also indicates that the PS-Poll frame is a new PS-Poll frame.
  • the frame structure of the new PS-Poll frame may be as shown in FIG. 5, and the interpretation of the duration/ID field is different from the existing PS-Poll frame in 802.11.
  • B2-B15 of the duration/ID field carries a link identification bitmap.
  • the link identification bitmap includes multiple bits, one of which corresponds to one of the multiple links supported by the first multi-link device, or in other words, one bit corresponds to the first multi-link device operating in The stations on a link correspond to each other. One station in the first multi-link device works on one link, or multiple stations may work on the same link.
  • one bit corresponds to one link identifier, so that one bit indicates whether the station indicated by the link identifier is in an awake state.
  • a bit in the link identification bitmap indicates whether a station in the first multilink device working on the corresponding link is in the awake state, for example, the nth bit takes the first value, indicating the corresponding link The station on the link wakes up, and the second value is used to indicate that the station on the corresponding link is not waked up.
  • the duration/ID field may also include a length field, which is used to indicate the length of the link identification bitmap.
  • the link identification number field is carried in B2-B15 of the duration/ID field.
  • the link identification number field carries link information for indicating the link, and the link identification number field can indicate that the station on the link corresponding to the link information is in an awake state.
  • the link information may include a link identifier (Identifier, ID), or the link information may include the operating class and channel number corresponding to the link, or the link information may include the MAC address of the link, Or a combination of them.
  • the B2-B15 of the duration/ID field may not carry the identification number of the link working on the station that is not in the awake state, so that the overhead can be reduced.
  • the link identification can be negotiated or communicated before communication. The specific negotiation or communication method has been described in detail above, and will not be repeated here.
  • B2-B15 of the duration/ID field carries the control field and the station status indication field.
  • the control field contains indication information, which is used to indicate whether the link identification bitmap or the link identification number field is included in the station status indication field.
  • the definition of the link identification bitmap and the link identification number field can refer to the foregoing two examples.
  • B0B1 in the duration/ID field can also be other values.
  • Bits B2-B15 in the duration/ID field carry a special AID value, such as an AID whose value is greater than 2007, indicating that one or more stations in the first multilink device are in an awake state.
  • B0B1 also indicates that the PS-Poll frame is a non-BDT PS-Poll frame.
  • the special AID value is used to indicate that all stations working on multiple links are in the awake state.
  • the multiple links are links included when the multiple link association is established.
  • the special AID value is used to indicate that all stations that have cached services to be received or to be sent are in the awake state. Which stations have buffer services to be received or sent can be determined by various methods. For example, the TIM element in the beacon frame broadcast by the second device can determine which stations have buffer services, or other methods.
  • the value of B0B1 is 11, which means that the PS-Poll frame is a non-BDT PS-Poll frame, and the bits (B2-B15) after the duration/ID field indicate the associated identifier AID of the PS-Poll frame sender. Therefore, the second method is adopted, and the indication method is simpler.
  • a special AID or two special AID values can be used to complete the indication, which is simple to implement.
  • the special AID can include one or more of the following 4 special values.
  • B2-B15 takes the first special value, indicating that all stations working on multiple links are in the awake state.
  • the second special value of B2-B15 indicates that the stations working on multiple links with buffered services to be received or buffered services to be sent are in the awake state.
  • the third special value of B2-B15 can be used to indicate that all stations on the first multi-link are not awakened
  • the fourth special value of B2-B15 can indicate a buffered service working on multiple links. None of the sites that are to be received or that have cached services to be sent are not in the awake state.
  • a special AID value can correspond to at least four functions.
  • one special AID value can be used to indicate one of the functions, and two special AID values can be used to indicate two of the functions respectively.
  • four special AID values can also be used to indicate four kinds of functions.
  • Function can be changed, and the specific function corresponding to a special AID value is not limited here.
  • the duration/ID field starts with 11, that is, the value of bits 0 and 1 (B0B1) of the duration/ID field is 11, indicating that B2-B15 is the AID value.
  • the notification frame includes an aggregated frame of multiple PS-Poll frames, one of the PS-Poll frames includes a duration/ID field, and the bits (B2-B15) after the duration/ID field indicate the association identifier AID, Used to indicate that the station corresponding to this AID is awake.
  • multiple duration/ID fields of multiple PS-Poll frames may include multiple AIDs, which may indicate that multiple stations in the first multi-link station are in the awake state.
  • the value of B0B1 in the duration/ID field is 11, indicating that the PS-Poll frame is a non-BDT PS-Poll frame.
  • the stations corresponding to the AIDs included in the multiple PS-Poll frames belong to the same
  • the TA address of PS-Poll is the MAC address of the station working on the link where the PS-Poll frame is located in the multi-link site equipment, or the MAC SAP(service access) of the multi-link site
  • the address of point) is an address shared by multiple sites.
  • the duration/ID field carries: a start AID field and an AID bitmap field, optionally, the last 14 bits include a start AID field and an AID bitmap field, the start AID
  • the field carries a start AID.
  • the start AID can be a short AID.
  • the AID bitmap field is used to indicate whether the station corresponding to the AID in the order larger or smaller than the start AID is in the awake state, or It is used to indicate whether the station corresponding to the sequential link identifier is larger or smaller than the link identifier corresponding to the station indicated by the start AID is in the awake state.
  • the sequential AID, or sequential link identifier does not need to take the AID.
  • the value and the value of the link identifier are continuous, but a sort of continuity.
  • the corresponding link identifiers of the three sites included in the multi-link device are 1, 3, 5, then 1, 3 and
  • the link ID of 5 is in the order of smallest to largest;
  • the value of bits 0 and 1 (B0B1) of the duration/ID field is 10
  • the starting AID field of B2-B15 bits carries a short AID (or called partial AID)
  • the number of bits occupied by the short AID value is less than 14 bits, such as 11 bits.
  • the AID bitmap field in B2-B15 occupies the remaining bits, which is used to indicate whether stations working on other links are awake.
  • the first 11 bits in B2-B15 are the short AID of a station in the first multilink device, and the remaining 3 bits indicate the AID that is larger or smaller than the AID, and the 3 AIDs in the cyclic order correspond to If the station is awake, the corresponding bit is set to the first value, indicating that the station is awake, and the corresponding bit is set to the second value, indicating that the station is in sleep state, for example, the first value is 1, the second value is 0 . Assume that the first multi-link device has a total of 4 sites (AIDs are AID1 to AID4 respectively).
  • the first 11 bits in B2-B15 indicate that the AID is 1, which corresponds to site 1 in the first multi-link device ( The AID is 1), and the last 3 bits have a value of 101, the corresponding indication that the station with AID 2 is in the awake state, the station with AID 3 is in the sleep state, and the station with AID 4 is in the awake state.
  • the first 11 bits in B2-B15 indicate that the AID is 2, which corresponds to station 2 (AID of 2) in the first multilink device, and the last 3 bits have a value of 101, then the corresponding indication AID of 3 The station is awake, the station with AID 4 is in sleep state, and the station with AID 1 is awake.
  • the short AID field may also indicate that the station corresponding to the short AID field is in a waking state, or may indicate that it is in a sleep state, or it may have no meaning. If it is indicated that the station corresponding to the initial AID is awake, the number of indicated stations can be increased, and the indication efficiency is higher.
  • the AID bitmap can also indicate the status of the station from the start AID.
  • the first 11 bits in B2-B15 indicate that the AID is 2, which corresponds to station 2 in the first multilink device (AID is 2) ,
  • the last 3 bits have a value of 101, and the corresponding indication that the station with AID 2 is in the awake state, the station with AID 3 is in the sleep state, and the station with AID 4 is in the awake state.
  • the duration/ID field carries: a start link identification field and a link identification bitmap field.
  • the last 14 bits include a start link identification field and a link identification bit Figure field
  • the start link identifier field carries a link identifier
  • the link identifier bitmap field is used to indicate a sequential link that is larger or smaller than the link identifier corresponding to the station indicated by the start link identifier field Identifies whether the corresponding site is in an awake state.
  • the initial link identifier field carries the link identifier 1 to indicate the stations on the link 1; the link identifier bitmap includes 3 bits, which respectively indicate whether the stations on the link identifiers 2 to 4 are in an awake state.
  • the link identification bitmap can also be indicated from the start link identification field.
  • the link identification indicated by the first 11 bits in B2-B15 is 2, which corresponds to station 2 in the first multilink device. (AID is 2), the last 3 bits value is 101, then the corresponding indicating link ID is 2 and the station corresponding to the waking state, the station with the link ID 3 is in the sleep state, and the link ID is 4 The site is awake.
  • the first to fifth methods are not limited to be implemented in the duration/ID field of the notification frame, nor are they limited to be implemented in the duration/ID field of the PS-Poll frame. Of course, they can also be implemented.
  • the same or similar indication method is adopted in other fields of the notification frame, such as other fields of the MAC header in the notification frame, such as the HT-control field to notify one or more stations in the first multi-link device to be in an awake state.
  • the use of the duration/ID field can be compatible with the frame structure defined by the 802.11 protocol, with low complexity and low signaling overhead.
  • the following describes in detail how the first multi-link device in steps S103 and S104 determines that there are multiple sites to be received for buffered traffic in the first multi-link device.
  • the first method Before S101, the first multi-link device receives a beacon frame carrying a TIM element from the second device, and the TIM element informs the first multi-link device that there is a buffered traffic (buffered traffic) to be received. Which sites. Based on the TIM element in the beacon frame, the first multi-link device can determine which stations have buffer services to be received.
  • the second device sends a beacon frame on one link, and the beacon frame carries information about whether stations on multiple links have buffer services to be received.
  • Specific implementation methods include but are not limited to:
  • Method 1 Reuse the existing TIM elements.
  • the multi-link AP device assigns one or more association identifiers (AIDs) to each station in the multi-link STA.
  • AIDs association identifiers
  • Each part of the virtual bitmap field of the TIM element is assigned one or more association identifiers.
  • One bit corresponds to one AID.
  • each bit in the part of the virtual bitmap field in the TIM element is used to indicate whether the corresponding station has a corresponding downlink service indication; if it is each station of the multi-link STA A station is allocated 2 AIDs, and the 2 bits in the part of the virtual bitmap field in the TIM element are used to respectively indicate whether the corresponding station has a corresponding downlink broadcast service indication and a downlink unicast service indication.
  • Method 2 Add a new multi-link TIM element, the multi-link TIM element includes multiple new TIM sub-elements, and each new TIM sub-element includes a link identification number and a TIM element.
  • Each new TIM sub-element is used to indicate whether the station working on the link identified by the link identification number has a downlink service indication.
  • the bitmap control field bit 0 in the new TIM sub-element indicates whether the AP sends a DTIM beacon frame or not.
  • There is a downlink multicast data service and the corresponding bit in the part of the virtual bitmap field in the new TIM sub-element is used to indicate whether the station working on the link identified by the link identification number has a downlink unicast service.
  • the link identification number may include the identification number of the link (or called the number of the link), or, the operation set and channel number, or, the MAC address, etc.
  • Multi-link site equipment receives beacon frames on one or more links, and learns whether multiple sites in the multi-link site equipment receive buffer services (or called downlink services), including downlink unicast services and downlink broadcasts business.
  • buffer services or called downlink services
  • the multi-link site device selects the site STA102-1 to periodically wake up to receive the beacon frame.
  • a beacon frame (beacon1, marked as B in the figure)
  • station 102-1 has downlink service
  • station 102-2 has no downlink service.
  • the station 102-1 wakes up and sends a PS-Poll frame (denoted as P in Figure 6) to inform that the station STA102-1 in the multilink station equipment is in the awake state and the station STA102-2 is in the sleep state; after that, the station STA102 -1 Perform data communication with AP101-1 in the multi-link AP101, such as sending data frames (marked as d in Figure 6).
  • STA102-1 and STA102-2 can also reply to confirmation frames (marked in Figure 6). Is a);
  • the multi-link site equipment site 102-1 learns that both site 102-1 and site 102-2 have downlink services, and then sends a PS-Poll frame to AP101-1, Notify that both the station 102-1 and the station 102-2 in the multi-link station equipment are in the awake state.
  • AP101-2 can also send a beacon frame on link 2 (link2).
  • the second method Indicate that multiple stations in the first multi-link device have buffered traffic (buffered traffic) through the link identification bitmap and more data bits in the MAC frame (for example, data frame). Receiving, or, through the downlink service bitmap in the MAC frame, indicating that multiple stations in the first multi-link device have buffered traffic to be received. For the specific implementation manner, refer to the second embodiment, which will not be repeated here. Therefore, the first multi-link device can determine a site that has a buffer service to be received.
  • the third method the notification method defined in the 802.11ax protocol can also be used.
  • the second device may send a beacon frame on multiple links.
  • the beacon frame on each link carries a TIM element to inform the station on the link whether there is a buffer service.
  • the first multi-link The device determines, according to the multiple beacon frames, that there are multiple sites to be received for buffered traffic in the first multilink device.
  • the embodiment of the present application provides a method suitable for multi-link sites, and one site can report whether one or more sites in the multi-link device are in an awake state, so as to achieve the effect of saving signaling overhead and power saving.
  • the second embodiment provides a buffer service notification method, which informs each station in the multi-link site whether there is a buffer service to be received, which prevents each station in the multi-link site equipment from periodically waking up to receive the beacon sent by the AP Frame, so as to achieve the effect of power saving.
  • the method includes:
  • the second device generates a media access control layer (medium access control layer, MAC) frame, where the MAC frame includes a link identification bitmap and more data bits, and the link identification bitmap includes Multiple bits, one bit corresponds to one station on one of the multiple links, more data bits include 1 bit, and the link identification bitmap is combined with the more data bits to indicate the link Identify whether the station on the link corresponding to the bitmap has a buffer service to be received.
  • MAC media access control layer
  • the MAC frame is a data frame.
  • the second device may be a multi-link device or a single-link device.
  • the link identification bitmap is carried in the HT-Control field and more data bits are carried in the frame control (Frame control) field.
  • S202 The second device sends the MAC frame to the first device.
  • the second device is a multi-link AP
  • the first device is a multi-link STA
  • the nth bit of the link identification bitmap corresponds to link n, and the nth bit is set to the first value, such as 1.
  • the value of more data bits is applicable to the multi-link station that receives the frame and works in The site of the nth link.
  • the nth bit of the link identification bitmap is set to a second value, such as 0.
  • the value of more data bits is applicable to the multilink stations receiving the frame except for the stations working on the nth link.
  • one bit in the link identification bitmap may correspond to a link identification, and thus may correspond to a station on the link. How the specific link identifier corresponds to the station has been described above, and will not be repeated here.
  • the More data bit can be XORed with the value of the bit in the link identification bitmap. If the XOR result is the first value, it indicates that there is a buffered service to be received, and the result is the second value that indicates that there is no buffered service to be received. . More data bit 1/0 is used to indicate that the station on the link corresponding to the bit with the value 1 in the link identification bitmap has/no buffered services to be received; optional, more data bit 1/0 It is used to indicate that the station on the link corresponding to the bit with a value of 0 in the link identification bitmap has no/has buffer service to be received.
  • the first device for example, the multi-link STA receives the MAC frame, and determines which stations have buffer services to be received according to the MAC frame. For example, one station in the multi-link STA wakes up to receive the MAC frame in S202, which does not require all stations to wake up, which reduces power consumption to a certain extent.
  • the first device may be a multi-link device.
  • the method further includes S203: the second device receives a notification frame sent by the first device, where the notification frame is used to indicate that the station that has a buffer service to be received is in the awake state.
  • Method 1 After the first device receives the MAC frame, all stations with buffered services to be received can be awakened, using the PS-Poll frame defined in 802.11ax, and the first device has stations with buffered services to be received Allocate and send a PS-Poll frame to the second device to inform itself that it is in the awake state.
  • Method 2 After the first device receives the MAC frame, the solution in the first embodiment can be adopted.
  • a station in the first device sends a notification frame on a link to inform the second device that there is Multiple sites that are to receive cache services are in a wake-up state.
  • multiple stations in the first device can wake up to receive the buffer service after sending the notification frame, which further reduces energy consumption and saves signaling overhead.
  • FIG. 8 shows an example of the communication between the multilink AP101 and the multilink STA102.
  • multi-link AP101 includes 2 APs
  • AP101-1 works on link 1 (link1)
  • AP101-2 works on link 2 (link2)
  • the same multi-link STA device includes 2 STAs.
  • STA102-1 works on link 1
  • STA102-2 works on link 2.
  • both STAs in the multi-link STA are in sleep state.
  • STA102-1 in the multi-link station receives the beacon frame and finds that STA102-1 has downlink data.
  • STA102-1 sends a PS-Poll frame to inform
  • the multi-link AP101 is already in the awake state.
  • AP101-1 sends an acknowledgement frame or directly sends downlink data to the station 102-1.
  • the first data packet sent by AP101-1 (which can of course also be other MAC frames) carries the link identification bitmap field (for example, the link identification bitmap field includes 2 bits, denoted as B0B1), and the value of B0B1 is 10.
  • B0B1 the link identification bitmap field includes 2 bits, denoted as B0B1
  • the value of more data bits is 1, which means that the multi-link AP101 still has data for STA102-1 working on link 1, and optionally, there is no data for STA102-2 working on link 2. Therefore, STA102-2 continues to sleep and does not need to wake up, thereby saving power consumption.
  • the second data packet sent by AP101-1 carries the link identification bitmap field (including 2 bits, denoted as B0B1), the value of B0B1 is 11, and the value of more data bits is 1, which means that the multi-link AP101 still has
  • the data for STA102-1 working on link 1 optionally, also indicates that the multi-link AP also has data for STA102-2 working on link 2.
  • the STA 102-2 can wake up to receive the data sent by the multi-link AP 101.
  • the STA102-2 in the multilink station sends a PS-Poll frame to inform the multilink AP101 device that it has been awake.
  • the station 102-1 may also send a notification frame to notify the multi-link AP station 102-2 that the station 102-2 is in the awake state (the specific implementation method can refer to the implementation manner of the foregoing embodiment 1).
  • more data bits can also only act on the link where the data packet is located.
  • the link identification bitmap field in the second data packet sent by AP101-1 includes 2 bits, and the value of B0B1 is 11. The bit value is 1, which indicates that the multi-link AP has data for STA102-1 working on link 1, but does not indicate whether there is data for STA102-2 working on link 2.
  • the first data packet sent by AP101-2 carries the link identification bitmap field (including 2 bits, marked as B0B1), the value of B0B1 is 11, and the value of more data bits is 0, indicating that the multi-link AP device is not working
  • the data of the STA 102-2 on the link 2 can optionally also indicate that there is no data for the STA 102-1 working on the link 1. After that, the STA102-1 and STA102-2 of the multilink STA device transition to the sleep state.
  • the MAC frame may also include other information, such as end of service period (EOSP) bits, and/or power save management (PM) bits.
  • EOSP end of service period
  • PM power save management
  • the EOSP bit is carried in the quality of service (QoS) control field in the MAC header of the MAC frame
  • QoS quality of service
  • the PM bit is carried in the frame control field in the MAC header.
  • the link identification bitmap and the EOSP bit are combined to indicate whether the existing service time of the station on the link corresponding to the link identification bitmap is over.
  • the nth bit of the link identification bitmap corresponds to link n, and the nth bit is set to the first value, such as 1, then the EOSP bit includes 1 bit, and the value of this 1 bit is suitable for receiving the frame The station that works on the nth link among the multi-link stations.
  • the nth bit of the link identification bitmap is set to a second value, such as 0, and the value of the EOSP bit is applicable to other stations working on the nth link among the multilink stations receiving the frame.
  • the EOSP bit set to 1/0 is used to inform the receiving end (multi-link STA) that the existing service time of the station on the link corresponding to the bit with the value 1 in the link identification bitmap is over/not over
  • the EOSP bit set to 1/0 is used to indicate that the existing service time of the station on the link corresponding to the bit with the value 0 in the link identification bitmap is not over/over.
  • the link identification bitmap and the PM bit are combined to indicate whether the station on the link corresponding to the link identification bitmap is in the power saving mode.
  • the nth bit of the link identification bitmap corresponds to link n, and the nth bit is set to the first value, such as 1, then the PM bit includes 1 bit, and the value of this 1 bit is suitable for receiving the frame The station that works on the nth link among the multi-link stations.
  • the nth bit of the link identification bitmap is set to a second value, such as 0, and the value of the PM bit is applicable to the multilink stations receiving the frame except for stations working on the nth link.
  • the PM bit set to 1/0 is used to indicate that the station on the link corresponding to the bit in the link identification bitmap with a value of 1 is in/not in the power saving mode; optionally, the PM bit is set to 1/0.
  • the station on the link corresponding to the bit whose value is 0 in the bitmap indicating the link identification bitmap is not in/in the power saving mode.
  • the MAC frame may include a link identification bitmap, and one or more of three kinds of bits: more data bit, EOSP bit, and PM bit. That is to say, the MAC frame may also include one or more of more data bits combined with a link identification bitmap, EOSP bits combined with a link identification bitmap, and PM bits combined with a link identification bitmap.
  • More data bit combined with link identification bitmap, EOSP bit combined with link identification bitmap, PM bit combined with link identification bitmap, three mechanisms can be applied to frames sent by multi-link AP devices to multi-link site devices It can also be used in a frame sent by a multi-link site device to a multi-link AP device, and can also be applied in a frame sent by one multi-link device to another multi-link device.
  • the MAC frame may not include the link identification bitmap.
  • the link identification bitmap is not carried in every data frame.
  • the data frame does not include a link identification bitmap.
  • more data bits are used to inform the first device (such as a multilink STA device) whether the station currently transmitting has downlink services (or buffer services).
  • the EOSP bit is used to indicate whether the service time of the currently receiving station by the currently transmitting second device is over, and the PM bit is used to indicate whether the currently transmitting station is in the power saving mode. It is understandable that for this situation where the link identification bitmap is not included, the MAC frame may include: more data bits, PM bits, or EOSP bits in one or a combination of one or more.
  • the embodiment of the present application also proposes a scheme for carrying one or more of the downlink service bitmap, the PM bitmap, and the EOSP bitmap in the MAC frame.
  • the MAC frames involved in steps S201 and S202 may not include the link identification bitmap field, but include one or more of the downlink service bitmap, the PM bitmap, and the EOSP bitmap.
  • the downlink service bitmap is used to inform whether multiple stations in the multilink STA have buffer services to be received;
  • the EOSP bitmap is used to inform whether the service time of multiple stations in the multilink STA is over;
  • PM The bitmap is used to inform whether multiple stations in the multilink STA are in the power saving mode.
  • one bit may correspond to a station working on one link in the multi-link device.
  • the multilink AP device sends a data frame, and the MAC header of the data frame carries the downlink service bitmap field, which is used to inform the multilink STA device at which stations there are downlink services that need to be received.
  • the data packet 1 sent by AP101-1 in the multi-link AP carries a PM bitmap
  • the EOSP bitmap includes 2 bits with a value of 10, which means that the second device currently sending is to the multilink site.
  • the service time of the STA102-1 working on the link 1 is over, and the service time of the STA102-2 working on the link 2 in the multi-link site by the second device currently sent has not ended.
  • the PM bitmap includes 2 bits with a value of 10, which means that the STA102-1 working on link 1 in the multi-link station is in power saving mode, and the STA102-2 working on link 2 in the multi-link station is not In power saving mode.
  • the multilink STA can determine which stations have buffer services to be received, and its signaling overhead is smaller.
  • the downlink service bitmap field may indicate the downlink multicast service and the unicast service respectively.
  • the downlink service bitmap field includes a downlink multicast service bitmap field and a downlink unicast service bitmap field, where the downlink multicast bitmap field is used to indicate whether there are multiple sites of the multilink site.
  • Downlink multicast or broadcast services where the multicast or broadcast services are usually sent after the DTIM beacon frame sent by the AP; the downlink unicast bitmap field is used to indicate whether multiple sites of the multilink site have downlink unicast services.
  • every 2 bits in the downlink service bitmap field corresponds to a station on a link, indicating whether there are downlink multicast services and unicast services for stations on this link. These 2 bits 1 bit corresponds to unicast service, and 1 bit corresponds to multicast or broadcast service.
  • bitmap fields may be carried in the MAC header of the MAC frame, such as the HT control field (high throughput), which may also be referred to as the aggregate control field (Aggregated control field) .
  • the HT control field high throughput
  • aggregate control field aggregate control field
  • the embodiment of the application proposes to use the link identification bitmap field in combination with more existing data bit fields or use the downlink service bitmap field carried in the data frame to inform whether multiple stations in the multi-link station have downlink
  • the business avoids that each station in the multi-link station periodically wakes up to receive the beacon frame sent by the AP, thereby achieving the effect of power saving.
  • the data frame sent by the AP can also carry information such as PM bitmap and EOSP bitmap.
  • One of the multi-link sites can wake up to obtain the information of all the sites on the link, which further reduces power consumption. , Improve the transmission efficiency and reduce the transmission delay.
  • the third embodiment provides yet another power saving method applied to multi-link communication, which is applied to a multi-link device.
  • FIG. 9 shows an interactive schematic diagram of yet another energy saving method provided in the third embodiment. The method includes:
  • the second device generates a MAC frame, where the MAC frame includes a link identification bitmap and more data bits, or, the MAC frame includes a downlink service bitmap, or, the MAC frame includes a TIM element;
  • the MAC frame includes a link identification bitmap and more data bits combined to indicate whether a station on the link corresponding to the link identification bitmap has a buffer service to be received.
  • the downlink service bitmap is used to inform which stations in the first device have downlink services that need to be received.
  • the TIM element is used to inform which stations in the first device have downlink services that need to be received.
  • the MAC frame includes a TIM element, and the manner of implementing an indication by using the TIM element can refer to the description of Embodiment 1, which will not be repeated here.
  • the second device sends the MAC frame to the first device.
  • step S202 in the second embodiment which will not be repeated here.
  • the first device determines that there are multiple sites to be received for buffer services in the first device.
  • the first device may determine which stations in the first device have buffer services based on the MAC frame including the link identification bitmap and more data bits, or the downlink service bitmap, or the TIM element.
  • the first device generates a notification frame.
  • step S101 in the first embodiment which will not be repeated here.
  • the first device sends the notification frame on one link, where the notification frame is used to indicate that the multiple stations in the first multilink device are in an awake state.
  • step S102 in the first embodiment which will not be repeated here
  • the second device sends a buffer service to the first device.
  • step S105 in the first embodiment which will not be repeated here.
  • the link identification bitmap field and the existing more data bit fields can be used to inform whether multiple sites in the multi-link site equipment have downlink services, which avoids each of the multi-link site equipment.
  • a station wakes up periodically to receive the beacon frame sent by the AP, thereby achieving a power saving effect. Further, by feeding back that multiple stations in the first multi-link device are in an awake state on one link, the effect of saving signaling overhead and power saving is achieved.
  • FIG. 10 shows a communication device 1000 provided by an embodiment of the present application.
  • the device may be the first device (the first multi-link device) or the second device in the above-mentioned embodiment, and it may also be the first multi-link device.
  • the chip or processing system in the device or the second device can implement the methods and functions of any of the foregoing embodiments.
  • the communication device may include one or more of the components shown in FIG. 10.
  • the components shown in FIG. 10 may include at least one processor 1001, a memory 1002, a transceiver 1003, and a communication bus 1004.
  • the processor 1001 is the control center of the communication device 1000, and may be a processor or a collective term for multiple processing elements.
  • the processor 1001 is a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement the embodiments of the present application
  • one or more microprocessors digital signal processor, DSP
  • one or more field programmable gate arrays Field Programmable Gate Array, FPGA
  • the processor 1001 can execute various functions of the communication device by running or executing a software program stored in the memory 1002 and calling data stored in the memory 1002.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 10.
  • the communication device 1000 may include multiple processors, such as the processor 1001 and the processor 1005 shown in FIG. 10. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 1002 may be a read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication equipment can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disk storage, Optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • Optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage media or other magnetic storage communication devices or can be
  • the memory 1002 may exist independently, and is connected to the processor 1001 through a communication bus 10010.
  • the memory 1002 may also be integrated with the processor 1001. Wherein, the memory 1002 is used to store a software program for executing the solution of the present application, and is controlled by the processor 1001 to execute.
  • the transceiver 1003 is used for communication with other devices (for example, the second device). Of course, the transceiver 1003 can also be used to communicate with a communication network, such as an Ethernet, a radio access network (RAN), a wireless local area network (Wireless Local Area Networks, WLAN), etc.
  • the transceiver 1003 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the communication bus 10010 may be an industry standard architecture (ISA) bus, an external communication device interconnection (Peripheral Component, PCI) bus, or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • ISA industry standard architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the communication device 1000 is a complete device.
  • the communication device may include a processor 1001, a memory 1002, a transceiver 1003, and a communication bus 1004.
  • it may also include other components, such as a display frequency, etc.
  • the communication apparatus 1000 is the first multi-link device or the first device, and may be used to implement the methods and functions related to the first multi-link device or the first device in the first to third embodiments.
  • instructions are stored in the memory, and when the instructions are called by the processor, the above methods and functions are implemented.
  • the processor is used to generate signaling or frames
  • the transceiver is used to send signaling or frames.
  • the processor is used to perform steps S104, S101, S303, S304, etc.
  • the transceiver is used to perform steps S102, S103, S105, S202, S203, S302, S305 or S306, etc.
  • the communication apparatus 1000 is a second device, and may be used to implement the methods and functions related to the second device in the foregoing Embodiments 1 to 3.
  • instructions are stored in the memory, and when the instructions are called by the processor, the above methods and functions are implemented.
  • the processor is used to generate signaling or frames
  • the transceiver is used to send signaling or frames.
  • the processor is used to generate the MAC frame sent in S103, step S201, used to indicate S201 or S301, etc.
  • the transceiver is used to perform steps S103, S102, S105, S202, S203, S302, S305 or S306, etc.
  • the communication device 1000 is a chip system or a processing system in the first device or the first multi-link device or the second device, so that the device on which the chip system or the processing system is installed can implement the above-mentioned embodiments in the first to third embodiments.
  • the communication device 1000 may include some components as shown in FIG. 10, for example, the communication device 1000 includes a processor, which may be coupled with a memory, call and execute instructions in the memory, so as to configure the chip system or the processing system installed
  • the memory may be a component in a chip system or a processing system, and may also be a component of an external coupling link of the chip system or the processing system.
  • the chip system or processing system is installed in the first device or the first multi-link device, so that the first device or the first multi-link device can implement the corresponding methods and functions in the foregoing embodiments.
  • the chip system or processing system is installed in the second device, so that the second device can implement the corresponding methods and functions in the foregoing embodiments.
  • the chip system or processing system can support 802.11 series protocols for communication, such as 802.11be, 802.11ax, 802.11ac, and so on.
  • the chip system can be installed in devices in various scenarios that support WLAN transmission. The devices in the WLAN transmission scenario have been introduced at the beginning of this specification, and will not be repeated here.
  • the embodiment of the present application can divide the first device (the first multi-link device) or the second device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or two
  • the above functions are integrated in a processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 shows a possible structural diagram of a communication device 1100.
  • the communication device 1100 may be a chip or a processing system in a link device or a multi-link device. 1100 may perform the operation of the multi-link device in the foregoing method embodiment.
  • the communication device 1100 includes a processing unit 1101 and a transceiver unit 1102.
  • the communication apparatus 1100 is a first multi-link device or a station in the first multi-link device.
  • the processing unit 1101 may be used to control and manage the actions of the communication device 1100. For example, it is determined that there is a site with a cache service in the first multi-link device. For another example, the operation of the transceiver unit 1102 is controlled.
  • the processing unit 1101 may also execute programs or instructions stored in the storage unit, so that the communication device 1100 implements the methods and functions involved in any of the foregoing embodiments.
  • the above-mentioned processing unit 1101 may be used to execute, for example, step S101 in FIG. 4, or step S303 or S304 in FIG. 9 and/or other processes used in the technology described herein.
  • step S101 in FIG. 4 or step S303 or S304 in FIG. 9 and/or other processes used in the technology described herein.
  • step S303 or S304 in FIG. 9
  • all relevant content of the steps involved in the above method embodiments can be cited in the functional description of the corresponding functional module, which will not be repeated here.
  • the above-mentioned transceiver unit 1102 may send and receive data or signaling transmitted on one link, or may send and receive data or signaling transmitted on multiple links.
  • the transceiver unit 1102 may be one transceiver module, or may include multiple transceiver modules.
  • the transceiver module can send and receive data on multiple links. For example, if the first multi-link device works on two links, when the transceiver unit 1102 includes two transceiver modules, one of the transceiver modules works on one link, and the other transceiver module works on the other link.
  • the above transceiver unit 1102 may be used to perform steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S302, S305, and S306 in FIG. 9, and
  • the communication device 1100 may be the communication device shown in FIG. 10, the processing unit 1101 may be the processor 1001 in FIG. 10, and the transceiving unit 1102 may be the transceiver 1003 in FIG. 10.
  • the communication device 1100 may further include a memory, and the memory is used to store the program code and data corresponding to any of the communication methods between the multi-link devices provided by the communication device 1100. The descriptions of all related content of the components involved in FIG. 10 can be quoted from the functional descriptions of the corresponding components of the communication device 1100, which will not be repeated here.
  • the communication device 1100 may also be a chip or a processor, where the processing unit 1102 is a processing circuit in the chip or the processor, and the transceiver unit 1102 may be an input/output circuit in the chip or the processor.
  • the circuit is the interface between the chip or processor and other coupling components to communicate or exchange data. It can ensure that signaling or data information or program instructions are input to the chip or processor for processing, and the processed data or signaling is output to Other coupled components, and control the first multi-link device on which the chip or processor is installed to realize the functions.
  • the communication device 1100 is the second device or a chip in the second device.
  • the above-mentioned processing unit 1101 may be used to generate a MAC frame, for example, to perform step S201 in FIG. 7 or S301 in FIG. 9, and/or other processes used in the technology described herein.
  • a MAC frame for example, to perform step S201 in FIG. 7 or S301 in FIG. 9, and/or other processes used in the technology described herein.
  • all relevant content of the steps involved in the above method embodiments can be cited in the functional description of the corresponding functional module, which will not be repeated here.
  • the above-mentioned transceiver unit 1102 may send and receive data or signaling transmitted on one link, or may send and receive data or signaling transmitted on multiple links.
  • the transceiver unit 1102 may be one transceiver module, or may include multiple transceiver modules.
  • the transceiver module can send and receive data on multiple links. For example, if the second device works on two links, when the transceiver unit 1102 includes two transceiver modules, one of the transceiver modules works on one link, and the other transceiver module works on the other link.
  • the above transceiver unit 1102 may be used to perform steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S103, S102, and S105 in FIG. 4, or steps S202 and S203 in FIG. 7, or steps S302, S305, and S306 in FIG. 9, and/ Or other processes used in the techniques described herein.
  • steps S302, S305, and S306 in FIG. 9, and
  • the communication device 1100 may be the communication device shown in FIG. 10, the processing unit 1101 may be the processor 1001 in FIG. 10, and the transceiving unit 1102 may be the transceiver 1003 in FIG. 10.
  • the communication device 1100 may further include a memory, and the memory is configured to store the program code and data corresponding to any of the methods provided above by the communication device 1100. The descriptions of all related content of the components involved in FIG. 10 can be quoted from the functional descriptions of the corresponding components of the communication device 1100, which will not be repeated here.
  • the communication device 1100 may also be a chip or a processor, where the processing unit 1102 is a processing circuit in the chip or the processor, and the transceiver unit 1102 may be an input/output circuit in the chip or the processor.
  • the circuit is the interface between the chip or processor and other coupling components to communicate or exchange data. It can ensure that signaling or data information or program instructions are input to the chip or processor for processing, and the processed data or signaling is output to Other coupled components, and control the device on which the chip or processor is installed to realize the functions.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer program code is stored.
  • the electronic device executes the steps shown in FIG. 4, FIG. 7, and FIG. 9 The method of any embodiment.
  • the embodiments of the present application also provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the method of any one of the embodiments in FIG. 4, FIG. 7, and FIG. 9.
  • the embodiment of the present application also provides a communication device, which can exist in the form of a chip product.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit so that the device can execute The method in any one of the above-mentioned embodiments shown in FIG. 4, FIG. 7, and FIG.
  • An embodiment of the present application also provides a communication system, including a first device and a second device, and the first device and the second device can execute the method in any one of the foregoing embodiments of FIG. 4, FIG. 7, and FIG. 9.
  • the steps of the method or algorithm described in combination with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), and electrically erasable Programming read-only memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described in this application can be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer-readable storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种应用于多链路通信中的功率节省方法和装置,降低了多链路设备的功耗。具体方案为:第一多链路设备在多条链路中的一条链路上向第二设备发送通知帧,指示第一多链路设备中的多个站点是否处于苏醒状态。通过多链路设备的一条链路汇报第一多链路设备包括的一个或多个站点是否处于醒来状态,避免了工作在多条链路上的多个其他STA都分别汇报其醒来状态,降低了多链路设备的功耗,节省了信令开销,提高了传输效率。

Description

一种应用于多链路通信中的功率节省方法和装置
本申请要求于2020年03月11日提交中国专利局、申请号为202010168105.3、申请名称为“一种应用于多链路通信中的功率节省方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种应用于多链路通信中的功率节省方法和装置。
背景技术
为了大幅提升WLAN系统的业务传输速率,电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)802.11ax标准在现有正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术的基础上,进一步采用正交频分多址(OFDMA,Orthogonal Frequency Division Multiple Access)技术。OFDMA技术支持多个节点同时发送和接收数据,从而实现多站点分集增益。在802.11ax定稿的2017年,美国联邦通信委员会(FCC,Federal Communications Commission)开放了一段新的免费频段5925-7125MHz,下述简称该段频段为6GHz。于是802.11ax标准工作者在802.11ax项目授权申请书(PAR,Project Authorization Requests)中把802.11ax设备工作范围从2.4GHz,5GHz拓展到2.4GHz,5GHz和6GHz。
IEEE 802.11下一代WiFi协议(EHT,extremely high throughput)设备由于需向前兼容,因此也会支持802.11ax设备的工作频谱,即会支持2.4GHz,5GHz和6GHz频段。根据最新开放的免费的6GHz频段,基于该频段做信道划分,可支持的带宽可以超过在5GHz支持的最大带宽160MHz,比如320MHz。除了通过超大带宽,IEEE 802.11ax下一代WiFi-极高吞吐量还可以通过更多的流数,比如流数增加到16流,以及多个频段(2.4GHz,5GHz和6GHz)合作等方式提高峰值吞吐量。在同一频段上,还可以通过多个信道合作等方式提高峰值吞吐量,降低业务传输的时延。下面把多频段或多信道统称为多链路。
802.11ax及之前的同工作频段的WiFi虽然配置多链路,但通常来说,每个多链路建立不同的BSS(基本服务集,Basic Service Set),一个时刻只能在一个链路跟该链路所归属的BSS内的站点通信。
IEEE 802.11下一代WiFi极高吞吐量(EHT,extremely high throughput)协议中除了使用新频段6GHz的连续超大带宽,也可以使用多链路合作技术把不连续的多链路聚合起来形成超大带宽。多链路合作技术除了聚合更大的带宽,还可以使用多链路合作技术同时发送数据包给同一个站点。
显然,多链路设备采用多条链路并行通信使得传输的速率得到大幅度提升,但是由于多条链路需要同时处于工作状态,需要耗费更多的能量,功耗开销会更大,因此,如何降低多链路设备的功率是至关重要的。
发明内容
本申请实施例提供一种应用于多链路通信中的功率节省方法和装置,能够降低多链路站点的功耗。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种应用于多链路通信中的功率节省方法,应用于第一多链路设备中,第一多链路设备中的一个站点工作在多条链路中的一条上,第一多链路设备中的一个站点在一条链路上向第二设备发送通知帧,通知帧用于指示第一多链路设备中的多个站点是否处于苏醒状态。可以理解的,本方案,可以通过多链路设备的一条链路上汇报其包括的一个或多个站点处于醒来状态,避免了工作在多条链路上的多个其他STA都一一汇报其醒来状态,降低了多链路设备的功耗,提升了传输效率。
第二方面,提供又一种应用于多链路通信中的功率节省方法,该方法包括:第二设备在一条链路上接收来自第一多链路设备的站点发送的通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中的一个站点工作在一条链路上;所述第二设备根据所述通知帧,确定所述第一多链路设备中处于苏醒状态的站点。
第三方面,提供一种缓存业务通知方法,该方法包括:第二设备生成媒体介质接入控制层(medium access control layer,MAC)帧,所述MAC帧包括链路标识比特位图和更多数据(More data)比特,链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓冲缓存业务待接收,发送MAC帧。
第四方面,提供一种缓存业务通知方法,该方法包括:第一设备接收媒体介质接入控制层(medium access control layer,MAC)帧,所述MAC帧包括链路标识比特位图和更多数据(More data)比特,链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓存业务待接收;第一设备,根据链路标识比特位图与所述更多数据比特确定第一设备中的哪些站点有缓存业务待接收。
第五方面,提供一种通信装置,应用于第一多链路设备,包括处理单元,用于生成通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中一个站点工作在一条链路上;收发单元,用于在一条链路上向第二设备发送所述通知帧
第六方面,提供一种通信装置,应用于第二设备中,包括:
收发单元,用于在一条链路上接收来自第一多链路设备的站点发送的通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中的一个站点工作在一条链路上;处理单元,用于根据所述通知帧,确定所述第一多链路设备中处于苏醒状态的站点。
第七方面,提供一种通信装置,应用于第一设备,包括:收发单元,用于接收媒体介质接入控制层(medium access control layer,MAC)帧,所述MAC帧包括链路标识比特位图和更多数据(More data)比特,链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓存业务待接收;处理单元,用于根据链路标识比特位图与所述更多数据比特确定第一设备中的哪些站点有缓存业务待接收。
第八方面,提供一种通信装置,应用于第二设备中,包括:处理单元,用于生成媒体介 质接入控制层(medium access control layer,MAC)帧,所述MAC帧包括链路标识比特位图和更多数据(More data)比特,链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓冲缓存业务待接收,收发单元用于发送MAC帧。
上述第五方面至第八方面的通信装置可以为芯片,其中,处理单元可以为芯片的处理电路,收发单元可以为输入输出接口电路,处理电路可以用于处理由输入输出提供的信令或数据信息,输入输出接口电路可以用于为该芯片输入输出数据或信令信息。
本申请实施例的第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序代码,当所述计算机程序代码在处理器上运行时,使得所述处理器执行上述任一方面的方法。
本申请实施例的第十方面,提供了一种计算机程序产品,该程序产品储存有上述处理器执行的计算机软件指令,该计算机软件指令包含用于执行上述方面所述方案的程序。
本申请实施例的第十一方面,提供了一种通信装置,该装置包括处理器,还可以包括收发器以及存储器,收发器,用于收发信息,或者用于与其他网元通信;存储器,用于存储计算机执行指令;处理器,用于执行所计算机执行指令,以支持通信装置实现上述任一方面所述的方法。
本申请实施例的第十二方面,提供了一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器,还可以包括存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,以支持通信装置执行上述任一方面所述的方法。
本申请实施例的第十三方面,提供了一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行上述任一方面所述的方法。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2(a)为本申请实施例提供的一种多链路设备的结构示意图;
图2(b)为本申请实施例提供的另一种多链路设备的结构示意图;
图3(a)为本申请实施例提供的一种多链路通信的示意图;
图3(b)为本申请实施例提供的另一种多链路通信的示意图;
图4为本申请实施例提供的一种应用于多链路通信中的功率节省方法的交互示意图;
图5为本申请实施例提供的一种PS-Poll帧的帧结构示意图;
图6为本申请实施例提供的一种多链路设备间的通信示意图;
图7为本申请实施例提供的一种缓存业务通知方法的交互示意图;
图8为本申请实施例提供的另一种多链路设备间的通信示意图;
图9为本申请实施例提供的另一种应用于多链路通信中的功率节省方法的交互示意图;
图10为本申请实施例提供的一种通信装置的组成示意图;
图11为本申请实施例提供的另一种通信装置的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例提供一种应用于无线通信系统的通信方法,可以达到降低多链路设备功耗的效果。该无线通信系统可以为无线局域网(Wireless local area network)或蜂窝网,该方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,该通信设备可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(Multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。
多链路设备包括一个或多个隶属的站点STA(affiliated STA),隶属的STA是一个逻辑上的站点,可以工作在一条链路上。其中,隶属的站点可以为接入点(Access Point,AP)或非接入点站点(non-Access Point Station,non-AP STA)。为描述方便,本申请将隶属的站点为AP的多链路设备可以称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device),隶属的站点为non-AP STA的多链路设备可以称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device)。为描述方便,“多链路设备包括隶属STA”在本申请实施例中也简要描述为“多链路设备包括STA”。
值得注意的是,多链路设备包括多个逻辑站点,每个逻辑站点工作在一条链路上,但允许多个逻辑站点工作在同一条链路上。下文的提到的链路标识表征的是工作在一条链路上的一个站点,也就是说,如果一条链路上有多于1个站点,则需要多于1个链路标识表征他们。下文的提到的链路有时也表示工作在该条链路上的站点。
多链路AP设备与多链路STA在数据传输时,可以采用链路标识来标识一条链路或一条链路上的站点。在通信之前,多链路AP设备与多链路STA设备可以先协商或沟通链路标识与一条链路或一条链路上的站点的对应关系。因此在数据传输中,不需要传输大量的信令信息用来指示链路或链路上的站点,携带链路标识即可,降低了信令开销,提升了传输效率。
一个示例中,多链路AP设备在建立BSS时,发送的管理帧,比如beacon帧,会携带一个包括多个链路标识信息字段的元素,每个链路标识信息字段可以建议一个链路标识与工作在一个链路上的站点的对应关系。每个链路标识信息字段包括链路标识,还包括:MAC地址,操作集,信道号中的一个或多个,其中MAC地址,操作集,信道号中的一个或多个可以指示一条链路;另一个示例中,在多链路建立关联过程中,多链路AP设备和多链路站点设备协商多个链路标识信息字段。在后续的通信中,多链路AP设备或者多链路站点设备会通过使用链路标识来表征多链路设备中的一个站点,链路标识还可以表征该站点的MAC地址,工作的操作集,信道号中的一个或多个属性。其中MAC地址,也可以换成关联后多链路AP设备的关联标识。
如果是多个站点工作在一条链路上,那么链路标识(是一个数字的ID),表征的意义除了包括链路所在的操作集,信道号,还包括工作在该链路上的站点标识,比如站点的MAC地址或者AID。
多链路设备可以遵循802.11系列协议实现无线通信,例如,遵循极高吞吐率(Extremely High Throughput,EHT)站点,或遵循基于802.11be或兼容支持802.11be的站点,实现与其他设备的通信,当然其他设备可以是多链路设备,也可以不是多链路设备。
图1以无线局域网为例,介绍了本申请实施例的一种应用场景图。图1所示的应用场景,包括:一个多链路AP设备101和一个多链路STA设备102,其中,该多链路AP设备是为多链路STA设备提供服务的多链路设备,多链路STA设备可以与多链路AP设备之间采用多条链路进行通信,从而达到提升吞吐量的效果。当然,该无线局域网还可以包括其他设备, 比如多链路STA103和单链路的STA104。图1中多链路AP和多链路STA的个数,仅是示例性的。
图2示出了一种多链路设备的结构示意图。802.11标准关注多链路设备中的802.11物理层(Physical layer,PHY)和媒体接入控制(Media Access Control,MAC)层部分。如图2(a)所示,多链路设备包括的多个STA在低MAC(Low MAC)层和PHY层互相独立,在高MAC(High MAC)层也互相独立。如图2(b)所示,多链路设备中包括的多个STA在低MAC(Low MAC)层和PHY层互相独立,共用高MAC(High MAC)层。当然,在多链路通信过程中,多链路STA设备可以是采用高MAC层相互独立的结构,而多链路AP设备采用高MAC层共用的结构;也可以是多链路STA设备采用高MAC层共用的结构,多链路AP设备采用高MAC层相互独立的结构;还可以是多链路STA设备采用高MAC层共用的结构,多链路AP设备也采用高MAC层共用的结构;还可以是多链路STA设备采用高MAC层相互独立的结构,多链路AP设备也采用高MAC层相互独立的结构。本申请实施例对于多链路设备的内部结构示意图并不进行限定,图2仅是示例性说明。示例性的,该高MAC层或低MAC层都可以由多链路设备的芯片系统中的一个处理器实现,还可以分别由一个芯片系统中的不同处理模块实现。
示例性的,本申请实施例中的多链路设备可以是单个天线的设备,也可以是多天线的设备。例如,可以是两个以上天线的设备。本申请实施例对于多链路设备包括的天线的数目并不进行限定。在本申请的实施例中,多链路设备可以允许同一接入类型的业务在不同链路上传输,甚至允许相同的数据包在不同链路上传输;也可以不允许同一接入类型的业务在不同链路上传输,但允许不同接入类型的业务在不同的链路上传输。
多链路设备工作的可以频段包括:sub 1GHz,2.4GHz,5GHz,6GHz以及高频60GHz。图3示出了无线局域网中多链路设备与其他设备通过多条链路进行通信的两种示意图。
图3(a)示出了一种多链路AP设备101和多链路STA设备102通信的示意图,多链路AP设备101包括隶属的AP101-1和AP101-2,多链路STA设备102包括隶属的STA102-1和STA102-2,且多链路AP设备101和多链路STA设备102采用链路1和链路2并行进行通信。
图3(b)示出了多链路AP设备101与多链路STA设备102通信的示意图,多链路STA设备103以及STA104进行通信的示意图,多链路AP设备101包括隶属的AP101-1至AP101-3,多链路STA设备102包括隶属的两个STA102-1和STA102-2,多链路STA设备103包括2个隶属的STA103-1,STA103-2,STA103-3,STA104为单链路设备,多链路AP设备可以分别采用链路1和链路3与多链路STA设备102进行通信,采用链路2和链路3与多链路103进行通信,采用链路1与STA104通信。一个示例中,STA104工作在2.4GHz频段;多链路STA设备103包括STA103-1和STA103-2,STA103-1工作在5GHz频段,STA103-2工作在6GHz频段;多链路STA设备102包括STA102-1和STA102-2,STA102-1工作在2.4GHz频段,STA102-2工作在6GHz频段。多链路AP设备中工作在2.4GHz频段的AP101-1可以通过链路1与STA104和多链路STA设备102中的STA102-2之间传输上行或下行数据。多链路AP设备中工作在5GHz频段的AP101-2可以通过链路2与多链路STA设备103中工作在5GHz频段的STA103-1之间传输上行或下行数据。多链路AP设备101中工作在6GHz频段的AP101-3可以通过链路3与多链路STA设备102中工作在6GHz频段的STA102-2之间传输上行或下行数据,还可以通过链路3与多链路STA设备中的STA103-2之间传输上行或下行数据。
需要说明的是,图3(a)仅示出了多链路AP设备支持2个频段,图3(b)仅以多链路AP设备支持三个频段(2.4GHz,5GHz,6GHz),每个频段对应一条链路,多链路AP设备101可以工作在链路1、链路2或链路3中的一条或多条链路为例进行示意。在AP侧或者STA侧,这里的链路还可以理解为工作在该链路上的站点。实际应用中,多链路AP设备和多链路STA设备还可以支持更多或更少的频段,即多链路AP设备和多链路STA设备可以工作在更多条链路或更少条链路上,本申请实施例对此并不进行限定。
示例性的,多链路设备为具有无线通信功能的装置,该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,本申请实施例中的多链路STA具有无线收发功能,可以为支持802.11系列协议,可以与多链路AP或其他多链路STA或单链路设备进行通信,例如,多链路STA是允许用户与AP通信进而与WLAN通信的任何用户通信设备。例如,多链路STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等,多链路STA还可以为上述这些终端中的芯片和处理系统。本申请实施例中的多链路AP为多链路STA提供服务的装置,可以支持802.11系列协议。例如,多链路AP可以为通信服务器、路由器、交换机、网桥等通信实体,或,所述多链路AP可以包括各种形式的宏基站,微基站,中继站等,当然多链路AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。并且,多链路设备可以支持高速率低时延的传输,随着无线局域网应用场景的不断演进,多链路设备还可以应用于更多场景中,比如为智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中智能设备(比如,打印机,投影仪等),车联网中的车联网设备,日常生活场景中的一些基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等)。本申请实施例中对于多链路STA和多链路AP的具体形式不做特殊限制,在此仅是示例性说明。其中,802.11协议可以为支持802.11be或兼容802.11be的协议。
显然,多链路设备采用多条链路并行通信使得传输的速率得到大幅度提升,但是采用多链路通信时,多条链路都需要处于工作状态,因此需要消耗更多的能量,功耗开销会更大,因此,如何降低多链路设备的功率是至关重要的。
在802.11ax中涉及的节能技术包括TIM(traffic indication map,业务指示位图)的节能,TWT(target wake up time,目标唤醒时间)节能技术,APSD(automatic power save delivery,自动节能传输)节能技术等。
下面简要介绍TIM节能技术。在802.11协议中,STA通常有两种工作模式,一种是非节能模式,另一种节能模式。当STA工作在非节能模式时,该STA上无论是否有数据传输,都处于醒来状态(awake state,也可以称为苏醒状态)。当STA工作在节能模式时,在与AP传输数据时,STA可以处于醒来状态(awake state);在与AP之间没有数据传输的时候,STA可以处于休眠状态(doze state)以节省功耗。STA是否处于节能模式,可以通过向AP发送帧,该帧中的MAC头中的帧控制字段(frame control field)中的节能比特置1告知AP该STA处于节能模式,该帧中的MAC头中的帧控制字段(frame control field)中的节能比特置0告知AP该STA处于非节能模式。
为了节省STA的功耗,AP可以对STA的下行业务进行缓存,等待该STA醒来之后再将下行业务发送给该STA。但是由于AP的缓存空间有限,所以AP会周期性的在802.11信标帧携带TIM元素告知其关联的STA是否有下行业务接收。工作在节能模式的STA会周期性的醒来接收AP发送的信标帧,判断AP是否有对其下行业务进行传输。如果没有,STA可以转换成休眠状态。如果有,STA可以选择一个时间点醒来并向AP发送节能轮询帧(PS-poll帧),以告知AP该STA处于醒来状态(awake state),该时间点可以与接收信标帧的时间段相同,也可以不同。
示例性的,上述802.11信标帧(beacon)可以分为两类,一类是业务指示位图(traffic indication map,TIM)信标帧,另一类是发送业务指示位图(delivery traffic indication map,DTIM)信标帧。该DTIM信标帧相对于TIM信标帧,除了指示缓存的单播信息,也同时指示了AP缓存的组播信息。每个信标帧(beacon)中都包含一个TIM元素字段,该TIM元素字段用来指示AP管理的哪个STA有下行数据缓存在AP中。该TIM元素字段的帧格式如下表1所示。
表1
Figure PCTCN2021080237-appb-000001
如表1所示,元素ID(identifier)字段用于识别该元素为TIM元素。长度字段用于指示该TIM元素的长度。DTIM周期(DTIM Period)字段指示DTIM信标帧的周期时长,即到达间隔,以信标帧周期为单位。DTIM计数(DTIM count)字段用于指示下个DTIM信标帧到达前还有多少个TIM信标帧出现。该DTIM count字段是一个计数值,该计数值是变化的。当DTIM count字段的值为0时,表示该信标帧为DTIM信标帧,否则该信标帧为TIM信标帧,即当DTIM count字段的值不为0时,表示该信标帧为TIM信标帧。例如,以DTIM Period设置成1,那么每一个TIM元素字段中,DTIM count都等于0,所以每一个信标帧就是DTIM信标帧。
表1中的比特位图控制(Bitmap control)字段中的第一比特(比特0)指示AP发送DTIM信标帧是否有下行组播业务,比特位图控制(Bitmap control)字段中的比特1~7指示部分虚拟比特位图的偏移量,该偏移量以字节为单位,即8比特为单位。部分虚拟比特位图字段中的每一比特映射一个STA,当该比特的取值为1时表示该比特对应的STA有下行数据缓存在AP中。例如,如果偏移量为0,部分虚拟比特位图从关联标识(association identifier,AID)1开始。若偏移量为1,部分虚拟比特位图从AID9开始。部分虚拟比特位图结束位是由长度字段决定的。因此部分虚拟比特位图最长为251字节,即2008比特。
例如,以长度字段为4字节,比特位图控制字段中的比特1~7指示部分虚拟比特位图的偏移量为0为例,部分虚拟比特位图字段为01100110时,该TIM元素字段指示AID2、AID3、AID6、AID7对应的STA有下行数据缓存在AP中。再例如,以长度字段为4字节,比特位图控制字段中的比特1~7指示部分虚拟比特位图的偏移量为1为例,部分虚拟比特位图字段为01100110时,该TIM元素字段指示AID10、AID11、AID14、AID15对应的STA有下行数据缓存在AP中。
示例性的,如果AP是工作在多基本服务集识别号(Basic Service Set identifier,BSSID) 模式,即AP除了包括传输BSSID的基本服务集(Basic Service Set,BSS),还包括多个非传输BSSID的BSS。多BSSID的集合最大允许的个数为2 n的BSS,其中n是多BSSID元素中的MaxBSSID Indicator字段指示的数值。此时部分虚拟比特位图字段的比特1到2 n-1,用来指示非传输BSSID的BSS对应的下行组播业务。比特2 n结合分虚拟比特位图的偏移量的指示来指示每个AID对应的STA是否有下行单播业务。
802.11-2016协议对部分虚拟比特位图长度有进一步的优化,比如采用802.11-2016协议记载的方法A和方法B。以及后续802.11ah协议草稿的规定的方法C。这些方法都适用于本申请的实施例。如果AP是工作在多BSSID模式,即AP除了包括传输BSSID的BSS,还包括多个非传输BSSID的BSS。多BSSID的集合最大允许的个数为2n的BSS,其中n是多BSSID元素中的MaxBSSID Indicator字段指示的。此时部分虚拟比特位图字段的比特1到2n-1,用来指示非传输BSSID的BSS的对应的组播数据业务。比特2n结合分虚拟比特位图的偏移量的指示来指示每个AID对应的STA是否有下行单播的数据业务。
可见,在802.11ax中涉及的节能技术仅适用于单链路设备,并无法适应于多链路设备。本申请实施例提供了一种适用于多链路设备的功率节省方法,可以通过多链路设备中的隶属STA在一条链路上汇报其包括的一个或多个站点处于醒来状态,避免了其他STA都一一汇报其醒来状态,达到降低多链路设备功耗和提高频谱利用率的效果。此外,本申请实施例还提供了另一种使用于多链路设备的功率节省方法,采用一种新的缓存业务告知方式告知多链路站点中的站点是否有缓存业务,避免了多链路站点设备中的站点都周期性醒来接收AP发送的信标帧,从而达到功率节省的效果。
实施例一提供一种功率节省方法,应用于多链路通信。该方法是适用于多链路设备的功率节省方法,通过多链路设备中的隶属STA在一条链路上汇报其包括的多个站点处于醒来状态,避免了一个或多个站点都分别汇报其醒来状态,达到降低多链路设备功耗和提高频谱利用率的效果。图4示出了实施例一提供的一种应用于多链路通信中的功率节省方法的流程示意图,该方法包括:
S101、第一多链路设备中的一个站点生成通知帧,所述通知帧用于告知第二设备所述第一多链路设备中的多个站点是否处于苏醒状态(awake state)。
第一多链路设备包括多个站点,每个站点工作在一条链路上。可选的,可以由一个站点生成该通知帧,还可以由多个站点生成该通知帧,还可以由第一多链路设备中的处理单元生成该通知帧,该处理单元为多个站点共用的。第二设备可以为第二多链路设备,也可以不为多链路设备,而是单链路设备。在一种场景中,第一多链路设备为多链路STA设备,第二设备为多链路AP设备,例如图1所示,第一多链路设备为多链路STA设备102,第二设备为多链路AP设备101。
S102、第一多链路设备在一条链路上向第二设备发送该通知帧,所述通知帧用于告知第二设备所述第一多链路设备中的所述多个站点是否处于苏醒状态(awake state)。
可以是第一多链路设备中的一个或多个站点在其中的一条或多条链路上发送通知帧,以指示这多个站点已经处于苏醒状态。例如,发送该通知帧的站点可以为第一多链路设备中的主站点,其在主链路上发送该通知帧。如此,多个站点并不需要分别在多个链路上发送通知帧,而仅需要一个站点汇报该多链路设备中的多个站点是否处于醒来状态,而不需要多个站点分别发送通知帧,降低了多链路设备的功耗。相对应的,第二设备在接收到通知帧后,就可以确定第一多链路设备中的哪些站点处于了苏醒状态。
当然,通知帧也可以仅告知第一多链路设备中的一个站点是否处于醒来状态,被告知状态的这个站点可以不是发送通知帧的站点,而是第一多链路设备中的其他站点。比如说,当第一多链路设备中的STA102-1发送通知帧,指示STA102-2处于醒来状态。那么,第二设备则可以在后续与STA102-2通信,可以实现切换通信站点的切换,也意味着可实现通信链路的切换,使得第一多链路设备与第二设备的通信更灵活。
一个示例中,第一多链路设备可以主动的向第二设备发送该通知帧,指示第一多链路设备中的哪些站点处于苏醒状态。又一个示例中,第一多链路设备可以基于在步骤S101之前的其他帧或信令信息,确定哪些站点有缓存业务待接收(比如下行业务),从而发送通知帧。除了下行业务,多链路站点设备的站点还可以因为其他原因处于醒来状态,比如有上行业务待发送给其他设备,则第一多链路设备也可以通过通知帧汇报其处于醒来状态。
示例性的,发送通知帧的这一个站点,可以是有缓存业务待接收的或有缓存业务待发送的这多个站点中的一个,也可以是其他站点,例如主站点,其中主站点也可以为一个或多个。如此,有缓存业务待接收或有缓存业务待发送的多个站点并不需要都分别在多个链路上发送通知帧,而仅需要一个站点发送通知帧降低了多链路设备的功耗。第二设备在接收到通知帧后,就可以确定第一多链路设备中的哪些站点处于了苏醒状态。有缓存业务待接收或有缓存业务待发送的多个站点可以是第一多链路设备包括的多个站点中的部分或者是全部。例如,第一多链路设备为多链路STA设备,包括3个STA2,其中的2个STA2有缓存业务待接收,或者是这3个STA2都有缓存业务待接收,当然也可以是一个STA2有缓存业务待接收。
有缓存业务待接收也可以理解为其他设备(比如第二设备)有待发送给这多个站点的缓存业务,有缓存业务待发送可以理解为有发送给其他设备(比如第二设备)的缓存业务。以第一多链路设备为多链路STA设备,第二设备为多链路AP设备为例,那么,待接收的缓存业务可以称为下行缓存业务,还可以称为下行数据业务或下行业务等;待发送的缓存业务可以称为上行缓存业务,还可以称为上行数据业务或上行业务等。
可选的,在步骤S101之前,所述方法还包括S103和S104,
S103、接收来自第二设备的MAC帧,所述MAC帧用于指示所述第一多链路设备中的所述多个站点是否有缓存业务待接收;
S104、第一多链路设备根据所述MAC帧,确定第一多链路设备中有缓存业务(buffered traffic)待接收的站点;
可选的,在步骤S102之后,还包括:S105,第二设备向处于苏醒状态的一个或多个站点发送缓存业务,或,第一多链路设备向第二设备发送缓存业务。
在步骤S101和S103中,通知帧可以携带信息指示第一条多链路设备中的一个或多个站点是否处于苏醒状态。可选的,可以采用通知帧中的时长/ID字段指示第一多链路设备中的一个或多个站点处于苏醒状态,也可以采用通知帧中的MAC头的其他字段,比如HT-control字段告知第一多链路设备中的一个或多个站点处于苏醒状态。该通知帧可以为PS-Poll帧,或者为其他帧,比如数据帧(含空数据帧),自动功率节省传递APSD(automatic power save delivery,APSD)中的触发帧-空数据帧,其中APSD又分不调度的Unscheduled和调度的Scheduled等。
下面以PS-Poll帧为例详细介绍如何通过PS-Poll帧指示第一多链路设备中的一个或多个站点是否处于苏醒状态(又可称为醒来状态)。
PS-Poll帧包括时长(duration)/ID(identifier)字段,可以通过时长/ID字段实现指示第一多链路设备中的一个或多个站点处于苏醒状态(awake state)。时长/ID字段包括2字节(16比特),其中这16比特记为B0至B15(B0-B15)。B0-B15包括的B0比特取值为0,表示该 PS-Poll帧为BDT PS-Poll帧(BDT,bidirectional TXOP,双向传输机会),则其中时长/ID字段中B0B1比特之后的比特(B2-B15)指示时长。可选的,PS-Poll帧还包括:帧控制字段,BSSID(RA)字段(Basic service set identifier基本服务集标识号,receiver address,接收地址),TA字段(transmitter address,发送地址)和FCS字段(Frame check sequence,帧校验序列)等。其具体帧结构图可如图5所示。
示例性的,采用时长/ID字段比特指示一个或多个站点处于苏醒状态的方法,包括但不限于:
第一种方法:时长/ID字段后面的全部或部分比特用于指示一个或多个站点处于苏醒状态。可选的,时长/ID字段中的B0B1取值为10,B0B1取值为10,还表示该PS-Poll帧为新PS-Poll帧。可选的,该新PS-Poll帧的帧结构可以如图5所示,其时长/ID字段的解读与已有的802.11中的PS-Poll帧不同。
一个示例中,时长/ID字段的B2-B15中携带链路标识比特位图。链路标识比特位图包括多个比特,其中一个比特与第一多链路设备支持的多条链路中的一条链路相对应,或者说,一个比特与第一多链路设备中工作在一条链路上的站点相对应。第一多链路设备中的一个站点工作在一条链路上,也可能多个站点工作在同一条链路上。可选的,一个比特与一个链路标识对应,从而1个比特指示链路标识所指示的站点是否处于苏醒状态。因此,链路标识比特位图中的一个比特指示第一多链路设备中在所对应的链路上工作的一个站点是否处于苏醒状态,比如第n比特取第一值,指示对应的链路上的站点苏醒,取第二值指示对应链路上的站点未苏醒。可选的,时长/ID字段中还可以包括长度字段,用于指示链路标识比特位图的长度。第二设备在接收到该链路标识比特位图后,就可以确定第一多链路设备中的哪些站点处于了苏醒状态,还可以确定哪些站点未苏醒。
又一个示例中,时长/ID字段的B2-B15中携带链路标识号字段。其中链路标识号字段携带链路信息用于指示链路,链路标识号字段可指示链路信息所对应的链路上的站点处于苏醒状态。链路信息可包括链路标识(Identifier,ID),或,链路信息包括链路对应的操作集(operating class)和信道号(channel number),或者,链路信息包括链路的MAC地址,或者它们的组合。采用该方式,时长/ID字段的B2-B15中可不携带未处于苏醒状态的站点工作的链路的标识号,从而可以降低开销。需要说明的是,链路标识可以在通信之前协商或沟通好,具体的协商或沟通方式已在上文中详细介绍,此处不赘述。
另一个示例中:时长/ID字段的B2-B15携带控制字段和站点状态指示字段。其中控制字段含有指示信息,用来指示站点状态指示字段中包括的是链路标识比特位图还是链路标识号字段。其中,链路标识比特位图和链路标识号字段的定义可参考前述两个示例。
当然,在第一种方法中,时长/ID字段中的B0B1,还可以为其他值。
第二种方法:时长/ID字段中比特B2-B15携带一个特殊的AID值,比如取值大于2007的AID,指示第一多链路设备中的一个或多个站点处于苏醒状态。可选的,B0B1还表示该PS-Poll帧为非BDT PS-Poll帧。
一个示例中,该特殊的AID值用于指示工作在多条链路上的所有站点处于醒来状态,示例性的,多条链路为多链路关联建立时包括的链路。另一个示例,该特殊的AID值用于指示有缓存业务待接收或待发送的所有站点处于苏醒状态。哪些站点有缓存业务待接收或待发送可以由多种方法确定,例如,可以由第二设备广播的信标帧中的TIM元素确定哪些站点有缓存业务,还可以由其他方式确定。
在802.11ax中,B0B1取值为11,则表示该PS-Poll帧为非BDT PS-Poll帧,其中时长/ID 字段后面的比特(B2-B15)指示PS-Poll帧发送端的关联标识AID。因此,采用第二种方法,其指示方式更加的简单,复用了时长/ID字段中B0B1=11时,B2-B15中携带AID,该AID为特殊的AID,达到指示第一多链路设备中的多个站点处于苏醒状态的效果,信令开销小,指示方式简单。并且,由于第一多链路的站点只有苏醒和不苏醒两种状态,采用一个特殊的AID或两个特殊的AID值即可完成指示,实现方式简单。
当然,特殊的AID可以包括以下4个特殊值中的一个或多个。比如,B2-B15取第一特殊值,指示工作在多条链路上的所有站点处于醒来状态。B2-B15的第二特殊值,指示工作在多条链路上的有缓存业务待接收或有缓存业务待发送的站点处于醒来状态。可选的,还可以令B2-B15取第三特殊值指示第一多链路上的所有站点都未苏醒,B2-B15的第四特殊值,指示工作在多条链路上的有缓存业务待接收或有缓存业务待发送的站点都未处于醒来状态。
根据上一段落的描述可知,特殊的AID值可对应至少四种功能。当然,可以采用1个特殊的AID值,指示其中的一种功能,还可以采用2个特殊的AID值,分别指示其中的两种功能,当然也可以采用4个特殊的AID值,指示四种功能。当然,特殊的AID值与功能的对应关系是可以变化的,此处不限定一个特殊的AID值所对应的具体功能。
在第二种方法中,时长/ID字段以11开始,也就说时长/ID字段的比特0和1(B0B1)值为11,指示B2-B15中为AID值。
第三种方法:该通知帧包括多个PS-Poll帧的聚合帧,其中的一个PS-Poll帧包括时长/ID字段,且时长/ID字段后面的比特(B2-B15)指示关联标识AID,用来指示这个AID对应的站点处于醒来状态。那么多个PS-Poll帧的多个时长/ID字段可以包括多个AID,从而可以指示第一多链路站点中的多个站点处于醒来状态。可选的,时长/ID字段的B0B1取值为11,指示该PS-Poll帧为非BDT PS-Poll帧,可选的,上述多个PS-Poll帧中包括的AID对应的站点属于同一个多链路站点设备,则PS-Poll的TA地址为该多链路站点设备中的工作在PS-Poll帧所在的链路上的站点的MAC地址,或者多链路站点的MAC SAP(service access point)的地址,也就是多站点共享的一个地址。
第四种方法:示例性的,时长/ID字段携带:起始AID字段和AID比特图字段,可选的,所述后14比特包括起始AID字段和AID比特图字段,所述起始AID字段携带一个起始AID,该起始AID可以为一个短的AID,所述AID比特图字段用于指示比所述起始AID大或小的顺序AID所对应的站点是否处于苏醒状态,也可以用于指示比所述起始AID指示的站点对应的链路标识大或小的顺序链路标识所对应的站点是否处于苏醒状态,其中顺序AID,或者顺序链路标识,也不需要AID的取值和链路标识的取值是连续的,而是一种排序上的连续,比如多链路设备的包括的3个站点的对应的链路标识为1,3,5,则1,3和5的链路标识是按从小到大的顺序;时长/ID字段的比特0和1(B0B1)值为10,B2-B15比特的起始AID字段携带一个短的AID(或称为部分AID)值,该短的AID值占据的比特数小于14比特,比如11比特,B2-B15中的AID比特图字段占据剩余比特,则用来指示工作在其他链路的站点是否处于醒来状态。比如,B2-B15中的前11比特为第一多链路设备中的一个站点的短AID,剩余的3比特指示比该AID大的或比该AID小的,按循环顺序的3个AID对应的站点是否处于醒来状态,对应比特置第一值,指示该站点处于醒来状态,对应比特置第二值,指示该站点处于睡眠状态,例如,第一值为1,第二值为0。假设第一多链路设备总共有4个站点(AID分别为AID1至AID4),例如,B2-B15中的前11比特的指示的AID为1,对应第一多链路设备中的站点1(AID为1),后3比特取值为101,则对应的指示AID为2的站点处于醒来状态,AID为3的站点处于睡眠状态,AID为4的站点处于醒来状态。又例如,B2-B15中的 前11比特指示的AID为2,对应第一多链路设备中的站点2(AID为2),后3比特取值为101,则对应的指示AID为3的站点处于醒来状态,AID为4的站点处于睡眠状态,AID为1的站点处于醒来状态。可选的,短AID字段也可以指示该短AID字段所对应的站点其处于醒来状态,也可以指示其处于睡眠状态,也可以无任何含义。若指示起始AID对应的站点处于醒来状态,则可以增加被指示的站点个数,其指示效率更高。当然,AID比特位图也可以从起始AID开始指示站点的状态,比如,B2-B15中的前11比特指示的AID为2,对应第一多链路设备中的站点2(AID为2),后3比特取值为101,则对应的指示AID为2的站点处于醒来状态,AID为3的站点处于睡眠状态,AID为4的站点处于醒来状态。
第五种方法:示例性的,时长/ID字段携带:起始链路标识字段和链路标识比特图字段,可选的,所述后14比特包括起始链路标识字段和链路标识比特图字段,所述起始链路标识字段携带一个链路标识,链路标识比特图字段用于指示比所述起始链路标识字段指示的站点对应的链路标识大或小的顺序链路标识所对应的站点是否处于苏醒状态。比如,起始链路标识字段携带链路标识1指示链路1上的站点;链路标识比特位图包括3比特,则分别指示链路标识2至4上的站点是否处于苏醒状态。当然,链路标识比特图也可以从起始链路标识字段开始指示,比如,比如,B2-B15中的前11比特指示的链路标识为2,对应第一多链路设备中的站点2(AID为2),后3比特取值为101,则对应的指示链路标识为2所对应的站点处于醒来状态,链路标识为3的站点处于睡眠状态,链路标识为为4的站点处于醒来状态。
当然,需要说明的是,第一至第五种方法,不局限于在通知帧的时长/ID字段中实现,也不局限于在PS-Poll帧中的时长/ID字段中实现,当然还可以在通知帧的其他字段中采用相同或相似的指示方法实现,比如通知帧中的MAC头的其他字段,比如HT-control字段告知第一多链路设备中的一个或多个站点处于苏醒状态。采用时长/ID字段可以兼容802.11协议已定义的帧结构,其复杂度低,且信令开销小。
下面详细介绍步骤S103和S104中第一多链路设备是如何确定第一多链路设备中有缓存业务(buffered traffic)待接收的多个站点的。
第一种方式:在S101之前,第一多链路设备接收来自第二设备的携带TIM元素的信标Beacon帧,TIM元素告知第一多链路设备有缓存业务(buffered traffic)待接收的是哪些站点。第一多链路设备基于beacon帧中的TIM元素,即可确定哪些站点有缓存业务待接收。
可选的,第二设备在一条链路上发送信标帧,该信标帧携带多条链路上的站点是否有缓存业务待接收的信息。具体的实现方式包括但不限于:
方法1:重用已有的TIM元素,多链路AP设备给多链路STA中的每一个站点都分配一个或多个关联标识AID(association identifier),TIM元素的部分虚拟比特位图字段中每一比特对应一个AID。如果是多链路STA的每一个站点被分配到一个AID,则TIM元素中部分虚拟比特位图字段中每比特用来指示对应站点是否有相应的下行业务指示;如果是多链路STA的每一个站点被分配到2个AID,则TIM元素中部分虚拟比特位图字段中的2比特用来分别指示对应站点是否有相应的下行广播业务指示和下行的单播业务指示。
方法2:增加一个新的多链路TIM元素,多链路TIM元素包括多个新TIM子元素,每个新TIM子元素包括链路标识号和TIM元素。每个新TIM子元素用来指示工作在链路标识号标识链路上的站点是否有下行业务指示,其中新TIM子元素中的比特位图控制字段比特0指示AP发送DTIM信标帧时是否有下行的组播数据业务,新TIM子元素中部分虚拟比特位图字段中的对应比特用来指示工作在链路标识号标识链路上的站点是否有下行单播业务。其中链路标识号可包括链路的标识号(或称为链路的编号),或,操作集和信道号,或,MAC 地址等。
多链路站点设备在一条或多条链路接收信标帧,获知该多链路站点设备中的多个站点是否有缓存业务(或称为下行业务)接收,包括下行单播业务和下行广播业务。
例如图6所示,多链路站点设备(第一多链路设备,例如图1中的多链路STA102)选择站点STA102-1周期性醒来接收信标帧,在接收到图6中第一个信标帧(beacon1,图中记为B)后,获知站点102-1有下行业务,站点102-2无下行业务。因此站点102-1之后醒来发送PS-Poll帧(图6中记为P)告知多链路站点设备中的站点STA102-1处于醒来状态,站点STA102-2处于睡眠状态;之后,站点STA102-1和多链路AP101中的AP101-1进行数据通信,比如发送数据帧(图6中记为d),可选的,STA102-1和STA102-2还可以回复确认帧(图6中记为a);
多链路站点设备站点102-1收到图中第二个信标帧(beacon2)后,获知站点102-1和站点102-2都有下行业务,然后发送PS-Poll帧给AP101-1,告知多链路站点设备中的站点102-1和站点102-2都处于醒来状态。当然,如图6所示,AP101-2也可在链路2(link2)上发送信标帧。
第二种方式:通过MAC帧(例如数据帧)中的链路标识比特位图和更多数据比特(more data bit)指示第一多链路设备中多个站点有缓存业务(buffered traffic)待接收,或者,通过MAC帧中的下行业务比特位图,指示第一多链路设备中多个站点有缓存业务(buffered traffic)待接收。具体的实现方式可参考实施例二,此处不赘述。因此,第一多链路设备即可确定有缓存业务待接收的站点。
第三种方式:还可以采用802.11ax协议中定义的告知方式。例如,第二设备可以在多条链路上分别发送一个信标帧,每个链路上的信标帧携带一个TIM元素,告知该链路上的站点是否有缓存业务,第一多链路设备根据多个信标帧确定第一多链路设备中有缓存业务(buffered traffic)待接收的多个站点。
本申请实施例提供一种适用于多链路站点中,可以通过一个站点汇报多链路设备中包括一个或多个站点的是否处于醒来状态,达到节省信令开销以及功率节省效果。
实施例二提供一种缓存业务通知方法,告知多链路站点中的各个站点是否有缓存业务待接收,避免了多链路站点设备中的每一个站点都周期性醒来接收AP发送的信标帧,从而达到功率节省的效果。例如图7所示,该方法包括:
S201:第二设备生成媒体介质接入控制层(medium access control layer,MAC)帧,所述MAC帧包括链路标识比特位图和更多数据(More data)比特,链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓存业务待接收。
可选的,该MAC帧为数据帧。第二设备可以为多链路设备,也可以为单链路设备。可选的,链路标识比特位图携带于HT-Control字段中和更多数据比特携带于帧控制(Frame control)字段中。
S202:第二设备向第一设备发送所述MAC帧。
示例性的,本申请实施例中,第二设备为多链路AP,第一设备为多链路STA。
示例性的,链路标识比特位图的第n比特对应链路n,第n比特置第一值,比如1,则更多数据比特的值适用于接收该帧的多链路站点中工作在第n条链路的站点。可选的,链路标 识比特位图的第n比特置第二值,比如0,更多数据比特的值适用于接收该帧的多链路站点中除工作在第n条链路的其他站点。可选的,链路标识比特位图中的一个比特可以对应一个链路标识,从而可对应到该链路上的一个站点。具体链路标识如何对应到站点已在上文描述,此处不赘述。
例如,More data bit可以与链路标识比特位图中的bit取值进行同或,其同或结果为第一值则指示有缓存业务待接收,结果为第二值则指示无缓存业务待接收。More data bit取1/0用于指示链路标识比特位图中取值为1的比特所对应的链路上的站点有/无缓存业务待接收;可选的,more data bit取1/0用于指示链路标识比特位图中取值为0的比特所对应的链路上的站点无/有缓存业务待接收。
一个示例,如表2所示:
表2
Figure PCTCN2021080237-appb-000002
相对应的,第一设备,比如,多链路STA接收MAC帧,根据MAC帧确定哪些站点有缓存业务待接收。比如,由多链路STA中的一个站点醒来接收S202中的MAC帧,从而不需要所有的站点醒来,在一定程度上降低了功耗。第一设备可以为多链路设备。
可选的,在步骤S202之后,进一步的,该方法还包括S203:第二设备接收第一设备发送的通知帧,所述通知帧用于指示有缓存业务待接收的站点处于醒来状态。
当然,该通知帧的实现方法包括多种,其包括但不限于以下几种方法:
方式一:在第一设备接收到MAC帧后,可令有缓存业务待接收的站点都处于苏醒状态,采用802.11ax中定义的PS-Poll帧,由第一设备中有缓存业务待接收的站点分配发送PS-Poll帧给第二设备,告知自身已处于醒来状态。
方式二:在第一设备接收到MAC帧后,可以采用实施例一中的方案,由第一设备中的一个站点在一条链路上发送通知帧,告知第二设备,在第一设备中有缓存业务待接收的多个站点处于醒来状态。采用方式二,第一设备中的多个站点可待发送完通知帧后才醒来接收缓存业务,进一步降低了能耗,且节省了信令开销。
图8示出了多链路AP101与多链路STA102通信的一个示例。例如图8所示,多链路AP101包括2个AP,AP101-1工作在链路1(link1)和AP101-2工作在链路2(link2)上,同样多链路STA设备包括2个STA,STA102-1在链路1上和STA102-2工作在链路2上。在初始阶段,多链路STA中的2个STA都处于睡眠状态,多链路站点中的STA102-1接收到信标帧,发现STA102-1有下行数据,STA102-1发送PS-Poll帧告知多链路AP101,自己已处 于醒来状态,此时AP101-1发送确认帧或者直接发送下行数据给站点102-1。
AP101-1发送的第一个数据包(当然还可以是其他MAC帧)携带链路标识比特位图字段(例如,链路标识比特位图字段包括2比特,记为B0B1),B0B1值为10,更多数据比特值为1,表示多链路AP101还有给工作在链路1上的STA102-1的数据,可选的,没有给工作在链路2上的STA102-2的数据。因此STA102-2继续处于休眠状态,不需要醒来,从而节省功耗。
AP101-1发送的第二个数据包携带链路标识比特位图字段(包括2比特,记为B0B1),B0B1值为11,更多数据比特值为1,此时表示多链路AP101还有给工作在链路1上的STA102-1的数据,可选的,还表示多链路AP还有给工作在链路2上的STA102-2的数据。之后,STA102-2可醒来接收多链路AP101发送的数据。多链路站点中的STA102-2发送PS-Poll帧告知多链路AP101设备其已处于醒来状态。当然,站点102-1也可以通过发送通知帧告知多链路AP站点102-2处于醒来状态(其具体的实现方法可参考前述实施例一的实现方式)。当然更多数据比特也可仅作用于数据包所在的链路,比如,AP101-1发送的第二个数据包中的链路标识比特位图字段包括2比特,B0B1取值为11,more data bit取值为1,标识多链路AP有给工作在链路1上的STA102-1的数据,但不指示是否有给工作在链路2上的STA102-2的数据。
AP101-2发送的第一个数据包携带链路标识比特位图字段(包括2比特,记为B0B1),B0B1值为11,更多数据比特值为0,表示多链路AP设备没有给工作在链路2上的STA102-2的数据,可选的,还可以表示没有给工作在链路1上的STA102-1的数据。之后,多链路STA设备的STA102-1和STA102-2转变成睡眠状态。
可选的,该MAC帧还可以包括其他信息,比如,服务周期结束(end of service period,EOSP)比特,和/或,功率节省管理(power save management,PM)比特。可选的,EOSP比特携带在MAC帧的MAC头中的服务质量QoS(quality of service,QoS)控制字段,PM比特携带在MAC头中的帧控制字段中。
一个示例中,链路标识比特位图与EOSP比特联合用于指示链路标识比特位图对应的链路上的站点的现有服务时间是否结束。比如,示例性的,链路标识比特位图的第n比特对应链路n,第n比特置第一值,比如1,则EOSP比特包括1比特,这1比特的值适用于接收该帧的多链路站点中工作在第n条链路的站点。可选的,链路标识比特位图的第n比特置第二值,比如0,EOSP比特的值适用于接收该帧的多链路站点中工作在第n条链路的其他站点。例如,EOSP比特取1/0用于告知接收端(多链路STA)链路标识比特位图中取值为1的比特所对应的链路上的站点的现有服务时间是结束/未结束;可选的,EOSP比特取1/0用于指示链路标识比特位图中取值为0的比特所对应的链路上的站点的现有服务时间未结束/结束。
另一个示例中,链路标识比特位图与PM比特联合用于指示链路标识比特位图对应的链路上的站点是否处于功率节省模式。比如,示例性的,链路标识比特位图的第n比特对应链路n,第n比特置第一值,比如1,则PM比特包括1比特,这1比特的值适用于接收该帧的多链路站点中工作在第n条链路的站点。可选的,链路标识比特位图的第n比特置第二值,比如0,PM比特的值适用于接收该帧的多链路站点中除工作在第n条链路的其他站点。例如,PM比特取1/0用于指示链路标识比特位图中取值为1的比特所对应的链路上的站点处于/不处于功率节省模式;可选的,PM取1/0用于指示链路标识比特位图中取值为0的比特所对应的链路上的站点不处于/处于功率节省模式。
当然,可选的,该MAC帧可以包括链路标识比特位图,以及more data bit,EOSP比特,PM比特这三种比特中的一个或多个。也就是说,MAC帧也可以包括:more data bit结合链路标识比特位图,EOSP比特结合链路标识比特位图,PM比特结合链路标识比特位图中的一种或多种。More data bit结合链路标识比特位图,EOSP比特结合链路标识比特位图,PM比特结合链路标识比特位图三种机制可以应用于多链路AP设备发送给多链路站点设备的帧中,也可以于多链路站点设备发送给多链路AP设备帧中,也可以应用于由一个多链路设备发送给另一多链路设备的帧中。
在另一种实现方式中,该MAC帧也可不包括链路标识比特位图。链路标识比特位图不是在每个数据帧中都会携带。一个示例中,数据帧不包括链路标识比特位图,比如,更多数据比特用于告知第一设备(比如,多链路STA设备)当前发送的站点是否有下行业务(或称缓存业务),EOSP比特用于指示当前发送的第二设备对当前接收的站点的服务时间是否结束,PM比特用于指示当前发送的站点是否处于功率节省模式。可以理解的,对于这种不包括链路标识比特位图的情形,MAC帧可包括:更多数据比特,PM比特或EOSP比特中的一个或多个的组合。
除了上述提到的更多数据比特结合链路标识比特位图字段,链路标识比特位图结合EOSP(end of service period)比特,链路标识比特位图结合PM(power save management)比特的方案外,本申请实施例还提出一种MAC帧中携带下行业务比特位图,PM比特位图以及EOSP比特位图中一种或多种的方案。
也就是说,步骤S201和S202中涉及的MAC帧可不包括链路标识比特位图字段,而是包括下行业务比特位图,PM比特位图以及EOSP比特位图中的一种或多种。其中,下行业务比特位图用于告知多链路STA中的多个站点是否有缓存业务待接收;EOSP比特位图用于告知比多链路STA中的多个站点的服务时间是否结束;PM比特位图用于告知多链路STA中的多个站点是否处于功率节省模式。可选的,上述任一种比特位图中,一个比特可以对应多链路设备中工作在一条链路上的站点。以下行业务比特位图为例,多链路AP设备发送数据帧,在数据帧的MAC头中携带下行业务比特位图字段,用于告知多链路STA设备工作在哪些站点有下行业务需要接收。比如在图8所示的多链路AP和多链路站点的通信过程中,多链路AP中的AP101-1发送给多链路站点中的STA102-1的数据包中携带的下行数据业务比特位图字段包括2比特(B0B1),B0B1=01,则表示多链路站点的站点102-1没有下行业务接收,站点102-2有下行业务接收。相类似的,多链路AP中的AP101-1发送的数据包1中携带PM比特位图,EOSP比特位图包括2比特取值为10,则表示当前发送的第二设备对多链路站点中工作在链路1上的STA102-1的服务时间结束,当前发送的第二设备对多链路站点中工作在链路2上的STA102-2的服务时间未结束。PM比特位图包括2比特取值为10,则表示多链路站点中工作在链路1上的STA102-1处于功率节省模式,多链路站点中工作在链路2上的STA102-2不处于功率节省模式。
基于下行业务比特位图,多链路STA即可确定哪些站点有缓存业务待接收,其信令开销更小。
为了区分指示站点是否有下行组播(或广播)业务和单播业务,可选的,下行业务比特位图字段又可以分别指示下行组播业务和单播业务。一个示例中,下行业务比特位图字段包括下行组播业务比特位图字段和下行单播业务位图字段,其中,下行组播比特位图字段用来指示多链路站点的多个站点是否有下行组播或广播业务,其中组播或广播业务通常在AP发送的DTIM信标帧之后发送;下行单播比特位图字段用来指示多链路站点的多个站点是否有 下行单播业务。又一个示例中,下行业务比特位图字段中以每2比特为单位,对应一条链路上的站点,指示是否有这条链路上的站点的下行组播业务和单播业务,这2比特中的1个比特对应单播业务,1个比特对应组播或广播业务。
可选的,这些比特位图字段中的一个或多个可携带于MAC帧的MAC头中,比如HT控制字段(高吞吐量,high throughput),也可以称为聚合控制字段(Aggregated control field)。
本申请实施例提出使用链路标识比特位图字段结合已有的更多数据比特字段或者是使用数据帧中携带下行业务比特位图字段,来告知多链路站点中的多个站点是否有下行业务,避免了多链路站点中的每一个站点都周期性醒来接收AP发送的信标帧,从而达到功率节省效果。进一步的,AP发送的数据帧中还可以携带PM比特位图以及EOSP比特位图等信息,多链路站点中的一个站点醒来即可获取所有链路上站点的信息,进一步降低了功耗,提升了传输的效率,降低了传输的时延。
实施例三提供了又一种应用于多链路通信中的功率节省方法,应用于多链路设备中。图9示出了实施例三提供的又一种节能方法的交互示意图。该方法包括:
S301、第二设备生成MAC帧,所述MAC帧包括链路标识比特位图和更多数据比特,或,所述MAC帧包括下行业务比特位图,或,所述MAC帧包括TIM元素;
所述MAC帧包括链路标识比特位图和更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓存业务待接收。所述下行业务比特位图用于告知第一设备中的哪些站点有下行业务需要接收。TIM元素用于告知第一设备中的哪些站点有下行业务需要接收。
需要说明的是,链路标识比特位图和更多数据比特结合实现指示的方式,以及,采用下行业务比特位图实现指示的实施方式可参考实施例二的描述,此处不赘述。MAC帧包括TIM元素,采用TIM元素实现指示的方式可参考实施例一的描述,此处不赘述。
S302、第二设备向第一设备发送所述MAC帧;
参考实施例二中的步骤S202,此处不赘述。
S303、第一设备确定第一设备中有缓存业务待接收的多个站点;
参考实施例一中的步骤S104。例如,第一设备可以基于MAC帧包括链路标识比特位图和更多数据比特,或,下行业务比特位图,或,TIM元素确定第一设备中的哪些站点有缓存业务。
S304、第一设备生成通知帧;
参考实施例一中的步骤S101,此处不赘述。
S305、第一设备在一条链路上发送所述通知帧,所述通知帧用于指示所述第一多链路设备中的所述多个站点处于苏醒状态。
参考实施例一中的步骤S102,此处不赘述
可选的,S306、第二设备向第一设备发送缓存业务。
参考实施例一中的步骤S105,此处不赘述。
本申请实施例可以通过使用链路标识比特位图字段和已有的更多数据比特字段来告知多链路站点设备中的多个站点是否有下行业务,避免了多链路站点设备中的每一个站点都周期性醒来接收AP发送的信标帧,从而达到功率节省效果。进一步的,通过在一条链路上反馈第一多链路设备中的多个站点处于苏醒状态,达到节省信令开销以及功率节省效果。
下面详细介绍本申请实施例提供的装置,能在链路通信中达到节省功率的效果。
图10示出了本申请实施例提供的一种通信装置1000,该装置可以是上述实施例中的第一设备(第一多链路设备)或第二设备,还可以是第一多链路设备或第二设备中的芯片或处理系统,可以实现上述任一实施例的方法和功能。由于集成度的差异,该通信装置可以包括如图10所示的部件中的一个或多个。图10所示出的部件可以包括至少一个处理器1001,存储器1002、收发器1003以及通信总线1004。
下面结合图10对该通信装置400的各个构成部件进行具体的介绍:
处理器1001是通信装置1000的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器1001是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。其中,处理器1001可以通过运行或执行存储在存储器1002内的软件程序,以及调用存储在存储器1002内的数据,执行通信设备的各种功能。在具体的实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图10中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1000可以包括多个处理器,例如图10中所示的处理器1001和处理器1005。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器1002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1002可以是独立存在,通过通信总线10010与处理器1001相连接。存储器1002也可以和处理器1001集成在一起。其中,所述存储器1002用于存储执行本申请方案的软件程序,并由处理器1001来控制执行。
收发器1003,用于与其他设备(例如第二设备)之间的通信。当然,收发器1003还可以用于与通信网络通信,通信网络例如为以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。收发器1003可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线10010,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部通信设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
一个示例中,该通信装置1000为一个整机的设备,该通信装置可包括:处理器1001,存储器1002以及收发器1003以及通信总线1004,可选的,还可以包括其他部件,比如显示频等。可选的,该通信装置1000为第一多链路设备或第一设备,可以用于实现前述实施例一至三中涉及第一多链路设备或第一设备的方法和功能。例如,存储器中存储指令,当处理器调用该指令时,实现上述方法和功能,比如,处理器用于生成信令或帧,收发器用于发送信令 或帧。例如,处理器用于执行步骤S104,S101,S303,S304等,收发器用于执行步骤S102,S103,S105,S202,S203,S302,S305或S306等。可选的,该通信装置1000为第二设备,可以用于实现前述实施例一至三中涉及第二设备的方法和功能。例如,存储器中存储指令,当处理器调用该指令时,实现上述方法和功能,比如,处理器用于生成信令或帧,收发器用于发送信令或帧。例如,处理器用于生成S103中发送的MAC帧步骤S201,用于指示S201或S301等,收发器用于执行步骤S103,S102,S105,S202,S203,S302,S305或S306等。
另一个示例中,该通信装置1000为第一设备或第一多链路设备或第二设备中的芯片系统或处理系统,使得安装该芯片系统或处理系统的设备实现前述实施例一至三中的方法和功能。那么该通信装置1000可以包括如图10所示的部分部件,比如通信装置1000包括处理器,该处理器可与存储器耦合,调用存储器中的指令并执行,从而配置安装该芯片系统或处理系统的设备实现前述实施例一至三中的方法和功能。可选的,该存储器可以是芯片系统或处理系统中的一个部件,也可以是芯片系统或处理系统外耦合链接的一个部件。一个示例中,该芯片系统或处理系统安装于第一设备或第一多链路设备中,可以使得第一设备或第一多链路设备实现前述实施例中对应的方法和功能。又一个示例中,该芯片系统或处理系统安装于第二设备中,可以使得第二设备实现前述实施例中对应的方法和功能。
该芯片系统或处理系统可以支持802.11系列协议进行通信,比如支持802.11be,802.11ax,802.11ac等等。该芯片系统可以安装于各种支持WLAN传输的场景中的设备中,WLAN传输场景中的设备已在本说明书的开头部分介绍,此处不赘述。
本申请实施例可以根据上述方法示例对第一设备(第一多链路设备)或第二设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图11示出了一种通信装置1100的可能的结构示意图,该通信装置1100可以为链路设备或多链路设备中的芯片或处理系统,所述通信装置1100可以执行上述方法实施例中多链路设备的操作。该通信装置1100包括:处理单元1101和收发单元1102。
一个示例中,通信装置1100为第一多链路设备或第一多链路设备中的站点。
其中,处理单元1101可以用于对通信装置1100的动作进行控制管理。例如,确定第一多链路设备中有缓存业务的站点。再例如,控制收发单元1102的操作。可选的,若通信装置1100包括存储单元,则处理单元1101还可以执行存储在存储单元中的程序或指令,以使得通信装置1100实现上述任一实施例所涉及的方法和功能。
示例性的,上述处理单元1101可以用于执行例如图4中的步骤S101,或图9中的步骤S303或S304和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,上述收发单元1102既可以收发一条链路传输的数据或信令,也可以收发多条链路上传输的数据或信令。可选的,该收发单元1102可以为一个收发模块,也可以包括多个收发模块。当收发单元1102为一个收发模块时,该收发模块既可以收发多条链路上的数据。比如,第一多链路设备工作在两条链路上,那么收发单元1102包括两个收发模块时,其中一个收发模块工作在一条链路上,另一个收发模块工作在另一条链路上。示例性的,上述收发 单元1102可以用于执行例如图4中的步骤S103,S102,S105,或,图7中的步骤S202、S203,或,图9中的步骤S302、S305、S306,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,该通信装置1100可以为图10所示的通信装置,处理单元1101可以为图10中的处理器1001、收发单元1102可以为图10中的收发器1003。可选的,该通信装置1100还可以包括存储器,该存储器用于存储通信装置1100执行上文所提供的任一多链路设备间的通信方法所对应的程序代码和数据。上述图10涉及的各部件的所有相关内容的描述均可以援引到该通信装置1100对应部件的功能描述,在此不再赘述。
示例性的,该通信装置1100还可以为芯片或处理器,其中的处理单元1102为芯片或处理器中的处理电路,收发单元1102可以为芯片或处理器中的输入/输出电路,输入/输出电路为芯片或处理器与其他耦合部件相互通信或交互数据的接口,可确保信令或数据信息或程序指令被输入到芯片或处理器中进行处理,且将处理后的数据或信令输出给其他耦合的部件,并控制安装该芯片或处理器的第一多链路设备实现功能。
另一个示例中,通信装置1100为第二设备或第二设备中的芯片。
示例性的,上述处理单元1101可以用于生成MAC帧,例如,执行图7中的步骤S201,或图9中的S301,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,上述收发单元1102既可以收发一条链路传输的数据或信令,也可以收发多条链路上传输的数据或信令。可选的,该收发单元1102可以为一个收发模块,也可以包括多个收发模块。当收发单元1102为一个收发模块时,该收发模块既可以收发多条链路上的数据。比如,第二设备工作在两条链路上,那么收发单元1102包括两个收发模块时,其中一个收发模块工作在一条链路上,另一个收发模块工作在另一条链路上。示例性的,上述收发单元1102可以用于执行例如图4中的步骤S103,S102,S105,或,图7中的步骤S202、S203,或,图9中的步骤S302、S305、S306,和/或用于本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,该通信装置1100可以为图10所示的通信装置,处理单元1101可以为图10中的处理器1001、收发单元1102可以为图10中的收发器1003。可选的,该通信装置1100还可以包括存储器,该存储器用于存储通信装置1100执行上文所提供的任一方法所对应的程序代码和数据。上述图10涉及的各部件的所有相关内容的描述均可以援引到该通信装置1100对应部件的功能描述,在此不再赘述。
示例性的,该通信装置1100还可以为芯片或处理器,其中的处理单元1102为芯片或处理器中的处理电路,收发单元1102可以为芯片或处理器中的输入/输出电路,输入/输出电路为芯片或处理器与其他耦合部件相互通信或交互数据的接口,可确保信令或数据信息或程序指令被输入到芯片或处理器中进行处理,且将处理后的数据或信令输出给其他耦合的部件,并控制安装该芯片或处理器的设备实现功能。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行图4、图7、图9中任一实施例的方法。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行图4、图7、图9中任一实施例的方法。
本申请实施例还提供了一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行上述图4、图7、图9中任一实施例中的方法。
本申请实施例还提供了一种通信系统,包括第一设备和第二设备,该第一设备和第二设备可以执行上述图4、图7、图9中任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (40)

  1. 一种应用于多链路通信中的通信装置,其特征在于,应用于第一多链路设备中,包括:
    处理单元,用于生成通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中一个站点工作在一条链路上;
    收发单元,用于在一条链路上向第二设备发送所述通知帧。
  2. 一种应用于多链路通信中的通信装置,其特征在于,应用于第二设备中,包括:
    收发单元,用于在一条链路上接收来自第一多链路设备的站点发送的通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中的一个站点工作在一条链路上;
    处理单元,用于根据所述通知帧,确定所述第一多链路设备中处于苏醒状态的站点。
  3. 根据权利要求1所述的通信装置,其特征在于,
    所述收发单元,还用于接收来自所述第二设备的MAC帧,所述MAC帧用于指示所述第一多链路设备中的所述多个站点有缓存业务待接收。
  4. 根据权利要求2所述的通信装置,其特征在于,
    所述收发单元,还用于向所述第一多链路设备发送MAC帧,所述MAC帧用于指示所述第一多链路设备中的所述多个站点有缓存业务待接收。
  5. 根据权利要求1至4中任一项所述的通信装置,其特征在于,所述通知帧包括时长/ID字段,所述时长/ID字段用于指示所述第一多链路设备中的所述多个站点是否处于苏醒状态。
  6. 根据权利要求5所述的通信装置,其特征在于,所述时长/ID字段包括16比特,所述16比特的后14比特中的全部或部分比特用于指示第一多链路设备中的所述多个站点是否处于苏醒状态。
  7. 根据权利要求6所述的通信装置,其特征在于,
    所述后14比特中的全部或部分比特包括链路标识比特位图,所述链路标识比特位图包括多个比特,其中一个比特与所述多条链路中的一条链路上的一个站点相对应,用于指示所述第一多链路设备中工作在所对应的链路上的一个站点是否处于苏醒状态;或者,
    所述后14比特中的全部或部分比特包括链路标识号字段,所述链路标识号字段包括用于指示链路的链路信息,所述链路标识号字段用于指示所述链路信息所指示的链路上的站点处于苏醒状态;或者,
    所述后14比特中的全部或部分比特包括控制字段和站点状态指示字段,其中所述控制字段含有指示信息,用来指示所述站点状态指示字段中包括的是所述链路标识比特位图还是所述链路标识号字段。
  8. 根据权利要求6所述的通信装置,其特征在于,所述后14比特包括起始AID字段和AID比特图字段,所述起始AID字段携带一个起始AID,所述AID比特图字段用于指示比所述起始AID对应的链路标识大或小的按顺序链路标识所对应的站点是否处于苏醒状态。
  9. 根据权利要求7或8所述的通信装置,其特征在于,所述时长/ID字段的前2比特的取值为10。
  10. 根据权利要求6所述的通信装置,其特征在于,所述后14比特中的全部或部分比特包括特殊的AID值,所述特殊的AID值用于指示所述第一多链路设备中的所有站点处于苏醒状态;或者,
    所述特殊的AID值用于指示所述第一多链路设备中有缓存业务待接收的站点处于苏醒状态。
  11. 根据权利要求10所述的通信装置,其特征在于,所述时长/ID字段的前2比特的取值为11。
  12. 根据权利要求1至4中任一项所述的通信装置,其特征在于,所述通知帧包括多个PS-Poll帧的聚合帧,一个PS-Poll帧包括时长/ID字段,所述时长/ID字段携带关联标识AID,用来指示所述第一多链路设备中所述AID对应的站点处于醒来状态。
  13. 根据权利要求1至11中任一项所述的通信装置,其特征在于,所述通知帧为PS-Poll帧。
  14. 根据权利要求3至13中任一项所述的通信装置,其特征在于,
    所述MAC帧包括:链路标识比特位图和更多数据(More data)比特,所述链路标识比特位图与所述更多数据比特结合用于指示所述链路标识比特位图对应的链路上的站点是否有缓存业务待接收;或者,
    所述MAC帧包括下行业务比特位图字段,所述下行业务比特位图字段用于指示所述第一多链路设备中的多个站点是否有缓存业务待接收。
  15. 根据权利要求14所述的通信装置,其特征在于,所述下行业务比特位图字段包括下行组播业务比特位图字段和下行单播业务位图字段,其中,所述下行组播比特位图字段用来指示所述第一多链路设备的多个站点是否有下行组播或广播业务,所述下行单播比特位图字段用来指示所述第一多链路设备的多个站点是否有下行单播业务。
  16. 一种应用于多链路通信中的功率节省方法,其特征在于,包括:
    第一多链路设备的一个站点生成通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中一个站点工作在一条链路上;
    所述第一多链路设备的一个站点在一条链路上向第二设备发送所述通知帧。
  17. 一种应用于多链路通信中的功率节省方法,其特征在于,包括:
    第二设备在一条链路上接收来自第一多链路设备的站点发送的通知帧,所述通知帧用于指示所述第一多链路设备中的多个站点是否处于苏醒状态;所述第一多链路设备中的一个站点工作在一条链路上;
    所述第二设备根据所述通知帧,确定所述第一多链路设备中处于苏醒状态的站点。
  18. 根据权利要求16所述的方法,其特征在于,在生成通知帧之前,所述方法还包括:
    接收来自所述第二设备的MAC帧,所述MAC帧用于指示所述第一多链路设备中的所述多个站点有缓存业务待接收。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    向所述第一多链路设备发送MAC帧,所述MAC帧用于指示所述第一多链路设备中的所述多个站点有缓存业务待接收。
  20. 根据权利要求16至19中任一项所述的方法,其特征在于,所述通知帧包括时长/ID字段,所述时长/ID字段用于指示所述第一多链路设备中的所述多个站点是否处于苏醒状态。
  21. 根据权利要求20所述的方法,其特征在于,所述时长/ID字段包括16比特,所述16比特的后14比特中的全部或部分比特用于指示第一多链路设备中的所述多个站点是否处于苏醒状态。
  22. 根据权利要求21所述的方法,其特征在于,
    所述后14比特中的全部或部分比特包括链路标识比特位图,所述链路标识比特位图包括多个比特,其中一个比特与所述多条链路中的一条链路上的一个站点相对应,用于指示所述第一多链路设备中工作在所对应的链路上的一个站点是否处于苏醒状态;或者,
    所述后14比特中的全部或部分比特包括链路标识号字段,所述链路标识号字段包括用于指示链路的链路信息,所述链路标识号字段用于指示所述链路信息所指示的链路上的站点处于苏醒状态;或者,
    所述后14比特中的全部或部分比特包括控制字段和站点状态指示字段,其中所述控制字段含有指示信息,用来指示所述站点状态指示字段中包括的是所述链路标识比特位图还是所述链路标识号字段。
  23. 根据权利要求21所述的方法,其特征在于,所述后14比特包括起始AID字段和AID比特图字段,所述起始AID字段携带一个起始AID,所述AID比特图字段用于指示比所述起始AID对应的链路标识大或小的按顺序链路标识所对应的站点是否处于苏醒状态。
  24. 根据权利要求22或23所述的方法,其特征在于,所述时长/ID字段的前2比特的取值为10。
  25. 根据权利要求21所述的方法,其特征在于,所述后14比特中的全部或部分比特包括特殊的AID值,所述特殊的AID值用于指示所述第一多链路设备中的所有站点处于苏醒状态;或者,
    所述特殊的AID值用于指示所述第一多链路设备中有缓存业务待接收的站点处于苏醒状态。
  26. 根据权利要求25所述的方法,其特征在于,所述时长/ID字段的前2比特的取值为11。
  27. 根据权利要求16至19中任一项所述的方法,其特征在于,所述通知帧包括多个PS-Poll帧的聚合帧,一个PS-Poll帧包括时长/ID字段,所述时长/ID字段携带关联标识AID,用来指示所述第一多链路设备中所述AID对应的站点处于醒来状态。
  28. 根据权利要求16至26中任一项所述的方法,其特征在于,所述通知帧为PS-Poll帧。
  29. 根据权利要求18至28中任一项所述的方法,其特征在于,
    所述MAC帧包括:链路标识比特位图和更多数据(More data)比特,所述链路标识比特位图与所述更多数据比特结合用于指示所述链路标识比特位图对应的链路上的站点是否有缓存业务待接收;或者,
    所述MAC帧包括下行业务比特位图字段,所述下行业务比特位图字段用于指示所述第一多链路设备中的多个站点是否有缓存业务待接收。
  30. 根据权利要求29所述的方法,其特征在于,所述下行业务比特位图字段包括下行组播业务比特位图字段和下行单播业务位图字段,其中,所述下行组播比特位图字段用来指示所述第一多链路设备的多个站点是否有下行组播或广播业务,所述下行单播比特位图字段用来指示所述第一多链路设备的多个站点是否有下行单播业务。
  31. 一种缓存业务通知方法,其特征在于,所述方法包括:
    第一设备接收媒体介质接入控制层MAC帧,所述MAC帧包括链路标识比特位图和更多数据比特,所述链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,所述更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示所述链路标识比特位图对应的链路上的站点是否有缓存业务待接收;第一设备,根据所述链路标识比特位图与所述更多数据比特确定所述第一设备中的哪些站点有缓存业务待接收。
  32. 一种缓存业务通知方法,其特征在于,所述方法包括:
    第二设备生成媒体介质接入控制层MAC帧,所述MAC帧包括链路标识比特位图和更多数据比特,所述链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,所述更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓冲缓存业务待接收;第二设备发送MAC帧。
  33. 一种通信装置,其特征在于,应用于第一设备,包括:
    收发单元,用于接收媒体介质接入控制层MAC帧,所述MAC帧包括链路标识比特位图和更多数据比特,所述链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,所述更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓存业务待接收;
    处理单元,用于根据链路标识比特位图与所述更多数据比特确定第一设备中的哪些站点有缓存业务待接收。
  34. 一种通信装置,其特征在于,应用于第二设备,包括:
    处理单元,用于生成媒体介质接入控制层MAC帧,所述MAC帧包括链路标识比特位图和更多数据比特,所述链路标识比特位图包括多个比特,一个比特对应多条链路中的一条链路上的一个站点,所述更多数据比特包括1比特,所述链路标识比特位图与所述更多数据比特结合用于指示链路标识比特位图对应的链路上的站点是否有缓冲缓存业务待接收;
    收发单元,用于发送MAC帧。
  35. 一种通信装置,其特征在于,所述通信装置包括处理器和收发器,所述收发器用于用于收发信息或者用于与其他网元通信,所述处理器用于执行计算机指令,以支持所述通信装置执行上述权利要求16-30或权利要求31-32所述的方法。
  36. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于与所述处理器耦合,保存所述通信装置必要的程序指令和数据,所述处理器用于执行存储器中存储的程序指令,以支持所述通信装置执行上述权利要求16-30或权利要求31-32所述的方法。
  37. 一种芯片,其特征在于,所述芯片包括输入输出接口电路和处理电路,所述输入输出接口电路用于输入输出数据或信令信息,所述处理电路用于处理所述信令或数据信息以使 所述芯片执行上述权利要求16-30或权利要求31-32所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序代码,当所述计算机程序代码在处理器上运行时,使得所述处理器执行上述权利要求16-30或权利要求31-32所述的方法。
  39. 一种计算机程序产品,其特征在于,所述计算机程序产品储存有计算机软件指令,所述计算机软件指令包括用于上述权利要求16-30或权利要求31-32所述方法的程序。
  40. 一种通信系统,其特征在于,所述通信系统包括第一设备和第二设备,所述第一设备用于执行上述权利要求16、18、20-30任一项所述的方法,所述第二设备用于执行上述权利要求17、19、20-30任一项所述的方法;或者,所述第一设备用于执行权利要求31所述的方法,所述第二设备用于执行权利要求32所述的方法。
PCT/CN2021/080237 2020-03-11 2021-03-11 一种应用于多链路通信中的功率节省方法和装置 WO2021180177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21766875.5A EP4109980A4 (en) 2020-03-11 2021-03-11 ENERGY SAVING METHOD AND APPARATUS APPLIED TO MULTI-LINK COMMUNICATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010168105.3 2020-03-11
CN202010168105.3A CN113395746A (zh) 2020-03-11 2020-03-11 一种应用于多链路通信中的功率节省方法和装置

Publications (1)

Publication Number Publication Date
WO2021180177A1 true WO2021180177A1 (zh) 2021-09-16

Family

ID=77615466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080237 WO2021180177A1 (zh) 2020-03-11 2021-03-11 一种应用于多链路通信中的功率节省方法和装置

Country Status (3)

Country Link
EP (1) EP4109980A4 (zh)
CN (1) CN113395746A (zh)
WO (1) WO2021180177A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043694A1 (ko) * 2022-08-24 2024-02-29 현대자동차주식회사 Mlsr 동작을 지원하는 무선랜에서 저전력 동작을 위한 방법 및 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115699910A (zh) * 2020-06-09 2023-02-03 松下电器(美国)知识产权公司 用于多链路业务指示图的通信装置和通信方法
CN116133151A (zh) * 2021-11-12 2023-05-16 展讯通信(上海)有限公司 数据传输方法与装置、多链路设备
CN116321021A (zh) * 2021-12-21 2023-06-23 中兴通讯股份有限公司 工作模式的调整方法、装置、存储介质及电子装置
CN118019087A (zh) * 2022-11-10 2024-05-10 华为技术有限公司 一种多链路设备通信方法及通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107948073A (zh) * 2017-11-21 2018-04-20 中南大学 基于ndn架构的无线数据传输方法、装置及系统
CN108781412A (zh) * 2016-03-09 2018-11-09 高通股份有限公司 动态广播时间以唤醒服务时段分配

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2880984C (en) * 2012-08-08 2020-10-06 Giwon Park Scanning method and apparatus in wireless lan
US10327204B2 (en) * 2014-05-09 2019-06-18 Lg Electronics Inc. Method and apparatus for power saving mode operation in wireless LAN
WO2016106674A1 (zh) * 2014-12-31 2016-07-07 华为技术有限公司 一种信道接入的方法、站点设备和接入点设备
US10499379B2 (en) * 2016-11-08 2019-12-03 Avago Technologies International Sales Pte. Limited Bandwidth query report poll
CN113038578A (zh) * 2017-04-19 2021-06-25 华为技术有限公司 一种站点唤醒方法及站点
US11202286B2 (en) * 2018-07-11 2021-12-14 Intel Corporation Methods for multi-link setup between a multi-link access point (AP) logical entity and a multi-link non-AP logical entity
CN110875805B (zh) * 2018-08-29 2023-03-28 华为技术有限公司 帧的传输方法及设备
CN116582911B (zh) * 2019-11-08 2024-03-01 华为技术有限公司 一种多链路设备间的通信方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108781412A (zh) * 2016-03-09 2018-11-09 高通股份有限公司 动态广播时间以唤醒服务时段分配
CN107948073A (zh) * 2017-11-21 2018-04-20 中南大学 基于ndn架构的无线数据传输方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIWEN CHU (NXP): "multi-link power save", IEEE DRAFT; 11-19-1617-02-00BE-MULTI-LINK-POWER-SAVE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 2, 16 January 2020 (2020-01-16), Piscataway, NJ USA, pages 1 - 10, XP068165382 *
MINYOUNG PARK (INTEL CORP.): "Multi-link power save operation", IEEE DRAFT; 11-19-1544-05-00BE-MULTI-LINK-POWER-SAVE-OPERATION, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 5, 16 January 2020 (2020-01-16), Piscataway, NJ USA, pages 1 - 18, XP068165413 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043694A1 (ko) * 2022-08-24 2024-02-29 현대자동차주식회사 Mlsr 동작을 지원하는 무선랜에서 저전력 동작을 위한 방법 및 장치

Also Published As

Publication number Publication date
CN113395746A (zh) 2021-09-14
EP4109980A1 (en) 2022-12-28
EP4109980A4 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2021089022A1 (zh) 一种多链路设备间的通信方法和装置
WO2021180177A1 (zh) 一种应用于多链路通信中的功率节省方法和装置
WO2022042268A1 (zh) 多链路通信的链路指示方法及相关装置
WO2022033594A1 (zh) 适用于多链路的关键bss参数管理方法及相关装置
WO2021244652A1 (zh) 适用于多链路的组播业务传输方法及装置
WO2008081277A2 (en) Negotiating delivery interval for broadcast and multicast transmission
CN115623426B (zh) 适用于多链路的组播业务传输方法及装置
WO2022028610A1 (zh) 适用于多链路的单播业务指示方法及相关装置
US20230319640A1 (en) Method for determining data buffer status, and apparatus
WO2023185759A1 (zh) 多链路通信方法及装置
TWI830238B (zh) 通訊方法及裝置
WO2023193666A1 (zh) 多链路通信方法及装置
WO2023197843A1 (zh) 一种通信的方法和装置
WO2023179315A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021766875

Country of ref document: EP

Effective date: 20220921

NENP Non-entry into the national phase

Ref country code: DE