WO2024098827A1 - 信息传输装置及电子设备 - Google Patents

信息传输装置及电子设备 Download PDF

Info

Publication number
WO2024098827A1
WO2024098827A1 PCT/CN2023/107511 CN2023107511W WO2024098827A1 WO 2024098827 A1 WO2024098827 A1 WO 2024098827A1 CN 2023107511 W CN2023107511 W CN 2023107511W WO 2024098827 A1 WO2024098827 A1 WO 2024098827A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
receiving end
information transmission
transmission device
Prior art date
Application number
PCT/CN2023/107511
Other languages
English (en)
French (fr)
Inventor
王占祥
Original Assignee
江苏彩汇芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏彩汇芯电子科技有限公司 filed Critical 江苏彩汇芯电子科技有限公司
Publication of WO2024098827A1 publication Critical patent/WO2024098827A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/34Voltage stabilisation; Maintaining constant voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits

Definitions

  • the present application relates to the technical field of information transmission, and in particular to an information transmission device and an electronic device.
  • a combination of high and low levels with different time widths is usually used to represent code 0 and code 1, as shown in Figure 1.
  • the receiver needs to demodulate code 0 and code 1 by identifying levels of different widths, and usually needs to use a clock signal counter to calculate the width of the high and low levels, that is, the duty cycle, to identify code 0 and code 1.
  • This communication system that demodulates code 0 and code 1 by calculating the level width requires a timing circuit to calculate the signal width, and encoding and decoding by calculating the level width will inevitably prolong the communication time.
  • the technical problem to be solved by the present application is to overcome the defect in the prior art that encoding and decoding is achieved by calculating the level width, which leads to prolonged communication time, and to provide an information transmission device and an electronic device.
  • the first aspect of the present application provides an information transmission device, including a transmitting end and a receiving end, wherein the output end of the transmitting end is connected to the power supply end of the receiving end, and the ground end of the transmitting end is connected to the ground end of the receiving end; the transmitting end is used to output a voltage signal including at least three voltage values according to target information; the receiving end is used to analyze the amplitude change of the voltage signal received by the power supply end to obtain the target information.
  • the receiving end includes a first control unit and at least two comparators, wherein the comparators The number of types of voltage values of the voltage signal output by the transmitting end is one less; the first input end of each comparator is connected to the output end of the transmitting end, the second input end is used to receive reference voltages of different voltage values, and the output ends are connected to the input end of the first control unit; wherein the voltage values of the reference voltages received by different comparators are respectively between two adjacent voltage values of the at least three voltage values after being sorted in order of size; the first control unit is used to parse the output signal of each comparator to obtain the target information.
  • the receiving end further includes a preprocessing unit corresponding one-to-one to the comparator, and the preprocessing unit is used to preprocess the received voltage signal; the first input end of each comparator is connected to the output end of the sending end through the corresponding preprocessing unit.
  • the receiving end further includes a light source driving circuit connected to the first control unit, and the first control unit is used to drive different light sources through the light source driving circuit according to the target information.
  • the target information includes brightness information of the light source and/or address information of the light source.
  • the light source is an LED lamp.
  • the receiving end is an ASIC (Application Specific Integrated Circuit) chip.
  • ASIC Application Specific Integrated Circuit
  • the transmitting end includes a second control unit, at least two voltage conversion units and at least two switching tubes; each voltage conversion unit is used to convert an input voltage into a voltage different from the voltage value of the input voltage, and different voltage conversion units are used to output different voltages; one end of each switching tube is connected to a different target voltage, and the other end is connected to the output end of the transmitting end, and the control end is connected to the second control unit; wherein the target voltage includes the voltage output by the voltage conversion unit and the input voltage; the second control unit is used to output a corresponding control signal to the switching tube according to the target information.
  • the number of the switch tubes is one less than the type of voltage value of the voltage signal output by the transmitting end; one end of each switch tube is respectively connected to a voltage other than the minimum voltage in the target voltage; and the voltages other than the maximum voltage in the target voltage are connected to the output end of the transmitting end. Connect a diode in series.
  • a second aspect of the present application provides an electronic device, comprising the information transmission device as described in the first aspect.
  • the positive progress of the present application is that the receiving end can obtain the target information sent by the transmitting end by analyzing the amplitude change of the voltage signal received by the power supply end, without the need to use a clock signal counter to calculate the width of the level, which can improve the communication efficiency between the transmitting end and the receiving end.
  • the power supply line can simultaneously transmit power and target information between the transmitting end and the receiving end, further improving the communication efficiency between the transmitting end and the receiving end.
  • FIG. 1 is a schematic diagram of coding in an existing digital communication system.
  • FIG2 is a schematic diagram of the structure of an information transmission device provided in Example 1 of the present application.
  • FIG3 is a schematic diagram of coding provided in Example 1 of the present application.
  • FIG4 is a schematic diagram of an internal circuit of a transmitting end provided in Example 1 of the present application.
  • FIG5 is a schematic diagram of an internal circuit of a receiving end provided in Example 1 of the present application.
  • FIG6 is an internal schematic diagram of an ASIC chip as a receiving end provided in Example 1 of the present application.
  • FIG. 7 is a schematic diagram showing the connection between an ASIC chip and an LED lamp provided in Example 1 of the present application.
  • This embodiment provides an information transmission device, as shown in FIG2, comprising a transmitting end and a receiving end, wherein the output end of the transmitting end is connected to the power supply end of the receiving end, and the ground end of the transmitting end is connected to the ground end of the receiving end.
  • the transmitting end is used to output a voltage signal including at least three voltage values according to target information.
  • the receiving end is used to detect the amplitude change of the voltage signal received by the power supply end. Perform analysis to obtain the target information.
  • the transmitting end may also be called a transmitter, a transmitting device, a transmitting device, etc.
  • the receiving end may also be called a receiver, a receiving device, etc.
  • the transmitting end outputs a voltage signal including three voltage values according to the target information, and the three voltage values can correspond to a high level, a medium level and a low level respectively.
  • the target information can be encoded differently using a voltage signal including a high level, a medium level and a low level, and can be specifically encoded as a binary data sequence consisting of 0 codes and 1 codes.
  • the change from a high level to a medium level is defined as a 1 code
  • the change from a high level to a low level is defined as a 0 code
  • the change from a medium level or a low level to a high level is an interval code.
  • the target information is encoded as "1001100110011001", and the corresponding voltage signal includes three voltage values of a high level, a medium level and a low level. It should be noted that the zero level in FIG3 corresponds to the level of the ground terminal.
  • the change from low level to high level can be defined as 1 code
  • the change from low level to medium level can be defined as 0 code
  • the change from high level or medium level to low level can be defined as interval code
  • the target information can be encoded according to the 1 code and 0 code defined in this example.
  • the voltage signal output by the transmitting end is used to power the receiving end. It should be noted that the voltage signal of each voltage value output by the transmitting end is within the operating voltage range of the receiving end, that is, it can enable the receiving end to work normally.
  • the receiving end can obtain the target information sent by the transmitting end by analyzing the amplitude change of the voltage signal received by the power supply end, without using the clock signal counter to calculate the width of the level, which can improve the communication efficiency between the transmitting end and the receiving end.
  • the power supply line can simultaneously transmit power and target information between the transmitting end and the receiving end, further improving the communication efficiency between the two.
  • the receiving end may use a mixed digital-analog circuit to analyze the amplitude change of the received voltage signal, which may specifically include a comparator or a digital-analog converter.
  • the receiving end includes a first control unit and at least two The first control unit is used to parse the output signal of each comparator to obtain the target information.
  • the first control unit can obtain the amplitude change of the voltage signal received by the receiving end by analyzing the output signal of each comparator, and then obtain the target information sent by the sending end, thereby realizing communication between the sending end and the receiving end.
  • each comparator outputs different signals according to the magnitude relationship between the voltage at the first input end and the reference voltage received at the second input end. Since the voltage value of the reference voltage is fixed, the comparator can identify the code in the target information according to the amplitude change of the voltage at the first input end, and then obtain the target information.
  • the receiving end further includes a preprocessing unit corresponding to the comparator one by one, and the preprocessing unit is used to preprocess the received voltage signal.
  • the first input end of each comparator is connected to the output end of the transmitting end through the corresponding preprocessing unit.
  • the received voltage signal is preprocessed in the receiving end before being input into the comparator, and the decoding of the target information is realized by comparing the preprocessed voltage with the reference voltage.
  • the preprocessing can be voltage division processing, filtering processing, etc.
  • the receiving end further includes a light source driving circuit connected to the first control unit, and the first control unit is used to drive different light sources through the light source driving circuit according to the target information.
  • the target information may include brightness information of the light source, address information of the light source, command information, etc.
  • the first control unit may control light sources of different addresses through the light source driving circuit according to the address information of the light source obtained through the analysis, may control the brightness of the light source through the light source driving circuit according to the brightness information of the light source obtained through the analysis, and may also control the light source to flash in a preset manner through the light source driving circuit according to the command information obtained through the analysis.
  • the light source may be an LED lamp.
  • the receiving end is an ASIC chip. In this implementation, all circuits included in the receiving end are integrated into one ASIC chip, which greatly simplifies the circuit.
  • the transmitting end includes a second control unit, at least two voltage conversion units and at least two switch tubes.
  • Each voltage conversion unit is used to convert an input voltage into a voltage different from the voltage value of the input voltage, and different voltage conversion units are used to output different voltages.
  • the voltage conversion unit can adopt a linear voltage regulator chip or a DC-DC switching voltage conversion chip.
  • the second control unit can adopt an MCU (Microcontroller Unit).
  • each switch tube is connected to a different target voltage, the other end is connected to the output end of the transmitting end, and the control end is connected to the second control unit; wherein the target voltage includes the voltage output by the voltage conversion unit and the input voltage.
  • the switch tube can be a MOS (field effect tube) tube, such as a PMOS tube or an NMOS tube, etc., and can also be other devices with a switch function, such as a switch chip, a relay, etc.
  • the second control unit is used to output a corresponding control signal to the switch tube according to the target information.
  • the second control unit controls the on and off of the switch tube to output voltage signals with different voltage values at the output end.
  • the voltage value of the voltage signal can be the voltage output by different voltage conversion units or the input voltage.
  • the number of the switching tubes is one less than the type of voltage value of the voltage signal output by the transmitting end; one end of each switching tube is respectively connected to a voltage other than the minimum voltage in the target voltage; and a diode is connected in series between each voltage other than the maximum voltage in the target voltage and the output end of the transmitting end.
  • a diode is provided between a voltage other than the maximum voltage and the output end of the transmitting end, and the single-phase conduction characteristic of the diode is utilized to effectively prevent a larger voltage from flowing back to a smaller voltage end.
  • the signal provided in this embodiment is described below in conjunction with the transmitting end shown in FIG. 4 and the receiving end shown in FIG. 5.
  • the working principle of the information transmission device is introduced in detail.
  • FIG4 is used to illustrate a schematic diagram of the internal circuit of a transmitting end.
  • the transmitting end includes a second control unit U3, a voltage conversion unit U1, a voltage conversion unit U2, a PMOS tube M1, a PMOS tube M2, a diode D1 and a diode D2.
  • the voltage conversion unit U1 is used to convert the input voltage VDD into a voltage V1
  • the voltage conversion unit U2 is used to convert the input voltage VDD into a voltage V2.
  • the source of the PMOS tube M1 is connected to the input voltage VDD, the drain is connected to the pin 1 of the port H1, and the gate is connected to the pin 7 of the second control unit U3 through the resistor R6.
  • the source of the PMOS tube M2 is connected to the voltage V1, the drain is connected to the anode of the diode D1, and the gate is connected to the pin 6 of the second control unit U3 through the resistor R8.
  • the voltage V2 is connected to the anode of the diode D2, and the cathodes of the diodes D1 and D2 are both connected to the pin 1 of the port H1.
  • Pin 2 of the port H1 is grounded.
  • Pin 1 of port H1 is the output terminal of the transmitting end, and pin 2 of port H1 is the ground terminal of the transmitting end.
  • the second control unit U3 controls the on and off of the PMOS tube M1 and the PMOS tube M2 according to the target information. Specifically, when the second control unit U3 controls the PMOS tube M1 to be turned on, the voltage value of the voltage signal output by pin 1 of the port H1 is VDD. When the second control unit U3 controls the PMOS tube M2 to be turned on and the PMOS tube M1 to be turned off, the voltage value of the voltage signal output by pin 1 of the port H1 is V1. When the second control unit U3 controls both the PMOS tube M1 and the PMOS tube M2 to be turned off, the voltage value of the voltage signal output by pin 1 of the port H1 is V2.
  • Figure 5 is used to illustrate a schematic diagram of the internal circuit of a receiving end.
  • the receiving end includes a logic operation unit, a comparator 1, a comparator 2, a preprocessing unit 1, a preprocessing unit 2 and an LED driving circuit.
  • the logic operation unit corresponds to the above-mentioned first control unit
  • the LED driving circuit corresponds to the above-mentioned light source driving circuit.
  • the non-phase input terminal of the comparator 1 is connected to the pin 1 of the port H2 through the preprocessing unit 1
  • the inverting input terminal is connected to the reference voltage Vref1 generated by the reference voltage generating circuit 1
  • the output terminal Out1 is connected to the logic operation unit.
  • the non-phase input terminal of the comparator 2 is connected to the pin 1 of the port H2 through the preprocessing unit 2, the inverting input terminal is connected to the reference voltage Vref2 generated by the reference voltage generating circuit 2, and the output terminal Out2 is connected to the logic operation unit.
  • the logic operation unit is connected to the LED driving circuit through the data bus to drive four LED lights. Pin 2 of port H2 is grounded. Pin 1 of port H2 is the power supply terminal of the receiving end, which supplies power to the LED driving circuit, the logic operation circuit, the comparator 1 and the comparator 2 respectively, and pin 2 of port H2 is the ground terminal of the receiving end.
  • port H2 in Figure 5 and port H1 in Figure 4 can be connected by a wire to form an information transmission path between the sending end and the receiving end, and at the same time used as a power transmission path, so that the power line and the signal line are multiplexed.
  • the reference voltage Vref1 is between the voltage V1 and the voltage V2, that is, V2 ⁇ Vref1 ⁇ V1;
  • the reference voltage Vref2 is between the voltage V1 and the input voltage VDD, that is, V1 ⁇ Vref2 ⁇ VDD.
  • the logic operation unit analyzes the output signals of the output terminal Out1 of the comparator 1 and the output terminal Out2 of the comparator 2 to obtain code 0.
  • the amplitude of the voltage signal received by the pin 1 of the port H2 changes from VDD to V1
  • the reference voltage Vref1 is less than V1
  • the reference voltage Vref2 is greater than V1
  • the output signal of the output terminal Out1 of the comparator 1 does not flip in level
  • the output signal of the output terminal Out2 of the comparator 2 will flip in level.
  • the logic operation unit can parse the output signals of comparator 1 output terminal Out1 and comparator 2 output terminal Out2 to obtain 1 code.
  • FIG6 is used to illustrate an internal schematic diagram of an ASIC chip whose receiving end is a chip.
  • the preprocessing unit 1 to n, the comparator 1 to n, the logic operation unit, the LED driving circuit, the reference voltage generating circuit 1 to n, the oscillator, the reset circuit and the address memory are all integrated into the ASIC chip.
  • the LED driving circuit includes a red light driving unit, a green light driving unit, a blue light driving unit and a white light driving unit.
  • the ASIC chip can integrate a programmable address memory, which can be implemented by a non-volatile memory or an electronic fuse to store the address of the LED lamp.
  • the sending end sends
  • the target information may include address information stored in the address memory. After receiving the encoded address information from the transmitter, the address information may be parsed to control the LED lamp corresponding to the address information.
  • FIG7 is used to illustrate a schematic diagram of the connection between an ASIC chip and an LED lamp.
  • the power supply terminal VDD of the ASIC chip U8 is connected to pin 1 of port H2, and the ground terminal VSS is connected to pin 2 of port H2.
  • Port H2 in FIG7 can be connected to port H1 in FIG4 through a wire to form an information transmission path between the transmitting end and the ASIC chip, and is also used as a power transmission path.
  • the multiple reference voltage generating units integrated in the ASIC chip can compare different amplitudes of the received voltage signal with the reference voltage by setting a suitable reference voltage and combining with the multiple comparators in the ASIC chip, and send the comparison result to the logic operation unit in the ASIC chip.
  • the logic operation unit can obtain the target information for controlling the LED lamp by demodulating the received signal.
  • This embodiment provides an electronic device, including the information transmission device described in Embodiment 1.
  • the receiving end in the information transmission device can obtain the target information sent by the sending end in the information transmission device by analyzing the amplitude change of the voltage signal received by the power supply end, without the need to calculate the width of the level with the help of a clock signal counter, which can improve the communication efficiency between the sending end and the receiving end.
  • the transmission of power and target information can be realized simultaneously between the sending end and the receiving end through the power line, further improving the communication efficiency between the two.

Landscapes

  • Dc Digital Transmission (AREA)

Abstract

本申请公开了一种信息传输装置及电子设备。其中,信息传输装置包括发送端和接收端,所述发送端的输出端与所述接收端的电源端连接,所述发送端的接地端与所述接收端的接地端连接;所述发送端用于根据目标信息输出包括至少三种电压值的电压信号;所述接收端用于对所述电源端接收的电压信号的幅值变化进行解析,得到所述目标信息。本申请中,接收端通过对电源端接收的电压信号的幅值变化进行解析就可以得到发送端发送的目标信息,无需借助时钟信号计数器计算电平的宽度,可以提高发送端和接收端之间的通信效率。另外,发送端与接收端之间通过电源线可以同时实现电力和目标信息的传输,进一步提高了二者之间的通信效率。

Description

信息传输装置及电子设备
本申请要求申请日为2022年11月10日的中国专利申请CN202211406976X的优先权。本申请引用上述中国专利申请的全文。
技术领域
本申请涉及信息传输技术领域,特别涉及一种信息传输装置及电子设备。
背景技术
在单根数据线的数字通信系统中,通常采用不同时间宽度的高低电平组合来表示0码和1码,如图1所示。接收机需要通过识别不同宽度的电平解调出0码和1码,通常需要借助时钟信号计数器来计算高低电平的宽度即占空比来识别0码和1码。这种通过计算电平宽度解调0码和1码的通信系统需要用时序电路对信号宽度进行计算,而通过计算电平的宽度实现编解码必然会延长通信时间。
发明内容
本申请要解决的技术问题是为了克服现有技术中通过计算电平宽度实现编解码导致通信时间延长的缺陷,提供一种信息传输装置及电子设备。
本申请是通过下述技术方案来解决上述技术问题:
本申请的第一方面提供一种信息传输装置,包括发送端和接收端,所述发送端的输出端与所述接收端的电源端连接,所述发送端的接地端与所述接收端的接地端连接;所述发送端用于根据目标信息输出包括至少三种电压值的电压信号;所述接收端用于对所述电源端接收的电压信号的幅值变化进行解析,得到所述目标信息。
可选地,所述接收端包括第一控制单元和至少两个比较器,所述比较器 的数量比所述发送端输出的电压信号的电压值的种类少一个;每个比较器的第一输入端均与所述发送端的输出端连接,第二输入端分别用于接收不同电压值的基准电压,输出端均与所述第一控制单元的输入端连接;其中,不同比较器接收的基准电压的电压值分别介于按照大小顺序排序后所述至少三种电压值中相邻的两个电压值之间;所述第一控制单元用于对每个比较器的输出信号进行解析,得到所述目标信息。
可选地,所述接收端还包括与所述比较器一一对应的预处理单元,所述预处理单元用于对接收的电压信号进行预处理;每个比较器的第一输入端均通过对应的预处理单元与所述发送端的输出端连接。
可选地,所述接收端还包括与所述第一控制单元连接的光源驱动电路,所述第一控制单元用于根据所述目标信息通过所述光源驱动电路驱动不同的光源。
可选地,所述目标信息包括光源的亮度信息和/或光源的地址信息。
可选地,所述光源为LED灯。
可选地,所述接收端为ASIC(Application Specific Integrated Circuit,专用集成电路)芯片。
可选地,所述发送端包括第二控制单元、至少两个电压转换单元以及至少两个开关管;每个电压转换单元均用于将输入电压转换为与所述输入电压的电压值不同的电压,不同的电压转换单元用于输出不同的电压;每个开关管的一端分别与不同的目标电压连接,另一端均与所述发送端的输出端连接,控制端均与所述第二控制单元连接;其中,所述目标电压包括所述电压转换单元输出的电压和所述输入电压;所述第二控制单元用于根据所述目标信息向所述开关管输出对应的控制信号。
可选地,所述开关管的数量比所述发送端输出的电压信号的电压值的种类少一个;每个开关管的一端分别与所述目标电压中除最小电压之外的电压连接;所述目标电压中除最大电压之外的电压与所述发送端的输出端之间均 串联一个二极管。
本申请的第二方面提供一种电子设备,包括如第一方面所述的信息传输装置。
本申请的积极进步效果在于:接收端通过对电源端接收的电压信号的幅值变化进行解析就可以得到发送端发送的目标信息,无需借助时钟信号计数器计算电平的宽度,可以提高发送端和接收端之间的通信效率。另外,发送端与接收端之间通过电源线可以同时实现电力和目标信息的传输,进一步提高了发送端与接收端之间的通信效率。
附图说明
图1为现有数字通信系统中的编码示意图。
图2为本申请实施例1提供的一种信息传输装置的结构示意图。
图3为本申请实施例1提供的编码示意图。
图4为本申请实施例1提供的一种发送端的内部电路示意图。
图5为本申请实施例1提供的一种接收端的内部电路示意图。
图6为本申请实施例1提供的一种接收端为ASIC芯片的内部示意图。
图7为本申请实施例1提供的一种ASIC芯片与LED灯的连接示意图。
具体实施方式
下面通过实施例的方式进一步说明本申请,但并不因此将本申请限制在所述的实施例范围之中。
实施例1
本实施例提供一种信息传输装置,如图2所示,包括发送端和接收端,所述发送端的输出端与所述接收端的电源端连接,所述发送端的接地端与所述接收端的接地端连接。所述发送端用于根据目标信息输出包括至少三种电压值的电压信号。所述接收端用于对所述电源端接收的电压信号的幅值变化 进行解析,得到所述目标信息。
其中,所述发送端也可以称为发射机、发射装置、发送装置等,所述接收端也可以称为接收机、接收装置等。
在一个具体的例子中,所述发送端根据目标信息输出包括三种电压值的电压信号,三种电压值可以分别对应高电平、中电平和低电平。在具体实施中,可以利用包括高电平、中电平和低电平的电压信号对目标信息进行不同的编码,具体可以编码为由0码和1码组成的二进制数据序列。在图3所示的例子中,将从高电平变化为中电平定义为1码,将从高电平变化为低电平定义为0码,中电平或者低电平变化为高电平为间隔码,最后将目标信息编码为“1001100110011001”,对应的电压信号包括高电平、中电平和低电平三种电压值。需要说明的是,图3中的零电平对应接地端的电平。
在另一个具体的例子中,还可以将从低电平变化为高电平定义为1码,将从低电平变化为中电平定义为0码,高电平或者中电平变化为低电平为间隔码,最后根据本例子定义的1码和0码对目标信息进行编码。
由于所述接收端的电源端与所述发送端的输出端连接,因此,所述发送端输出的电压信号用于为所述接收端进行供电,需要说明的是,所述发送端输出的每种电压值的电压信号均在所述接收端的工作电压范围以内,即均能使所述接收端正常工作。
本实施例中,接收端通过对电源端接收的电压信号的幅值变化进行解析就可以得到发送端发送的目标信息,无需借助时钟信号计数器计算电平的宽度,可以提高发送端和接收端之间的通信效率。另外,发送端与接收端之间通过电源线可以同时实现电力和目标信息的传输,进一步提高了二者之间的通信效率。
其中,所述接收端可以采用数模混合电路对接收电压信号的幅值变化进行解析,具体可以包括比较器或者数模转换器等。
在可选的一种实施方式中,所述接收端包括第一控制单元和至少两个比 较器,所述比较器的数量比所述发送端输出的电压信号的电压值的种类少一个。每个比较器的第一输入端均与所述发送端的输出端连接,第二输入端分别用于接收不同电压值的基准电压,输出端均与所述第一控制单元的输入端连接。其中,不同比较器接收的基准电压的电压值分别介于按照大小顺序排序后所述至少三种电压值中相邻的两个电压值之间。所述第一控制单元用于对每个比较器的输出信号进行解析,得到所述目标信息。
在具体实施中,所述第一控制单元根据对每个比较器的输出信号进行解析,可以得到接收端接收的电压信号的幅值变化,进而可以得到发送端发送的目标信息,实现了发送端与接收端之间的通信。其中,每个比较器根据第一输入端的电压与第二输入端接收的基准电压之间的大小关系输出不同的信号,由于基准电压的电压值是固定的,因此比较器可以根据第一输入端电压的幅值变化识别出目标信息中的编码,进而得到目标信息。
在可选的一种实施方式中,所述接收端还包括与所述比较器一一对应的预处理单元,所述预处理单元用于对接收的电压信号进行预处理。每个比较器的第一输入端均通过对应的预处理单元与所述发送端的输出端连接。本实施方式中,接收端中对接收的电压信号进行预处理之后再输入比较器,通过预处理之后的电压与基准电压进行比较实现目标信息的解码。其中,所述预处理可以为分压处理、滤波处理等。
在可选的一种实施方式中,所述接收端还包括与所述第一控制单元连接的光源驱动电路,所述第一控制单元用于根据所述目标信息通过所述光源驱动电路驱动不同的光源。
具体地,所述目标信息可以包括光源的亮度信息、光源的地址信息、命令信息等。在一个具体的例子中,所述第一控制单元可以根据解析得到的光源的地址信息通过光源驱动电路对不同地址的光源进行控制,可以根据解析得到的光源的亮度信息通过光源驱动电路对光源的亮度进行控制,还可以根据解析得到的命令信息通过光源驱动电路控制光源按照预设方式进行闪烁。 在具体实施中,所述光源可以为LED灯。
在可选的一种实施方式中,所述接收端为ASIC芯片。本实施方式中,将接收端包括的所有电路均集成到一颗ASIC芯片中,极大地简化了电路。
在可选的一种实施方式中,所述发送端包括第二控制单元、至少两个电压转换单元以及至少两个开关管。每个电压转换单元均用于将输入电压转换为与所述输入电压的电压值不同的电压,不同的电压转换单元用于输出不同的电压。在具体实施中,所述电压转换单元可以采用线性稳压芯片,也可以采用DC-DC的开关型电压转换芯片。所述第二控制单元可以采用MCU(Microcontroller Unit,微控制单元)。
每个开关管的一端分别与不同的目标电压连接,另一端均与所述发送端的输出端连接,控制端均与所述第二控制单元连接;其中,所述目标电压包括所述电压转换单元输出的电压和所述输入电压。在具体实施中,所述开关管可以为MOS(场效应管)管,例如PMOS管或者NMOS管等,还可以为具有开关功能的其它器件,例如开关芯片、继电器等。所述第二控制单元用于根据所述目标信息向所述开关管输出对应的控制信号。
本实施方式中,通过第二控制单元控制开关管的通断实现在输出端输出不同电压值的电压信号,电压信号的电压值可以为不同电压转换单元输出的电压,还可以为输入电压。
在可选的一种实施方式中,所述开关管的数量比所述发送端输出的电压信号的电压值的种类少一个;每个开关管的一端分别与所述目标电压中除最小电压之外的电压连接;所述目标电压中除最大电压之外的电压与所述发送端的输出端之间均串联一个二极管。
本实施方式中,在除最大电压之外的电压与发送端的输出端之间设置二极管,利用二极管的单相导通特性,可以有效地防止较大的电压倒灌到较小的电压端。
下面结合图4所示的发送端以及图5所示的接收端对本实施例提供的信 息传输装置的工作原理进行详细介绍。
图4用于示出一种发送端的内部电路示意图。在如图4所示的例子中,发送端包括第二控制单元U3、电压转换单元U1、电压转换单元U2、PMOS管M1、PMOS管M2、二极管D1和二极管D2。电压转换单元U1用于将输入电压VDD转换为电压V1,电压转换单元U2用于将输入电压VDD转换为电压V2。其中,输入电压VDD>电压V1>电压V2。PMOS管M1的源极与输入电压VDD连接,漏极与端口H1的引脚1连接,栅极通过电阻R6与第二控制单元U3的引脚7连接。PMOS管M2的源极与电压V1连接,漏极与二极管D1的阳极连接,栅极通过电阻R8与第二控制单元U3的引脚6连接。电压V2与二极管D2的阳极连接,二极管D1和二极管D2的阴极均与端口H1的引脚1连接。端口H1的引脚2接地。端口H1的引脚1为发送端的输出端,端口H1的引脚2为发送端的接地端。
第二控制单元U3根据目标信息控制PMOS管M1和PMOS管M2的通断。具体地,当第二控制单元U3控制PMOS管M1导通时,端口H1的引脚1输出电压信号的电压值为VDD。当第二控制单元U3控制PMOS管M2导通且PMOS管M1关断时,端口H1的引脚1输出电压信号的电压值为V1。当第二控制单元U3控制PMOS管M1和PMOS管M2均截止时,端口H1的引脚1输出电压信号的电压值为V2。
图5用于示出一种接收端的内部电路示意图。在如图5所示的例子中,接收端包括逻辑运算单元、比较器1、比较器2、预处理单元1、预处理单元2以及LED驱动电路。其中,所述逻辑运算单元对应上述的第一控制单元,LED驱动电路对应上述的光源驱动电路。比较器1的正相输入端通过预处理单元1与端口H2的引脚1连接,反相输入端与基准电压产生电路1产生的基准电压Vref1连接,输出端Out1与逻辑运算单元连接。比较器2的正相输入端通过预处理单元2与端口H2的引脚1连接,反相输入端与基准电压产生电路2产生的基准电压Vref2连接,输出端Out2与逻辑运算单元连接。逻 辑运算单元通过数据总线与LED驱动电路连接,用于驱动四个LED灯。端口H2的引脚2接地。端口H2的引脚1为接收端的电源端,分别为LED驱动电路、逻辑运算电路、比较器1以及比较器2进行供电,端口H2的引脚2为接收端的接地端。其中,图5中的端口H2与图4中的端口H1可以通过导线连接,形成发送端和接收端之间的信息传输通路,同时用作电力的传输通路,使得电力线和信号线进行复用。
本例子中,基准电压Vref1介于电压V1和电压V2之间,即V2<Vref1<V1;基准电压Vref2介于电压V1和输入电压VDD之间,即V1<Vref2<VDD。当端口H2的引脚1接收的电压信号的幅值从VDD变化为V2时,由于基准电压Vref1和基准电压Vref2均大于V2,因此比较器1的输出端Out1和比较器2的输出端Out2的输出信号均会发生电平翻转。结合前述将从高电平变化为中电平定义为1码,以及将从高电平变化为低电平定义为0码的例子,此时逻辑运算单元对比较器1输出端Out1和比较器2输出端Out2的输出信号进行解析可以得到0码。当端口H2的引脚1接收的电压信号的幅值从VDD变化为V1时,由于基准电压Vref1小于V1且基准电压Vref2大于V1,因此比较器1输出端Out1的输出信号不发生电平翻转,比较器2输出端Out2的输出信号会发生电平翻转。结合前述将从高电平变化为中电平定义为1码,以及将从高电平变化为低电平定义为0码的例子,此时逻辑运算单元对比较器1输出端Out1和比较器2输出端Out2的输出信号进行解析可以得到1码。
图6用于示出一种接收端为ASIC芯片的内部示意图。如图6所示,将预处理单元1~n、比较器1~n、逻辑运算单元、LED驱动电路、基准电压产生电路1~n、振荡器、复位电路以及地址存储器均集成在ASIC芯片中。其中,LED驱动电路包括红光驱动单元、绿光驱动单元、蓝光驱动单元和白光驱动单元。ASIC芯片可以集成可编程的地址存储器,地址存储器可通过非易失性存储器或者电子熔丝实现,用于存储LED灯的地址。发送端发送的 目标信息可以包含地址存储器存储的地址信息,接收到发送端的经过编码的地址信息后,可以对其进行解析,从而控制与地址信息相对应的LED灯。
图7用于示出一种ASIC芯片与LED灯的连接示意图。如图7所示,ASIC芯片U8的电源端VDD与端口H2的引脚1连接,接地端VSS与端口H2的引脚2连接。图7中的端口H2与图4中的端口H1可以通过导线连接,形成发送端和ASIC芯片之间的信息传输通路,同时用作电力的传输通路。集成在ASIC芯片内部的多个基准电压产生单元通过设置合适的基准电压,结合ASIC芯片内部的多个比较器,可以对接收电压信号的不同幅值与基准电压进行比较,并将比较的结果发送至ASIC芯片内部的逻辑运算单元中,逻辑运算单元通过对接收的信号进行解调,可以获得控制LED灯的目标信息。
实施例2
本实施例提供一种电子设备,包括实施例1所述的信息传输装置。本实施例提供的电子设备中,信息传输装置中的接收端通过对电源端接收的电压信号的幅值变化进行解析就可以得到信息传输装置中发送端发送的目标信息,无需借助时钟信号计数器计算电平的宽度,可以提高发送端和接收端之间的通信效率。另外,发送端与接收端之间通过电源线可以同时实现电力和目标信息的传输,进一步提高了二者之间的通信效率。
虽然以上描述了本申请的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本申请的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本申请的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本申请的保护范围。

Claims (10)

  1. 一种信息传输装置,其特征在于,包括发送端和接收端,所述发送端的输出端与所述接收端的电源端连接,所述发送端的接地端与所述接收端的接地端连接;
    所述发送端用于根据目标信息输出包括至少三种电压值的电压信号;
    所述接收端用于对所述电源端接收的电压信号的幅值变化进行解析,得到所述目标信息。
  2. 如权利要求1所述的信息传输装置,其特征在于,所述接收端包括第一控制单元和至少两个比较器,所述比较器的数量比所述发送端输出的电压信号的电压值的种类少一个;
    每个比较器的第一输入端均与所述发送端的输出端连接,第二输入端分别用于接收不同电压值的基准电压,输出端均与所述第一控制单元的输入端连接;
    其中,不同比较器接收的基准电压的电压值分别介于按照大小顺序排序后所述至少三种电压值中相邻的两个电压值之间;
    所述第一控制单元用于对每个比较器的输出信号进行解析,得到所述目标信息。
  3. 如权利要求2所述的信息传输装置,其特征在于,所述接收端还包括与所述比较器一一对应的预处理单元,所述预处理单元用于对接收的电压信号进行预处理;
    每个比较器的第一输入端均通过对应的预处理单元与所述发送端的输出端连接。
  4. 如权利要求2所述的信息传输装置,其特征在于,所述接收端还包括与所述第一控制单元连接的光源驱动电路,所述第一控制单元用于根据所述目标信息通过所述光源驱动电路驱动不同的光源。
  5. 如权利要求4所述的信息传输装置,其特征在于,所述目标信息包括光源的亮度信息和/或光源的地址信息。
  6. 如权利要求4所述的信息传输装置,其特征在于,所述光源为LED灯。
  7. 如权利要求4所述的信息传输装置,其特征在于,所述接收端为ASIC芯片。
  8. 如权利要求1所述的信息传输装置,其特征在于,所述发送端包括第二控制单元、至少两个电压转换单元以及至少两个开关管;
    每个电压转换单元均用于将输入电压转换为与所述输入电压的电压值不同的电压,不同的电压转换单元用于输出不同的电压;
    每个开关管的一端分别与不同的目标电压连接,另一端均与所述发送端的输出端连接,控制端均与所述第二控制单元连接;其中,所述目标电压包括所述电压转换单元输出的电压和所述输入电压;
    所述第二控制单元用于根据所述目标信息向所述开关管输出对应的控制信号。
  9. 如权利要求8所述的信息传输装置,其特征在于,所述开关管的数量比所述发送端输出的电压信号的电压值的种类少一个;
    每个开关管的一端分别与所述目标电压中除最小电压之外的电压连接;
    所述目标电压中除最大电压之外的电压与所述发送端的输出端之间均串联一个二极管。
  10. 一种电子设备,其特征在于,包括如权利要求1-9中任一项所述的信息传输装置。
PCT/CN2023/107511 2022-11-10 2023-07-14 信息传输装置及电子设备 WO2024098827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211406976.X 2022-11-10
CN202211406976.XA CN115665927A (zh) 2022-11-10 2022-11-10 信息传输装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024098827A1 true WO2024098827A1 (zh) 2024-05-16

Family

ID=85021809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107511 WO2024098827A1 (zh) 2022-11-10 2023-07-14 信息传输装置及电子设备

Country Status (2)

Country Link
CN (1) CN115665927A (zh)
WO (1) WO2024098827A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115665927A (zh) * 2022-11-10 2023-01-31 江苏彩汇芯电子科技有限公司 信息传输装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308728A (ja) * 1997-05-08 1998-11-17 Kokusai Electric Co Ltd 同期伝送システム
CN102346720A (zh) * 2011-09-22 2012-02-08 四川和芯微电子股份有限公司 串行数据传输系统及方法
CN106649171A (zh) * 2016-09-21 2017-05-10 上海华虹计通智能系统股份有限公司 一种单总线全双工的数据通信方法及系统
CN111023395A (zh) * 2019-12-11 2020-04-17 广州视源电子科技股份有限公司 监控电路与空调
CN115665927A (zh) * 2022-11-10 2023-01-31 江苏彩汇芯电子科技有限公司 信息传输装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308728A (ja) * 1997-05-08 1998-11-17 Kokusai Electric Co Ltd 同期伝送システム
CN102346720A (zh) * 2011-09-22 2012-02-08 四川和芯微电子股份有限公司 串行数据传输系统及方法
CN106649171A (zh) * 2016-09-21 2017-05-10 上海华虹计通智能系统股份有限公司 一种单总线全双工的数据通信方法及系统
CN111023395A (zh) * 2019-12-11 2020-04-17 广州视源电子科技股份有限公司 监控电路与空调
CN115665927A (zh) * 2022-11-10 2023-01-31 江苏彩汇芯电子科技有限公司 信息传输装置及电子设备

Also Published As

Publication number Publication date
CN115665927A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2024098827A1 (zh) 信息传输装置及电子设备
US5625644A (en) DC balanced 4B/8B binary block code for digital data communications
US8312347B2 (en) Lighting control protocol
US8139653B2 (en) Multi-channel galvanic isolator utilizing a single transmission channel
US8324824B2 (en) 1-wire communication protocol and interface circuit
RU2373643C2 (ru) Способ и устройство передачи информации через сеть электрического питания
CN101340757B (zh) 一种灯点显示芯片级联信号的单线传输协议
JPH10247868A (ja) Acライン上でパルス伝送を利用する電力線通信システム
US7089126B2 (en) Diode discovery power level detection
CN102387628A (zh) 一种led调光控制电路
US20140333269A1 (en) System And Method For Sinking Excess Current And Creating A Biasing Voltage
CN108400817A (zh) 一种基于串口传输曼彻斯特编码的可见光通信方法
US20050053171A1 (en) Systems for data transmission
CN109613323A (zh) 一种可编程信号幅度检测电路
US20090316836A1 (en) Single-wire, serial, daisy-chain digital communication network and communication method thereof
CN211630454U (zh) 电力载波信号识别电路和集成电路芯片
US7027522B2 (en) Systems for data transmission
CN108768517A (zh) 一种基于ppm的发送端、接收端及可见光通信系统
CN111918454B (zh) 一种电源线传输数据的led控制芯片
US5661347A (en) Circuitry arrangement for controlling a plurality of consumers, in particular lamp ballasts
Tahir et al. Optimal brightness-rate control using VR-MPPM and its spectral analysis for VLC system
CN111867177B (zh) Led驱动装置及方法、以及可读存储介质
Ghassemlooy et al. Multilevel digital pulse interval modulation scheme for optical wireless communications
CN111226506B (zh) 电力载波信号识别电路、方法和集成电路芯片
CN107171734B (zh) 用于光通信的光芯片