WO2024098920A1 - 背接触太阳能电池及其制备方法、光伏组件 - Google Patents
背接触太阳能电池及其制备方法、光伏组件 Download PDFInfo
- Publication number
- WO2024098920A1 WO2024098920A1 PCT/CN2023/116800 CN2023116800W WO2024098920A1 WO 2024098920 A1 WO2024098920 A1 WO 2024098920A1 CN 2023116800 W CN2023116800 W CN 2023116800W WO 2024098920 A1 WO2024098920 A1 WO 2024098920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- insulating layer
- layer
- silicon substrate
- exposed
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 239000004065 semiconductor Substances 0.000 claims abstract description 429
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 162
- 239000010703 silicon Substances 0.000 claims abstract description 162
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 161
- 239000000758 substrate Substances 0.000 claims abstract description 146
- 239000010410 layer Substances 0.000 claims description 876
- 238000000034 method Methods 0.000 claims description 70
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 12
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 12
- 239000002356 single layer Substances 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 32
- 238000009413 insulation Methods 0.000 abstract description 14
- 230000002787 reinforcement Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 68
- 238000002161 passivation Methods 0.000 description 16
- 238000010329 laser etching Methods 0.000 description 15
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 14
- 239000003513 alkali Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000003486 chemical etching Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000005530 etching Methods 0.000 description 9
- 238000001039 wet etching Methods 0.000 description 9
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- -1 FTO Chemical class 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910001512 metal fluoride Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- H01L31/02167—
-
- H01L31/022441—
-
- H01L31/1868—
Definitions
- the present application relates to the field of photovoltaic technology, and in particular to back-contact solar cells and preparation methods thereof, and photovoltaic modules.
- Back-contact heterojunction solar cells make the grid lines and pn junctions on the back of the cell, which reduces grid line shading and optical absorption of amorphous silicon, increases the light-input effect of the cell, and makes the cell have a high short-circuit current.
- amorphous silicon is used as the first intrinsic semiconductor layer, the carrier recombination at the interface is reduced, making the cell have a high open-circuit voltage. Therefore, back-contact heterojunction solar cells have a high photoelectric conversion efficiency and have broad application prospects.
- the present application provides a back-contact solar cell and a preparation method thereof, and a photovoltaic module, aiming to solve the problem of leakage between different types of conductive semiconductor layers of a back-contact heterojunction solar cell.
- a back-contact solar cell comprising: a silicon substrate, the silicon substrate comprising a first surface, the back-contact solar cell further comprising a first semiconductor layer, a second semiconductor layer, and a first insulating layer located on the first surface of the silicon substrate;
- the first part of the second semiconductor layer and the first semiconductor layer are alternately arranged along a first direction parallel to the first surface with a gap therebetween, and the second part of the second semiconductor layer is continuous with the first part and extends along a second direction perpendicular to the first surface to a side of the first semiconductor layer away from the silicon substrate;
- the first semiconductor layer includes a first intrinsic semiconductor layer and a first conductive semiconductor layer stacked away from the silicon substrate, and the second semiconductor layer includes a second intrinsic semiconductor layer and a second conductive semiconductor layer stacked away from the silicon substrate; the first conductive semiconductor layer and the second conductive semiconductor layer have opposite conductivity types;
- the first insulating layer is at least located in the gap, and the first insulating layer is close to an end portion of the first conductive semiconductor layer.
- the first insulating layer in addition to the second intrinsic semiconductor layer having a passivation and insulation effect between the first conductive semiconductor layer and the second conductive semiconductor layer of opposite conductivity type, there is also a first insulating layer in the gap between the first conductive semiconductor layer and the second conductive semiconductor layer along the first direction parallel to the first surface.
- the first insulating layer has a passivation effect and a good insulation reinforcement effect on the first conductive semiconductor layer and the second conductive semiconductor layer.
- the first insulating layer extends in the gap along the second direction to a side of the first semiconductor layer away from the silicon substrate.
- the method further includes: a second insulating layer located on a side of the first semiconductor layer away from the silicon substrate along the second direction; and the first insulating layer extending along the second direction to a side of the second insulating layer away from the silicon substrate.
- one end of the first insulating layer extends along the first direction on a side of the first semiconductor layer away from the silicon substrate, and the other end of the first insulating layer extends along the first direction in the gap.
- one end of the first insulating layer extends in the gap along the second direction, and the other end of the first insulating layer extends along the first direction on a side of the first semiconductor layer away from the silicon substrate.
- one end of the first insulating layer extends in the gap along the second direction, and the other end of the first insulating layer extends along the first direction on a side of the second insulating layer away from the silicon substrate;
- One end of the second insulating layer extends along the first direction on a side of the first semiconductor layer away from the silicon substrate, and the other end of the second insulating layer extends along the first direction in the gap.
- the first insulating layer is only located in the gap, one end of the first insulating layer extends along the first direction on the first surface, and the other end of the first insulating layer extends along the second direction;
- the back-contact solar cell further includes: a second insulating layer located along the second direction on a side of the first semiconductor layer away from the silicon substrate; and the second portion extends along the second direction to a side of the second insulating layer away from the silicon substrate.
- the first insulating layer is only located in the gap, and the first insulating layer extends along the second direction on the first surface;
- the back-contact solar cell further includes: a second insulating layer located along the second direction on a side of the first semiconductor layer away from the silicon substrate; and the second portion extends along the second direction to a side of the second insulating layer away from the silicon substrate.
- a material of the second insulating layer is selected from at least one of intrinsic amorphous silicon, silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide.
- a material of the first insulating layer is selected from at least one of intrinsic amorphous silicon, silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide.
- the thickness of the first insulating layer is greater than the thickness of the second intrinsic semiconductor layer.
- an area on the first surface corresponding to a position in the first part other than the gap has a suede structure.
- the first insulating layer is a single layer or a laminated structure
- the second insulating layer is a single-layer or stacked-layer structure.
- a second aspect of the present application provides a method for preparing a back-contact solar cell, comprising:
- a first semiconductor layer is disposed on a first surface of the silicon substrate; the first semiconductor layer includes a first intrinsic semiconductor layer and a first conductive semiconductor layer stacked away from the silicon substrate;
- first insulating layer at least on the exposed first region near an end of the first conductive semiconductor layer, so that the remaining portion of the first region is exposed again;
- a first portion of a second semiconductor layer is formed at the remaining position that is exposed again, and a second portion of the second semiconductor layer that is continuous with the first portion and covers the first insulating layer and extends onto a portion of the first semiconductor layer in a direction away from the silicon substrate is formed;
- the second semiconductor layer includes a second intrinsic semiconductor layer and a second conductive semiconductor layer stacked in a direction away from the silicon substrate; the first conductive semiconductor layer and the second conductive semiconductor layer have opposite conductivity types.
- the first insulating layer is formed at least on the exposed first region near the end position of the first conductive semiconductor layer so that the rest of the first region is exposed again, including: setting the first insulating layer on the exposed first region and the entire surface of the remaining first semiconductor layer, removing part of the first insulating layer on the first region away from the end position of the first conductive semiconductor layer and the entire first insulating layer on the first semiconductor layer, and retaining only the first insulating layer on the first region near the end position of the first conductive semiconductor layer, so that the rest of the first region is exposed again and the first semiconductor layer is completely exposed.
- the first insulating layer is formed at least on the exposed first region near the end position of the first conductive semiconductor layer so that the rest of the first region is exposed again, including: setting the first insulating layer on the exposed first region and the entire surface of the remaining first semiconductor layer, removing part of the first insulating layer on the first region away from the end position of the first conductive semiconductor layer and part of the first insulating layer on the first semiconductor layer, retaining the first insulating layer on the first region near the end position of the first conductive semiconductor layer and part of the first insulating layer on the first semiconductor layer, so that the rest of the first region is exposed again, and part of the first semiconductor layer is exposed.
- the method further includes: setting a second insulating layer on the first semiconductor layer; removing a portion of the first semiconductor layer to expose the first area of the first surface includes: removing a portion of the second insulating layer and a portion of the first semiconductor layer in sequence to expose the first area of the first surface.
- forming a first insulating layer at least on the exposed first region near an end of the first conductive semiconductor layer so that the rest of the first region is exposed again comprises: providing the first insulating layer entirely on the exposed first region and on the remaining second insulating layer, and removing a portion of the first insulating layer on the first region away from the end of the first conductive semiconductor layer so that the rest of the first region is exposed again;
- the method of forming a first portion of the second semiconductor layer on the remaining position exposed again, and forming a second portion of the second semiconductor layer continuous with the first portion and covering the first insulating layer and extending onto a portion of the first semiconductor layer in a direction away from the silicon substrate comprises: providing the second semiconductor layer entirely on the remaining position exposed again and on the remaining first insulating layer;
- the method further comprises: on the remaining second semiconductor layer and the exposed first semiconductor layer A transparent conductive layer is disposed on the top;
- a first electrode is disposed on the transparent conductive layer corresponding to the exposed first semiconductor layer, and a second electrode is disposed on the transparent conductive layer corresponding to the first portion.
- the forming of the second portion of the second semiconductor layer that is continuous with the first portion and covers the first insulating layer and extends to a portion of the first semiconductor layer in a direction away from the silicon substrate comprises: forming the second portion of the second semiconductor layer that is continuous with the first portion and covers the remaining first insulating layer and extends to a portion of the exposed first semiconductor layer in a direction away from the silicon substrate;
- the method further includes: removing the area of the second portion located on the exposed first semiconductor layer, and only retaining the area located on the first insulating layer, so that the first semiconductor layer is exposed again;
- a first electrode is disposed on the transparent conductive layer corresponding to the first semiconductor layer that is exposed again, and a second electrode is disposed on the transparent conductive layer corresponding to the first portion.
- forming a first insulating layer at least on the exposed first region near an end of the first conductive semiconductor layer so that the rest of the first region is exposed again comprises: sequentially disposing a first insulating layer and a mask layer on the entire surface of the exposed first region and the remaining first semiconductor layer, and sequentially removing a portion of the first insulating layer and a portion of the mask layer on the first region away from the end of the first conductive semiconductor layer so that the rest of the first region is exposed again; the material of the first insulating layer is selected from intrinsic amorphous silicon;
- the method further comprises:
- the remaining mask layer is removed.
- forming a first insulating layer at least on the exposed first region near an end of the first conductive semiconductor layer so that the rest of the first region is exposed again comprises: providing a first insulating layer on the exposed first region and the entire surface of the remaining first semiconductor layer, and removing a portion of the first insulating layer on the first region away from the end of the first conductive semiconductor layer so that the rest of the first region is exposed again; the material of the first insulating layer is selected from at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide;
- the method further comprises:
- the remaining first insulating layer is used as a mask to texture the remaining positions exposed again; or, the remaining mask layer is used as a mask to texture the remaining positions exposed again and the second surface of the silicon substrate opposite to the first surface.
- removing part of the first semiconductor layer comprises: removing part of the first semiconductor layer by using a first laser A semiconductor layer; the wavelength of the first laser is 532nm.
- a photovoltaic assembly comprising a plurality of solar cells as described above.
- FIG1 shows a schematic structural diagram of a first back-contact solar cell in an embodiment of the present application
- FIG2 shows a schematic structural diagram of a second back-contact solar cell in an embodiment of the present application
- FIG3 shows a schematic structural diagram of a third back-contact solar cell in an embodiment of the present application.
- FIG4 shows a schematic structural diagram of a fourth back-contact solar cell in an embodiment of the present application.
- FIG5 shows a schematic structural diagram of a fifth back-contact solar cell in an embodiment of the present application.
- FIG6 shows a schematic structural diagram of a sixth back-contact solar cell in an embodiment of the present application.
- FIG7 shows a schematic structural diagram of a seventh back-contact solar cell in an embodiment of the present application.
- FIG8 is a flowchart showing a method for preparing a solar cell in an embodiment of the present application.
- FIG9 is a schematic diagram showing a partial structure of a first back-contact solar cell in an embodiment of the present application.
- FIG10 is a schematic diagram showing a partial structure of a second back-contact solar cell in an embodiment of the present application.
- FIG11 is a schematic diagram showing a partial structure of a third back-contact solar cell according to an embodiment of the present application.
- FIG12 is a schematic diagram showing a partial structure of a fourth back-contact solar cell according to an embodiment of the present application.
- FIG13 is a schematic diagram showing a partial structure of a fifth back-contact solar cell in an embodiment of the present application.
- FIG14 is a schematic diagram showing a partial structure of a sixth back-contact solar cell in an embodiment of the present application.
- FIG15 is a schematic diagram showing a partial structure of a seventh back-contact solar cell in an embodiment of the present application.
- FIG16 is a schematic diagram showing a partial structure of an eighth back-contact solar cell in an embodiment of the present application.
- FIG17 is a schematic diagram showing a partial structure of a ninth back-contact solar cell in an embodiment of the present application.
- FIG18 is a schematic diagram showing a partial structure of a tenth back-contact solar cell in an embodiment of the present application.
- FIG. 19 shows a partial structure of the eleventh back contact solar cell in the embodiment of the present application. Schematic diagram
- FIG20 is a schematic diagram showing a partial structure of a twelfth back-contact solar cell in an embodiment of the present application.
- FIG21 is a schematic diagram showing a partial structure of a thirteenth back-contact solar cell in an embodiment of the present application.
- FIG22 is a schematic diagram showing a partial structure of a fourteenth back-contact solar cell in an embodiment of the present application.
- FIG23 is a schematic diagram showing a partial structure of a fifteenth back-contact solar cell in an embodiment of the present application.
- FIG24 is a schematic diagram showing a partial structure of a sixteenth back-contact solar cell in an embodiment of the present application.
- FIG25 is a schematic diagram showing a partial structure of a seventeenth back-contact solar cell in an embodiment of the present application.
- FIG26 is a schematic diagram showing a partial structure of an eighteenth back-contact solar cell in an embodiment of the present application.
- FIG27 is a schematic diagram showing a partial structure of a nineteenth back-contact solar cell in an embodiment of the present application.
- FIG28 is a schematic diagram showing a partial structure of the twentieth back-contact solar cell in an embodiment of the present application.
- FIG29 is a schematic diagram showing a partial structure of a twenty-first back-contact solar cell according to an embodiment of the present application.
- FIG30 is a schematic diagram showing a partial structure of a twenty-second back-contact solar cell in an embodiment of the present application.
- FIG31 is a schematic diagram showing a partial structure of a twenty-third back-contact solar cell in an embodiment of the present application.
- FIG32 is a schematic diagram showing a partial structure of a twenty-fourth back-contact solar cell in an embodiment of the present application.
- FIG33 is a schematic diagram showing a partial structure of a twenty-fifth back-contact solar cell according to an embodiment of the present application.
- FIG34 is a schematic diagram showing a partial structure of a twenty-sixth back-contact solar cell in an embodiment of the present application.
- FIG35 shows a schematic diagram of the partial structure of the twenty-seventh back-contact solar cell in the embodiment of the present application.
- FIG. 1 shows a schematic diagram of the structure of a first back-contact solar cell in an embodiment of the present application.
- FIG. 2 shows a schematic diagram of the structure of a second back-contact solar cell in an embodiment of the present application.
- FIG. 3 shows a schematic diagram of the structure of a third back-contact solar cell in an embodiment of the present application.
- FIG. 4 shows a schematic diagram of the structure of a fourth back-contact solar cell in an embodiment of the present application.
- FIG. 5 shows a schematic diagram of the structure of a fifth back-contact solar cell in an embodiment of the present application.
- FIG. 6 shows a schematic diagram of the structure of a sixth back-contact solar cell in an embodiment of the present application.
- FIG. 1 shows a schematic diagram of the structure of a first back-contact solar cell in an embodiment of the present application.
- FIG. 2 shows a schematic diagram of the structure of a second back-contact solar cell in an embodiment of the present application.
- FIG. 3 shows a schematic diagram of the structure of a
- FIG. 7 shows a schematic diagram of the structure of a seventh back-contact solar cell in an embodiment of the present application.
- FIG. 8 shows a flow chart of the steps of a method for preparing a solar cell in an embodiment of the present application.
- FIG. 9 shows a schematic diagram of the partial structure of a first back-contact solar cell in an embodiment of the present application.
- FIG. 10 shows a schematic diagram of the partial structure of a second back-contact solar cell in an embodiment of the present application.
- FIG. 11 shows a schematic diagram of the partial structure of a third back-contact solar cell in an embodiment of the present application.
- FIG. 12 shows a schematic diagram of the partial structure of a fourth back-contact solar cell in an embodiment of the present application.
- FIG. 13 shows a schematic diagram of the partial structure of a fifth back-contact solar cell in an embodiment of the present application.
- FIG. 14 shows a schematic diagram of the partial structure of a sixth back-contact solar cell in an embodiment of the present application.
- FIG. 15 shows a schematic diagram of the partial structure of a seventh back-contact solar cell in an embodiment of the present application.
- FIG. 16 shows a partial structural schematic diagram of the eighth back-contact solar cell in the embodiment of the present application.
- FIG. 17 shows a partial structural schematic diagram of the ninth back-contact solar cell in the embodiment of the present application.
- FIG. 18 shows a partial structural schematic diagram of the tenth back-contact solar cell in the embodiment of the present application.
- FIG. 19 shows a partial structural schematic diagram of the eleventh back-contact solar cell in the embodiment of the present application.
- FIG. 20 shows a partial structural schematic diagram of the twelfth back-contact solar cell in the embodiment of the present application.
- FIG. 21 shows a partial structural schematic diagram of the thirteenth back-contact solar cell in the embodiment of the present application.
- FIG. 22 shows a partial structural schematic diagram of the fourteenth back-contact solar cell in the embodiment of the present application.
- FIG. 23 shows a partial structural schematic diagram of the fifteenth back-contact solar cell in the embodiment of the present application.
- FIG. 24 shows a partial structural schematic diagram of the sixteenth back-contact solar cell in the embodiment of the present application.
- FIG. 25 shows a partial structural schematic diagram of the seventeenth back-contact solar cell in the embodiment of the present application.
- FIG. 21 shows a partial structural schematic diagram of the twelfth back-contact solar cell in the embodiment of the present application.
- FIG. 21 shows a partial structural schematic diagram of the thirteenth back-contact solar cell in the embodiment of the present application.
- FIG. 22 shows a partial structural schematic diagram of the fourteenth back-
- FIG. 26 shows a partial structural schematic diagram of the eighteenth back-contact solar cell in the embodiment of the present application.
- FIG. 27 shows a partial structural schematic diagram of the nineteenth back-contact solar cell in the embodiment of the present application.
- FIG. 28 shows a partial structural schematic diagram of the twentieth back-contact solar cell in the embodiment of the present application.
- Figure 29 shows a schematic diagram of the partial structure of the twenty-first back-contact solar cell in the embodiment of the present application.
- Figure 30 shows a schematic diagram of the partial structure of the twenty-second back-contact solar cell in the embodiment of the present application.
- Figure 31 shows a schematic diagram of the partial structure of the twenty-third back-contact solar cell in the embodiment of the present application.
- Figure 32 shows a schematic diagram of the partial structure of the twenty-fourth back-contact solar cell in the embodiment of the present application.
- Figure 33 shows a schematic diagram of the partial structure of the twenty-fifth back-contact solar cell in the embodiment of the present application.
- Figure 34 shows a schematic diagram of the partial structure of the twenty-sixth back-contact solar cell in the embodiment of the present application.
- Figure 35 shows a schematic diagram of the partial structure of the twenty-seventh back-contact solar cell in the embodiment of the present application.
- Figures 1 to 7 and Figures 9 to 35 mainly represent the relative positional relationship of each structure.
- the back contact solar cell includes a silicon substrate 1, the silicon substrate 1 includes a first surface, the surface of the silicon substrate 1 that mainly receives light may be a second surface, and the first surface and the The second surface is relatively distributed, and the first surface is also the backlight surface of the silicon substrate 1.
- the back contact solar cell further includes a first semiconductor layer, a second semiconductor layer, and a first insulating layer 5 located on the first surface of the silicon substrate 1.
- the first part of the second semiconductor layer is alternately arranged with the first semiconductor layer along the first direction L1 parallel to the first surface with a gap, and the second part of the second semiconductor layer is continuous with the first part, and extends along the second direction L2 perpendicular to the first surface to the side of the first semiconductor layer away from the silicon substrate 1, that is, the second part of the second semiconductor layer is farther away from the silicon substrate 1 than the first semiconductor layer.
- the first part of the second semiconductor layer is the part that is in direct contact with the first surface of the silicon substrate 1, and the second part is the part other than the first part.
- the first semiconductor layer includes a first intrinsic semiconductor layer 21 and a first conductive semiconductor layer 22 stacked along a path away from the silicon substrate 1, that is, the first intrinsic semiconductor layer 21 is located between the first conductive semiconductor layer 22 and the silicon substrate 1.
- the second semiconductor layer includes a second intrinsic semiconductor layer 71 and a second conductive semiconductor layer 72 stacked along a path away from the silicon substrate 1, that is, the second intrinsic semiconductor layer 71 is closer to the silicon substrate 1 than the second conductive semiconductor layer 72.
- the aforementioned second direction L2 is parallel to the stacking direction of the first intrinsic semiconductor layer 21 and the first conductive semiconductor layer 22, or the aforementioned second direction L2 is parallel to the stacking direction of the second intrinsic semiconductor layer 71 and the second conductive semiconductor layer 72.
- the aforementioned first direction L1 is perpendicular to the stacking direction of the first intrinsic semiconductor layer 21 and the first conductive semiconductor layer 22, or the aforementioned first direction L1 is perpendicular to the stacking direction of the second intrinsic semiconductor layer 71 and the second conductive semiconductor layer 72.
- the first conductive semiconductor layer 22 and the second conductive semiconductor layer 72 have opposite conductivity types, that is, one is an n-type conductive semiconductor layer and the other is a p-type conductive semiconductor layer.
- the first conductive semiconductor layer 22 is an n-type conductive semiconductor layer
- the second conductive semiconductor layer 72 is a p-type conductive semiconductor layer.
- the first insulating layer 5 is at least located in the gap, and the first insulating layer 5 is close to the end of the first conductive semiconductor layer 22 .
- the inventors have found that the main reason why the problem of leakage between different types of conductive semiconductor layers in the back-contact heterojunction solar cell in the prior art is that the first conductive semiconductor layer 22 and the second conductive semiconductor layer 72 of opposite conductivity types are only passivated and insulated by the second intrinsic semiconductor layer 71.
- the second intrinsic semiconductor layer 71 is relatively thin and has a poor insulation effect, which leads to leakage between different types of conductive semiconductor layers.
- the second intrinsic semiconductor layer 71 having a passivation and insulation effect between the first conductive semiconductor layer 22 and the second conductive semiconductor layer 72 of opposite conductivity types, there is also a first insulating layer 5 in the gap between the first conductive semiconductor layer 22 and the second conductive semiconductor layer 72 along the first direction L1 parallel to the first surface.
- the first insulating layer 5 has a passivation effect and a good insulation reinforcement effect on the first conductive semiconductor layer 22 and the second conductive semiconductor layer 72.
- the first insulating layer 5 exists independently of the second intrinsic semiconductor layer 71, and its insulation effect can be mainly focused on, and its thickness can be relatively thick, further improving the insulation effect.
- the first insulating layer 5 extends in the aforementioned gap along the second direction L2 to the side of the first semiconductor layer away from the silicon substrate 1.
- the surface area of the first insulating layer 5 is larger and the covered area is larger, which further enhances the passivation effect.
- the first insulating layer 5 also has a good insulating effect on the second conductive semiconductor layer 72 in the second part of the second semiconductor layer and the first conductive semiconductor layer 22 in the first semiconductor layer covered by the second part, which further reduces the probability of leakage between different types of conductive semiconductor layers, improves the photoelectric conversion efficiency, and improves the reliability of use.
- the back contact solar cell further includes: a second insulating layer 3 located on the side of the first semiconductor layer away from the silicon substrate 1 along the second direction L2, and the first insulating layer 5 extends along the second direction L2 to the side of the second insulating layer 3 away from the silicon substrate 1, that is, the first insulating layer 5 is farther away from the silicon substrate 1 than the second insulating layer 3.
- the second insulating layer 3 also has a good insulating effect on the second conductive semiconductor layer 72 in the second part of the second semiconductor layer and the first conductive semiconductor layer 22 in the first semiconductor layer covered by the second part. More insulating layers further reduce the probability of leakage between different types of conductive semiconductor layers, improve the photoelectric conversion efficiency, and improve the reliability of use.
- one end of the first insulating layer 5 extends along the first direction L1 on the side of the first semiconductor layer away from the silicon substrate 1, and the other end of the first insulating layer 5 extends along the first direction L1 in the aforementioned gap.
- the first insulating layer 5 may include a Z-shaped shape, and the shape of the first insulating layer 5 is simple and easy to process.
- the main difference between FIG. 1 and FIG. 2 is that in FIG. 1, a part of the first surface has a velvet structure, and the second surface opposite to the first surface does not have a velvet structure. In FIG. 2, the first surface has no velvet structure, and the second surface opposite to the first surface has a velvet structure.
- one end of the first insulating layer 5 extends along the second direction L2 in the aforementioned gap, and the other end of the first insulating layer 5 extends along the first direction L1 on the side of the first semiconductor layer away from the silicon substrate 1.
- the first insulating layer 5 may include an inverted L-shaped shape, and the shape of the first insulating layer 5 is simple and easy to process.
- one end of the first insulating layer 5 extends along the second direction L2 in the aforementioned gap, and the other end of the first insulating layer 5 extends along the first direction L1 on the side of the second insulating layer 3 away from the silicon substrate 1.
- the first insulating layer 5 may include an inverted L-shaped shape, and the shape of the first insulating layer 5 is simple and easy to process.
- One end of the second insulating layer 3 extends along the first direction L1 on the side of the first semiconductor layer away from the silicon substrate 1, and the other end of the second insulating layer 3 extends along the first direction L1 in the aforementioned gap.
- the second insulating layer 3 may be in a Z-shaped shape.
- the second insulating layer 3 has a good insulating effect on the second conductive semiconductor layer 72 in the second part of the second semiconductor layer and the first conductive semiconductor layer 22 in the first semiconductor layer covered by the second part.
- the shape of the second insulating layer 3 is simple and easy to process. As shown in FIG. 4 , the other end of the second insulating layer 3 and the other end of the first insulating layer 5 can be evenly distributed along the first direction L1, and the structure is simple and easy to implement.
- the first insulating layer 5 is only located in the aforementioned gap, one end of the first insulating layer 5 extends along the first direction L1 on the first surface, and the other end of the first insulating layer 5 extends along the second direction L2.
- the first insulating layer 5 may include an inverted L-shape or an L-shape.
- the first insulating layer 5 has a simple shape and is easy to process.
- the back contact solar cell also includes: a second insulating layer 3 located on the side of the first semiconductor layer away from the silicon substrate 1 along the second direction L2, and the second part of the second semiconductor layer extends along the second direction L2 to the side of the second insulating layer 3 away from the silicon substrate 1.
- the second insulating layer 3 has a good insulating effect on the second conductive semiconductor layer 72 in the second part of the second semiconductor layer and the first conductive semiconductor layer 22 in the first semiconductor layer covered by the second part. More insulating layers further reduce the probability of leakage between different types of conductive semiconductor layers, improve the photoelectric conversion efficiency, and improve the reliability of use. At the same time, the second insulating layer 3 has a simple shape and is easy to process.
- the first insulating layer 5 is only located in the aforementioned gap, and the first insulating layer 5 extends along the second direction L2 on the first surface, such as the first insulating layer includes an I-shape or a rectangle, etc.
- the shape of the first insulating layer 5 is simple and easy to process.
- the back contact solar cell also includes: a second insulating layer 3 located on the side of the first semiconductor layer away from the silicon substrate 1 along the second direction L2, and the second part of the second semiconductor layer extends along the second direction L2 to the side of the second insulating layer 3 away from the silicon substrate 1.
- the second insulating layer 3 has a good insulating effect on the second conductive semiconductor layer 72 in the second part of the second semiconductor layer and the first conductive semiconductor layer 22 in the first semiconductor layer covered by the second part. More insulating layers further reduce the probability of leakage between different types of conductive semiconductor layers, improve the photoelectric conversion efficiency, and improve the reliability of use. At the same time, the shape of the second insulating layer 3 is simple and easy to process.
- the material of the second insulating layer 3 is selected from at least one of intrinsic amorphous silicon, silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide.
- the above materials have good insulating effects and are easy to obtain.
- the material of the first insulating layer 5 is selected from at least one of intrinsic amorphous silicon, silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide.
- the above materials have good insulating effects and are easy to obtain.
- the thickness of the first insulating layer 5 is greater than that of the second intrinsic semiconductor layer 71.
- an area on the first surface corresponding to a position in the first portion of the second semiconductor layer except for the gap has a suede structure, which can enhance anti-reflection and light absorption effects.
- a second surface of the silicon substrate 1 opposite to the first surface has a suede structure, which can enhance the anti-reflection and light absorption effects.
- the first insulating layer 5 is a single layer or a laminated structure, and the structure of the first insulating layer 5 is flexible and varied.
- the second insulating layer 3 is a single layer or a laminated structure, and the structure of the second insulating layer 3 is flexible and varied.
- the first insulating layer 5 and the second insulating layer 3 are both single-layer structures.
- the present application also provides a method for preparing a solar cell. As shown in FIG. 8 , the method may include the following steps:
- Step 101 disposing a first semiconductor layer on a first surface of a silicon substrate; the first semiconductor layer comprises a first intrinsic semiconductor layer and a first conductive semiconductor layer stacked and disposed away from the silicon substrate.
- a first semiconductor layer is disposed on the first surface of the silicon substrate 1.
- the first semiconductor layer includes a first intrinsic semiconductor layer 21 and a second intrinsic semiconductor layer 22 disposed in a stacked manner away from the silicon substrate 1.
- the first semiconductor layer can be provided by deposition, such as plasma enhanced chemical vapor deposition (PEVCD).
- PEVCD plasma enhanced chemical vapor deposition
- the method for providing the first semiconductor layer is not specifically limited.
- the method may further include: performing alkali polishing and cleaning on the silicon substrate to remove the cutting damage layer, and cleaning the outer surface of the silicon substrate.
- the thickness of the cutting damage layer is approximately 1 micron to 10 microns.
- Step 102 removing a portion of the first semiconductor layer to expose a first area of the first surface.
- the first semiconductor layer is removed in a portion whose projection on the first surface overlaps with the aforementioned gap and the projection of the first portion of the second semiconductor layer.
- the removal method may be wet removal, laser removal, etc., and the removal method is not specifically limited. For example, a combination of laser and chemical etching is used to remove a portion of the first semiconductor layer.
- a portion of the first semiconductor layer is removed so that the first area of the first surface is exposed.
- step 102 may include: using a first laser to remove a portion of the first semiconductor layer, where the wavelength of the first laser is 532 nm, that is, using a green nanosecond laser to remove a portion of the first semiconductor layer.
- Step 103 forming a first insulating layer at least on the exposed first region near the end of the first conductive semiconductor layer, so that the rest of the first region is exposed again.
- the first insulating layer 5 is formed at least on the exposed first region adjacent to the end of the first conductive semiconductor layer, so that the rest of the first region is exposed again, that is, on the exposed first region, the first insulating layer 5 is formed only on the position adjacent to the end of the first conductive semiconductor layer, and the rest of the first region is not formed with the first insulating layer 5.
- the first insulating layer 5 is formed on the exposed first region adjacent to the end of the first conductive semiconductor layer and on the rest of the first semiconductor layer.
- the first insulating layer 5 may be formed by deposition, such as PEVCD, etc.
- the method for forming the first insulating layer 5 is not specifically limited.
- Step 104 forming a first portion of a second semiconductor layer at the remaining position that is exposed again, and forming a second portion of the second semiconductor layer that is continuous with the first portion and covers the first insulating layer and extends onto a portion of the first semiconductor layer in a direction away from the silicon substrate;
- the second semiconductor layer includes a second intrinsic semiconductor layer and a second conductive semiconductor layer stacked in a direction away from the silicon substrate; the first conductive semiconductor layer and the second conductive semiconductor layer have opposite conductivity types.
- a first portion of the second semiconductor layer is formed on the remaining position exposed again on the first area, and a second portion of the second semiconductor layer is formed which is continuous with the first portion and covers the first insulating layer 5 and extends onto a portion of the first semiconductor layer in a direction away from the silicon substrate.
- the second semiconductor layer includes a second intrinsic semiconductor layer 71 and a second conductive semiconductor layer 72 which are stacked in a direction away from the silicon substrate 1, and the conductivity types of the first conductive semiconductor layer 22 and the second conductive semiconductor layer 72 are opposite.
- a second intrinsic semiconductor layer 71 and a second conductive semiconductor layer 72 are sequentially formed on the remaining positions exposed again on the first region and on the remaining first insulating layer 5.
- the portion of the entire second semiconductor layer located on the remaining positions exposed again on the first region is the first portion, and the remaining portion is the second portion.
- the second semiconductor layer may be formed by deposition, for example, PECVD.
- the method for forming the second semiconductor layer is not specifically limited.
- the aforementioned step 103 may include: setting a first insulating layer 5 on the exposed first region and the entire surface of the remaining first semiconductor layer, removing a portion of the first insulating layer 5 on the first region away from the end position of the first conductive semiconductor layer 22, and the entire first insulating layer 5 on the first semiconductor layer, and only retaining the first insulating layer 5 on the first region near the end position of the first conductive semiconductor layer 22, so that the rest of the first region is exposed again, and the first semiconductor layer is completely exposed.
- a second insulating layer 3 needs to be set along the second direction L2 on the side of the first semiconductor layer away from the silicon substrate 1 to provide a good insulation effect between the second part of the second semiconductor layer and the first semiconductor layer.
- the aforementioned step 103 may include: setting a first insulating layer 5 on the exposed first region and the entire surface of the remaining first semiconductor layer, removing a portion of the first insulating layer 5 on the first region away from the end position of the first conductive semiconductor layer 22 and a portion of the first insulating layer 5 on the first semiconductor layer, retaining the first insulating layer 5 on the first region near the end position of the first conductive semiconductor layer 22 and a portion of the first insulating layer 5 on the first semiconductor layer, so that the remaining position of the first region is exposed again, and the first semiconductor layer is partially exposed, and the first insulating layer 5 is continuous.
- the aforementioned step 104 may include: forming a first part of the second semiconductor layer on the remaining positions that are exposed again, and forming a second part of the second semiconductor layer that is continuous with the first part and covers the remaining first insulating layer 5 and extends to the partially exposed first semiconductor layer in a direction away from the silicon substrate 1.
- the method also includes: removing the area on the exposed first semiconductor layer in the second part, and only retaining the area on the first insulating layer 5, so that the first semiconductor layer is exposed again.
- a whole layer of transparent conductive layer (Transparent Conductive Oxide, TCO) 9 is set on the remaining second semiconductor layer and the first semiconductor layer that is exposed again.
- TCO Transparent Conductive Oxide
- a part of the transparent conductive layer 9 on the first insulating layer 5 and the remaining local position of the second part are removed in sequence to expose the first insulating layer 5, or a part of the transparent conductive layer 9 on the first insulating layer 5, the remaining local position of the second part, and the first insulating layer are removed in sequence to expose the second insulating layer 3.
- a first electrode 10 is disposed on the transparent conductive layer 9 corresponding to the first semiconductor layer that is exposed again, and a second electrode 11 is disposed on the transparent conductive layer 9 corresponding to the first portion.
- laser or chemical etching or a combination of laser and chemical etching may be used to remove part of the second semiconductor layer.
- ultraviolet (355nm) nanosecond laser etching or a combination of laser and chemical etching may be used to remove part of the second semiconductor layer.
- the material of the transparent conductive layer 9 can be a metal oxide such as FTO, AZO, ITO, AZO, IWO, ICO, IMO, IOH, etc.
- the first electrode 10 and the second electrode 11 can be made by screen printing, laser transfer, electroplating, evaporation, etc.
- the first electrode 10 is used to collect and conduct the carriers generated by the first semiconductor layer
- the second electrode 11 is used to collect and conduct the carriers generated by the second semiconductor layer.
- the method of removing part of the transparent conductive layer 9 can be any of the following methods: (1) laser forward etching part of the transparent conductive layer 9; (2) ink ⁇ wet etching part of the transparent conductive layer 9 ⁇ removing ink; (3) inkjet ⁇ wet etching part of the transparent conductive layer 9 ⁇ removing paraffin; (4) ink ⁇ laser reverse etching ink ⁇ wet etching part of the transparent conductive layer 9 ⁇ removing ink; (5) photoresist ⁇ wet etching part of the transparent conductive layer 9 ⁇ removing photoresist; (6) etching slurry ⁇ water washing/weak alkali washing.
- the method may further include: providing a front film layer 8 on a second surface opposite to the first surface on the silicon substrate, and the front film layer 8 may include: a front passivation layer, a front anti-reflection layer, etc.
- the front passivation layer may be intrinsic amorphous silicon, etc., and the front passivation layer may be located between the front anti-reflection layer and the silicon substrate 1.
- the front anti-reflection layer may be silicon oxide, silicon nitride (SiN x ), silicon oxynitride, metal oxide, metal fluoride, etc.
- the front anti-reflection layer may be 80 nm thick SiN x .
- the value of x in the chemical formula SiN x is greater than 0, and there is no limitation on the specific value.
- the method may further include: providing a second insulating layer 3 on the first semiconductor layer, and the aforementioned step 102 may include: sequentially removing a portion of the second insulating layer 3 and a portion of the first semiconductor layer to expose the first area of the first surface.
- the second insulating layer 3 may be provided by deposition, for example, by using a PECVD method to provide the second insulating layer 3.
- first semiconductor layer and the second insulating layer 3 are provided in the same manner, both can be provided at one time to save time and simplify the process.
- first semiconductor layer and the second insulating layer 3 can both be provided at one time by PECVD.
- the method may further include: providing a sacrificial layer 4 on the first semiconductor layer or the second insulating layer 3, and in the process of removing part of the first semiconductor layer or the first semiconductor layer and the second insulating layer 3, the sacrificial layer 4 may play a role in protecting the first semiconductor layer.
- the material of the sacrificial layer 4 may be intrinsic amorphous silicon, etc., and its material is not specifically limited.
- the sacrificial layer 4 may be removed.
- the sacrificial layer 4 may be removed by laser, wet etching or the like, and the specific removal method of the sacrificial layer 4 is not limited.
- the aforementioned step 103 may include: disposing a first insulating layer 5 on the exposed first area and the entire surface of the remaining second insulating layer 3, and as shown in FIG14, FIG15 or FIG16, removing a portion of the first insulating layer 5 on the first area away from the end position of the first conductive semiconductor layer 22, so that the remaining position of the first area is exposed again.
- the aforementioned step 104 may include: disposing a second semiconductor layer on the entire surface of the remaining position exposed again and the remaining first insulating layer 5.
- the method further includes: setting a whole layer of transparent conductive layer 9 on the remaining second semiconductor layer and the exposed first semiconductor layer; as shown in FIG.
- the aforementioned step 103 may include: sequentially setting a first insulating layer 5 and a mask layer 6 on the entire surface of the exposed first region and the remaining first semiconductor layer; as shown in FIGS. 14 and 15 , sequentially removing part of the first insulating layer 5 and part of the mask layer 6 on the first region away from the end of the first conductive semiconductor layer 22 so that the remaining position of the first region is exposed again, and the material of the first insulating layer 5 is selected from intrinsic amorphous silicon.
- the method further includes: using the remaining mask layer 6 as a mask to texture the remaining positions exposed again, thereby increasing the light trapping effect.
- the remaining mask layer 6 texture the remaining positions exposed again and the second surface of the silicon substrate 1 opposite to the first surface.
- the remaining mask layer 6 is removed.
- the material of the first insulating layer 5 is selected from intrinsic amorphous silicon.
- the first insulating layer 5 is not resistant to alkali etching because the first insulating layer 5 will be damaged during the alkali etching process. Therefore, a mask layer 6 can be made.
- the mask layer 6 can be made of an alkali-resistant material.
- the material of the mask layer 6 can be selected from at least one of silicon oxide, silicon oxynitride, silicon nitride, and silicon carbide.
- the aforementioned step 103 may include: setting a first insulating layer 5 on the exposed first area and the entire surface of the remaining first semiconductor layer, removing a portion of the first insulating layer 5 on the first area away from the end position of the first conductive semiconductor layer 22, so that the remaining position of the first area is exposed again, and the material of the first insulating layer 5 is selected from at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide.
- the first insulating layer 5 can be resistant to alkali etching, so there is no need to make a mask layer separately.
- the method also includes: using the remaining first insulating layer 5 as a mask to texture the remaining positions that are exposed again, thereby increasing the light trapping effect.
- using the remaining first insulating layer 5 as a mask texture the remaining positions that are exposed again and the second surface of the silicon substrate 1 opposite to the first surface.
- the present application also provides a photovoltaic assembly, which includes a plurality of any of the aforementioned solar cells.
- the preparation method of the back-contact solar cell, the back-contact solar cell, and the photovoltaic module can refer to each other, and in order to avoid repetition, they will not be described here.
- the photovoltaic module, the preparation method of the back-contact solar cell, and any of the aforementioned back-contact solar cells have the same or similar beneficial effects, and in order to avoid repetition, they will not be described here.
- the silicon substrate 1 may be an N-type silicon substrate. There are cutting damage layers of 1 micron to 10 microns on both sides of the silicon substrate 1. First, the silicon substrate 1 is alkaline polished and cleaned to remove the damage layer and obtain a clean surface.
- an intrinsic amorphous silicon layer is deposited on the first surface of the silicon substrate 1 by using the PECVD method as the first intrinsic semiconductor layer 21, the n-type non- The crystalline silicon layer is used as the first conductive semiconductor layer 22, the SiNx layer is used as the second insulating layer 3, and the sacrificial layer 4 is made of intrinsic amorphous silicon.
- green light (532nm) nanosecond laser etching or a combination of laser and chemical etching is used to sequentially remove part of the sacrificial layer 4, part of the second insulating layer 3, part of the first conductive semiconductor layer 22, and part of the first intrinsic semiconductor layer 21 on the first surface, so that the first area of the first surface is exposed, and then the remaining sacrificial layer 4 is removed.
- an intrinsic amorphous silicon layer as a first insulating layer 5 and SiN x as a mask layer 6 for texturing are sequentially deposited on the first exposed area of the silicon substrate 1 by using the PECVD method.
- the mask layer 6 can also be one or more of silicon oxide, SiN x , and silicon oxynitride.
- the number of layers of the mask layer 6 is at least one, and the thickness of the mask layer 6 is 50 nanometers to 350 nanometers.
- a portion of the mask layer 6 on the first region is etched away using a green (532 nm) nanosecond laser, or a portion of the mask layer 6 on the first region and the first insulating layer 5 thereunder are etched away using a green (532 nm) nanosecond laser.
- the silicon substrate 1 is textured using the remaining mask layer 6 as a mask, and a textured structure is formed locally in the first region of the first surface of the silicon substrate 1, or a textured structure is formed locally in the first region of the first surface of the silicon substrate 1, and on the second surface of the silicon substrate 1 opposite to the first surface.
- the damaged layer in the first region of the silicon substrate 1 can be removed by textured, and at the same time, a textured structure is formed on the backlight side of the silicon substrate 1, thereby increasing the area.
- the remaining mask layer 6 is removed.
- a second intrinsic amorphous silicon is deposited on the textured portion of the first area of the first surface of the silicon substrate 1 and on the remaining first insulating layer 5 as a second intrinsic semiconductor layer 71, and a p-type amorphous silicon layer is deposited as a second conductive semiconductor layer 72.
- ultraviolet (355nm) nanosecond laser etching or a combination of laser and chemical etching is used to sequentially remove part of the second conductive semiconductor layer 72, part of the second intrinsic semiconductor layer 71, part of the first insulating layer 5, and part of the second insulating layer 3 on the first conductive semiconductor layer 22 on the first surface, so that the first semiconductor layer is exposed.
- a front film layer 8 is deposited on a second surface opposite to the first surface of the silicon substrate 1.
- an intrinsic amorphous silicon layer as a front passivation layer, an n-type conductive amorphous silicon layer (this n-type may or may not be present), and a front anti-reflection layer are deposited in sequence on the second surface of the silicon substrate 1.
- the front anti-reflection layer may be silicon oxide, SiN x , silicon oxynitride, metal oxide, metal fluoride, etc., such as 80 nm thick SiN x .
- a transparent conductive layer 9 is deposited on the first semiconductor layer and the second semiconductor layer exposed on the silicon substrate 1 by PVD (Physical Vapor Deposition).
- the material of the transparent conductive layer 9 can be metal oxides such as FTO, AZO, ITO, AZO, IWO, ICO, IMO, and IOH.
- the remaining transparent conductive layer 9 on the remaining first insulating layer 5, the remaining second partial part, and the first insulating layer 5 are removed in sequence, so that the second insulating layer 3 is exposed.
- any of the following methods can be used: (1) laser forward etching of the transparent conductive layer 9; (2) ink ⁇ wet etching of the transparent conductive layer 9 ⁇ ink removal; (3) inkjet ⁇ wet etching of the transparent conductive layer 9 ⁇ wax removal; (4) ink ⁇ laser reverse etching of the ink ⁇ wet etching of the transparent conductive layer 9 ⁇ ink removal; (5) photoresist ⁇ wet etching of the transparent conductive layer 9 ⁇ Remove photoresist; (6) Etching slurry ⁇ Water washing/weak alkaline washing.
- metal electrodes are fabricated by screen printing, laser transfer, electroplating, etc.
- the fabricated solar cell is shown in FIG1 .
- the silicon substrate 1 may be an N-type silicon substrate. There are cutting damage layers of 1 micron to 10 microns on both sides of the silicon substrate 1. First, the silicon substrate 1 is alkaline polished and cleaned to remove the damage layer and obtain a clean surface.
- a mask layer 6 is set on the first surface of the silicon substrate 1, the second surface of the silicon substrate 1 opposite to the first surface is textured, and then the mask layer 6 is removed.
- an intrinsic amorphous silicon layer is deposited on the first surface of the silicon substrate 1 as the first intrinsic semiconductor layer 21, an n-type amorphous silicon layer is deposited as the first conductive semiconductor layer 22, a SiN x layer is deposited as the second insulating layer 3, and a sacrificial layer 4, and the material of the sacrificial layer 4 is intrinsic amorphous silicon.
- green light (532 nm) nanosecond laser etching or a combination of laser and chemical etching is used to sequentially remove a portion of the sacrificial layer 4, a portion of the second insulating layer 3, a portion of the first conductive semiconductor layer 22, and a portion of the first intrinsic semiconductor layer 21 on the first surface, exposing the first area of the first surface, and then remove the remaining sacrificial layer 4.
- a first insulating layer 5 is deposited on the first exposed region of the silicon substrate 1 by using a PECVD method.
- the material of the first insulating layer 5 is selected from at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide.
- the first insulating layer 5 on the first region is etched away by a green (532 nm) nanosecond laser.
- the remaining first insulating layer 5 is used as a mask to texture the silicon substrate 1, and a textured structure is formed locally in the first region of the first surface of the silicon substrate 1.
- the damaged layer in the first region of the silicon substrate 1 can be removed by textured, and at the same time, a textured structure is formed on the backlight side of the silicon substrate 1, thereby increasing the area.
- a second intrinsic amorphous silicon is deposited on the textured portion of the first area of the first surface of the silicon substrate 1 and on the remaining first insulating layer 5 as a second intrinsic semiconductor layer 71, and a p-type amorphous silicon layer is deposited as a second conductive semiconductor layer 72.
- ultraviolet (355 nm) nanosecond laser etching or a combination of laser and chemical etching is used to sequentially remove part of the second conductive semiconductor layer 72, part of the second intrinsic semiconductor layer 71, part of the first insulating layer 5, and part of the second insulating layer 3 on the first conductive semiconductor layer 22 on the first surface, so that the first semiconductor layer is exposed.
- a front film layer 8 is deposited on the second surface opposite to the first surface on the silicon substrate 1.
- a transparent conductive layer 9 is deposited on the exposed first semiconductor layer and second semiconductor layer of the silicon substrate 1 by PVD.
- the remaining transparent conductive layer 9 on the remaining first insulating layer 5, the remaining second partial position, and part of the first insulating layer 5 are sequentially removed to expose the second insulating layer 3.
- metal electrodes are made by screen printing, laser transfer, electroplating, and the like. The resulting solar cell is shown in FIG7 .
- Example 2 The main difference between Example 1 and Example 2 is that in Example 2, the remaining first insulating layer 5 can be used as a mask for texturing, and there is no need to set a separate mask.
- the silicon substrate 1 may be an N-type silicon substrate, and the two sides of the silicon substrate 1 have a cut width of 1 micron to 10 microns. To cut the damaged layer, the silicon substrate 1 is firstly subjected to alkali polishing and cleaning to remove the damaged layer and obtain a clean surface.
- a mask layer 6 is set on the first surface of the silicon substrate 1, the second surface of the silicon substrate 1 opposite to the first surface is textured, and then the mask layer 6 is removed.
- an intrinsic amorphous silicon layer is deposited on the first surface of the silicon substrate 1 by the PECVD method as the first intrinsic semiconductor layer 21
- an n-type amorphous silicon layer is deposited as the first conductive semiconductor layer 22
- a SiNx layer is deposited as the second insulating layer 3
- a sacrificial layer 4 is intrinsic amorphous silicon.
- green light (532nm) nanosecond laser etching or a combination of laser and chemical etching is used to sequentially remove part of the sacrificial layer 4, part of the second insulating layer 3, part of the first conductive semiconductor layer 22, and part of the first intrinsic semiconductor layer 21 on the first surface, so that the first area of the first surface is exposed, and then the remaining sacrificial layer 4 is removed.
- an intrinsic amorphous silicon layer as a first insulating layer 5 and SiN x as a mask layer 6 for texturing are sequentially deposited on the first exposed area of the silicon substrate 1 by using the PECVD method.
- the mask layer 6 can also be one or more of silicon oxide, SiN x , and silicon oxynitride. A portion of the mask layer 6 and a portion of the first insulating layer 5 are sequentially removed by laser, and then the surface of the silicon substrate 1 is first washed with a weak alkali to remove laser damage, and then the remaining mask layer 6 is removed by acid washing.
- Example 3 The remaining steps of Example 3 are the same as those of Example 1. As shown in FIG2 , the metal electrode is manufactured by screen printing, laser transfer, electroplating, etc. The manufactured solar cell is shown in FIG2 .
- Example 3 The main difference between Example 3 and Example 1 is that the first area is not textured with alkali, but the surface of the silicon substrate 1 is washed with a weak alkali to remove laser damage.
- Example 4 As shown in FIG33, the main difference between Example 4 and Example 3 is that, using the PECVD method, an intrinsic amorphous silicon layer as the first insulating layer 5, SiNx as the mask layer 6, and an intrinsic amorphous silicon as the sacrificial layer 4 are sequentially deposited on the exposed first area of the silicon substrate 1 and the remaining second insulating layer.
- the outermost sacrificial layer 4 is removed by laser to expose the mask layer 6, and then, as shown in FIG35, the exposed mask layer 6 is acid-washed to expose the first insulating layer 5, and the remaining mask layer 6 is used as a mask to alkaline-wash the remaining sacrificial layer 4 and the exposed first insulating layer 5, and then the remaining mask layer 6 is acid-washed.
- the remaining steps can be the same as those of Example 3, and the resulting solar cell is shown in FIG2.
- Example 5 As shown in FIG35 , the main difference between Example 5 and Example 3 is that, using the PECVD method, only the first insulating layer 5 is deposited on the first area exposed by the silicon substrate 1 and on the remaining second insulating layer, and the material of the first insulating layer 5 is selected from at least one of silicon oxide, silicon nitride, silicon oxynitride, and silicon carbide. After removing part of the first insulating layer 5 with a laser, the exposed first area is cleaned with a weak base. The remaining steps can be the same as those of Example 3, and the obtained solar cell is shown in FIG2 .
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components shown as units may be physically separate. It may or may not be a physical unit, that is, it may be located in one place, or it may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art may understand and implement it without creative work.
- one embodiment means that a particular feature, structure or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present application.
- examples of the term “in one embodiment” here do not necessarily all refer to the same embodiment.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种背接触太阳能电池及其制备方法、光伏组件。其中,背接触太阳能电池包括:硅基底(1),位于硅基底(1)第一表面上的第一半导体层、第二半导体层、第一绝缘层(5);第二半导体层的第一部分与第一半导体层沿着平行于第一表面的第一方向交替设置并具有间隙,第二半导体层的第二部分与第一部分连续,且沿着垂直于第一表面的第二方向延伸到第一半导体层远离硅基底(1)的一侧上;第一半导体层包括沿着远离硅基底(1)层叠设置的第一本征半导体层(21)和第一导电半导体层(22),第二半导体层包括沿着远离硅基底(1)层叠设置的第二本征半导体层(71)和第二导电半导体层(72);第一导电半导体层(22)和第二导电半导体层(72)的导电类型相反;第一绝缘层(5)至少位于间隙中,且第一绝缘层(5)靠近第一导电半导体层(22)端部。第一绝缘层对第一导电半导体层和第二导电半导体层起到良好的绝缘补强作用,降低了不同类型的导电半导体层之间漏电的概率。
Description
本申请要求在2022年11月7日提交中国专利局、申请号为202211385088.4、发明名称为“背接触太阳能电池及其制备方法、光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光伏技术领域,特别是涉及背接触太阳能电池及其制备方法、光伏组件。
背接触异质结太阳能电池(HBC)将栅线与pn结制作在电池背面,有利的减少了栅线遮挡以及非晶硅的光学吸收,增加了电池入光效果,使得电池具有高的短路电流。同时,由于拥有非晶硅作为第一本征半导体层减少了界面处载流子复合,使得电池拥有高的开路电压。因此,背接触异质结太阳能电池拥有较高的光电转化效率,具有广阔的应用前景。
然而,背接触异质结太阳能电池不同类型的导电半导体层之间容易存在漏电的问题,影响了光电转换效率的提升,以及使用的可靠性。
申请内容
本申请提供一种背接触太阳能电池及其制备方法、光伏组件,旨在解决背接触异质结太阳能电池不同类型的导电半导体层之间容易存在漏电的问题。
本申请的第一方面,提供一种背接触太阳能电池,包括:硅基底,所述硅基底包括第一表面,所述背接触太阳电池还包括位于所述硅基底第一表面上的第一半导体层、第二半导体层、第一绝缘层;
所述第二半导体层的第一部分与所述第一半导体层沿着平行于所述第一表面的第一方向交替设置并具有间隙,所述第二半导体层的第二部分与所述第一部分连续,且沿着垂直于所述第一表面的第二方向延伸到所述第一半导体层远离所述硅基底的一侧上;
所述第一半导体层包括沿着远离所述硅基底层叠设置的第一本征半导体层和第一导电半导体层,所述第二半导体层包括沿着远离所述硅基底层叠设置的第二本征半导体层和第二导电半导体层;所述第一导电半导体层和所述第二导电半导体层的导电类型相反;
所述第一绝缘层至少位于所述间隙中,且所述第一绝缘层靠近第一导电半导体层端部。
本申请中,导电类型相反的第一导电半导体层和第二导电半导体层之间,除了具有第二本征半导体层起到钝化和绝缘作用之外,第一导电半导体层和第二导电半导体层沿着平行于第一表面的第一方向的间隙中,还具有第一绝缘层,第一绝缘层对钝化作用,以及对第一导电半导体层和第二导电半导体层起到良好的绝缘补强作用,就是说,本申请中,导电类型相反的第一导电半导体层和第二导电半导体层之间具有至少两道钝化和绝缘屏障,进而
大大改善了钝化和绝缘效果,从很大程度上降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。
可选的,所述第一绝缘层在所述间隙中沿着所述第二方向延伸到所述第一半导体层远离所述硅基底的一侧上。
可选的,所述方法还包括:沿着所述第二方向,位于所述第一半导体层远离所述硅基底的一侧的第二绝缘层;所述第一绝缘层沿着所述第二方向延伸到所述第二绝缘层远离所述硅基底的一侧上。
可选的,所述第一绝缘层的一端在所述第一半导体层远离所述硅基底的一侧上沿所述第一方向延伸、所述第一绝缘层的另一端在所述间隙中沿所述第一方向延伸。
可选的,所述第一绝缘层的一端在所述间隙中沿所述第二方向延伸、所述第一绝缘层的另一端在所述第一半导体层远离所述硅基底的一侧上沿所述第一方向延伸。
可选的,所述第一绝缘层的一端在所述间隙中沿所述第二方向延伸、所述第一绝缘层的另一端在所述第二绝缘层远离所述硅基底的一侧上沿所述第一方向延伸;
所述第二绝缘层的一端在所述第一半导体层远离所述硅基底的一侧上沿所述第一方向延伸、所述第二绝缘层的另一端在所述间隙中沿所述第一方向延伸。
可选的,所述第一绝缘层仅位于所述间隙中,所述第一绝缘层的一端在所述第一表面上沿所述第一方向延伸、所述第一绝缘层的另一端沿所述第二方向延伸;
所述背接触太阳能电池还包括:沿着所述第二方向,位于所述第一半导体层远离所述硅基底的一侧的第二绝缘层;所述第二部分沿着所述第二方向延伸到所述第二绝缘层远离所述硅基底的一侧上。
可选的,所述第一绝缘层仅位于所述间隙中,所述第一绝缘层在所述第一表面上沿所述第二方向延伸;
所述背接触太阳能电池还包括:沿着所述第二方向,位于所述第一半导体层远离所述硅基底的一侧的第二绝缘层;所述第二部分沿着所述第二方向延伸到所述第二绝缘层远离所述硅基底的一侧上。
可选的,所述第二绝缘层的材料选自:本征非晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种。
可选的,所述第一绝缘层的材料选自:本征非晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种。
可选的,在所述第二方向上,所述第一绝缘层的厚度,大于所述第二本征半导体层的厚度。
可选的,所述第一表面上与所述第一部分中除了所述间隙之外的位置对应的区域,具有绒面结构。
可选的,所述第一绝缘层为单层或叠层结构;
和/或,所述第二绝缘层为单层或叠层结构。
本申请的第二方面,提供一种背接触太阳能电池的制备方法,包括:
在硅基底的第一表面上设置第一半导体层;所述第一半导体层包括沿着远离所述硅基底层叠设置的第一本征半导体层和第一导电半导体层;
去除部分第一半导体层,使得所述第一表面的第一区域露出;
至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出;
在再次露出的其余位置上形成第二半导体层的第一部分,并形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层上的第二半导体层的第二部分;所述第二半导体层包括沿着远离所述硅基底层叠设置的第二本征半导体层和第二导电半导体层;所述第一导电半导体层和所述第二导电半导体层的导电类型相反。
可选的,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层,将第一区域上远离第一导电半导体层端部位置的部分第一绝缘层,和第一半导体层上的全部第一绝缘层去除,仅保留所述第一区域上靠近第一导电半导体层端部位置的第一绝缘层,使得所述第一区域的其余位置再次露出,以及所述第一半导体层全部露出。
可选的,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层,将第一区域上远离第一导电半导体层端部位置的部分第一绝缘层,和第一半导体层上的部分第一绝缘层去除,保留所述第一区域上靠近第一导电半导体层端部位置的第一绝缘层和所述第一半导体层上的部分第一绝缘层,使得所述第一区域的其余位置再次露出,以及所述第一半导体层部分露出。
可选的,设置第一半导体层之后,所述方法还包括:在所述第一半导体层上设置第二绝缘层;所述去除部分第一半导体层,使得所述第一表面的第一区域露出,包括:依次去除部分第二绝缘层和部分第一半导体层,使得所述第一表面的第一区域露出。
可选的,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第二绝缘层上整面设置第一绝缘层,将所述第一区域上远离第一导电半导体层端部位置的部分第一绝缘层去除,使得所述第一区域的其余位置再次露出;
所述在再次露出的其余位置上形成第二半导体层的第一部分,并形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层上的第二半导体层的第二部分,包括:在再次露出的其余位置,以及剩余的第一绝缘层上整面设置第二半导体层;
依次将位于第一半导体层上的部分第二半导体层、部分第一绝缘层、部分第二绝缘层去除,使得所述第一半导体层露出;剩余的第二半导体层中,位于再次露出的其余位置的部分为第一部分,剩下部分为第二部分;
所述方法还包括:在剩余的第二半导体层上,以及露出的第一半导体层
上设置整层的透明导电层;
依次将剩余的第一绝缘层上的部分透明导电层、剩余的第二部分局部位置、部分第一绝缘层去除,使得所述第二绝缘层露出;
在露出的第一半导体层对应的透明导电层上设置第一电极,在所述第一部分对应的透明导电层上设置第二电极。
可选的,所述形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层的第二半导体层的第二部分,包括:形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖剩余的第一绝缘层和延伸到部分露出的第一半导体层的第二半导体层的第二部分;
所述方法还包括:将第二部分中位于露出的第一半导体层上的区域去除,仅保留位于第一绝缘层上的区域,使得第一半导体层再次露出;
在剩余的第二半导体层上,以及再次露出的第一半导体层上设置整层的透明导电层;
依次将第一绝缘层上的部分透明导电层、剩余的第二部分局部位置去除,使得所述第一绝缘层露出;
在再次露出的第一半导体层对应的透明导电层上设置第一电极,在所述第一部分对应的透明导电层上设置第二电极。
可选的,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:依次在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层、整面设置掩膜层,依次将所述第一区域上远离第一导电半导体层端部位置的部分第一绝缘层、部分掩膜层去除,使得所述第一区域的其余位置再次露出;所述第一绝缘层的材料选自本征非晶硅;
在再次露出的其余位置上形成第二半导体层的第一部分之前,所述方法还包括:
以剩余的掩膜层为掩膜,对再次露出的所述其余位置制绒;或者,以剩余的掩膜层为掩膜,对再次露出的所述其余位置和所述硅基底上与所述第一表面相对的第二表面制绒;
去除剩余的掩膜层。
可选的,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层,将所述第一区域上远离第一导电半导体层端部位置的部分第一绝缘层去除,使得所述第一区域的其余位置再次露出;所述第一绝缘层的材料选自氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种;
在再次露出的其余位置上形成第二半导体层的第一部分之前,所述方法还包括:
以剩余的第一绝缘层为掩膜,对再次露出的所述其余位置制绒;或者,以剩余的掩膜层为掩膜,对再次露出的所述其余位置和所述硅基底上与所述第一表面相对的第二表面制绒。
可选的,所述去除部分第一半导体层,包括:采用第一激光去除部分第
一半导体层;所述第一激光的波长为532nm。
本申请的第三方面,提供一种光伏组件,包括若干个如任一前述的太阳能电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例中的第一种背接触太阳能电池的结构示意图;
图2示出了本申请实施例中的第二种背接触太阳能电池的结构示意图;
图3示出了本申请实施例中的第三种背接触太阳能电池的结构示意图;
图4示出了本申请实施例中的第四种背接触太阳能电池的结构示意图;
图5示出了本申请实施例中的第五种背接触太阳能电池的结构示意图;
图6示出了本申请实施例中的第六种背接触太阳能电池的结构示意图;
图7示出了本申请实施例中的第七种背接触太阳能电池的结构示意图;
图8示出了本申请实施例中的一种太阳能电池的制备方法的步骤流程图;
图9示出了本申请实施例中的第一种背接触太阳能电池的局部结构示意图;
图10示出了本申请实施例中的第二种背接触太阳能电池的局部结构示意图;
图11示出了本申请实施例中的第三种背接触太阳能电池的局部结构示意图;
图12示出了本申请实施例中的第四种背接触太阳能电池的局部结构示意图;
图13示出了本申请实施例中的第五种背接触太阳能电池的局部结构示意图;
图14示出了本申请实施例中的第六种背接触太阳能电池的局部结构示意图;
图15示出了本申请实施例中的第七种背接触太阳能电池的局部结构示意图;
图16示出了本申请实施例中的第八种背接触太阳能电池的局部结构示意图;
图17示出了本申请实施例中的第九种背接触太阳能电池的局部结构示意图;
图18示出了本申请实施例中的第十种背接触太阳能电池的局部结构示意图;
图19示出了本申请实施例中的第十一种背接触太阳能电池的局部结构
示意图;
图20示出了本申请实施例中的第十二种背接触太阳能电池的局部结构示意图;
图21示出了本申请实施例中的第十三种背接触太阳能电池的局部结构示意图;
图22示出了本申请实施例中的第十四种背接触太阳能电池的局部结构示意图;
图23示出了本申请实施例中的第十五种背接触太阳能电池的局部结构示意图;
图24示出了本申请实施例中的第十六种背接触太阳能电池的局部结构示意图;
图25示出了本申请实施例中的第十七种背接触太阳能电池的局部结构示意图;
图26示出了本申请实施例中的第十八种背接触太阳能电池的局部结构示意图;
图27示出了本申请实施例中的第十九种背接触太阳能电池的局部结构示意图;
图28示出了本申请实施例中的第二十种背接触太阳能电池的局部结构示意图;
图29示出了本申请实施例中的第二十一种背接触太阳能电池的局部结构示意图;
图30示出了本申请实施例中的第二十二种背接触太阳能电池的局部结构示意图;
图31示出了本申请实施例中的第二十三种背接触太阳能电池的局部结构示意图;
图32示出了本申请实施例中的第二十四种背接触太阳能电池的局部结构示意图;
图33示出了本申请实施例中的第二十五种背接触太阳能电池的局部结构示意图;
图34示出了本申请实施例中的第二十六种背接触太阳能电池的局部结构示意图;
图35示出了本申请实施例中的第二十七种背接触太阳能电池的局部结构示意图。
附图标记说明:
1-硅基底,21-第一本征半导体层,22-第一导电半导体层,3-第二绝缘
层,4-牺牲层,5-第一绝缘层,6-掩膜层,71-第二本征半导体层,72-第二导电半导体层,8-正面膜层,9透明导电层,10-第一电极,11-第二电极。
1-硅基底,21-第一本征半导体层,22-第一导电半导体层,3-第二绝缘
层,4-牺牲层,5-第一绝缘层,6-掩膜层,71-第二本征半导体层,72-第二导电半导体层,8-正面膜层,9透明导电层,10-第一电极,11-第二电极。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于
本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1示出了本申请实施例中的第一种背接触太阳能电池的结构示意图。图2示出了本申请实施例中的第二种背接触太阳能电池的结构示意图。图3示出了本申请实施例中的第三种背接触太阳能电池的结构示意图。图4示出了本申请实施例中的第四种背接触太阳能电池的结构示意图。图5示出了本申请实施例中的第五种背接触太阳能电池的结构示意图。图6示出了本申请实施例中的第六种背接触太阳能电池的结构示意图。图7示出了本申请实施例中的第七种背接触太阳能电池的结构示意图。图8示出了本申请实施例中的一种太阳能电池的制备方法的步骤流程图。图9示出了本申请实施例中的第一种背接触太阳能电池的局部结构示意图。图10示出了本申请实施例中的第二种背接触太阳能电池的局部结构示意图。图11示出了本申请实施例中的第三种背接触太阳能电池的局部结构示意图。图12示出了本申请实施例中的第四种背接触太阳能电池的局部结构示意图。图13示出了本申请实施例中的第五种背接触太阳能电池的局部结构示意图。图14示出了本申请实施例中的第六种背接触太阳能电池的局部结构示意图。图15示出了本申请实施例中的第七种背接触太阳能电池的局部结构示意图。图16示出了本申请实施例中的第八种背接触太阳能电池的局部结构示意图。图17示出了本申请实施例中的第九种背接触太阳能电池的局部结构示意图。图18示出了本申请实施例中的第十种背接触太阳能电池的局部结构示意图。图19示出了本申请实施例中的第十一种背接触太阳能电池的局部结构示意图。图20示出了本申请实施例中的第十二种背接触太阳能电池的局部结构示意图。图21示出了本申请实施例中的第十三种背接触太阳能电池的局部结构示意图。图22示出了本申请实施例中的第十四种背接触太阳能电池的局部结构示意图。图23示出了本申请实施例中的第十五种背接触太阳能电池的局部结构示意图。图24示出了本申请实施例中的第十六种背接触太阳能电池的局部结构示意图。图25示出了本申请实施例中的第十七种背接触太阳能电池的局部结构示意图。图26示出了本申请实施例中的第十八种背接触太阳能电池的局部结构示意图。图27示出了本申请实施例中的第十九种背接触太阳能电池的局部结构示意图。图28示出了本申请实施例中的第二十种背接触太阳能电池的局部结构示意图。图29示出了本申请实施例中的第二十一种背接触太阳能电池的局部结构示意图。图30示出了本申请实施例中的第二十二种背接触太阳能电池的局部结构示意图。图31示出了本申请实施例中的第二十三种背接触太阳能电池的局部结构示意图。图32示出了本申请实施例中的第二十四种背接触太阳能电池的局部结构示意图。图33示出了本申请实施例中的第二十五种背接触太阳能电池的局部结构示意图。图34示出了本申请实施例中的第二十六种背接触太阳能电池的局部结构示意图。图35示出了本申请实施例中的第二十七种背接触太阳能电池的局部结构示意图。图1至图7,图9至图35主要表征各个结构的相对位置关系。
参照图1至图7所示,背接触太阳能电池包括硅基底1,硅基底1包括第一表面,硅基底1主要接收光照的表面可以为第二表面,该第一表面与
该第二表面相对分布,该第一表面也就是硅基底1的背光面。背接触太阳电池还包括位于硅基底1第一表面上的第一半导体层、第二半导体层、第一绝缘层5。
第二半导体层的第一部分与第一半导体层沿着平行于第一表面的第一方向L1交替设置并具有间隙,第二半导体层的第二部分与第一部分连续,且沿着垂直于第一表面的第二方向L2延伸到第一半导体层远离硅基底1的一侧上,就是第二半导体层的第二部分比第一半导体层更远离硅基底1。如,图1至图7中,第二半导体层的第一部分是与硅基底1的第一表面直接接触的部分,第二部分是除了第一部分之外的部分。
第一半导体层包括沿着远离硅基底1层叠设置的第一本征半导体层21和第一导电半导体层22,就是说,第一本征半导体层21位于第一导电半导体层22和硅基底1之间。第二半导体层包括沿着远离硅基底1层叠设置的第二本征半导体层71和第二导电半导体层72,就是说,第二本征半导体层71比第二导电半导体层72更靠近硅基底1。前述的第二方向L2与第一本征半导体层21和第一导电半导体层22的层叠方向平行,或者,前述的第二方向L2与第二本征半导体层71和第二导电半导体层72的层叠方向平行。前述的第一方向L1与第一本征半导体层21和第一导电半导体层22的层叠方向垂直,或者,前述的第一方向L1与第二本征半导体层71和第二导电半导体层72的层叠方向垂直。第一导电半导体层22和第二导电半导体层72的导电类型相反,即一个为n型导电半导体层,另一个即为p型导电半导体层。例如图1所示,第一导电半导体层22为n型导电半导体层,第二导电半导体层72为p型导电半导体层。
第一绝缘层5至少位于上述间隙中,且第一绝缘层5靠近第一导电半导体层22端部。
具体的,发明人发现,现有技术中背接触异质结太阳能电池不同类型的导电半导体层之间容易存在漏电的问题的主要原因在于:导电类型相反的第一导电半导体层22和第二导电半导体层72之间,仅通过第二本征半导体层71起到钝化和绝缘作用。但是考虑到导电效果及钝化效果,第二本征半导体层71的厚度较薄,绝缘效果不佳,导致不同类型的导电半导体层之间容易存在漏电的问题。
在本申请中,针对上述问题,导电类型相反的第一导电半导体层22和第二导电半导体层72之间,除了具有第二本征半导体层71起到钝化和绝缘作用之外,第一导电半导体层22和第二导电半导体层72沿着平行于第一表面的第一方向L1的间隙中,还具有第一绝缘层5,第一绝缘层5对钝化作用,以及对第一导电半导体层22和第二导电半导体层72起到良好的绝缘补强作用,就是说,本申请中,导电类型相反的第一导电半导体层22和第二导电半导体层72之间具有至少两道钝化和绝缘屏障,进而大大改善了钝化和绝缘效果,从很大程度上降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。同时,该第一绝缘层5独立于第二本征半导体层71存在,可以主要关注其绝缘效果,进而其厚度可以相对较厚,进一步提升绝缘效果。
可选的,参照图1至图4所示,第一绝缘层5在前述间隙中沿着第二方向L2延伸到第一半导体层远离硅基底1的一侧上,第一绝缘层5的表面积较大,覆盖的区域更多,进一步提升了钝化作用,而且,第一绝缘层5对于第二半导体层的第二部分中的第二导电半导体层72,以及第二部分所覆盖的第一半导体层中的第一导电半导体层22之间也具有良好的绝缘作用,进一步降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。
可选的,参照图1至图3、图5至图7所示,背接触太阳能电池还包括:沿着第二方向L2,位于第一半导体层远离硅基底1的一侧的第二绝缘层3,第一绝缘层5沿着第二方向L2延伸到第二绝缘层3远离硅基底1的一侧上,就是第一绝缘层5比第二绝缘层3更远离硅基底1。第二绝缘层3也对第二半导体层的第二部分中的第二导电半导体层72,以及第二部分所覆盖的第一半导体层中的第一导电半导体层22之间也具有良好的绝缘作用,绝缘层更多,进一步降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。
可选的,参照图1、图2所示,第一绝缘层5的一端在第一半导体层远离硅基底1的一侧上沿第一方向L1延伸、第一绝缘层5的另一端在前述间隙中沿第一方向L1延伸,如图所示,第一绝缘层5可以包括一个Z字型的形状,该第一绝缘层5的形状简单,易于加工。图1和图2的主要区别在于,图1中,第一表面的部分区域具有绒面结构,与第一表面相对的第二表面没有绒面结构。图2中第一表面的没有绒面结构,与第一表面相对的第二表面具有绒面结构。
可选的,参照图3所示,第一绝缘层5的一端在前述间隙中沿第二方向L2延伸、第一绝缘层5的另一端在第一半导体层远离硅基底1的一侧上沿第一方向L1延伸,如图3所示,第一绝缘层5可以包括一个反的L字型的形状,该第一绝缘层5的形状简单,易于加工。
可选的,参照图4所示,第一绝缘层5的一端在前述间隙中沿第二方向L2延伸、第一绝缘层5的另一端在第二绝缘层3远离硅基底1的一侧上沿第一方向L1延伸,第一绝缘层5可以包括一个反的L字型的形状,该第一绝缘层5的形状简单,易于加工。第二绝缘层3的一端在第一半导体层远离硅基底1的一侧上沿第一方向L1延伸、第二绝缘层3的另一端在前述间隙中沿第一方向L1延伸,第二绝缘层3可以为一个Z字型的形状,第二绝缘层3对第二半导体层的第二部分中的第二导电半导体层72,以及第二部分所覆盖的第一半导体层中的第一导电半导体层22之间具有良好的绝缘作用,绝缘层更多,进一步降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。同时,该第二绝缘层3的形状简单,易于加工。参照图4所示,第二绝缘层3的另一端和第一绝缘层5的另一端沿第一方向L1可以平齐分布,结构简单,易于实现。
可选的,参照图5所示,第一绝缘层5仅位于前述间隙中,第一绝缘层5的一端在第一表面上沿第一方向L1延伸、第一绝缘层5的另一端沿第二方向L2延伸。第一绝缘层5可以包括一个反的L字型或L字型的形状,
该第一绝缘层5的形状简单,易于加工。背接触太阳能电池还包括:沿着第二方向L2,位于第一半导体层远离硅基底1的一侧的第二绝缘层3,第二半导体层的第二部分沿着第二方向L2延伸到第二绝缘层3远离硅基底1的一侧上。第二绝缘层3对第二半导体层的第二部分中的第二导电半导体层72,以及第二部分所覆盖的第一半导体层中的第一导电半导体层22之间具有良好的绝缘作用,绝缘层更多,进一步降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。同时,该第二绝缘层3的形状简单,易于加工。
可选的,参照图6所示,第一绝缘层5仅位于前述间隙中,第一绝缘层5在第一表面上沿第二方向L2延伸,如,第一绝缘层包括I字型或矩形等,该第一绝缘层5的形状简单,易于加工。背接触太阳能电池还包括:沿着第二方向L2,位于第一半导体层远离硅基底1的一侧的第二绝缘层3,第二半导体层的第二部分沿着第二方向L2延伸到第二绝缘层3远离硅基底1的一侧上。第二绝缘层3对第二半导体层的第二部分中的第二导电半导体层72,以及第二部分所覆盖的第一半导体层中的第一导电半导体层22之间具有良好的绝缘作用,绝缘层更多,进一步降低了不同类型的导电半导体层之间漏电的概率,提升了光电转换效率,提升了使用的可靠性。同时,该第二绝缘层3的形状简单,易于加工。
可选的,第二绝缘层3的材料选自:本征非晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种,上述材料绝缘效果好,且易于获得。
可选的,第一绝缘层5的材料选自:本征非晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种,上述材料绝缘效果好,且易于获得。
可选的,在第二方向L2上,第一绝缘层5的厚度,大于第二本征半导体层71的厚度,第二本征半导体层71的厚度较小导电效果较好,且钝化效果较好,第一绝缘层5的厚度较大绝缘效果较好。
可选的,参照图1、图7所示,第一表面上与第二半导体层的第一部分中除了间隙之外的位置对应的区域,具有绒面结构,可以提升减反和吸光效果。
可选的,参照图2至图7所示,硅基底1上与第一表面相对的第二表面上具有绒面结构,可以提升减反和吸光效果。
可选的,第一绝缘层5为单层或叠层结构,第一绝缘层5的结构形式灵活多样。和/或,第二绝缘层3为单层或叠层结构,第二绝缘层3的结构形式灵活多样。例如,参照图1至图7所示,第一绝缘层5、第二绝缘层3均为单层结构。
本申请还提供一种太阳能电池的制备方法,参照图8所示,该方法可以包括如下步骤:
步骤101,在硅基底的第一表面上设置第一半导体层;所述第一半导体层包括沿着远离所述硅基底层叠设置的第一本征半导体层和第一导电半导体层。
如,参照图9所示,在硅基底1的第一表面上设置第一半导体层。该第一半导体层包括沿着远离硅基底1层叠设置的第一本征半导体层21和第
一导电半导体层22。设置第一半导体层的方式可以为沉积等,如PEVCD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积法)设置第一半导体层。对于设置第一半导体层的方式,不作具体限定。
可选的,在上述步骤101之前,该方法还可以包括:对硅基底进行碱抛光及清洗,去掉切割损伤层,并对硅基底的外表面进行清洗。该切割损伤层的厚度大致为1微米至10微米。
步骤102,去除部分第一半导体层,使得所述第一表面的第一区域露出。
具体去除的是在第一表面上投影与前述间隙,以及第二半导体层的第一部分的投影重合的部分第一半导体层。去除方式可以为湿法去除、激光去除等,对于去除方式不作具体限定。如,采用激光与化学蚀刻相结合的方式,去除部分第一半导体层。
如,参照图12所示,去除部分第一半导体层,使得第一表面的第一区域露出。
可选的,步骤102可以包括:采用第一激光去除部分第一半导体层,该第一激光的波长为532nm,即采用绿光纳秒激光去除部分第一半导体层。
步骤103,至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出。
就是至少在露出的第一区域上紧邻第一导电半导体层端部位置形成第一绝缘层5,使得第一区域的其余位置再次露出,即,露出的第一区域上,仅是紧邻第一导电半导体层端部位置形成有第一绝缘层5,第一区域的其余位置没有形成第一绝缘层5。如,参照图17所示,在露出的第一区域上紧邻第一导电半导体层端部位置,以及剩余的第一半导体层上形成第一绝缘层5。
形成第一绝缘层5的方式可以是沉积,如PEVCD等。对于形成第一绝缘层5的方式不作具体限定。
步骤104,在再次露出的其余位置上形成第二半导体层的第一部分,并形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层上的第二半导体层的第二部分;所述第二半导体层包括沿着远离所述硅基底层叠设置的第二本征半导体层和第二导电半导体层;所述第一导电半导体层和所述第二导电半导体层的导电类型相反。
在第一区域上再次露出的其余位置上形成第二半导体层的第一部分,并形成与该第一部分连续且沿着远离硅基底的方向覆盖第一绝缘层5和延伸到部分第一半导体层上的第二半导体层的第二部分,第二半导体层包括沿着远离硅基底1层叠设置的第二本征半导体层71和第二导电半导体层72,第一导电半导体层22和第二导电半导体层72的导电类型相反。
如,参照图18、图19所示,在第一区域上再次露出的其余位置上,以及剩余的第一绝缘层5上,依次整面形成第二本征半导体层71和第二导电半导体层72。整面的第二半导体层中位于第一区域上再次露出的其余位置上的部分为第一部分,其余部分为第二部分。
形成第二半导体层的方式可以为沉积等,例如,采用PECVD方式形成第二半导体层。对于形成第二半导体层的方式不作具体限定。
可选的,前述步骤103可以包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层5,将第一区域上远离第一导电半导体层22端部位置的部分第一绝缘层5,和第一半导体层上的全部第一绝缘层5去除,仅保留第一区域上靠近第一导电半导体层22端部位置的第一绝缘层5,使得第一区域的其余位置再次露出,以及第一半导体层全部露出。此种情况下,参照图5、图6所示,后续设置了第二半导体层之后,沿着第二方向L2,位于第一半导体层远离硅基底1的一侧需要设置第二绝缘层3,对第二半导体层的第二部分和第一半导体层之间起到良好的绝缘作用。
可选的,前述步骤103可以包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层5,将第一区域上远离第一导电半导体层22端部位置的部分第一绝缘层5,和第一半导体层上的部分第一绝缘层5去除,保留第一区域上靠近第一导电半导体层22端部位置的第一绝缘层5和第一半导体层上的部分第一绝缘层5,使得第一区域的其余位置再次露出,以及第一半导体层部分露出,第一绝缘层5连续。此种情况下,参照图1、图2、图3、图4所示,后续设置了第二半导体层之后,沿着第二方向L2,位于第一半导体层远离硅基底1的一侧是否设置第二绝缘层3,不作具体限定,因为,此处依然具有第一绝缘层5,第一绝缘层5会对第二半导体层的第二部分和第一半导体层之间起到良好的绝缘作用。参照图1、图2、图3、图4所示,在还具有第二绝缘层3的情况下,一方面增加了钝化效果,另一方面,绝缘层的层数更多,对第二半导体层的第二部分和第一半导体层之间的绝缘作用更优。
可选的,在前述第一区域的其余位置再次露出,以及第一半导体层部分露出的基础上,参照图18、图19所示,前述步骤104可以包括:在再次露出的其余位置上形成第二半导体层的第一部分,并形成与第一部分连续且沿着远离硅基底1的方向覆盖剩余的第一绝缘层5和延伸到部分露出的第一半导体层的第二半导体层的第二部分。参照图20所示,该方法还包括:将第二部分中位于露出的第一半导体层上的区域去除,仅保留位于第一绝缘层5上的区域,使得第一半导体层再次露出。参照图23所示,在剩余的第二半导体层上,以及再次露出的第一半导体层上设置整层的透明导电层(Transparent Conductive Oxide,TCO)9,参照图24所示,依次将第一绝缘层5上的部分透明导电层9、剩余的第二部分局部位置去除,使得第一绝缘层5露出,或者,依次将第一绝缘层5上的部分透明导电层9、剩余的第二部分局部位置、第一绝缘层去除,使得第二绝缘层3露出。如参照图1所示,在再次露出的第一半导体层对应的透明导电层9上设置第一电极10,在所述第一部分对应的透明导电层9上设置第二电极11。
可选的,可以采用激光,或者化学蚀刻,或者激光与化学蚀刻结合的方式,去除部分第二半导体层。例如,采用紫外(355nm)纳秒激光蚀刻方式或激光与化学蚀刻相结合的方式除去部分第二半导体层。
透明导电层9的材料可以是FTO、AZO、ITO、AZO、IWO、ICO、IMO、IOH等金属氧化物。第一电极10和第二电极11可以采用丝网印刷或者激光转印、电镀、蒸镀等方式制作。对于第一电极10和第二电极11的制作
方式不作具体限定。第一电极10用于收集并传导由第一半导体层产生的载流子,第二电极11用于收集并传导由第二半导体层产生的载流子。
需要说明的是,去除部分透明导电层9的方式可以为下述方式中的任一种:(1)激光正向刻蚀部分透明导电层9;(2)油墨→湿法刻蚀部分透明导电层9→去油墨;(3)喷墨→湿法刻蚀部分透明导电层9→去石蜡;(4)油墨→激光反向刻蚀油墨→湿法刻蚀部分透明导电层9→去油墨;(5)光刻胶→湿法刻蚀部分透明导电层9→去光刻胶;(6)刻蚀浆料→水洗/弱碱洗。
可选的,参照图22所示,在剩余的第二半导体层上,以及露出的第一半导体层上设置整层的透明导电层9之前,该方法还可以包括:在硅基底上与第一表面相对的第二表面上设置正面膜层8,正面膜层8可以包括:正面钝化层、正面减反层等,正面钝化层可以是本征非晶硅等,正面钝化层可以位于正面减反层和硅基底1之间。正面减反层可以是氧化硅、氮化硅(SiNx)、氮氧化硅、金属氧化物、金属氟化物等,例如,正面减反层可以是80nm厚的SiNx。化学式SiNx中的x取值大于0,对于具体的取值不作限定。
可选的,参照图9所示,前述步骤101之后,该方法还可以包括:在第一半导体层上设置第二绝缘层3,前述步骤102可以包括:依次去除部分第二绝缘层3和部分第一半导体层,使得第一表面的第一区域露出。设置第二绝缘层3的方式可以是沉积等,例如,采用PECVD方式,设置第二绝缘层3。
需要说明的是,在第一半导体层和第二绝缘层3的设置方式相同的情况下,两者可以一次性设置,以节省工时,简化工艺。例如,第一半导体层和第二绝缘层3均可以采用PECVD方式一次性设置。
可选的,在前述步骤102之前,该方法还可以包括:在第一半导体层或者,第二绝缘层3上设置牺牲层4,在去除部分第一半导体层,或者,去除部分第一半导体层和第二绝缘层3的过程中,牺牲层4可以起到保护第一半导体层的作用。牺牲层4的材料可以为本征非晶硅等,对于其材料不作具体限定。参照图12所示,在去除部分第一半导体层,或者,去除部分第一半导体层和第二绝缘层3之后,可以去除该牺牲层4。牺牲层4可以采用激光,或者湿法刻蚀等方式去除,对于牺牲层4的具体去除方式不作限定。
可选的,参照图13所示,前述步骤103可以包括:在露出的第一区域上,以及剩余的第二绝缘层3上整面设置第一绝缘层5,参照图14、图15或图16所示,将第一区域上远离第一导电半导体层22端部位置的部分第一绝缘层5去除,使得第一区域的其余位置再次露出。参照图18、图19所示,前述步骤104可以包括:在再次露出的其余位置,以及剩余的第一绝缘层5上整面设置第二半导体层。参照图20、图21所示,依次将位于第一半导体层上的部分第二半导体层、部分第一绝缘层5、部分第二绝缘层3去除,使得第一半导体层露出。参照图21所示,剩余的第二半导体层中,位于再次露出的其余位置的部分为第一部分,剩下部分为第二部分。参照图
23所示,该方法还包括:在剩余的第二半导体层上,以及露出的第一半导体层上设置整层的透明导电层9,参照图24所示,依次将剩余的第一绝缘层5上的部分透明导电层9、剩余的第二部分局部位置、部分第一绝缘层5去除,使得第二绝缘层3露出,参照图1所示,在露出的第一半导体层对应的透明导电层9上设置第一电极10,在第一部分对应的透明导电层9上设置第二电极11。
可选的,参照图13所示,前述步骤103可以包括:依次在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层5、整面设置掩膜层6,参照图14和图15所示,依次将第一区域上远离第一导电半导体层22端部位置的部分第一绝缘层5、部分掩膜层6去除,使得第一区域的其余位置再次露出,第一绝缘层5的材料选自本征非晶硅。参照图16所示,步骤104之前,该方法还包括:以剩余的掩膜层6为掩膜,对再次露出的其余位置制绒,进而增加陷光效果。或者,以剩余的掩膜层6为掩膜,对再次露出的其余位置和硅基底1上与所述第一表面相对的第二表面制绒。参照图17所示,去除剩余的掩膜层6。具体的,第一绝缘层5的材料选自本征非晶硅,第一绝缘层5不耐碱刻蚀,因为在碱制绒过程中会损伤第一绝缘层5,因此,可以制作掩膜层6,该掩膜层6可以为耐碱的材料,如该掩膜层6的材料可以选择:氧化硅、氮氧化硅、氮化硅、碳化硅中的至少一种。
可选的,前述步骤103可以包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层5,将第一区域上远离第一导电半导体层22端部位置的部分第一绝缘层5去除,使得第一区域的其余位置再次露出,第一绝缘层5的材料选自氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种,第一绝缘层5可以耐碱刻蚀,因此可以不用再单独制作掩膜层。步骤104之前,该方法还包括:以剩余的第一绝缘层5为掩膜,对再次露出的其余位置制绒,进而增加陷光效果。或者,以剩余的第一绝缘层5为掩膜,对再次露出的其余位置和硅基底1与所述第一表面相对的第二表面制绒。
本申请还提供一种光伏组件,该光伏组件包括若干个任一前述的太阳能电池。
需要说明的是,背接触太阳能电池的制备方法、背接触太阳能电池、光伏组件三者之间可以相互参照,为了避免重复,此处不再赘述。同时,光伏组件、背接触太阳能电池的制备方法、与任一前述的背接触太阳能电池具有相同或相似的有益效果,为了避免重复,此处不再赘述。
下面结合具体的实施例进一步解释说明本申请:
实施例1
硅基底1可以为N型硅基底,硅基底1的两侧有1微米至10微米的切割损伤层,首先对硅基底1进行碱抛光及清洗,去掉损伤层的同时获得洁净表面。
如图9所示,为硅基底1进行碱抛光及清洗后,利用PECVD法,对硅基底1的第一表面上沉积本征非晶硅层作为第一本征半导体层21、n型非
晶硅层作为第一导电半导体层22、SiNx层作为第二绝缘层3、牺牲层4,牺牲层4的材料为本征非晶硅。
如图10、图11、图12所示,采用绿光(532nm)纳秒激光蚀刻方式或激光与化学蚀刻相结合的方式,依次除去第一表面上部分牺牲层4、部分第二绝缘层3、部分第一导电半导体层22、部分第一本征半导体层21,使得第一表面的第一区域露出,然后去除剩余的牺牲层4。
如图13所示,利用PECVD法,在硅基底1露出的第一区域上依次沉积本征非晶硅层作为第一绝缘层5、SiNx作为制绒的掩膜层6。掩膜层6也可以是氧化硅,SiNx,氮氧化硅的一种或者多种。掩膜层6的层数至少为一层,掩膜层6的厚度为50纳米至350nm。
如图14、图15所示,采用绿光(532nm)纳秒激光刻蚀掉第一区域上的部分掩膜层6,或者使用绿光(532nm)纳秒激光刻蚀掉第一区域上的部分掩膜层6以及其下方的第一绝缘层5。
如图16所示,以剩余的掩膜层6为掩膜,对硅基底1进行制绒,在硅基底1第一表面的第一区域局部形成绒面结构,或者,在硅基底1第一表面的第一区域局部,以及硅基底1上与第一表面相对的第二表面上形成绒面结构。硅基底1的第一区域的损伤层可以通过制绒去除,并且同时形成了位于硅基底1的背光面的绒面结构,增大了面积。参照图17所示,去除剩余的掩膜层6。
如图18、图19所示,利用PECVD方法,在硅基底1的第一表面的第一区域上制绒后的部分,以及剩余的第一绝缘层5上沉积第二本征非晶硅作为第二本征半导体层71、沉积p型非晶硅层为第二导电半导体层72。
如图20、图21所示,采用紫外(355nm)纳秒激光蚀刻方式或激光与化学蚀刻相结合的方式,依次除去第一表面上第一导电半导体层22上的部分上的部分第二导电半导体层72、部分第二本征半导体层71、部分第一绝缘层5、部分第二绝缘层3,使得第一半导体层裸露。
如图22所示,在硅基底1上与第一表面相对的第二表面上沉积正面膜层8,具体可以是,依次在硅基底1的第二表面上沉积本征非晶硅层作为正面钝化层、n型导电非晶硅层(此n型可以有、也可以没有)、正面减反层。正面减反层可以是氧化硅,SiNx、氮氧化硅、金属氧化物、金属氟化物等,如80nm厚的SiNx。
如图23所示,利用PVD(Physical Vapor Deposition,物理气相沉积)在硅基底1露出的第一半导体层和第二半导体层上进行透明导电层9沉积,透明导电层9材料可以是FTO、AZO、ITO、AZO、IWO、ICO、IMO、IOH等金属氧化物。
如图24所示,依次将剩余的第一绝缘层5上的部分透明导电层9、剩余的第二部分局部位置、部分第一绝缘层5去除,使得第二绝缘层3露出。在去除部分透明导电层9时,可以采用以下几种方法中的任一种:(1)激光正向刻蚀透明导电层9;(2)油墨→湿法刻蚀透明导电层9→去油墨;(3)喷墨→湿法刻蚀透明导电层9→去石蜡;(4)油墨→激光反向刻蚀油墨→湿法刻蚀透明导电层9→去油墨;(5)光刻胶→湿法刻蚀透明导电层
9→去光刻胶;(6)刻蚀浆料→水洗/弱碱洗。
如图1所示,用丝网印刷或者激光转印以及电镀等方式进行金属电极制作。制得的太阳能电池如图1所示。
实施例2
硅基底1可以为N型硅基底,硅基底1的两侧有1微米至10微米的切割损伤层,首先对硅基底1进行碱抛光及清洗,去掉损伤层的同时获得洁净表面。
如图25所示,为硅基底1进行碱抛光及清洗后,在硅基底1的第一表面设置掩膜层6,对硅基底1上与第一表面相对的第二表面制绒,然后去除掩膜层6。
如图26所示,利用PECVD法,对硅基底1的第一表面上沉积本征非晶硅层作为第一本征半导体层21、n型非晶硅层作为第一导电半导体层22、SiNx层作为第二绝缘层3、牺牲层4,牺牲层4的材料为本征非晶硅。
如图27所示,采用绿光(532nm)纳秒激光蚀刻方式或激光与化学蚀刻相结合的方式,依次除去第一表面上部分牺牲层4、部分第二绝缘层3、部分第一导电半导体层22、部分第一本征半导体层21,使得第一表面的第一区域露出,然后去除剩余的牺牲层4。
如图28所示,利用PECVD法,在硅基底1露出的第一区域上沉积第一绝缘层5,第一绝缘层5的材料选自氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种。
如图29所示,采用绿光(532nm)纳秒激光刻蚀掉第一区域上的第一绝缘层5。并以剩余的第一绝缘层5为掩膜,对硅基底1进行制绒,在硅基底1第一表面的第一区域局部形成绒面结构。硅基底1的第一区域的损伤层可以通过制绒去除,并且同时形成了位于硅基底1的背光面的绒面结构,增大了面积。
如图30所示,利用PECVD方法,在硅基底1的第一表面的第一区域上制绒后的部分,以及剩余的第一绝缘层5上沉积第二本征非晶硅作为第二本征半导体层71、沉积p型非晶硅层为第二导电半导体层72。
如图31所示,采用紫外(355nm)纳秒激光蚀刻方式或激光与化学蚀刻相结合的方式,依次除去第一表面上第一导电半导体层22上的部分上的部分第二导电半导体层72、部分第二本征半导体层71、部分第一绝缘层5、部分第二绝缘层3,使得第一半导体层裸露。在硅基底1上与第一表面相对的第二表面上沉积正面膜层8。利用PVD在硅基底1露出的第一半导体层和第二半导体层上进行透明导电层9沉积。依次将剩余的第一绝缘层5上的部分透明导电层9、剩余的第二部分局部位置、部分第一绝缘层5去除,使得第二绝缘层3露出。如图7所示,用丝网印刷或者激光转印以及电镀等方式进行金属电极制作。制得的太阳能电池如图7所示。
实施例1和实施例2的主要区别在于,实施例2中,剩余的第一绝缘层5可以作为制绒的掩膜,无需单独设置掩膜。
实施例3
硅基底1可以为N型硅基底,硅基底1的两侧有1微米至10微米的切
割损伤层,首先对硅基底1进行碱抛光及清洗,去掉损伤层的同时获得洁净表面。
与实施例2相同,如图25所示,为硅基底1进行碱抛光及清洗后,在硅基底1的第一表面设置掩膜层6,对硅基底1上与第一表面相对的第二表面制绒,然后去除掩膜层6。
与实施例2相同,如图26所示,利用PECVD法,对硅基底1的第一表面上沉积本征非晶硅层作为第一本征半导体层21、n型非晶硅层作为第一导电半导体层22、SiNx层作为第二绝缘层3、牺牲层4,牺牲层4的材料为本征非晶硅。
与实施例2相同,如图27所示,采用绿光(532nm)纳秒激光蚀刻方式或激光与化学蚀刻相结合的方式,依次除去第一表面上部分牺牲层4、部分第二绝缘层3、部分第一导电半导体层22、部分第一本征半导体层21,使得第一表面的第一区域露出,然后去除剩余的牺牲层4。
参照图32所示,利用PECVD法,在硅基底1露出的第一区域上依次沉积本征非晶硅层作为第一绝缘层5、SiNx作为制绒的掩膜层6。掩膜层6也可以是氧化硅,SiNx,氮氧化硅的一种或者多种。采用激光依次去除部分掩膜层6和部分第一绝缘层5,接着先弱碱洗硅基底1的表面以去除激光损伤,然后酸洗去掉剩余的掩膜层6。
实施例3的剩余步骤与实施例1对应相同。如图2所示,用丝网印刷或者激光转印以及电镀等方式进行金属电极制作。制得的太阳能电池如图2所示。
实施例3和实施例1的主要区别在于,第一区域没有碱制绒,而是用弱碱洗硅基底1的表面以去除激光损伤。
实施例4
参照图33所示,实施例4与实施例3的主要区别在于,利用PECVD法,在硅基底1露出的第一区域上,以及剩余的第二绝缘层上依次沉积本征非晶硅层作为第一绝缘层5、SiNx作为掩膜层6,以及本征非晶硅作为牺牲层4。参照图34所示,用激光打掉了最外层的部分牺牲层4,使得掩膜层6露出,接着,参照图35所示,酸洗掉露出的部分掩膜层6,使得第一绝缘层5露出,以剩余的掩膜层6为掩膜,碱洗掉剩余的牺牲层4,以及露出的第一绝缘层5,再酸洗掉剩余的掩膜层6。其余步骤可以和实施例3对应相同,制得的太阳能电池如图2所示。
实施例5
参照图35所示,实施例5与实施例3的主要区别在于,利用PECVD法,在硅基底1露出的第一区域上,以及剩余的第二绝缘层上仅沉积了第一绝缘层5,第一绝缘层5的材料选自氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种。用激光打掉部分第一绝缘层5之后,用弱碱清洗露出的第一区域。其余步骤可以和实施例3对应相同,制得的太阳能电池如图2所示。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以
是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (23)
- 一种背接触太阳能电池,其特征在于,包括:硅基底,所述硅基底包括第一表面,所述背接触太阳电池还包括位于所述硅基底第一表面上的第一半导体层、第二半导体层、第一绝缘层;所述第二半导体层的第一部分与所述第一半导体层沿着平行于所述第一表面的第一方向交替设置并具有间隙,所述第二半导体层的第二部分与所述第一部分连续,且沿着垂直于所述第一表面的第二方向延伸到所述第一半导体层远离所述硅基底的一侧上;所述第一半导体层包括沿着远离所述硅基底层叠设置的第一本征半导体层和第一导电半导体层,所述第二半导体层包括沿着远离所述硅基底层叠设置的第二本征半导体层和第二导电半导体层;所述第一导电半导体层和所述第二导电半导体层的导电类型相反;所述第一绝缘层至少位于所述间隙中,且所述第一绝缘层靠近第一导电半导体层端部。
- 根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一绝缘层在所述间隙中沿着所述第二方向延伸到所述第一半导体层远离所述硅基底的一侧上。
- 根据权利要求2所述的背接触太阳能电池,其特征在于,还包括:沿着所述第二方向,位于所述第一半导体层远离所述硅基底的一侧的第二绝缘层;所述第一绝缘层沿着所述第二方向延伸到所述第二绝缘层远离所述硅基底的一侧上。
- 根据权利要求2或3所述的背接触太阳能电池,其特征在于,所述第一绝缘层的一端在所述第一半导体层远离所述硅基底的一侧上沿所述第一方向延伸、所述第一绝缘层的另一端在所述间隙中沿所述第一方向延伸。
- 根据权利要求2或3所述的背接触太阳能电池,其特征在于,所述第一绝缘层的一端在所述间隙中沿所述第二方向延伸、所述第一绝缘层的另一端在所述第一半导体层远离所述硅基底的一侧上沿所述第一方向延伸。
- 根据权利要求3所述的背接触太阳能电池,其特征在于,所述第一绝缘层的一端在所述间隙中沿所述第二方向延伸、所述第一绝缘层的另一端在所述第二绝缘层远离所述硅基底的一侧上沿所述第一方向延伸;所述第二绝缘层的一端在所述第一半导体层远离所述硅基底的一侧上沿所述第一方向延伸、所述第二绝缘层的另一端在所述间隙中沿所述第一方向延伸。
- 根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一绝缘层仅位于所述间隙中,所述第一绝缘层的一端在所述第一表面上沿所述第一方向延伸、所述第一绝缘层的另一端沿所述第二方向延伸;所述背接触太阳能电池还包括:沿着所述第二方向,位于所述第一半导体层远离所述硅基底的一侧的第二绝缘层;所述第二部分沿着所述第二方向延伸到所述第二绝缘层远离所述硅基底的一侧上。
- 根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一绝缘层仅位于所述间隙中,所述第一绝缘层在所述第一表面上沿所述第二方 向延伸;所述背接触太阳能电池还包括:沿着所述第二方向,位于所述第一半导体层远离所述硅基底的一侧的第二绝缘层;所述第二部分沿着所述第二方向延伸到所述第二绝缘层远离所述硅基底的一侧上。
- 根据权利要求3、6、7、8中任一所述的背接触太阳能电池,其特征在于,所述第二绝缘层的材料选自:本征非晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种。
- 根据权利要求1至3、6、7、8中任一所述的背接触太阳能电池,其特征在于,所述第一绝缘层的材料选自:本征非晶硅、氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种。
- 根据权利要求1至3、6、7、8中任一所述的背接触太阳能电池,其特征在于,在所述第二方向上,所述第一绝缘层的厚度,大于所述第二本征半导体层的厚度。
- 根据权利要求1至3、6、7、8中任一所述的背接触太阳能电池,其特征在于,所述第一表面上与所述第一部分中除了所述间隙之外的位置对应的区域,具有绒面结构。
- 根据权利要求3、6、7、8中任一所述的背接触太阳能电池,其特征在于,所述第一绝缘层为单层或叠层结构;和/或,所述第二绝缘层为单层或叠层结构。
- 一种背接触太阳能电池的制备方法,其特征在于,包括:在硅基底的第一表面上设置第一半导体层;所述第一半导体层包括沿着远离所述硅基底层叠设置的第一本征半导体层和第一导电半导体层;去除部分第一半导体层,使得所述第一表面的第一区域露出;至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出;在再次露出的其余位置上形成第二半导体层的第一部分,并形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层上的第二半导体层的第二部分;所述第二半导体层包括沿着远离所述硅基底层叠设置的第二本征半导体层和第二导电半导体层;所述第一导电半导体层和所述第二导电半导体层的导电类型相反。
- 根据权利要求14所述的背接触太阳能电池的制备方法,其特征在于,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层,将第一区域上远离第一导电半导体层端部位置的部分第一绝缘层,和第一半导体层上的全部第一绝缘层去除,仅保留所述第一区域上靠近第一导电半导体层端部位置的第一绝缘层,使得所述第一区域的其余位置再次露出,以及所述第一半导体层全部露出。
- 根据权利要求14所述的背接触太阳能电池的制备方法,其特征在于,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域 上,以及剩余的第一半导体层上整面设置第一绝缘层,将第一区域上远离第一导电半导体层端部位置的部分第一绝缘层,和第一半导体层上的部分第一绝缘层去除,保留所述第一区域上靠近第一导电半导体层端部位置的第一绝缘层和所述第一半导体层上的部分第一绝缘层,使得所述第一区域的其余位置再次露出,以及所述第一半导体层部分露出。
- 根据权利要求14所述的背接触太阳能电池的制备方法,其特征在于,设置第一半导体层之后,所述方法还包括:在所述第一半导体层上设置第二绝缘层;所述去除部分第一半导体层,使得所述第一表面的第一区域露出,包括:依次去除部分第二绝缘层和部分第一半导体层,使得所述第一表面的第一区域露出。
- 根据权利要求17所述的背接触太阳能电池的制备方法,其特征在于,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第二绝缘层上整面设置第一绝缘层,将所述第一区域上远离第一导电半导体层端部位置的部分第一绝缘层去除,使得所述第一区域的其余位置再次露出;所述在再次露出的其余位置上形成第二半导体层的第一部分,并形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层上的第二半导体层的第二部分,包括:在再次露出的其余位置,以及剩余的第一绝缘层上整面设置第二半导体层;依次将位于第一半导体层上的部分第二半导体层、部分第一绝缘层、部分第二绝缘层去除,使得所述第一半导体层露出;剩余的第二半导体层中,位于再次露出的其余位置的部分为第一部分,剩下部分为第二部分;所述方法还包括:在剩余的第二半导体层上,以及露出的第一半导体层上设置整层的透明导电层;依次将剩余的第一绝缘层上的部分透明导电层、剩余的第二部分局部位置、部分第一绝缘层去除,使得所述第二绝缘层露出;在露出的第一半导体层对应的透明导电层上设置第一电极,在所述第一部分对应的透明导电层上设置第二电极。
- 根据权利要求16所述的背接触太阳能电池的制备方法,其特征在于,所述形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖第一绝缘层和延伸到部分第一半导体层的第二半导体层的第二部分,包括:形成与所述第一部分连续且沿着远离所述硅基底的方向覆盖剩余的第一绝缘层和延伸到部分露出的第一半导体层的第二半导体层的第二部分;所述方法还包括:将第二部分中位于露出的第一半导体层上的区域去除,仅保留位于第一绝缘层上的区域,使得第一半导体层再次露出;在剩余的第二半导体层上,以及再次露出的第一半导体层上设置整层的透明导电层;依次将第一绝缘层上的部分透明导电层、剩余的第二部分局部位置去除,使得所述第一绝缘层露出;在再次露出的第一半导体层对应的透明导电层上设置第一电极,在所述 第一部分对应的透明导电层上设置第二电极。
- 根据权利要求14所述的背接触太阳能电池的制备方法,其特征在于,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:依次在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层、整面设置掩膜层,依次将所述第一区域上远离第一导电半导体层端部位置的部分第一绝缘层、部分掩膜层去除,使得所述第一区域的其余位置再次露出;所述第一绝缘层的材料选自本征非晶硅;在再次露出的其余位置上形成第二半导体层的第一部分之前,所述方法还包括:以剩余的掩膜层为掩膜,对再次露出的所述其余位置制绒;或者,以剩余的掩膜层为掩膜,对再次露出的所述其余位置和所述硅基底上与所述第一表面相对的第二表面制绒;去除剩余的掩膜层。
- 根据权利要求14所述的背接触太阳能电池的制备方法,其特征在于,所述至少在露出的第一区域上靠近第一导电半导体层端部位置形成第一绝缘层,使得所述第一区域的其余位置再次露出,包括:在露出的第一区域上,以及剩余的第一半导体层上整面设置第一绝缘层,将所述第一区域上远离第一导电半导体层端部位置的部分第一绝缘层去除,使得所述第一区域的其余位置再次露出;所述第一绝缘层的材料选自氧化硅、氮化硅、氮氧化硅、碳化硅中的至少一种;在再次露出的其余位置上形成第二半导体层的第一部分之前,所述方法还包括:以剩余的第一绝缘层为掩膜,对再次露出的所述其余位置制绒;或者,以剩余的掩膜层为掩膜,对再次露出的所述其余位置和所述硅基底上与所述第一表面相对的第二表面制绒。
- 根据权利要求14所述的背接触太阳能电池的制备方法,其特征在于,所述去除部分第一半导体层,包括:采用第一激光去除部分第一半导体层;所述第一激光的波长为532nm。
- 一种光伏组件,其特征在于,包括若干个如权利要求1至13中任一所述的太阳能电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211385088.4A CN115588698B (zh) | 2022-11-07 | 2022-11-07 | 背接触太阳能电池及其制备方法、光伏组件 |
CN202211385088.4 | 2022-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024098920A1 true WO2024098920A1 (zh) | 2024-05-16 |
Family
ID=84781079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/116800 WO2024098920A1 (zh) | 2022-11-07 | 2023-09-04 | 背接触太阳能电池及其制备方法、光伏组件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115588698B (zh) |
WO (1) | WO2024098920A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115588698B (zh) * | 2022-11-07 | 2024-11-01 | 隆基绿能科技股份有限公司 | 背接触太阳能电池及其制备方法、光伏组件 |
CN116314361A (zh) * | 2023-03-31 | 2023-06-23 | 天合光能股份有限公司 | 太阳电池及太阳电池的制备方法 |
CN116504877B (zh) * | 2023-05-08 | 2024-11-01 | 安徽华晟新能源科技股份有限公司 | 异质结电池及其制备方法 |
CN117855345B (zh) * | 2024-03-04 | 2024-05-31 | 国电投新能源科技有限公司 | 背接触异质结太阳电池的制备方法及异质结太阳电池 |
CN118198200B (zh) * | 2024-05-14 | 2024-08-20 | 金阳(泉州)新能源科技有限公司 | 一种背接触电池的制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102044579A (zh) * | 2009-09-07 | 2011-05-04 | Lg电子株式会社 | 太阳能电池 |
WO2015189878A1 (ja) * | 2014-06-13 | 2015-12-17 | 国立大学法人福島大学 | 太陽電池及びその製造方法 |
CN107210331A (zh) * | 2015-03-31 | 2017-09-26 | 株式会社钟化 | 太阳能电池及其制造方法 |
CN108140680A (zh) * | 2015-12-07 | 2018-06-08 | 株式会社钟化 | 光电转换装置及其制造方法 |
CN110634971A (zh) * | 2018-05-31 | 2019-12-31 | 福建金石能源有限公司 | 一种背接触异质结太阳能电池及其制造方法 |
CN115588698A (zh) * | 2022-11-07 | 2023-01-10 | 隆基绿能科技股份有限公司 | 背接触太阳能电池及其制备方法、光伏组件 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8030119B2 (en) * | 2008-03-08 | 2011-10-04 | Crystal Solar, Inc. | Integrated method and system for manufacturing monolithic panels of crystalline solar cells |
WO2014136715A1 (ja) * | 2013-03-04 | 2014-09-12 | シャープ株式会社 | 光電変換素子 |
JP6223424B2 (ja) * | 2013-03-28 | 2017-11-01 | シャープ株式会社 | 光電変換素子 |
TWI462320B (zh) * | 2013-11-11 | 2014-11-21 | Neo Solar Power Corp | 背接觸式太陽能電池 |
CN109564946B (zh) * | 2016-08-15 | 2023-10-03 | 夏普株式会社 | 光电转换元件以及光电转换装置 |
CN108666387B (zh) * | 2018-07-03 | 2024-01-30 | 黄河水电光伏产业技术有限公司 | 一种背接触异质结n型单晶硅太阳电池 |
CN110047949A (zh) * | 2019-04-04 | 2019-07-23 | 国家电投集团西安太阳能电力有限公司 | 一种异质结背接触太阳能电池及其制备方法 |
US10749045B1 (en) * | 2019-05-23 | 2020-08-18 | Zhejiang Kaiying New Materials Co., Ltd. | Solar cell side surface interconnects |
CN113745356A (zh) * | 2021-09-13 | 2021-12-03 | 福建金石能源有限公司 | 一种多主栅背接触异质结太阳电池及其制作方法 |
CN113809186A (zh) * | 2021-09-13 | 2021-12-17 | 福建金石能源有限公司 | 一种采用形成电极、开槽绝缘二步法的背接触异质结太阳能电池制造方法 |
-
2022
- 2022-11-07 CN CN202211385088.4A patent/CN115588698B/zh active Active
-
2023
- 2023-09-04 WO PCT/CN2023/116800 patent/WO2024098920A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102044579A (zh) * | 2009-09-07 | 2011-05-04 | Lg电子株式会社 | 太阳能电池 |
WO2015189878A1 (ja) * | 2014-06-13 | 2015-12-17 | 国立大学法人福島大学 | 太陽電池及びその製造方法 |
CN107210331A (zh) * | 2015-03-31 | 2017-09-26 | 株式会社钟化 | 太阳能电池及其制造方法 |
CN108140680A (zh) * | 2015-12-07 | 2018-06-08 | 株式会社钟化 | 光电转换装置及其制造方法 |
CN110634971A (zh) * | 2018-05-31 | 2019-12-31 | 福建金石能源有限公司 | 一种背接触异质结太阳能电池及其制造方法 |
CN115588698A (zh) * | 2022-11-07 | 2023-01-10 | 隆基绿能科技股份有限公司 | 背接触太阳能电池及其制备方法、光伏组件 |
Also Published As
Publication number | Publication date |
---|---|
CN115588698A (zh) | 2023-01-10 |
CN115588698B (zh) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024098920A1 (zh) | 背接触太阳能电池及其制备方法、光伏组件 | |
WO2024055475A1 (zh) | 一种联合钝化背接触电池及其制备方法 | |
WO2024114031A1 (zh) | 一种背接触电池及其制造方法、光伏组件 | |
TW480737B (en) | Solar cell and method of manufacture thereof | |
AU2013326971A1 (en) | Photovoltaic devices with electroplated metal grids | |
JP7564974B2 (ja) | 太陽光電池及び太陽光発電モジュール | |
WO2016158226A1 (ja) | 太陽電池及びその製造方法 | |
US9761749B2 (en) | Photoelectric conversion device | |
CN114038922A (zh) | 一种提升绝缘隔离效果的背接触异质结太阳能电池及其制作方法 | |
CN115188837A (zh) | 一种背接触太阳能电池及制备方法、电池组件 | |
WO2024045917A1 (zh) | 背接触太阳能电池及其制备方法 | |
WO2019144611A1 (zh) | 异质结太阳能电池及其制备方法 | |
JP5771759B2 (ja) | 太陽電池、太陽電池モジュール、太陽電池の製造方法、並びに太陽電池モジュールの製造方法 | |
CN115763609A (zh) | 一种隧穿型背接触异质结太阳能电池及其制作方法 | |
JP2014199875A (ja) | 太陽電池、およびその製造方法、ならびに太陽電池モジュール | |
CN105470347A (zh) | 一种perc电池的制作方法 | |
JP3220300U (ja) | 太陽電池及びその製造方法 | |
CN115020533B (zh) | 一种polo-ibc电池的制备方法 | |
CN111403538A (zh) | 太阳能电池及其制备方法 | |
CN115207169A (zh) | P型ibc太阳能电池片及其制备方法、电池组件和光伏系统 | |
CN110600577A (zh) | 一种异质结太阳能电池及其制备方法 | |
CN116053332A (zh) | 一种背接触式硅异质结太阳能电池及其制备方法 | |
JP7237920B2 (ja) | 太陽電池の製造方法 | |
CN218957742U (zh) | 一种背接触太阳能电池及光伏组件 | |
JP7486654B1 (ja) | 太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23887614 Country of ref document: EP Kind code of ref document: A1 |