WO2024099014A1 - 一种背接触电池、光伏电池结构和光伏组件 - Google Patents

一种背接触电池、光伏电池结构和光伏组件 Download PDF

Info

Publication number
WO2024099014A1
WO2024099014A1 PCT/CN2023/123779 CN2023123779W WO2024099014A1 WO 2024099014 A1 WO2024099014 A1 WO 2024099014A1 CN 2023123779 W CN2023123779 W CN 2023123779W WO 2024099014 A1 WO2024099014 A1 WO 2024099014A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
bus
electrodes
segments
same
Prior art date
Application number
PCT/CN2023/123779
Other languages
English (en)
French (fr)
Inventor
赵德宝
陈鹏
陈军
李华
Original Assignee
泰州隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰州隆基乐叶光伏科技有限公司 filed Critical 泰州隆基乐叶光伏科技有限公司
Publication of WO2024099014A1 publication Critical patent/WO2024099014A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells

Definitions

  • the present invention relates to the field of solar cell technology, in particular to a back contact cell, a photovoltaic cell structure and a photovoltaic module.
  • Back-contact cells refer to solar cells with emitters and metal contacts on the back of the cell, and no metal electrode blocking the front. Compared with solar cells with blocking on the front, back-contact cells have higher short-circuit current and photoelectric conversion efficiency, and are one of the current technical directions for achieving high-efficiency crystalline silicon cells.
  • the purpose of the present application is to provide a back-contact cell, a photovoltaic cell structure and a photovoltaic module, which are used to suppress the current mismatch between different bus electrodes in the positive electrode included in the back-contact cell and between different bus electrodes in the negative electrode, thereby improving the electrical performance of the back-contact cell.
  • the present application provides a back-contact battery.
  • the back-contact battery comprises: a battery body, and a positive electrode and a negative electrode formed on a backlight surface of the battery body.
  • the positive electrode and the negative electrode each comprise a plurality of collector electrodes, a plurality of bus electrodes, and at least one connecting electrode.
  • the collector electrodes included in the positive electrode and the collector electrodes included in the negative electrode extend along the first direction and are alternately spaced along the second direction.
  • the first direction is different from the second direction.
  • At least one collector electrode included in the positive electrode and at least one collector electrode included in the negative electrode are continuous collector electrodes.
  • the bus electrodes included in the positive electrode and the bus electrodes included in the negative electrode extend along the second direction and are alternately spaced along the first direction.
  • Each bus electrode is connected to a collector electrode with the same polarity as itself, and each bus electrode includes a plurality of bus electrode segments spaced along the second direction, and the interval between two adjacent bus electrode segments in the same bus electrode is used to isolate each collector electrode with the opposite polarity to itself.
  • Each connecting electrode is located outside all the bus electrodes included in the positive electrode and the negative electrode along the first direction.
  • Each connecting electrode is connected to all collector electrodes with the same polarity as itself, and is insulated from the collector electrodes with the opposite polarity to itself.
  • each bus electrode includes a plurality of bus electrode segments spaced apart along the second direction, and the interval between two adjacent bus electrode segments in the same bus electrode is used to isolate each collector electrode with the opposite polarity to itself.
  • different bus electrode segments included in each bus electrode are connected to corresponding collector electrodes with the same polarity, so as to collect carriers collected at corresponding positions of the collector electrodes.
  • the continuous collector electrode included in the positive electrode can connect together corresponding bus electrode segments belonging to different bus electrodes in the positive electrode, so that the currents of different bus electrode segments connected together by the continuous collector electrode are the same.
  • the connecting electrode included in the positive electrode is connected to all the collecting electrodes included in the positive electrode, so as to connect the different bus electrode segments connected to the collecting electrodes included in the positive electrode together by connecting the collecting electrodes included in the positive electrode together, thereby further suppressing the current mismatch between the different bus electrodes included in the positive electrode, and at the same time, it is also beneficial to connect all the bus electrode segments belonging to the same bus electrode together through the connecting electrode, so as to prevent the partial bus electrode segments included in the bus electrode from failing to connect to the interconnection in the string due to the bias of the interconnection in the string welded to a bus electrode included in the positive electrode, so that the carriers collected by each bus electrode segment included in the bus electrode can be exported through the interconnection in the string, thereby improving the photoelectric conversion efficiency of the back contact battery.
  • the negative electrode in the present application also has the beneficial effects of the positive electrode described above, which will not be repeated here.
  • the interval between two adjacent bus electrode segments in the same bus electrode along the second direction is 0.4 mm to 2 mm.
  • the interval between two adjacent bus electrode segments in the same bus electrode along the second direction is moderate, which can prevent the short circuit problem caused by the bus electrode segment being connected to the collector electrode with the opposite polarity due to the small interval, and ensure that each bus electrode segment can be isolated from the collector electrode with the opposite polarity through the interval.
  • it can also prevent the collection of carriers generated by the bus electrode segment after the corresponding position of the battery body absorbs photons due to the large interval, ensuring that the bus electrode segments have a high carrier collection ability, further improving the electrical performance of the back contact battery.
  • each of the above-mentioned connecting electrodes is located at the end of all the collector electrodes included in the positive electrode and the negative electrode along the first direction.
  • each connecting electrode can be located at the edge of the battery body along the first direction, which is conducive to increasing the distance between each connecting electrode and the collector electrode with the opposite polarity to itself, and preventing short circuit.
  • all the collector electrodes included in the positive electrode and the negative electrode are aligned along the first direction.
  • all the collector electrodes included in the positive electrode and the negative electrode can be regularly distributed on the backlight surface of the electrode body, which is conducive to making the carriers generated by each part of the battery body along the first direction after absorbing photons can be effectively collected by each collector electrode, thereby facilitating the improvement of the electrical performance of the back contact battery.
  • At least one connecting electrode included in the positive electrode is located at a first outer side of all bus electrodes included in the positive electrode and the negative electrode along the first direction. At least one connecting electrode included in the negative electrode is located at a second outer side of all bus electrodes included in the positive electrode and the negative electrode along the first direction. The second outer side is arranged opposite to the first outer side.
  • connection electrodes included in the positive electrode are located on the same first outer side of all the bus electrodes included in the back contact battery along the first direction.
  • all the connection electrodes included in the negative electrode are also located on the same first outer side of all the bus electrodes included in the back contact battery along the first direction.
  • the first outer side and the second outer side are arranged relative to each other, which can prevent the short circuit problem when different connection electrodes with opposite polarities are located on the same outer side, and ensure that the back contact battery has stable electrical performance.
  • each of the above-mentioned collector electrodes and the connection electrode with the opposite polarity thereof have a gap extending along the first direction.
  • each collector electrode can be isolated from the connection electrode with the opposite polarity thereof by the gap extending along the first direction, so that it is not necessary to provide an insulating material between each collector electrode and the connection electrode with the opposite polarity thereof, and a short circuit problem will not occur, so the amount of insulating material used can be further reduced, and the manufacturing cost of the back contact battery can be reduced.
  • the plurality of busbar electrode segments included in the same busbar electrode are distributed at equal intervals along the second direction.
  • the lengths of different bus electrode segments included in the same bus electrode are the same, and the length direction of the bus electrode segment is parallel to the second direction.
  • the beneficial effects of this situation can be referred to the above analysis of the beneficial effects of multiple bus electrode segments included in the same bus electrode being equally spaced along the second direction, which will not be repeated here.
  • the different bus electrodes with the same polarity include the same number of bus electrode segments.
  • the beneficial effects of this situation can be referred to the above analysis of the beneficial effects of the multiple bus electrode segments included in the same bus electrode being equally spaced along the second direction, which will not be repeated here.
  • the bus electrode segments in the same number of segments in different bus electrodes with the same polarity are aligned end to end in the same direction.
  • the bus electrode segments in different numbers of segments in the same bus electrode are distributed at intervals along the second direction.
  • the bus electrode segments with the same number of segments in different bus electrodes with the same polarity are aligned end to end in the same direction, so that the intervals with the same number of segments in different bus electrodes with the same polarity can be extended along this direction, which is conducive to making the collecting electrode a linear collecting electrode extending along a single straight line direction, and is conducive to simplifying the structure of the collecting electrode included in the positive electrode and the negative electrode.
  • the bus electrode segments in the same number of segments in the different bus electrodes with opposite polarities are staggered end to end along the second direction.
  • the bus electrode segments in different numbers of segments in the same bus electrode are spaced apart along the second direction.
  • the bus electrode segments with the same number of segments in different bus electrodes with opposite polarities have different heights along the second direction. Based on this, when other factors are the same, the bus electrode segments with the same number of segments in different bus electrodes with opposite polarities are staggered end to end along the second direction, which can increase the spacing between two adjacent bus electrode segments included in the same bus electrode, and can further prevent short circuits caused by each bus electrode segment being connected to a collector electrode with opposite polarity, thereby improving the electrical stability of the back contact battery.
  • the back contact battery further includes a welding portion, each welding portion Connected to the corresponding bus electrode.
  • the welding part at least partially located between two adjacent bus electrode segments included in the same bus electrode is a first type welding part, and the remaining welding parts are second type welding parts.
  • the collecting electrode at least partially at the same height as the first type welding part along the second direction is a first type collecting electrode, and the remaining collecting electrodes are second type collecting electrodes.
  • Each bus electrode has the same polarity as the welding part arranged on it.
  • Each first type collecting electrode includes a plurality of collecting electrode segments spaced apart along the first direction, and the interval between two adjacent collecting electrode segments included in the same first type collecting electrode is used to separate the first type welding part with the opposite polarity to itself.
  • the present application further provides a photovoltaic cell structure.
  • the photovoltaic cell structure includes an insulating material and a back contact cell provided by the first aspect and various implementations thereof.
  • the insulating material at least covers the interval between two adjacent bus electrode segments included in each bus electrode.
  • the width of the insulating material is greater than the width of the bus electrode and less than the preset width.
  • the preset width is 1.5 mm to 10 mm.
  • the width of the insulating material along the first direction is moderate, which can prevent the increase in the amount of insulating material due to the large width of the insulating material, and is conducive to controlling the manufacturing cost of the back contact battery.
  • it can also prevent the placement of the interconnection parts in the string from being strictly required in the process of connecting different back contact batteries together due to the small width of the insulating material, which is conducive to reducing the difficulty of welding to connect at least two back contact batteries together.
  • the photovoltaic cell structure when the back contact cell includes welding portions, and each welding portion is connected to a corresponding bus electrode, the photovoltaic cell structure further includes a conductive adhesive, and the conductive adhesive is disposed on at least one welding portion.
  • the greater the thickness of the insulating material the better the insulating effect of the insulating material.
  • the top height of the insulating material may be greater than the top height of the welding part.
  • the conductive glue is arranged on each welding part so that the top height of the structure composed of the conductive glue and the welding part is greater than or equal to the top height of the insulating material, ensuring that the interconnection member in the string can be connected to the corresponding welding part.
  • the present application further provides a photovoltaic module, which includes the back contact cell provided by the first aspect and various implementations thereof, or the photovoltaic cell structure provided by the second aspect and various implementations thereof.
  • FIG1 is a schematic diagram of the structure of the positive electrode and the negative electrode of an existing back contact battery
  • Parts (1) and (2) in FIG. 2 are two structural schematic diagrams of a battery body provided in an embodiment of the present application;
  • FIG3 is a schematic diagram of a first structure of a back contact battery provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a second structure of a back contact battery provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a third structure of a back contact battery provided in an embodiment of the present application.
  • Part (1) of FIG6 is an enlarged view of the positional relationship between the collector electrode and the bus electrode when the bus electrode segments with the same number of segments in different bus electrodes with opposite polarities in the embodiment of the present application are partially the same in height along the second direction;
  • Part (2) of FIG6 is an enlarged view of the positional relationship between the collector electrode and the bus electrode when the bus electrode segments with the same number of segments in different bus electrodes with opposite polarities in the embodiment of the present application are staggered along the second direction;
  • FIG7 is a schematic diagram of a fourth structure of a back contact battery provided in an embodiment of the present application.
  • FIG8 is a fifth structural schematic diagram of a back contact battery provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a photovoltaic cell structure provided in an embodiment of the present application.
  • 1 is a battery body
  • 2 is a positive electrode
  • 3 is a negative electrode
  • 4 is a collecting electrode
  • 5 is a bus electrode
  • 6 is a connecting electrode
  • 7 is a bus electrode segment
  • 8 is a welding portion
  • 9 is a first type of welding portion
  • 10 is a second type of welding portion
  • 11 is a first type of collecting electrode
  • 12 is a second type of collecting electrode
  • 13 is a collecting electrode segment
  • 14 is an insulating material
  • 15 is a conductive adhesive.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • plurality means two or more, unless otherwise explicitly specified. “Several” means one or more than one, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • Photovoltaic solar cells are devices that convert sunlight into electrical energy. Specifically, solar cells use the photovoltaic principle to generate carriers, and then use electrodes to lead the carriers out, thereby facilitating the effective use of electrical energy.
  • the solar cell is a back contact cell.
  • Existing back contact cells include metal wrap through (MWT) cells and interdigitated back contact (IBC) cells.
  • MMT metal wrap through
  • IBC interdigitated back contact
  • the biggest feature of the IBC cell is that the emitter and the metal contact are both on the back of the cell, and there is no metal electrode blocking the front, so it has a higher short-circuit current Isc.
  • the back of the IBC cell can allow wider metal grid lines to reduce the series resistance Rs, thereby improving the fill factor FF.
  • this type of cell with no obstruction on the front not only has high conversion efficiency, but also looks more beautiful.
  • the full back electrode component is easier to assemble, so the IBC cell is one of the current technical directions for achieving high-efficiency crystalline silicon cells.
  • the positive electrode 2 and the negative electrode 3 included in the above-mentioned IBC battery are both formed on the backlight surface of the battery body 1.
  • the positive electrode 2 and the negative electrode 3 each include a plurality of collector electrodes 4 and a plurality of bus electrodes 5.
  • the plurality of collector electrodes 4 included in the positive electrode 2 and the negative electrode 3 each extend along the first direction and are arranged alternately and spaced along the second direction.
  • the plurality of bus electrodes 5 included in the positive electrode 2 and the negative electrode 3 each extend along the second direction and are alternately and spaced along the first direction; wherein the first direction is different from the second direction.
  • Each collector electrode 4 is connected to a bus electrode 5 having the same polarity as itself, and each collector electrode 4 includes a plurality of collector electrode segments 13 spaced along the first direction. The interval between two adjacent collector electrode segments 13 included in the same collector electrode 4 is used to isolate each bus electrode 5 having the opposite polarity to itself, so as to prevent the positive and negative electrodes 3 from being connected and causing a short circuit in the back contact battery.
  • each collector electrode segment 13 included in the same collector electrode 4 are insulated from each other, and each collector electrode segment 13 is used to collect carriers generated at the corresponding position of the battery body 1.
  • the collector electrode segments 13 connected to different bus electrodes 5 included in the positive electrode 2 are different, and the collector electrode segments 13 connected to different bus electrodes 5 included in the corresponding negative electrode 3 are also different.
  • the concentration of carriers generated at different positions of the battery body 1 is The current collected by each collector electrode segment 13 may be different, which in turn causes the current collected by different bus electrodes 5 connected to different collector electrode segments 13 in the positive electrode 2 to be different, that is, there is a current mismatch problem between different bus electrodes 5 in the positive electrode 2.
  • the embodiment of the present application provides a back contact battery.
  • the back contact battery includes: the back contact battery includes: a battery body 1, and a positive electrode 2 and a negative electrode 3 formed on the backlight surface of the battery body 1.
  • the positive electrode 2 and the negative electrode 3 each include a plurality of collector electrodes 4, a plurality of bus electrodes 5 and at least one connecting electrode 6.
  • the collector electrodes 4 included in the positive electrode 2 and the collector electrodes 4 included in the negative electrode 3 extend along the first direction and are alternately spaced along the second direction.
  • the first direction is different from the second direction.
  • At least one collector electrode 4 included in the positive electrode 2 and at least one collector electrode 4 included in the negative electrode 3 are continuous collector electrodes.
  • the bus electrodes 5 included in the positive electrode 2 and the bus electrodes 5 included in the negative electrode 3 extend along the second direction and are alternately spaced along the first direction.
  • Each bus electrode 5 is connected to the collector electrode 4 with the same polarity, and each bus electrode 5 includes a plurality of bus electrode segments 7 spaced along the second direction.
  • Each connecting electrode 6 is located outside all the bus electrodes 5 included in the positive electrode 2 and the negative electrode 3 along the first direction. Each connecting electrode 6 is connected to all collector electrodes 4 with the same polarity and is insulated from the collector electrodes 4 with the opposite polarity.
  • the battery body may include a semiconductor substrate, a P-type doped semiconductor layer and an N-type doped semiconductor layer.
  • the material of the semiconductor substrate may be a semiconductor material such as silicon, silicon germanium, gallium arsenide, etc.
  • the semiconductor substrate has a first face and a second face relative to each other. The second face corresponds to the backlight face of the battery body. Along the direction parallel to the second face, the second face has a first region and a second region alternately arranged along the above-mentioned first direction.
  • the length extension directions of the first region and the second region are both parallel to the above-mentioned second direction.
  • the P-type doped semiconductor layer is formed on the first region or in the first region.
  • the N-type doped semiconductor layer is formed on the second region or in the second region.
  • the doping concentration of impurities in the above-mentioned P-type doped semiconductor layer and the N-type doped semiconductor layer can be set according to the actual application scenario, as long as it can be applied to the back contact battery provided in the embodiment of the present application.
  • the battery body 1 may be a battery body with chamfers.
  • the battery body 1 may also be a battery body without chamfers.
  • the collector electrode 4 formed on the corresponding P-type doped semiconductor layer is the collector electrode 4 included in the positive electrode 2, which is used to collect holes conducted from the P-type doped semiconductor layer.
  • the bus electrode 5 connected to the collector electrode 4 included in the positive electrode 2 is the bus electrode 5 included in the positive electrode 2.
  • the collector electrode 4 formed on the corresponding N-type doped semiconductor layer is the collector electrode 4 included in the negative electrode 3, which is used to collect electrons conducted from the N-type doped semiconductor layer.
  • the bus electrode 5 connected to the collector electrode 4 included in the negative electrode 3 is The negative electrode 3 includes a bus electrode 5 .
  • the polarity of a collector electrode included in the positive electrode is opposite to that of a collector electrode included in the negative electrode (or a bus electrode and a connecting electrode included in the negative electrode), and the polarity is the same as that of another collector electrode included in the positive electrode (or a bus electrode and a connecting electrode included in the positive electrode).
  • the polarity of a bus electrode included in the positive electrode is opposite to that of a collector electrode included in the negative electrode (or a bus electrode and a connecting electrode included in the negative electrode), and the polarity is the same as that of another bus electrode included in the positive electrode (or a collector electrode and a connecting electrode included in the positive electrode).
  • the polarity of a connecting electrode included in the positive electrode is opposite to that of a collector electrode included in the negative electrode (or a bus electrode and a connecting electrode included in the negative electrode), and the polarity is the same as that of a bus electrode included in the positive electrode (or a collector electrode and another connecting electrode included in the positive electrode). Accordingly, the situation of electrodes with the same or opposite polarity corresponding to the collector electrode, bus electrode and connecting electrode included in the negative electrode can be referred to the previous text, and will not be repeated here.
  • the number and specifications of the collector electrodes included in the positive electrode and the negative electrode, as well as the size of the spacing between the collector electrodes included in the positive electrode and the collector electrodes included in the adjacent negative electrode along the second direction can be set according to the actual application scenario, as long as they can be applied to the back contact battery provided in the embodiment of the present application.
  • the number of collector electrodes included in the positive electrode and the negative electrode can be the same or different.
  • the spacing between the collector electrode included in the positive electrode and the collector electrode included in the adjacent negative electrode along the second direction can be 1mm to 2mm.
  • the above spacing can also be set to other suitable values according to the requirements of the actual application scenario.
  • all the collector electrodes 4 included in the positive electrode 2 and the negative electrode 3 can be continuous collector electrodes.
  • the continuous collector electrode is a collector electrode on which there is no discontinuity.
  • a portion of the collector electrodes 4 in the positive electrode 2 and the negative electrode 3 are continuous collector electrodes, and the remaining collector electrodes 4 are discontinuous collector electrodes on which there are discontinuities.
  • the number of continuous collector electrodes and discontinuous collector electrodes in the positive electrode 2 and the negative electrode 3, and the position and number of disconnections in the discontinuous collector electrodes can be set according to the actual application scenario, as long as they can be applied to the back contact battery provided in the embodiment of the present application.
  • the number and specifications of the bus electrodes included in the positive electrode and the negative electrode, as well as the spacing between the bus electrodes included in the positive electrode and the bus electrodes included in the adjacent negative electrode along the first direction, can be set according to the actual application scenario, as long as they can be applied to the back contact battery provided in the embodiment of the present application.
  • the total number of bus electrodes included in the above-mentioned positive electrode and negative electrode can be 6 to 24. In actual applications, the number of bus electrodes included in the positive electrode and the negative electrode can be the same or different.
  • the collector electrodes included in the above-mentioned positive electrode and negative electrode can be straight-line collector electrodes, wavy-line collector electrodes or zigzag-line collector electrodes, etc.
  • the specific shapes of the collector electrodes included in the positive electrode and negative electrode can be set according to the actual application scenario, and are not specifically limited here.
  • the bus electrodes included in the positive electrode and negative electrode can be straight-line bus electrodes, wavy-line bus electrodes or zigzag bus electrodes, etc.
  • the specific shapes of the bus electrodes included in the positive electrode and negative electrode can be set according to the actual application scenario, and are not specifically limited here.
  • each bus electrode 5 includes a plurality of bus electrode segments 7 spaced apart along the second direction.
  • the plurality of bus electrode segments 7 included in the same bus electrode 5 may be Alternatively, at least one pair of bus electrode segments 7 are arranged in a first direction in the same bus electrode 5.
  • the number of pairs of bus electrode segments 7 arranged in a first direction in the same bus electrode 5 can be set according to the actual application scenario, as long as it can be applied to the back contact battery provided in the embodiment of the present application.
  • first direction and the second direction may be any two different directions parallel to the backlight surface.
  • first direction when the cross-sectional shape of the battery body 1 is a rectangle, the first direction may be parallel to the long side of the rectangle, and the second direction may be parallel to the wide side of the rectangle. In this case, the first direction and the second direction are orthogonal.
  • the interval between two adjacent bus electrode segments in the same bus electrode along the second direction can be 0.4mm to 2mm.
  • the interval can be 0.4mm, 0.6mm, 0.8mm, 1mm, 1.2mm, 1.4mm, 1.6mm, 1.8mm or 2mm, etc.
  • the interval between two adjacent bus electrode segments in the same bus electrode along the second direction is moderate, which can prevent the short circuit problem caused by the bus electrode segment being connected to the collector electrode with the opposite polarity due to the small interval, and ensure that each bus electrode segment can be isolated from the collector electrode with the opposite polarity through the interval.
  • the bus electrode segment can also prevent the collection of carriers generated by the bus electrode segment after absorbing photons at the corresponding position of the battery body due to the large interval, ensuring that the bus electrode segments have a high carrier collection ability, further improving the electrical performance of the back contact battery.
  • the connecting electrodes included in the positive electrode and the negative electrode are all continuous connecting electrodes.
  • a continuous connecting electrode is a connecting electrode on which there is no discontinuity.
  • the width of the connecting electrode included in the positive electrode and the negative electrode is not limited.
  • the width of the connecting electrode can be the same as the width of the bus electrode, or the same as the width of the collector electrode.
  • the number of connecting electrodes included in the positive electrode and the negative electrode can be one or more. Among them, the number of connecting electrodes included in the positive electrode can be the same as the number of connecting electrodes included in the negative electrode, or it can be different.
  • each connecting electrode on the backlight surface of the battery body can be set according to actual needs, as long as it is ensured that each connecting electrode is located on the outside of all the bus electrodes included in the positive electrode and the negative electrode along the first direction.
  • the connecting electrode 6 included in the positive electrode 2 and the connecting electrode 6 included in the negative electrode 3 can be located on the same outside of all the bus electrodes 5 along the first direction.
  • the connecting electrode 6 can be separated from the collector electrode 4 with the opposite polarity by an insulating material.
  • the mutual insulation between the two can also be achieved in other ways.
  • At least one connecting electrode 6 included in the positive electrode 2 is located on the first outer side of all the bus electrodes 5 included in the positive electrode 2 and the negative electrode 3 along the first direction.
  • At least one connecting electrode 6 included in the negative electrode 3 is located on the second outer side of all the bus electrodes 5 included in the positive electrode 2 and the negative electrode 3 along the first direction.
  • the second outer side is arranged opposite to the first outer side.
  • each bus electrode 5 includes a plurality of bus electrodes spaced apart and distributed along the second direction.
  • the segments 7 are provided, and the interval between two adjacent bus electrode segments 7 in the same bus electrode 5 is used to isolate each collector electrode 4 with a polarity opposite to itself.
  • different bus electrode segments 7 included in each bus electrode 5 are connected to corresponding collector electrodes 4 with the same polarity, and are used to collect carriers collected at corresponding positions of the collector electrodes 4.
  • the continuous collector electrode included in the positive electrode 2 can connect together corresponding bus electrode segments 7 belonging to different bus electrodes 5 in the positive electrode 2, so that the currents of different bus electrode segments 7 connected together by the continuous collector electrode are the same.
  • the connecting electrode 6 included in the positive electrode 2 is connected to all the collector electrodes 4 included in the positive electrode 2, so that the different bus electrode segments 7 connected to the collector electrodes 4 included in the positive electrode 2 are connected together by connecting the collector electrodes 4 included in the positive electrode 2 together, and the current mismatch between the different bus electrodes 5 included in the positive electrode 2 is further suppressed.
  • the negative electrode 3 in the embodiment of the present application also has the beneficial effects of the positive electrode 2 described above, which will not be repeated here.
  • each of the above-mentioned connecting electrodes 6 can be located on the collector electrode 4 included in the positive electrode 2 and the negative electrode 3.
  • each of the above-mentioned connecting electrodes 6 can also be located at the end of all the collector electrodes 4 included in the positive electrode 2 and the negative electrode 3 along the first direction.
  • each connecting electrode 6 can be located at the edge of the battery body 1 along the first direction, which is conducive to increasing the distance between each connecting electrode 6 and the bus electrode 5 with the opposite polarity to itself, and preventing short circuit.
  • all the collector electrodes 4 included in the positive electrode 2 and the negative electrode 3 can be aligned along the first direction.
  • all the collector electrodes 4 included in the positive electrode 2 and the negative electrode 3 can be regularly distributed on the backlight surface of the electrode body, which is conducive to making the carriers generated by each part of the battery body 1 along the first direction after absorbing photons can be effectively collected by each collector electrode 4, thereby facilitating the improvement of the electrical performance of the back contact battery.
  • each collector electrode 6 there is at least one collector electrode whose end along the first direction is staggered with the ends of the remaining collector electrodes along the first direction.
  • all collector electrodes 4 included in the positive electrode 2 may be aligned end to end along the first direction
  • all collector electrodes 4 included in the negative electrode 3 may be aligned end to end along the first direction
  • the ends of all collector electrodes 4 included in the positive electrode 2 along the first direction are staggered with the ends of all collector electrodes 4 included in the negative electrode 3 along the first direction.
  • each connecting electrode 6 it is beneficial for each connecting electrode 6 to be connected only to the collector electrode 4 with the same polarity as itself without providing an insulating material, and to be isolated from the collector electrode 4 with the opposite polarity.
  • each of the above-mentioned collector electrodes and the connecting electrode with the opposite polarity thereof have a gap extending along the first direction.
  • the gap may be The interval between the end of the electrode 4 along the first direction and the connecting electrode 6 with the opposite polarity.
  • it can also be an interval set on the collecting electrode, which is used to divide the collecting electrode into at least two collecting electrode segments.
  • the size of the interval can be set according to actual needs and is not specifically limited here.
  • each collecting electrode 4 can be isolated from the connecting electrode 6 with the opposite polarity thereof by the above-mentioned interval extending along the first direction, so that there is no need to set insulating material between each collecting electrode 4 and the connecting electrode 6 with the opposite polarity thereof, and short circuit problems will not occur. Therefore, the amount of insulating material used can be further reduced, thereby reducing the manufacturing cost of the back contact battery.
  • each bus electrode includes a plurality of bus electrode segments spaced apart along the second direction.
  • the number of bus electrode segments included in different bus electrodes with the same polarity may be the same or different.
  • each bus electrode 5 included in the positive electrode 2 includes 10 bus electrode segments 7. Among them, as shown in FIGS.
  • the lengths of different bus electrode segments included in the same bus electrode may be the same or different.
  • the length direction of the bus electrode segment is parallel to the second direction.
  • the bus electrode in the first column is the bus electrode 5 included in the positive electrode 2
  • the number of different bus electrode segments 7 included in the bus electrode 5 is arranged from top to bottom.
  • the lengths of the first bus electrode segment to the tenth bus electrode segment included in the bus electrode 5 along the second direction are the same.
  • the lengths of any two bus electrode segments belonging to different bus electrodes along the second direction may be the same or different.
  • the intervals between any two pairs of busbar segments in the same busbar electrode may be the same or different. As shown in FIGS. 3 to 5 , when the intervals between any two pairs of busbar segments 7 in the same busbar electrode 5 are equal, the multiple busbar segments 7 included in the same busbar electrode 5 are equally spaced along the second direction. The beneficial effects of this situation can be referred to the analysis of the beneficial effects of the same number of busbar segments 7 included in different busbar electrodes 5 with the same polarity, which will not be repeated here.
  • bus electrode segments with the same number of segments in different bus electrodes with the same polarity can be staggered or aligned end to end in the same direction.
  • Bus electrode segments with different numbers of segments in the same bus electrode are spaced apart along the second direction.
  • the intervals with the same number of segments in different bus electrodes 5 with the same polarity can be extended along this direction, which is conducive to making the collecting electrode 4 a linear collecting electrode extending along a single straight line direction, and is conducive to simplifying the structure of the collecting electrode 4 included in the positive electrode 2 and the negative electrode 3.
  • the heights of the bus electrode segments 7 located in the same number of segments in different bus electrodes 5 with opposite polarities along the second direction may partially overlap.
  • the bus electrode segments 7 located in different numbers of segments in the same bus electrode 5 are spaced apart along the second direction.
  • the partial overlap of the heights of the bus electrode segments 7 located in the same number of segments in different bus electrodes 5 with opposite polarities along the second direction can make the length of each bus electrode segment 7 larger, which is conducive to improving the carrier collection capacity of each bus electrode segment 7.
  • the bus electrode segments 7 located in the same number of segments in the above-mentioned different bus electrodes 5 with opposite polarities may also be staggered end to end along the second direction.
  • the bus electrode segments 7 located in different numbers of segments in the same bus electrode 5 are spaced apart along the second direction. In this case, the heights of the bus electrode segments 7 located in the same number of segments in different bus electrodes 5 with opposite polarities along the second direction are different.
  • the bus electrode segments 7 with the same number of segments in different bus electrodes 5 with opposite polarities are staggered end to end along the second direction, which can increase the spacing between two adjacent bus electrode segments 7 included in the same bus electrode 5, and can further prevent short circuits caused by each bus electrode segment 7 being connected to its own collector electrode 4 with opposite polarity, thereby improving the electrical stability of the back-contact battery.
  • the back contact cell further includes a welding portion 8 , each welding portion 8 being connected to a corresponding bus electrode 5 , so as to facilitate connection of the bus electrode 5 with a corresponding intra-string interconnector.
  • each bus electrode can be connected to only one welding portion.
  • each bus electrode 5 can be connected to a plurality of welding portions 8 spaced apart along the second direction.
  • problems such as desoldering of the interconnection parts in the string due to poor welding strength caused by welding the interconnection parts in the string to only one welding portion 8, thereby improving the welding quality of the back contact battery provided by the embodiment of the present application during series welding.
  • the number of welding portions connected to different bus electrodes may be the same or different.
  • FIGS. 7 and 8 when the number of welding portions 8 connected to different bus electrodes 5 is the same, it is advantageous to make the plurality of welding portions 8 included in the back contact battery distributed above the battery body 1, and it is advantageous for the existing string welding machine to connect a plurality of back contact batteries provided by the embodiment of the present application in series through the in-string interconnection member, thereby improving the welding efficiency.
  • the cross-sectional shape of the welding portion connected to the bus electrode can be rectangular, circular, elliptical, etc.
  • the length of the welding portion along the first direction can be greater than or equal to the width of the bus electrode along the first direction, so as to improve the welding strength between the bus electrode and the corresponding in-string interconnection member.
  • the cross-sectional shape of the welding portion is rectangular, the long side of the rectangle can be 3 mm, Its wide side may be 2 mm.
  • the welding portion 8 at least partially located between two adjacent bus electrode segments 7 included in the same bus electrode 5 is a first type welding portion 9, and the remaining welding portions 8 are second type welding portions 10.
  • the collector electrode 4 at least partially at the same height as the first type welding portion 9 along the second direction is a first type collector electrode 11, and the remaining collector electrodes 4 are second type collector electrodes 12.
  • Each bus electrode 5 has the same polarity as the welding portion 8 provided on itself.
  • Each first type collector electrode 11 includes a plurality of collector electrode segments 13 spaced apart along the first direction, and the interval between two adjacent collector electrode segments 13 included in the same first type collector electrode 11 is used to separate the first type welding portion 9 of opposite polarity from itself.
  • first-class welding parts and second-class welding parts included in the back-contact battery can be set according to actual needs, and no specific limitation is made here.
  • each welding part 8 included in the back-contact battery is a first-class welding part 9.
  • some of the welding parts included in the back-contact battery are first-class welding parts, and the remaining welding parts are second-class welding parts.
  • the column numbers of the welding parts 8 are sorted from right to left, and the first column of welding parts 8 included in the back-contact battery are first-class welding parts 9, and the remaining columns of welding parts 8 are second-class welding parts 10.
  • each welding part included in the back-contact battery is a second-class welding part.
  • the number and length of the collecting electrode segments spaced apart along the first direction included in each first-type collecting electrode, and the spacing between two adjacent collecting electrode segments included in the same first-type collecting electrode can be set according to the number of first-type welding parts that are at least partially at the same height as the first-type collecting electrode along the second direction and have opposite polarities, as well as actual needs, and are not specifically limited here.
  • the embodiment of the present application further provides a photovoltaic cell structure.
  • the photovoltaic cell structure includes an insulating material 14 and a back contact cell provided by the first aspect and various implementations thereof.
  • the insulating material 14 at least covers the interval between two adjacent bus electrode segments included in each bus electrode.
  • the width of the insulating material can be set according to actual needs, and is not specifically limited here.
  • the width of the insulating material can be greater than the width of the bus electrode and less than the preset width.
  • the preset width can be 1.5mm to 10mm.
  • the width of the insulating material along the first direction is moderate, which can prevent the increase in the amount of insulating material due to the large width of the insulating material, and is beneficial to controlling the manufacturing cost of the back contact battery.
  • the insulating material can also prevent the small width of the insulating material from causing strict requirements on the placement position of the interconnection parts in the string during the process of connecting different back contact batteries together, which is beneficial to reduce the difficulty of welding to connect at least two back contact batteries together.
  • the photovoltaic cell structure when the above-mentioned back contact cell includes a welding portion 8 and each welding portion 8 is connected to a corresponding bus electrode, the photovoltaic cell structure further includes a conductive adhesive 15.
  • the conductive adhesive 15 is disposed on at least one welding portion 8. In this case, within a certain range The greater the thickness of the insulating material 14, the better the insulating effect of the insulating material 14. When the thickness of the insulating material 14 is relatively large, the top height of the insulating material 14 may be greater than the top height of the welding portion 8.
  • the conductive glue 15 is arranged on each welding portion 8 so that the top height of the structure composed of the conductive glue 15 and the welding portion 8 is greater than or equal to the top height of the insulating material 14, ensuring that the interconnection member in the string can be connected to the corresponding welding portion 8. It can be seen that the thickness of the conductive glue 15 can be determined according to the height difference between the top of the welding portion 8 and the insulating material 14, and is not specifically limited here.
  • the embodiments of the present application further provide a photovoltaic module, which includes the back contact cell provided by the first aspect and various implementations thereof, or the photovoltaic cell structure provided by the second aspect and various implementations thereof.
  • references herein to "one embodiment,” “embodiment,” or “one or more embodiments” mean that a particular feature, structure, or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present invention.
  • examples of the term “in one embodiment” do not necessarily all refer to the same embodiment.
  • any reference signs placed between brackets shall not be construed as limiting the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the use of the words first, second, and third, etc. does not indicate any order. These words may be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请公开一种背接触电池、光伏电池结构和光伏组件,涉及太阳能电池技术领域,用于抑制正电极中不同的汇流电极之间、以及负电极中不同的汇流电极之间存在的电流失配。该背接触电池包括:电池本体、以及形成在电池本体具有的背光面上的正电极和负电极。正电极和负电极均包括多个集电电极、多个汇流电极和至少一个连接电极。正电极包括的至少一个集电电极和负电极包括的至少一个集电电极均为连续集电电极。每个汇流电极均包括沿第二方向间隔分布的多个汇流电极段,同一汇流电极中相邻两个汇流电极段具有的间隔用于将与自身极性相反的每个集电电极隔离开。每个连接电极与自身极性相同的所有集电电极连接、且与自身极性相反的集电电极相互绝缘。

Description

一种背接触电池、光伏电池结构和光伏组件
本申请要求在2022年11月7日提交中国专利局、申请号为202222957031.9、发明名称为“一种背接触电池、光伏电池结构和光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池技术领域,特别是涉及一种背接触电池、光伏电池结构和光伏组件
背景技术
背接触电池指发射极和金属接触都处于电池的背面,正面没有金属电极遮挡的太阳能电池。与正面有遮挡的太阳能电池相比,背接触电池具有更高的短路电流和光电转换效率,是目前实现高效晶体硅电池的技术方向之一。
但是,现有的背接触电池包括的正电极中不同的汇流电极之间、以及负电极中不同的汇流电极之间存在电流失配,不利于提升背接触电池的电学性能。
申请内容
本申请的目的在于提供一种背接触电池、光伏电池结构和光伏组件,用于抑制背接触电池包括的正电极中不同的汇流电极之间、以及负电极中不同的汇流电极之间存在的电流失配,利于提升背接触电池的电学性能。
第一方面,本申请提供了一种背接触电池。该背接触电池包括:电池本体、以及形成在电池本体具有的背光面上的正电极和负电极。正电极和负电极均包括多个集电电极、多个汇流电极和至少一个连接电极。其中,
上述正电极包括的集电电极和负电极包括的集电电极均沿第一方向延伸、且沿第二方向交替间隔设置。第一方向不同于第二方向。正电极包括的至少一个集电电极和负电极包括的至少一个集电电极均为连续集电电极。上述正电极包括的汇流电极和负电极包括的汇流电极均沿第二方向延伸、且沿第一方向交替间隔设置。每个汇流电极与自身极性相同的集电电极连接,每个汇流电极均包括沿第二方向间隔分布的多个汇流电极段,同一汇流电极中相邻两个汇流电极段具有的间隔用于将与自身极性相反的每个集电电极隔离开。每个连接电极均位于正电极和负电极包括的所有汇流电极沿第一方向的外侧。每个连接电极与自身极性相同的所有集电电极连接、且与自身极性相反的集电电极相互绝缘。
采用上述技术方案的情况下,本申请提供的背接触电池中,每个汇流电极均包括沿第二方向间隔分布的多个汇流电极段,并且同一汇流电极中相邻两个汇流电极段具有的间隔用于将与自身极性相反的每个集电电极隔离开。在此情况下,无须在每个汇流电极与自身极性相反的集电电极之间设置绝缘材料,也不会出现短路问题,从而可以降低绝缘材料的用量,降低背接触电 池的制造成本。
另外,每个汇流电极包括的不同汇流电极段与极性相同的相应集电电极连接,用于汇集该集电电极相应位置收集的载流子。并且,在正电极包括的至少一个集电电极为连续集电电极的情况下,该正电极包括的连续集电电极可以将正电极中属于不同汇流电极的相应汇流电极段连接在一起,从而使得通过该连续集电电极连接在一起的不同汇流电极段的电流相同。其次,正电极包括的连接电极与正电极包括的所有集电电极连接,以通过将正电极包括的集电电极连接在一起的方式,进而将与正电极包括的集电电极连接的不同汇流电极段连接在一起,进一步抑制正电极包括的不同汇流电极之间的电流失配的同时,还利于通过连接电极将属于同一汇流电极的所有汇流电极段连接在一起,防止因与正电极包括的一个汇流电极焊接的串内互连件偏置而导致该汇流电极包括的部分汇流电极段未能与串内互连件连接,利于使得汇流电极包括的每个汇流电极段汇集到的载流子均能够通过串内互连件导出,进而利于提高背接触电池的光电转换效率。同理,本申请中的负电极也具有前文所述的正电极具有的有益效果,此处不再赘述。
在一种可能的实现方式中,上述同一汇流电极中相邻两个汇流电极段沿第二方向的间隔为0.4mm~2mm。在此情况下,同一汇流电极中相邻两个汇流电极段沿第二方向的间隔大小适中,可以防止因该间隔较小使得汇流电极段与自身极性相反的集电电极连接而导致短路问题,确保每个汇流电极段可以通过该间隔与自身极性相反的集电电极隔离开。同时,还可以防止因该间隔较大使得每个汇流电极段沿第二方向的长度较小而影响汇流电极段对电池本体相应位置吸收光子后所产生的载流子的汇集,确保汇流电极段均具有较高的载流子汇集能力,进一步提高背接触电池的电学性能。
在一种可能的实现方式中,上述每个连接电极位于正电极和负电极包括的所有集电电极沿第一方向的端部。在此情况下,每个连接电极可以位于电池本体沿第一方向的边缘位置,利于增大每个连接电极与自身极性相反的汇流电极之间的距离,防止短路。
在一种可能的实现方式中,上述正电极和负电极包括的所有集电电极沿第一方向的首尾平齐。在此情况下,沿第一方向,正电极和负电极包括的所有集电电极可以规则分布在电极本体的背光面上,利于使得电池本体沿第一方向各部分在吸收光子后所产生的载流子均能够被每个集电电极有效收集,进而利于提升背接触电池的电学性能。
在一种可能的实现方式中,上述正电极包括的至少一个连接电极位于正电极和负电极包括的所有汇流电极沿第一方向的第一外侧。负电极包括的至少一个连接电极位于正电极和负电极包括的所有汇流电极沿第一方向的第二外侧。第二外侧和第一外侧相对设置。
采用上述技术方案的情况下,正电极包括的所有的连接电极均位于背接触电池包括的所有汇流电极沿第一方向的同一第一外侧。并且,负电极包括的所有连接电极也均位于背接触电池包括的所有汇流电极沿第一方向的同 一第二外侧。同时,第一外侧和第二外侧相对设置,可以防止极性相反的不同连接电极位于同一外侧时出现短路问题,确保背接触电池具有稳定的电学性能。
在一种可能的实现方式中,上述每个集电电极与自身极性相反的连接电极具有沿第一方向延伸的间隔。在此情况下,每个集电电极可以通过上述沿第一方向延伸的间隔与自身极性相反的连接电极隔离开,从而无须在每个集电电极与自身极性相反的连接电极之间设置绝缘材料,也不会出现短路问题,因此可以进一步降低绝缘材料的用量,降低背接触电池的制造成本。
在一种可能的实现方式中,上述同一汇流电极包括的多个汇流电极段沿第二方向等间距分布。在此情况下,利于使得正电极和负电极各自包括的多个汇流电极均匀分布在电池本体的背光面上,进而可以使得电池本体沿平行于背光面的各部分与相应汇流电极之间的距离大致相等,以利于电池本体各部分在吸收光子后产生的载流子能够及时被相应集电电极收集,并及时被汇集到相应汇流电极,降低载流子复合速率,进一步提升背接触电池的光电转换效率。
在一种可能的实现方式中,上述同一汇流电极包括的不同汇流电极段的长度相同,汇流电极段的长度方向平行于第二方向。该情况具有的有益效果可以参考前文对同一汇流电极包括的多个汇流电极段沿第二方向等间距分布的有益效果分析,此处不再赘述。
在一种可能的实现方式中,上述极性相同的不同汇流电极包括的汇流电极段的数量相同。该情况具有的有益效果可以参考前文对同一汇流电极包括的多个汇流电极段沿第二方向等间距分布的有益效果分析,此处不再赘述。
在一种可能的实现方式中,上述极性相同的不同汇流电极中位于相同段数的汇流电极段沿同一方向首尾平齐。同一汇流电极中位于不同段数的汇流电极段沿第二方向间隔分布。
采用上述技术方案的情况下,极性相同的不同汇流电极中位于相同段数的汇流电极段沿同一方向首尾平齐,可以使得极性相同的不同汇流电极中位于相同段数的间隔沿该方向延伸,从而利于使得集电电极为沿着单一直线方向延伸的线状集电电极,利于简化正电极和负电极包括的集电电极的结构。
在一种可能的实现方式中,上述极性相反的不同汇流电极中位于相同段数的汇流电极段沿第二方向首尾交错。同一汇流电极中位于不同段数的汇流电极段沿第二方向间隔分布。
采用上述技术方案的情况下,极性相反的不同汇流电极中位于相同段数的汇流电极段沿第二方向的高度不同。基于此,当其它因素相同时,极性相反的不同汇流电极中位于相同段数的汇流电极段沿第二方向首尾交错,可以增大同一汇流电极包括的相邻两个汇流电极段的间距,可以进一步防止因每个汇流电极段与自身极性相反的集电电极连接而出现短路,提高背接触电池的电学稳定性。
在一种可能的实现方式中,上述背接触电池还包括焊接部,每个焊接部 与相应汇流电极连接。
在一种可能的实现方式中,在背接触电池包括的所有焊接部中,至少部分位于同一汇流电极包括的相邻两个汇流电极段之间的焊接部为第一类焊接部,其余焊接部为第二类焊接部。正电极和负电极包括的所有集电电极中,沿第二方向至少部分与第一类焊接部处于相同高度的集电电极为第一类集电电极,其余集电电极为第二类集电电极。每个汇流电极与设置在自身上的焊接部的极性相同。每个第一类集电电极包括沿第一方向间隔分布的多个集电电极段,同一第一类集电电极包括的相邻两个集电电极段具有的间隔用于将与自身极性相反的第一类焊接部间隔开。在此情况下,无须在每个第一类集电电极与自身极性相反的焊接部之间设置绝缘材料,也不会出现短路问题,从而可以进一步降低绝缘材料的用量,降低背接触电池的制造成本。
第二方面,本申请还提供了一种光伏电池结构。该光伏电池结构包括绝缘材料、以及上述第一方面及其各种实现方式提供的背接触电池。上述绝缘材料至少覆盖在每个汇流电极包括的相邻两个汇流电极段的间隔上。
在一种可能的实现方式中,沿第一方向,绝缘材料的宽度大于汇流电极的宽度、且小于预设宽度。预设宽度为1.5mm~10mm。在此情况下,绝缘材料沿第一方向的宽度大小适中,可以防止因绝缘材料的宽度较大而导致绝缘材料的用量增多,利于控制背接触电池的制造成本。同时,还可以防止因绝缘材料的宽度较小,导致在将不同背接触电池连接在一起的过程中必须严格要求串内互连件的放置位置,利于降低将至少两个背接触电池连接在一起的焊接难度。
在一种可能的实现方式中,在上述背接触电池包括焊接部、且每个焊接部与相应汇流电极连接的情况下,光伏电池结构还包括导电胶。导电胶设置在至少一个焊接部上。
采用上述技术方案的情况下,在一定范围内,绝缘材料的厚度较大绝缘材料的绝缘效果越好。当绝缘材料的厚度相对较大时,绝缘材料的顶部高度可能大于焊接部的顶部高度。基于此,在每个焊接部上设置导电胶可以使得导电胶和焊接部所组成结构的顶部高度大于或等于绝缘材料的顶部高度,确保串内互连件可以与相应焊接部连接。
第三方面,本申请还提供了一种光伏组件。该光伏组件包括上述第一方面及其各种实现方式提供的背接触电池,或上述第二方面及其各种实现方式提供的光伏电池结构。
本申请中第二方面和第三方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有背接触电池正电极和负电极的结构示意图;
图2中(1)和(2)部分为本申请实施例提供的电池本体的两种结构示意图;
图3为本申请实施例提供的背接触电池的第一种结构示意图;
图4为本申请实施例提供的背接触电池的第二种结构示意图;
图5为本申请实施例提供的背接触电池的第三种结构示意图;
图6中(1)部分为本申请实施例中极性相反的不同汇流电极中位于相同段数的汇流电极段沿第二方向的高度部分相同时集电电极和汇流电极的位置关系放大图;图6中(2)部分为本申请实施例中极性相反的不同汇流电极中位于相同段数的汇流电极段沿第二方向的交错时集电电极和汇流电极的位置关系放大图;
图7为本申请实施例提供的背接触电池的第四种结构示意图;
图8为本申请实施例提供的背接触电池的第五种结构示意图;
图9为本申请实施例提供的光伏电池结构的示意图。
附图标记:1为电池本体,2为正电极,3为负电极,4为集电电极,5为汇流电极,6为连接电极,7为汇流电极段,8为焊接部,9为第一类焊接部,10为第二类焊接部,11为第一类集电电极,12为第二类集电电极,13为集电电极段,14为绝缘材料,15为导电胶。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限 定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
目前太阳电池作为新的能源替代方案,使用越来越广泛。其中,光伏太阳电池是将太阳的光能转换为电能的装置。具体的,太阳电池利用光生伏特原理产生载流子,然后使用电极将载流子引出,从而利于将电能有效利用。
在太阳能电池包括的正、负电极均位于太阳能电池的背面时,该太阳能电池为背接触电池。现有的背接触电池包括金属电极绕通(metal wrap through,可缩写为MWT)电池和指状交叉背接触(Interdigitated back contact,可缩写为IBC)电池等。其中,IBC电池最大的特点是发射极和金属接触都处于电池的背面,正面没有金属电极遮挡的影响,因此具有更高的短路电流Isc。同时,IBC电池的背面可以容许较宽的金属栅线来降低串联电阻Rs,从而可以提高填充因子FF。并且,这种正面无遮挡的电池不仅转换效率高,而且看上去更美观。同时,全背电极的组件更易于装配,因此IBC电池是目前实现高效晶体硅电池的技术方向之一。
在实际的制造过程中,如图1所示,上述IBC电池包括的正电极2和负电极3均形成在电池本体1的背光面。并且,正电极2和负电极3均包括多个集电电极4和多个汇流电极5。正电极2和负电极3包括的多个集电电极4均沿第一方向延伸、且沿第二方向交替间隔排布。正电极2和负电极3包括的多个汇流电极5均沿第二方向延伸、且沿第一方向交替间隔分布;其中,第一方向不同于第二方向。每个集电电极4与自身极性相同的汇流电极5连接,且每个集电电极4均包括沿第一方向间隔分布的多个集电电极段13。同一集电电极4包括的相邻两个集电电极段13具有的间隔用于将与自身极性相反的每个汇流电极5隔离开,以防止正、负电极3连接而导致背接触电池短路。
但是,如图1所示,同一集电电极4包括的不同集电电极段13之间相互绝缘,每个集电电极段13用于收集电池本体1相应位置处产生的载流子。并且,正电极2包括的不同汇流电极5连接的集电电极段13不同,相应的负电极3包括的不同汇流电极5连接的集电电极段13也不相同。基于此,在背接触电池处于工作状态时,电池本体1不同位置处产生的载流子的浓度 可能不同,使得每个集电电极段13所收集到的电流可能不同,进而导致正电极2中与不同集电电极段13连接不同汇流电极5所汇集到的电流也不相同,即正电极2中不同的汇流电极5之间存在电流失配问题。同理,负电极3中不同的汇流电极5之间也存在电流失配问题,不利于提升背接触电池的电学性能。
为了解决上述技术问题,第一方面,本申请实施例提供了一种背接触电池。如图3至图5所示,该背接触电池包括:该背接触电池包括:电池本体1、以及形成在电池本体1具有的背光面上的正电极2和负电极3。正电极2和负电极3均包括多个集电电极4、多个汇流电极5和至少一个连接电极6。
如图3至图5所示,上述正电极2包括的集电电极4和负电极3包括的集电电极4均沿第一方向延伸、且沿第二方向交替间隔设置。第一方向不同于第二方向。正电极2包括的至少一个集电电极4和负电极3包括的至少一个集电电极4均为连续集电电极。上述正电极2包括的汇流电极5和负电极3包括的汇流电极5均沿第二方向延伸、且沿第一方向交替间隔设置。每个汇流电极5与自身极性相同的集电电极4连接,每个汇流电极5均包括沿第二方向间隔分布的多个汇流电极段7,同一汇流电极5中相邻两个汇流电极段7具有的间隔用于将与自身极性相反的每个集电电极4隔离开。每个连接电极6均位于正电极2和负电极3包括的所有汇流电极5沿第一方向的外侧。每个连接电极6与自身极性相同的所有集电电极4连接、且与自身极性相反的集电电极4相互绝缘。
具体来说,上述电池本体的具体结构和材质可以根据实际应用场景设置,此处不做具体限定。示例性的,电池本体可以包括半导体基底、P型掺杂半导体层和N型掺杂半导体层。其中,半导体基底的材质可以为硅、锗硅、砷化镓等半导体材料。半导体基底具有相对的第一面和第二面。该第二面与电池本体的背光面相对应。沿着平行于第二面的方向,第二面具有沿上述第一方向交替设置的第一区域和第二区域。第一区域和第二区域的长度延伸方向均平行于上述第二方向。P型掺杂半导体层形成在第一区域上或第一区域内。N型掺杂半导体层形成在第二区域上或第二区域内。上述P型掺杂半导体层和N型掺杂半导体层内杂质的掺杂浓度可以根据实际应用场景设置,只要能够应用至本申请实施例提供的背接触电池中均可。
另外,如图2中(1)部分所示,电池本体1可以为具有倒角的电池本体。或者,如图2中(1)部分所示,电池本体1还可以为未经过倒角处理的电池本体。
对于正电极和负电极来说,如图3至图5所示,形成在相应P型掺杂半导体层上的集电电极4为正电极2包括的集电电极4,用于收集P型掺杂半导体层传导出的空穴。并且,与该正电极2包括的集电电极4连接的汇流电极5为正电极2包括的汇流电极5。相反的,形成在相应N型掺杂半导体层上的集电电极4为负电极3包括的集电电极4,用于收集N型掺杂半导体层传导出的电子。并且,与该负电极3包括的集电电极4连接的汇流电极5为 负电极3包括的汇流电极5。
可以理解的是,正电极包括的一个集电电极与负电极包括的一个集电电极(或负电极包括的一个汇流电极、一个连接电极)的极性相反、其与正电极包括的另一个集电电极(或正电极包括的一个汇流电极、一个连接电极)的极性相同。同理,正电极包括的一个汇流电极与负电极包括的一个集电电极(或负电极包括的一个汇流电极、一个连接电极)的极性相反、其与正电极包括的另一个汇流电极(或正电极包括的一个集电电极、一个连接电极)的极性相同。而正电极包括的一个连接电极与负电极包括的一个集电电极(或负电极包括的一个汇流电极、一个连接电极)的极性相反、其与正电极包括的一个汇流电极(或正电极包括的一个集电电极、另一个连接电极)的极性相同。相应的,分别与负电极包括的集电电极、汇流电极和连接电极对应的极性相同或极性相反的电极的情况可以参考前文,此处不再赘述。
另外,正电极和负电极各自包括的集电电极个数和规格、以及正电极包括的集电电极与相邻的负电极包括的集电电极沿第二方向的间距的大小,可以根据实际应用场景设置,只要能够应用至本申请实施例提供的背接触电池中均可。具体的,正电极和负电极各自包括的集电电极的个数可以相同,也可以不同。正电极包括的集电电极与相邻的负电极包括的集电电极沿第二方向的间距可以为1mm至2mm。当然,也可以根据实际应用场景要求将上述间距设置为其它合适数值。其次,如图3至图5所示,正电极2和负电极3包括的所有集电电极4可以均为连续集电电极。该连续集电电极为其上不存在间断的集电电极。或者,如图7和图8所示,正电极2和负电极3中均存在一部分集电电极4为连续集电电极,其余集电电极4为其上具有间断的非连续集电电极。该情况下,正电极2和负电极3中连续集电电极和非连续集电电极的数量、以及非连续集电电极中断开的位置和数量可以根据实际应用场景设置,只要能够应用至本申请实施例提供的背接触电池中均可。
再者,正电极和负电极各自包括的汇流电极的个数和规格、以及正电极包括的汇流电极与相邻的负电极包括的汇流电极沿第一方向的间距的大小,可以根据实际应用场景设置,只要能够应用至本申请实施例提供的背接触电池中均可。示例性的,上述正电极和负电极包括的汇流电极的总个数可以为6至24个。在实际的应用中,正电极和负电极包括的汇流电极的个数可以相同,也可以不同。
上述正电极和负电极包括的集电电极可以为直线型集电电极、波浪线型集电电极或折线型集电电极等,正电极和负电极包括的集电电极的具体形状可以根据实际应用场景设置,此处不做具体限定。另外,正电极和负电极包括的汇流电极可以为直线型汇流电极、波浪线型汇流电极或折线型汇流电极等。正电极和负电极包括的汇流电极的具体形状可以根据实际应用场景设置,此处不做具体限定。
其中,如图3至图5所示,每个汇流电极5均包括沿第二方向间隔分布的多个汇流电极段7。具体的,同一汇流电极5包括的多个汇流电极段7可 以沿第一方向平齐设置。或者,同一汇流电极5中存在至少一对汇流电极段7沿第一方向间隔设置。在实际的应用过程中,同一汇流电极5中沿第一方向间隔设置的汇流电极段7的对数,可以根据实际应用场景设置,只要能够应用至本申请实施例提供的背接触电池中均可。
此外,上述第一方向和第二方向可以为平行于背光面、且不同的任意两个方向。例如:如图3至图5所示,在电池本体1的横截面形状为矩形的情况下,第一方向可以与矩形长边平行,第二方向可以与矩形宽边平行。此时,第一方向和第二方向正交。
至于同一汇流电极中相邻两个汇流电极段沿第二方向的间隔的大小可以根据实际需求进行设置,此处不做具体限定。示例性的,上述同一汇流电极中相邻两个汇流电极段沿第二方向的间隔可以为0.4mm~2mm。例如:该间隔可以为0.4mm、0.6mm、0.8mm、1mm、1.2mm、1.4mm、1.6mm、1.8mm或2mm等。在此情况下,同一汇流电极中相邻两个汇流电极段沿第二方向的间隔大小适中,可以防止因该间隔较小使得汇流电极段与自身极性相反的集电电极连接而导致短路问题,确保每个汇流电极段可以通过该间隔与自身极性相反的集电电极隔离开。同时,还可以防止因该间隔较大使得每个汇流电极段沿第二方向的长度较小而影响汇流电极段对电池本体相应位置吸收光子后所产生的载流子的汇集,确保汇流电极段均具有较高的载流子汇集能力,进一步提高背接触电池的电学性能。
对于上述连接电极来说,正电极和负电极各自包括的连接电极均为连续连接电极。连续连接电极为其上不存在间断的连接电极。另外,本申请实施例中对正电极和负电极各自包括的连接电极的宽度不做限定。例如:连接电极的宽度可以与汇流电极的宽度相同,也可以和集电电极的宽度相同。正电极和负电极各自包括的连接电极的数量可以为一个,也可以为多个。其中,正电极包括的连接电极的数量可以与负电极包括的连接电极的数量相同,也可以不同。再者,每个连接电极在电池本体背光面上的具体形成位置可以根据实际需求进行设置,只要保证每个连接电极均位于正电极和负电极包括的所有汇流电极沿第一方向的外侧即可。其中,如图3所示,正电极2包括的连接电极6和负电极3包括的连接电极6可以位于所有汇流电极5沿第一方向的同一外侧。此时,连接电极6可以通过绝缘材料与自身极性相反的集电电极4隔离开。当然,也可以通过其它方式实现二者相互绝缘。或者,如图4和图5所示,上述正电极2包括的至少一个连接电极6位于正电极2和负电极3包括的所有汇流电极5沿第一方向的第一外侧。负电极3包括的至少一个连接电极6位于正电极2和负电极3包括的所有汇流电极5沿第一方向的第二外侧。第二外侧和第一外侧相对设置。此时,可以防止极性相反的不同连接电极6位于同一外侧时出现短路问题,确保背接触电池具有稳定的电学性能。
采用上述技术方案的情况下,如图3至图5所示,本申请实施例提供的背接触电池中,每个汇流电极5均包括沿第二方向间隔分布的多个汇流电极 段7,并且同一汇流电极5中相邻两个汇流电极段7具有的间隔用于将与自身极性相反的每个集电电极4隔离开。此时,无须在每个汇流电极5与自身极性相反的集电电极4之间设置绝缘材料,也不会出现短路问题,从而可以降低绝缘材料的用量,降低背接触电池的制造成本。
另外,如图3至图5所示,每个汇流电极5包括的不同汇流电极段7与极性相同的相应集电电极4连接,用于汇集该集电电极4相应位置收集的载流子。并且,在正电极2包括的至少一个集电电极4为连续集电电极的情况下,该正电极2包括的连续集电电极可以将正电极2中属于不同汇流电极5的相应汇流电极段7连接在一起,从而使得通过该连续集电电极连接在一起的不同汇流电极段7的电流相同。其次,正电极2包括的连接电极6与正电极2包括的所有集电电极4连接,以通过将正电极2包括的集电电极4连接在一起的方式,进而将与正电极2包括的集电电极4连接的不同汇流电极段7连接在一起,进一步抑制正电极2包括的不同汇流电极5之间的电流失配的同时,还利于通过连接电极6将属于同一汇流电极5的所有汇流电极段7连接在一起,防止因与正电极2包括的一个汇流电极5焊接的串内互连件偏置而导致该汇流电极5包括的部分汇流电极段7未能与串内互连件连接,利于使得汇流电极5包括的每个汇流电极段7汇集到的载流子均能够通过串内互连件导出,进而利于提高背接触电池的光电转换效率。同理,本申请实施例中的负电极3也具有前文所述的正电极2具有的有益效果,此处不再赘述。
在实际的应用过程中,如图3和图4所示,上述每个连接电极6可以位于正电极2和负电极3包括的集电电极4上。或者,如图5所示,上述每个连接电极6也可以位于正电极2和负电极3包括的所有集电电极4沿第一方向的端部。在此情况下,每个连接电极6可以位于电池本体1沿第一方向的边缘位置,利于增大每个连接电极6与自身极性相反的汇流电极5之间的距离,防止短路。
另外,如图3和图4所示,上述正电极2和负电极3包括的所有集电电极4可以沿第一方向的首尾平齐。在此情况下,沿第一方向,正电极2和负电极3包括的所有集电电极4可以规则分布在电极本体的背光面上,利于使得电池本体1沿第一方向各部分在吸收光子后所产生的载流子均能够被每个集电电极4有效收集,进而利于提升背接触电池的电学性能。
或者,存在至少一个集电电极沿第一方向的端部与其余集电电极沿第一方向的端部交错。在该情况下,如图5所示,可以是正电极2包括的所有集电电极4沿第一方向首尾平齐,负电极3包括的所有集电电极4沿第一方向首尾平齐,并且,正电极2包括的所有集电电极4沿第一方向的端部与负电极3包括的所有集电电极4沿第一方向的端部交错。此时,利于每个连接电极6在不设置绝缘材料的情况下仅与自身极性相同的集电电极4连接,并与自身极性相反的集电电极4隔离开。
在一种可能的实现方式中,上述每个集电电极与自身极性相反的连接电极具有沿第一方向延伸的间隔。其中,如图5所示,该间隔可以是每个集电 电极4沿第一方向的端部与自身极性相反的连接电极6之间的间隔。或者,也可以是设置在集电电极上的间隔,该间隔用于将集电电极分为至少两个集电电极段。
具体的,该间隔的大小可以根据实际需求进行设置,此处不做具体限定。
采用上述技术方案的情况下,如图5所示,每个集电电极4可以通过上述沿第一方向延伸的间隔与自身极性相反的连接电极6隔离开,从而无须在每个集电电极4与自身极性相反的连接电极6之间设置绝缘材料,也不会出现短路问题,因此可以进一步降低绝缘材料的用量,降低背接触电池的制造成本。
在实际的应用过程中,如前文所述,每个汇流电极包括沿第二方向间隔分布的多个汇流电极段。具体的,从数量方面来讲,极性相同的不同汇流电极包括的汇流电极段的数量可以相同,也可以不同。例如:如图3至图5所示,正电极2包括的每个汇流电极5均包括10个汇流电极段7。其中,如图3至图5所示,当极性相同的不同汇流电极5包括的汇流电极段7的数量相同时,利于使得正电极2和负电极3各自包括的多个汇流电极5均匀分布在电池本体1的背光面上,进而可以使得电池本体1沿平行于背光面的各部分与相应汇流电极5之间的距离大致相等,以利于电池本体1各部分在吸收光子后产生的载流子能够及时被相应集电电极4收集,并及时被汇集到相应汇流电极5,降低载流子复合速率,进一步提升背接触电池的光电转换效率。
从长度方面来讲,同一汇流电极包括的不同汇流电极段的长度可以相同,也可以不同。其中,汇流电极段的长度方向平行于第二方向。例如:如图3所示,位于第一列的汇流电极为正电极2包括的汇流电极5,沿着从上至下对该汇流电极5包括的不同汇流电极段7的段数进行排列。其中,该汇流电极5包括的第一段汇流电极段至第十段汇流电极段沿第二方向的长度相同。
另外,属于不同汇流电极的任意两个汇流电极段沿第二方向的长度可以相同,也可以不同。其中,当属于不同汇流电极的任意两个汇流电极段的长度相同时,利于使得背接触电池中所有汇流电极均匀分布在电池本体的背光面上,利于电池本体吸收光吸收产生的载流子及时被汇流电极导出,降低载流子复合速率,进一步提升背接触电池的电学性能。
从分布方面来讲,同一汇流电极中任意两对汇流电极段具有的间隔可以相同,也可以不同。其中,如图3至图5所示,当同一汇流电极5中任意两对汇流电极段7具有的间隔相等时,同一汇流电极5包括的多个汇流电极段7沿第二方向等间距分布。该情况具有的有益效果可以参考前文对极性相同的不同汇流电极5包括的汇流电极段7的数量相同的有益效果分析,此处不再赘述。
另外,极性相同的不同汇流电极中位于相同段数的汇流电极段可以交错,也可以沿同一方向首尾平齐。同一汇流电极中位于不同段数的汇流电极段沿第二方向间隔分布。其中,如图3至图5所示,当极性相同的不同汇流 电极5中位于相同段数的汇流电极段7沿同一方向首尾平齐时,可以使得极性相同的不同汇流电极5中位于相同段数的间隔沿该方向延伸,从而利于使得集电电极4为沿着单一直线方向延伸的线状集电电极,利于简化正电极2和负电极3包括的集电电极4的结构。
再者,如图6(1)部分所示,极性相反的不同汇流电极5中位于相同段数的汇流电极段7沿第二方向的高度可以部分重叠。同一汇流电极5中位于不同段数的汇流电极段7沿第二方向间隔分布。此时,在其它因素相同的情况下,极性相反的不同汇流电极5中位于相同段数的汇流电极段7沿第二方向的高度部分重叠可以使得每个汇流电极段7的长度较大,利于提高每个汇流电极段7对载流子的汇集能力。或者,如图6中(2)部分所示,上述极性相反的不同汇流电极5中位于相同段数的汇流电极段7也可以沿第二方向首尾交错。同一汇流电极5中位于不同段数的汇流电极段7沿第二方向间隔分布。该情况下,极性相反的不同汇流电极5中位于相同段数的汇流电极段7沿第二方向的高度不同。基于此,当其它因素相同时,极性相反的不同汇流电极5中位于相同段数的汇流电极段7沿第二方向首尾交错,可以增大同一汇流电极5包括的相邻两个汇流电极段7的间距,可以进一步防止因每个汇流电极段7与自身极性相反的集电电极4连接而出现短路,提高背接触电池的电学稳定性。
在一种可能的实现方式中,如图7和图8所示,上述背接触电池还包括焊接部8,每个焊接部8与相应汇流电极5连接,以便于汇流电极5与相应串内互连件连接。
具体的,从数量方面来讲,每个汇流电极可以仅与一个焊接部连接。或者,如图7和图8所示,每个汇流电极5可以与沿第二方向间隔分布的多个焊接部8连接。其中,与每个汇流电极5仅与一个焊接部8连接相比,当每个汇流电极5与沿第二方向间隔分布的多个焊接部8连接时,可以防止因串内互连件仅与一个焊接部8焊接使得焊接强度较差而导致串内互连件脱焊等问题,提高由本申请实施例提供的背接触电池在串联焊接时的焊接质量。
另外,当每个汇流电极与沿第二方向间隔分布的多个焊接部连接时,不同汇流电极连接的焊接部的数量可以相同,可以不同。其中,如图7和图8所示,当不同汇流电极5连接的焊接部8的数量相同时,利于使得背接触电池包括的多个焊接部8均分布在电池本体1的上方,利于现有的串焊机通过串内互连件将多个由本申请实施例提供的背接触电池串联,提高焊接效率。
从分布方面来讲,如图7和图8所示,同一汇流电极5连接的多个焊接部8可以等间距分布。此时,利于提高串内互连件与相应汇流电极5之间的焊接质量。
从形貌方面来讲,汇流电极连接的焊接部的横截面形状可以为长方形、圆形、椭圆形等形状。焊接部沿第一方向的长度可以大于或等于汇流电极沿第一方向的宽度,以利于提高汇流电极与相应串内互连件之间的焊接强度。示例性的,当焊接部的横截面形状为长方形时,该长方形的长边可以为3mm, 其宽边可以为2mm。
在一种示例中,如图7和图8所示,在背接触电池包括的所有焊接部8中,至少部分位于同一汇流电极5包括的相邻两个汇流电极段7之间的焊接部8为第一类焊接部9,其余焊接部8为第二类焊接部10。正电极2和负电极3包括的所有集电电极4中,沿第二方向至少部分与第一类焊接部9处于相同高度的集电电极4为第一类集电电极11,其余集电电极4为第二类集电电极12。每个汇流电极5与设置在自身上的焊接部8的极性相同。每个第一类集电电极11包括沿第一方向间隔分布的多个集电电极段13,同一第一类集电电极11包括的相邻两个集电电极段13具有的间隔用于将与自身极性相反的第一类焊接部9间隔开。
具体的,背接触电池包括的第一类焊接部和第二类焊接部的数量可以根据实际需求进行设置,此处不做具体限定。例如:如图7所示,背接触电池包括的每个焊接部8均为第一类焊接部9。或者,背接触电池包括的部分焊接部为第一类焊接部,其余焊接部为第二类焊接部。例如:如图8所示,从右往左对焊接部8所处的列数进行排序,背接触电池包括的第一列焊接部8为第一类焊接部9,其余列焊接部8为第二类焊接部10。又或者,背接触电池包括的每个焊接部均为第二类焊接部。
另外,每个第一类集电电极包括沿第一方向间隔分布的集电电极段的数量和长度、以及同一第一类集电电极包括的相邻两个集电电极段的间距,可以根据与该第一类集电电极沿第二方向至少部分处于相同高度且自身极性相反的第一类焊接部的数量、以及实际需求进行设置,此处不做具体限定。
采用上述技术方案的情况下,无须在每个第一类集电电极与自身极性相反的焊接部之间设置绝缘材料,也不会出现短路问题,从而可以降低绝缘材料的用量,降低背接触电池的制造成本。
第二方面,本申请实施例还提供了一种光伏电池结构。如图9所示,该光伏电池结构包括绝缘材料14、以及上述第一方面及其各种实现方式提供的背接触电池。上述绝缘材料14至少覆盖在每个汇流电极包括的相邻两个汇流电极段的间隔上。
具体的,该绝缘材料的宽度可以根据实际需求进行设置,此处不做具体限定。示例性的,沿第一方向,绝缘材料的宽度可以大于汇流电极的宽度、且小于预设宽度。该预设宽度可以为1.5mm~10mm。在此情况下,绝缘材料沿第一方向的宽度大小适中,可以防止因绝缘材料的宽度较大而导致绝缘材料的用量增多,利于控制背接触电池的制造成本。同时,还可以防止因绝缘材料的宽度较小,导致在将不同背接触电池连接在一起的过程中必须严格要求串内互连件的放置位置,利于降低将至少两个背接触电池连接在一起的焊接难度。
在一种可能的实现方式中,如图9所示,在上述背接触电池包括焊接部8、且每个焊接部8与相应汇流电极连接的情况下,光伏电池结构还包括导电胶15。导电胶15设置在至少一个焊接部8上。在此情况下,在一定范围 内,绝缘材料14的厚度较大绝缘材料14的绝缘效果越好。当绝缘材料14的厚度相对较大时,绝缘材料14的顶部高度可能大于焊接部8的顶部高度。基于此,在每个焊接部8上设置导电胶15可以使得导电胶15和焊接部8所组成结构的顶部高度大于或等于绝缘材料14的顶部高度,确保串内互连件可以与相应焊接部8连接。由此可见,该导电胶15的厚度可以根据焊接部8与绝缘材料14的顶部高度差进行确定,此处不做具体限定。
第三方面,本申请实施例还提供了一种光伏组件。该光伏组件包括上述第一方面及其各种实现方式提供的背接触电池,或上述第二方面及其各种实现方式提供的光伏电池结构。
本申请实施例中第二方面和第三方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

  1. 一种背接触电池,其中,包括:电池本体、以及形成在所述电池本体具有的背光面上的正电极和负电极;所述正电极和所述负电极均包括多个集电电极、多个汇流电极和至少一个连接电极;其中,
    所述正电极包括的集电电极和所述负电极包括的集电电极均沿第一方向延伸、且沿第二方向交替间隔设置;所述第一方向不同于所述第二方向;所述正电极包括的至少一个所述集电电极和所述负电极包括的至少一个集电电极均为连续集电电极;
    所述正电极包括的汇流电极和所述负电极包括的汇流电极均沿所述第二方向延伸、且沿所述第一方向交替间隔设置;每个所述汇流电极与自身极性相同的所述集电电极连接,每个所述汇流电极均包括沿所述第二方向间隔分布的多个汇流电极段,同一所述汇流电极中相邻两个汇流电极段具有的间隔用于将与自身极性相反的每个所述集电电极隔离开;
    每个所述连接电极均位于所述正电极和所述负电极包括的所有所述汇流电极沿所述第一方向的外侧;每个所述连接电极与自身极性相同的所有所述集电电极连接、且与自身极性相反的所述集电电极相互绝缘。
  2. 根据权利要求1所述的背接触电池,其中,同一所述汇流电极中相邻两个所述汇流电极段沿所述第二方向的间隔为0.4mm~2mm。
  3. 根据权利要求1所述的背接触电池,其中,每个所述连接电极位于所述正电极和所述负电极包括的所有所述集电电极沿所述第一方向的端部;和/或,
    所述正电极和所述负电极包括的所有所述集电电极沿所述第一方向的首尾平齐。
  4. 根据权利要求1所述的背接触电池,其中,所述正电极包括的所述至少一个连接电极位于所述正电极和所述负电极包括的所有所述汇流电极沿所述第一方向的第一外侧;
    所述负电极包括的所述至少一个连接电极位于所述正电极和所述负电极包括的所有所述汇流电极沿所述第一方向的第二外侧;所述第二外侧和所述第一外侧相对设置。
  5. 根据权利要求1~4任一项所述的背接触电池,其中,每个所述集电电极与自身极性相反的所述连接电极具有沿所述第一方向延伸的间隔。
  6. 根据权利要求1~4任一项所述的背接触电池,其中,同一所述汇流电极包括的多个所述汇流电极段沿所述第二方向等间距分布;和/或,
    同一所述汇流电极包括的不同所述汇流电极段的长度相同,所述汇流电极段的长度方向平行于所述第二方向。
  7. 根据权利要求1~4任一项所述的背接触电池,其中,极性相同的不同所述汇流电极包括的所述汇流电极段的数量相同;和/或,
    极性相同的不同所述汇流电极中位于相同段数的所述汇流电极段沿同一方向首尾平齐;同一所述汇流电极中位于不同段数的所述汇流电极段沿所 述第二方向间隔分布;和/或,
    极性相反的不同所述汇流电极中位于相同段数的所述汇流电极段沿所述第二方向首尾交错;同一所述汇流电极中位于不同段数的所述汇流电极段沿所述第二方向间隔分布。
  8. 根据权利要求1~4任一项所述的背接触电池,其中,所述背接触电池还包括焊接部,每个所述焊接部与相应所述汇流电极连接。
  9. 根据权利要求8所述的背接触电池,其中,在所述背接触电池包括的所有所述焊接部中,至少部分位于同一所述汇流电极包括的相邻两个汇流电极段之间的所述焊接部为第一类焊接部,其余所述焊接部为第二类焊接部;
    所述正电极和所述负电极包括的所有所述集电电极中,沿所述第二方向至少部分与所述第一类焊接部处于相同高度的所述集电电极为第一类集电电极,其余所述集电电极为第二类集电电极;
    每个所述汇流电极与设置在自身上的所述焊接部的极性相同;每个所述第一类集电电极包括沿所述第一方向间隔分布的多个集电电极段,同一所述第一类集电电极包括的相邻两个所述集电电极段具有的间隔用于将与自身极性相反的所述第一类焊接部间隔开。
  10. 一种光伏电池结构,其中,包括绝缘材料、以及权利要求1~9任一项所述的背接触电池;
    所述绝缘材料至少覆盖在每个所述汇流电极包括的相邻两个所述汇流电极段的间隔上。
  11. 根据权利要求10所述的光伏电池结构,其中,沿所述第一方向,所述绝缘材料的宽度大于所述汇流电极的宽度、且小于预设宽度;
    所述预设宽度为1.5mm~10mm。
  12. 根据权利要求10或11所述的光伏电池结构,其中,在所述背接触电池为权利要求8或9所述的背接触电池的情况下,所述光伏电池结构还包括导电胶;所述导电胶设置在至少一个所述焊接部上。
  13. 一种光伏组件,其中,包括权利要求1~9任一项所述的背接触电池,或权利要求10~12任一项所述的光伏电池结构。
PCT/CN2023/123779 2022-11-07 2023-10-10 一种背接触电池、光伏电池结构和光伏组件 WO2024099014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222957031.9U CN219163409U (zh) 2022-11-07 2022-11-07 一种背接触电池、光伏电池结构和光伏组件
CN202222957031.9 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024099014A1 true WO2024099014A1 (zh) 2024-05-16

Family

ID=86618752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123779 WO2024099014A1 (zh) 2022-11-07 2023-10-10 一种背接触电池、光伏电池结构和光伏组件

Country Status (2)

Country Link
CN (1) CN219163409U (zh)
WO (1) WO2024099014A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219163409U (zh) * 2022-11-07 2023-06-09 泰州隆基乐叶光伏科技有限公司 一种背接触电池、光伏电池结构和光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170069776A1 (en) * 2015-09-08 2017-03-09 Lg Electronics Inc. Solar cell module and method for manufacturing the same
CN106981544A (zh) * 2017-04-10 2017-07-25 泰州中来光电科技有限公司 全背接触太阳能电池的制备方法和电池及其组件、系统
CN111628028A (zh) * 2020-06-23 2020-09-04 陕西众森电能科技有限公司 一种采用导电复合膜串联的背接触太阳电池组件
CN219163409U (zh) * 2022-11-07 2023-06-09 泰州隆基乐叶光伏科技有限公司 一种背接触电池、光伏电池结构和光伏组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170069776A1 (en) * 2015-09-08 2017-03-09 Lg Electronics Inc. Solar cell module and method for manufacturing the same
CN106981544A (zh) * 2017-04-10 2017-07-25 泰州中来光电科技有限公司 全背接触太阳能电池的制备方法和电池及其组件、系统
CN111628028A (zh) * 2020-06-23 2020-09-04 陕西众森电能科技有限公司 一种采用导电复合膜串联的背接触太阳电池组件
CN219163409U (zh) * 2022-11-07 2023-06-09 泰州隆基乐叶光伏科技有限公司 一种背接触电池、光伏电池结构和光伏组件

Also Published As

Publication number Publication date
CN219163409U (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
EP4235809A1 (en) Electrode structure of back contact cell, back contact cell, back contact cell module, and back contact cell system
WO2024098968A1 (zh) 一种光伏电池结构及其制造方法、光伏组件
WO2024099014A1 (zh) 一种背接触电池、光伏电池结构和光伏组件
RU2526894C2 (ru) Модуль солнечной батареи
CN215988787U (zh) 一种太阳能电池及光伏组件
WO2012162900A1 (zh) 太阳电池组件及其制造方法
EP4141968A1 (en) Photovoltaic cell and photovoltaic module
US11764317B2 (en) Busbar-free interdigitated back contact solar cell and interdigitated back contact solar cell module
JP2019519939A (ja) 光電池セル、光電池セルアレイ、太陽電池セル、および光電池セル作製方法
TWI502756B (zh) 具有粗細匯流排電極之太陽能電池
CN218677159U (zh) 背接触电池、背接触电池分片、光伏电池结构及光伏组件
TW201503386A (zh) 背接觸式太陽能電池及其模組
CN115425098A (zh) 叉指式背接触电池、其的电极结构及太阳能电池组件
JP5953165B2 (ja) 補助バスバー電極を備える太陽電池素子および太陽電池モジュール
CN215988784U (zh) 一种太阳能电池及光伏组件
CN215988783U (zh) 一种太阳能电池及光伏组件
JP3198451U (ja) 4本バスバー太陽電池
JP5916605B2 (ja) 太陽光発電装置
CN109216475B (zh) 一种太阳能电池板组件
CN213878106U (zh) 一种太阳能电池和太阳能电池组件
US11688816B1 (en) Electrode structure of back contact cell, back contact cell, back contact cell module, and back contact cell system
CN216213494U (zh) 光伏组件
CN117457759B (zh) 双面太阳能电池片、电池组件和光伏系统
CN218730972U (zh) 光伏电池
JP7261923B1 (ja) 光起電力モジュールおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887706

Country of ref document: EP

Kind code of ref document: A1