WO2024098617A1 - 电池的回收方式确定方法、装置、电子设备和存储介质 - Google Patents

电池的回收方式确定方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2024098617A1
WO2024098617A1 PCT/CN2023/083149 CN2023083149W WO2024098617A1 WO 2024098617 A1 WO2024098617 A1 WO 2024098617A1 CN 2023083149 W CN2023083149 W CN 2023083149W WO 2024098617 A1 WO2024098617 A1 WO 2024098617A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
recycling
type
carbon emissions
carbon
Prior art date
Application number
PCT/CN2023/083149
Other languages
English (en)
French (fr)
Inventor
徐加雷
余海军
谢英豪
陈江东
吴奔奔
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024098617A1 publication Critical patent/WO2024098617A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/30Administration of product recycling or disposal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to the technical field of power battery recycling, and in particular to a method, device, electronic device and storage medium for determining a battery recycling method.
  • the recycling method of retired power batteries is usually selected based on the remaining capacity of the battery, external damage, etc.
  • the carbon emissions during the life cycle of retired power batteries are not considered, which may often lead to increased carbon emission pollution.
  • an object of the present invention is to provide a method, device, electronic device and storage medium for determining a battery recycling method, which can achieve low-carbon and environmentally friendly battery recycling.
  • the present invention provides a method for determining a battery recycling method, which is applied to electronic equipment, and the method comprises:
  • the battery preset parameters include battery cycle times, battery cycle life, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity, and recycling process carbon emissions;
  • the power loss carbon emissions are obtained, where the power loss carbon emissions are the carbon emissions generated by the power loss during the battery charge and discharge process;
  • the carbon emissions of a single charge and discharge of the battery for the recycling and cascade utilization are compared, and a method with less carbon emissions is selected as the target recycling method for the battery to be determined.
  • the method before the step of obtaining the battery type of the battery to be determined, the method further includes:
  • the battery cycle number, the battery cycle life, the battery rated capacity, the battery type, the carbon emission of the recycling process, the electricity emission factor, the battery capacity retention rate and the battery charge and discharge efficiency corresponding to each battery type are preset respectively;
  • the battery capacity retention rate and the battery charge and discharge efficiency are determined by fitting the sampling data of multiple battery types.
  • z is the battery charge and discharge efficiency
  • x is the battery cycle number
  • x is the number of battery cycles
  • y A is the battery capacity retention rate of the first battery type
  • y B is the battery capacity retention rate of the second battery type
  • y C is the battery capacity retention rate of the third battery type.
  • the battery type includes a first battery type and a second battery type
  • the formula for the carbon emission of power loss is:
  • the GA regeneration is the carbon emission amount of power loss required for the regeneration of the first battery type
  • the GA cascade utilization is the carbon emission amount of power loss required for the cascade utilization of the first battery type
  • the GB regeneration is the carbon emission amount of power loss required for the regeneration of the second battery type
  • the GB cascade utilization is the carbon emission amount of power loss required for the cascade utilization of the second battery type
  • the mA is the battery rated capacity of the first battery type
  • the mA is the battery rated capacity of the second battery type
  • EF is the power emission factor
  • the z is the battery charge and discharge efficiency
  • the yA is the battery capacity retention rate of the first battery type
  • the yB is the battery capacity retention rate of the second battery type.
  • E is the carbon emission of the recycling process
  • Mi is the mass or energy of raw materials and energy used in the recycling process stage
  • EFi is the emission factor of the mass or energy of raw materials and energy used in the recycling process stage.
  • the present invention provides a battery recycling method determination device, which is applied to electronic equipment, and the device includes:
  • An acquisition module is used to obtain the battery type of the battery to be determined, and determine the battery preset parameters corresponding to the battery type;
  • the battery preset parameters include the number of battery cycles, the battery cycle life, the battery charge and discharge efficiency, the battery capacity retention rate, the power emission factor, the battery rated capacity and the carbon emission of the recycling process;
  • a calculation module is used to obtain the carbon emissions of power loss according to the battery type, the number of battery cycles, the battery charge and discharge efficiency, the battery capacity retention rate, the power emission factor, and the battery rated capacity, wherein the carbon emissions of power loss are the carbon emissions generated by the power loss during the battery charge and discharge process; and to obtain the carbon emissions of a single charge and discharge of a battery for recycling and cascade utilization, respectively, according to the carbon emissions of power loss, the carbon emissions of the recycling process, and the battery cycle life;
  • the decision module is used to compare the carbon emissions of a single charge and discharge of the battery for recycling and cascade utilization, and select a method with less carbon emissions as the target recycling method for the battery to be determined.
  • the acquisition module is also used to initialize battery preset parameters; the battery cycle number, the battery cycle life, the battery rated capacity, the battery type, the recycling process carbon emissions, the electricity emission factor, the battery capacity retention rate and the battery charge and discharge efficiency corresponding to each battery type are preset respectively; wherein the battery capacity retention rate and the battery charge and discharge efficiency are determined by fitting the sampling data of a plurality of battery types.
  • the present invention provides an electronic device, comprising a memory and a processor, wherein the memory is used to store a computer program, and the processor is used to execute the method for determining a battery recycling method as described in any of the aforementioned embodiments when calling the computer program.
  • the present invention provides a computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the method for determining a battery recycling method as described in any one of the aforementioned embodiments.
  • the embodiments of the present invention provide a method, device, electronic device and storage medium for determining a battery recycling method, obtain the battery type of the battery to be determined, and determine the battery preset parameters corresponding to the battery type; the battery preset parameters include the number of battery cycles, battery cycle life, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity and recycling process carbon emissions; according to the battery type, the number of battery cycles, the battery charge and discharge efficiency, the battery capacity retention rate, the power emission factor, and the battery rated capacity, the power loss carbon emissions are obtained.
  • the power loss carbon emissions are the carbon emissions generated by the power loss during the battery charging and discharging process; according to the power loss carbon emissions, the recycling process carbon emissions and the battery cycle life, the carbon emissions of the battery single charge and discharge for recycling and cascade utilization are obtained respectively; the carbon emissions of the battery single charge and discharge for recycling and cascade utilization are compared, and the method with small carbon emissions is selected as the target recycling method for the battery to be determined. In this way, retired batteries are processed into low-carbon battery products to meet the needs of energy storage companies and new energy vehicle manufacturers for low-carbon products, and ultimately achieve low-carbon and environmental protection.
  • FIG. 1 shows a schematic flow chart of a method for determining a battery recycling method provided in an embodiment of the present invention.
  • FIG. 2 shows another schematic flow chart of a method for determining a battery recycling method according to an embodiment of the present invention.
  • FIG3 is a schematic diagram showing the relationship between battery charge and discharge efficiency and battery cycle times.
  • FIG. 4 is a diagram showing the relationship between the battery capacity retention rate and the battery cycle number of the first battery type.
  • FIG5 is a diagram showing the relationship between the battery capacity retention rate and the battery cycle number of the second battery type.
  • FIG6 is a diagram showing the relationship between the battery capacity retention rate and the battery cycle number of the third battery type.
  • FIG. 7 shows a block diagram of a device for determining a battery recycling method according to an embodiment of the present invention.
  • FIG8 shows a block diagram of an electronic device provided by an embodiment of the present invention.
  • Icons 100 - electronic device; 110 - memory; 120 - processor; 130 - communication module; 200 - device for determining battery recycling method; 201 - acquisition module; 202 - calculation module; 203 - decision module.
  • the main recycling methods used in my country for the treatment of retired power batteries are recycling and cascade utilization.
  • the existing technology mainly considers the remaining capacity, internal resistance and external damage of the battery, and never considers the dimension of carbon emissions. Therefore, the final recycling method of retired batteries may generate large carbon emissions and cause environmental pollution.
  • the embodiments of the present invention provide a method, device, electronic device and storage medium for determining a battery recycling method.
  • a recycling method with low carbon emissions is selected for battery recycling, thereby processing retired batteries into low-carbon battery products, meeting the needs of energy storage companies and new energy vehicle manufacturers for low-carbon products, and ultimately achieving low-carbon and environmental protection.
  • the method and device for determining the recycling method of a battery provided in an embodiment of the present invention can be applied in electronic devices.
  • This solution mainly considers low carbon and environmental protection when determining the recycling method of the battery.
  • a recycling method with low carbon emissions is selected for battery recycling.
  • Carbon emissions are affected by factors such as the number of battery cycles, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity, and carbon emissions from the recycling process. Therefore, it is necessary to preset parameters such as the number of battery cycles, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity, and carbon emissions from the recycling process for common batteries on electronic devices in advance.
  • the battery recycling method and device provided in the embodiment of the present invention are applied to an electronic device, and the battery recycling method provided in the embodiment of the present invention is executed by the electronic device.
  • the electronic device can be, but is not limited to, a personal computer (PC), a laptop computer, or a server, etc., which has data computing and analysis processing capabilities.
  • FIG. 1 shows a schematic diagram of the method for determining the recycling method of the battery provided by the embodiment of the present invention, and the method includes the following steps:
  • Step S101 obtaining the battery type of the battery to be determined, and determining the battery preset parameters corresponding to the battery type;
  • the battery preset parameters include battery cycle times, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity and recycling process carbon emissions.
  • preset parameters of common battery types are pre-stored in the electronic device, and the preset parameters include but are not limited to battery cycle number, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity and recycling process carbon emissions.
  • the battery type of the battery to be determined is first obtained, and then a matching battery preset parameter is found according to the battery type.
  • Step S102 obtaining the carbon emissions from power loss according to the battery type, battery cycle number, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, and battery rated capacity.
  • the carbon emissions from power loss are the carbon emissions generated by power loss during the battery charge and discharge process.
  • the electronic device obtains the actual battery capacity according to the rated battery capacity and the battery capacity retention rate, and the actual battery capacity refers to the electric energy consumed when the battery is currently charged. Then, the electric energy lost during the battery charging and discharging process is obtained according to the actual battery capacity and the battery charging and discharging efficiency. Finally, the carbon emission of power loss is obtained according to the electric energy lost during the battery charging and discharging process and the electric power emission factor.
  • the battery capacity retention rate is used to characterize the ratio of the current battery capacity to the rated battery capacity.
  • the battery charge and discharge efficiency is used to characterize the ratio of the electric energy released by the battery to the electric energy consumed by the battery charging.
  • the rated battery capacity is used to characterize the battery capacity when the battery leaves the factory, which can be obtained by, but not limited to, scanning the battery QR code.
  • the battery cycle count is used to characterize the number of times the battery is charged and discharged.
  • E loss is the carbon emission generated by power loss caused by charging and discharging efficiency during battery operation
  • AD charging is the electric energy consumed by battery charging
  • AD discharging is the electric energy discharged by the battery
  • EF is the power emission factor, which can be taken as the domestic power grid emission factor of 0.5810tCO 2 /MWh.
  • Step S103 according to the carbon emissions of power loss, the carbon emissions of the recycling process and the battery cycle life, the carbon emissions of a single charge and discharge of the battery for recycling and cascade utilization are obtained respectively.
  • the battery is a new battery shipped from the factory after being recycled.
  • the battery cycle life is the number of battery charge and discharge times remaining from the time the battery leaves the factory to the time the battery is retired.
  • its battery cycle life refers to the number of battery charge and discharge times remaining from the time the battery is retired to the time when there is no cascade utilization value.
  • the carbon emissions generated during the battery life cycle can be obtained based on the carbon emissions from power loss and the carbon emissions from the recycling process. Combined with the battery cycle life, the carbon emissions from a single charge and discharge of the battery for recycling and cascade utilization can be obtained.
  • Step S104 comparing the carbon emissions of a single charge and discharge of the battery for recycling and cascade utilization, and selecting a method with less carbon emissions as the target recycling method for the battery to be determined.
  • the method for determining the recycling method of the battery obtaineds the battery type of the battery to be determined in the electronic device, and determines the battery preset parameters corresponding to the battery type; the battery preset parameters include the number of battery cycles, battery cycle life, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity and recycling process carbon emissions.
  • the battery type battery cycle number, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, and battery rated capacity
  • the power loss carbon emissions are obtained, and the power loss carbon emissions are the carbon emissions generated by the power loss during the battery charging and discharging process.
  • the recycling process carbon emissions and the battery cycle life the carbon emissions of the single charge and discharge of the battery for recycling and cascade utilization are obtained respectively. Compare the carbon emissions of the single charge and discharge of the battery for recycling and cascade utilization, and select the method with small carbon emissions as the target recycling method of the battery to be determined. Thereby, the retired batteries are processed into low-carbon battery products to meet the needs of energy storage companies and new energy vehicle manufacturers for low-carbon products, and finally achieve low-carbon environmental protection.
  • the user can preset the parameters through an interactive interface or a third-party server.
  • the user can preset the parameters through an interactive interface or a third-party server.
  • it also includes:
  • the battery capacity retention rate and battery charge and discharge efficiency are determined by fitting the sampling data of various battery types.
  • the sampling data may be: battery cycle life, battery cycle number, battery charge and discharge efficiency, etc.
  • the recycled battery pack is first deeply discharged to make the voltage lower than the safe disassembly voltage.
  • the reason for deep discharge is to prevent the battery pack from being disassembled with power, which may cause personal injury and spontaneous combustion caused by damage to the battery during the disassembly process.
  • the discharged battery pack is disassembled using disassembly equipment to obtain a battery module, or the battery module is further disassembled into battery cells.
  • the battery charge and discharge efficiency, battery internal resistance, battery cycle number and other performance conditions are tested using a charge and discharge tester, and the number of cycles and charge and discharge efficiency of the battery from retirement to the use of the capacity retention rate falling below 10% are sampled and tested to form sampling data of the battery cycle number.
  • the formed battery life cycle sampling data is calculated and fitted to determine the battery capacity retention rate and the battery charge and discharge efficiency.
  • the power loss during battery charging and discharging is affected by the battery charging and discharging efficiency, which is related to the number of battery cycles.
  • z is the battery charge and discharge efficiency
  • x is the number of battery cycles.
  • the charge and discharge data of batteries of different battery types may be statistically summarized to obtain empirical values corresponding to each battery type.
  • the battery charge and discharge efficiency is determined by fitting the sampling data of the battery cycle times. As shown in FIG3 , as the battery is used more times, the battery charge and discharge efficiency will decrease, and the battery discharge capacity will decrease.
  • the actual capacity of the battery is affected by the battery capacity retention rate, and the battery capacity retention rate is related to the number of battery cycles.
  • the following is a specific description taking three battery types as an example.
  • x is the number of battery cycles
  • yA is the battery capacity retention rate of the first battery type
  • yB is the battery capacity retention rate of the second battery type
  • yC is the battery capacity retention rate of the third battery type.
  • the actual battery capacity and battery rated capacity data of different battery types can be statistically summarized to obtain the corresponding empirical values of each battery type. Specifically, the relationship between the battery capacity retention rate and the battery cycle times of the first battery type is shown in Figure 4, the relationship between the battery capacity retention rate and the battery cycle times of the second battery type is shown in Figure 5, and the relationship between the battery capacity retention rate and the battery cycle times of the third battery type is shown in Figure 6.
  • the first battery type, the second battery type and the third battery type mentioned in the embodiment of the present invention are enumerated battery types, and the battery types can be tested and classified based on batteries of different manufacturers.
  • the embodiment of the present invention does not limit the classification method of battery types. The relationship between the battery capacity retention rate and the number of battery cycles fitted by different classification methods will be different.
  • GA recycling is the carbon emission of power loss required for recycling of the first battery type
  • GA cascade utilization is the carbon emission of power loss required for cascade utilization of the first battery type
  • GB recycling is the carbon emission of power loss required for recycling of the second battery type
  • GB cascade utilization is the carbon emission of power loss required for cascade utilization of the second battery type
  • mA is the battery rated capacity of the first battery type
  • mA is the battery rated capacity of the second battery type
  • EF is the power emission factor
  • z is the battery charge and discharge efficiency
  • yA is the battery capacity retention rate of the first battery type
  • yB is the battery capacity retention rate of the second battery type.
  • E is the carbon emission of the recycling process
  • Mi is the mass or energy of raw materials and energy used in the recycling process stage
  • EFi is the emission factor of the mass or energy of raw materials and energy used in the recycling process stage.
  • the processing stages included in the recycling process are different.
  • the battery recycling methods in the scenario are regeneration and cascade utilization.
  • cascade utilization is considered as light scrapping.
  • the battery itself is not scrapped, but cannot be used in new energy vehicles. After processing, it can be used in other fields.
  • the recycling process of battery cascade utilization includes but is not limited to transportation, disassembly, performance testing, BMS system, assembly and packaging transportation.
  • the recycling process of battery recycling includes but is not limited to packaging, transportation, physical discharge, chemical discharge, disassembly, crushing, pyrolysis, sorting, acid leaching, extraction, precipitation, mixing, calcination, impurity removal and packaging.
  • two batteries of the first battery type and the second battery type are used for exemplary description below.
  • the battery type for which the recycling method needs to be determined is the first battery type
  • the rated capacity of the battery is 75kWh
  • the carbon emissions of the recycling process when the battery is recycled is 47.01kgCO 2 e/kWh
  • the carbon emissions of the recycling process when the battery is recycled is 16.21kgCO 2 e/kWh
  • the battery cycle life of recycling is 2010, the battery cycle life of recycling is 160
  • the battery capacity retention rate is about 48%.
  • the carbon emissions of battery recycling is 1.47kgCO 2 e/cycle
  • the carbon emissions of battery cascade utilization is 2.94kgCO 2 e/cycle. Therefore, the carbon emissions of a single charge and discharge in cascade utilization are higher than the carbon emissions of a single charge and discharge in recycling. Therefore, it is recommended that the battery be recycled.
  • the battery type for which the recycling method needs to be determined is the second battery type
  • the rated capacity of the battery is 50kWh
  • the carbon emissions of the recycling process when the battery is recycled is 49.21kgCO 2 e/kWh
  • the carbon emissions of the recycling process when the battery is recycled is 16.86kgCO 2 e/kWh
  • the cycle life of the recycled battery is 2100
  • the cycle life of the recycled battery is 490
  • the capacity retention rate of the battery is about 61%.
  • the carbon emissions of battery recycling is 1.48kgCO 2 e/cycle
  • the carbon emissions of battery cascade utilization is 2.94kgCO 2 e/cycle. Therefore, the carbon emissions of a single charge and discharge in cascade utilization are higher than the carbon emissions of a single charge and discharge in recycling. Therefore, it is recommended that the battery be recycled.
  • FIG. 7 shows a block diagram of a battery recycling method determination device 200 provided by an embodiment of the present invention, and the battery recycling method determination device is applied to electronic equipment.
  • the battery recycling method determination device 200 includes an acquisition module 201, a calculation module 202 and a decision module 203.
  • the acquisition module 201 is used to obtain the battery type of the battery to be determined and determine the battery preset parameters corresponding to the battery type; the battery preset parameters include the number of battery cycles, battery cycle life, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, battery rated capacity and recycling process carbon emissions.
  • the calculation module 202 is used to obtain the carbon emissions from power loss according to the battery type, battery cycle number, battery charge and discharge efficiency, battery capacity retention rate, power emission factor, and battery rated capacity.
  • the carbon emissions from power loss are the carbon emissions generated by the power loss during the battery charging and discharging process; and the carbon emissions from a single charge and discharge of batteries for recycling and cascade utilization are obtained according to the carbon emissions from power loss, the carbon emissions from the recycling process, and the battery cycle life.
  • Decision module 203 used to compare the carbon emissions of a single charge and discharge of a battery for recycling and cascade utilization, and select the carbon emissions A small method is used as the target recycling method for batteries to be determined.
  • the acquisition module 201 is also used to initialize battery preset parameters; respectively preset the number of battery cycles, battery cycle life, battery rated capacity, battery type, recycling process carbon emissions, electricity emission factor, battery capacity retention rate and battery charge and discharge efficiency corresponding to each battery type; wherein the battery capacity retention rate and battery charge and discharge efficiency are determined by fitting the sampling data of multiple battery types.
  • the calculation module 202 is specifically used to obtain a battery capacity retention rate
  • the battery type includes a first battery type, a second battery type and a third battery type
  • x is the number of battery cycles
  • yA is the battery capacity retention rate of the first battery type
  • yB is the battery capacity retention rate of the second battery type
  • yC is the battery capacity retention rate of the third battery type.
  • the calculation module 202 is specifically used to obtain the carbon emission of power loss
  • the battery type includes a first battery type and a second battery type
  • the formula of the carbon emission of power loss is:
  • GA recycling is the carbon emission of power loss required for recycling of the first battery type
  • GA cascade utilization is the carbon emission of power loss required for cascade utilization of the first battery type
  • GB recycling is the carbon emission of power loss required for recycling of the second battery type
  • GB cascade utilization is the carbon emission of power loss required for cascade utilization of the second battery type
  • mA is the battery rated capacity of the first battery type
  • mA is the battery rated capacity of the second battery type
  • EF is the power emission factor
  • z is the battery charge and discharge efficiency
  • yA is the battery capacity retention rate of the first battery type
  • yB is the battery capacity retention rate of the second battery type.
  • E is the carbon emission of the recycling process
  • Mi is the mass or energy of raw materials and energy used in the recycling process stage
  • EFi is the emission factor of the mass or energy of raw materials and energy used in the recycling process stage.
  • FIG8 is a block diagram of an electronic device 100 provided in an embodiment of the present invention.
  • the electronic device 100 may be a personal computer (PC), a laptop computer, or a server, etc.
  • the electronic device 100 includes a memory 110, a processor 120, and a communication module 130.
  • the memory 110, the processor 120, and the communication module 130 are electrically connected to each other directly or indirectly to achieve data transmission or interaction.
  • these components can be electrically connected to each other via one or more communication buses or signal lines.
  • the memory 110 is used to store programs or data.
  • the memory 110 can be, but is not limited to, a random access memory (RAM), a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable read-only memory (EEPROM), etc.
  • RAM random access memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • EEPROM electrically erasable read-only memory
  • the processor 120 is used to read/write data or programs stored in the memory 110 and execute corresponding functions. For example, when the computer program stored in the memory 110 is executed by the processor 120, the battery recycling method confirmation method disclosed in the above embodiments can be implemented.
  • the communication module 130 is used to establish a communication connection between the electronic device 100 and other communication terminals through a network, and to send and receive data through the network.
  • FIG8 is only a schematic diagram of the structure of the electronic device 100, and the electronic device 100 may also include more or fewer components than those shown in FIG8, or have a configuration different from that shown in FIG8.
  • Each component shown in FIG8 may be implemented by hardware, software, or a combination thereof.
  • the embodiment of the present invention further provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by the processor 120, the battery recycling method confirmation method disclosed in the above embodiments is implemented.
  • an embodiment of the present invention provides a method, device, electronic device and storage medium for determining a battery recycling method.
  • the method is applied to an electronic device, and the method includes: obtaining a battery type of a battery to be determined, and determining a battery preset parameter corresponding to the battery type; the battery preset parameters include the number of battery cycles, the battery cycle life, the battery charge and discharge efficiency, the battery capacity retention rate, the power emission factor, the battery rated capacity and the carbon emissions of the recycling process; according to the battery type, the number of battery cycles, the battery charge and discharge efficiency, the battery capacity retention rate, the power emission factor, and the battery rated capacity, the power loss carbon emissions are obtained, and the power loss carbon emissions are the carbon emissions generated by the power loss during the battery charging and discharging process; according to the power loss carbon emissions, the recycling process carbon emissions and the battery cycle life, the carbon emissions of a single charge and discharge of a battery for recycling and cascade utilization are obtained respectively; Compare the carbon emissions of single charge and discharge of recycled and second-life batteries, and select
  • each box in the flowchart or block diagram can represent a module, a program segment or a part of a code, and the module, a program segment or a part of a code contains one or more executable instructions for implementing the specified logical function.
  • the functions marked in the box can also occur in a different order from the order marked in the accompanying drawings.
  • each box in the block diagram and/or flowchart, and the combination of boxes in the block diagram and/or flowchart can be implemented with a dedicated hardware-based system that performs a specified function or action, or can be implemented with a combination of dedicated hardware and computer instructions.
  • the functional modules in the various embodiments of the present invention may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Marketing (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Secondary Cells (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Water Supply & Treatment (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Sustainable Energy (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)

Abstract

本发明提供的一种电池的回收方式确定方法、装置、电子设备和存储介质,根据电池类型、电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量,得到电力损耗碳排放量,电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;根据电力损耗碳排放量、回收工艺碳排放量和电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量;比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为电池目标回收方式。从而将退役电池加工成低碳电池产品,满足储能企业、新能源汽车厂商对低碳产品的需求,最终实现低碳环保。

Description

电池的回收方式确定方法、装置、电子设备和存储介质 技术领域
本发明涉及动力电池回收的技术领域,具体而言,涉及一种电池的回收方式确定方法、装置、电子设备和存储介质。
背景技术
随着新能源汽车的飞速发展,动力电池的装备量逐年增长。随着动力电池的使用寿命逐渐临近,退役动力电池的回收逐渐形成规模。目前主要采用的回收方式有再生利用和梯次利用,如何环保回收退役动力电池成为当今社会的热门话题。
现有技术中,通常依据电池剩余容量、外部损伤等情况选择退役动力电池的回收方式。在现有的退役动力电池选择回收方式的影响因素中,并未考虑退役动力电池生命周期内的碳排放,往往可能导致碳排放污染加剧。
发明内容
有鉴于此,本发明的目的在于提供一种电池的回收方式确定方法、装置、电子设备和存储介质,能够实现低碳环保地回收电池。
为了实现上述目的,本发明实施例采用的技术方案如下:
第一方面,本发明提供一种电池的回收方式确定方法,应用于电子设备,所述方法包括:
获得待确定电池的电池类型,确定与所述电池类型对应的电池预设参数;所述电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量;
根据所述电池类型、所述电池循环次数、所述电池充放电效率、所述电池容量保持率、所述电力排放因子、所述电池额定容量,得到电力损耗碳排放量,所述电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;
根据所述电力损耗碳排放量、所述回收工艺碳排放量和所述电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量;
比较所述再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为所述待确定电池的目标回收方式。
在可选的实施方式中,在所述获得待确定电池的电池类型的步骤之前,还包括:
分别预置每种所述电池类型对应的所述电池循环次数、所述电池循环寿命、所述电池额定容量、所述电池类型、所述回收工艺碳排放量、所述电力排放因子、所述电池容量保持率和所述电池充放电效率;
其中,所述电池容量保持率和所述电池充放电效率通过多种所述电池类型的采样数据拟合确定。
在可选的实施方式中,所述电池充放电效率和所述电池循环次数满足以下关系:
z=1.0944x-0.0245
其中,所述z为所述电池充放电效率,所述x为所述电池循环次数。
在可选的实施方式中,所述电池类型包含第一电池类型、第二电池类型和第三电池类型,所述电池容量保持率和所述电池循环次数满足以下关系:
yA=-1.3577×10-8×x3+3.3137×10-5×x2-0.0246x+103.008

yC=-8.27719×10-9×x3+3.6009×10-5×x2-0.04805x+101.753
其中,所述x为所述电池循环次数,所述yA为所述第一电池类型的电池容量保持率,所述yB为所述第二电池类型的电池容量保持率,所述yC为所述第三电池类型的电池容量保持率。
在可选的实施方式中,所述电池类型包含第一电池类型和第二电池类型,所述电力损耗碳排放量的公式为:



其中,所述GA再生利用为所述第一电池类型进行再生利用所需的电力损耗碳排放量,所述GA梯次利用为所述第一电池类型进行梯次利用所需的电力损耗碳排放量,所述GB再生利用为所述第二电池类型进行再生利用所需的电力损耗碳排放量,所述GB梯次利用为所述第二电池类型进行梯次利用所需的电力损耗碳排放量,所述mA为所述第一电池类型的电池额定容量,所述mB为所述第二电池类型的电池额定容量,EF为所述电力排放因子,所述z为所述电池充放电效率,所述yA为所述第一电池类型的电池容量保持率,所述yB为所述第二电池类型的电池容量保持率。
在可选的实施方式中,所述回收工艺碳排放量的公式为:
E=∑Mi×EFi
其中,E为所述回收工艺碳排放量,所述Mi为回收工艺阶段使用原辅料、能源的质量或能量,所述EFi为所述回收工艺阶段使用原辅料、能源的质量或能量的排放因子。
第二方面,本发明提供一种电池的回收方式确定装置,应用于电子设备,所述装置包括:
获取模块,用于获得待确定电池的电池类型,确定与所述电池类型对应的电池预设参数;所述电池预设参数中包含电池循环次数、包含电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量;
计算模块,用于根据所述电池类型、所述电池循环次数、所述电池充放电效率、所述电池容量保持率、所述电力排放因子、所述电池额定容量,得到电力损耗碳排放量,所述电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;根据所述电力损耗碳排放量、所述回收工艺碳排放量和所述电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量;
决策模块,用于比较所述再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为所述待确定电池的目标回收方式。
在可选的实施方式中,在所述获取模块还用于初始化电池预设参数;分别预置每种所述电池类型对应的所述电池循环次数、所述电池循环寿命、所述电池额定容量、所述电池类型、所述回收工艺碳排放量、所述电力排放因子、所述电池容量保持率和所述电池充放电效率;其中,所述电池容量保持率和所述电池充放电效率通过多种所述电池类型的采样数据拟合确定。
第三方面,本发明提供一种电子设备,所述电子设备包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于在调用所述计算机程序时执行如前述实施方式任一项所述的电池的回收方式确定方法。
第四方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如前述实施方式任一项所述的电池的回收方式确定方法。
相对于现有技术,本发明实施例提供的一种电池的回收方式确定方法、装置、电子设备和存储介质,获得待确定电池的电池类型,确定与所述电池类型对应的电池预设参数;所述电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量;根据所述电池类型、所述电池循环次数、所述电池充放电效率、所述电池容量保持率、所述电力排放因子、所述电池额定容量,得到电力损耗碳 排放量,所述电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;根据所述电力损耗碳排放量、所述回收工艺碳排放量和所述电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量;比较所述再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为所述待确定电池的目标回收方式。从而将退役电池加工成低碳电池产品,满足储能企业、新能源汽车厂商对低碳产品的需求,最终实现低碳环保。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本发明实施例提供的电池的回收方式确定方法的一种流程示意图。
图2示出了本发明实施例提供的电池的回收方式确定方法的另一种流程示意图。
图3示出了电池充放电效率与电池循环次数之间关系的示意图。
图4示出了第一电池类型的电池容量保持率与电池循环次数之间关系的示意图。
图5示出了第二电池类型的电池容量保持率与电池循环次数之间关系的示意图。
图6示出了第三电池类型的电池容量保持率与电池循环次数之间关系的示意图。
图7示出了本发明实施例提供的电池的回收方式确定装置的方框示意图。
图8示出了本发明实施例提供的电子设备的方框示意图。
图标:100-电子设备;110-存储器;120-处理器;130-通信模块;200-电池的回收方式确定装置;201-获取模块;202-计算模块;203-决策模块。
具体实施方式
下面将结合本发明实施例中附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
随着动力电池的大规模退役,规范合理地回收动力电池成为大家关注的重点,每年数万吨的退役动力电池一旦处理不当,将会对环境造成不可估量的污染。
目前,我国对于退役动力电池的处理方式主要采用的回收方式是再生利用和梯次利用。现有技术在确定退役动力电池的回收方式时,主要考虑电池剩余容量、内阻和外部损伤的情况,从未考虑碳排放量维度。因此,最终确定的退役电池回收方式可能会产生较大的碳排放量,造成环境污染。
基于此,本发明实施例提供了一种电池的回收方式确定方法、装置、电子设备和存储介质。通过比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的回收方式进行电池回收,从而将退役电池加工成低碳电池产品,满足储能企业、新能源汽车厂商对低碳产品的需求,最终实现低碳环保。
下面结合附图对本发明的各实施例进行详细说明。
本发明实施例提供的电池的回收方式确定方法及装置可以应用在电子设备中。本方案确定电池的回收方式时主要考虑的是低碳环保,通过比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的回收方式进行电池回收。而碳排放量受如电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量等因素的影响,因此,需要提前在电子设备上预置常见电池的电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量等参数。
本发明实施例提供的电池的回收方式确定方法及装置应用于电子设备,由电子设备执行本发明实施例提供的电池的回收方式确定方法。在本发明实施例中,电子设备可以是,但不限于,个人电脑(PC机)、笔记本电脑或者服务器等具有数据计算分析处理能力的电子设备。
下面,基于电子设备中已预置常见电池的电池类型对应的电池预设参数对本发明实施例提供的电池的回收方式确定方法进行说明。请参照图1,图1示出了本发明实施例提供的电池的回收方式确定方法的一种示意图,该方法包括以下步骤:
步骤S101,获得待确定电池的电池类型,确定与电池类型对应的电池预设参数;
其中,电池预设参数中包含电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量。
在本发明实施例中,电子设备中预存常见电池类型的预设参数,预设参数中包含但不限于电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量。
当指定电池进行电池的回收方式确定时,首先获得待确定电池的电池类型,再根据电池类型找到与之匹配的电池预设参数。
步骤S102,根据电池类型、电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量,得到电力损耗碳排放量,电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量。
在本发明实施例中,首先,电子设备根据电池额定容量和电池容量保持率得到电池实际容量,电池实际容量指的是当前电池充电时所消耗的电能。再根据电池实际容量和电池充放电效率得到电池充放电过程中损耗的电能。最后再根据电池充放电过程中损耗的电能和电力排放因子得到电力损耗碳排放量。
需要说明的是,其中,电池容量保持率用于表征当前电池容量和电池额定容量的比率。电池充放电效率用于表征电池放出的电能和电池充电消耗的电能的比率。电池额定容量用于表征电池出厂时的电池容量,可以但不限于通过扫描电池二维码的方式获取。电池循环次数用于表征电池的充放电次数。
在实际应用中,电力损耗碳排放量还可以通过计算公式所得:
E损耗=Σ(AD充电-AD放电)×EF
其中,E损耗为电池运行过程中因充放电效率引起的电力损耗产生的碳排放量,AD充电为电池充电消耗的电能,AD放电为电池放出的电能,EF为电力排放因子,可以取国内电网排放因子0.5810tCO2/MWh。
步骤S103,根据电力损耗碳排放量、回收工艺碳排放量和电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量。
在本申请实施例中,电池经过再生利用处理后是厂家出厂的新电池,此时电池循环寿命是电池出厂到电池退役时所剩余的电池充放电次数,而经过梯次利用处理后的电池,其电池循环寿命指的是从电池退役到没有梯次利用价值时所剩余的电池充放电次数。
其中,根据电力损耗碳排放量和回收工艺碳排放量可以获得电池生命周期内产生的碳排放量,再结合电池循环寿命可以得到再生利用和梯次利用的电池单次充放电的碳排放量。
步骤S104,比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为待确定电池的目标回收方式。
可见,本实施例提供的电池的回收方式确定方法在电子设备中获得待确定电池的电池类型,确定与电池类型对应的电池预设参数;电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量。根据电池类型、电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量,得到电力损耗碳排放量,电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量。根据电力损耗碳排放量、回收工艺碳排放量和电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量。比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为待确定电池的目标回收方式。从而将退役电池加工成低碳电池产品,满足储能企业、新能源汽车厂商对低碳产品的需求,最终实现低碳环保。
可选地,对于上述示例中提到的电池类型对应的电池预设参数,对于本方案的执行设备,用户可以通过交互界面或第三方服务器,进行参数的预置。在一种可能的实现方式中,在图1的基础上,参见图2,在步骤S101之前,还包括:
分别预置每种电池类型对应的电池循环次数、电池额定容量、电池类型、回收工艺碳排放量、电力排放因子、电池容量保持率和电池充放电效率;
其中,电池容量保持率和电池充放电效率通过多种电池类型的采样数据拟合确定。
具体的,采样数据可以为:电池循环寿命、电池循环次数、电池充放电效率等。在电池回收时,先将回收的电池包进行深度放电使电压低于安全拆解电压,之所以需要深度放电是为了防止电池包带电拆解可能引起人员伤害以及拆解过程中因破坏电池引起的自燃。将放电后的电池包使用拆解设备进行拆解,得到电池模组,或进一步将电池模组拆解为电池单体。使用充放电测试仪测试检测电池充放电效率、电池内阻、电池循环次数等性能情况,并抽样检测电池从退役到容量保持率降为10%以下的使用情况下的循环次数及充放电效率等信息,形成电池循环次数的采样数据。并对形成的电池生命周期采样数据进行计算拟合,确定电池的容量保持率和电池的充放电效率。
可选地,在实际应用中,电池充放电中的电力损耗受电池充放电效率影响,而电池充放电效率又与电池循环次数有关,电池充放电效率和电池循环次数满足以下关系:
z=1.0944x-0.0245
其中,z为电池充放电效率,x为电池循环次数。
对于本方案涉及的电池充放电效率与电池循环次数,可以为在执行本方案前,通过对不同电池类型的电池的充放电数据进行统计汇总,分别获得每个电池类型对应的经验值。
在本发明实施例中,电池充放电效率是根据电池循环次数的采样数据拟合确定的。如图3所示,随着电池使用次数的增多,电池充放电效率会降低,电池放电能力下降。
可选地,在实际应用中,电池实际容量受电池容量保持率影响,而电池容量保持率又与电池循环次数有关,下面以三种电池类型为例具体说明,第一电池类型、第二电池类型和第三电池类型三种电池类型的电池容量保持率和电池循环次数满足以下关系:
yA=-1.3577×10-8×x3+3.3137×10-5×x2-0.0246x+103.008
yC=-8.27719×10-9×x3+3.6009×10-5×x2-0.04805x+101.753
其中,x为电池循环次数,yA为第一电池类型的电池容量保持率,yB为第二电池类型的电池容量保持率,yC为第三电池类型的电池容量保持率。
对于本方案涉及的电池容量保持率与电池循环次数,可以为在执行本方案前,通过对不同电池类型的电池实际容量和电池额定容量数据进行统计汇总,分别获得每个电池类型对应的经验值。具体地,第一电池类型的电池容量保持率和电池循环次数的关系如图4所示,第二电池类型的电池容量保持率和电池循环次数的关系如图5所示,第三电池类型的电池容量保持率和电池循环次数的关系如图6所示。
需要说明的是,在本发明实施例中提及的第一电池类型、第二电池类型和第三电池类型是列举的电池类型,对于电池类型可以基于不同厂商的电池进行测试分类,本发明实施例中对于电池类型的分类方式不做限制。不同的分类方式拟合出来的电池容量保持率和电池循环次数的关系会有所不同。
可选地,在实际应用中,为了选择碳排量小的方式进行回收,需要获得电池生命周期中两个重要阶段的碳排放量,其中一个是电池充放电过程中电力损耗碳排放量。第一电池类型和第二电池类型的两种电池的电力损耗碳排放量的公式为:



其中,GA再生利用为第一电池类型进行再生利用所需的电力损耗碳排放量,GA梯次利用为第一电池类型进行梯次利用所需的电力损耗碳排放量,GB再生利用为第二电池类型进行再生利用所需的电力损耗碳排放量,GB梯次利用为第二电池类型进行梯次利用所需的电力损耗碳排放量,mA为第一电池类型的电池额定容量,mB为第二电池类型的电池额定容量,EF为电力排放因子,z为电池充放电效率,yA为第一电池类型的电池容量保持率,yB为第二电池类型的电池容量保持率。
可选地,在实际应用中,电池回收工艺碳排放量可以直接获取,也可以通过回收工艺中每个处理阶段的碳排放量获得,公式为:
E=∑Mi×EFi
其中,E为回收工艺碳排放量,Mi为回收工艺阶段使用原辅料、能源的质量或能量,EFi为回收工艺阶段使用原辅料、能源的质量或能量的排放因子。
对于电池的回收工艺而言,电池采用不用的回收方式时,回收工艺所包含的处理阶段则不同。场景的电池回收方式是再生利用和梯次利用。
其中,梯次利用属于轻度报废,电池本身并没有报废,只是不能用于新能源汽车,经过工艺处理后可以用于其他领域。电池梯次利用的回收工艺包括但不限于运输、拆解、性能测试、BMS系统、组装和包装运输。
较之梯次利用而言,再生利用属于重度报废,需要通过化学方式提炼电池中的稀缺资源达到电池再造的目的。电池再生利用的回收工艺包括但不限于包装、运输、物理放电、化学放电、拆解、破碎、热解、分选、酸浸、萃取、沉淀、混料、煅烧、除杂和包装。
为了更清楚地说明本申请实施例提供的电池的回收方式确定方法,下面分别使用第一电池类型和第二电池类型的两款电池进行示例性说明。
在本示例中,假设本次需要确定回收方式的电池类型为第一电池类型,电池额定容量为75kWh,电池进行再生利用时回收工艺碳排放量为47.01kgCO2e/kWh,电池进行梯次利用时回收工艺碳排放量为16.21kgCO2e/kWh,再生利用的电池循环寿命为2010,梯次利用的电池循环寿命为160,电池的容量保持率在48%左右,从图4可知,电池循环次数约为2370。由此可得,
z=1.0944x-0.0245
y=-1.3577×10-8×x3+3.3137×10-5×x2-0.0246x+103.008

经计算,电池进行再生利用的碳排放量为1.47kgCO2e/圈,电池进行梯次利用的碳排放量为2.94kgCO2e/圈,因此梯次利用单次充放电的碳排放量高于再生利用单次充放电的碳排放量,因此建议该电池进行再生利用回收。
在本示例中,假设本次需要确定回收方式的电池类型为第二电池类型,电池额定容量为50kWh,电池进行再生利用时回收工艺碳排放量为49.21kgCO2e/kWh,电池进行梯次利用时回收工艺碳排放量为16.86kgCO2e/kWh,再生利用的电池循环寿命为2100,梯次利用的电池循环寿命为490,电池的容量保持率在61%左右,从图5可知,电池循环次数约为2790。由此可得,
z=1.0944x-0.0245
y再生利用=-0.01x+100.61 1≤x≤2100
y梯次利用=-0.00615x+229 2100≤x≤3240

经计算,电池进行再生利用的碳排放量为1.48kgCO2e/圈,电池进行梯次利用的碳排放量为2.94kgCO2e/圈,因此梯次利用单次充放电的碳排放量高于再生利用单次充放电的碳排放量,因此建议该电池进行再生利用回收。
基于同一发明构思,本发明实施例还提供了一种电池的回收方式确定装置,请参照图7,图7示出了本发明实施例提供的电池的回收方式确定装置200的方框示意图,电池的回收方式确定装置应用于电子设备。电池的回收方式确定装置200包括获取模块201,计算模块202及决策模块203。
获取模块201,用于获得待确定电池的电池类型,确定与电池类型对应的电池预设参数;电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量。
计算模块202,用于根据电池类型、电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量,得到电力损耗碳排放量,电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;根据电力损耗碳排放量、回收工艺碳排放量和电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量。
决策模块203,用于比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量 小的方式作为待确定电池的目标回收方式。
可选地,获取模块201还用于初始化电池预设参数;分别预置每种电池类型对应的电池循环次数、电池循环寿命、电池额定容量、电池类型、回收工艺碳排放量、电力排放因子、电池容量保持率和电池充放电效率;其中,电池容量保持率和电池充放电效率通过多种电池类型的采样数据拟合确定。
可选地,计算模块202,具体用于获取电池充放电效率,电池充放电效率和电池循环次数满足以下关系:z=1.0944x-0.0245。其中,z为电池充放电效率,x为电池循环次数。
可选地,计算模块202,具体用于获取电池容量保持率,电池类型包含第一电池类型、第二电池类型和第三电池类型,电池容量保持率和电池循环次数满足如下关系:
yA=-1.3577×10-8×x3+3.3137×10-5×x2-0.0246x+103.008
yC=-8.27719×10-9×x3+3.6009×10-5×x2-0.04805x+101.753
其中,x为电池循环次数,yA为第一电池类型的电池容量保持率,yB为第二电池类型的电池容量保持率,yC为第三电池类型的电池容量保持率。
可选地,计算模块202,具体用于获取电力损耗碳排放量,电池类型包含第一电池类型和第二电池类型,电力损耗碳排放量的公式为:



其中,GA再生利用为第一电池类型进行再生利用所需的电力损耗碳排放量,GA梯次利用为第一电池类型进行梯次利用所需的电力损耗碳排放量,GB再生利用为第二电池类型进行再生利用所需的电力损耗碳排放量,GB梯次利用为第二电池类型进行梯次利用所需的电力损耗碳排放量,mA为第一电池类型的电池额定容量,mB为第二电池类型的电池额定容量,EF为电力排放因子,z为电池充放电效率,yA为第一电池类型的电池容量保持率,yB为第二电池类型的电池容量保持率。
可选地,计算模块202,具体用于获取电池回收工艺碳排放量,公式为:
E=∑Mi×EFi
其中,E为回收工艺碳排放量,Mi为回收工艺阶段使用原辅料、能源的质量或能量,EFi为回收工艺阶段使用原辅料、能源的质量或能量的排放因子。
请参考图8,为本发明实施例提供的电子设备100的一种方框示意图。电子设备100可以是个人电脑(PC机)、笔记本电脑或者服务器等。电子设备100包括存储器110、处理器120及通信模块130。存储器110、处理器120以及通信模块130各元件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。
其中,存储器110用于存储程序或者数据。存储器110可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。
处理器120用于读/写存储器110中存储的数据或程序,并执行相应地功能。例如,当存储器110中存储的计算机程序被处理器120执行时,可以实现上述各实施例所揭示的电池的回收方式确认方法。
通信模块130用于通过网络建立电子设备100与其它通信终端之间的通信连接,并用于通过网络收发数据。
应当理解的是,图8所示的结构仅为电子设备100的结构示意图,电子设备100还可包括比图8中所示更多或者更少的组件,或者具有与图8所示不同的配置。图8中所示的各组件可以采用硬件、软件或其组合实现。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器120执行时实现上述各实施例所揭示的电池的回收方式确认方法。
综上所述,本发明实施例提供的一种电池的回收方式确定方法、装置、电子设备和存储介质,方法应用在电子设备,方法包括:获得待确定电池的电池类型,确定与电池类型对应的电池预设参数;电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量;根据电池类型、电池循环次数、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量,得到电力损耗碳排放量,电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;根据电力损耗碳排放量、回收工艺碳排放量和电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量; 比较再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为待确定电池的目标回收方式。从而将退役电池加工成低碳电池产品,满足储能企业、新能源汽车厂商对低碳产品的需求,最终实现低碳环保。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电池的回收方式确定方法,其特征在于,应用于电子设备,所述方法包括:
    获得待确定电池的电池类型,确定与所述电池类型对应的电池预设参数;所述电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量;
    根据所述电池类型、所述电池循环次数、所述电池充放电效率、所述电池容量保持率、所述电力排放因子、所述电池额定容量,得到电力损耗碳排放量,所述电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;
    根据所述电力损耗碳排放量、所述回收工艺碳排放量和所述电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量;
    比较所述再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为所述待确定电池的目标回收方式。
  2. 根据权利要求1所述的电池的回收方式确定方法,其特征在于,在所述获得待确定电池的电池类型的步骤之前,还包括:
    分别预置每种所述电池类型对应的所述电池循环次数、所述电池循环寿命、所述电池额定容量、所述电池类型、所述回收工艺碳排放量、所述电力排放因子、所述电池容量保持率和所述电池充放电效率;
    其中,所述电池容量保持率和所述电池充放电效率通过多种所述电池类型的采样数据拟合确定。
  3. 根据权利要求1所述的电池的回收方式确定方法,其特征在于,所述电池充放电效率和所述电池循环次数满足以下关系:
    z=1.0944x-0.0245
    其中,所述z为所述电池充放电效率,所述x为所述电池循环次数。
  4. 根据权利要求1所述的电池的回收方式确定方法,其特征在于,所述电池类型包含第一电池类型、第二电池类型和第三电池类型,所述电池容量保持率和所述电池循环次数满足以下关系:
    yA=-1.3577×10-8×x3+3.3137×10-5×x2-0.0246x+103.008

    yC=-8.27719×10-9×x3+3.6009×10-5×x2-0.04805x+101.753
    其中,所述x为所述电池循环次数,所述yA为所述第一电池类型的电池容量保持率,所述yB为所述第二电池类型的电池容量保持率,所述yC为所述第三电池类型的电池容量保持率。
  5. 根据权利要求1所述的电池的回收方式确定方法,其特征在于,所述电池类型包含第一电池类型和第二电池类型,所述电力损耗碳排放量的公式为:
    GA再生利用=∫1 xmA×EF×yA×(1-z)dx
    GA梯次利用=∫x 2530mA×EF×yA×(1-z)dx
    GB再生利用=∫1 xmB×EF×yB×(1-z)dx
    GB梯次利用=∫x 3240mB×EF×yB×(1-z)dx
    其中,所述GA再生利用为所述第一电池类型进行再生利用所需的电力损耗碳排放量,所述GA梯次利用为所述第一电池类型进行梯次利用所需的电力损耗碳排放量,所述GB再生利用为所述第二电池类型进行再生利用所需的电力损耗碳排放量,所述GB梯次利用为所述第二电池类型进行梯次利用所需的电力损耗碳排放量,所述mA为所述第一电池类型的电池额定容量,所述mB为所述第二电池类型的电池额定容量,EF为所述电力排放因子,所述z为所述电池充放电效率,所述yA为所述第一电池类型的电池容量保持率,所述yB为所述第二电池类型的电池容量保持率。
  6. 根据权利要求1所述的电池的回收方式确定方法,其特征在于,所述回收工艺碳排放量的公式为:
    E=∑Mi×EFi
    其中,E为所述回收工艺碳排放量,所述Mi为回收工艺阶段使用原辅料、能源的质量或能量,所述EFi为所述回收工艺阶段使用原辅料、能源的质量或能量的排放因子。
  7. 一种电池的回收方式确定装置,其特征在于,应用于电子设备,所述装置包括:
    获取模块,用于获得待确定电池的电池类型,确定与所述电池类型对应的电池预设参数;所述电池预设参数中包含电池循环次数、电池循环寿命、电池充放电效率、电池容量保持率、电力排放因子、电池额定容量和回收工艺碳排放量;
    计算模块,用于根据所述电池类型、所述电池循环次数、所述电池充放电效率、所述电池容量保持率、所述电力排放因子、所述电池额定容量,得到电力损耗碳排放量,所述电力损耗碳排放量为电池充放电过程中损耗电力产生的碳排放量;根据所述电力损耗碳排放量、所述回收工艺碳排放量和所述电池循环寿命,分别得到再生利用和梯次利用的电池单次充放电的碳排放量;
    决策模块,用于比较所述再生利用和梯次利用的电池单次充放电的碳排放量,选择碳排放量小的方式作为所述待确定电池的目标回收方式。
  8. 如权利要求7所述的电池的回收方式确定装置,其特征在于,在所述获取模块还用于初始化电池预设参数;分别预置每种所述电池类型对应的所述电池循环次数、所述电池循环寿命、所述电池额定容量、所述电池类型、所述回收工艺碳排放量、所述电力排放因子、所述电池容量保持率和所述电池充放电效率;其中,所述电池容量保持率和所述电池充放电效率通过多种所述电池类型的采样数据拟合确定。
  9. 一种电子设备,其特征在于,所述电子设备包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于在调用所述计算机程序时执行如权利要求1-6任一项所述的电池的回收方式确定方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1-6任一项所述的电池的回收方式确定方法。
PCT/CN2023/083149 2022-11-07 2023-03-22 电池的回收方式确定方法、装置、电子设备和存储介质 WO2024098617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211386213.3 2022-11-07
CN202211386213.3A CN115760078A (zh) 2022-11-07 2022-11-07 电池的回收方式确定方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024098617A1 true WO2024098617A1 (zh) 2024-05-16

Family

ID=85357979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083149 WO2024098617A1 (zh) 2022-11-07 2023-03-22 电池的回收方式确定方法、装置、电子设备和存储介质

Country Status (3)

Country Link
CN (1) CN115760078A (zh)
FR (1) FR3141806A1 (zh)
WO (1) WO2024098617A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115760078A (zh) * 2022-11-07 2023-03-07 广东邦普循环科技有限公司 电池的回收方式确定方法、装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045535A (ja) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd 炭酸ガス回収型燃料電池システム
KR20150049557A (ko) * 2013-10-30 2015-05-08 주식회사 엘지화학 배터리 재사용 및 재활용 방법
CN114004375A (zh) * 2021-10-27 2022-02-01 广东邦普循环科技有限公司 一种动力电池回收利用碳排放核算边界的界定方法和装置
CN114090939A (zh) * 2021-11-05 2022-02-25 国网湖北省电力有限公司经济技术研究院 一种储能电池全生命周期碳排放系数确定方法
CN115760078A (zh) * 2022-11-07 2023-03-07 广东邦普循环科技有限公司 电池的回收方式确定方法、装置、电子设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045535A (ja) * 2011-08-23 2013-03-04 Tokyo Gas Co Ltd 炭酸ガス回収型燃料電池システム
KR20150049557A (ko) * 2013-10-30 2015-05-08 주식회사 엘지화학 배터리 재사용 및 재활용 방법
CN114004375A (zh) * 2021-10-27 2022-02-01 广东邦普循环科技有限公司 一种动力电池回收利用碳排放核算边界的界定方法和装置
CN114090939A (zh) * 2021-11-05 2022-02-25 国网湖北省电力有限公司经济技术研究院 一种储能电池全生命周期碳排放系数确定方法
CN115760078A (zh) * 2022-11-07 2023-03-07 广东邦普循环科技有限公司 电池的回收方式确定方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN115760078A (zh) 2023-03-07
FR3141806A1 (fr) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2024098617A1 (zh) 电池的回收方式确定方法、装置、电子设备和存储介质
CN111289910B (zh) 一种梯次电池的分级方法、装置、计算机设备及介质
CN109818396B (zh) 一种锂离子电池包的充电方法、装置及终端设备
CN104934650A (zh) 一种退役锂离子动力电池再利用的方法
CN116266243B (zh) 用于电动汽车动力电池生命周期碳足迹的核算方法及系统
CN114415037A (zh) 一种电池组异常电芯定位识别方法、系统、设备及介质
CN116078697A (zh) 一种考虑长期一致性的电动汽车退役电池的筛选重组方法
WO2021077271A1 (zh) 充电方法、电子装置以及存储介质
CN114384436A (zh) 退役锂离子动力电池的筛选方法、装置、设备和存储介质
Liu et al. Recycling and echelon utilization of used lithium-ion batteries from electric vehicles in china
CN117410598A (zh) 一种基于指标相似性的退役电池模块组合方法
CN110927587B (zh) 一种电池包充放电测试报告生成的方法和装置
Malavatu et al. Hybrid energy storage systems of energy-and power-dense batteries: a survey on modelling techniques and control methods
CN116068432A (zh) 储能设备的老化测试方法、装置、系统和存储介质
CN113210299B (zh) 电池组分选方法、装置、计算机设备和存储介质
CN116014268A (zh) 一种电池梯度利用方法、装置、设备和介质
CN115395621A (zh) 一种应急储能电池电能管理方法、装置、设备及介质
CN104699223A (zh) 一种终端
CN114117737A (zh) 锂离子电池仿真方法、装置、电子设备及可读存储介质
CN115378056A (zh) 一种电池类型的识别方法及识别装置
US20220299960A1 (en) Control apparatus, control method and program
CN114137429A (zh) 充放电过程中锂离子电池性能异常变化的参数化表征方法及装置
CN110988704B (zh) 一种电池充电检测方法、装置及设备
WO2023201532A1 (zh) 异常电芯的识别方法、装置、电子设备及存储介质
CN116577687B (zh) 快充电池包的电芯筛选方法、系统、存储介质及计算机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887322

Country of ref document: EP

Kind code of ref document: A1