WO2024098945A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2024098945A1
WO2024098945A1 PCT/CN2023/118273 CN2023118273W WO2024098945A1 WO 2024098945 A1 WO2024098945 A1 WO 2024098945A1 CN 2023118273 W CN2023118273 W CN 2023118273W WO 2024098945 A1 WO2024098945 A1 WO 2024098945A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
chip
light
lens assembly
Prior art date
Application number
PCT/CN2023/118273
Other languages
English (en)
French (fr)
Inventor
杨思更
何鹏
葛君
夏争辉
刘旭霞
邵乾
马晓磊
薛梅
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211401103.XA external-priority patent/CN118011569A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2024098945A1 publication Critical patent/WO2024098945A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical fiber communication, and in particular to an optical module.
  • optical communication technology optical modules are tools for realizing the mutual conversion of optical and electrical signals, and are one of the key components in optical communication equipment.
  • the transmission rate of optical modules is constantly increasing.
  • optical module including:
  • a circuit board having an optoelectronic chip disposed thereon;
  • An optical fiber bracket in which an optical fiber is inserted, and a positioning hole is provided on the side surface of one end of the optical fiber bracket;
  • a lens assembly is covered on the optoelectronic chip
  • a boss is arranged on the optical fiber bracket, and there is a gap between the boss and the surface of the circuit board; a positioning column and a support arm are arranged on the side of one end of the lens assembly, and the positioning column is arranged corresponding to the positioning hole; the support arm extends from the side toward the direction of the optical fiber bracket, and the support arm supports the boss; a groove is arranged on the side, and the groove is recessed in the side, and a first lens is arranged in the groove, and the optical fiber is coupled and docked with the first lens;
  • the optoelectronic chip includes an optical monitoring chip, an optical transmitting chip and an optical receiving chip;
  • the optical fiber includes a first optical fiber array and a second optical fiber array, the first optical fiber array and the second optical fiber array are arranged side by side along the width direction of the circuit board and at the same height;
  • the lens assembly is connected to the optical fiber bracket, and the surface is respectively formed with:
  • the first inclined surface has a first preset angle with the axis in the length direction of the circuit board, and is used to receive the optical signal emitted by the optical emitting chip and split the optical signal into a first split light and a second split light;
  • the second inclined surface has a second preset angle with the axis in the length direction of the circuit board and one end is connected to the first inclined surface for receiving and transmitting the first split light;
  • the third inclined plane has a third preset angle with the axis of the length direction of the circuit board and is connected to the other end of the second inclined plane, and is used to receive the first split light from the second inclined plane, and change the transmission direction of the first split light through the cooperation between the third preset angle, the second preset angle and the first preset angle, so as to transmit the first split light to the first optical fiber array;
  • the fourth inclined surface has a fourth preset angle with the axis in the length direction of the circuit board, and is used to receive the second split light, and transmit the second split light to the optical monitoring chip through the cooperation between the fourth preset angle and the first preset angle;
  • the fifth inclined plane has a fifth preset angle with the axis in the length direction of the circuit board, the surface height of the fifth inclined plane is different from the surface height of the third inclined plane, the fifth preset angle is different from the third preset angle, and the fifth inclined plane and the third inclined plane are arranged along the width direction of the circuit board, and are used to receive the optical signal transmitted by the second optical fiber array and change the transmission direction of the optical signal to transmit the optical signal to the optical receiving chip.
  • FIG1 is a connection diagram of an optical communication system provided according to some embodiments of the present disclosure.
  • FIG2 is a structural diagram of an optical module provided according to some embodiments of the present disclosure.
  • FIG3 is a schematic diagram of the structure of an optical module provided according to some embodiments of the present disclosure.
  • FIG4 is a partial exploded schematic diagram of an optical module provided according to some embodiments of the present disclosure.
  • FIG5 is a schematic diagram of assembling a circuit board, a lens assembly, and an optical fiber bracket in an optical module according to some embodiments of the present disclosure
  • FIG6 is a schematic diagram of an assembly structure of a lens assembly and an optical fiber support in an optical module according to some embodiments of the present disclosure
  • FIG7 is an exploded schematic diagram of a lens assembly and an optical fiber bracket in an optical module according to some embodiments of the present disclosure
  • FIG8 is a first structural diagram of a lens assembly in an optical module according to some embodiments of the present disclosure.
  • FIG9 is a second structural schematic diagram of a lens assembly in an optical module according to some embodiments of the present disclosure.
  • FIG10 is a cross-sectional view of a lens assembly in an optical module according to some embodiments of the present disclosure.
  • FIG11 is a schematic diagram of assembling a lens assembly, an optical fiber bracket, and an optoelectronic chip in an optical module according to some embodiments of the present disclosure
  • FIG12 is a first structural schematic diagram of an optical fiber support in an optical module according to some embodiments of the present disclosure.
  • FIG13 is a second structural schematic diagram of an optical fiber support in an optical module according to some embodiments of the present disclosure.
  • FIG14 is a third structural schematic diagram of an optical fiber support in an optical module according to some embodiments of the present disclosure.
  • FIG15 is a second schematic diagram of an assembly structure of a lens assembly and an optical fiber support in an optical module according to some embodiments of the present disclosure
  • FIG16 is an enlarged schematic diagram of point A in FIG15 ;
  • FIG17 is an assembly cross-sectional view of a lens assembly and an optical fiber support in an optical module according to some embodiments of the present disclosure
  • FIG18 is a top view of an assembly of a lens assembly and an optical fiber support in an optical module according to some embodiments of the present disclosure
  • FIG19 is a schematic diagram of an emission light path of an optical module provided according to some embodiments of the present disclosure.
  • FIG20 is a schematic diagram of a receiving optical path of an optical module provided according to some embodiments of the present disclosure.
  • FIG21 is an exploded schematic diagram of a lens assembly, an optical fiber bracket, and a chip protection cover provided according to some embodiments of the present disclosure
  • FIG22 is an exploded schematic diagram of a lens assembly and an optoelectronic chip according to some embodiments of the present disclosure
  • FIG23 is a cross-sectional schematic diagram of a lens assembly, an optical fiber bracket, and a chip protection cover provided according to some embodiments of the present disclosure
  • FIG24 is a second structural diagram of a lens assembly provided according to some embodiments of the present disclosure.
  • FIG25 is a cross-sectional view of a lens assembly according to some embodiments of the present disclosure.
  • FIG26 is a third structural diagram of a lens assembly provided according to some embodiments of the present disclosure.
  • FIG27 is a schematic diagram of an emission light path of a lens assembly according to some embodiments of the present disclosure.
  • FIG28 is a second schematic diagram of an emission light path of a lens assembly provided according to some embodiments of the present disclosure.
  • FIG29 is a first schematic diagram of an optical path design principle of a lens assembly according to some embodiments of the present disclosure.
  • FIG30 is a second schematic diagram of an optical path design principle of a lens assembly according to some embodiments of the present disclosure.
  • FIG31 is a third diagram of an optical path design principle of a lens assembly provided according to some embodiments of the present disclosure.
  • FIG32 is a second cross-sectional view of a lens assembly provided according to some embodiments of the present disclosure.
  • FIG33 is a first schematic diagram of a receiving optical path of a lens assembly according to some embodiments of the present disclosure.
  • FIG34 is a second schematic diagram of a receiving optical path of a lens assembly provided according to some embodiments of the present disclosure.
  • FIG35 is a third schematic diagram of a receiving optical path of a lens assembly provided according to some embodiments of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used to indicate that two or more components are in direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other, but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited to the contents of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and both include the following combinations of A, B, and C: A only, B only, C only, the combination of A and B, the combination of A and C, the combination of B and C, and the combination of A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • optical communication technology in order to establish information transmission between information processing devices, it is necessary to load information onto light and use the propagation of light to achieve information transmission.
  • the light loaded with information is an optical signal.
  • the signals that information processing equipment can recognize and process are electrical signals.
  • Information processing equipment usually includes optical network units (ONUs), gateways, routers, switches, mobile phones, computers, servers, tablets, televisions, etc.
  • information transmission equipment usually includes optical fibers and optical waveguides.
  • the optical module can realize the mutual conversion between optical signals and electrical signals between information processing equipment and information transmission equipment.
  • at least one of the optical signal input end or the optical signal output end of the optical module is connected to an optical fiber, and at least one of the electrical signal input end or the electrical signal output end of the optical module is connected to an optical network terminal;
  • the first optical signal from the optical fiber is transmitted to the optical module, and the optical module converts the first optical signal into a first electrical signal, and transmits the first electrical signal to the optical network terminal;
  • the second electrical signal from the optical network terminal is transmitted to the optical module, and the optical module converts the second electrical signal into a second optical signal, and transmits the second optical signal to the optical fiber.
  • the information processing device directly connected to the optical module is called the upper computer of the optical module.
  • the optical signal input end or the optical signal output end of the optical module can be called an optical port
  • the electrical signal input end or the electrical signal output end of the optical module can be called an electrical port.
  • FIG1 is a partial structural diagram of an optical communication system according to some embodiments.
  • the optical communication system mainly includes a remote information processing device 1000 , a local information processing device 2000 , a host computer 100 , an optical module 200 , an optical fiber 101 and a network cable 103 .
  • One end of the optical fiber 101 extends toward the remote information processing device 1000, and the other end of the optical fiber 101 is connected to the optical module 200 through the optical port of the optical module 200.
  • the optical signal can be totally reflected in the optical fiber 101, and the propagation of the optical signal in the total reflection direction can almost maintain the original optical power.
  • the optical signal undergoes multiple total reflections in the optical fiber 101 to transmit the optical signal from the remote information processing device 1000 to the optical module 200, or to transmit the optical signal from the optical module 200 to the remote information processing device 1000, thereby realizing long-distance, low-power loss information transmission.
  • the optical communication system may include one or more optical fibers 101, and the optical fibers 101 are detachably connected or fixedly connected to the optical module 200.
  • the host computer 100 is configured to provide data signals to the optical module 200, receive data signals from the optical module 200, or monitor or control the working state of the optical module 200.
  • the host computer 100 includes a substantially rectangular housing and an optical module interface 102 disposed on the housing.
  • the optical module interface 102 is configured to connect to the optical module 200 so that the host computer 100 and the optical module 200 establish a unidirectional or bidirectional electrical signal connection.
  • the host computer 100 also includes an external electrical interface, which can be connected to an electrical signal network.
  • the external electrical interface includes a Universal Serial Bus (USB) interface or a network cable interface 104, which is configured to be connected to a network cable 103 so that the host computer 100 establishes a unidirectional or bidirectional electrical signal connection with the network cable 103.
  • USB Universal Serial Bus
  • One end of the network cable 103 is connected to the local information processing device 2000, and the other end of the network cable 103 is connected to the host computer 100, so as to establish an electrical signal connection between the local information processing device 2000 and the host computer 100 through the network cable 103.
  • the third electrical signal sent by the local information processing device 2000 is transmitted to the host computer 100 through the network cable 103, and the host computer 100 generates a second electrical signal according to the third electrical signal.
  • the second electrical signal from the host computer 100 is transmitted to the optical module 200, and the optical module 200 converts the second electrical signal into a second optical signal, and transmits the second optical signal to the optical fiber 101, and the second optical signal is transmitted to the remote server 1000 in the optical fiber 101.
  • the first optical signal from the remote information processing device 1000 is transmitted through the optical fiber 101, and the first optical signal from the optical fiber 101 is transmitted to the optical module 200, and the optical module 200 converts the first optical signal into a first electrical signal, and the optical module 200 transmits the first electrical signal to the host computer 100, and the host computer 100 generates a fourth electrical signal according to the first electrical signal, and transmits the fourth electrical signal to the local information processing device 2000.
  • the optical module is a tool for realizing the mutual conversion between optical signals and electrical signals. During the conversion process between the optical signals and electrical signals, the information does not change, but the encoding and decoding methods of the information can change.
  • the host computer 100 also includes an optical line terminal (OLT), an optical network device (ONT), or a data center server.
  • OLT optical line terminal
  • ONT optical network device
  • data center server a data center server
  • FIG2 is a partial structural diagram of a host computer according to some embodiments.
  • the host computer 100 also includes a PCB circuit board 105 arranged in the housing, a cage 106 arranged on the surface of the PCB circuit board 105, a heat sink 107 arranged on the cage 106, and an electrical connector arranged inside the cage 106.
  • the electrical connector is configured to access the electrical port of the optical module 200; the heat sink 107 has a protruding structure such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the cage 106 of the host computer 100, and the cage 106 fixes the optical module 200.
  • the heat generated by the optical module 200 is transferred to the cage 106 and then diffused through the heat sink 107.
  • the electrical port of the optical module 200 is connected to the electrical connector inside the cage 106, so that the optical module 200 establishes a bidirectional electrical signal connection with the host computer 100.
  • the optical port of the optical module 200 is connected to the optical fiber 101, so that the optical module 200 establishes a bidirectional optical signal connection with the optical fiber 101.
  • Fig. 3 is a structural diagram of an optical module according to some embodiments
  • Fig. 4 is an exploded diagram of an optical module according to some embodiments.
  • the optical module 200 includes a shell, a circuit board 300 disposed in the shell, and an optical component.
  • the shell comprises an upper shell 201 and a lower shell 202 .
  • the upper shell 201 covers the lower shell 202 to form the above shell with two openings.
  • the outer contour of the shell is generally a square body.
  • the lower shell 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and arranged perpendicular to the bottom plate; the upper shell 201 includes a cover plate, which is covered on the two lower side plates of the lower shell 202 to form the above-mentioned shell.
  • the lower shell 202 includes a bottom plate and two lower side plates located on both sides of the bottom plate and arranged perpendicularly to the bottom plate;
  • the upper shell 201 includes a cover plate and two upper side plates located on both sides of the cover plate and arranged perpendicularly to the cover plate, and the two upper side plates are combined with the two lower side plates to achieve the upper shell 201 covering the lower shell 202.
  • the direction of the connection line of the two openings 204 and 205 may be consistent with the length direction of the optical module 200, or may be inconsistent with the length direction of the optical module 200.
  • the opening 204 is located at the end of the optical module 200 (the right end of FIG. 3 ), and the opening 205 is also located at the end of the optical module 200 (the left end of FIG. 3 ).
  • the opening 204 is located at the end of the optical module 200, and the opening 205 is located at the side of the optical module 200.
  • the opening 204 is an electrical port, and the gold finger of the circuit board 300 extends from the electrical port and is inserted into the upper computer (for example, the optical network terminal 100); the opening 205 is an optical port, which is configured to access the external optical fiber 101 so that the external optical fiber 101 is connected to the optical components inside the optical module 200.
  • the upper housing 201 and the lower housing 202 are combined to facilitate installation of components such as the circuit board 300 and the optical component into the housing, and these components are packaged and protected by the upper housing 201 and the lower housing 202.
  • components such as the circuit board 300 and the optical component
  • it is convenient to deploy the positioning components, heat dissipation components, and electromagnetic shielding components of these components, which is conducive to automated production.
  • the upper shell 201 and the lower shell 202 are generally made of metal materials, which is conducive to electromagnetic shielding and heat dissipation.
  • the optical module 200 further includes an unlocking component 203 located outside its housing, and the unlocking component 203 is configured to achieve a fixed connection between the optical module 200 and the host computer, or to release the fixed connection between the optical module 200 and the host computer.
  • the unlocking component 203 is located on the outer walls of the two lower side plates of the lower housing 202, and has a snap-fit component that matches the cage of the host computer (for example, the cage 106 of the optical network terminal 100).
  • the snap-fit component of the unlocking component 203 fixes the optical module 200 in the cage of the host computer;
  • the snap-fit component of the unlocking component 203 moves accordingly, thereby changing the connection relationship between the snap-fit component and the host computer, so as to release the snap-fit relationship between the optical module 200 and the host computer, so that the optical module 200 can be pulled out of the cage of the host computer.
  • the circuit board 300 includes circuit traces, electronic components and chips.
  • the electronic components and chips are connected together according to the circuit design through the circuit traces to realize the functions of power supply, electrical signal transmission and grounding.
  • the electronic components include capacitors, resistors, transistors, and metal-oxide-semiconductor field-effect transistors (MOSFET).
  • the chips include microcontroller units (MCU), laser driver chips, limiting amplifiers (limiting amplifiers), clock and data recovery (CDR) chips, power management chips, and digital signal processing (DSP) chips.
  • the circuit board 300 is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the load-bearing function. For example, the rigid circuit board can stably carry the above-mentioned electronic components and chips; when the optical component is located on the circuit board, the rigid circuit board can also provide stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • the circuit board 300 also includes a gold finger formed on the end surface thereof, and the gold finger is composed of a plurality of independent pins.
  • the circuit board 300 is inserted into the cage 106, and the gold finger is connected to the electrical connector in the cage 106.
  • the gold finger can be set only on the surface of one side of the circuit board 300 (for example, the upper surface shown in FIG. 4), or can be set on the upper and lower surfaces of the circuit board 300 to adapt to occasions where a large number of pins are required.
  • the gold finger is configured to establish an electrical connection with the host computer to realize power supply, grounding, I2C signal transmission, data signal transmission, etc.
  • flexible circuit boards are also used in some optical modules.
  • Flexible circuit boards are generally used in conjunction with rigid circuit boards to supplement rigid circuit boards.
  • a flexible circuit board can be used to connect a rigid circuit board to an optical component.
  • FIG5 is a schematic diagram of the assembly of the circuit board, lens assembly and optical fiber bracket in the optical module provided in the embodiment of the present application
  • FIG6 is a schematic diagram of the assembly structure of the lens assembly and optical fiber bracket in the optical module provided in the embodiment of the present application
  • FIG7 is a schematic diagram of the decomposition of the lens assembly and optical fiber bracket in the optical module provided in the embodiment of the present application.
  • the optical assembly includes an optoelectronic chip, a lens assembly 400, an optical fiber bracket 500 and an optical fiber array 600.
  • the optoelectronic chip is directly mounted on the circuit board 300.
  • the lens assembly 400 In order to couple light to the optical fiber array 600, the lens assembly 400 needs to be covered on the optoelectronic chip to collimate and converge the light, and then the light spot is coupled to the optical fiber of the optical fiber array 600. This requires precise fixation between the optical fiber bracket 500 and the lens assembly 400, and the optical fiber array 600 is fixed at a suitable position of the lens assembly 400 by using the support of the optical fiber bracket 500.
  • the lens assembly 400 is arranged on the circuit board 300, and is covered above the optoelectronic chip on the circuit board 300 in a cover-type manner
  • the optoelectronic chip mainly refers to the light emitting chip, the driver chip, the light receiving chip, the transimpedance amplifier chip, the limiting amplifier chip and other chips related to the photoelectric conversion function.
  • the lens assembly 400 and the circuit board 300 form a cavity that encapsulates the optoelectronic chips such as the light emitting chip and the light receiving chip.
  • the lens assembly 400 and the circuit board 300 together form a structure for encapsulating the optoelectronic chip.
  • the light emitted by the light emitting chip enters the optical fiber array 600 after being reflected by the lens assembly 400, and the light from the optical fiber array 600 enters the optical receiving chip after being reflected by the lens assembly 400.
  • the lens assembly 400 establishes a mutual optical connection between the light emitting chip and the optical fiber array.
  • the lens assembly 400 not only seals the optoelectronic chip, but also establishes an optical connection between the optoelectronic chip and the optical fiber array.
  • the lens assembly 400 can be made of polymer materials through an injection molding process.
  • the materials made of the lens assembly 400 include materials with good light transmittance such as PEI (Polyetherimide) plastic (Ultem series). Since all the light beam propagation elements in the lens assembly 400 are formed of a single piece of the same polymer material, the molding mold can be greatly reduced, thereby reducing the manufacturing cost and complexity.
  • the embodiment of the present application only needs to adjust the position of the incident light beam and the optical fiber based on the lens assembly 400 structure set above, and the installation and debugging are simple.
  • the optical fiber array 600 is optically connected to the lens assembly 400, and the other end is optically connected to the optical fiber adapter 700.
  • the optical fiber array 600 is composed of a plurality of optical fibers, which transmits light from the lens assembly 400 to the optical fiber adapter 700 to emit an optical signal to the outside; the optical fiber array 600 transmits light from the optical fiber adapter 700 to the lens assembly 400 to receive an optical signal from outside the optical module.
  • the multi-path converged light from the lens assembly 400 is incident on the multi-path optical fibers of the optical fiber array 600, and the optical structure of the lens assembly 400 is used to realize the optical connection with the optical transmitting chip; the multi-path light from the optical fiber array 600 is incident on the lens assembly 400, and the optical structure of the lens assembly 400 is used to realize the optical connection with the optical receiving chip.
  • the optical fiber array 600 and the lens assembly 400 have a good fixed structure design, which can achieve relative fixation between the optical fiber array 600 and the lens assembly 400, thereby forming a relative fixation between the lens assembly 400 and the circuit board 300, and the optical fiber array 600 and the lens assembly 400.
  • the fiber optic adapter is located at the optical interface formed by the upper shell 201 and the lower shell 202, and is a connector for connecting the optical module to the external optical fiber of the optical module; in addition, in order to connect with the external optical fiber, it is often necessary to set a matching structure at the upper shell 201, the lower shell 202, and the optical interface.
  • the fiber optic adapter generally has a standard shape and size to facilitate the insertion of an external fiber optic connector/plug, and has multiple fiber optic docking interfaces inside, including interfaces for outgoing optical signals and interfaces for incoming optical signals.
  • Common fiber optic connectors/plugs are MT-type fiber optic connectors (such as MPO (Multi-fiber Push On) fiber optic jumper connectors).
  • MPO Multi-fiber Push On
  • the optical module provided in the embodiment of the present application further includes an optical fiber bracket 500, which is fixedly connected to the lens assembly 400, and the optical fiber of the optical fiber array 600 is fixed inside the optical fiber bracket 500.
  • the optical fiber includes a core layer, a cladding layer and a protective layer, wherein the protective layer is wrapped in the cladding layer, the cladding layer is wrapped in the core layer, and the optical signal is transmitted in the core layer.
  • Fig. 8 is a schematic diagram of the structure of the lens assembly in the optical module provided in the embodiment of the present application
  • Fig. 9 is a schematic diagram of the structure of the lens assembly in the optical module provided in the embodiment of the present application.
  • the lens assembly 400 includes a limiting wall 401, a first side wall 409 and a second side wall 4010, the limiting wall 401 faces the optical fiber bracket 500, the first side wall 409 and the second side wall 4010 are arranged opposite to each other, and the two ends of the limiting wall 401 are connected to the first side wall 409 and the second side wall 4010 respectively.
  • a positioning post 402 is provided on the limiting wall 401, and the positioning post 402 extends from the limiting wall 401 toward the optical fiber bracket 500 to position the optical fiber bracket 500.
  • the positioning post 402 on the lens assembly 400 is a circular positioning post.
  • a groove 403 is provided on the limiting wall 401 of the lens assembly 400, and the side wall of the groove 403 is parallel to the limiting wall 401, and the side wall of the groove 403 is recessed in the limiting wall 401; a first lens 404 is provided on the side wall of the groove 403, and the first lens 404 is connected to the interior of the lens assembly 400, and the first lens 404 is used to convert the light reflected from the inside of the lens assembly 400 into a convergent light beam, and the convergent light beam is coupled to the optical fiber array 600 fixed by the optical fiber bracket 500, so as to converge the multi-channel convergent light from the lens assembly 400 into the multi-channel optical fiber of the optical fiber array 600, so as to realize light emission; similarly, the first lens 404 is also used to converge the light from the multi-channel optical fiber of the optical fiber array 600 to the lens assembly 400, and transmit it to the optical receiving chip after reflection from the lens assembly 400, so as to realize light reception.
  • two positioning posts 402 are disposed on the limiting wall 401 , and the two positioning posts 402 are located on both sides of the groove 403 to ensure the positioning connection between the lens assembly 400 and the optical fiber bracket 500 .
  • the lens assembly 400 further includes a first support arm 410 and a second support arm 420.
  • the first support arm 410 and the second support arm 420 are arranged opposite to each other, and there is a gap between the first support arm 410 and the second support arm 420, and two positioning posts 402 are located in the gap.
  • the first support arm 410 extends from the limiting wall 401 toward the direction of the optical fiber bracket 500, and the outer side wall of the first support arm 410 is flush with the second side wall 4010;
  • the second support arm 420 extends from the limiting wall 401 toward the direction of the optical fiber bracket 500, and the outer side wall of the second support arm 420 is flush with the first side wall 409.
  • Fig. 10 is a cross-sectional view of the lens assembly in the optical module provided by the embodiment of the present application.
  • a first support platform 4101 is provided at one end of the first support arm 410 facing the optical fiber bracket 500, and the first support platform 4101 extends from the bottom surface of the first support arm 410 toward the circuit board 300, and the thickness dimension of the first support arm 410 in the vertical direction is smaller than the thickness dimension of the lens assembly 400 in the vertical direction, and the thickness dimension of the first support platform 4101 in the vertical direction is h1, so that the first support platform 4101 is fixed on the surface of the circuit board 300, and there is a gap between the bottom surface of the first support arm 410 and the surface of the circuit board 300.
  • a second support platform 4201 is provided at one end of the second support arm 420 facing the optical fiber bracket 500, and the second support platform 4201 extends from the bottom surface of the second support arm 420 toward the circuit board 300.
  • the thickness dimension of the second support arm 420 in the up and down direction is smaller than the thickness dimension of the lens assembly 400 in the up and down direction.
  • the thickness dimension of the second support platform 4201 in the up and down direction is h1. In this way, the second support platform 4201 is fixed on the surface of the circuit board 300, and there is a gap between the bottom surface of the second support arm 420 and the surface of the circuit board 300.
  • a first glue dispensing groove 4011 is provided at the connection between the limiting wall 401 and the first side wall 409, the side wall of the first glue dispensing groove 4011 is recessed in the limiting wall 401 and the first side wall 409, the top surface of the first glue dispensing groove 4011 is provided with an opening, and the bottom surface of the first glue dispensing groove 4011 is flush with the top surface of the second support arm 420;
  • a second glue dispensing groove 4012 is provided at the connection between the limiting wall 401 and the second side wall 4010, the side wall of the second glue dispensing groove 4012 is recessed in the limiting wall 401 and the second side wall 4010, the top surface of the second glue dispensing groove 4012 is provided with an opening, and the bottom surface of the second glue dispensing groove 4012 is flush with the top surface of the first support arm 410.
  • the glue spots for fixing the lens assembly 400 and the optical fiber bracket 500 are in the first glue spot groove 4011 and the second glue spot groove 4012, so as to realize the fixed connection between the lens assembly 400 and the optical fiber bracket 500 by glue.
  • the optoelectronic chip is disposed on the circuit board 300.
  • the lens assembly 400 can also cover the optoelectronic chip on the circuit board 300 .
  • a cavity 406 is provided on the side of the lens assembly 400 facing the circuit board 300 .
  • the cavity 406 is provided with an opening on the side of the circuit board 300 .
  • the optoelectronic chip is provided in the space formed by the cavity 406 and the circuit board 300 .
  • the inner surface of the lens assembly 400 is provided with a second lens 407 and a third lens 408, and the outer surface thereof is provided with a reflector 405, and the reflective surface 4051 of the reflector 405 is located above the second lens 407 and the third lens 408.
  • the second lens 407 is an emitting lens, which is used to convert the light beam emitted by the light emitting chip on the circuit board 300 into a collimated light beam.
  • the collimated light beam is reflected by the reflective surface 4051 and then emitted into the first lens 404, and then the light beam is converged and coupled to the optical fiber array 600 through the first lens 404.
  • the third lens 408 is a receiving lens, which is used to convert the light beam incident on the lens assembly 400 through the first lens 404 into a collimated light beam.
  • the collimated light beam is reflected by the reflective surface 4051 and then incident on the light receiving chip on the circuit board 300 .
  • FIG11 is a schematic diagram of the assembly of the lens assembly, the optical fiber bracket and the optoelectronic chip in the optical module provided in the embodiment of the present application.
  • the lens assembly 400 is pasted on the surface of the circuit board 300, and the optoelectronic chip on the circuit board 300 is arranged in the cavity 406 of the lens assembly 400.
  • the optoelectronic chip includes a light emitting chip 310, a light emitting driver chip 320, a light receiving chip 330 and a light receiving driver chip 340.
  • the light emitting chip 310 is arranged directly below the second lens 407 to facilitate the light beam emitted by the light emitting chip 310 to be emitted to the second lens 407.
  • the light emission driver chip 320 can be set on the right side of the light emission chip 310 (located in the cavity 406).
  • the light emission driver chip 320 is signal-connected to the circuit board 300 and the light emission chip 310 respectively.
  • the circuit board 300 provides an electrical signal to the light emission driver chip 320.
  • the light emission driver chip 320 outputs a driving electrical signal according to the electrical signal to drive the light emission chip 310 to emit a light beam.
  • the optical receiving chip 330 is arranged directly below the third lens 408 to facilitate the collimated light beam emitted by the third lens 408 to reach the optical receiving chip 330; the optical receiving driver chip 340 can be arranged on the left side of the optical receiving chip 330 (close to the direction of the optical fiber bracket 500), and the optical receiving driver chip 340 is signal-connected to the optical receiving chip 330, and is used to drive the optical receiving chip 330 to convert the optical signal into an electrical signal.
  • the light emitting driver chip 320 can also be arranged side by side with the light receiving driver chip 340 on the right side of the light emitting chip 310 and the light receiving chip 330, that is, the light emitting chip 310, the light emitting driver chip 320, the light receiving chip 330, and the light receiving driver chip 340 are arranged side by side on the same side.
  • the placement of the optoelectronic chip on the circuit board 300 in the cavity 406 of the lens assembly 400 is not limited to the above placement, and can be arranged accordingly according to the size of the optoelectronic chip.
  • FIG12 is a structural schematic diagram 1 of the optical fiber holder in the optical module provided in the embodiment of the present application
  • FIG13 is a structural schematic diagram 2 of the optical fiber holder in the optical module provided in the embodiment of the present application
  • FIG14 is a structural schematic diagram 3 of the optical fiber holder in the optical module provided in the embodiment of the present application.
  • a positioning hole 502 is provided on the side of the optical fiber holder 500 facing the lens assembly 400, and the positioning hole 502 is arranged opposite to the positioning post 402 on the lens assembly 400.
  • the positioning post 402 is inserted into the positioning hole 502, thereby realizing the positioning connection between the optical fiber holder 500 and the lens assembly 400 through the positioning hole 502 and the positioning post 402.
  • the optical fiber bracket 500 includes a first side surface 501 (the first side surface 501 is the side surface of the optical fiber bracket 500 facing the lens assembly 400), a second side surface 505, a third side surface 506 and a fourth side surface 512.
  • the fourth side surface 512 is arranged opposite to the first side surface 501, and the second side surface 505 and the third side surface 506 are arranged opposite to each other.
  • the two ends of the first side surface 501 are respectively connected to the second side surface 505 and the third side surface 506, and the second side surface 505 and the third side surface 506 are located between the first support arm 410 and the second support arm 420.
  • the positioning hole 502 is disposed on the first side surface 501 , and the positioning hole 502 can penetrate the first side surface 501 and the fourth side surface 512 , so that the positioning post 402 can be fully inserted into the positioning hole 502 to position the lens assembly 400 .
  • a fiber optic array 600 is fixed on the inner side of the fiber optic bracket 500. After the fiber optic bracket 500 is fixedly connected to the lens assembly 400 through the positioning column 402 and the positioning hole 502, the optical fiber coupling of the lens assembly 400 and the fiber optic array 600 is docked, and the light reflected by the lens assembly 400 is coupled to the optical fiber in the fiber optic array 600.
  • an optical fiber fixing groove 504 is provided in the optical fiber bracket 500, and an optical fiber hole is provided on the fourth side 512 of the optical fiber bracket 500, and the optical fiber hole is communicated with the optical fiber fixing groove 504, so that the optical fiber of the optical fiber array 600 is inserted into the optical fiber fixing groove 504 through the optical fiber hole; the top surface of the optical fiber fixing groove 504 is provided with an opening, through which the optical fiber fixed in the optical fiber fixing groove 504 can be seen.
  • a through hole 503 is also provided on the first side 501 of the optical fiber bracket 500, and the through hole 503 is connected to the optical fiber fixing groove 504.
  • the optical fiber of the optical fiber array 600 is inserted into the optical fiber bracket 500 through the optical fiber hole on the fourth side, and then continues to be inserted to the right so that the optical fiber is embedded in the optical fiber fixing groove 504, and then continues to be inserted to the right and comes out from the through hole 503 on the first side 501.
  • the fiber end surface of the optical fiber protrudes from the first side surface 501 .
  • glue can be injected into the optical fiber fixing groove 504 through the opening of the optical fiber fixing groove 504, and glue can also be dispensed around the optical fiber hole on the fourth side 512 to achieve a fixed connection between the optical fiber array 600 and the optical fiber bracket 500.
  • a fifth side surface 507 is provided on the second side surface 505 of the optical fiber bracket 500.
  • the fifth side surface 507 is connected to the first side surface 501 and is recessed in the second side surface 505.
  • the fifth side surface 507 is connected to the second side surface 505 via the first connecting surface 508, so that the second side surface 505 and the fifth side surface 507 form a step surface.
  • a first boss 510 is provided on the fifth side surface 507, and the first boss 510 extends outward from the fifth side surface 507.
  • the first boss 510 includes a top surface, a first surface 5101, a second surface 5102, a third surface 5103 and a fourth surface.
  • the top surface of the first boss 510 is flush with the top surface of the optical fiber bracket 500, and the first surface 5101 and the top surface of the first boss 510 are arranged opposite to each other.
  • the thickness dimension of the first surface 5101 and the top surface of the first boss 510 in the up and down direction is smaller than the thickness dimension of the optical fiber bracket 500 in the up and down direction, that is, the first surface 5101 is recessed in the bottom surface of the optical fiber bracket 500.
  • the second surface 5102 is connected to the top surface of the first boss 510 and the first surface 5101, and is disposed opposite to the fifth side surface 507, and the second surface 5102 protrudes from the second side surface 505, so that the first boss 510 protrudes from the second side surface 505.
  • the fourth surface is flush with the first side surface 501, and the third surface 5103 is disposed opposite to the fourth surface.
  • a sixth side 509 is provided on the third side 506 of the optical fiber bracket 500, and the sixth side 509 is connected to the first side 501, and the sixth side 509 is recessed in the third side 506.
  • the sixth side 509 is connected to the third side 506 through the second connecting surface 511, so that the third side 506 and the sixth side 509 form a step surface.
  • a second boss 520 is provided on the sixth side surface 509, and the second boss 520 extends outward from the sixth side surface 509.
  • the second boss 520 includes a top surface, a first surface 5201, a second surface 5202, a third surface 5203 and a fourth surface.
  • the top surface of the second boss 520 is flush with the top surface of the optical fiber bracket 500, and the first surface 5201 and the top surface of the second boss 520 are arranged opposite to each other.
  • the thickness dimension of the first surface 5201 and the top surface of the first boss 510 in the up and down direction is smaller than the thickness dimension of the optical fiber bracket 500 in the up and down direction, that is, the first surface 5201 is recessed in the bottom surface of the optical fiber bracket 500.
  • the second surface 5202 is connected to the top surface of the second boss 520 and the first surface 5201, and is disposed opposite to the sixth side surface 509, and the second surface 5202 protrudes from the third side surface 506, so that the second boss 520 protrudes from the third side surface 506.
  • the fourth surface is flush with the first side surface 501, and the third surface 5203 is disposed opposite to the fourth surface.
  • FIG15 is a second schematic diagram of the assembly structure of the lens assembly and the optical fiber holder in the optical module provided by the embodiment of the present application
  • FIG16 is an enlarged schematic diagram of A in FIG15
  • FIG17 is an assembly cross-sectional view of the lens assembly and the optical fiber holder in the optical module provided by the embodiment of the present application.
  • the first support arm 410 of the lens assembly 400 first supports the first boss 510 of the optical fiber holder 500, and the second support arm 420 supports the second boss 520 of the optical fiber holder 500, so that the optical fiber holder 500 is placed between the first support arm 410 and the second support arm 420, and the optical fiber holder 500 is supported by the first support arm 410 and the second support arm 420.
  • the top surface of the first support arm 410 is supported and connected to the first surface 5101 of the first boss 510, and the inner side wall of the first support arm 410 can be in contact and connected to the second side surface 505 of the optical fiber bracket 500;
  • the top surface of the second support arm 420 is supported and connected to the first surface 5201 of the second boss 520, and the inner side wall of the second support arm 420 can be in contact and connected to the third side surface 506 of the optical fiber bracket 500, so that the positioning column 402 on the lens assembly 400 is aligned with the positioning hole 502 on the optical fiber bracket 500.
  • the optical fiber bracket 500 is positioned with the lens assembly 400 through the positioning column 402 and the positioning hole 502.
  • the optical fiber bracket 500 is supported by the first supporting arm 410 and the second supporting arm 420 of the lens assembly 400. After the first side surface 501 of the optical fiber bracket 500 is bonded and fixed to the limiting wall 401, the optical fiber bracket 500 is suspended above the circuit board 300, and there is no supporting relationship between the optical fiber bracket 500 and the circuit board 300. That is, there is a gap between the bottom surface of the optical fiber bracket 500 and the surface of the circuit board 300, and the gap can be used for placing chips, bonding wires, etc.
  • the groove 403 of the lens assembly 400 is recessed in the limiting wall 401, and the optical fiber end face protrudes from the first side surface 501 of the optical fiber bracket 500.
  • the protruding optical fiber end face can be located in the groove 403.
  • Fig. 18 is a top view of the assembly of a lens assembly and an optical fiber holder in an optical module provided by an embodiment of the present application.
  • the lens assembly 400 and the optical fiber holder 500 are positioned and connected through the positioning column 402 and the positioning hole 502.
  • the positioning of the positioning column 402 and the positioning hole 502 is used to ensure that the optical fiber of the optical fiber array 600 falls at the position where the lens assembly 400 converges the light, and then is coupled with the optical transmitting chip and the optical receiving chip as a whole.
  • glue is applied to the first glue-application groove 4011 and the second glue-application groove 4012 of the lens assembly 400, and the first side surface 501 of the optical fiber bracket 500 is bonded and fixed to the limiting wall 401 of the lens assembly 400 by glue; glue is applied to the top surface of the first support arm 410, and the inner side wall of the first support arm 410 is bonded and fixed to the second side surface 505 of the optical fiber bracket 500 by glue; glue is applied to the top surface of the second support arm 420, and the inner side wall of the second support arm 420 is bonded and fixed to the third side surface 506 of the optical fiber bracket 500 by glue; glue is applied to the connection between the bottom surface of the lens assembly 400 and the surface of the circuit board 300, and the lens assembly 400 is bonded and fixed to the circuit board 300 by glue. In this way, the fixed connection between the lens assembly 400 and the circuit board 300 is realized, and the fixed connection between the lens assembly 400 and the optical fiber bracket 500 is realized.
  • FIG19 is a schematic diagram of the transmission optical path of the optical module provided in the embodiment of the present application
  • FIG20 is a schematic diagram of the receiving optical path of the optical module provided in the embodiment of the present application.
  • the lens assembly 400 is covered on the optoelectronic chip, and the lens assembly 400 is pasted on the surface of the circuit board 300; then the multiple optical fibers of the optical fiber array 600 are inserted into the optical fiber bracket 500 through the optical fiber hole, the optical fiber fixing groove 504 and the through hole 503 of the optical fiber bracket 500, and the optical fiber end face of the optical fiber protrudes from the first side 501 of the optical fiber bracket 500.
  • the gap size is at least the height size of the optoelectronic chip + 0.07mm, that is, the gap size h2 between the bottom surface of the optical fiber holder 500 and the top surface of the optoelectronic chip is at least 0.07mm, to ensure that the optoelectronic chip can be placed in the gap and wired.
  • the gap between the bottom surface of the optical fiber support 500 and the surface of the circuit board 300 is generally equal to the height of the optoelectronic chip + 0.15 mm.
  • the first support arm 410 on the lens assembly 400 cooperates with the first boss 510 on the optical fiber bracket 500, and the second support arm 420 cooperates with the second boss 520 to raise the optical fiber bracket 500 in the up and down directions.
  • the first support arm 410 is connected to the surface of the circuit board 300 through the first support platform 4101 at the end, and the middle bottom of the first support arm 410 is suspended, and the suspended part can be used to place optoelectronic chips, wire bonding, etc.
  • the second support arm 420 is connected to the surface of the circuit board 300 through the second support platform 4201 at the end, and the middle bottom of the second support arm 420 is suspended, and the suspended part can be used to place optoelectronic chips, wire bonding, etc.
  • the first support platform 4101 of the first support arm 410 can protrude from the fourth side 512 of the optical fiber holder 500
  • the second support platform 4201 of the second support arm 420 can protrude from the fourth side 512 of the optical fiber holder 500. If the first support platform 4101 and the second support platform 4201 are placed between the first side 501 and the fourth side 512 of the optical fiber holder 500, when the optoelectronic chip is arranged in the space below the optical fiber holder 500, the optoelectronic chip also needs to avoid the first support platform 4101 and the second support platform 4201.
  • the space below the optical fiber bracket 500, the first support arm 410 and the second support arm 420 is increased, and more optoelectronic chips, bonding wires, etc. can be arranged in the space.
  • the width dimension of the first support arm 410 in the front-to-back direction may be different from the width dimension of the second support arm 420 in the front-to-back direction. For example, if there are more optoelectronic chips under the first support arm 410 than under the second support arm 420, the width dimension of the first support arm 410 is greater than the width dimension of the second support arm 420 to better protect the optoelectronic chips under the first support arm 410.
  • the width of the first support arm 410 in the front-to-back direction may be the same as the width of the second support arm 420 in the front-to-back direction.
  • the light emitting chip 310 After the optoelectronic chip, lens assembly 400, optical fiber bracket 500 and optical fiber array 600 are assembled, the light emitting chip 310 generates a light beam driven by the light emitting driver chip 320, and the light beam is converted into a collimated light beam through the second lens 407, and the collimated light beam is emitted to the reflector 405. Reflection occurs at the reflection surface 4051, and the reflected light beam is horizontally emitted to the first lens 404, and the light beam is converged and coupled into the optical fiber of the optical fiber array 600 through the first lens 404, thereby realizing light emission.
  • the optical fiber of the optical fiber array 600 projects the light beam transmitted from the external optical fiber to the first lens 404, and projects the light beam to the reflector 405 via the first lens 404, where it is reflected at the reflecting surface 4051.
  • the reflected light beam projects to the third lens 408, where it is converted into a convergent light beam, and then converges the convergent light beam to the optical receiving chip 330, which converts the optical signal into an electrical signal, thereby realizing light reception.
  • the optical module includes a circuit board, an optoelectronic chip arranged on the circuit board, a lens assembly covered on the optoelectronic chip, an optical fiber bracket and an optical fiber array
  • the lens assembly includes a limiting wall, a first side wall and a second side wall, the limiting wall faces the optical fiber bracket, a positioning column and a groove are arranged on the limiting wall, the groove is recessed in the limiting wall, and a first lens is arranged in the groove, and the first lens is connected to the inner cavity of the lens assembly;
  • the lens assembly also includes a first support arm and a second support arm, the first support arm and the second support arm extend from the limiting wall toward the direction of the optical fiber bracket, and there is a gap between the first support arm and the second support arm;
  • the optical fiber bracket includes a first side surface, a second side surface and a third side surface The first side surface faces the lens assembly, and the two ends of the first side surface are respectively connected to the second side surface and the third side surface
  • the optical fiber holder is positioned by means of a positioning column, a positioning hole and a lens assembly, and the first support arm and the second support arm of the lens assembly support and fix the optical fiber holder.
  • the optical fiber is fixed at a suitable position of the lens assembly by means of the support of the optical fiber holder, thereby improving the stability of the optical fiber holder and the lens assembly, so that the optical fiber fixed in the optical fiber holder will not be offset, ensuring that the light spot reflected by the lens assembly can reach the center of the optical fiber according to the theoretical value, thereby improving the coupling efficiency of the optical signal;
  • the first support arm and the second support arm of the lens assembly allow the optical fiber holder to be suspended, so that optoelectronic chips, signal lines, etc. can be placed on the circuit board below the optical fiber holder, thereby increasing the layout space on the circuit board.
  • FIG. 21 is a schematic diagram of an exploded view of a lens assembly 900 , an optical fiber bracket, and a chip protection cover 900 b according to some embodiments.
  • the optical fibers fixed inside the optical fiber bracket include a first optical fiber array 900a1 and a second optical fiber array 900a2; the first optical fiber array 900a1 and the second optical fiber array 900a2 are arranged side by side along the width direction of the circuit board.
  • the first optical fiber array 900a1 and the second optical fiber array 900a2 are arranged side by side, so that the optical transmitting end and the optical receiving end can transmit signals through unused optical fibers, thereby avoiding crosstalk between the optical transmitting signal and the optical receiving signal; at the same time, the first optical fiber array 900a1 and the second optical fiber array 900a2 are arranged side by side along the width direction of the circuit board, which can make full use of the space in the width direction of the circuit board and optimize the placement of the optical fiber array.
  • the first optical fiber array 900a1 and the second optical fiber array 900a2 are respectively composed of a plurality of optical fibers, which transmit the light from the lens assembly 900 to the optical fiber adapter to realize the external emission of optical signals, and transmit the light from the optical fiber adapter to the lens assembly 900 to realize the reception of optical signals from the outside of the optical module.
  • the first optical fiber array 900a1 and the second optical fiber array 900a2 respectively have a good optical coupling structure design with the lens assembly 900, which can realize the relative fixation between the optical fiber array and the lens assembly 900.
  • the first optical fiber array 900a1 is a transmitting optical fiber array
  • the second optical fiber array 900a2 is a receiving optical fiber array.
  • the light emitted by the optical emitting chip enters the first optical fiber array 900a1 after being transmitted through the lens assembly 900, and the light from the second optical fiber array 900a2 enters the optical receiving chip after being transmitted through the lens assembly 900. Therefore, the lens assembly 900 establishes a mutual optical connection between the optical emitting chip and the first optical fiber array 900a1, and a mutual optical connection between the optical receiving chip and the second optical fiber array 900a2.
  • the surface of the lens assembly 900 is respectively formed with a first inclined surface 901 , a third inclined surface 903 , and a fifth inclined surface 905 ; the first inclined surface 901 , the third inclined surface 903 , and the fifth inclined surface 905 are arranged obliquely relative to the surface of the circuit board.
  • the first inclined plane 901 has a first preset angle relative to the surface of the circuit board
  • the third inclined plane 903 has a third preset angle relative to the surface of the circuit board
  • the fifth inclined plane 905 has a fifth preset angle relative to the surface of the circuit board;
  • the first inclined plane 901, the third inclined plane 903, and the fifth inclined plane 905 exhibit different refraction or reflection characteristics to light, and the propagation direction of the optical signal is changed by the mutual cooperation of different preset angles through the inclined setting of each inclined plane, so as to realize the transmission of the optical signal according to a certain optical path design.
  • the third bevel 903 and the fifth bevel 905 are arranged side by side along the width direction of the circuit board, and the third preset angle is different from the fifth preset angle.
  • the third bevel 903 and the fifth bevel 905 have a certain height difference in height.
  • the surface height of the third bevel 903 is higher than the surface height of the fifth bevel 905, that is, the third bevel 903 and the fifth bevel 905 are misaligned along the width direction of the circuit board, presenting a misaligned arrangement.
  • FIG22 is a schematic diagram of a lens assembly and an optoelectronic chip according to some embodiments.
  • the surface of the lens assembly is respectively formed with a first inclined surface 901, a third inclined surface 903, a fifth inclined surface 905, a first step surface 911, and a second step surface 912;
  • the lens assembly 900 is covered on the optoelectronic chip 900c, and the optoelectronic chip 900c includes a first optoelectronic chip, a second optoelectronic chip, a third optoelectronic chip, a fourth optoelectronic chip, and a fifth optoelectronic chip.
  • the first optoelectronic chip is a first driver chip 900c1
  • the second optoelectronic chip is a light emitting chip 900c2
  • the third optoelectronic chip is an optical monitoring chip 900c3
  • the fourth optoelectronic chip is a second driver chip 900c4
  • the fifth optoelectronic chip is an optical receiving chip 900c5.
  • the optical monitoring chip 900c3 is an optical power detector for monitoring the optical emission power of the optical emitting chip 900c2
  • the first driver chip 900c1 is an emission driver chip
  • the second driver chip 900c4 is a receiving driver chip.
  • the circuit board 300 outputs a modulation current and a bias current to the first driver chip 900c1 through the gold finger. After receiving the modulation current, the first driver chip 900c1 generates a high-frequency signal, and then transmits the high-frequency signal and the bias current to the emission driver chip. The emission driver chip generates a light beam under the action of the bias current, and then modulates the high-frequency signal into the light beam, thereby generating an optical signal.
  • One end of the second driver chip 900c4 is electrically connected to the gold finger on the surface of the circuit board through a high-frequency signal line, and the other end is electrically connected to the light receiving chip 900c5.
  • the circuit board 300 provides an electrical signal to the second driver chip 900c4 through the gold finger.
  • the second driver chip 900c4 After receiving the electrical signal, the second driver chip 900c4 generates a light receiving drive signal and transmits the light receiving drive signal to the light receiving chip 900c5. Under the action of the light receiving drive signal, the light receiving chip 900c5 converts the electrical signal transmitted by the circuit board 300 into an optical signal.
  • the optical monitoring chip 900c3 and the first driver chip 900c1 are respectively arranged on both sides of the optical emission chip 900c2, and the first driver chip 900c1 is arranged on the side close to the gold finger of the circuit board.
  • This arrangement is beneficial to the routing of the high-frequency signal line between the first driver chip 900c1 and the gold finger of the circuit board, reduces the difficulty of routing, shortens the length of routing, and thus increases the high-frequency signal transmission performance;
  • the optical monitoring chip 900c3 is arranged on the side close to the optical fiber bracket, that is, the side close to the optical port; in this way, the position of the first driver chip 900c1 will not be occupied, so that there is enough space between the gold finger and the optical emission chip 900c2 to place the first driver chip 900c1, as well as the routing between the first driver chip 900c1 and the gold finger.
  • optical monitoring chip 900c3 is arranged on one side of the optical emitting chip 900c2, there is enough space between the gold finger and the optical emitting chip 900c2 to place the first driver chip 900c1 and the wiring between the first driver chip 900c1 and the gold finger, so it is more suitable for the transmission of multi-channel optical signals.
  • the vertical height from the first optical fiber array 900a1 to the surface of the circuit board 300 is relatively high, that is, the vertical height from the optical port to the surface of the circuit board 300 is relatively high, and the vertical height from the first optical fiber array 900a1 to the surface of the circuit board 300 is greater than the vertical height from the first inclined surface 901 to the surface of the circuit board 300, so that a portion of the optical signal emitted by the optical emitting chip 900c2 can be incident on the optical monitoring chip 900c3, and a portion of the optical signal can be incident on the first optical fiber array 900a1; therefore, when the optical monitoring chip 900c3 and the first driver chip 900c1 are respectively arranged on both sides of the optical emitting chip 900c2, there are certain restrictive requirements on the optical port height.
  • the vertical height from the first optical fiber array 900a1 to the surface of the circuit board 300 can
  • the light port height is relatively low, and it is not suitable to respectively arrange the light monitoring chip 900c3 and the first driving chip 900c1 on the two sides of the light emitting chip 900c2.
  • the second step surface 912 is used to support the chip protection cover 900b; the first step surface 911 is connected to the fifth inclined surface 905. Since the inclination angle of the fifth inclined surface 905 is relatively large, if the first step surface 911 is not connected to the fifth inclined surface 905, the extension length of the fifth inclined surface 905 will be longer, thereby causing the size of the lens assembly to be larger; therefore, the connection between the first step surface 911 and the fifth inclined surface 905 is beneficial to reducing the size of the lens assembly.
  • FIG23 is a cross-sectional schematic diagram of a lens assembly, an optical fiber bracket, and a chip protection cover according to some embodiments.
  • the lens assembly 900 is covered on the optoelectronic chip 900c; in some embodiments, the first driver chip and the second driver chip are exposed relative to the lens assembly 900, so a chip protection cover 900b is provided to protect the exposed chips; the first end of the chip protection cover 900b is connected to the surface of the circuit board 300, and the second end is connected to the end of the lens assembly 900.
  • the second end has an opening, which is inserted from the opening to the end of the lens assembly 900, and then connected to the end of the lens assembly 900; the first end has an avoidance gap to avoid the routing between the first driver chip 900c1 and the gold finger.
  • the width of the chip protection cover 900b is greater than the sum of the widths of the first driver chip and the second driver chip to protect the first driver chip and the second driver chip.
  • the surface of the lens assembly 900 facing the optical fiber support is provided with a first lens array and a second lens array.
  • the first lens array is coupled to the first optical fiber array 900a1, and the second lens array is coupled to the second optical fiber array 900a2.
  • the first lens array includes a plurality of emitting convergent lenses
  • the second lens array includes a plurality of receiving collimating lenses.
  • the optical signal emitted by the optical emitting chip 900c2 enters the first lens array after the transmission direction is turned, and then converged by the converging lens in the first lens array, converged to the optical fiber end face and enters the first optical fiber array 900a1, thereby improving the optical coupling efficiency.
  • the second lens array receives the optical signal from the second optical fiber array 900a2 , and then the collimating lens in the second lens array collimates the optical signal to obtain parallel light, which enters the lens assembly 900 .
  • Fig. 24 is a second structural diagram of a lens assembly according to some embodiments. As shown in Fig. 24, the bottom end of the lens assembly 900 is provided with a third lens array 908 and a fourth lens array 909. In some embodiments, the third lens array 908 includes a plurality of emitting collimating lenses, and the fourth lens array 909 includes a plurality of receiving converging lenses.
  • the third lens array 908 and the fourth lens array 909 are staggered along the width direction of the circuit board, and correspondingly, the optical emitting chip 900c2 and the optical receiving chip 900c5 are also staggered along the width direction of the circuit board, thereby avoiding crosstalk between the transmitting optical path and the receiving optical path; due to the optical path design, the third lens array 908 is relatively far away from the fourth lens array 909. If the fourth lens array 909 is set to be flush with the third lens array 908, the optical path of the receiving optical path will inevitably be increased. Therefore, when the third lens array 908 and the fourth lens array 909 are staggered along the width direction of the circuit board, the optical path of the receiving optical path can be shortened, which is beneficial to the transmission of the received optical signal.
  • the third lens array 908 is disposed between the light emitting chip 900 c 2 and the first inclined surface 901 , and the third lens array 908 is disposed on a projection area of the first inclined surface 901 on the bottom surface of the lens assembly 900 .
  • the fourth lens array 909 is disposed between the light receiving chip 900 c 5 and the fifth inclined surface 905 , and the fourth lens array 909 is disposed on a projection area of the fifth inclined surface 905 on the bottom surface of the lens assembly 900 .
  • the optical signal emitted by the light emitting chip 900c2 is divergent light
  • the divergent light is converted into parallel light by the third lens array 908 .
  • the fourth lens array 909 converts the parallel light from the fifth inclined surface 905 into convergent light, and then transmits it to the light receiving chip 900c5, thereby improving the light coupling efficiency.
  • FIG25 is a cross-sectional view of a lens assembly according to some embodiments.
  • the surface of the lens assembly 900 is respectively formed with a first inclined plane 901, a second inclined plane 902, a third inclined plane 903, a fourth inclined plane 904, and a fifth inclined plane 905.
  • These inclined planes exhibit different refraction or reflection characteristics to light.
  • the first inclined plane 901 exhibits refraction and reflection to light
  • the second inclined plane 902 exhibits refraction to light
  • the third inclined plane 903 exhibits total reflection to light
  • the fourth inclined plane 904 exhibits refraction to light
  • the fifth inclined plane 905 exhibits total reflection to light.
  • the first inclined plane 901 is a splitting plane; the second inclined plane 902 is a refractive plane; the third inclined plane 903 is a light path turning plane, at which the light path is turned to the first optical fiber array 900a1; the fourth inclined plane 904 is a refractive plane, which allows the second split light to pass through and be incident on the optical monitoring chip 900c3; the fifth inclined plane 905 is a light path turning plane, at which the light path is turned to the optical receiving chip 900c5.
  • the first bevel 901, the second bevel 902, the third bevel 903, the fourth bevel 904 and the fifth bevel 905 are all surfaces on the lens assembly 900, that is, the materials made of these bevels are the same as the materials made of the lens assembly 900; these bevels have different preset angles relative to the surface of the circuit board, and these bevels have different degrees of inclination.
  • the transmission direction of light is changed by the mutual cooperation between the bevels, thereby transmitting the optical signal emitted by the optical emitting chip 900c2, and receiving the optical signal transmitted from the outside through the optical receiving chip 900c5.
  • the first bevel 901 , the second bevel 902 , the third bevel 903 , the fourth bevel 904 and the fifth bevel 905 are all surfaces on the lens assembly 900 , thereby avoiding the need to attach an additional reflector or filter, thereby avoiding the problem of the reflector or filter falling off.
  • the first inclined plane 901 divides the collimated light into the first split light and the second split light according to a certain splitting ratio; since the material properties of the first inclined plane 901 are determined and the size of the first preset angle ⁇ 1 is determined, the splitting ratio of the first inclined plane 901 is relatively stable. In some embodiments, the splitting ratio of the first inclined plane 901 is a fixed value.
  • light splitting is achieved through filters and reflective surfaces.
  • the light splitting ratios shown by these light splitting methods are related to the laser spot size, the light splitting point size, etc., so the light splitting ratios may fluctuate to a certain extent.
  • FIG26 is a structural diagram of a lens assembly according to some embodiments.
  • the first inclined surface 901 forms a first preset angle ⁇ 1 with the horizontal axis
  • the horizontal axis is the axis in the length direction of the circuit board 300.
  • the angle between the axes in the degree direction is a first preset angle ⁇ 1.
  • the included angle between the second inclined surface 902 and the axis of the circuit board 300 in the length direction is a second preset angle ⁇ 2.
  • the included angle between the third inclined surface 903 and the axis of the circuit board 300 in the length direction is a third preset angle ⁇ 3.
  • the included angle between the fourth inclined surface 904 and the axis of the circuit board 300 in the length direction is a fourth preset angle ⁇ 4.
  • the first preset angle ⁇ 1 there is a preset relationship among the first preset angle ⁇ 1, the second preset angle ⁇ 2, and the third preset angle ⁇ 3, so that a portion of the emitted light signal is transmitted to the first optical fiber array 900a1.
  • the first preset angle ⁇ 1 there is a preset relationship between the first preset angle ⁇ 1 and the fourth preset angle ⁇ 4, so that a portion of the transmitted light signal is transmitted to the light receiving chip 900c5.
  • inclined surfaces are formed on the surface of the lens assembly 900, and each inclined surface has a different inclination angle. Since each inclined surface exhibits different refraction or reflection characteristics to light, the different inclination angles of the inclined surfaces cooperate with each other to change the transmission direction of the optical signal, so that a portion of the proportional optical signal emitted by the optical emitting chip is transmitted to the optical monitoring chip 900c3, and a portion of the proportional optical signal is transmitted to the first optical fiber array 900a1 and emitted.
  • FIG27 is a schematic diagram of an emission light path of a lens assembly according to some embodiments
  • FIG28 is a schematic diagram of an emission light path of a lens assembly according to some embodiments.
  • the optical signal emitted by the optical emission chip 900c2 is divergent light, and the divergent light is converted into collimated light by the collimating lens in the third lens array 908, and the collimated light is transmitted to the first inclined surface 901, and the collimated light is refracted and reflected at the first inclined surface 901, so that the collimated light is divided into a first split light and a second split light at the first inclined surface 901, and the first split light is transmitted to the second inclined surface 902, and the first split light is refracted at the second inclined surface 902, so that the first split light is transmitted to the third inclined surface 903, and the first split light is totally reflected at the third inclined surface 903, so that the first split light is transmitted to the first lens array, and after being converged by the convergent lens in the first lens
  • the following method can also be adopted, for example, the second inclined surface 902 is eliminated, and a part of the first lens array is integrally formed above the third inclined surface 903, so that the surface of the newly formed part of the first lens array forms the third inclined surface 903, then, the first split light coming out of the first inclined surface 901 first passes through the air, and then directly reaches the third inclined surface 903 to be reflected, and finally enters the first lens array and the first optical fiber array 900a1, that is, the optical path of the first split light is changed from the inclined direction to the horizontal direction and finally enters the first optical fiber array 900a1.
  • the method of Figures 27 and 28 is adopted. From an overall perspective, the first bevel 901, the second bevel 902 and the third bevel 903 on the surface of the lens assembly 900 are all exposed in the same direction, that is, the physical structure of the lens assembly 900 is located on the same side.
  • This setting facilitates the manufacture of the lens assembly 900.
  • the lens assembly 900 is manufactured by a compression molding process, which facilitates the manufacture of the mold and the pressurization of the molten optical glass material placed in the mold, thereby improving the quality of the lens assembly 900 and improving the production efficiency of the lens assembly 900.
  • the second split light is reflected onto the fourth inclined surface 904, and the second split light is refracted on the surface of the fourth inclined surface 904, so that the second split light is transmitted to the optical monitoring chip 900c3.
  • a converging lens is disposed on the fourth inclined surface 904.
  • the second split light is converted from parallel light to convergent light after passing through the converging lens, and is incident on the optical monitoring chip 900c3 in the form of convergent light.
  • no converging lens may be provided on the fourth inclined surface 904, and the second split light is incident on the optical monitoring chip 900c3 in the form of parallel light.
  • the incident surface area on the optical monitoring chip 900c3 is larger than the beam diameter when the second split light is incident in the form of parallel light.
  • the transmission direction of the second split light does not change when it is refracted on the surface of the fourth inclined surface 904, that is, the second split light is transmitted out on the surface of the fourth inclined surface 904 and transmitted into the light monitoring chip 900c3.
  • the transmission direction of the second split light changes when refracted on the surface of the fourth inclined surface 904, thereby transmitting the second split light to the light monitoring chip 900c3.
  • the second split light after the second split light is totally reflected at the position of the third bevel 903, it is directly transmitted to the first optical fiber array 900a through the internal medium of the lens assembly, thereby preventing the second split light from undergoing other forms of reflection between the third bevel 903 and the first optical fiber array 900a, and further preventing the light from returning to the optical emission chip 900c2, thereby ensuring the quality of the signal emitted by the optical emission chip 900c2; at the same time, the emission light power of the second split light can also be guaranteed.
  • the optical signal after total reflection, propagates in the air and enters the internal medium of the lens assembly, and then is transmitted to the first optical fiber array 900a through the internal medium of the lens assembly. In this case, the optical signal will be reflected at the interface between the air and the medium and reflected back to the optical emitting chip 900c2, thereby affecting the quality of the signal emitted by the optical emitting chip 900c2.
  • Fig. 29 is a schematic diagram of an optical path design of a lens assembly according to some embodiments. As shown in Fig. 29, in some embodiments, by controlling the size of the first preset angle ⁇ 1, the transmission direction of the reflected light can be controlled, so that the reflected light is incident on the light monitoring chip.
  • the first preset angle ⁇ 1 ranges from 10° to 38°; if the first preset angle ⁇ 1 is too small, the emission light path of the optical signal emitted by the optical emission chip and the reflection light path on the first inclined surface 901 cannot be separated, which easily causes crosstalk of the optical path; if the first preset angle ⁇ 1 is too large, the optical signal emitted by the optical emission chip will be totally reflected on the surface of the first inclined surface 901, and the optical signal will all enter the optical monitoring chip 900c3, and light splitting cannot be achieved.
  • the transmission direction of the second split light does not change when it is refracted on the surface of the fourth inclined surface 904, that is, the second split light is transmitted out on the surface of the fourth inclined surface 904 and transmitted into the light monitoring chip 900c3.
  • the intersection point between the light signal emitted by the light emitting chip and the first bevel 901 is determined, that is, the intersection point between the collimated light passing through the collimating lens and the first bevel 901 is determined, and the transmission direction of the reflected light on the first bevel 901 is determined;
  • the fourth preset angle ⁇ 4 is determined, the intersection point between the reflected light on the first bevel 901 and the fourth preset angle ⁇ 4 is determined, and the vertical distance from the intersection point between the light signal emitted by the light emitting chip and the first bevel 901 to the intersection point between the reflected light and the fourth preset angle ⁇ 4 is determined, and the vertical distance is referred to as H1.
  • the vertical distance from the intersection of the reflected light and the fourth preset angle ⁇ 4 to the central axis is H2, where the central axis is the central axis of the converging lens in the third lens array, and the vertical distance H2 is also a fixed value.
  • the focal length of the converging lens in the third lens array refers to the distance from the central axis thereof to the surface of the light emitting chip, and this distance is referred to as F. Since the focal length of the converging lens is determined, the distance F is determined.
  • Fig. 30 is a second schematic diagram of an optical path design of a lens assembly according to some embodiments. As shown in Fig. 30, in some embodiments, the transmission direction of the second split light changes when it is refracted on the fourth inclined surface 904, so that the second split light is transmitted to the light monitoring chip 900c3.
  • the vertical distance between the intersection point between the optical signal emitted by the light emitting chip and the first inclined surface 901 and the intersection point between the reflected light and the fourth preset angle ⁇ 4 is H1.
  • a vertical distance from the intersection of the reflected light and the fourth preset angle ⁇ 4 to the central axis is H2.
  • the distance from the central axis of the converging lens to the surface of the light emitting chip is F, where F is the focal length of the converging lens.
  • Angle ⁇ is the angle between the refractive optical fiber of the fourth inclined surface 904 and the vertical axis.
  • the angle between the normal line of the fourth inclined surface 904 and the horizontal axis is ⁇ 1
  • the angle between the reflected light on the first inclined surface 901 and the normal line of the fourth inclined surface 904 is ⁇ 2, which is also the incident angle of the fourth inclined surface 904.
  • the angle between the normal line of the fourth inclined surface 904 and the vertical axis is ⁇ 4.
  • the transmission direction of the second split light changes when it is refracted on the surface of the fourth inclined surface 904, thereby transmitting the second split light to the light monitoring chip 900c3.
  • Fig. 31 is a third schematic diagram of an optical path design principle of a lens assembly according to some embodiments. As shown in Fig. 31, in some embodiments, the transmission direction of the first split light is changed from vertical incidence to horizontal direction, so that the first split light enters the first optical fiber array 900a1 and is emitted.
  • the first preset angle ⁇ 1, the second preset angle ⁇ 2 and the third preset angle ⁇ 3 must satisfy a certain relationship so that the transmission direction of the first split light can be changed from vertical incidence to horizontal direction and total reflection occurs on the surface of the third inclined surface 903.
  • ⁇ 4 is the angle between the refracted light emitted from the first inclined surface 901 and the second inclined surface 902 .
  • ⁇ 5 is the incident angle of the second inclined surface 902 .
  • ⁇ 7 is the angle between the refracted light at the second inclined surface 902 and the second inclined surface 902 .
  • ⁇ 8 is the angle between the incident light of the third inclined surface 903 and the third inclined surface 903 .
  • ⁇ 9 is the incident angle of the third inclined surface 903 .
  • the first split light needs to be totally reflected at the third inclined surface 903 , and therefore ⁇ 9 should be greater than or equal to the critical angle of total reflection of the lens assembly 900 .
  • ⁇ 9 is greater than or equal to arcsin(1/n), that is, ⁇ +( ⁇ 2+ ⁇ 3)-arcsin ⁇ n/sin[( ⁇ 1+ ⁇ 2)-arcsin(n*sin ⁇ 1)] ⁇ is greater than or equal to arcsin(1/n).
  • the transmission direction of the first split light can be changed from vertical incidence to horizontal direction, and then total reflection occurs on the surface of the third inclined surface 903.
  • the first preset angle ⁇ 1, the second preset angle ⁇ 2 and the third preset angle ⁇ 3 that meet the above conditions have multiple combinations.
  • the third preset angle ⁇ 3 is determined accordingly.
  • the lens assembly 900 in the lens assembly 900, the first preset angle ⁇ 1, the second preset angle ⁇ 2 and the third preset angle ⁇ 3 satisfy a certain relationship, and the first preset angle ⁇ 1 and the fourth preset angle ⁇ 4 satisfy a certain relationship. Therefore, the lens assembly 900 is a lens assembly with a specific inclined surface, and the transmission direction of the optical signal is changed by the mutual coordination of the different inclination angles of the inclined surfaces, so that a portion of the proportional optical signal emitted by the optical emitting chip is transmitted to the optical monitoring chip, and a portion of the proportional optical signal is transmitted to the first optical fiber array and emitted.
  • Fig. 32 is a second cross-sectional view of a lens assembly according to some embodiments. As shown in Fig. 32, the fifth inclined surface 905 is inclined to a certain extent. In some embodiments, the angle between the second inclined surface 902 and the axis of the circuit board 300 in the length direction is a fifth preset angle ⁇ 5.
  • FIG33 is a schematic diagram of a receiving optical path of a lens assembly according to some embodiments
  • FIG34 is a schematic diagram of a receiving optical path of a lens assembly according to some embodiments.
  • the optical signal from the second optical fiber array is transmitted to the fifth inclined surface 905, and after being reflected by the fifth inclined surface 905, it is transmitted to the optical receiving chip 900c5.
  • the optical signal from the second optical fiber array is processed by the collimating lens in the second lens array and converted into collimated light.
  • the collimated light is reflected by the fifth inclined surface 905 and then transmitted downward.
  • the collimated light is processed by the converging lens in the fourth lens array 909 and converted into convergent light, which is transmitted to the optical receiving chip 900c5.
  • the incident angle of the optical signal from the second optical fiber array to the fifth inclined surface 905 is ⁇ . According to the geometric relationship, In order to allow the optical signal from the second optical fiber array to be totally reflected when transmitted to the fifth inclined surface 905 , the incident angle ⁇ should be greater than or equal to the critical angle of total reflection of the lens assembly 900 .
  • the fifth preset angle ⁇ 5 should satisfy the following conditions:
  • the fifth preset angle ⁇ 5 may be 45°, so that the optical signal is horizontally incident on the fifth inclined surface 905, and then vertically incident on the optical receiving chip 900c5 after the optical path of the fifth inclined surface 905 is turned.
  • FIG35 is a third schematic diagram of a receiving optical path of a lens assembly according to some embodiments.
  • the fifth preset angle may also be other than 45°, so that the optical signal is horizontally incident on the fifth inclined surface 905, and then the optical path turns through the fifth inclined surface 905, and is not vertically incident on the optical receiving chip 900c5, but is obliquely incident on the optical receiving chip 900c5, thereby preventing the reflected light of the optical receiving chip 900c5 from returning along the original path, thereby reducing interference with the optical signal emitted by the optical transmitting end.
  • the first optical fiber array 900a1 and the second optical fiber array 900a2 are at the same height, then the parallel light after being turned by the third inclined plane 903 and the fifth inclined plane 905 respectively is at the same height in the horizontal direction, and the light emitting chip and the light receiving chip are also at the same height, so the vertical height from the first optical fiber array 900a1 to the light emitting chip is the same as the vertical height from the second optical fiber array 900a2 to the light receiving chip.
  • the inclination angle of the third inclined plane 903 is different from the inclination angle of the fifth inclined plane 905, that is, the third preset angle ⁇ 3 is different from the fifth preset angle ⁇ 5.
  • the comprehensive angle of the first inclined plane 901, the second inclined plane 902 and the third inclined plane 903 for changing the transmission direction of the light path be the same as the angle of the fifth inclined plane 905 for changing the transmission direction of the light path, thereby achieving the parallel light after turning through the third inclined plane 903 and the fifth inclined plane 905 respectively being at the same height in the horizontal direction.
  • the third inclined surface 903 and the fifth inclined surface 905 are offset to a certain extent along the width direction of the circuit board, presenting an offset arrangement.
  • the third preset angle ⁇ 3 is smaller than the fifth preset angle ⁇ 5.
  • the first optical fiber array 900a1 and the second optical fiber array 900a2 are arranged side by side along the width direction of the circuit board
  • the third bevel 903 and the fifth bevel 905 are arranged side by side along the width direction of the circuit board
  • the third preset angle ⁇ 3 is smaller than the fifth preset angle ⁇ 5, thereby realizing the transmission and reception of multi-channel optical signals.
  • the position where the transmitted optical signal is emitted from the third slope 903 is relatively high, located above the central axis of the third slope 903 , and the position where the received optical signal is coupled to the fifth slope 905 is relatively low, located at the central axis of the fifth slope 905 .
  • the first optical fiber array 900a1 and the second optical fiber array 900a2 are at the same height. Since the light emission undergoes multiple returns, the height of the third inclined plane 903 is higher than the height of the fifth inclined plane 905. At this time, through the compensation of the inclined plane inclination angle, that is, the third preset angle ⁇ 3 is smaller than the fifth preset angle ⁇ 5, the light emission optical signal and the light reception optical signal can be respectively coupled to the first optical fiber array 900a1 and the second optical fiber array 900a2 at the same height.
  • the present application forms various inclined planes on the surface of the lens component, and each inclined plane has a different inclination angle; since each inclined plane exhibits different refraction or reflection characteristics to light, the different inclination angles of each inclined plane cooperate with each other to change the transmission direction of the optical signal, and a portion of the proportional optical signal emitted by the optical emitting chip is transmitted to the optical monitoring chip, and a portion of the proportional optical signal is transmitted to the first optical fiber array and emitted; at the same time, the present application arranges the first optical fiber array and the second optical fiber array side by side along the width direction of the circuit board, arranges the third inclined plane and the fifth inclined plane side by side along the width direction of the circuit board, and arranges the optical emitting chip and the optical receiving chip side by side along the width direction of the circuit board, with a compact structure, thereby realizing the emission and reception of multi-channel optical signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光模块(200),包括电路板(300)、光纤支架(500)与透镜组件(400),电路板(300)上设有光电芯片,光纤支架(500)内固定有光纤,光纤支架(500)一端的侧面上设有定位孔(502);透镜组件(400)罩设于光电芯片上,一端的侧面上设有定位柱(402)与支撑臂,定位柱(402)与定位孔(502)相对设置;光纤支架(500)上设有凸台,支撑臂支撑凸台,使得光纤支架(500)与电路板(300)表面之间存在间隙;透镜组件(400)的侧面上设有凹槽(403),凹槽(403)内设有第一透镜(404),光纤与第一透镜(404)耦合对接。光纤支架(500)通过定位柱(402)、定位孔(502)与透镜组件(400)进行定位,通过支撑臂支撑固定光纤支架(500),既提高了光纤支架(500)与透镜组件(400)的稳固性,又将光纤支架(500)悬空设置,光纤支架(500)下方的电路板(300)上可放置光电芯片、信号线等,从而提高了电路板(300)上的布局空间。

Description

光模块
本申请要求在2022年11月09日提交中国专利局、申请号为202211401103.X的优先权;在2023年06月30日提交中国专利局、申请号为202310802982.5的优先权;其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光纤通信技术领域,尤其涉及一种光模块。
背景技术
随着云计算、移动互联网、视频等新型业务和应用模式发展,光通信技术的发展进步变的愈加重要。而在光通信技术中,光模块是实现光电信号相互转换的工具,是光通信设备中的关键器件之一,并且随着光通信技术发展的需求光模块的传输速率不断提高。
发明内容
本申请提供一种光模块,包括:
电路板,其上设置有光电芯片;
光纤支架,其内插有光纤,其一端的侧面上设置有定位孔;
透镜组件,罩设于光电芯片上;
其中,光纤支架上设置有凸台,其与电路板表面之间存在间隙;透镜组件一端的侧面上设置有定位柱与支撑臂,定位柱与定位孔相对应设置;支撑臂由侧面向光纤支架的方向延伸,支撑臂支撑凸台;侧面上设置有凹槽,凹槽凹陷于侧面,凹槽内设置有第一透镜,光纤与第一透镜耦合对接;
和/或,光电芯片包括光监控芯片、光发射芯片及光接收芯片;光纤包括第一光纤阵列和第二光纤阵列,第一光纤阵列与第二光纤阵列沿电路板宽度方向并排设置,且处于同一高度;透镜组件与光纤支架连接,表面分别形成有:
第一斜面,与电路板长度方向的轴线具有第一预设角度,用于接收光发射芯片发出的光信号,并将光信号分成第一分光和第二分光;
第二斜面,与电路板长度方向的轴线具有第二预设角度,且一端与第一斜面连接,用于接收并传输第一分光;
第三斜面,与电路板长度方向的轴线具有第三预设角度,且与第二斜面的另一端连接,用于接收来自于第二斜面的第一分光,并通过第三预设角度、第二预设角度与第一预设角度之间的相互配合,改变第一分光的传输方向,以将第一分光传输至第一光纤阵列;
第四斜面,与电路板长度方向的轴线具有第四预设角度,用于接收第二分光,并通过第四预设角度与第一预设角度的相互配合,将第二分光传输至光监控芯片;
第五斜面,与电路板长度方向的轴线具有第五预设角度,第五斜面表面高度与第三斜面表面高度不同,第五预设角度与第三预设角度不同,且第五斜面与第三斜面沿电路板宽度方向设置,用于接收第二光纤阵列传输的光信号,并改变光信号的传输方向,以将光信号传输至光接收芯片。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例提供的一种光通信系统的连接关系图;
图2为根据本公开一些实施例提供的一种光模块的结构图;
图3为根据本公开一些实施例提供的一种光模块的结构示意图;
图4为根据本公开一些实施例提供的一种光模块的局部分解示意图;
图5为根据本公开一些实施例提供的一种光模块中电路板、透镜组件与光纤支架的装配示意图;
图6为根据本公开一些实施例提供的一种光模块中透镜组件与光纤支架的装配结构示意图一;
图7为根据本公开一些实施例提供的一种光模块中透镜组件与光纤支架的分解示意图;
图8为根据本公开一些实施例提供的一种光模块中透镜组件的结构示意图一;
图9为根据本公开一些实施例提供的一种光模块中透镜组件的结构示意图二;
图10为根据本公开一些实施例提供的一种光模块中透镜组件的剖视图;
图11为根据本公开一些实施例提供的一种光模块中透镜组件、光纤支架与光电芯片的装配示意图;
图12为根据本公开一些实施例提供的一种光模块中光纤支架的结构示意图一;
图13为根据本公开一些实施例提供的一种光模块中光纤支架的结构示意图二;
图14为根据本公开一些实施例提供的一种光模块中光纤支架的结构示意图三;
图15为根据本公开一些实施例提供的一种光模块中透镜组件与光纤支架的装配结构示意图二;
图16为图15中A处放大示意图;
图17为根据本公开一些实施例提供的一种光模块中透镜组件与光纤支架的装配剖视图;
图18为根据本公开一些实施例提供的一种光模块中透镜组件与光纤支架的装配俯视图;
图19为根据本公开一些实施例提供的一种光模块的发射光路示意图;
图20为根据本公开一些实施例提供的一种光模块的接收光路示意图;
图21为根据本公开一些实施例提供的一种透镜组件、光纤支架、芯片保护罩的分解示意图;
图22为根据本公开一些实施例提供的一种透镜组件与光电芯片的分解示意图;
图23为根据本公开一些实施例提供的一种透镜组件、光纤支架、芯片保护罩的剖面示意图;
图24为根据本公开一些实施例提供的一种透镜组件的结构图二;
图25为根据本公开一些实施例提供的一种透镜组件的剖面图一;
图26为根据本公开一些实施例提供的一种透镜组件的结构图三;
图27为根据本公开一些实施例提供的一种透镜组件的发射光路示意图一;
图28为根据本公开一些实施例提供的一种透镜组件的发射光路示意图二;
图29为根据本公开一些实施例提供的一种透镜组件的光路设计原理图一;
图30为根据本公开一些实施例提供的一种透镜组件的光路设计原理图二;
图31为根据本公开一些实施例提供的一种透镜组件的光路设计原理图三;
图32为根据本公开一些实施例提供的一种透镜组件的剖面图二;
图33为根据本公开一些实施例提供的一种透镜组件的接收光路示意图一;
图34为根据本公开一些实施例提供的一种透镜组件的接收光路示意图二;
图35为根据本公开一些实施例提供的一种透镜组件的接收光路示意图三。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
在光通信技术中,为了在信息处理设备之间建立信息传递,需要将信息加载到光上,利用光的传播实现信息的传递。这里,加载有信息的光就是光信号。光信号在信息传输设备中传输时可以减少光功率的损耗,因此可以实现高速度、远距离、低成本的信息传递。信息处理设备能够识别和处理的信号是电信号。信息处理设备通常包括光网络终端(Optical Network Unit,ONU)、网关、路由器、交换机、手机、计算机、服务器、平板电脑、电视机等,信息传输设备通常包括光纤及光波导等。
光模块可以实现信息处理设备与信息传输设备之间的光信号与电信号的相互转换。例如,光模块的光信号输入端或光信号输出端中的至少一个连接有光纤,光模块的电信号输入端或电信号输出端中的至少一个连接有光网络终端;来自光纤的第一光信号传输至光模块,光模块将该第一光信号转换为第一电信号,并将该第一电信号传输至光网络终端;来自光网络终端的第二电信号传输至光模块,光模块将该第二电信号转换为第二光信号,并将该第二光信号传输至光纤。由于多个信息处理设备之间可以通过电信号进行信息传输,因此,需要多个信息处理设备中的至少一个信息处理设备直接与光模块连接,而无需所有的信息处理设备直接与光模块连接。这里,直接连接光模块的信息处理设备被称为光模块的上位机。另外,光模块的光信号输入端或光信号输出端可被称为光口,光模块的电信号输入端或电信号输出端可被称为电口。
图1为根据一些实施例的一种光通信系统的部分结构图。如图1所示,光通信系统主要包括远端信息处理设备1000、本地信息处理设备2000、上位机100、光模块200、光纤101以及网线103。
光纤101的一端向远端信息处理设备1000的方向延伸,且光纤101的另一端通过光模块200的光口与光模块200连接。光信号可以在光纤101中全反射,且光信号在全反射方向上的传播几乎可以维持原有光功率,光信号在光纤101中发生多次的全反射,以将来自远端信息处理设备1000的光信号传输至光模块200中,或将来自光模块200的光信号传输至远端信息处理设备1000,从而实现远距离、低功率损耗的信息传递。
光通信系统可以包括一根或多根光纤101,且光纤101与光模块200可拆卸连接,或固定连接。上位机100被配置为向光模块200提供数据信号,或从光模块200接收数据信号,或对光模块200的工作状态进行监测或控制。
上位机100包括大致呈长方体的壳体(housing),以及设置在该壳体上的光模块接口102。光模块接口102被配置为接入光模块200,以使上位机100与光模块200建立单向或双向的电信号连接。
上位机100还包括对外电接口,该对外电接口可以接入电信号网络。例如,该对外电接口包括通用串行总线接口(Universal Serial Bus,USB)或网线接口104,网线接口104被配置为接入网线103,以使上位机100与网线103建立单向或双向的电信号连接。网线103的一端连接本地信息处理设备2000,且网线103的另一端连接上位机100,以通过网线103在本地信息处理设备2000与上位机100之间建立电信号连接。例如,本地信息处理设备2000发出的第三电信号通过网线103传入上位机100,上位机100根据该第三电信号生成第二电信号,来自上位机100的该第二电信号传输至光模块200,光模块200将该第二电信号转换为第二光信号,并将该第二光信号传输至光纤101,该第二光信号在光纤101中传输至远端服务器1000。例如,来自远端信息处理设备1000的第一光信号通过光纤101传播,来自光纤101的第一光信号传输至光模块200,光模块200将该第一光信号转换为第一电信号,光模块200将该第一电信号传输至上位机100,上位机100根据该第一电信号生成第四电信号,并将该第四电信号传入本地信息处理设备2000。需要说明的是,光模块是实现光信号与电信号相互转换的工具,在上述光信号与电信号的转换过程中,信息并未发生变化,信息的编码和解码方式可以发生变化。
上位机100除了包括光网络终端之外,还包括光线路终端(Optical Line Terminal,OLT)、光网络设备(Optical Network Terminal,ONT)、或数据中心服务器等。
图2为根据一些实施例的一种上位机的局部结构图。为了清楚地显示光模块200与上位机100的连接关系,图2仅示出了上位机100的与光模块200相关的结构。如图2所示,上位机100还包括设置于壳体内的PCB电路板105、设置在PCB电路板105的表面的笼子106、设置于笼子106上的散热器107、以及设置于笼子106内部的电连接器。该电连接器被配置为接入光模块200的电口;散热器107具有增大散热面积的翅片等凸起结构。
光模块200插入上位机100的笼子106中,由笼子106固定光模块200,光模块200产生的热量传导给笼子106,然后通过散热器107进行扩散。光模块200插入笼子106中后,光模块200的电口与笼子106内部的电连接器连接,从而使光模块200与上位器100建立双向的电信号连接。此外,光模块200的光口与光纤101连接,从而使得光模块200与光纤101建立双向的光信号连接。
图3为根据一些实施例的一种光模块的结构图,图4为根据一些实施例的一种光模块的分解图。如图3、图4所示,光模块200包括壳体(shell),设置于壳体内的电路板300及光组件。
壳体包括上壳体201和下壳体202,上壳体201盖合在下壳体202上,以形成具有两个开口的上述壳体;壳体的外轮廓一般呈现方形体。
在本公开的一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板,盖板盖合在下壳体202的两个下侧板上,以形成上述壳体。
在一些实施例中,下壳体202包括底板以及位于底板两侧、与底板垂直设置的两个下侧板;上壳体201包括盖板以及位于盖板两侧、与盖板垂直设置的两个上侧板,由两个上侧板与两个下侧板结合,以实现上壳体201盖合在下壳体202上。
两个开口204和205的连线所在的方向可以与光模块200的长度方向一致,也可以与光模块200的长度方向不一致。例如,开口204位于光模块200的端部(图3的右端),开口205也位于光模块200的端部(图3的左端)。或者,开口204位于光模块200的端部,而开口205则位于光模块200的侧部。开口204为电口,电路板300的金手指从电口伸出,插入上位机(例如,光网络终端100)中;开口205为光口,被配置为接入外部光纤101,以使外部光纤101连接光模块200内部的光组件。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光组件等器件安装到壳体中,由上壳体201、下壳体202对这些器件形成封装保护。此外,在装配电路板300和光组件等器件时,便于这些器件的定位部件、散热部件以及电磁屏蔽部件的部署,有利于自动化地实施生产。
在一些实施例中,上壳体201及下壳体202一般采用金属材料制成,利于实现电磁屏蔽以及散热。
在一些实施例中,光模块200还包括位于其壳体外部的解锁部件203,解锁部件203被配置为实现光模块200与上位机之间的固定连接,或解除光模块200与上位机之间的固定连接。
示例地,解锁部件203位于下壳体202的两个下侧板的外壁上,具有与上位机笼子(例如,光网络终端100的笼子106)匹配的卡合部件。当光模块200插入上位机的笼子里,由解锁部件203的卡合部件将光模块200固定在上位机的笼子里;拉动解锁部件203时,解锁部件203的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块200与上位机的卡合关系,从而可以将光模块200从上位机的笼子里抽出。
电路板300包括电路走线、电子元件及芯片,通过电路走线将电子元件和芯片按照电路设计连接在一起,以实现供电、电信号传输及接地等功能。电子元件例如包括电容、电阻、三极管、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。芯片例如包括微控制单元(Microcontroller Unit,MCU)、激光驱动芯片、限幅放大器(limiting amplifier)、时钟数据恢复(Clock and Data Recovery,CDR)芯片、电源管理芯片、数字信号处理(Digital Signal Processing,DSP)芯片。
电路板300一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳地承载上述电子元件和芯片;当光组件位于电路板上时,硬性电路板也可以提供平稳地承载;硬性电路板还可以插入上位机笼子中的电连接器中。
电路板300还包括形成在其端部表面的金手指,金手指由相互独立的多个引脚组成。电路板300插入笼子106中,由金手指与笼子106内的电连接器导通连接。金手指可以仅设置在电路板300一侧的表面(例如图4所示的上表面),也可以设置在电路板300上下两侧的表面,以适应引脚数量需求大的场合。金手指被配置为与上位机建立电连接,以实现供电、接地、I2C信号传递、数据信号传递等。
当然,部分光模块中也会使用柔性电路板。柔性电路板一般与硬性电路板配合使用,以作为硬性电路板的补充。例如,硬性电路板与光组件之间可以采用柔性电路板连接。
图5为本申请实施例提供的光模块中电路板、透镜组件与光纤支架的装配示意图,图6为本申请实施例提供的光模块中透镜组件与光纤支架的装配结构示意图一,图7为本申请实施例提供的光模块中透镜组件与光纤支架的分解示意图。如图5、图6、图7所示,光组件包括光电芯片、透镜组件400、光纤支架500与光纤阵列600,光电芯片直接贴装在电路板300上,为了将光耦合到光纤阵列600,需要将透镜组件400覆盖在光电芯片上,进行光的准直和汇聚,然后将光斑耦合到光纤阵列600的光纤 端面,这样就需要光纤支架500与透镜组件400之间精密固定,利用光纤支架500的支撑将光纤阵列600固定在透镜组件400的合适位置。
具体地,透镜组件400设置在电路板300上,采用罩扣式的方式罩设在电路板300上光电芯片的上方(光电芯片主要指光发射芯片、驱动芯片、光接收芯片、跨阻放大芯片、限幅放大芯片等与光电转换功能相关的芯片),透镜组件400与电路板300形成包裹光发射芯片、光接收芯片等光电芯片的腔体,透镜组件400与电路板300一起形成了封装光电芯片的结构。光发射芯片发出的光经透镜组件400反射后进入到光纤阵列600中,来自光纤阵列600的光经透镜组件400反射后进入光接收芯片中,透镜组件400在光发射芯片与光纤阵列之间建立了相互的光连接。透镜组件400不仅起到密封光电芯片的作用,同时也建立了光电芯片与光纤阵列之间的光连接。
透镜组件400可以采用聚合物材料经注塑工艺一体成型制成。具体地,该透镜组件400的制成材料包括PEI(Polyetherimide,聚醚酰亚胺)塑料(Ultem系列)等透光性好的材料。由于透镜组件400中的所有光束传播元件均采用相同的聚合物材料单片形成,从而可以大大减少成型模具,降低了制造成本和复杂度。同时,本申请实施例基于上述所设置的透镜组件400结构只需调节入射光束以及光纤的位置,安装调试简单。
光纤阵列600的一端与透镜组件400之间建立光连接,另一端与光纤适配器700建立光连接。光纤阵列600由多根光纤组成,其将来自透镜组件400的光传输至光纤适配器700,实现对外发出光信号;光纤阵列600将来自光纤适配器700的光传输至透镜组件400,实现从光模块外部接收光信号。
光纤阵列600与透镜组件400之间具有良好的光耦合结构设计,来自透镜组件400的多路汇聚光入射到光纤阵列600的多路光纤中,利用透镜组件400的光学结构实现与光发射芯片的光连接;将来自光纤阵列600的多路光入射到透镜组件400中,利用透镜组件400的光学结构实现与光接收芯片的光连接。
光纤阵列600与透镜组件400之间具有良好的固定结构设计,可以实现光纤阵列600与透镜组件400之间的相对固定,从而形成透镜组件400与电路板300相对固定,光纤阵列600与透镜组件400相对固定。
光纤适配器位于上壳体201与下壳体202形成的光接口处,是光模块与光模块外部光纤实现连接的连接件;此外,为了与外部光纤实现连接,往往还需要在上壳体201、下壳体202、光接口处设置匹配的结构。光纤适配器一般具有标准形状及尺寸,便于外部光纤连接器/插头插入,其内部具有多个光纤对接口,包括传出光信号的接口及传入光信号的接口。常见的光纤连接器/插头为MT型光纤连接器(如MPO(Multi-fiber Push On)光纤跳线连接器)。通过光纤连接器插入光模块的光纤适配器,使得光模块内部的光信号可以传入外部光纤中,使得光模块外部的光信号可以传入光模块内部。
在本申请实施例中,为了实现光纤阵列600与透镜组件400的相对固定,本申请实施例提供的光模块还包括光纤支架500,该光纤支架500与透镜组件400固定连接,且其内侧固定有光纤阵列600的光纤。具体地,光纤包括芯层、包层和保护层,其中,保护层包裹于包层,包层包裹于芯层,光信号在芯层中传输。
图8为本申请实施例提供的光模块中透镜组件的结构示意图一,图9为本申请实施例提供的光模块中透镜组件的结构示意图二。如图8、图9所示,透镜组件400包括限位壁401、第一侧壁409与第二侧壁4010,限位壁401朝向光纤支架500,第一侧壁409与第二侧壁4010相对设置,且限位壁401的两端分别与第一侧壁409、第二侧壁4010相连接。
限位壁401上设置有定位柱402,该定位柱402由限位壁401向光纤支架500的方向延伸,以对光纤支架500进行定位。在本申请实施例中,透镜组件400上的定位柱402为圆形定位柱。
透镜组件400的限位壁401上设置有凹槽403,该凹槽403的侧壁平行于限位壁401,且凹槽403的侧壁凹陷于限位壁401;凹槽403的侧壁上设置有第一透镜404,该第一透镜404与透镜组件400的内部相连通,该第一透镜404用于将透镜组件400内部反射的光转换为汇聚光束,汇聚光束耦合至光纤支架500固定的光纤阵列600内,以将来自透镜组件400的多路汇聚光汇聚至光纤阵列600的多路光纤中,实现光的发射;同理,第一透镜404还用于将来自光纤阵列600的多路光纤中的光汇聚至透镜组件400,经由透镜组件400反射后传输至光接收芯片,实现光的接收。
在一些实施例中,限位壁401上设置有两个定位柱402,两个定位柱402位于凹槽403的两侧,以保证透镜组件400与光纤支架500的定位连接。
透镜组件400还包括第一支撑臂410与第二支撑臂420,第一支撑臂410与第二支撑臂420相对设置,且第一支撑臂410与第二支撑臂420之间存在间隙,两个定位柱402位于该间隙内。具体地,第一支撑臂410由限位壁401向光纤支架500的方向延伸,且第一支撑臂410的外侧壁与第二侧壁4010相平齐;第二支撑臂420由限位壁401向光纤支架500的方向延伸,且第二支撑臂420的外侧壁与第一侧壁409相平齐。
图10为本申请实施例提供的光模块中透镜组件的剖视图。如图10所示,第一支撑臂410朝向光纤支架500的一端设置有第一支撑台4101,该第一支撑台4101由第一支撑臂410的底面向电路板300的方向延伸,第一支撑臂410在上下方向的厚度尺寸小于透镜组件400在上下方向的厚度尺寸,第一支撑台4101在上下方向的厚度尺寸为h1,如此,第一支撑台4101固定在电路板300的表面上,第一支撑臂410的底面与电路板300的表面之间存在空隙。
同理,第二支撑臂420朝向光纤支架500的一端设置有第二支撑台4201,该第二支撑台4201由第二支撑臂420的底面向电路板300的方向延伸,第二支撑臂420在上下方向的厚度尺寸小于透镜组件400在上下方向的厚度尺寸,第二支撑台4201在上下方向的厚度尺寸为h1,如此,第二支撑台4201固定在电路板300的表面上,第二支撑臂420的底面与电路板300的表面之间存在空隙。
在一些实施例中,限位壁401与第一侧壁409的连接处设置有第一点胶槽4011,第一点胶槽4011的侧壁凹陷于限位壁401与第一侧壁409,该第一点胶槽4011的顶面设置有开口,第一点胶槽4011的底面与第二支撑臂420的顶面相平齐;限位壁401与第二侧壁4010的连接处设置有第二点胶槽4012,第二点胶槽4012的侧壁凹陷于限位壁401与第二侧壁4010,该第二点胶槽4012的顶面设置有开口,第二点胶槽4012的底面与第一支撑臂410的顶面相平齐。
固定透镜组件400与光纤支架500的胶水点在第一点胶槽4011、第二点胶槽4012,以通过胶水实现透镜组件400与光纤支架500的固定连接。
在一些实施例中,光电芯片设置于电路板300上,为了既能将透镜组件400粘贴于电路板300上, 又能罩设电路板300上的光电芯片,透镜组件400朝向电路板300的一侧设置有空腔406,该空腔406朝向电路板300的一侧设置有开口,光电芯片设置于该空腔406与电路板300组成的空间内。
为了反射光束,该透镜组件400的内表面设置有第二透镜407与第三透镜408,其外表面设置有反射镜405,反射镜405的反射面4051位于第二透镜407、第三透镜408的上方,第二透镜407为发射透镜,用于将电路板300上的光发射芯片发射的光束转换为准直光束,该准直光束经由反射面4051反射后射入第一透镜404,之后经由第一透镜404将光束汇聚耦合至光纤阵列600。
第三透镜408为接收透镜,用于将通过第一透镜404射入透镜组件400的光束转换为准直光束,该准直光束经由反射面4051反射后射入电路板300上的光接收芯片。
图11为本申请实施例提供的光模块中透镜组件、光纤支架与光电芯片的装配示意图。如图11所示,根据上述方案制作完成透镜组件400后,将透镜组件400粘贴在电路板300的表面上,并将电路板300上的光电芯片设在透镜组件400的空腔406内。光电芯片包括光发射芯片310、光发射驱动芯片320、光接收芯片330与光接收驱动芯片340,光发射芯片310设置在第二透镜407的正下方,以方便将光发射芯片310发射的光束射至第二透镜407。
光发射驱动芯片320可设置在光发射芯片310的右侧(位于空腔406内),该光发射驱动芯片320分别与电路板300、光发射芯片310信号连接,电路板300向光发射驱动芯片320提供电信号,光发射驱动芯片320根据电信号输出驱动电信号,以驱动光发射芯片310发射光束。
光接收芯片330设置在第三透镜408的正下方,以方便第三透镜408射出的准直光束射至光接收芯片330;光接收驱动芯片340可设置在光接收芯片330的左侧(靠近光纤支架500的方向),光接收驱动芯片340与光接收芯片330信号连接,用于驱动光接收芯片330将光信号转换为电信号。
光发射驱动芯片320还可与光接收驱动芯片340并排设置在光发射芯片310、光接收芯片330的右侧,即光发射芯片310、光发射驱动芯片320、光接收芯片330、光接收驱动芯片340并排设置于同一侧。
在本申请实施例中,电路板300上光电芯片在透镜组件400的空腔406内的摆放方式并不限于上述摆放方式,可根据光电芯片的尺寸进行相应布置。
图12为本申请实施例提供的光模块中光纤支架的结构示意图一,图13为本申请实施例提供的光模块中光纤支架的结构示意图二,图14为本申请实施例提供的光模块中光纤支架的结构示意图三。如图12、图13、图14所示,光纤支架500朝向透镜组件400的侧面上设置有定位孔502,该定位孔502与透镜组件400上的定位柱402相对设置,光纤支架500与透镜组件400固定连接时,定位柱402插入该定位孔502内,从而通过定位孔502、定位柱402实现了光纤支架500与透镜组件400的定位连接。
具体地,光纤支架500包括第一侧面501(该第一侧面501为光纤支架500朝向透镜组件400的侧面)、第二侧面505、第三侧面506与第四侧面512,第四侧面512与第一侧面501相对设置,第二侧面505与第三侧面506相对设置,第一侧面501的两端分别与第二侧面505、第三侧面506连接,且第二侧面505、第三侧面506位于第一支撑臂410、第二支撑臂420之间。
定位孔502设置在第一侧面501上,定位孔502可贯穿第一侧面501与第四侧面512,以将定位柱402完全插入定位孔502内,以对透镜组件400进行定位。
在一些实施例中,光纤支架500内侧固定有光纤阵列600,光纤支架500与透镜组件400通过定位柱402、定位孔502固定连接后,透镜组件400与光纤阵列600的光纤耦合对接,经透镜组件400反射后的光耦合至光纤阵列600中的光纤。
为了固定光纤阵列600,光纤支架500内设置有光纤固定槽504,光纤支架500的第四侧面512上设置有光纤孔,该光纤孔与光纤固定槽504相连通,如此光纤阵列600的光纤经由光纤孔插入光纤固定槽504内;该光纤固定槽504的顶面设置有开口,透过开口能够看到光纤固定槽504内固定的光纤。
光纤支架500的第一侧面501上还设置有通孔503,该通孔503与光纤固定槽504相连通,光纤阵列600的光纤经由第四侧面上的光纤孔插入光纤支架500,内,然后继续向右插入,使得光纤嵌在光纤固定槽504内,然后继续向右插入,由第一侧面501上的通孔503穿出来。
在一些实施例中,光纤由第一侧面501的通孔503穿出来后,光纤的光纤端面与第一侧面501之间可具有一定距离,即光纤的光纤端面突出于第一侧面501。
在一些实施例中,将光纤阵列600的光纤通过光纤孔、光纤固定槽、通孔503插入光纤支架500后,可通过光纤固定槽504的开口向光纤固定槽504内注入胶水,还可在第四侧面512的光纤孔四周点胶,以实现光纤阵列600与光纤支架500的固定连接。
光纤支架500的第二侧面505上设置有第五侧面507,该第五侧面507与第一侧面501相连接,且第五侧面507凹陷于第二侧面505,第五侧面507通过第一连接面508与第二侧面505连接,使得第二侧面505与第五侧面507形成台阶面。
第五侧面507上设置有第一凸台510,该第一凸台510由第五侧面507向外侧延伸,第一凸台510包括顶面、第一表面5101、第二表面5102、第三表面5103与第四表面,第一凸台510的顶面与光纤支架500的顶面相平齐,第一表面5101与第一凸台510的顶面相对设置,第一表面5101与第一凸台510的顶面在上下方向的厚度尺寸小于光纤支架500在上下方向的厚度尺寸,即第一表面5101凹陷于光纤支架500的底面。
第二表面5102与第一凸台510的顶面、第一表面5101连接,第二表面5102与第五侧面507相对设置,且第二表面5102突出于第二侧面505,如此第一凸台510突出于第二侧面505。第四表面与第一侧面501相平齐,第三表面5103与第四表面相对设置。
同理,光纤支架500的第三侧面506上设置有第六侧面509,该第六侧面509与第一侧面501相连接,且第六侧面509凹陷于第三侧面506,第六侧面509通过第二连接面511与第三侧面506连接,使得第三侧面506与第六侧面509形成台阶面。
第六侧面509上设置有第二凸台520,第二凸台520由第六侧面509向外侧延伸,第二凸台520包括顶面、第一面5201、第二面5202、第三面5203与第四面,第二凸台520的顶面与光纤支架500的顶面相平齐,第一面5201与第二凸台520的顶面相对设置,第一面5201与第一凸台510的顶面在上下方向的厚度尺寸小于光纤支架500在上下方向的厚度尺寸,即第一面5201凹陷于光纤支架500的底面。
第二面5202与第二凸台520的顶面、第一面5201连接,第二面5202与第六侧面509相对设置,且第二面5202突出于第三侧面506,如此第二凸台520突出于第三侧面506。第四面与第一侧面501相平齐,第三面5203与第四面相对设置。
图15为本申请实施例提供的光模块中透镜组件与光纤支架的装配结构示意图二,图16为图15中A处放大示意图,图17为本申请实施例提供的光模块中透镜组件与光纤支架的装配剖视图。如图15、图16、图17所示,将透镜组件400与光纤支架500固定连接时,首先通过透镜组件400的第一支撑臂410支撑光纤支架500的第一凸台510,第二支撑臂420支撑光纤支架500的第二凸台520,以将光纤支架500置于第一支撑臂410与第二支撑臂420之间,通过第一支撑臂410、第二支撑臂420支撑光纤支架500。
具体地,第一支撑臂410的顶面与第一凸台510的第一表面5101支撑连接,第一支撑臂410的内侧壁可与光纤支架500的第二侧面505接触连接;第二支撑臂420的顶面与第二凸台520的第一面5201支撑连接,第二支撑臂420的内侧壁可与光纤支架500的第三侧面506接触连接,使得透镜组件400上的定位柱402与光纤支架500上的定位孔502相对齐。
然后将光纤支架500由左向右移动,使得定位柱402插入定位孔502内,然后继续向右移动光纤支架500,使得光纤支架500的第一侧面501与透镜组件400的限位壁401相接触,定位柱402完全插入定位孔502内。
光纤支架500通过定位柱402、定位孔502与透镜组件400进行定位,光纤支架500通过透镜组件400的第一支撑臂410、第二支撑臂420进行支撑,通过光纤支架500的第一侧面501与限位壁401的粘接固定后,光纤支架500悬空设置于电路板300的上方,其与电路板300之间并不存在支撑关系。即光纤支架500的底面与电路板300的表面之间存在间隙,该间隙内可用于放置芯片、打线等。
在一些实施例中,透镜组件400的凹槽403凹陷于限位壁401,光纤端面突出于光纤支架500的第一侧面501,将透镜组件400与光纤支架500固定连接时,突出的光纤端面可位于凹槽403内。
图18为本申请实施例提供的一种光模块中透镜组件与光纤支架的装配俯视图。如图18所示,将透镜组件400与光纤支架500通过定位柱402、定位孔502进行定位连接,通过透镜组件400的第一支撑臂410、第二支撑臂420支撑固定光纤支架500后,通过定位柱402与定位孔502的位置度来保证光纤阵列600的光纤落在透镜组件400汇聚光班的位置,然后作为整体与光发射芯片、光接收芯片进行耦合。
将光纤支架500与透镜组件400安装到位后,将胶水点在透镜组件400的第一点胶槽4011与第二点胶槽4012上,通过胶水对光纤支架500的第一侧面501与透镜组件400的限位壁401进行粘接固定;将胶水点在第一支撑臂410的顶面上,通过胶水对第一支撑臂410的内侧壁与光纤支架500的第二侧面505进行粘接固定;将胶水点在第二支撑臂420的顶面上,通过胶水对第二支撑臂420的内侧壁与光纤支架500的第三侧面506进行粘接固定;将胶水点在透镜组件400的底面与电路板300的表面连接处,通过胶水对透镜组件400与电路板300进行粘接固定。由此,实现了透镜组件400与电路板300的固定连接,实现了透镜组件400与光纤支架500的固定连接。
图19为本申请实施例提供的光模块的发射光路示意图,图20为本申请实施例提供的光模块的接收光路示意图。如图19、图20所示,将光发射芯片310、光发射驱动芯片320、光接收芯片330、光接收驱动芯片340等光电芯片按照一定摆放方式粘贴在电路板300上后,将透镜组件400罩设于该光电芯片上,并将透镜组件400粘贴在电路板300的表面上;然后将光纤阵列600的多根光纤通过光纤支架500的光纤孔、光纤固定槽504、通孔503插在光纤支架500内,并将光纤的光纤端面突出于光纤支架500的第一侧面501。
然后移动光纤支架500,将光纤支架500的第一凸台510置于透镜组件400的第一支撑臂410上,将第二凸台520置于透镜组件400的第二支撑臂420上,以通过透镜组件400的第一支撑臂410、第二支撑臂420支撑光纤支架500;然后继续移动光纤支架500,将透镜组件400的定位柱402插入光纤支架500的定位孔502内,继续移动光纤支架500,直至光纤支架500的第一侧面501与透镜组件400的限位壁401相接触。
然后将胶水点在透镜组件400的第一点胶槽4011与第二点胶槽4012,通过胶水将透镜组件400的限位壁401与光纤支架500的第一侧面501固定连接;将胶水点在第一支撑臂410的顶面上,通过胶水将第一支撑臂410与光纤支架500的第一凸台510固定连接;将胶水点在第二支撑臂420的顶面上,通过胶水将第二支撑臂420与光纤支架500的第二凸台520固定连接。
将光纤支架500固定至透镜组件400上后,光纤支架500的底面与电路板300的表面之间存在有间隙,该间隙尺寸至少是光电芯片高度尺寸+0.07mm,即光纤支架500的底面与光电芯片顶面之间的间隙尺寸h2至少为0.07mm,以保证该间隙内可以放置光电芯片并打线。
在一些实施例中,为了安全起见,光纤支架500的底面与电路板300表面之间的间隙一般为光电芯片高度尺寸+0.15mm。
透镜组件400上的第一支撑臂410与光纤支架500上的第一凸台510相互配合,第二支撑臂420与第二凸台520相互配合,以在上下方向上垫高光纤支架500。第一支撑臂410通过端部的第一支撑台4101与电路板300的表面连接,第一支撑臂410的中间底部是悬空的,该悬空部分可放置光电芯片、打线等;第二支撑臂420通过端部的第二支撑台4201与电路板300的表面连接,第二支撑臂420的中间底部是悬空的,该悬空部分可放置光电芯片、打线等。
在一些实施例中,第一支撑臂410的第一支撑台4101可突出于光纤支架500的第四侧面512,第二支撑臂420的第二支撑台4201可突出于光纤支架500的第四侧面512,若将第一支撑台4101、第二支撑台4201置于光纤支架500的第一侧面501、第四侧面512之间,在光纤支架500下方的空间设置光电芯片时,光电芯片还需避开第一支撑台4101、第二支撑台4201。
第一支撑台4101、第二支撑台4201位于第四侧面512的左侧时,提高了光纤支架500、第一支撑臂410与第二支撑臂420下方的空间,在该空间上能够设置更多的光电芯片、打线等。
在一些实施例中,根据第一支撑臂410下方、第二支撑臂420下方设置的光电芯片、打线等,第一支撑臂410在前后方向的宽度尺寸与第二支撑臂420在前后方向的宽度尺寸可不相同,如第一支撑臂410下方的光电芯片多于第二支撑臂420下方的光电芯片,第一支撑臂410的宽度尺寸大于第二支撑臂420的宽度尺寸,以更好的保护第一支撑臂410下方的光电芯片。
当第一支撑臂410下方的光电芯片与第二支撑臂420下方的光电芯片相同时,第一支撑臂410在前后方向的宽度尺寸与第二支撑臂420在前后方向的宽度尺寸也可相同。
将光电芯片、透镜组件400、光纤支架500与光纤阵列600组装完成后,光发射芯片310在光发射驱动芯片320驱动下产生光束,光束经由第二透镜407转换为准直光束,准直光束射至反射镜405,在 反射面4051处发生反射,反射后的光束水平射至第一透镜404,通过第一透镜404将光束汇聚耦合至光纤阵列600的光纤内,实现了光的发射。
光纤阵列600的光纤将来自外部光纤传输的光束射至第一透镜404,经由第一透镜404将光束射至反射镜405,在反射面4051处发生反射,反射后的光束射至第三透镜408,通过第三透镜408将光束转换为汇聚光束,并将汇聚光束汇聚至光接收芯片330,光接收芯片330将光信号转换为电信号,实现了光的接收。
本申请实施例提供的光模块包括电路板、设置在电路板上的光电芯片、罩设在光电芯片上的透镜组件、光纤支架及光纤阵列,透镜组件包括限位壁、第一侧壁与第二侧壁,限位壁朝向光纤支架,限位壁上设置有定位柱与凹槽,凹槽凹陷于限位壁,且凹槽内设置有第一透镜,第一透镜与透镜组件的内腔相连通;透镜组件还包括第一支撑臂与第二支撑臂,第一支撑臂、第二支撑臂由限位壁向光纤支架的方向延伸,且第一支撑臂与第二支撑臂之间存在间隙;光纤支架包括第一侧面、第二侧面与第三侧面,第一侧面朝向透镜组件,第一侧面的两端分别与第二侧面、第三侧面连接;第一侧面上设置有定位孔,透镜组件上的定位柱插入该定位孔内,以对透镜组件与光纤支架进行定位连接;第二侧面上设置有向外突出的第一凸台,第一支撑臂支撑第一凸台,第三侧面上设置有向外突出的第二凸台,第二支撑臂支撑第二凸台,以在上下方向上垫高光纤支架,使得光纤支架悬空设置;光纤阵列的光纤插在光纤支架内,透镜组件与光纤支架固定连接后,光纤阵列的光纤与透镜组件内的第一透镜相耦合。
本申请中,光纤支架通过定位柱、定位孔与透镜组件进行定位,透镜组件的第一支撑臂、第二支撑臂对光纤支架进行支撑固定,利用光纤支架的支撑将光纤固定在透镜组件的合适位置,提高了光纤支架与透镜组件的稳固性,使得固定于光纤支架内的光纤不会发生偏移,保证了透镜组件反射的光斑能够按理论值达到光纤的中心,从而提高了光信号的耦合效率;透镜组件的第一支撑臂、第二支撑臂使得光纤支架悬空设置,如此光纤支架下方的电路板上可放置光电芯片、信号线等,提高了电路板上的布局空间。
在本公开的另外一些实施例中,图21为根据一些实施例的一种透镜组件900、光纤支架、芯片保护罩900b的分解示意图。
在一些实施例中,光纤支架内侧固定的光纤包括有第一光纤阵列900a1和第二光纤阵列900a2;第一光纤阵列900a1和第二光纤阵列900a2沿电路板宽度方向并排设置。相对于单纤双向设计而言,本申请中通过第一光纤阵列900a1和第二光纤阵列900a2并排设置,则光发射端和光接收端可通过不用的光纤传输信号,进而可以避免光发射信号和光接收信号之间的串扰;同时,第一光纤阵列900a1和第二光纤阵列900a2沿电路板宽度方向并排设置,可以充分利用电路板宽度方向上的空间,且可以优化光纤阵列的摆放方式。
第一光纤阵列900a1和第二光纤阵列900a2分别由多根光纤组成,其将来自透镜组件900的光传输至光纤适配器,实现对外发出光信号,其将来自光纤适配器的光传输至透镜组件900,实现从光模块外部接收光信号。第一光纤阵列900a1和第二光纤阵列900a2分别与透镜组件900之间具有良好的光耦合结构设计,可以实现光纤阵列与透镜组件900之间的相对固定。示例性地,第一光纤阵列900a1为发射光纤阵列,第二光纤阵列900a2为接收光纤阵列。
光发射芯片发出的光经透镜组件900传输后进入第一光纤阵列900a1中,来自第二光纤阵列900a2的光经透镜组件900传输后进入光接收芯片中,因此透镜组件900在光发射芯片与第一光纤阵列900a1之间建立相互的光连接,在光接收芯片与第二光纤阵列900a2之间建立相互的光连接。
透镜组件900的表面分别形成有第一斜面901、第三斜面903、第五斜面905;第一斜面901、第三斜面903、第五斜面905相对于电路板表面倾斜设置。
第一斜面901相对于电路板表面具有第一预设角度,第三斜面903相对于电路板表面具有第三预设角度,第五斜面905相对于电路板表面具有第五预设角度;第一斜面901、第三斜面903、第五斜面905对光表现出不同的折射或反射特性,通过各个斜面倾斜设置,在不同预设角度的相互配合下,从而改变光信号的传播方向,实现光信号按照一定光路设计进行传输。
第三斜面903与第五斜面905沿电路板宽度方向并排设置,且第三预设角度与第五预设角度不同,第三斜面903与第五斜面905在高度上呈现出一定的高度差,示例性地,第三斜面903表面高度高于第五斜面905表面高度,也就是,第三斜面903与第五斜面905沿电路板宽度方向上有一定错位,呈现出错位设置。
图22为根据一些实施例的一种透镜组件与光电芯片的分解示意图。如图22所示,透镜组件表面分别形成有第一斜面901、第三斜面903、第五斜面905、第一台阶面911、第二台阶面912;透镜组件900罩设于光电芯片900c上,光电芯片900c包括第一光电芯片、第二光电芯片、第三光电芯片、第四光电芯片及第五光电芯片。在一些实施例中,第一光电芯片为第一驱动芯片900c1,第二光电芯片为光发射芯片900c2,第三光电芯片为光监控芯片900c3,第四光电芯片为第二驱动芯片900c4,第五光电芯片为光接收芯片900c5。示例性地,光监控芯片900c3为光功率探测器,用于监控光发射芯片900c2的光发射功率;第一驱动芯片900c1为发射驱动芯片;第二驱动芯片900c4为接收驱动芯片。
第一驱动芯片900c1一端通过高频信号线与电路板表面的金手指电连接,另一端与光发射芯片900c2电连接,电路板300通过金手指向第一驱动芯片900c1输出调制电流和偏置电流,第一驱动芯片900c1在接收到调制电流后产生高频信号,然后将高频信号和偏置电流传输至发射驱动芯片,发射驱动芯片在偏置电流作用下产生光束,然后将高频信号调制至光束中,从而产生光信号。
第二驱动芯片900c4一端通过高频信号线与电路板表面的金手指电连接,另一端与光接收芯片900c5电连接,电路板300通过金手指向第二驱动芯片900c4提供电信号,第二驱动芯片900c4接收到电信号后产生光接收驱动信号,并将光接收驱动信号传输至光接收芯片900c5,光接收芯片900c5在光接收驱动信号作用下将电路板300传输的电信号转换为光信号。
在一些实施例中,光监控芯片900c3与第一驱动芯片900c1分别设于光发射芯片900c2的两侧,第一驱动芯片900c1设于靠近电路板金手指的一侧,这样设置有利于第一驱动芯片900c1与电路板金手指之间高频信号线的走线,减小走线的难度,缩短走线的长度,进而增加高频信号传输性能;光监控芯片900c3设于靠近光纤支架的一侧,也就是靠近光口的一侧;这样不会占用第一驱动芯片900c1的位置,使得金手指与光发射芯片900c2之间有足够的空间置放第一驱动芯片900c1,以及第一驱动芯片900c1与金手指之间的走线。
由于将光监控芯片900c3设于光发射芯片900c2的一侧,使得金手指与光发射芯片900c2之间有足够的空间置放第一驱动芯片900c1,以及第一驱动芯片900c1与金手指之间的走线,因此更适用于多通道光信号的传输。
将光监控芯片900c3与第一驱动芯片900c1分别设于光发射芯片900c2的两侧时,第一光纤阵列900a1至电路板300表面的垂直高度比较高,即光口至电路板300表面的垂直高度比较高,第一光纤阵列900a1至电路板300表面的垂直高度大于第一斜面901至电路板300表面的垂直高度,这样可以保证光发射芯片900c2发射出的光信号一部分比例可以入射至光监控芯片900c3上,同时一部分比例的光信号可以入射至第一光纤阵列900a1内;因此将光监控芯片900c3与第一驱动芯片900c1分别设于光发射芯片900c2的两侧时对光口高度有一定限制性要求,示例性地,第一光纤阵列900a1至电路板300表面的垂直高度可以为2mm等。
在一些实施例中,光口高度较低,此时不适宜将光监控芯片900c3与第一驱动芯片900c1分别设于光发射芯片900c2的两侧。
在一些实施例中,第二台阶面912用于支撑芯片保护罩900b;第一台阶面911与第五斜面905衔接,由于第五斜面905的倾斜角度较大,若没有第一台阶面911与第五斜面905衔接,则造成第五斜面905延伸长度较长,从而造成透镜组件尺寸较大;因此第一台阶面911与第五斜面905衔接有利于减小透镜组件的尺寸。
图23为根据一些实施例的一种透镜组件、光纤支架、芯片保护罩的剖面示意图。如图23所示,透镜组件900罩设于光电芯片900c上;在一些实施例中,第一驱动芯片和第二驱动芯片相对于透镜组件900裸露在外,因此设置芯片保护罩900b以保护裸露在外的芯片;芯片保护罩900b的第一端与电路板300表面连接,第二端与透镜组件900的端部连接。在一些实施例中,第二端具有开口,从开口处插入至透镜组件900的端部,然后与透镜组件900的端部连接;第一端具有避让缺口,以避让第一驱动芯片900c1与金手指之间的走线。示例性地,芯片保护罩900b宽度上的尺寸大于第一驱动芯片和第二驱动芯片的宽度之和,以保护第一驱动芯片和第二驱动芯片。
透镜组件900朝向光纤支架的表面设有第一透镜阵列和第二透镜阵列。第一透镜阵列与第一光纤阵列900a1耦合连接,第二透镜阵列与第二光纤阵列900a2耦合连接。在一些实施例中,第一透镜阵列包括若干发射汇聚透镜,第二透镜阵列包括若干接收准直透镜。
光发射芯片900c2发出的光信号经过传输方向的转折后,进入第一透镜阵列,然后通过第一透镜阵列中的汇聚透镜将光信号进行汇聚后,汇聚到光纤端面进入第一光纤阵列900a1,提高光耦合效率。
第二透镜阵列接收来自于第二光纤阵列900a2的光信号,然后第二透镜阵列中的准直透镜将光信号准直处理,得到平行光,平行光进入透镜组件900中。
图24为根据一些实施例的一种透镜组件的结构图二。如图24所示,透镜组件900的底端分别设第三透镜阵列908和第四透镜阵列909。在一些实施例中,第三透镜阵列908包括若干部发射准直透镜,第四透镜阵列909包括若干接收汇聚透镜。
在一些实施例中,第三透镜阵列908和第四透镜阵列909沿电路板宽度方向错位设置,相应地,光发射芯片900c2和光接收芯片900c5也沿电路板宽度方向错位设置,进而可以避免发射光路与接收光路之间的串扰;由于光路设计导致第三透镜阵列908相对远离于第四透镜阵列909,若将第四透镜阵列909设置为与第三透镜阵列908平齐,则势必会增加接收光路的光程,因此在第三透镜阵列908和第四透镜阵列909沿电路板宽度方向错位设置时,可以缩短接收光路的光程,进而有利于接收光信号的传输。
在一些实施例中,第三透镜阵列908设于光发射芯片900c2与第一斜面901之间,第三透镜阵列908设于第一斜面901在透镜组件900底表面的投影区域上。
在一些实施例中,第四透镜阵列909设于光接收芯片900c5与第五斜面905之间,第四透镜阵列909设于第五斜面905在透镜组件900底表面的投影区域上。
由于光发射芯片900c2发出的光信号为发散光,因此通过第三透镜阵列908将发散光转换为平行光。
第四透镜阵列909将来自于第五斜面905的平行光转换为汇聚光,然后传输至光接收芯片900c5内,提高光耦合效率。
图25为根据一些实施例的一种透镜组件的剖面图一。如图25所示,透镜组件900的表面分别形成有第一斜面901、第二斜面902、第三斜面903、第四斜面904及第五斜面905。这些斜面对光表现出不同的折射或反射特性,在一些实施例中,第一斜面901对光表现出折射及反射,第二斜面902对光表现出折射,第三斜面903对光表现出全反射,第四斜面904对光表现出折射,第五斜面905对光表现出全反射。从实现的功能上看,第一斜面901为分光面;第二斜面902为折射面;第三斜面903为光路转折面,在第三斜面903处将光路转折至第一光纤阵列900a1中;第四斜面904为折射面,使第二分光透过,入射至光监控芯片900c3上;第五斜面905为光路转折面,在第五斜面905处将光路转折至光接收芯片900c5上。
第一斜面901、第二斜面902、第三斜面903、第四斜面904及第五斜面905均为透镜组件900上的一个表面,也就是这些斜面的制成材料与透镜组件900的制成材料均为相同的制成材料;这些斜面相对于电路板表面具有不同的预设角度,这些斜面呈现出不同的倾斜程度,通过各个斜面之间的相互配合改变光的传输方向,进而将光发射芯片900c2发出的光信号发射出去,以及通过光接收芯片900c5接收外部传输过来的光信号。
第一斜面901、第二斜面902、第三斜面903、第四斜面904及第五斜面905均为透镜组件900上的一个表面,从而避免额外贴设反射片或滤波片,从而避免反射面或滤波片脱落问题。
第一斜面901按照一定分光比例将准直光分成第一分光和第二分光;由于第一斜面901的材料特性确定,以及第一预设角度α1大小确定,因此第一斜面901的分光比例比较稳定,在一些实施例中,第一斜面901的分光比例为固定值。
在一些实施例中,通过滤波片、反射面实现分光,这些分光方式表现出的分光比例与激光器光斑大小、分光点尺寸等有关系,所以分光比例会出现一定的波动。
图26为根据一些实施例的一种透镜组件的结构图三。如图26所示,第一斜面901与水平轴线呈第一预设角度α1,水平轴线就是电路板300长度方向上的轴线,则第一斜面901与电路板300长 度方向上的轴线之间的夹角为第一预设角度α1。
第二斜面902与电路板300长度方向上的轴线之间的夹角为第二预设角度α2。
第三斜面903与电路板300长度方向上的轴线之间的夹角为第三预设角度α3。
第四斜面904与电路板300长度方向上的轴线之间的夹角为第四预设角度α4。
在一些实施例中,第一预设角度α1、第二预设角度α2、第三预设角度α3之间具有预设关系,以使一部分比例的发射光信号传输至第一光纤阵列900a1中。
在一些实施例中,第一预设角度α1与第四预设角度α4之间具有预设关系,以使一部分比例的发射光信号传输至光接收芯片900c5上。
在一些实施例中,在透镜组件900表面形成各斜面,且各斜面具有不同的倾斜角度;由于各斜面对光表现出不同的折射或反射特性,在各斜面不同倾斜角度的相互配合下,从而改变光信号的传输方向,将光发射芯片发出的一部分比例光信号传输至光监控芯片900c3,一部分比例光信号传输至第一光纤阵列900a1中发射出去。
图27为根据一些实施例的一种透镜组件的发射光路示意图一;图28为根据一些实施例的一种透镜组件的发射光路示意图二。如图27和图28所示,光发射芯片900c2发出的光信号为发散光,通过第三透镜阵列908中的准直透镜,将发散光转换为准直光,准直光被传输至第一斜面901,准直光在第一斜面901处发生折射和反射,从而准直光在第一斜面901被分为第一分光和第二分光,第一分光传输至第二斜面902,第一分光在第二斜面902处发生折射,从而将第一分光传输至第三斜面903,第一分光在第三斜面903处发生全反射,从而将第一分光传输至第一透镜阵列处,经过第一透镜阵列中的汇聚透镜汇聚处理后,将准直光转换为汇聚光,汇聚光传输至第一光纤阵列900a1,从而将第一光纤阵列900a1传输出去。
当然,除了上述第一分光经由第二斜面902、第三斜面903进入第一透镜阵列和第一光纤阵列900a1的方式。还可以采用如下方式,例如,将第二斜面902取消,在第三斜面903的上方一体形成部分第一透镜阵列,以使新形成的部分第一透镜阵列表面形成第三斜面903,那么,从第一斜面901出来后的第一分光首先经过空气,然后直接到达第三斜面903被反射,最终进入第一透镜阵列以及第一光纤阵列900a1中,即,使得第一分光的光路由倾斜方向转变为水平方向并最终进入第一光纤阵列900a1中。
相较于上述取消第二斜面902的设置方式,采用图27和图28的方式,从整体来看,透镜组件900表面上的第一斜面901、第二斜面902和第三斜面903均朝向同一方向外露,即透镜组件900的实体结构位于同一侧,该种设置便于透镜组件900的制作,例如,采用模压成型工艺制作透镜组件900,便于模具的制作,以及对放置于模具中的熔融状态的光学玻璃材料进行加压成形,从而提高透镜组件900的品质,以及提高透镜组件900的生产效率。
第二分光被反射至第四斜面904上,第二分光在第四斜面904表面发生折射,从而将第二分光传输至光监控芯片900c3上。
在一些实施例中,第四斜面904上设置有汇聚透镜,第二分光经该汇聚透镜后由平行光转化为汇聚光,以汇聚光的姿态入射至光监控芯片900c3上。
在一些实施例中,第四斜面904上可以不设置汇聚透镜,第二分光以平行光的姿态入射至光监控芯片900c3上,此时光监控芯片900c3上的入光面面积大于第二分光以平行光的姿态入射时的光束直径。
在一些实施例中,第一预设角度α1与第四预设角度α4之间具有一定关系,使得第二分光在第四斜面904表面发生折射时传输方向没有发生改变,也就是第二分光在第四斜面904表面透射出去,透射至光监控芯片900c3内。
在一些实施例中,第一预设角度α1与第四预设角度α4之间具有一定关系,使得第二分光在第四斜面904表面发生折射时传输方向发生改变,从而将第二分光传输至光监控芯片900c3内。
本申请中,第二分光在第三斜面903位置处发生全反射后,直接经过透镜组件内部介质传输至第一光纤阵列900a中,避免第二分光在第三斜面903与第一光纤阵列900a之间经过其他形式的反射等,进而避免光返回至光发射芯片900c2,从而保证光发射芯片900c2所发射信号的质量;同时还可以保证第二分光的发射光功率。
在一些实施例中,光信号在发生全反射后,在空气中传播后进入至透镜组件内部介质,然后经过透镜组件内部介质传输至第一光纤阵列900a中,则光信号在空气与介质的交界面会发生一定的反射,反射回光发射芯片900c2,从而影响光发射芯片900c2所发射信号的质量。
图29为根据一些实施例的一种透镜组件的光路设计原理图一。如图29所示,在一些实施例中,通过控制第一预设角度α1的大小,可以控制反射光的传输方向,进而使反射光入射至光监控芯片。
在一些实施例中,第一预设角度α1的范围为10°~38°;若第一预设角度α1太小,则无法将光发射芯片发出光信号的发射光路与在第一斜面901上的反射光路分开,容易造成光路的串扰;若第一预设角度α1太大,则光发射芯片发出光信号会在第一斜面901表面发生全反射,光信号全部进入光监控芯片900c3内,不能实现分光。
在一些实施例中,第一预设角度α1与第四预设角度α4之间具有一定关系,使得第二分光在第四斜面904表面发生折射时传输方向没有发生改变,也就是第二分光在第四斜面904表面透射出去,透射至光监控芯片900c3内。
在一些实施例中,光发射芯片900c2的中心与光监控芯片900c3的中心之间的距离为L;第一斜面901与水平轴线之间的夹角为第一预设角度α1,光发射芯片900c2的发出的光信号在第一斜面901表面的入射光与反射光之间的夹角为θ,根据几何关系推导,θ=2α1。
第四斜面904与水平轴线之间的夹角为第四预设角度α4,根据几何关系推导,当α4=2α1时,发射光信号在第一斜面901表面的反射光垂直入射至第四斜面904表面。
在一些实施例中,第一预设角度α1确定时,则光发射芯片发出光信号与第一斜面901之间的交点确定,即经过准直透镜的准直光与第一斜面901之间的交点确定,且在第一斜面901上的反射光传输方向确定;第四预设角度α4确定时,则在第一斜面901上的反射光与第四预设角度α4之间的交点确定,则光发射芯片发出光信号与第一斜面901之间的交点至反射光与第四预设角度α4之间的交点之间的垂直距离是确定的,该垂直距离被称为H1。
反射光与第四预设角度α4之间的交点至中心轴的垂直距离为H2,此处的中心轴为第三透镜阵列中的汇聚透镜的中心轴,该垂直距离H2也是确定数值。
第三透镜阵列中的汇聚透镜的焦距指的是从其中心轴至光发射芯片表面的距离,该距离被称为F,由于汇聚透镜的焦距是确定的,因此距离F是确定的。
在一些实施例中,光发射芯片900c2的中心与光监控芯片900c3的中心之间的距离为L=(H1+H2+F)*tanθ,也就是,L=(H1+H2+F)*tan2α1;因此当满足条件:α4=2α1,且L=(H1+H2+F)*tan2α1时,在第一斜面901上的反射光垂直入射至光监控芯片900c3上。其中,满足α4=2α1这一条件可以使得在第一斜面901上的反射光垂直入射至第四斜面904上,满足L=(H1+H2+F)*tan2α1这一条件可以使在第一斜面901上的反射光从第四斜面904射出后,到达光监控芯片900c3上。
图30为根据一些实施例的一种透镜组件的光路设计原理图二。如图30所示,在一些实施例中,第二分光在第四斜面904表面发射折射时传输方向发生改变,从而将第二分光传输至光监控芯片900c3内。
光发射芯片发出光信号与第一斜面901之间的交点至反射光与第四预设角度α4之间的交点之间的垂直距离为H1。
反射光与第四预设角度α4之间的交点至中心轴的垂直距离为H2。
从汇聚透镜中心轴至光发射芯片表面的距离为F,F为汇聚透镜的焦距。
光发射芯片900c2的中心与光监控芯片900c3的中心之间的距离为L=L1+L2。
其中,L1=H1*tanθ,由于θ=2α1,因此,L1=H1*tan2α1。
其中,L2=(H2+F)*tanω。角度ω为第四斜面904的折射光纤与竖直轴线之间的夹角。
第四斜面904的法线与水平轴线之间的夹角为λ1,在第一斜面901上的反射光与第四斜面904的法线之间的夹角为λ2,λ2也就是第四斜面904的入射角。
第四斜面904的折射角为λ3,λ2与λ3之间满足折射定律,n*sinλ2=1*sinλ3,“1”指的是空气的折射率,n为透镜组件900的折射率;因此,sinλ3=n*sinλ2。
第四斜面904的法线与竖直轴线之间的夹角为λ4。
根据几何关系可知,将θ=2α1,带入,可得到,
将λ2=α4-2α1带入到sinλ3=n*sinλ2中,得到:sinλ3=n*sin(α4-2α1),因此λ3=arcsin[n*sin(α4-2α1)]。
根据几何关系可知,λ4=α4。
则ω=λ4-λ3=α4-arcsin[n*sin(α4-2α1)]。
因此,L2=(H2+F)*tanω=(H2+F)*tan{α4-arcsin[n*sin(α4-2α1)]}。
则光发射芯片900c2的中心与光监控芯片900c3的中心之间的距离为L需满足:L=L1+L2=H1*tan2α1+(H2+F)*tan{α4-arcsin[n*sin(α4-2α1)]}这一条件,此时,第二分光在第四斜面904表面发射折射时传输方向发生改变,从而将第二分光传输至光监控芯片900c3内。
因此,当L=L1+L2=H1*tan2α1+(H2+F)*tan{α4-arcsin[n*sin(α4-2α1)]}时,第二分光在第四斜面904表面发射折射时传输方向发生改变,从而将第二分光传输至光监控芯片900c3内。
图31为根据一些实施例的一种透镜组件的光路设计原理图三。如图31所示,在一些实施例中,第一分光的传输方向由垂直入射改变为水平方向,进而使第一分光进入至第一光纤阵列900a1中,从而发射出去。
在一些实施例中,第一预设角度α1、第二预设角度α2及第三预设角度α3需满足一定关系才可以使得第一分光的传输方向由垂直入射改变为水平方向,且在第三斜面903表面发生全反射。
光发射芯片发出光信号与第一斜面901法线之间的夹角为γ1,根据几何关系可知,γ1=α1,α1为前述的第一预设角度α1。
第一斜面901上的折射角为γ2,根据折射定律可知,n*sinγ1=sinγ2,即n*sinα1=sinγ2则γ2=arcsin(n*sinα1)。
第一斜面901表面射出的折射光与第一斜面901之间的夹角为γ3,第一斜面901与第二斜面902之间的夹角为β,根据几何关系可知:
β=α1+α2    (1)
根据几何关系可知:
根据几何关系可知:
γ4=π-β-γ3    (3)
将关系式(1)、关系式(2)带入到关系式(3)中得到:
其中,γ4为第一斜面901射出折射光与第二斜面902之间的夹角。
根据几何关系可知:
其中,γ5为第二斜面902的入射角。
将关系式(4)带入到关系式(5)中得到:
根据折射定律可知,sinγ5=nsinγ6,γ6为第二斜面902的折射角;则sinγ6=n/sinγ5=n/sin[(α1+α2)-arcsin(n*sinα1)],将关系式(6)带入其中,得到:
γ6=arcsin{n/sin[(α1+α2)-arcsin(n*sinα1)]}  (7)
根据几何关系可知:
其中,γ7为第二斜面902处折射光与第二斜面902的夹角。
将关系式(7)带入到关系式(8)中得到:
根据几何关系可知:
γ8=π-(α2+α3)-γ7   (10)
其中,γ8为第三斜面903的入射光与第三斜面903之间的夹角。
将关系式(9)带入关系式(10)中得到:
根据几何关系可知:
其中,γ9为第三斜面903的入射角。
将关系式(11)带入关系式(12)中得到:
在本申请的一些实施例中,第一分光需在第三斜面903处发生全反射,因此γ9应大于或等于透镜组件900的全反射临界角。
全反射临界角指的是折射角为90°使的入射角,用C表示,则sinC=1/n,n为透镜组件900的折射率,全反射临界角C=arcsin(1/n)。
则γ9大于或等于arcsin(1/n),即,π+(α2+α3)-arcsin{n/sin[(α1+α2)-arcsin(n*sinα1)]}大于或等于arcsin(1/n)。
在本申请的一些实施例中,当第一预设角度α1、第二预设角度α2及第三预设角度α3三者之间满足关系:π+(α2+α3)-arcsin{n/sin[(α1+α2)-arcsin(n*sinα1)]}≥arcsin(1/n)时,可以使得第一分光的传输方向由垂直入射改变为水平方向,然后在第三斜面903表面发生全反射。满足上述条件的第一预设角度α1、第二预设角度α2及第三预设角度α3具有多种组合形式,当确定了第一预设角度α1、第二预设角度α2,第三预设角度α3随之确定。
在本申请的一些实施例中,透镜组件900中,第一预设角度α1、第二预设角度α2及第三预设角度α3满足一定的关系,第一预设角度α1与第四预设角度α4之间满足一定的关系,因此,透镜组件900为具有特定斜面的透镜组件,通过各斜面不同倾斜角度的相互配合,从而改变光信号的传输方向,将光发射芯片发出的一部分比例光信号传输至光监控芯片,一部分比例光信号传输至第一光纤阵列中发射出去。
图32为根据一些实施例的一种透镜组件的剖面图二。如图32所示,第五斜面905呈现一定程度的倾斜,在一些实施例中,第二斜面902与电路板300长度方向上的轴线之间的夹角为第五预设角度α5。
图33为根据一些实施例的一种透镜组件的接收光路示意图一;图34为根据一些实施例的一种透镜组件的接收光路示意图二。如图33和图34所示,来自于第二光纤阵列的光信号传输至第五斜面905,经过第五斜面905的反射后,传输至光接收芯片900c5。
来自于第二光纤阵列的光信号通过第二透镜阵列中的准直透镜处理后,转换为准直光,准直光经过第五斜面905的反射后向下传输,准直光通过第四透镜阵列909中的汇聚透镜处理后,转换为汇聚光,传输至光接收芯片900c5。
在一些实施例中,为了保证光接收功率,来自于第二光纤阵列的光信号传输至第五斜面905时,应在第五斜面905处发生全反射。
在一些实施例中,来自于第二光纤阵列的光信号传输至第五斜面905出的入射角为μ,根据几何关系可知,为了使来自于第二光纤阵列的光信号传输至第五斜面905处发生全反射,入射角为μ应大于或等于透镜组件900的全反射临界角。
全反射临界角指的是折射角为90°使的入射角,用C表示,则sinC=1/n,n为透镜组件900的折射率,全反射临界角C=arcsin(1/n)。
也就是,因此在本申请的一些实施例中,第五预设角度α5应满足条件:
在一些实施例中,第五预设角度α5可以为45°,这样光信号水平入射至第五斜面905上,然后通过第五斜面905的光路转折后,垂直入射至光接收芯片900c5上。
图35为根据一些实施例的一种透镜组件的接收光路示意图三。如图35所示,在一些实施例中,第五预设角度也可以非45°,这样光信号水平入射至第五斜面905上,然后通过第五斜面905的光路转折,并非垂直入射至光接收芯片900c5上,而是倾斜入射至光接收芯片900c5上,进而避免光接收芯片900c5的反射光沿原路返回,从而降低对光发射端发射光信号的干扰。
在本申请的一些实施例中,第一光纤阵列900a1和第二光纤阵列900a2处于同一高度,则分别经第三斜面903和第五斜面905转折后的平行光在水平方向方向上处于同一高度,且光发射芯片和光接收芯片也处于同一高度,因此从第一光纤阵列900a1至光发射芯片的垂直高度与第二光纤阵列900a2至光接收芯片的垂直高度相同。由于发射光信号依次经过第一斜面901、第二斜面902及第三斜面903改变传输方向,而接收光信号只经过第五斜面905的转折,因此在一些实施例中,第三斜面903的倾斜角度与第五斜面905的倾斜角度不同,也就是第三预设角度α3与第五预设角度α5不同,此时才可以实现第一斜面901、第二斜面902及第三斜面903改变光路传输方向的综合角度与第五斜面905改变光路传输方向的角度相同,进而实现分别经第三斜面903和第五斜面905转折后的平行光在水平方向方向上处于同一高度。
在一些实施例中,第三斜面903与第五斜面905沿电路板宽度方向上有一定错位,呈现出错位设置。
在一些实施例中,第三预设角度α3小于第五预设角度α5。
在一些实施例中,第一光纤阵列900a1和第二光纤阵列900a2沿电路板宽度方向并排设置,第三斜面903与第五斜面905沿电路板宽度方向并排设置,且第三预设角度α3小于第五预设角度α5,从而实现多通道光信号的发射与接收。
在一些实施例中,发射光信号在第三斜面903发射出去的位置相对较高,位于第三斜面903的中心轴偏上位置去,接收光信号在第五斜面905耦合的位置相对于较低,位于第五斜面905的中心轴位置。
在一些实施例中,第一光纤阵列900a1和第二光纤阵列900a2处于同一高度,由于光发射经历多次折返,造成第三斜面903的高度高于第五斜面905高度,此时通过斜面倾斜角度上的弥补配合,即三预设角度α3小于第五预设角度α5,从而使得光发射光信号与光接收光信号分别可以耦合至处于同一高度上第一光纤阵列900a1和第二光纤阵列900a2。
本申请在透镜组件表面形成各斜面,且各斜面具有不同的倾斜角度;由于各斜面对光表现出不同的折射或反射特性,在各斜面不同倾斜角度的相互配合下,从而改变光信号的传输方向,将光发射芯片发出的一部分比例光信号传输至光监控芯片,一部分比例光信号传输至第一光纤阵列中发射出去;同时,本申请将第一光纤阵列与第二光纤阵列沿电路板宽度方向并排设置,将第三斜面与第五斜面沿电路板宽度方向并排设置,光发射芯片与光接收芯片沿电路板宽度方向并排设置,结构紧凑,从而实现多通道光信号的发射与接收。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光模块,包括:
    电路板,其上设置有光电芯片;
    光纤支架,其内插有光纤,其一端的侧面上设置有定位孔;
    透镜组件,罩设于所述光电芯片上;
    其中,所述光纤支架上设置有凸台,所述凸台与所述电路板表面之间存在间隙;所述透镜组件一端的侧面上设置有定位柱与支撑臂,所述定位柱与所述定位孔相对应设置;所述支撑臂由所述侧面向所述光纤支架的方向延伸,所述支撑臂支撑所述凸台;所述侧面上设置有凹槽,所述凹槽凹陷于所述侧面,所述凹槽内设置有第一透镜,所述光纤与所述第一透镜耦合对接;
    和/或,所述光电芯片包括光监控芯片、光发射芯片及光接收芯片;所述光纤包括第一光纤阵列和第二光纤阵列,所述第一光纤阵列与第二光纤阵列沿所述电路板宽度方向并排设置,且处于同一高度;所述透镜组件与所述光纤支架连接,表面分别形成有:
    第一斜面,与所述电路板长度方向的轴线具有第一预设角度,用于接收所述光发射芯片发出的光信号,并将所述光信号分成第一分光和第二分光;
    第二斜面,与所述电路板长度方向的轴线具有第二预设角度,且一端与所述第一斜面连接,用于接收并传输所述第一分光;
    第三斜面,与所述电路板长度方向的轴线具有第三预设角度,且与所述第二斜面的另一端连接,用于接收来自于所述第二斜面的所述第一分光,并通过所述第三预设角度、所述第二预设角度与所述第一预设角度之间的相互配合,改变所述第一分光的传输方向,以将所述第一分光传输至所述第一光纤阵列;
    第四斜面,与所述电路板长度方向的轴线具有第四预设角度,用于接收所述第二分光,并通过所述第四预设角度与所述第一预设角度的相互配合,将所述第二分光传输至所述光监控芯片;
    第五斜面,与所述电路板长度方向的轴线具有第五预设角度,所述第五斜面表面高度与所述第三斜面表面高度不同,所述第五预设角度与所述第三预设角度不同,且所述第五斜面与所述第三斜面沿所述电路板宽度方向设置,用于接收所述第二光纤阵列传输的光信号,并改变所述光信号的传输方向,以将所述光信号传输至所述光接收芯片。
  2. 根据权利要求1所述的光模块,其中,所述透镜组件包括限位壁、第一侧壁与第二侧壁,所述限位壁朝向所述光纤支架,所述第一侧壁与所述第二侧壁相对设置;
    所述定位柱、所述凹槽设置于所述限位壁上,所述定位柱位于所述凹槽的外周。
  3. 根据权利要求2所述的光模块,其中,所述支撑臂包括第一支撑臂与第二支撑臂,所述第一支撑臂与所述第二支撑臂相对设置,所述定位柱位于所述第一支撑臂与所述第二支撑臂之间;所述第一支撑臂由所述限位壁向所述光纤支架的方向延伸,所述第一支撑臂的外侧面与所述第一侧壁相平齐;
    所述第二支撑臂由所述限位壁向所述光纤支架的方向延伸,所述第二支撑臂的外侧面与所述第二侧壁相平齐。
  4. 根据权利要求3所述的光模块,其中,所述第一支撑臂的一端设置有第一支撑台,所述第一支撑台的底面与所述电路板表面连接,所述第一支撑臂与所述电路板表面之间具有间隙;
    所述第二支撑臂的一端设置有第二支撑台,所述第二支撑台的底面与所述电路板表面连接,所述第二支撑臂与所述电路板表面之间具有间隙。
  5. 根据权利要求3所述的光模块,其中,所述光纤支架包括第一侧面、第二侧面、第三侧面与第四侧面,所述第一侧面朝向所述透镜组件,所述第四侧面与所述第一侧面相对设置,所述定位孔贯穿所述第一侧面与所述第四侧面;
    所述第三侧面与所述第四侧面相对设置,所述第一侧面的两端分别与所述第三侧面、所述第四侧面连接;所述第三侧面上设置有向外突出的第一凸台,所述第四侧面上设置有向外突出的第二凸台。
  6. 根据权利要求5所述的光模块,其中,所述光纤支架还包括第五侧面与第六侧面,所述第五侧面凹陷于所述第二侧面,所述第五侧面通过第一连接面与所述第二侧面连接;所述第一凸台由所述第五侧面向外突出;
    所述第六侧面凹陷于所述第三侧面,所述第六侧面通过第二连接面与所述第三侧面连接;所述第二凸台由所述第六侧面向外突出。
  7. 根据权利要求6所述的光模块,其中,所述第一凸台包括第一表面、第二表面、第三表面与第四表面,所述第一表面与所述光纤支架的顶面相对设置,所述第一表面凹陷于所述光纤支架的底面;
    所述第二表面与所述第五侧面相对设置,所述第二表面突出于所述第二侧面;所述第四表面与所述第一侧面相平齐,所述第三表面与所述第四表面相对设置。
  8. 根据权利要求7所述的光模块,其中,所述第二凸台包括第一面、第二面、第三面与第四面,所述第一面与所述光纤支架的顶面相对设置,所述第一面凹陷于所述光纤支架的底面;
    所述第二面与所述第六侧面相对设置,所述第二面突出于所述第三侧面;所述第四面与所述第一侧面相平齐,所述第三面与所述第四面相对设置。
  9. 根据权利要求8所述的光模块,其中,所述第一支撑臂的顶面与所述第一表面支撑连接,所述第一支撑臂的内侧壁与所述第二侧面接触连接;
    所述第二支撑臂的顶面与所述第一面支撑连接,所述第二支撑臂的内侧壁与所述第三侧面接触连接。
  10. 根据权利要求1所述的光模块,其中,所述光纤支架的底面与所述电路板表面之间的间隙尺寸大于或等于所述光电芯片的高度+0.07mm。
  11. 根据权利要求1所述的光模块,其中,所述透镜组件表面分别设有第一透镜阵列和第二透镜阵列;
    在所述光发射芯片与所述第一斜面之间设有第三透镜阵列,所述第三透镜阵列设于所述第一斜面在所述透镜组件底表面的投影上,所述第三透镜阵列包括若干准直透镜,所述准直透镜用于将所述光发射信号发出的光信号转化为准直光;
    在所述光接收芯片与所述第五斜面之间设有第四透镜阵列,所述第四透镜阵列设于所述第五斜面在所述透镜组件底表面的投影上。
  12. 根据权利要求11所述的光模块,其中,所述第一透镜阵列至所述电路板表面的垂直高度大于所述第一斜面至所述电路板表面的垂直高度。
  13. 根据权利要求11所述的光模块,其中,所述第一预设角度与所述第四预设角度之间满足:α4=2α1,且L=(H1+H2+F)*tan2α1;其中,α1为所述第一预设角度,α4为所述第四预设角度,L为所述光发射芯片至所述光监控芯片之间的距离,H1为所述准直光与所述第一斜面的交点至所述第二分光与所述第四斜面的交点的垂直距离,H2为所述第二分光与所述第四斜面的交点至所述准直透镜中心轴的垂直距离,F为所述准直透镜的焦距。
  14. 根据权利要求11所述的光模块,其中,所述第一预设角度与所述第四预设角度之间满足:L=H1*tan2α1+(H2+F)*tan{α4-arcsin[n*sin(α4-2α1)]};其中,α1为所述第一预设角度,α4为所述第四预设角度,L为所述光发射芯片至所述光监控芯片之间的距离,H1为所述准直光与所述第一斜面的交点至所述第二分光与所述第四斜面的交点的垂直距离,H2为所述第二分光与所述第四斜面的交点至所述准直透镜中心轴的垂直距离,F为所述准直透镜的焦距。
  15. 根据权利要求1所述的光模块,其中,所述第一预设角度、所述第二预设角度及所述第三预设角度之间满足:π+(α2+α3)-arcsin{n/sin[(α1+α2)-arcsin(n*sinα1)]}≥arcsin(1/n),其中,α1为所述第一预设角度,α2为所述第二预设角度,α3为所述第三预设角度,n为透镜组件的折射率。
  16. 根据权利要求1所述的光模块,其中,所述电路板表面还设有第一驱动芯片及第二驱动芯片;
    所述光发射芯片设于所述第一驱动芯片与所述光监控芯片之间;
    所述光接收芯片设于所述第二驱动芯片的一侧。
  17. 根据权利要求16所述的光模块,其中,所述光模块还包括芯片保护罩;
    所述芯片保护罩设于所述第一驱动芯片和第二驱动芯片相对于所述透镜组件裸露的表面上。
  18. 根据权利要求1所述的光模块,其中,所述第三预设角度小于所述第五预设角度。
  19. 根据权利要求1所述的光模块,其中,所述第三斜面与所述第五斜面错位设置。
PCT/CN2023/118273 2022-11-09 2023-09-12 光模块 WO2024098945A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211401103.X 2022-11-09
CN202211401103.XA CN118011569A (zh) 2022-11-09 2022-11-09 一种光模块
CN202310802982 2023-06-30
CN202310802982.5 2023-06-30

Publications (1)

Publication Number Publication Date
WO2024098945A1 true WO2024098945A1 (zh) 2024-05-16

Family

ID=91031889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118273 WO2024098945A1 (zh) 2022-11-09 2023-09-12 光模块

Country Status (1)

Country Link
WO (1) WO2024098945A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140226988A1 (en) * 2013-02-12 2014-08-14 Avago Technologies General Ip (Singapore) Pte. Ltd Bidirectional optical data communications module having reflective lens
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
WO2021109776A1 (zh) * 2019-12-03 2021-06-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN113484960A (zh) * 2021-06-25 2021-10-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN215575818U (zh) * 2021-08-31 2022-01-18 昂纳信息技术(深圳)有限公司 一种耦合装置及光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140226988A1 (en) * 2013-02-12 2014-08-14 Avago Technologies General Ip (Singapore) Pte. Ltd Bidirectional optical data communications module having reflective lens
WO2021109776A1 (zh) * 2019-12-03 2021-06-10 青岛海信宽带多媒体技术有限公司 一种光模块
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
CN113484960A (zh) * 2021-06-25 2021-10-08 青岛海信宽带多媒体技术有限公司 一种光模块
CN215575818U (zh) * 2021-08-31 2022-01-18 昂纳信息技术(深圳)有限公司 一种耦合装置及光模块

Similar Documents

Publication Publication Date Title
WO2021012591A1 (zh) 一种单纤双向多模波分复用光电转换装置及制备方法
CN111458815A (zh) 一种光模块
WO2021223448A1 (zh) 一种光模块
CN116897308A (zh) 光模块
CN115097579A (zh) 光模块
WO2022057621A1 (zh) 一种光模块
KR101266616B1 (ko) 광전 배선 모듈
WO2022267805A1 (zh) 光模块
CN117170041A (zh) 一种光模块
WO2024066092A1 (zh) 光模块
WO2023035711A1 (zh) 光模块
WO2022267829A1 (zh) 一种光模块
CN217606135U (zh) 光模块
CN216526414U (zh) 一种光模块
CN217606136U (zh) 光模块
CN217443588U (zh) 一种光模块
WO2024098945A1 (zh) 光模块
CN217521402U (zh) 光模块
CN116381872A (zh) 一种光模块
CN214795316U (zh) 一种光模块
WO2021232862A1 (zh) 一种光模块
CN114895411A (zh) 光模块
WO2024192951A1 (zh) 光模块
CN111983759A (zh) 一种光模块
WO2024198234A1 (zh) 光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887639

Country of ref document: EP

Kind code of ref document: A1