WO2024099001A1 - 高压电缆半导电屏蔽料的焦烧现象识别方法和装置 - Google Patents

高压电缆半导电屏蔽料的焦烧现象识别方法和装置 Download PDF

Info

Publication number
WO2024099001A1
WO2024099001A1 PCT/CN2023/122534 CN2023122534W WO2024099001A1 WO 2024099001 A1 WO2024099001 A1 WO 2024099001A1 CN 2023122534 W CN2023122534 W CN 2023122534W WO 2024099001 A1 WO2024099001 A1 WO 2024099001A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
shielding material
conductive shielding
screw
processing temperature
Prior art date
Application number
PCT/CN2023/122534
Other languages
English (en)
French (fr)
Inventor
侯帅
傅明利
樊灵孟
展云鹏
何文
贾磊
黎小林
惠宝军
朱闻博
冯宾
张逸凡
周粤
洪浚轩
何浩辉
杨挺
何建宗
罗鑫洪
黄罡
李欢
Original Assignee
南方电网科学研究院有限责任公司
广东电网有限责任公司东莞供电局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司, 广东电网有限责任公司东莞供电局 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2024099001A1 publication Critical patent/WO2024099001A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Definitions

  • the present application relates to the field of electric power technology, and in particular to a method, device, computer equipment, storage medium and computer program product for identifying scorching phenomenon of semi-conductive shielding materials of high-voltage cables.
  • High-voltage and ultra-high-voltage cables have extremely high requirements for the surface finish of shielding materials, and therefore have more stringent requirements for the raw materials, formulas, and production processes of shielding materials.
  • the surface finish of the product obtained after the shielding material is extruded is a key indicator of high-voltage cable shielding materials, which directly determines its application voltage level. Impurities and tiny defects on the surface of the high-voltage cable shielding layer can cause serious local discharge, trigger the growth of electrical trees, and bring safety hazards.
  • the method for determining the scorching phenomenon during the continuous extrusion of semi-conductive shielding materials for high-voltage cables is still a difficult problem in the relevant technology. Therefore, in the relevant technology, there is a problem of low accuracy in identifying the scorching phenomenon during the continuous extrusion of semi-conductive shielding materials.
  • the present application provides a method for identifying the scorch phenomenon of a semi-conductive shielding material of a high-voltage cable.
  • the method comprises:
  • the screw extruder Determining an initial processing temperature of a screw extruder; the screw extruder is used to extrude the semi-conductive shielding material to be tested;
  • the initial processing temperature includes the initial processing temperature corresponding to each section of the screw extruder; and determining the initial processing temperature of the screw extruder includes:
  • the initial processing temperature corresponding to each of the sections is determined according to the melting point of the semi-conductive shielding material to be tested; the initial processing temperature corresponding to each of the sections is higher than the melting point.
  • each of the sections includes a first section, a second section, a third section and a fourth section; and determining the initial processing temperature corresponding to each of the sections according to the melting point of the semi-conductive shielding material to be tested includes:
  • the initial processing temperature corresponding to the third section is used as the initial processing temperature corresponding to the fourth section.
  • the maximum processing temperature includes the maximum processing temperature corresponding to each of the sections;
  • the preset difference condition includes a preset difference threshold; when the temperature difference between the maximum processing temperature and the initial processing temperature satisfies the preset difference condition, it is determined that no scorching occurs in the semi-conductive shielding material to be tested during the extrusion process, including:
  • the temperature difference corresponding to each of the sections is less than or equal to the preset difference threshold, and the highest processing temperature corresponding to each of the sections is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, it is determined that no scorching occurs to the semi-conductive shielding material to be tested during the extrusion process.
  • the method further comprises:
  • the mass of the semi-conductive shielding material to be tested added to the screw extrusion device is determined according to the target screw speed.
  • determining the mass of the semi-conductive shielding material to be tested added to the screw extruder according to the target screw speed includes:
  • the target mass is determined according to the mass of the sample semi-conductive shielding material, and the mass of the semi-conductive shielding material to be tested added to the screw extrusion device is obtained.
  • the present application also provides a device for identifying the scorching phenomenon of a semi-conductive shielding material of a high-voltage cable.
  • the device comprises:
  • a first temperature determination module is used to determine the initial processing temperature of a screw extruder; the screw extruder is used to extrude the semi-conductive shielding material to be tested;
  • the torque determination module is used to determine the fluctuation of the screw torque after the screw torque corresponding to the screw extrusion device reaches equilibrium during the process of the screw extrusion device extruding the semi-conductive shielding material to be tested. Movement range;
  • a second temperature determination module is used to determine the maximum processing temperature of the screw extruder during the process of the screw extruder extruding the semi-conductive shielding material to be tested when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold;
  • the determination module is used to determine that no scorching occurs to the semi-conductive shielding material to be tested during the extrusion process when the temperature difference between the maximum processing temperature and the initial processing temperature meets a preset difference condition.
  • the present application further provides a computer device.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the screw extruder Determining an initial processing temperature of a screw extruder; the screw extruder is used to extrude the semi-conductive shielding material to be tested;
  • the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the screw extruder Determining an initial processing temperature of a screw extruder; the screw extruder is used to extrude the semi-conductive shielding material to be tested;
  • the present application further provides a computer program product.
  • the computer program product includes a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the screw extruder Determining an initial processing temperature of a screw extruder; the screw extruder is used to extrude the semi-conductive shielding material to be tested;
  • the above-mentioned method, device, computer equipment, storage medium and computer program product for identifying the scorching phenomenon of the semi-conductive shielding material of the high-voltage cable are implemented by determining the initial processing temperature of the screw extrusion equipment; the screw extrusion equipment is used to extrude the semi-conductive shielding material to be tested; during the process of the screw extrusion equipment extruding the semi-conductive shielding material to be tested, the fluctuation amplitude of the screw torque of the screw extrusion equipment is determined after the screw torque corresponding to the screw extrusion equipment reaches equilibrium; when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold, the maximum processing temperature of the screw extrusion equipment during the process of extruding the semi-conductive shielding material to be tested by the screw extrusion equipment is determined; the temperature difference between the maximum processing temperature and the initial processing temperature is When the value meets the preset difference condition, it is determined that the semi-conductive shielding material to be tested has not been scorched during the extrusion process;
  • the fluctuation amplitude of the screw torque during the extrusion process can intuitively characterize whether the shielding material is scorched during the extrusion process; and some semi-conductive shielding materials have good processing fluidity, and after scorching, the fluctuation amplitude of the torque may be less than the preset fluctuation threshold, so it is also necessary Temperature judgment is performed. After scorching occurs, the friction between the shielding materials increases, and the heat accumulation will cause the processing temperature to gradually rise. By judging whether the temperature difference meets the preset difference condition, it is possible to further accurately judge whether scorching occurs inside the shielding material.
  • a double-criteria-based method is used to identify the scorching phenomenon of the semi-conductive shielding material to be tested during the extrusion process, and it is possible to more accurately judge whether the shielding material has scorched, thereby improving the accuracy of identifying scorching phenomena during the continuous extrusion of semi-conductive shielding materials.
  • FIG1 is an application environment diagram of a method for identifying scorch phenomena of a semi-conductive shielding material of a high-voltage cable in one embodiment
  • FIG2 is a schematic flow diagram of a method for identifying scorch phenomena of a semi-conductive shielding material of a high-voltage cable in one embodiment
  • FIG3 is a schematic flow diagram of a step for determining the initial processing temperature corresponding to each section of a screw extruder in one embodiment
  • FIG4 is a schematic flow chart of a method for identifying scorch phenomena of a semi-conductive shielding material of a high-voltage cable in another embodiment
  • FIG5 is a schematic diagram of a change in screw torque of a screw extruder during a process in which a semi-conductive shielding material to be tested is extruded by a screw extruder in one embodiment
  • FIG. 6 is a schematic diagram of a change in screw torque of a screw extruder during extrusion of a semi-conductive shielding material to be tested by a screw extruder in another embodiment
  • FIG7 is a structural block diagram of a device for identifying scorch phenomena of a semi-conductive shielding material of a high-voltage cable in one embodiment
  • FIG. 8 is a diagram showing the internal structure of a computer device in one embodiment.
  • a method for identifying the scorching phenomenon of a semi-conductive shielding material of a high-voltage cable provided in an embodiment of the present application can be applied in an application environment as shown in FIG1.
  • a computer device 102 communicates with a screw extruder 104 through a network.
  • the computer device 102 determines the initial processing temperature of the screw extruder 104; the screw extruder 104 is used to extrude the semi-conductive shielding material to be tested; the computer device 102 determines the fluctuation amplitude of the screw torque after the screw torque corresponding to the screw extruder 104 reaches equilibrium during the process of the screw extruder 104 extruding the semi-conductive shielding material to be tested; when the fluctuation amplitude of the screw torque is less than the preset fluctuation threshold, the computer device 102 determines the highest processing temperature of the screw extruder 104 during the process of the screw extruder 104 extruding the semi-conductive shielding material to be tested; when the temperature difference between the highest processing temperature and the initial processing temperature meets the preset difference condition, the computer device 102 determines that no scorching phenomenon occurs during the extrusion process of the semi-conductive shielding material to be tested.
  • the screw extruder device 104 may be a single screw extruder, which includes a feed port 1041 , a screw 1042 , a die head 1043 and a chassis 1044 .
  • the computer device may be a terminal, and the terminal may be, but is not limited to, various personal computers, laptops, smart phones, tablet computers, etc.
  • a method for identifying the scorch phenomenon of a semi-conductive shielding material of a high-voltage cable is provided, which is described by taking the computer device 102 in FIG. 1 as an example, and includes the following steps:
  • Step S210 determining the initial processing temperature of the screw extruder.
  • the screw extrusion equipment is used to extrude the semi-conductive shielding material to be tested.
  • the screw extrusion equipment can be a single screw extruder.
  • the semi-conductive shielding material to be tested may be a semi-conductive shielding material for a high-voltage cable.
  • the computer device can determine the initial processing temperature of the screw extruder device according to the melting point of the semi-conductive shielding material to be tested.
  • Step S220 during the process of the screw extruder extruding the semi-conductive shielding material to be tested, determining the fluctuation amplitude of the screw torque after the screw torque corresponding to the screw extruder reaches equilibrium.
  • the computer device can determine the fluctuation amplitude of the screw torque during the period when the screw torque corresponding to the screw extruder reaches equilibrium and remains balanced during the process of the screw extruder continuously extruding the semi-conductive shielding material to be tested.
  • Step S230 when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold, determining the maximum processing temperature of the screw extruder during the process of the screw extruder extruding the semi-conductive shielding material to be tested.
  • the computer device can determine the maximum processing temperature of the screw extruder during the continuous extrusion of the semi-conductive shielding material to be tested by the screw extruder. Since the temperature has a time delay, it is impossible to determine the temperature in time, and it is necessary to determine the maximum processing temperature of the screw extruder after the processing of the semi-conductive shielding material to be tested is completed.
  • Step S240 when the temperature difference between the highest processing temperature and the initial processing temperature satisfies a preset difference condition, it is determined that no scorching occurs to the semi-conductive shielding material to be tested during the extrusion process.
  • the computer equipment can determine the temperature difference between the maximum processing temperature and the initial processing temperature. When the temperature difference meets the preset difference condition, it is determined that the semi-conductive shielding material to be tested has not been scorched during the extrusion process, thereby screening out the semi-conductive shielding material to be tested that has not been scorched as a qualified semi-conductive shielding material.
  • the initial processing temperature of the screw extrusion equipment is determined; the screw extrusion equipment is used to extrude the semi-conductive shielding material to be tested; in the process of the screw extrusion equipment extruding the semi-conductive shielding material to be tested, the fluctuation amplitude of the screw torque is determined after the screw torque corresponding to the screw extrusion equipment reaches equilibrium; when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold, the maximum processing temperature of the screw extrusion equipment in the process of extruding the semi-conductive shielding material to be tested is determined; when the temperature difference between the maximum processing temperature and the initial processing temperature meets the preset difference condition, it is determined that the semi-conductive shielding material to be tested does not scorch during the extrusion process.
  • the linear macromolecules in the shielding material will undergo a chemical reaction, causing them to cross-link together to form a three-dimensional network structure, which will cause the viscosity of the shielding material to increase sharply, and the screw torque of the screw extruder will increase. Therefore, the fluctuation amplitude of the screw torque during the extrusion process can intuitively characterize whether the shielding material is scorched during the extrusion process; and some semi-conductive shielding materials have good processing fluidity. After scorching, the fluctuation amplitude of the torque may be less than the preset fluctuation threshold. Therefore, temperature judgment is also required.
  • the difference condition can further accurately determine whether scorching occurs inside the shielding material; thereby realizing the double-criteria-based method to identify the scorching phenomenon of the semi-conductive shielding material to be tested during the extrusion process, and more accurately determine whether the shielding material has scorched, thereby improving the accuracy of identifying scorching during the continuous extrusion of the semi-conductive shielding material.
  • the initial processing temperature includes the initial processing temperature corresponding to each section of the screw extrusion equipment; determining the initial processing temperature of the screw extrusion equipment includes: conducting a melting point test on the semi-conductive shielding material to be tested by differential scanning calorimetry and thermogravimetric analysis to determine the melting point of the semi-conductive shielding material to be tested; determining the initial processing temperature corresponding to each section according to the melting point of the semi-conductive shielding material to be tested; the initial processing temperature corresponding to each section is higher than the melting point.
  • the initial processing temperature is the lower limit of the processing temperature of the screw extruder.
  • each section includes a first section, a second section, a third section and a fourth section.
  • the computer device when the computer device determines the initial processing temperature of the screw extrusion equipment, the computer device can perform a melting point test on the semi-conductive shielding material to be tested by differential scanning calorimetry and thermogravimetric analysis to determine the melting point of the semi-conductive shielding material to be tested; according to the melting point of the semi-conductive shielding material to be tested, determine the initial processing temperature corresponding to each section of the screw extrusion equipment; wherein the initial processing temperature corresponding to each section is higher than the melting point of the semi-conductive shielding material to be tested.
  • the computer device in the process of determining the initial processing temperature corresponding to each section according to the melting point of the semi-conductive shielding material to be tested, includes the following steps:
  • Step S310 The computer device determines the sum of the melting point and the preset temperature difference to obtain an initial processing temperature corresponding to the first section.
  • the preset temperature difference can be 5 degrees Celsius.
  • Step S320 the computer device determines the sum of the initial processing temperature corresponding to the first section and the preset temperature difference to obtain the initial processing temperature corresponding to the second section.
  • Step S330 the computer device determines the sum of the initial processing temperature corresponding to the second section and the preset temperature difference to obtain the initial processing temperature corresponding to the third section.
  • step S340 the computer device uses the initial processing temperature corresponding to the third section as the initial processing temperature corresponding to the fourth section.
  • the initial processing temperature includes the initial processing temperature corresponding to each section of the screw extrusion equipment; the melting point of the semi-conductive shielding material to be tested is tested by differential scanning calorimetry and thermogravimetric analysis to determine the melting point of the semi-conductive shielding material to be tested; the initial processing temperature corresponding to each section is determined according to the melting point of the semi-conductive shielding material to be tested; the initial processing temperature corresponding to each section is higher than the melting point; in this way, since different types of semi-conductive shielding materials use different matrix resins, the melting points of semi-conductive shielding materials are not the same. If the screw extrusion equipment shares a set of processing temperatures, the semi-conductive shielding material strip produced will have a rough surface due to incomplete melting of the matrix.
  • the initial processing temperature corresponding to each section of the screw extrusion equipment is determined based on the melting point of the semi-conductive shielding material, and the initial processing temperature corresponding to each section is higher than the melting point of the semi-conductive shielding material, which can ensure that different types of semi-conductive shielding materials can be completely melted and extruded during the extrusion process, thereby improving the surface smoothness of the semi-conductive shielding material strip.
  • the maximum processing temperature includes the maximum processing temperature corresponding to each section;
  • the preset difference condition includes a preset difference threshold; when the temperature difference between the maximum processing temperature and the initial processing temperature satisfies the preset difference condition, it is determined that the semi-conductive shielding material to be tested has not been scorched during the extrusion process, including: determining the temperature difference between the maximum processing temperature corresponding to each section and the corresponding initial processing temperature to obtain the temperature difference corresponding to each section; when the temperature difference corresponding to each section is less than or equal to the preset difference threshold, and the maximum processing temperature corresponding to each section is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, it is determined that the semi-conductive shielding material to be tested has not been scorched during the extrusion process.
  • the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested can be obtained by testing the semi-conductive shielding material to be tested by differential scanning calorimetry and thermogravimetric analysis.
  • the computer equipment determines that the temperature difference between the maximum processing temperature and the initial processing temperature meets the preset difference condition, it can be determined that the semi-conductive shielding material to be tested did not burn during the extrusion process.
  • the computer equipment can determine the temperature difference between the maximum processing temperature corresponding to each section and the corresponding initial processing temperature, and obtain the temperature difference corresponding to each section; when the temperature difference corresponding to each section is less than or equal to the preset difference threshold, and the maximum processing temperature corresponding to each section is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, the computer equipment can determine that the semi-conductive shielding material to be tested did not burn during the extrusion process.
  • the maximum processing temperature includes the maximum processing temperature corresponding to each section;
  • the preset difference condition includes a preset difference threshold; the temperature difference corresponding to each section is obtained by determining the temperature difference between the maximum processing temperature corresponding to each section and the corresponding initial processing temperature; when the temperature difference corresponding to each section is less than or equal to the preset difference threshold, and the maximum processing temperature corresponding to each section is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, it is determined that no scorching occurs to the semi-conductive shielding material to be tested during the extrusion process; in this way, due to the serious heat generation caused by the mutual friction between the shielding materials during the processing, the heat accumulation will cause the processing temperature to rise sharply, and when the internal temperature reaches the vulcanization temperature or decomposition temperature, the shielding material will scorch, and by judging whether the temperature difference corresponding to each section of the screw extrusion equipment is less than or equal to the preset difference threshold, and judging whether the
  • the method also includes: obtaining a preset screw torque range corresponding to the screw extrusion equipment; adjusting the screw speed of the screw extrusion equipment, and when the screw torque corresponding to the screw extrusion equipment is within the preset screw torque range, determining the current screw speed corresponding to the screw extrusion equipment; using the current screw speed as the target screw speed corresponding to the screw extrusion equipment; and determining the mass of the semi-conductive shielding material to be tested added to the screw extrusion equipment based on the target screw speed.
  • the preset screw torque range can be 110N ⁇ m (Newton ⁇ meter) to 130N ⁇ m (Newton ⁇ meter).
  • the computer room equipment can obtain the preset screw torque range corresponding to the screw extrusion equipment, and adjust the screw speed of the screw extrusion equipment.
  • the current screw speed corresponding to the screw extrusion equipment is determined, and the current screw speed is used as the target screw speed corresponding to the screw extrusion equipment to obtain the extrusion parameters of the screw extrusion equipment when the semi-conductive shielding material to be tested is formally extruded; finally, the computer equipment can determine the mass of the semi-conductive shielding material to be tested added to the screw extrusion equipment according to the target screw speed.
  • the technical solution of this embodiment is to obtain a preset screw torque range corresponding to the screw extruder; adjust the screw speed of the screw extruder, and when the screw torque corresponding to the screw extruder is within the preset screw torque range, When the torque is within the range, determine the current screw speed corresponding to the screw extrusion equipment; use the current screw speed as the target screw speed corresponding to the screw extrusion equipment; determine the mass of the semi-conductive shielding material to be tested added to the screw extrusion equipment according to the target screw speed; in this way, because when the screw torque is too high, it means that the viscosity of the semi-conductive shielding material is high, and the mutual friction between the shielding materials during processing generates serious heat, and the heat accumulation will cause the processing temperature to rise sharply.
  • the screw speed so that the screw torque is within a certain range, the increase in processing temperature will be effectively reduced, so as to reduce the incidence of scorching of the semi-conductive shielding material to be tested; and based on the target screw speed, accurately determine the mass of the semi-conductive shielding material to be tested added to the screw extrusion equipment.
  • the mass of the semi-conductive shielding material to be tested added to the screw extrusion equipment is determined according to the target screw speed, including: according to the target screw speed, controlling the screw extrusion equipment to extrude the sample semi-conductive shielding material; when all the sample semi-conductive shielding materials in the screw extrusion equipment are extruded, determining the extrusion time of the screw extrusion equipment; when the extrusion time meets the preset time range, determining the target mass according to the mass of the sample semi-conductive shielding material, and obtaining the mass of the semi-conductive shielding material to be tested added to the screw extrusion equipment.
  • the sample semi-conductive shielding material may be a high-voltage cable semi-conductive shielding material of the same type as the semi-conductive shielding material to be tested.
  • the preset duration range may be 3 to 5 minutes.
  • the computer device when the computer device determines the mass of the semi-conductive shielding material to be tested to be added to the screw extruder according to the target screw speed, the computer device can control the screw extruder to extrude the sample semi-conductive shielding material according to the target screw speed.
  • the extrusion time of the screw extruder is determined.
  • the target mass is determined according to the mass of the sample semi-conductive shielding material, and the mass of the semi-conductive shielding material to be tested added to the screw extruder is obtained, so that the semi-conductive shielding material to be tested that meets the target mass is added to the screw extruder.
  • the width of the extruded strip of the screw extruder can be 2 cm, and the thickness can be 1 to 2 mm.
  • the scorching phenomenon of the semi-conductive shielding material to be tested generally occurs after a long period of continuous processing. This is because the shielding materials rub against each other during the processing, causing the internal temperature to reach the vulcanization temperature, thus causing scorching.
  • the semi-conductive shielding material needs to be processed continuously for a long time.
  • the technical solution of this embodiment is to control the screw extrusion equipment to extrude the sample semi-conductive shielding material according to the target screw speed; when all the sample semi-conductive shielding materials in the screw extrusion equipment are extruded, determine the extrusion time of the screw extrusion equipment; when the extrusion time meets the preset time range, determine the target quality according to the quality of the sample semi-conductive shielding material, and obtain the quality of the semi-conductive shielding material to be tested added to the screw extrusion equipment; in this way, since the scorching phenomenon occurs after a long period of continuous processing, the quality of the semi-conductive shielding material to be tested that needs to be evaluated for the scorching phenomenon is determined by the quality of the sample semi-conductive shielding material when the extrusion processing time meets the preset time range corresponding to the continuous processing, so as to be as close as possible to the actual production process to restore the process production flow, so that the scorching phenomenon identification method is more comprehensive, objective, accurate and practical.
  • a method for identifying the scorch phenomenon of a semi-conductive shielding material of a high-voltage cable is provided, and the method is described by taking the application of the method to a computer device as an example, and the method comprises the following steps:
  • Step S410 performing a melting point test on the semi-conductive shielding material to be tested by differential scanning calorimetry and thermogravimetric analysis to determine the melting point of the semi-conductive shielding material to be tested.
  • Step S420 determining the initial processing temperature corresponding to each section of the screw extruder according to the melting point of the semi-conductive shielding material to be tested.
  • Step S430 during the process of the screw extruder extruding the semi-conductive shielding material to be tested, determining the fluctuation amplitude of the screw torque after the screw torque corresponding to the screw extruder reaches equilibrium.
  • Step S440 when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold, determining the highest processing temperature corresponding to each section of the screw extrusion device during the process of the screw extrusion device extruding the semi-conductive shielding material to be tested.
  • Step S450 determining the difference between the maximum processing temperature corresponding to each section and the corresponding initial processing temperature The temperature difference is obtained by calculating the temperature difference corresponding to each section.
  • Step S460 when the temperature difference corresponding to each section is less than or equal to the preset difference threshold, and the highest processing temperature corresponding to each section is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, it is determined that no scorching occurs in the semi-conductive shielding material to be tested during the extrusion process.
  • the following method can be used to determine the scorching phenomenon for a semi-conductive shielding material to be tested (represented by semi-conductive shielding material to be tested 1).
  • Step S510 performing a melting point test on the semi-conductive shielding material to be tested by differential scanning calorimetry and thermogravimetric analysis to determine the melting point of the semi-conductive shielding material to be tested.
  • the melting point of the semi-conductive shielding material 1 to be tested is determined to be 96 degrees Celsius.
  • Step S520 determining the initial processing temperature corresponding to each section of the screw extruder according to the melting point of the semi-conductive shielding material to be tested.
  • the initial processing temperature corresponding to the first section is 101 degrees Celsius
  • the initial processing temperature corresponding to the second section is 106 degrees Celsius
  • the initial processing temperature corresponding to the third section is 111 degrees Celsius
  • the initial processing temperature corresponding to the fourth section is 111 degrees Celsius.
  • Step S530 determining a target screw speed corresponding to the screw extrusion equipment.
  • the target screw speed is 50 rpm (Revolutions Per Minute, indicating the number of rotations per minute).
  • Step S540 determining the mass of the semi-conductive shielding material to be tested added to the screw extruder.
  • Step S550 After the semi-conductive shielding material 1 to be tested that meets the target quality is added to the screw extruder, the screw extruder can extruder the semi-conductive shielding material 1 to be tested according to the target screw speed and the initial processing temperature. Continuous extrusion processing.
  • Step S560 during the process of the screw extruder extruding the semi-conductive shielding material 1 to be tested, determining the fluctuation amplitude of the screw torque after the screw torque corresponding to the screw extruder reaches equilibrium.
  • FIG. 5 provides a schematic diagram (partial data) of the change in the screw torque of the screw extruder during the process of the screw extruder extruding the semi-conductive shielding material 1 to be tested. It can be seen that the screw torque reaches equilibrium 2 minutes after the semi-conductive shielding material 1 to be tested is added.
  • Step S570 when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold, determining the highest processing temperature of the screw extruder during the process of the screw extruder extruding the semi-conductive shielding material to be tested.
  • the fluctuation amplitude of the screw torque is smaller than the preset fluctuation threshold (the preset fluctuation threshold in this embodiment is 5N ⁇ m). Therefore, the maximum processing temperature corresponding to each section of the screw extrusion equipment can be determined during the process of the screw extrusion equipment extruding the semi-conductive shielding material to be tested.
  • the highest processing temperature corresponding to the first section is 102.3 degrees Celsius
  • the initial processing temperature corresponding to the second section is 106.9 degrees Celsius
  • the initial processing temperature corresponding to the third section is 113.2 degrees Celsius
  • the initial processing temperature corresponding to the fourth section is 111.5 degrees Celsius.
  • Step S580 when the temperature difference corresponding to each section is less than or equal to the preset difference threshold, and the highest processing temperature corresponding to each section is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, it is determined that no scorching occurs in the semi-conductive shielding material to be tested during the extrusion process.
  • the preset difference threshold can be 3 degrees Celsius, and the temperature difference corresponding to each section is less than 3 degrees Celsius, and the highest processing temperature corresponding to each section is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material 1 to be tested. Therefore, the semi-conductive shielding material 1 to be tested does not burn during the extrusion process.
  • step S510 it is determined that the melting point of the semi-conductive shielding material 2 to be tested is 102 degrees Celsius.
  • step S520 it is determined that the initial processing temperature corresponding to the first section is 107 degrees Celsius, the initial processing temperature corresponding to the second section is 112 degrees Celsius, the initial processing temperature corresponding to the third section is 117 degrees Celsius, and the initial processing temperature corresponding to the fourth section is 117 degrees Celsius.
  • step S530 it is determined that the target screw speed corresponding to the screw extrusion equipment is 50 rpm.
  • step S540 it is determined that the mass of the semi-conductive shielding material 2 to be tested added to the screw extrusion equipment is 800g. After adding 800g of the semi-conductive shielding material 2 to be tested to the screw extrusion equipment, the screw extrusion equipment can continuously extrude the semi-conductive shielding material 2 to be tested according to the target screw speed and the initial processing temperature.
  • step S560 the fluctuation amplitude of the screw torque is determined.
  • FIG6 provides a schematic diagram (partial data) of the change of the screw torque of the screw extruder during the process of the screw extruder extruding the semi-conductive shielding material 2 to be tested. It can be seen that the screw torque reaches equilibrium 1 minute after the semi-conductive shielding material 2 to be tested is added.
  • steps in the flowcharts involved in the above-mentioned embodiments can include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
  • the embodiment of the present application also provides a device for identifying the scorch phenomenon of a high-voltage cable semi-conductive shielding material for realizing the above-mentioned method for identifying the scorch phenomenon of a high-voltage cable semi-conductive shielding material.
  • the implementation scheme for solving the problem provided by the device is similar to the implementation scheme recorded in the above-mentioned method, so the specific limitations in the embodiments of the device for identifying the scorch phenomenon of one or more high-voltage cable semi-conductive shielding materials provided below can be referred to the limitations of the method for identifying the scorch phenomenon of a high-voltage cable semi-conductive shielding material above, and will not be repeated here.
  • a device for identifying the scorching phenomenon of a semi-conductive shielding material of a high-voltage cable comprising: a first temperature determination module 710, a torque determination module 720, a second temperature determination module 730 and a determination module 740, wherein:
  • the first temperature determination module 710 is used to determine the initial processing temperature of the screw extruder; the screw extruder is used to extrude the semi-conductive shielding material to be tested.
  • the torque determination module 720 is used to determine the fluctuation amplitude of the screw torque after the screw torque corresponding to the screw extrusion device reaches equilibrium during the process of the screw extrusion device extruding the semi-conductive shielding material to be tested.
  • the second temperature determination module 730 is used to determine the maximum processing temperature of the screw extruder during the process of the screw extruder extruding the semi-conductive shielding material to be tested when the fluctuation amplitude of the screw torque is less than a preset fluctuation threshold.
  • the determination module 740 is used to determine that no scorching occurs to the semi-conductive shielding material to be tested during the extrusion process when the temperature difference between the maximum processing temperature and the initial processing temperature meets a preset difference condition.
  • the initial processing temperature includes the initial processing temperature corresponding to each section of the screw extrusion equipment; the first temperature determination module 710 is specifically used to perform a melting point test on the semi-conductive shielding material to be tested by differential scanning calorimetry and thermogravimetric analysis to determine the melting point of the semi-conductive shielding material to be tested; according to the melting point of the semi-conductive shielding material to be tested, determine the initial processing temperature corresponding to each section; the initial processing temperature corresponding to each section is higher than the melting point.
  • each of the sections includes a first section, a second section, a third section and a fourth section; the first temperature determination module 710 is specifically used to determine the sum of the melting point and the preset temperature difference to obtain the initial processing temperature corresponding to the first section; determine the sum of the initial processing temperature corresponding to the first section and the preset temperature difference to obtain the initial processing temperature corresponding to the second section; determine the sum of the initial processing temperature corresponding to the second section and the preset temperature difference to obtain the initial processing temperature corresponding to the third section; and use the initial processing temperature corresponding to the third section as the initial processing temperature corresponding to the fourth section.
  • the maximum processing temperature includes the maximum processing temperature corresponding to each of the sections; the preset difference condition includes a preset difference threshold; the determination module 740 is specifically used to determine The temperature difference between the maximum processing temperature corresponding to each of the sections and the corresponding initial processing temperature is used to obtain the temperature difference corresponding to each of the sections; when the temperature difference corresponding to each of the sections is less than or equal to the preset difference threshold, and the maximum processing temperature corresponding to each of the sections is less than the decomposition temperature or vulcanization temperature of the semi-conductive shielding material to be tested, it is determined that no scorching occurs to the semi-conductive shielding material to be tested during the extrusion process.
  • the device also includes: a quality determination module, used to obtain a preset screw torque range corresponding to the screw extrusion equipment; adjust the screw speed of the screw extrusion equipment, and when the screw torque corresponding to the screw extrusion equipment is within the preset screw torque range, determine the current screw speed corresponding to the screw extrusion equipment; use the current screw speed as the target screw speed corresponding to the screw extrusion equipment; and determine the quality of the semi-conductive shielding material to be tested added to the screw extrusion equipment based on the target screw speed.
  • a quality determination module used to obtain a preset screw torque range corresponding to the screw extrusion equipment; adjust the screw speed of the screw extrusion equipment, and when the screw torque corresponding to the screw extrusion equipment is within the preset screw torque range, determine the current screw speed corresponding to the screw extrusion equipment; use the current screw speed as the target screw speed corresponding to the screw extrusion equipment; and determine the quality of the semi-conductive shielding material to be tested added to the screw extrusion equipment based
  • the quality determination module is specifically used to control the screw extrusion device to extrude the sample semi-conductive shielding material according to the target screw speed; when the sample semi-conductive shielding material in the screw extrusion device is completely extruded, determine the extrusion time of the screw extrusion device; when the extrusion time satisfies a preset time range, determine the target quality according to the quality of the sample semi-conductive shielding material, and obtain the quality of the semi-conductive shielding material to be tested added to the screw extrusion device.
  • Each module in the above-mentioned device for identifying the scorching phenomenon of the semi-conductive shielding material of the high-voltage cable can be implemented in whole or in part by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, or can be stored in the memory of the computer device in the form of software, so that the processor can call and execute the corresponding operations of the above-mentioned modules.
  • a computer device which may be a terminal, and its internal structure diagram may be shown in FIG8.
  • the computer device includes a processor, a memory, an input/output interface, a communication interface, a display unit, and an input device.
  • the processor, the memory, and the input/output interface are connected via a system bus, and the communication interface, the display unit, and the input device are connected to the system bus via the input/output interface.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores Operating system and computer program.
  • the internal memory provides an environment for the operation of the operating system and computer program in the non-volatile storage medium.
  • the input/output interface of the computer device is used to exchange information between the processor and the external device.
  • the communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be achieved through WIFI, mobile cellular network, NFC (near field communication) or other technologies.
  • WIFI wireless fidelity
  • NFC near field communication
  • the computer program is executed by the processor, a method for identifying the scorching phenomenon of a semi-conductive shielding material of a high-voltage cable is implemented.
  • the display unit of the computer device is used to form a visually visible picture, and can be a display screen, a projection device or a virtual reality imaging device.
  • the display screen can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer device can be a touch layer covering the display screen, or a key, trackball or touchpad provided on the computer device housing, or an external keyboard, touchpad or mouse, etc.
  • FIG. 8 is merely a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
  • a computer device including a memory and a processor, wherein a computer program is stored in the memory, and the processor implements the steps in the above method embodiments when executing the computer program.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in the above-mentioned method embodiments are implemented.
  • a computer program product including a computer program, which implements the steps in the above method embodiments when executed by a processor.
  • any reference to memory, database or other media used in the embodiments provided in this application can include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, Floppy disk, flash memory, optical storage, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetic random access memory (Magnetoresistive Random Access Memory, MRAM), ferroelectric random access memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.
  • the database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include distributed databases based on blockchains, etc., but are not limited thereto.
  • the processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic device, a data processing logic device based on quantum computing, etc., but are not limited thereto.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

本申请涉及一种高压电缆半导电屏蔽料的焦烧现象识别方法、装置、计算机设备、存储介质和计算机程序产品。方法包括:确定螺杆挤出设备的初始加工温度;螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;在螺杆挤出设备挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度;在螺杆转矩的波动幅度小于预设波动阈值的情况下,确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的最高加工温度;在最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。采用本方法能够提高针对半导电屏蔽料的焦烧现象的识别准确率。

Description

高压电缆半导电屏蔽料的焦烧现象识别方法和装置 技术领域
本申请涉及电力技术领域,特别是涉及一种高压电缆半导电屏蔽料的焦烧现象识别方法、装置、计算机设备、存储介质和计算机程序产品。
背景技术
在橡胶加工的前期阶段(炼胶、存放等工序),混炼胶中已加入硫化剂,硫化工艺之前会自发的产生早期硫化的现象,这种超前的硫化行为被称为焦烧。产生焦烧后的胶料内部会出现许多交联键,导致胶料的流动性急剧下降,使得后续的加工过程难以进行,甚至危害橡胶制品的性能以及降低表面的光洁度,导致产品的使用性能下降。
高压、超高压电缆对屏蔽料的表面光洁度有极高的要求,因而对屏蔽料的原料、配方及生产工艺等均有更严苛的要求。屏蔽料挤出后所得产品表面光洁度是高压电缆屏蔽料的关键指标,直接决定其应用电压等级。高压电缆屏蔽层表面存在的杂质和微小的缺陷会导致严重局部放电,引发电树生长,进而带来安全隐患。目前,相关技术中对于高压电缆半导电屏蔽料连续挤出过程中出现焦烧现象判定方法仍然是一个难题,因此,相关技术中,存在着在半导电屏蔽料连续挤出过程中,焦烧现象识别准确率低的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够在半导电屏蔽料连续挤出过程中,提高焦烧现象识别准确率的高压电缆半导电屏蔽料的焦烧现象识别方法、装置、计算机设备、计算机可读存储介质和计算机程序产品。
第一方面,本申请提供了一种高压电缆半导电屏蔽料的焦烧现象识别方法。所述方法包括:
确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度;
在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
在其中一个实施例中,所述初始加工温度包括所述螺杆挤出设备的各区段对应的初始加工温度;所述确定螺杆挤出设备的初始加工温度,包括:
通过差示扫描量热法和热重量分析法对所述待测半导电屏蔽料进行熔点测试,确定所述待测半导电屏蔽料的熔点;
根据所述待测半导电屏蔽料的熔点,确定各所述区段对应的初始加工温度;各所述区段对应的初始加工温度均高于所述熔点。
在其中一个实施例中,各所述区段包括第一区段、第二区段、第三区段和第四区段;所述根据所述待测半导电屏蔽料的熔点,确定各所述区段对应的初始加工温度,包括:
确定所述熔点和预设温差之间的和,得到所述第一区段对应的初始加工温度;
确定所述第一区段对应的初始加工温度和所述预设温差之间的和,得到所述第二区段对应的初始加工温度;
确定所述第二区段对应的初始加工温度和所述预设温差之间的和,得到所述第三区段对应的初始加工温度;
将所述第三区段对应的初始加工温度,作为所述第四区段对应的初始加工温度。
在其中一个实施例中,所述最高加工温度包括各所述区段对应的最高加工温度;所述预设差值条件包括预设差值阈值;所述在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象,包括:
确定各所述区段对应的最高加工温度与对应的初始加工温度之间的温度差值,得到各所述区段对应的温度差值;
在各所述区段对应的温度差值均小于或等于所述预设差值阈值,且各所述区段对应的最高加工温度中均小于所述待测半导电屏蔽料的分解温度或硫化温度的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
在其中一个实施例中,所述方法还包括:
获取所述螺杆挤出设备对应的预设螺杆转矩范围;
调节所述螺杆挤出设备的螺杆转速,当所述螺杆挤出设备对应的螺杆转矩处于所述预设螺杆转矩范围内时,确定所述螺杆挤出设备对应的当前螺杆转速;
将所述当前螺杆转速作为所述螺杆挤出设备对应的目标螺杆转速;
根据所述目标螺杆转速,确定添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量。
在其中一个实施例中,所述根据所述目标螺杆转速,确定添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量,包括:
根据所述目标螺杆转速,控制所述螺杆挤出设备对样本半导电屏蔽料进行挤出加工;
当所述螺杆挤出设备中的所述样本半导电屏蔽料全部挤出后,确定所述螺杆挤出设备的挤出时长;
在所述挤出时长满足预设时长范围的情况下,根据所述样本半导电屏蔽料的质量,确定目标质量,得到添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量。
第二方面,本申请还提供了一种高压电缆半导电屏蔽料的焦烧现象识别装置。所述装置包括:
第一温度确定模块,用于确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
转矩确定模块,用于在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波 动幅度;
第二温度确定模块,用于在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
判定模块,用于在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度;
在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度;
在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤 出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度;
在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
上述高压电缆半导电屏蔽料的焦烧现象识别方法、装置、计算机设备、存储介质和计算机程序产品,通过确定螺杆挤出设备的初始加工温度;螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;在螺杆挤出设备挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度;在螺杆转矩的波动幅度小于预设波动阈值的情况下,确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的最高加工温度;在最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象;如此,当挤出过程中待测半导电屏蔽料发生焦烧后,屏蔽料中的线型大分子将会发生化学反应,使其交联在一起形成立体三维网络状结构,从而导致屏蔽料粘度急剧升高,使得螺杆挤出设备的螺杆转矩增大,因此通过挤出过程中螺杆转矩的波动幅度可以直观的表征挤出过程中屏蔽料是否发生焦烧现象;而有些半导电屏蔽料加工流动性好,其产生焦烧以后,转矩的波动幅度可能小于预设波动阈值,因此还需要 进行温度判断,由于发生焦烧后,屏蔽料之间摩擦增大,热量堆积将造成加工温度逐步上升,通过判断温度差值是否满足预设差值条件,可以进一步准确判断屏蔽料的内部是否发生焦烧;从而实现了基于双判据的方法识别待测半导电屏蔽料在挤出加工过程中的焦烧现象,更加准确地对屏蔽料是否发生焦烧现象进行判断,进而提高了在半导电屏蔽料连续挤出过程中,焦烧现象的识别准确率。
附图说明
图1为一个实施例中一种高压电缆半导电屏蔽料的焦烧现象识别方法的应用环境图;
图2为一个实施例中一种高压电缆半导电屏蔽料的焦烧现象识别方法的流程示意图;
图3为一个实施例中确定螺杆挤出设备的各区段对应的初始加工温度步骤的流程示意图;
图4为另一个实施例中一种高压电缆半导电屏蔽料的焦烧现象识别方法的流程示意图;
图5为一个实施例中一种螺杆挤出设备挤出待测半导电屏蔽料的过程中,螺杆挤出设备的螺杆转矩的变化示意图;
图6为另一个实施例中一种螺杆挤出设备挤出待测半导电屏蔽料的过程中,螺杆挤出设备的螺杆转矩的变化示意图;
图7为一个实施例中一种高压电缆半导电屏蔽料的焦烧现象识别装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的一种高压电缆半导电屏蔽料的焦烧现象识别方法,可以应用于如图1所示的应用环境中。其中,计算机设备102通过网络与螺杆挤出设备104进行通信。其中,计算机设备102确定螺杆挤出设备104的初始加工温度;螺杆挤出设备104用于对待测半导电屏蔽料进行挤出加工;计算机设备102在螺杆挤出设备104挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备104对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度;在螺杆转矩的波动幅度小于预设波动阈值的情况下,计算机设备102确定螺杆挤出设备104在挤出待测半导电屏蔽料的过程中,螺杆挤出设备104的最高加工温度;在最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,计算机设备102判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
其中,螺杆挤出设备104可以为单螺杆挤出机,单螺杆挤出机包括进料口1041、螺杆1042、机头1043和机箱1044。
其中,计算机设备可以是终端,终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑等。
在一个实施例中,如图2所示,提供了一种高压电缆半导电屏蔽料的焦烧现象识别方法,以应用于图1中的计算机设备102为例进行说明,包括以下步骤:
步骤S210,确定螺杆挤出设备的初始加工温度。
其中,螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工。
其中,螺杆挤出设备可以为单螺杆挤出机。
其中,待测半导电屏蔽料可以为高压电缆半导电屏蔽料。
具体实现中,计算机设备可以根据待测半导电屏蔽料的熔点,确定螺杆挤出设备的初始加工温度。
步骤S220,在螺杆挤出设备挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度。
具体实现中,计算机设备可以在螺杆挤出设备连续挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆挤出设备对应的螺杆转矩保持平衡的这段时间中,螺杆转矩的波动幅度。
步骤S230,在螺杆转矩的波动幅度小于预设波动阈值的情况下,确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的最高加工温度。
具体实现中,在螺杆转矩的波动幅度小于或等于预设波动阈值的情况下,计算机设备可以螺杆挤出设备在连续挤出待测半导电屏蔽料的过程中,螺杆挤出设备的最高加工温度。其中,由于温度具有延时性,因此不能及时判断温度大小,需要待测半导电屏蔽料加工结束后确定螺杆挤出设备的最高加工温度。
在螺杆转矩的波动幅度大于预设波动阈值的情况下,直接判定待测半导电屏蔽料在挤出加工过程中发生焦烧现象。
步骤S240,在最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
具体实现中,计算机设备可以确定最高加工温度和初始加工温度之间的温度差值,在温度差值满足预设差值条件的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象,从而可以筛选出未发生焦烧现象的待测半导电屏蔽料,作为合格的半导电屏蔽料。
上述高压电缆半导电屏蔽料的焦烧现象识别方法中,通过确定螺杆挤出设备的初始加工温度;螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;在螺杆挤出设备挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度;在螺杆转矩的波动幅度小于预设波动阈值的情况下,确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的最高加工温度;在最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象;如此,当挤出过程中待测半导电屏蔽料发生焦烧后,屏蔽料中的线型大分子将会发生化学反应,使其交联在一起形成立体三维网络状结构,从而导致屏蔽料粘度急剧升高,使得螺杆挤出设备的螺杆转矩增大,因此通过挤出过程中螺杆转矩的波动幅度可以直观的表征挤出过程中屏蔽料是否发生焦烧现象;而有些半导电屏蔽料加工流动性好,其产生焦烧以后,转矩的波动幅度可能小于预设波动阈值,因此还需要进行温度判断,由于发生焦烧后,屏蔽料之间摩擦增大,热量堆积将造成加工温度逐步上升,通过判断温度差值是否满足预设 差值条件,可以进一步准确判断屏蔽料的内部是否发生焦烧;从而实现了基于双判据的方法识别待测半导电屏蔽料在挤出加工过程中的焦烧现象,更加准确地对屏蔽料是否发生焦烧现象进行判断,进而提高了在半导电屏蔽料连续挤出过程中,焦烧现象的识别准确率。
在一个实施例中,初始加工温度包括螺杆挤出设备的各区段对应的初始加工温度;确定螺杆挤出设备的初始加工温度,包括:通过差示扫描量热法和热重量分析法对待测半导电屏蔽料进行熔点测试,确定待测半导电屏蔽料的熔点;根据待测半导电屏蔽料的熔点,确定各区段对应的初始加工温度;各区段对应的初始加工温度均高于熔点。
其中,初始加工温度为螺杆挤出设备的加工温度的下限。
其中,各区段包括第一区段、第二区段、第三区段和第四区段。
具体实现中,计算机设备在确定螺杆挤出设备的初始加工温度的过程中,计算机设备可以通过差示扫描量热法和热重量分析法对待测半导电屏蔽料进行熔点测试,确定待测半导电屏蔽料的熔点;根据待测半导电屏蔽料的熔点,确定螺杆挤出设备的各区段对应的初始加工温度;其中,各区段对应的初始加工温度均高于待测半导电屏蔽料的熔点。
其中,如图3所示,计算机设备在根据待测半导电屏蔽料的熔点,确定各区段对应的初始加工温度的过程中,包括以下步骤:
步骤S310,计算机设备确定熔点和预设温差之间的和,得到第一区段对应的初始加工温度。
其中,预设温差可以是5摄氏度。
步骤S320,计算机设备确定第一区段对应的初始加工温度和预设温差之间的和,得到第二区段对应的初始加工温度。
步骤S330,计算机设备确定第二区段对应的初始加工温度和预设温差之间的和,得到第三区段对应的初始加工温度。
步骤S340,计算机设备将第三区段对应的初始加工温度,作为第四区段对应的初始加工温度。
本实施例的技术方案,初始加工温度包括螺杆挤出设备的各区段对应的初始加工温度;通过差示扫描量热法和热重量分析法对待测半导电屏蔽料进行熔点测试,确定待测半导电屏蔽料的熔点;根据待测半导电屏蔽料的熔点,确定各区段对应的初始加工温度;各区段对应的初始加工温度均高于熔点;如此,由于不同类型的半导电屏蔽料所用的基体树脂不同,半导电屏蔽料熔点不尽相同,若螺杆挤出设备共用一套加工温度,所生产的半导电屏蔽料带材会因为基体未完全熔融导致带材表面粗糙,而基于半导电屏蔽料的熔点确定螺杆挤出设备的各区段对应的初始加工温度,且各区段对应的初始加工温度均高于半导电屏蔽料的熔点,可以确保不同类型的半导电屏蔽料在挤出加工的过程中都可以完全熔融挤出,提高了半导电屏蔽料带材的表面光滑性。
在一个实施例中,最高加工温度包括各区段对应的最高加工温度;预设差值条件包括预设差值阈值;在最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象,包括:确定各区段对应的最高加工温度与对应的初始加工温度之间的温度差值,得到各区段对应的温度差值;在各区段对应的温度差值均小于或等于预设差值阈值,且各区段对应的最高加工温度中均小于待测半导电屏蔽料的分解温度或硫化温度的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
其中,待测半导电屏蔽料的分解温度或硫化温度,可以通过差示扫描量热法和热重量分析法对待测半导电屏蔽料进行测试得到。
计算机设备在确定最高加工温度和初始加工温度之间的温度差值满足预设差值条件的情况下,可以判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象的过程中,计算机设备可以确定各区段对应的最高加工温度与对应的初始加工温度之间的温度差值,得到各区段对应的温度差值;在各区段对应的温度差值均小于或等于预设差值阈值,且各区段对应的最高加工温度中均小于待测半导电屏蔽料的分解温度或硫化温度的情况下,计算机设备可以判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
本实施例的技术方案,最高加工温度包括各区段对应的最高加工温度;预设差值条件包括预设差值阈值;通过确定各区段对应的最高加工温度与对应的初始加工温度之间的温度差值,得到各区段对应的温度差值;在各区段对应的温度差值均小于或等于预设差值阈值,且各区段对应的最高加工温度中均小于待测半导电屏蔽料的分解温度或硫化温度的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象;如此,由于加工过程中屏蔽料之间相互摩擦产热严重,热量堆积将造成加工温度急剧上升,在造成内部温度达到硫化温度或分解温度时,屏蔽料会发生焦烧,而通过判断螺杆挤出设备的各区段对应的温度差值是否均小于或等于预设差值阈值,以及判断各区段对应的最高加工温度中是否均小于待测半导电屏蔽料的分解温度或硫化温度,可以快速准确识别在半导电屏蔽料连续挤出过程中,是否发生焦烧现象,且识别方法且操作简单,成本较低。
在一个实施例中,方法还包括:获取螺杆挤出设备对应的预设螺杆转矩范围;调节螺杆挤出设备的螺杆转速,当螺杆挤出设备对应的螺杆转矩处于预设螺杆转矩范围内时,确定螺杆挤出设备对应的当前螺杆转速;将当前螺杆转速作为螺杆挤出设备对应的目标螺杆转速;根据目标螺杆转速,确定添加至螺杆挤出设备的待测半导电屏蔽料的质量。
其中,预设螺杆转矩范围可以为110N·m(牛顿·米)~130N·m(牛顿·米)。
其中,通过螺杆挤出设备正式对待测半导电屏蔽料进行挤出加工之前,计算机室设备可以获取螺杆挤出设备对应的预设螺杆转矩范围,通过调节螺杆挤出设备的螺杆转速,当螺杆挤出设备对应的螺杆转矩处于预设螺杆转矩范围内时,确定螺杆挤出设备对应的当前螺杆转速,以将当前螺杆转速作为螺杆挤出设备对应的目标螺杆转速,得到螺杆挤出设备在对待测半导电屏蔽料进行正式挤出时的挤出参数;最后,计算机设备可以根据目标螺杆转速,确定添加至螺杆挤出设备的待测半导电屏蔽料的质量。
本实施例的技术方案,通过获取螺杆挤出设备对应的预设螺杆转矩范围;调节螺杆挤出设备的螺杆转速,当螺杆挤出设备对应的螺杆转矩处于预设螺杆 转矩范围内时,确定螺杆挤出设备对应的当前螺杆转速;将当前螺杆转速作为螺杆挤出设备对应的目标螺杆转速;根据目标螺杆转速,确定添加至螺杆挤出设备的待测半导电屏蔽料的质量;如此,由于当螺杆转矩过高,说明半导电屏蔽料粘度高,加工过程中屏蔽料之间相互摩擦产热严重,热量堆积将造成加工温度急剧上升,因此,通过控制螺杆转速使得螺杆转矩在一定范围内,将有效的降低加工温度的上升,以降低待测半导电屏蔽料的焦烧现象的发生率;并基于目标螺杆转速,准确确定添加至螺杆挤出设备的待测半导电屏蔽料的质量。
在一个实施例中,根据目标螺杆转速,确定添加至螺杆挤出设备的待测半导电屏蔽料的质量,包括:根据目标螺杆转速,控制螺杆挤出设备对样本半导电屏蔽料进行挤出加工;当螺杆挤出设备中的样本半导电屏蔽料全部挤出后,确定螺杆挤出设备的挤出时长;在挤出时长满足预设时长范围的情况下,根据样本半导电屏蔽料的质量,确定目标质量,得到添加至螺杆挤出设备的待测半导电屏蔽料的质量。
其中,样本半导电屏蔽料可以为与待测半导电屏蔽料属于同一类型的高压电缆半导电屏蔽料。
其中,预设时长范围可以为3~5分钟。
具体实现中,计算机设备在根据目标螺杆转速,确定添加至螺杆挤出设备的待测半导电屏蔽料的质量的过程中,计算机设备可以根据目标螺杆转速,控制螺杆挤出设备对样本半导电屏蔽料进行挤出加工,当螺杆挤出设备中的样本半导电屏蔽料全部挤出后,确定螺杆挤出设备的挤出时长,在挤出时长满足预设时长范围的情况下,根据样本半导电屏蔽料的质量,确定目标质量,得到添加至螺杆挤出设备的待测半导电屏蔽料的质量,以将满足目标质量的待测半导电屏蔽料添加至螺杆挤出设备中。其中,螺杆挤出设备的挤出带材的宽度可以为2厘米,厚度可以为1~2毫米。
具体来说,在螺杆挤出设备对待测半导电屏蔽料进行挤出的过程中,待测半导电屏蔽料的焦烧现象一般发生在长时间连续加工以后,这是由于加工过程中屏蔽料之间相互摩擦,造成内部温度达到硫化温度,从而发生焦烧。因此, 为了模拟实际的生产环境,需要对半导电屏蔽料进行长时间连续化加工。在确定螺杆挤出设备的目标螺杆转速和初始加工温度的基础上,可以当螺杆挤出设备中的样本半导电屏蔽料全部挤出后,确定螺杆挤出设备的挤出时长满足3~5分钟的情况下,确定样本半导电屏蔽料的质量为m,由于在对待测半导电屏蔽料进行正式挤出是要求连续加工时间为15~20分钟,因此,最终确定的目标质量为M,M=4m。
本实施例的技术方案,通过根据目标螺杆转速,控制螺杆挤出设备对样本半导电屏蔽料进行挤出加工;当螺杆挤出设备中的样本半导电屏蔽料全部挤出后,确定螺杆挤出设备的挤出时长;在挤出时长满足预设时长范围的情况下,根据样本半导电屏蔽料的质量,确定目标质量,得到添加至螺杆挤出设备的待测半导电屏蔽料的质量;如此,由于焦烧现象发生于长时间连续加工以后,通过样本半导电屏蔽料的挤出加工时长满足连续加工对应的预设时长范围时的质量,确定对需要进行焦烧现象评估的待测半导电屏蔽料的质量,从而可以尽可能地贴近实际生产过程以还原工艺制作流程,使得焦烧现象识别方法更全面、客观、精确且具有实际意义。
在另一个实施例中,如图4所示,提供了一种高压电缆半导电屏蔽料的焦烧现象识别方法,以该方法应用于计算机设备为例进行说明,包括以下步骤:
步骤S410,通过差示扫描量热法和热重量分析法对待测半导电屏蔽料进行熔点测试,确定待测半导电屏蔽料的熔点。
步骤S420,根据待测半导电屏蔽料的熔点,确定螺杆挤出设备的各区段对应的初始加工温度。
步骤S430,在螺杆挤出设备挤出待测半导电屏蔽料的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度。
步骤S440,在螺杆转矩的波动幅度小于预设波动阈值的情况下,确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的各区段对应的最高加工温度。
步骤S450,确定各区段对应的最高加工温度与对应的初始加工温度之间的 温度差值,得到各区段对应的温度差值。
步骤S460,在各区段对应的温度差值均小于或等于预设差值阈值,且各区段对应的最高加工温度中均小于待测半导电屏蔽料的分解温度或硫化温度的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
需要说明的是,上述步骤的具体限定可以参见上文对一种高压电缆半导电屏蔽料的焦烧现象识别方法的具体限定。
为了便于本领域技术人员理解,在实际应用中可以通过以下方法针对一种待测半导电屏蔽料(以待测半导电屏蔽料1表征)进行焦烧现象判断。
步骤S510,通过差示扫描量热法和热重量分析法对待测半导电屏蔽料进行熔点测试,确定待测半导电屏蔽料的熔点。
具体实现中,确定待测半导电屏蔽料1的熔点为96摄氏度。
步骤S520,根据待测半导电屏蔽料的熔点,确定螺杆挤出设备的各区段对应的初始加工温度。
具体实现中,在预设温差为5摄氏度的情况下,第一区段对应的初始加工温度为101摄氏度,第二区段对应的初始加工温度为106摄氏度,第三区段对应的初始加工温度为111摄氏度,第四区段对应的初始加工温度维111摄氏度。
步骤S530,确定螺杆挤出设备对应的目标螺杆转速。
具体实现中,当螺杆挤出设备的预设螺杆转矩范围为110N·m~130N·m时,目标螺杆转速为50rpm(Revolutions Per Minute,转每分,表示每分钟的旋转次数)。
步骤S540,确定添加至螺杆挤出设备的待测半导电屏蔽料的质量。
具体实现中,螺杆挤出设备的挤出时长满足3~5分钟的情况下,确定样本半导电屏蔽料的质量为m=200g(克),在连续加工时间为15~20分钟下,最终确定的目标质量M=4m=800g(克),即添加至螺杆挤出设备的待测半导电屏蔽料的1质量为800g(克)。
步骤S550,在满足目标质量的待测半导电屏蔽料1添加至螺杆挤出设备后,螺杆挤出设备可以按照目标螺杆转速和初始加工温度对待测半导电屏蔽料1进 行连续挤出加工。
步骤S560,在螺杆挤出设备挤出待测半导电屏蔽料1的过程中,确定螺杆挤出设备对应的螺杆转矩达到平衡后,螺杆转矩的波动幅度。
为了便于本领域技术人员理解,图5提供了一种在螺杆挤出设备挤出待测半导电屏蔽料1的过程中,螺杆挤出设备的螺杆转矩的变化示意图(部分数据)。可以看出,在添加待测半导电屏蔽料1的2分钟后,螺杆转矩达到平衡。
步骤S570,在螺杆转矩的波动幅度小于预设波动阈值的情况下,确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的最高加工温度。
如图5所示,可以看出螺杆转矩的波动幅度小于预设波动阈值(本实施例中预设波动阈值为5N·m),因此,可以确定螺杆挤出设备在挤出待测半导电屏蔽料的过程中,螺杆挤出设备的各区段对应的最高加工温度。
其中,第一区段对应的最高加工温度为102.3摄氏度,第二区段对应的初始加工温度为106.9摄氏度,第三区段对应的初始加工温度为113.2摄氏度,第四区段对应的初始加工温度维111.5摄氏度。
步骤S580,在各区段对应的温度差值均小于或等于预设差值阈值,且各区段对应的最高加工温度中均小于待测半导电屏蔽料的分解温度或硫化温度的情况下,判定待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
具体实现中,预设差值阈值可以为3摄氏度,而各区段对应的温度差值均小于3摄氏度,且各区段对应的最高加工温度中均小于待测半导电屏蔽料1的分解温度或硫化温度,因此,待测半导电屏蔽料1在挤出加工过程中未发生焦烧现象。
为了便于本领域技术人员理解,以另一种待测半导电屏蔽料(以待测半导电屏蔽料2表征)为例,进行通过上述方法实现的焦烧现象判断。
通过步骤S510,确定待测半导电屏蔽料2的熔点为102摄氏度。
通过步骤S520,确定第一区段对应的初始加工温度为107摄氏度,第二区段对应的初始加工温度为112摄氏度,第三区段对应的初始加工温度为117摄氏度,第四区段对应的初始加工温度维117摄氏度。
通过步骤S530,确定螺杆挤出设备对应的目标螺杆转速为50rpm。
通过步骤S540,确定添加至螺杆挤出设备的待测半导电屏蔽料2的质量为800g,以将800g的待测半导电屏蔽料2添加至螺杆挤出设备后,螺杆挤出设备可以按照目标螺杆转速和初始加工温度对待测半导电屏蔽料2进行连续挤出加工。
通过步骤S560,确定螺杆转矩的波动幅度。为了便于本领域技术人员理解,图6提供了一种在螺杆挤出设备挤出待测半导电屏蔽料2的过程中,螺杆挤出设备的螺杆转矩的变化示意图(部分数据)。可以看出,在添加待测半导电屏蔽料2的1分钟后,螺杆转矩达到平衡。
此外,还可以看出,在螺杆挤出设备对应的螺杆转矩保持平衡的这段时间中,存在螺杆转矩的波动幅度大于预设波动阈值(5N·m)的情况,因此,无需执行后续步骤,直接判定待测半导电屏蔽料2在挤出加工过程中发生焦烧现象。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的高压电缆半导电屏蔽料的焦烧现象识别方法的高压电缆半导电屏蔽料的焦烧现象识别装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个高压电缆半导电屏蔽料的焦烧现象识别装置实施例中的具体限定可以参见上文中对于一种高压电缆半导电屏蔽料的焦烧现象识别方法的限定,在此不再赘述。
在一个实施例中,如图7所示,提供了一种高压电缆半导电屏蔽料的焦烧现象识别装置,包括:第一温度确定模块710、转矩确定模块720、第二温度确定模块730和判定模块740,其中:
第一温度确定模块710,用于确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工。
转矩确定模块720,用于在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度。
第二温度确定模块730,用于在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度。
判定模块740,用于在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
在其中一个实施例中,所述初始加工温度包括所述螺杆挤出设备的各区段对应的初始加工温度;所述第一温度确定模块710,具体用于通过差示扫描量热法和热重量分析法对所述待测半导电屏蔽料进行熔点测试,确定所述待测半导电屏蔽料的熔点;根据所述待测半导电屏蔽料的熔点,确定各所述区段对应的初始加工温度;各所述区段对应的初始加工温度均高于所述熔点。
在其中一个实施例中,各所述区段包括第一区段、第二区段、第三区段和第四区段;所述第一温度确定模块710,具体用于确定所述熔点和预设温差之间的和,得到所述第一区段对应的初始加工温度;确定所述第一区段对应的初始加工温度和所述预设温差之间的和,得到所述第二区段对应的初始加工温度;确定所述第二区段对应的初始加工温度和所述预设温差之间的和,得到所述第三区段对应的初始加工温度;将所述第三区段对应的初始加工温度,作为所述第四区段对应的初始加工温度。
在其中一个实施例中,所述最高加工温度包括各所述区段对应的最高加工温度;所述预设差值条件包括预设差值阈值;所述判定模块740,具体用于确定 各所述区段对应的最高加工温度与对应的初始加工温度之间的温度差值,得到各所述区段对应的温度差值;在各所述区段对应的温度差值均小于或等于所述预设差值阈值,且各所述区段对应的最高加工温度中均小于所述待测半导电屏蔽料的分解温度或硫化温度的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
在其中一个实施例中,所述装置还包括:质量确定模块,用于获取所述螺杆挤出设备对应的预设螺杆转矩范围;调节所述螺杆挤出设备的螺杆转速,当所述螺杆挤出设备对应的螺杆转矩处于所述预设螺杆转矩范围内时,确定所述螺杆挤出设备对应的当前螺杆转速;将所述当前螺杆转速作为所述螺杆挤出设备对应的目标螺杆转速;根据所述目标螺杆转速,确定添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量。
在其中一个实施例中,所述质量确定模块,具体用于根据所述目标螺杆转速,控制所述螺杆挤出设备对样本半导电屏蔽料进行挤出加工;当所述螺杆挤出设备中的所述样本半导电屏蔽料全部挤出后,确定所述螺杆挤出设备的挤出时长;在所述挤出时长满足预设时长范围的情况下,根据所述样本半导电屏蔽料的质量,确定目标质量,得到添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量。
上述高压电缆半导电屏蔽料的焦烧现象识别装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图8所示。该计算机设备包括处理器、存储器、输入/输出接口、通信接口、显示单元和输入装置。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口、显示单元和输入装置通过输入/输出接口连接到系统总线。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有 操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的输入/输出接口用于处理器与外部设备之间交换信息。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种高压电缆半导电屏蔽料的焦烧现象识别方法。该计算机设备的显示单元用于形成视觉可见的画面,可以是显示屏、投影装置或虚拟现实成像装置。显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、 软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种高压电缆半导电屏蔽料的焦烧现象识别方法,其特征在于,所述方法包括:
    确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
    在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度;
    在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
    在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
  2. 根据权利要求1所述的方法,其特征在于,所述初始加工温度包括所述螺杆挤出设备的各区段对应的初始加工温度;所述确定螺杆挤出设备的初始加工温度,包括:
    通过差示扫描量热法和热重量分析法对所述待测半导电屏蔽料进行熔点测试,确定所述待测半导电屏蔽料的熔点;
    根据所述待测半导电屏蔽料的熔点,确定各所述区段对应的初始加工温度;各所述区段对应的初始加工温度均高于所述熔点。
  3. 根据权利要求2所述的方法,其特征在于,各所述区段包括第一区段、第二区段、第三区段和第四区段;所述根据所述待测半导电屏蔽料的熔点,确定各所述区段对应的初始加工温度,包括:
    确定所述熔点和预设温差之间的和,得到所述第一区段对应的初始加工温度;
    确定所述第一区段对应的初始加工温度和所述预设温差之间的和,得到所述第二区段对应的初始加工温度;
    确定所述第二区段对应的初始加工温度和所述预设温差之间的和,得到所述第三区段对应的初始加工温度;
    将所述第三区段对应的初始加工温度,作为所述第四区段对应的初始加工 温度。
  4. 根据权利要求2所述的方法,其特征在于,所述最高加工温度包括各所述区段对应的最高加工温度;所述预设差值条件包括预设差值阈值;所述在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象,包括:
    确定各所述区段对应的最高加工温度与对应的初始加工温度之间的温度差值,得到各所述区段对应的温度差值;
    在各所述区段对应的温度差值均小于或等于所述预设差值阈值,且各所述区段对应的最高加工温度中均小于所述待测半导电屏蔽料的分解温度或硫化温度的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述螺杆挤出设备对应的预设螺杆转矩范围;
    调节所述螺杆挤出设备的螺杆转速,当所述螺杆挤出设备对应的螺杆转矩处于所述预设螺杆转矩范围内时,确定所述螺杆挤出设备对应的当前螺杆转速;
    将所述当前螺杆转速作为所述螺杆挤出设备对应的目标螺杆转速;
    根据所述目标螺杆转速,确定添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述目标螺杆转速,确定添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量,包括:
    根据所述目标螺杆转速,控制所述螺杆挤出设备对样本半导电屏蔽料进行挤出加工;
    当所述螺杆挤出设备中的所述样本半导电屏蔽料全部挤出后,确定所述螺杆挤出设备的挤出时长;
    在所述挤出时长满足预设时长范围的情况下,根据所述样本半导电屏蔽料的质量,确定目标质量,得到添加至所述螺杆挤出设备的所述待测半导电屏蔽料的质量。
  7. 一种高压电缆半导电屏蔽料的焦烧现象识别装置,其特征在于,所述装 置包括:
    第一温度确定模块,用于确定螺杆挤出设备的初始加工温度;所述螺杆挤出设备用于对待测半导电屏蔽料进行挤出加工;
    转矩确定模块,用于在所述螺杆挤出设备挤出所述待测半导电屏蔽料的过程中,确定所述螺杆挤出设备对应的螺杆转矩达到平衡后,所述螺杆转矩的波动幅度;
    第二温度确定模块,用于在所述螺杆转矩的波动幅度小于预设波动阈值的情况下,确定所述螺杆挤出设备在挤出所述待测半导电屏蔽料的过程中,所述螺杆挤出设备的最高加工温度;
    判定模块,用于在所述最高加工温度和所述初始加工温度之间的温度差值满足预设差值条件的情况下,判定所述待测半导电屏蔽料在挤出加工过程中未发生焦烧现象。
  8. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至6中任一项所述的方法的步骤。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述的方法的步骤。
  10. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至6中任一项所述的方法的步骤。
PCT/CN2023/122534 2022-11-07 2023-09-28 高压电缆半导电屏蔽料的焦烧现象识别方法和装置 WO2024099001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211384988.7A CN115752801A (zh) 2022-11-07 2022-11-07 高压电缆半导电屏蔽料的焦烧现象识别方法和装置
CN202211384988.7 2022-11-07

Publications (1)

Publication Number Publication Date
WO2024099001A1 true WO2024099001A1 (zh) 2024-05-16

Family

ID=85356997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122534 WO2024099001A1 (zh) 2022-11-07 2023-09-28 高压电缆半导电屏蔽料的焦烧现象识别方法和装置

Country Status (2)

Country Link
CN (1) CN115752801A (zh)
WO (1) WO2024099001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752801A (zh) * 2022-11-07 2023-03-07 南方电网科学研究院有限责任公司 高压电缆半导电屏蔽料的焦烧现象识别方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044695A (ja) * 2018-09-18 2020-03-26 横浜ゴム株式会社 ゴム材料の押出方法およびシステム
CN114216926A (zh) * 2021-11-18 2022-03-22 深圳供电局有限公司 一种交联半导电屏蔽材料流变性能评价方法
CN114791440A (zh) * 2022-05-06 2022-07-26 昆明电缆集团昆电工电缆有限公司 一种交联内屏蔽料的评价方法
CN115219634A (zh) * 2022-08-26 2022-10-21 南方电网科学研究院有限责任公司 电缆用可交联聚乙烯绝缘料抗烧焦性的评估方法
CN115752801A (zh) * 2022-11-07 2023-03-07 南方电网科学研究院有限责任公司 高压电缆半导电屏蔽料的焦烧现象识别方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044695A (ja) * 2018-09-18 2020-03-26 横浜ゴム株式会社 ゴム材料の押出方法およびシステム
CN114216926A (zh) * 2021-11-18 2022-03-22 深圳供电局有限公司 一种交联半导电屏蔽材料流变性能评价方法
CN114791440A (zh) * 2022-05-06 2022-07-26 昆明电缆集团昆电工电缆有限公司 一种交联内屏蔽料的评价方法
CN115219634A (zh) * 2022-08-26 2022-10-21 南方电网科学研究院有限责任公司 电缆用可交联聚乙烯绝缘料抗烧焦性的评估方法
CN115752801A (zh) * 2022-11-07 2023-03-07 南方电网科学研究院有限责任公司 高压电缆半导电屏蔽料的焦烧现象识别方法和装置

Also Published As

Publication number Publication date
CN115752801A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024099001A1 (zh) 高压电缆半导电屏蔽料的焦烧现象识别方法和装置
Singh et al. Multi Response optimization of injection moulding Process parameters to reduce cycle time and warpage
Abeykoon et al. A new model based approach for the prediction and optimisation of thermal homogeneity in single screw extrusion
Abeykoon et al. The effect of materials' rheology on process energy consumption and melt thermal quality in polymer extrusion
US11534951B2 (en) Apparatus, method and computer program product for screw configuration inference
Bauer et al. Characteristic parameters and process maps for fully-filled twin-screw extruder elements
JP2023507906A (ja) ポリマー粘度の品質を制御するための方法及び制御システム
Lin et al. Quality improvement of an injection-molded product using design of experiments: a case study
Dryer et al. Comparison of scale‐up methods for dispersive mixing in twin‐screw extruders
JP2006103316A (ja) 成形加工性評価システム及びその方法
US11230043B2 (en) Method for setting molding conditions of injection-molding equipment
JPH04305424A (ja) 流動解析を利用した最適射出成形条件の評価方法および射出成形装置
Abeykoon et al. Modelling of melt pressure development in polymer extrusion: Effects of process settings and screw geometry
WO2021256272A1 (ja) シミュレーション装置、シミュレーション方法及びシミュレーションプログラム
Martínez-de-Pisón et al. Control model for an elastomer extrusion process obtained via a comparative analysis of data mining and artificial intelligence techniques
Vieira da Silva et al. Parametric calibration study of fused filament fabrication printing with large nozzle diameter
WO2024135553A1 (ja) 設計評価装置、設計評価方法及びプログラム
WO2023188494A1 (ja) シミュレーション装置、シミュレーション方法及びシミュレーションプログラム
Burr et al. Plastic extrusion process optimization by inversion of stacked autoencoder classification machines
WO2024111171A1 (ja) 射出成形条件生成装置、射出成形条件生成方法、及び射出成形システム
Ramana et al. Data mining approach for quality prediction and fault diagnosis of injection molding process
US20230004144A1 (en) Computer-implemented method for processing a plurality of process variables of a production cell
Chistyakova et al. Methods and Technologies for Primary Processing, Modeling and Visualization of Industrial Data for Quality Control of Multi-assortment Polymeric Films
JP2020138448A (ja) フィラー分散状態解析方法及び混練物生成方法
CN116594359A (zh) 状态时长获取方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887694

Country of ref document: EP

Kind code of ref document: A1