WO2024098126A1 - Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero - Google Patents

Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero Download PDF

Info

Publication number
WO2024098126A1
WO2024098126A1 PCT/BR2023/050376 BR2023050376W WO2024098126A1 WO 2024098126 A1 WO2024098126 A1 WO 2024098126A1 BR 2023050376 W BR2023050376 W BR 2023050376W WO 2024098126 A1 WO2024098126 A1 WO 2024098126A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
fact
polymer
fatty acid
polymeric composition
Prior art date
Application number
PCT/BR2023/050376
Other languages
English (en)
French (fr)
Inventor
Albert Ernesto NYHOLT
Original Assignee
Dioveritá Mundi, Llc
Intelligens 4 Pesquisa E Desenvolvimento S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102023023294-9A external-priority patent/BR102023023294A2/pt
Application filed by Dioveritá Mundi, Llc, Intelligens 4 Pesquisa E Desenvolvimento S.A. filed Critical Dioveritá Mundi, Llc
Publication of WO2024098126A1 publication Critical patent/WO2024098126A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • C08G63/21Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups in the presence of unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/183Organic compounds containing oxygen containing hydroxy groups; Salts thereof at least one hydroxy group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential

Definitions

  • the present invention relates to an additive applicable to a material such as a polymeric composition or polymer, which allows it to impart to said composition or said polymer and to products derived therefrom dimensional stability, thermodynamic stability and increased impermeability to gases . It further relates to a process for preparing said additive, as well as its uses and products, polymeric compositions and polymers comprising the same.
  • Synthesized polymeric resins often do not have the characteristics necessary for their use for certain applications. Therefore, since the beginning of the development of the polymer industry, other substances have been added to these materials in order to stabilize the material during and after processing and to modify the properties of the resins for use in a particular application.
  • additives comprise any and all materials added to a polymer for a specific application.
  • the characteristic of polymers to accept a wide variety of additives is fundamentally important, not only to improve their physicochemical properties, but also for their visual appeal, allowing a wide range of applications, both new applications and replacement of traditional materials.
  • additives which are generally physically dispersed in the polymeric matrix and do not significantly affect the molecular structure of the polymer. They do not change the chemical composition, at least substantially, of the polymeric matrix to which the additive is added. They do not focus on changing mechanical properties, such as impact resistance, ductility, melting temperature, etc. Its main characteristic is to change the final behavior of the polymer without structural change.
  • a polymer is composed of the repetition of monomers, which can have a linear, branched or network structure. Covalent bonds are responsible for maintaining the integrity of the polymer, linking its atoms, and secondary bonds connect groups of polymer chains to form the polymeric material, which can generate copolymers, which are polymers composed of two or more different types of monomers.
  • polymers have a three-dimensional structure.
  • each bond between the atoms of a polymer has an inclination of 109° in relation to the next, so that such chains can undergo twisting and stretching when forces or energy are applied, similar to the formation of crystalline structures.
  • thermoplastic polymers stand out, which can be classified as amorphous and/or crystalline polymers, which can have a linear or branched structure and, in general, soften when heated and harden when cooled.
  • Such polymers have a wide range of applications as structural components and/or as matrix components associated with other components, with such functions being influenced by characteristics such as degree of polymerization, type and concentration of additives, etc.
  • thermoplastic polymers are polyethylene, polypropylene, polyamide, polycarbonate, polybutylene terephthalate, polyesters, among others.
  • document CN107163171 proposes obtaining a material for use in constructions, and suggests the use of a foaming agent introduced in the reaction process of cyanamide and ricinoleic acid, for foam formation to effectively promote the effect of filling of aluminum dihydrogen phosphate in the matrix polymer and thus improve the strength and structural stability of the finished product.
  • the document in question suggests that the thermal insulation property of the final product is improved.
  • what is proposed in this document is also relatively complex and involves additional production steps and alters the original characteristics of the base polymer.
  • document GB1105141 proposes an epoxy resin obtained from a mixture of polyglycidyl ether, castor oil and maleic anhydride. This document suggests resistance to thermal shocks, although the main characteristic sought would be electrical insulation. As can be seen, this document does not suggest the relevant promotion of dimensional or thermal stability to the compound, nor does it alter the original characteristics of the base polymer.
  • the solution adopted by document CN213832857 was through mass balance, that is, by increasing the thickness/density of a layer that, instead of being aluminum, is polymer.
  • the elimination of aluminum is extremely important due to production difficulties, environmental impact both in production and the difficulty in recycling when applied to carton packaging.
  • This document proposes a solution that partly solves the aluminum problem, but from the perspective of heavier packaging, which translates into one with a greater CO 2 impact, for example.
  • the proposed solution presents as a minimum barrier to oxygen, 1.5g/m 3 , a value lower than the barrier itself that a carton packaging containing aluminum promotes, which is 1.00002g/m 3 .
  • the solution presented lies in changing the chemical composition and mass balance, allowing apparently satisfactory results, but inferior to those of the current product and with a higher weight. You save on one side, but you spend on the other.
  • a first objective of the present invention is to provide a functional additive that allows the improvement of the dimensional and thermal stability of a polymeric compound without altering the original properties of the base polymer.
  • a second objective of the present invention is to provide a functional additive that allows the creation of a compound comprising a thermal barrier characteristic, which prevents or substantially limits the transfer of energy throughout its structure.
  • a third objective of the invention is to provide an additive that can be used to obtain polymeric compounds with dimensional and thermodynamic stability suitable for use in multiple commercial and industrial applications, such as, but not limited to, containers and/or packaging for consumption.
  • solids, pastes and liquids (bottles, jars, films, plastic bags, etc.)
  • automotive pharmaceutical, textile
  • aerospace agricultural equipment
  • cellulose packaging paper, cups, boxes, etc.
  • electrical cables electrical cables
  • semiconductors batteries
  • medical equipment and containers PVC industry (pipes)
  • sound blocking equipment and products general machine parts, etc.
  • in the form of layers for application to these products and equipment whether in the form of a spray or pre-molded layer
  • paints, varnishes among others such as (motor vehicles, aviation, spacecraft, homes and buildings and in agricultural and industrial equipment etc.
  • a fourth objective of the present invention is to provide a process for obtaining an additive such as the aforementioned.
  • a fifth objective of the invention is to provide a product provided with at least one portion that has adequate dimensional stability, thermal stability, gaseous impermeability and sound insulation, without significantly altering the chemical composition of a product and its mechanical properties, such as color, tensile strength, among others.
  • a sixth objective of the invention is to provide a product provided with at least one portion that has a thermal barrier characteristic, which substantially prevents or limits the transfer of energy throughout its structure.
  • a seventh objective of the invention is to provide a product with at least one portion that has a molecular structure with compact hexagonal packing.
  • An eighth objective of the invention is to provide a product that promotes stability of the material's electronic structures and relationships through changes in covalent bonds, heterogeneous surface catalysis and atomic packing.
  • a ninth objective of the invention is to provide an atomic arrangement that effects, through a dative covalent bond, a blocking effect on molecular agitation arising from energy transfer.
  • an additive comprising:
  • the fatty acid is present in a concentration of about 5% to about 80% by weight, relative to the total weight of the additive, more preferably in which the fatty acid is an unsaturated fatty acid that contains at least one hydroxyl group (OH) present outside the ends of the carbon chain, even more preferably where the fatty acid has a hydroxyl at carbon 12 of the chain, preferably where the fatty acid has an 18 carbon chain, more preferably where the fatty acid is derived from castor oil.
  • OH hydroxyl group
  • the fatty acid is ricinoleic acid.
  • the paramagnetic component is present in a concentration of about 1% to about 30% by weight, relative to the total weight of the additive, more preferably in which the paramagnetic component is any component capable of maintaining the valence layer of the polymeric composition or target polymer with a negative charge, even more preferably in which the paramagnetic component is copper sulfate, sodium, strontium, magnesium and titanium chloride.
  • the paramagnetic component is titanium chloride.
  • the anchoring substrate is present in a concentration of about 20% to about 70% by weight, relative to the total weight of the additive, more preferably wherein the anchoring substrate is a substrate of solid or liquid anchoring, even more preferably in which the anchoring substrate is a glycerin monostearate (MEG), polyamide 6 (PA 6), lercite (methyl 2-methylpropenoate), tetrafluoroethylene, lignin, zinc oxide, silicone fluid, tributyl citrate and calcium carbonate.
  • MEG glycerin monostearate
  • PA 6 polyamide 6
  • lercite methyl 2-methylpropenoate
  • the anchoring substrate is calcium carbonate and is in solid form.
  • the additive additionally comprises functional stabilizers, such as magnesium chloride, preferably in a concentration of about 5% to about 40% by weight, relative to the total weight of the additive.
  • functional stabilizers such as magnesium chloride
  • the additive comprises a molecular structure with compact hexagonal packing and a negative electrostatic charge in the valence layer.
  • Said additive is for the additivation of a polymeric composition or polymer that, in appropriate proportions, guarantees the desired gas, light and temperature barrier properties.
  • the present invention presents relevant environmental advantages compared to commonly used products.
  • the polymeric composition or polymer can be selected from Nylon, Kevlar, polyvinyl acetate, polycarbonate (PVA), polymethyl methacrylate (PMMA), polychloride vinyl (PVC), acetal (POM), polytetrafluoroethylene (PTFE), paper and cellulose, polyester, polyurethane, Celeron, phenolite, low-density polyethylene, high-density polyethylene, polypropylene, among others.
  • the additive claimed here can be in any form, such as, for example, in liquid, paste, spray, pellets or any other form.
  • a process for obtaining said additive comprising the steps of: a. Obtain a mixture of fatty acid with a solvent to obtain a fatty acid with low entropy; B. Obtain a mixture containing the mixture of item (a) with the paramagnetic component to obtain the molecular structure with compact hexagonal packing and negative electrostatic charge in the valence layer of the polymer molecules; w. Obtain a mixture containing the mixture of item (b) with the anchoring substrate to form the attachment horse to the target polymer.
  • the process comprises the additional step of mixing the paramagnetic component with the anchoring substrate before incorporating it into the mixture obtained in item (a).
  • the process additionally comprises the step of: d. Incorporate additional components into the mixture obtained in step (c), such as functional stabilizers, in order to adjust the final aesthetic characteristics of the additive (such as coloring).
  • additional components such as functional stabilizers, in order to adjust the final aesthetic characteristics of the additive (such as coloring).
  • the solvent fatty acid ratio used in step (a) of the process is between about 0.5:2 to about 4:0.5.
  • the solvent is selected from cyclohexanone, ethoxyethanol, methyl acetate, ethyl acetate and sodium acetate trihydrate, the like or mixtures thereof. Even more preferably, the solvent is ethyl acetate.
  • the functional stabilizer is magnesium chloride, methylparaben, sodium stannate and butylated hydroxytoluene.
  • the fixing horse is selected from polyamide 6 (PA 6), carboxylic acid, ethyl acetate, lercite, methyl 2-methylpropenoate, acetylsalicylic acid, tetrafluoroethylene, lignin, zinc oxide and zinc monostearate.
  • PA 6 polyamide 6
  • carboxylic acid carboxylic acid
  • ethyl acetate lercite
  • methyl 2-methylpropenoate acetylsalicylic acid
  • tetrafluoroethylene lignin
  • lignin zinc oxide
  • zinc monostearate zinc monostearate
  • glycerin (MEG) glycerin
  • the additive is for use in a polymeric composition or polymer.
  • products comprising the additive are further described, products comprising a negative electrostatic charge in the valence layer.
  • polymeric compositions or polymers comprising the additive are further described, wherein said polymeric compositions or polymers comprise at least one portion endowed with a molecular structure with heterogeneous surface catalysis.
  • the polymeric composition or polymer can be selected from Nylon, Kevlar, polyacetate vinyl, polycarbonate (PVA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), acetal (POM), polytetrafluoroethylene (PTFE), cellulose (paper), polyester, polyurethane, Celeron, phenolite, low-density polyethylene, polyethylene high density, polypropylene, among others.
  • a material is further described that comprises at least one portion simultaneously provided with a dative valence layer and surface heterogeneous catalysis.
  • Figure 1 Represents the relationship between molecular agitation and the temperature/energy increase indicator, revealing the proportionality between the percentage of energy applied and the molecular agitation index.
  • Figure 3 Representation of the dative covalent bond in the atomic structure of a polymer of the present invention, where molecular agitation is restricted by the active electromagnetic force in the chain
  • Figure 4 - Represents a fatty acid with a hydroxyl on the 12th carbon within the atomic arrangement in the valence shell.
  • F igure 5 - Represents face-centered cubic unit cell
  • Figure 6 - Represents a face-centered cubic crystal structure (FCC).
  • Figures 7 and 7A - Represent orthorhombic packing of the closed hexagonal type of a face-centered cubic (FCC) structure.
  • Figure 8 Represents a graph of a practical test of a pot prepared with the additive of the present invention in one of its possible embodiments to test the temperature loss of a solid.
  • Figure 9 Represents a graph of a practical test of a pot made with the additive of the present invention in one of its possible embodiments of the present invention to test the temperature loss of a liquid.
  • Figure 10 - Represents a graph of a practical test of a pot made with the additive of the present invention in one of its possible embodiments of the present invention to test the temperature loss of a paste.
  • thermal energy energy of movement
  • thermal energy in movement caused by the difference in temperature between two bodies, is called heat, cold or magnetic waves.
  • the variation in the internal energy of a system can be expressed by the difference between the energy exchanged with the external environment and the work done by it during the transformation.
  • Figure 2 exemplifies the zeroth law of thermodynamics where, if two bodies are separately in thermal equilibrium with a third body, consequently, the first two will be in thermal equilibrium with each other.
  • energy should be understood as energy arising from any source, such as thermal, mechanical, sound, in particular thermal energy.
  • the present invention deals with an additive to be applied in the manufacture of polymeric compounds, as well as polymeric compounds that make use of the additive of the present invention.
  • Said additive when applied to a polymer, provides dimensional stability, in addition to substantially preventing or limiting any energy exchange through the polymer, acting, for example as a thermodynamic blocker, reducing the material's permeability to gases or increasing acoustic insulation.
  • the additive of the present invention may also be colorless or provide a light barrier, depending on the need.
  • the additive described here can be integrated or mixed with other additives, including structural additives, in which case it may also exert a structural function, in addition to the functional characteristics described here.
  • the additive proposed here is capable of involving and immobilizing the molecules that make up the solid medium (in this case, a polymer), in order to prevent or substantially limit the exchange of energy through it. Furthermore, said immobilization also results in dimensional stability of the solid medium (polymer) where it is applied. This effect can vary between no thermal transfer or substantial thermal transfer limitation depending on the intended application.
  • the additive of the present invention presents ecological characteristics, since, due to its ability to generate thermal, gas and light barriers, numerous products from different segments of the consumer goods, automotive, transport, civil , aerospace, etc., the additive will provide properties to the products used, replacing materials and other products, whose production process has a high environmental impact.
  • the additive used in packaging would eliminate the need for refrigeration in all distribution channels.
  • using films applied to facades would drastically reduce the need for air conditioning devices due to blocking the passage of external heat or cold, fewer compressors and consequently, less environmental impact caused by refrigeration devices.
  • the additive proposed herein comprises: a. A fatty acid; B. A paramagnetic component; w. An anchoring substrate and optionally d. A stabilizer.
  • a fatty acid is a carboxylic acid with an aliphatic chain, which can be saturated or unsaturated.
  • the fatty acid of the present invention is any unsaturated fatty acid that contains at least one hydroxyl group (OH) present outside the ends of the carbon chain.
  • the hydroxyl group is present at carbon 12 of the chain.
  • the fatty acid of the present invention has an 18 carbon chain.
  • the fatty acid is derived from castor oil. Even more preferably, the fatty acid is ricinoleic acid.
  • a paramagnetic component is a component that has unpaired electrons.
  • the paramagnetic component must be understood as a component capable of taking the paramagnetic additive and maintaining the hexagonal packaging closed even under pressure and temperature. Furthermore, this paramagnetic component generates cathodes that shield the covalent bond and operate the bond with carbon and hydrogen nonmetals.
  • the use of a paramagnetic component allows its octahedral ordering sphere to adjust the fatty acid for structural and functional coverage of the additive, distributing the thermodynamic blocking property evenly.
  • the paramagnetic component is any component capable of maintaining the valence shell of the polymeric composition or target polymer with a negative charge.
  • the paramagnetic components are copper sulfate, sodium, strontium, magnesium, titanium chloride or any other aforementioned that is capable of exerting the aforementioned functionalities.
  • anchoring substrate we mean a substrate responsible for fixing the other elements of the composition to the target polymer.
  • the anchoring substrate can be solid or liquid, which can vary according to the desired final form of the product, in this case, the additive, for example, solid (such as powder , pellet, granule or any other possible solid form of use), liquid (such as solution, dispersion, emulsion, extract, tincture or any other possible liquid form of use) or even adapted, for example, for use as a spray.
  • solid such as powder , pellet, granule or any other possible solid form of use
  • liquid such as solution, dispersion, emulsion, extract, tincture or any other possible liquid form of use
  • the anchoring substrate is glycerin monostearate (MEG), polyamide 6 (PA 6), lercite (methyl 2- methylpropenoate), tetrafluoroethylene, lignin, zinc oxide, silicone fluid, tributyl citrate and calcium carbonate.
  • the fatty acid is present in a concentration ranging between about 5% and 80% by weight, in relation to the total weight of the additive (w/w).
  • the fatty acid is present at any concentration between 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33% , 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50 %, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80% or any range comprising the same, by weight , in relation to the total weight
  • the paramagnetic component is present in a concentration ranging between about 1% and 30% by weight, relative to the total weight of the additive (w/w). In a preferred embodiment, the paramagnetic component is present at any concentration between 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29% , 30%, or any range comprising the same, by weight, in relation to the total weight of the additive (w/w).
  • the paramagnetic component is present in a concentration between 2% and 28%, 4% and 25%, 6% and 22%, 8% and 21% or 10% and 20% by weight, relative to to the total weight of the additive (W/W)-
  • the anchoring substrate is present in a concentration ranging between about 20% and 70% in weight, in relation to the total weight of the additive (w/w).
  • the anchoring substrate is present at any concentration between 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31% , 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48 %, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, or any range comprising the same, by weight, in relation to the total weight of the additive (w/w).
  • the anchoring substrate is present in a concentration between 25% and 65%,
  • each of the components are capable of surrounding and immobilizing the molecules of the polymeric composition or polymer target, preventing or substantially inhibiting its movement, thus providing dimensional stability and inhibition or limitation of energy transfer, generating, for example, a thermodynamic blockage.
  • the present additive when in contact with the polymeric composition or polymer, performs a heterogeneous surface catalysis, where the hydroxyl group (OH) is responsible for donating electrons to the valence shell of the atoms of the polymeric composition or polymer, while the paramagnetic component is capable of maintaining the negative magnetic field (due to the donation of electrons by the OH group) (negative electrostatic charge).
  • OH hydroxyl group
  • the combination of the additive of the present invention with the polymeric composition or polymer results in the formation of a molecular structure with compact hexagonal packing.
  • the anchoring component acts as the link between the additive molecules and the molecules of the polymeric composition or polymer.
  • an embodiment of the invention is an additive that comprises a molecular structure with compact hexagonal packing and a negative electrostatic charge in the valence layer.
  • the amount of additive to be used will directly depend on the molecular alignment characteristics of the additive itself.
  • a product, polymeric composition or polymer comprising said additive is also an embodiment of the present invention.
  • the additive when alone (that is, not in combination with the target polymer) already has its molecules aligned in the form of a compact hexagonal packing, a characteristic conferred by the use of the paramagnetic component.
  • the polymeric composition or polymer can be selected from Nylon, Kevlar, polyvinyl acetate, polycarbonate (PVA), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), acetal (POM), polytetrafluoroethylene (PTFE), polyester, polyurethane, Celeron, phenolite, low-density polyethylene, high-density polyethylene, polypropylene, among others.
  • the additive containing at least 52% compact hexagonal packing is already capable of provide the target polymer with the electronic alignment necessary for operation.
  • additives having 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67 %, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% , or any ranges between these values, of compact hexagonal packing then within the specification of the present invention.
  • the additive contains at least 70%, preferably 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% , 99% or 100% compact hexagonal packing, a modality in which the additive is capable of providing up to 100% electronic alignment to the target polymer.
  • the additive can be comprised in the polymeric composition or target polymer between above 0% and up to 16%.
  • the additive of the present invention is present in any concentration between 0.001%, 0.1%, 0.5, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% , 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, or any range comprising the same, by weight, in relation to the total weight of the polymeric composition (w/w).
  • the difference in energy barrier you want to obtain will depend on the amount added. The greater the added value, the greater the barrier obtained.
  • the polymeric composition or target polymer presents both dimensional stability and energy transfer barrier (preventing or limiting) properties.
  • the additive will be able to achieve the desired effect (by varying its concentration) if the atomic packing factor (or FEA) is at least 50%, preferably between 53 and 80%, preferably 74% or greater, and preferably 76% or greater close hexagonal packing.
  • the atomic packing factor or FEA
  • the present additive is a functional additive, which does not alter the characteristics of the polymeric composition or target polymer, such as melting point, flame resistance, etc., but only provides dimensional stability and prevention or limitation of energy transfer based on the theoretical bases explained above. Naturally, nothing prevents interference in the characteristics if this is desired, and it is only necessary for a technician in the field to adjust the chemical composition or mix other additives for this purpose.
  • the present additive can be incorporated into the polymeric composition or polymer in various ways, for example, during the manufacturing process thereof (such as during the injection, modeling, melting, extrusion, lamination phase, among others). ) or even after, through its application to the surface, for example, through a spray, paint, film, layer, etc.
  • the additive is incorporated during the production line of the polymeric composition or polymer, it can be directly added during any stage thereof, without the need to modify equipment or production processes.
  • additional components can be added to the additive in order to make adjustments, for example, to its color, attributing color, translucency or even light blocking characteristics to the additive and thereby transferring this property to the composition polymer to which it will be incorporated.
  • the additive may have a whitish appearance, which may affect the final appearance of the polymeric composition or polymer, for example, in the case of transparent products.
  • components to adjust the color can be used, for example, functional stabilizers, such as magnesium chloride, in concentrations sufficient to achieve the desired effect.
  • the functional stabilizer is present in a concentration ranging between about 5% and 40% by weight, relative to the total weight of the additive (w/w).
  • the functional stabilizer is present at any concentration between 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33% , 34%, 35%, 36%, 37%, 38%, 39%, 40% or any range comprising the same, by weight, in relation to the total weight of the additive (w/w).
  • the functional stabilizer is present in a concentration between 7% and 35%, 10% and 33%, 12% and 31%, 15% and 30% or 15% and 25% by weight, relative to to the total weight of the additive (w/w).
  • the process described here comprises the steps of: a. Obtain a mixture of fatty acid with a solvent to obtain a fatty acid with low entropy, when compared to the entropy of the fatty acid in its natural state; B. Obtain a mixture containing the mixture of item (a) with the paramagnetic component to obtain the molecular structure with compact hexagonal packing and negative electrostatic charge in the valence layer of the polymer molecules; It is w. Obtain a mixture containing the mixture of item (b) with the anchoring substrate to form the attachment horse to the target polymer.
  • obtaining or “obtaining” is meant a step where the mentioned mixtures are obtained, either by mixing specific components or by purchasing/acquiring ready-made mixtures.
  • the paramagnetic component can be mixed with the anchoring substrate before incorporation into the mixture obtained in item (a).
  • This mixture aims to dilute the natural color of the paramagnetic component, for example, in the case of titanium chloride, which is purplish.
  • the final coloring of the additive does not impact the final product (for example, in the case of a dark-colored polymer)
  • this step is not necessary, but if a translucent polymer is desired, such as a transparent film, is important.
  • the process may further comprise the additional step of: a. Incorporate additional components into the mixture obtained in step (c), such as functional stabilizers, in order to adjust the final aesthetic characteristics of the additive (such as coloring).
  • the solvent has the function of reducing entropy, which happens through the organization of the fatty acid molecules. Furthermore, the solvent is also useful for reducing the strength of the fatty acid, thus helping in the other stages of the process.
  • the solvent fatty acid ratio used in step (a) of the process is between about 0.5:2 to 4:0.5. In a more preferred embodiment, said ratio is between about 1:1.5 to 3:1.5, 1:1 to 3:1 or 1:1 to 2:1.
  • the solvent is selected from cyclohexanone, ethoxyethanol, methyl acetate, ethyl acetate and sodium acetate trihydrate. Even more preferably, the solvent is ethyl acetate or sodium acetate trihydrate or equivalent.
  • the fixing horse is selected from polyamide 6 (PA 6), carboxylic acid, ethyl acetate, lercite, methyl 2-methylpropenoate, acetylsalicylic acid, tetrafluoroethylene, lignin, zinc oxide and zinc monostearate.
  • PA 6 polyamide 6
  • carboxylic acid carboxylic acid
  • ethyl acetate lercite
  • methyl 2-methylpropenoate acetylsalicylic acid
  • tetrafluoroethylene lignin
  • lignin zinc oxide
  • zinc monostearate zinc monostearate
  • glycerin (MEG) glycerin
  • concentration of the other components can be readily inferred by a person skilled in the art from their final concentration in the additive as described above.
  • the additive described here can be incorporated into any polymeric composition or polymer, such as Nylon, Kevlar, polyvinyl acetate, polycarbonate (PVA), polymethyl methacrylate (PMMA), polychloride vinyl (PVC), acetal (POM), polytetrafluoroethylene (PTFE), polyester, polyurethane, Celeron, phenolite, low-density polyethylene, high-density polyethylene, polypropylene, among others, in particular any polymer or polymeric composition derived from polyethylene ( PE) or polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • Table 1 presents materials containing the additives claimed here.
  • said additive is for use as an additive component in a polymeric composition or polymer.
  • the use of said additive aims to provide dimensional stability and prevent or limit energy transfers.
  • the present additive can be used as a sound barrier, using the same principles already explained above (immobilization of the polymer molecules added with the additive of the present invention).
  • thermodynamic insulation characteristic of the aforementioned article is necessary.
  • the polymeric compound can prove to be substantially more advantageous from an economic and environmental point of view than the materials traditionally used.
  • Another possible application is for manufacturing articles in the automotive sector, where multiple elements can benefit from dimensional and thermodynamic stability characteristics.
  • non-exhaustive applications or products may be: containers for the consumption of solids and liquids (bottles, pots, etc.), textile industry, medical equipment, sound blocking equipment, machine parts in general, layers for application in products and equipment (whether in the form of a spray or pre-molded layer), paints, varnishes, films, laminated layers, deposited layers, on the surface of materials or in sandwich form, in plates, food packaging, bottles, yogurt pots, pots of ice cream, thermos flasks, thermal suitcases, film-coated cans, medicine packaging, blisters used to pack tablets in the pharmaceutical industry, vaccine vials, containers for transporting organs, cartons for liquids, ice bags, food films, hydraulic pipes, oil and gas pipes, paints for construction, films and layers for various applications, fabrics, automotive plastics, solar panels, tires and any polymeric solution whose objective is to improve dimensional stability, increase thermodynamic insulation, increase temperature insulation , increase gaseous impermeability, increase sound insulation.
  • the present invention allows a product to be, for example, packaged frozen and remain that way without requiring refrigeration. It is possible for an ice cream or yogurt to be sold on the common supermarket shelf, that is, without refrigeration. It is possible, for example, for ice to be sold in a bag on a common shelf without refrigeration. The same applies to countless products, such as butter, whipped cream, margarine, fish, meat, vegetables, legumes, among others. This solution allows preservation products to be kept until they are removed from the packaging, and the capacity can be maintained if the packaging allows for reuse.
  • a carton packaging according to the present invention can be defined as a carton packaging for liquids, pasties, ready-made foods (such as chickpeas, beans, corn, peas) comprising a carton layer, additionally comprising an outer layer to the polyethylene carton layer and at least one layer internal to the polyethylene carton layer.
  • the outer polyethylene layer and/or the at least one inner polyethylene layer comprise a dative valence layer, heterogeneous surface catalysis and close hexagonal packing.
  • the thickness of the polyethylene layers containing the additive of the present invention comprises a thickness that can vary between 0.1 nanometers and 3mm.
  • the present invention can also be applied to heat-resistant gloves, fabrics, clothes, sleeping bags, thermal bottles or cups, coolers, lunch boxes, tents, tents, tarps in general, such as trucks, to guarantee a temperature desired temperature or thermal comfort.
  • the present invention can also be applied to household appliances, ovens, stoves, vehicle interiors and exteriors (paints, window films, wrapping), electrical components, boats, trains, in the field of aviation, aerospace, industries in general, industrial refrigeration systems (such as cold water), air conditioning (equipment and piping), heated air piping and equipment (heat pumps, etc.).
  • a soft drink or beer can, for example, be packaged ice cream in a plastic bottle containing the additive of the present invention, for example of the pet type, and remain cold for weeks or months at a time, without the need for refrigeration.
  • a conventional package can be cooled and subsequently receive a film or a spray layer with the product of the present invention, ensuring that it remains cold over time.
  • Another alternative would be, for example, an aluminum can coated internally and/or externally with a film containing the additive of the present invention, with a view to keeping, for example, beers, juices, soft drinks, soups, dairy products, teas, among others. others cold or hot for consumption depending on the needs of each application. In short, it is possible to have a cold beer on the beach that was bottled weeks before production.
  • the additive can be used in packaging, increasing or guaranteeing the useful life of its products.
  • a soft drink can be packaged cold and thus maintained at the desired temperature.
  • the opposite is also possible, that is, packaging a product or liquid at a high temperature and keeping it that way until opening.
  • the temperature was lower than 2%. In some cases tested, the temperature increase was less than 1% in 20 days, due to the need to open the packaging for measurement. Naturally, this effect can be manipulated by using the weight of the additive of the present invention in the final polymeric composition, as already enlightened.
  • a product and/or packaging can be designed that contains a polymeric layer provided with the additive of the present invention, laminated with a layer of cardboard (cellulose origin, for example), where this polymeric layer is applied to the internal face of the card, without the need to apply a layer of aluminum, which would harm or eliminate the light and oxygen function.
  • the present invention guarantees the preservation of food in a more efficient way than those that use aluminum, with much superior gas, thermal and light protection and without the negative environmental impact that the use of aluminum brings, both from its extraction and from their difficulty in recycling when extruded from paper and polyethylene, not to mention the process advantages that come from a simpler use of just cardboard and polymer layers.
  • the present invention allows for a huge reduction in the refrigerated chain, as refrigerators and freezers can use the additive together with the expanded polymer of their box and doors or through additional layers of paints and/or or films on its exterior allowing the cold to be contained in a highly efficient way and with smaller insulation walls presented in current solutions.
  • a polymer such as polypropylene or polyethylene comprising the additive of the present invention, maintains the melting point of the polymer without addition of the additive. That is, although the point of melting is the same, in the present invention the material maintains its dimensional stability until the melting point, at which point it collapses. This is a very interesting feature as it allows it to be applied as a flame retardant or flame blocker up to its melting temperature.
  • This application in cables or electrical components is very relevant, as well as in paints or varnishes for building construction.
  • the additive of the present invention can be combined with a PTFE-based polymeric composition to further increase or delay a fire, due to the higher melting temperature of PTFE.
  • Hot water pipes for homes can be built with the solution of the present invention so that there is no waste of heated water that was previously cooling in the pipes until the next hot shower. This generates water and energy savings.
  • Polymeric fibers that make use of the present invention will have thermal capacity, such as nylon, for example, allowing the construction of fabrics, clothing, footwear.
  • a camping tent would no longer heat its interior even under a scorching sun of, for example, 40°C.
  • a thermos bottle will have the ability to keep the drink inside, whether cold or hot, for much longer periods during consumption, due to the thermal barrier applied.
  • Coatings that require high temperature resistance They can make use of, for example, Teflon with the additive of the present invention, making it possible, for example, to apply it to motorcycle exhaust pipes to prevent heat transfer and burn accidents.
  • Bags of ice can be sold in supermarkets on shelves without the need for refrigeration, food can be packaged without the need for a cold chair or with very little use.
  • a practical result of using the additive of the present invention is the absence or substantial limitation of the condensation effect that occurs on the surfaces of products, containers or packaging whose contents are at temperatures lower than ambient temperature. Due to the thermal barrier created by the use of the functional additive proposed here, there is no effective transfer of energy throughout the structure of the compound, such that it does not heat up or cool down depending on the temperature of the article constant inside the container, so that the effect of condensation on its surface does not occur, which is convenient and beneficial for a range of commercial and industrial applications.
  • the functional additive in question can be used to obtain polymeric compositions such as paints and varnishes, which can be used in the aforementioned applications in order to generate a layer on a surface to give a product or part of a product the characteristics of dimensional and thermodynamic stability obtained by the use of the additive.
  • the functional additive in question can also be used to obtaining compounds that will be used to form parts of products, for example, parts, plates, surfaces or layers that will be used later to make final products. Furthermore, the present additive can give rise to compounds to be used to form multilayer surfaces, for example, in external, internal and/or intermediate layers of a surface, in the form of a “sandwich” or not.
  • the present additive has an ecological appeal. Firstly, due to the possibility of using a natural fatty acid derived from castor oil (30%), such as ricinoleic acid. It is common to use synthetic or petroleum-derived additives as polymer additives, which is not a necessity for the present invention.
  • the polymeric composition or polymer added with the additive described here can be used in applications where a large energy expenditure is currently required, for example, in cooling systems.
  • any chamber or space in which the coating has a polymeric composition or polymer added by the additive proposed here will require significantly less energy expenditure to be cooled, in addition to allowing the maintenance of cooling for a significantly longer period of time. longer.
  • thermoformed polyethylene pots base and lid
  • a weight percentage of the additive greater than 5% being applied, aiming to a thermodynamic lock, that is, a temperature lock close to 100%.
  • the additive of the present invention offers the polymeric compounds with which it is associated a thermodynamic blockage never before detected in polymeric materials.
  • the loss of temperature or energy in 30 days was 1.59%, for the liquid content the loss was 3.6% and for the solid content it was 4.5% for the same 30 days.
  • the same polyethylene polymeric composition without adding the additive of the present invention has a temperature loss in the order of 48% per day.
  • the solution of the present invention achieved a behavior more than 900 times superior to the state of the art in terms of thermodynamic resistance or resistance to loss of temperature inside the pot.
  • the present invention offers a solution that guarantees the possibility of maintaining, for example, a refrigerated or heated state, guaranteeing a greater gas barrier, among others, offering a reduction in energy consumption, having an absolute impact on the reduction of CO 2 consumption, such a high environmental benefit given that there are situations that will have an energy saving of more than 50%, 60%, 70%, 80%, or even 90%.
  • said product, polymeric composition or polymer is any product, polymeric composition or polymer comprising at least one portion endowed with a molecular structure with compact hexagonal packing and dative layer (negative electrostatic charge in the valence layer), resulting from additivation with the additive described here.
  • said technology of the present invention that is, the presence of compact hexagonal packing and heterogeneous surface catalysis, through scanning microscopy.
  • the present invention produces a pyrolysis that makes up the negative electromagnetic surface carbon layer and the bonds are covalent in the atomic structure, which inhibits atomic molecular agitation. That is, covalent bonds have the closest packing factor for energy penetration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A presente invenção refere-se a um aditivo aplicável a um material tal como uma composição polimérica ou polímero, que lhe permite conferir à referida composição e aos produtos dela derivados estabilidade dimensional, estabilidade termodinâmica, aumento da impermeabilidade a gases, por exemplo. Refere-se ainda a um processo para a preparação de referido aditivo, assim como seus usos e produtos, composições poliméricas e polímeros compreendendo o mesmo.

Description

ADITIVO, PROCESSO PARA OBTENÇÃO DE ADITIVO, USO DE ADITIVO, PRODUTO E COMPOSIÇÃO POLIMÉRICA OU POLÍMERO
[001] A presente invenção se refere a um aditivo aplicável a um material tal como uma composição polimérica ou polímero, que lhe permite conferir à referida composição ou ao referido polímero e aos produtos deles derivados estabilidade dimensional, estabilidade termodinâmica e aumento da impermeabilidade a gases. Refere-se ainda a um processo para a preparação de referido aditivo, assim como seus usos e produtos, composições poliméricas e polímeros compreendendo o mesmo.
Descrição do Estado da Técnica
[002] As resinas poliméricas sintetizadas não possuem, frequentemente, as características necessárias para a sua utilização para determinadas aplicações. Deste modo, desde o início do desenvolvimento da indústria de polímeros outras substâncias têm sido adicionadas a estes materiais no intuito de estabilizar o material durante e após o processamento e para modificar as propriedades das resinas para uso em uma aplicação particular.
[003] Estas substâncias chamadas de aditivos ou modificadores, compreendem todo e qualquer material adicionado a um polímero visando a uma aplicação específica. A característica dos polímeros de aceitarem uma grande variedade de aditivos é fundamentalmente importante, não só para melhorar suas propriedades físico-químicas, mas também para seu apelo visual, permitindo uma vasta gama de aplicações, tanto novas aplicações quanto para substituição de materiais tradicionais.
[004] Desta feita, é importante reconhecer que existem duas categorizações de aditivos, classificados em função da forma como interferem no polímero ao qual é adicionado.
[005] Numa primeira classificação tem-se os aditivos funcionais, os quais geralmente são fisicamente dispersos na matriz polimérica e não afetam significativamente a estrutura molecular do polímero. Não alteram a composição química, ao menos substancialmente, da matriz polimérica ao qual o aditivo é adicionado. Não têm como foco alterar propriedades mecânicas, tais como, resistência a impacto, ductilidade, temperatura de fusão etc. Sua principal característica é alterar o comportamento final do polímero sem alteração estrutural.
[006] Numa segunda classificação tem-se os aditivos estruturais, os quais, de maneira contrastante aos aditivos funcionais, são capazes de alterar a estrutura físico-química do polímero para garantir ao composto derivado, propriedades físicas relevantes tais como aumento da resistência, alteração de cor, ponto de fusão, entre outros.
[007] O tipo de aditivos e sua caracterização descrita encontra base no conhecimento científico, tal como no livro “Aditivação de Termoplásticos”, de Marcelo Rebelo e Marco-Aurélio de Paoli, da editora Artliber.
[008] Nas últimas décadas, os polímeros têm sido cada vez mais solicitados em uma gama infindável de aplicações, tais como, mas não limitadas a: recipientes para consumo de sólidos e líquidos (garrafas, embalagens, potes, filmes, camadas, embalagens cartonadas, etc.), indústria da construção civil, indústria automotiva, indústria têxtil, equipamentos médicos, insonorização, peças de máquinas em geral, camadas para aplicação em produtos e equipamentos (seja na forma de spray ou camada pré-moldada), tintas, vernizes, entre outros.
[009] Neste sentido, um problema que se observa com o uso dos polímeros nestas múltiplas aplicações é a falta de estabilidade estrutural atômica ou de suas relações covalentes, o que se revela, por exemplo, na falta de estabilidade dimensional ou termodinâmica dos compostos poliméricos atuais.
[0010] Tais limitações afetam tanto o processo de fabricação de produtos baseados nestes compostos, como também prejudica seu uso em diversas aplicações onde estas características são relevantes.
[0011] Num primeiro aspecto, cita-se a problemática da fabricação de produtos com base em compostos poliméricos de baixa estabilidade dimensional e termodinâmica.
[0012] De maneira geral, produtos derivados de compostos poliméricos são fabricados através de processos de extrusão, injeção em molde, termoformação etc., os quais envolvem temperaturas elevadas durante o processo. Durante o resfriamento do produto moldado após sua retirada do molde, observa-se uma contração que pode originar a perda das dimensões originalmente buscadas em função da deformação do produto enquanto o mesmo ainda se encontra quente, o que se mostra um problema sério e de difícil resolução. Ou seja, num primeiro aspecto, observa-se uma limitada estabilidade dimensional do produto no que tange sua resistência à deformação plástica por temperatura.
[0013] Em um segundo aspecto, é sabido que os compostos poliméricos tradicionais não possuem uma estabilidade termodinâmica apreciável, sendo altamente suscetíveis à transferência de energia através de sua matriz polimérica. Por outras palavras, permitem a troca térmica entre uma superfície externa ou interna, por exemplo.
[0014] Um polímero é composto pela repetição de monômeros, que podem apresentar estrutura linear, ramificada ou em rede. As ligações covalentes são responsáveis por manter a integridade do polímero, ligando seus átomos, e as ligações secundárias conectam grupos de cadeias de polímeros para formar o material polimérico, podendo gerar copolímeros, que são polímeros compostos por dois ou mais tipos diferentes de monômeros.
[0015] Apesar de ser comumente representado na forma bidimensional, polímeros apresentam estrutura tridimensional. De forma geral, cada ligação entre os átomos de um polímero apresenta inclinação de 109° em relação à próxima, de forma que tais cadeias podem sofrer torções e alongamentos quando forças ou energias são aplicadas, semelhante a formação de estrutura cristalinas.
[0016] Destaca-se os chamados polímeros termoplásticos, que podem ser classificados como polímeros amorfos e/ou cristalinos, podendo apresentar estrutura linear ou ramificada e, de maneira geral, amolecem quando aquecidos e endurecem quando resfriados. Tais polímeros apresentam uma ampla gama de aplicação como componentes estruturais e/ou como componentes de matriz associado a outros componentes, sendo tais funções influenciadas por características como grau de polimerização, tipo e concentração de aditivos etc.
[0017] Os tipos mais comuns de polímeros termoplásticos são polietileno, polipropileno, poliamida, policarbonato, polibutileno tereftalato, poliésteres, entre outros.
[0018] Em aplicações comerciais da atualidade, tais como, por exemplo, a fabricação de recipientes para contenção de artigos alimentícios, sabe-se que os compostos poliméricos usualmente utilizados para fabricação destes recipientes não são capazes de impedir a transferência de calor do ambiente, de modo que a refrigeração do produto é muitas vezes necessária e o consumo do mesmo é condicionado à sua constante refrigeração, ou ainda se obriga ao consumidor o consumo imediato do produto, o que se mostra ineficiente do ponto de vista energético e inconveniente do ponto de vista de apelo comercial.
[0019] No mais, outras aplicações de compostos poliméricos (indústria da construção civil, indústria automotiva, indústria de papel e celulose, aeroespacial, indústria têxtil, equipamentos médicos, equipamentos eletroeletrônicos, isolamento de som, peças de máquinas em geral, camadas para aplicação em produtos e equipamentos - seja na forma de spray ou camada pré-moldada, tintas, vernizes, entre outros, são limitadas pelo fato de que tais compostos não são capazes de impedir ou limitar substancialmente a transferência de energia através de sua estrutura.
[0020] Tentativas de conferir estabilidade estrutural e termodinâmica aos compostos poliméricos pode ser vista no estado da técnica. Por exemplo, o documento CN110861363 sugere o uso de microesferas ocas adicionadas a um material entre cada filme de TPU e uma camada de fibra de substrato para obtenção de um material com propriedades estruturais e térmicas melhoradas, e as microesferas ocas compostas preparadas exibem distribuição espacial hexagonal compacta. Entretanto, tais vantagens são obtidas através de um processo complexo de tratamento do composto que envolve custos elevados, bem como, exige a alteração das características originais do polímero, no caso a preparação de um compósito de um elastômero de poliuretano termoplástico, que não é desejável na maioria das aplicações supracitadas.
[0021] Em outro exemplo, o documento CN107163171 propõe a obtenção de um material para uso em construções, e sugere o uso de um agente espumante introduzido no processo de reação de cianamida e ácido ricinoleico, para formação de espuma para promover efetivamente o efeito de preenchimento do di-hidrogenofosfato de alumínio na matriz polimérica e assim melhorar a força de estabilidade estrutural do produto acabado. O documento em questão sugere que a propriedade de isolamento térmico do produto final, é melhorada. Entretanto, o proposto neste documento também se mostra relativamente complexo e envolve etapas de produção adicionais e altera as características originais do polímero-base.
[0022] Em outro exemplo, o documento GB1105141 propõe uma resina epóxi obtida através de uma mistura de éter poliglicidílico, óleo de rícino e anidrido maleico. Este documento sugere resistência a choques térmicos, embora a característica principal buscada seria um isolamento elétrico. Como se verifica, este documento não sugere a promoção relevante de estabilidade dimensional ou térmica ao composto, bem como altera as características originais do polímero-base.
[0023] Em um exemplo de uma proposta de solução de impermeabilidade de gases, o pedido de patente CN213832857, onde para uma embalagem de líquidos cartonada contendo camadas de celulose, polimérica e de alumínio, é proposta a substituição da camada de alumínio. Para tanto, é utilizada uma camada polimérica que substitui a camada de alumínio.
[0024] Neste caso, a solução adotada pelo documento CN213832857 foi pelo balanço de massa, ou seja, pelo aumento da espessura/densidade de uma camada que ao invés de ser de alumínio é de polímero. A eliminação do alumínio é extremamente importante por conta das dificuldades de produção, impacto ambiental tanto na produção como na dificuldade de reciclagem quando aplicado em embalagens cartonadas. Este documento propõe uma solução que em parte resolve o problema do alumínio, mas por uma perspectiva de uma embalagem mais pesada, o que se traduz em um com maior impacto de CO2, por exemplo. Por outro lado, a solução proposta apresenta como barreira mínima ao oxigénio, l,5g/m3, valor inferior à barreira em si que uma embalagem cartonada contendo alumínio promove, que é de l,00002g/m3. Assim, a solução apresentada reside na alteração de composição química e balanço de massa, permitindo resultados aparentemente satisfatórios, mas inferiores aos do atual produto e com peso superior. Poupa-se de um lado, mas gasta-se do outro.
[0025] Em suma, as soluções do estado da técnica para melhorar, por exemplo, o comportamento de polímeros, trabalham a nível químico por meio de alteração de composições químicas.
[0026] Assim, não foi até ao momento apresentada uma solução que trabalhe e promova melhorias por meio de uma alteração nas ligações covalentes, no empacotamento que garanta estabilidade das estruturas e relações eletrônicas do material.
Objetivos da Invenção
[0027] Um primeiro objetivo da presente invenção é prover um aditivo funcional que permita a melhora da estabilidade dimensional e térmica de um composto polimérico sem alterar as propriedades originais do polímero-base.
[0028] Um segundo obj etivo da presente invenção é prover um aditivo funcional que permita a criação de um composto compreendendo característica de barreira térmica, que impede ou limita substancialmente a transferência de energia ao longo de sua estrutura.
[0029] Um terceiro objetivo da invenção é prover um aditivo que possa ser utilizado para obtenção de compostos poliméricos com estabilidade dimensional e termodinâmica adequadas para uso em múltiplas aplicações comerciais e industriais, tais como, mas não limitadas a recipientes e/ou embalagens para consumo de sólidos, pastosos e líquidos (garrafas, potes, filmes, sacos plásticos etc.), nas indústrias da construção civil, automotiva, farmacêutica, têxtil, aeroespacial, equipamentos agrícolas, celulose (papel para embalagens, copos, caixas etc.), cabos elétricos, semicondutores, baterias, equipamentos e recipientes médicos, indústria de PVC (canos), equipamentos e produtos para bloqueio de som, peças de máquinas em geral etc. , sob a forma de camadas para aplicação nesses produtos e equipamentos (seja na forma de spray ou camada pré-moldada), tintas, vernizes, entre outros tais como (veículos automotores, aviação, espaçonaves, residências e prédios e em equipamentos agrícolas e industriais etc.
[0030] Um quarto objetivo da presente invenção é prover um processo de obtenção de um aditivo tal como o supracitado.
[0031] Um quinto objetivo da invenção é prover um produto dotado de ao menos uma porção que tenha adequada estabilidade dimensional, estabilidade térmica, impermeabilidade gasosa e isolamento sonoro, sem alterar significativamente composição química de um produto e suas propriedade mecânicas, tal como cor, resistência à tração, entre outras.
[0032] Um sexto objetivo da invenção é prover um produto dotado de ao menos uma porção que tenha característica de barreira térmica, que impede ou limita substancialmente a transferência de energia ao longo de sua estrutura.
[0033] Um sétimo objetivo da invenção é prover um produto dotado de ao menos uma porção que tenha estrutura molecular com empacotamento hexagonal compacto.
[0034] Um oitavo objetivo da invenção é prover um produto que promova estabilidade das estruturas e relações eletrônicas do material por meio da alteração nas ligações covalentes, na catálise heterogênea de superfície e no empacotamento atômico. [0035] Um nono objetivo da invenção é prover um arranjo atômico que efetua através de uma ligação covalente dativa um efeito de bloqueio na agitação molecular oriunda de transferência de energia.
Breve Descrição da Invenção
[0036] Os objetivos da presente invenção são alcançados através das concretizações e modalidades conforme descritas abaixo.
[0037] Em uma primeira modalidade, é aqui descrito um aditivo que compreende:
- um ácido graxo;
- um componente paramagnético;
- um substrato de ancoragem, e opcionalmente
- um estabilizante funcional.
[0038] Em uma modalidade preferida, o ácido graxo está presente em uma concentração cerca de 5% a cerca de 80% em peso, em relação ao peso total do aditivo, mais preferencialmente em que o ácido graxo é um ácido graxo insaturado que contém pelo menos um grupo hidroxila (OH) presente fora das extremidades da cadeia carbônica, ainda mais preferencialmente em que o ácido graxo possui uma hidroxila no carbono 12 da cadeia, preferencialmente em que o ácido graxo possui uma cadeia de 18 carbonos, mais preferencialmente em que o ácido graxo é derivado de óleo de rícino.
[0039] Em um modo de realização, o ácido graxo é o ácido ricinoleico.
[0040] Em uma modalidade preferida o componente paramagnético está presente em uma concentração de cerca de 1% a cerca de 30% em peso, em relação ao peso total do aditivo, mais preferencialmente em que o componente paramagnético é qualquer componente capaz de manter a camada de valência da composição polimérica ou polímero alvo com uma carga negativa, ainda mais preferencialmente em que o componente paramagnético seja sulfato de cobre, sódio, estrôncio, magnésio e cloreto de titânio.
[0041] Em um modo de realização, o componente paramagnético é o cloreto de titânio.
[0042] Em uma modalidade preferida, o substrato de ancoragem está presente em uma concentração de cerca de 20% a cerca de 70% em peso, em relação ao peso total do aditivo, mais preferencialmente em que o substrato de ancoragem é um substrato de ancoragem sólido ou líquido, ainda mais preferencialmente em que o substrato de ancoragem é um monoestearato de glicerina (MEG), poliamida 6 (PA 6), lercite (metil 2- metilpropenoato), tetrafluoroetileno, lignina, óxido de zinco, fluido de silicone, tributil citrato e carbonato de cálcio.
[0043] Em um modo de realização, o substrato de ancoragem é o carbonato de cálcio e está na forma sólida.
[0044] Em uma modalidade alternativa da invenção, o aditivo compreende, adicionalmente, estabilizantes funcionais, tal como cloreto de magnésio, preferencialmente em uma concentração de cerca de 5% a cerca de 40% em peso, em relação ao peso total do aditivo.
[0045] Em uma modalidade preferida, o aditivo compreende estrutura molecular com empacotamento hexagonal compacto e uma carga eletrostática negativa na camada de valência.
[0046] Referido aditivo sendo para aditivação de uma composição polimérica ou polímero que, nas proporções adequadas, garantem as propriedades de barreira de gases, luz e temperatura desejadas.
[0047] Devido a essa capacidade de gerar barreira térmica, gases e luz a inúmeros produtos de diversos seguimentos da indústria, sua utilização substituirá matérias-primas e diversos produtos cuja extração e produção contribuem por grandes impactos ambientais. Atualmente, diversos segmentos da indústria utilizam produtos derivados de alumínio para conservação de alimentos, medicamentos etc., os quais seriam diretamente substituídos pelo aditivo da presente invenção com potencialização de suas características, substituindo a necessidade dos produtos de alumínio e, consequentemente, reduzindo os impactos na natureza oriundos de sua extração e ainda, a redução do consumo de energia necessários a produção de todos seus derivados.
[0048] Dentro da cadeia geradora de frio, amplamente utilizada para conservação de alimentos na cadeia logística mundial, para refrigeração de armazéns, escritórios, empresas, casas etc., todos sem exceção seriam beneficiados pela barreira térmica dos aditivos aplicados em embalagens de alimentos, filmes de proteção para fachada de edifícios, empresas, veículos, containers para armazenamento e transporte internacional etc., reduzindo ou eliminando a necessidade de utilização de compressores utilizados para refrigeração.
[0049] Logo, a presente invenção apresenta vantagens ambientais relevantes frente aos produtos usualmente utilizados.
[0050] Quando aplicado em tubulação de água fria ou quente, seja em domicílios ou empresas, permitirá que o líquido permaneça em sua temperatura original, reduzindo o gasto de energia para manter a temperatura desejada ou mesmo, evitando o desperdício de água nas instalações domésticas ocorrido pela espera da chegada de água quente na hora do banho.
[0051] Em um modo de concretização, a composição polimérica ou polímero podem ser selecionados dentre Nylon, Kevlar, poliacetato de vinila, policarbonato (PVA), polimetil metacrilato (PMMA), policloreto de vinila (PVC), acetal (POM), politetrafluoretileno (PTFE), papel e celulose, poliéster, poliuretano, Celeron, fenolite, polietileno de baixa densidade, polietileno de alta densidade, polipropileno, dentre outros.
[0052] O aditivo aqui reivindicado pode se apresentar em qualquer forma, como, por exemplo, na forma líquida, pastosa, spray, pellets ou qualquer outra.
[0053] Em uma concretização da presente invenção, é ainda descrito um processo de obtenção de referido aditivo, dito processo compreendendo as etapas de: a. Obter uma mistura de ácido graxo com um solvente para a obtenção de um ácido graxo com baixa entropia; b. Obter uma mistura contendo a mistura do item (a) com o componente paramagnético para a obtenção da estrutura molecular de empacotamento hexagonal compacto e carga eletrostática negativa na camada de valência das moléculas do polímero; c. Obter uma mistura contendo a mistura do item (b) com o substrato de ancoragem para formação do cavalo de fixação ao polímero alvo.
[0054] Em uma modalidade preferida, o processo compreende a etapa adicional de mistura do componente paramagnético com substrato de ancoragem antes da incorporação à mistura obtida no item (a).
[0055] Em uma modalidade preferida, o processo compreende, adicionalmente, a etapa de: d. Incorporar à mistura obtida na etapa (c) componentes adicionais, tal como estabilizantes funcionais, de modo a ajustar as características estéticas finais do aditivo (tal como coloração). [0056] Em uma modalidade preferida, a razão ácido graxo solvente, utilizada na etapa (a) do processo, está entre cerca de 0,5:2 a cerca de 4:0,5.
[0057] Em uma realização preferencial, o solvente é selecionado dentre ciclohexanona, etoxietanol, acetato de metila, acetato de etila e acetato de sódio tridratado, semelhantes ou suas misturas. Ainda mais preferencialmente, o solvente é acetato de etila.
[0058] Em uma modalidade preferida, o estabilizante funcional é cloreto de magnésio, metilparabeno, estanato de sódio e hidroxitolueno butilado.
[0059] Em uma outra modalidade preferida, o cavalo de fixação é selecionado dentre poliamida 6 (PA 6), ácido carboxílico, acetato de etila, lercite, metil 2-metilpropenoato, ácido acetilsalicílico, tetrafluoroetileno, lignina, óxido de zinco e monoestearato de glicerina (MEG).
[0060] Em uma concretização alternativa, é ainda descrito o aditivo obtenível ou obtido pelo processo conforme aqui descrito.
[0061] Em uma modalidade preferida, o aditivo é para uso em uma composição polimérica ou polímero.
[0062] Em uma concretização da invenção, são ainda descritos produtos que compreendem o aditivo, produtos estes que compreendem carga eletrostática negativa na camada de valência.
[0063] Em uma concretização da invenção, são ainda descritas composições poliméricas ou polímeros que compreendem o aditivo, em que ditas composições poliméricas ou polímeros compreende ao menos uma porção dotada de estrutura molecular com e catálise heterogênea de superfície.
[0064] Em um modo de concretização, a composição polimérica ou polímero podem ser selecionados dentre Nylon, Kevlar, poliacetato de vinila, policarbonato (PVA), polimetil metacrilato (PMMA), policloreto de vinila (PVC), acetal (POM), politetrafluoretileno (PTFE), celulose (papel), poliéster, poliuretano, Celeron, fenolite, polietileno de baixa densidade, polietileno de alta densidade, polipropileno, dentre outros.
[0065] Por fim, em uma concretização da invenção, é ainda descrito um material que compreende ao menos uma porção dotada simultaneamente de uma camada de valência dativa e catálise heterogênea de superfície.
Descrição Resumida dos Desenhos
[0066] A presente invenção será, a seguir, mais detalhadamente descrita com base em um exemplo de execução representado nos desenhos. As figuras mostram:
[0067] Figura 1 - Representa a relação entre a agitação molecular e o indicador de temperatura/aumento de energia revelando a proporcionalidade entre percentual de energia aplicado e índice de agitação molecular.
[0068] Figura 2 - Representa a lei zero da termodinâmica.
[0069] Figura 3 - Representação da ligação covalente dativa na estrutura atômica de um polímero da presente invenção, onde a agitação molecular está restrita pela forca eletromagnética ativa na cadeia
[0070] Figura 4 - Representa um ácido graxo com uma hidroxila no 12° carbono dentro do arranjo atômico na camada de valência.
[0071] F igura 5 - Representa célula unitária cúbica de faces centradas
(FCC).
[0072] Figura 6 - Representa uma estrutura cristalina cúbica de faces centradas (FCC).
[0073] Figuras 7 e 7A - Representam o empacotamento ortorrômbico do tipo hexagonal fechado de uma estrutura cúbica de faces centradas (FCC).
[0074] Figura 8 - Representa um gráfico de um teste prático de um pote elaborado com o aditivo da presente invenção em uma de suas concretizações possíveis para testar a perda de temperatura de um sólido. [0075] Figura 9 - Representa um gráfico de um teste prático de um pote elaborado com o aditivo da presente invenção em uma de suas concretizações possíveis para da presente invenção para testar a perda de temperatura de um líquido.
[0076] Figura 10 - Representa um gráfico de um teste prático de um pote elaborado com o aditivo da presente invenção em uma de suas concretizações possíveis para da presente invenção para testar a perda de temperatura de um pastoso.
Descrição Detalhada da Invenção
[0077] Inicialmente, cumpre notar que o termo “preferencial” aqui utilizado não deve ser entendido como “obrigatório” ou “imperativo”, tratando apenas de caracterizar uma concretização de particular eficiência da invenção dentre as múltiplas possíveis.
[0078] Qualquer descrição relativa a porcentagens de elementos/componentes aqui descritos cuja natureza não esteja expressamente determinada deve ser entendida como sendo em porcentagem de peso.
FUNDAMENTOS TÉCNICOS
[0079] Tal como mostra a figura 1, a agitação de partículas que constituem um corpo se associa a uma energia cinética, ou seja, energia do movimento, que recebe uma denominação de energia térmica. A energia térmica em movimento (trânsito), provocada pela diferença de temperatura entre dois corpos, é denominada calor, frio ou ondas magnéticas. A variação da energia interna de um sistema pode ser expressa pela diferença entre a energia trocada com o meio externo e o trabalho realizado por ele durante a transformação.
[0080] A figura 2 exemplifica a lei zero da termodinâmica onde, se dois corpos estão separadamente em equilíbrio térmico com um terceiro corpo, consequentemente, os dois primeiros estarão em equilíbrio térmico entre si.
[0081] Quando dois corpos com temperaturas diferentes entram em contato, o corpo mais quente tende a transferir calor para o corpo mais frio. Isso ocorre para que as temperaturas de ambos se igualem e eles cheguem ao equilíbrio térmico. De acordo com a Lei Zero, entre as condições para o equilíbrio térmico está a influência dos materiais que interferem na condutividade térmica.
[0082] Há, principalmente, dois fatores que podem afetar o movimento de partículas em um meio, a carga e o tamanho da amostra. De acordo com a carga, as partículas negativas migram para o polo positivo, já as positivas migram para o polo negativo. Com relação ao tamanho, as moléculas menores se movem mais rapidamente que as maiores.
[0083] Há outras questões que também podem afetar a mobilidade de partículas como a concentração do meio em que estão sendo separadas, além da força de atraso eletrostática.
[0084] Para fins de clareza, por energia deve ser entendida como a energia advinda de qualquer fonte, como térmica, mecânica, sonora, em particular energia térmica.
[0085] Como é de conhecimento por um técnico no assunto, a propagação da energia através de um meio sólido ocorre por meio da agitação sequencial dos átomos e moléculas que compõem referido meio sólido. Isto também ocorre durante a propagação de energia térmica ou calor.
SOBRE A INVENÇÃO
[0086] A presente invenção trata de um aditivo a ser aplicado na fabricação de compostos poliméricos, bem como de compostos poliméricos que façam uso do aditivo da presente invenção.
[0087] Referido aditivo, quando aplicado a um polímero, confere estabilidade dimensional, além de impedir ou limitar substancialmente qualquer troca de energia através do polímero, atuando, por exemplo como bloqueador termodinâmico, reduzir a permeabilidade do material aos gases ou aumentar o isolamento acústico. O aditivo da presente invenção pode ainda ter como característica ser incolor ou oferecer uma barreira de luz, consoante a necessidade.
[0088] Naturalmente, um técnico no assunto também é capaz de conceber que, caso seja desejado, o aditivo aqui descrito pode ser integrado ou misturado a outros aditivos, inclusive aditivos estruturais, situação na qual poderá, também exercer uma função estrutural, em adição às características funcionais aqui descritas.
[0089] O aditivo aqui proposto é capaz envolver e imobilizar as moléculas que compõem o meio sólido (no caso, um polímero), de modo a impedir ou limitar substancialmente troca de energia através do mesmo. Além disso, referida imobilização também resulta em uma estabilidade dimensional do meio sólido (polímero) onde o mesmo é aplicado. Este efeito pode variar entre ausência de transferência térmica ou substancial limitação de transferência térmica a depender da aplicação a que se destina.
[0090] Este efeito é possível pela combinação de uma série de características, resultantes das propriedades e características únicas do aditivo aqui descrito, conforme será detalhado abaixo.
[0091] Além disso, o aditivo da presente invenção apresenta características ecológicas, uma vez que, devido a sua capacidade de gerar barreira térmica, gases e luz, a inúmeros produtos de diversos seguimentos da indústria de bens de consumo, automotiva, transporte, civil, aeroespacial etc., o aditivo proporcionará propriedades aos produtos utilizados substituindo materiais e outros produtos, cujo processo produtivo tem alto impacto ambiental. Alguns exemplos:
- no segmento de embalagens substituirá o alumínio e seus derivados na indústria de alimentos, farmacêutica, bebidas etc., reduzindo significativamente os impactos ambientais e energéticos gerados para produção de seus produtos;
- na cadeia de geração de frio, seja em armazéns, modais de transportes nacionais e internacionais, containers etc., o aditivo utilizado em embalagens dispensaria a necessidade de refrigeração em todos os canais de distribuição. Na construção civil através de filmes aplicados em fachadas, reduziria drasticamente a necessidade de aparelhos de ar- condicionado devido ao bloqueio da passagem de calor ou frio externo, menos compressores e consequentemente, menos impacto ambiental causados pelos aparelhos de refrigeração.
MODALIDADES EXEMPLIFICATIVAS
[0092] Em uma modalidade, o aditivo aqui proposto compreende: a. Um ácido graxo; b. Um componente paramagnético; c. Um substrato de ancoragem e, opcionalmente d. Um estabilizador.
[0093] Apenas para fins de definição, como é de conhecimento por um técnico no assunto, um ácido graxo é um ácido carboxílico com uma cadeia alifática, que pode ser saturada ou insaturada.
[0094] Em uma modalidade preferida, o ácido graxo da presente invenção é qualquer ácido graxo insaturado que contém pelo menos um grupo hidroxila (OH) presente fora das extremidades da cadeia carbônica. [0095] Em uma modalidade preferida, o grupo hidroxila está presente no carbono 12 da cadeia.
[0096] Em uma modalidade preferida, o ácido graxo da presente invenção possui uma cadeia de 18 carbonos.
[0097] Em uma modalidade mais preferida, o ácido graxo é derivado de óleo de rícino. Ainda mais preferencialmente, o ácido graxo é o ácido ricinoleico.
[0098] Ainda, apenas para fins de definição, um componente paramagnético é um componente que possui elétrons desemparelhados. O componente paramagnético deve ser entendido como um componente capaz de tomar o aditivo paramagnético e manter o empacotamento hexagonal fechado mesmo sob pressão e temperatura. No mais, referido componente paramagnético gera cátodos que blindam a ligação covalente e operam a ligação com os ametais carbono e hidrogênio. O uso de um componente paramagnético permite que a sua esfera de ordenação octaédrica ajuste o ácido graxo para cobertura estrutural e funcional do aditivo, distribuindo a propriedade de bloqueio termodinâmico de maneira uniforme.
[0099] Em uma modalidade preferida, o componente paramagnético é qualquer componente capaz de manter a camada de valência da composição polimérica ou polímero alvo com uma carga negativa.
[00100] Em uma modalidade preferida, os componentes paramagnéticos são sulfato de cobre, sódio, estrôncio, magnésio, cloreto de titânio ou qualquer outro acima citado que seja capaz de exercer as funcionalidades supracitadas. Um técnico no assunto, em função das informações aqui reveladas, entenderá que uma vasta variedade de compostos que podem ser utilizados como componente paramagnético, não sendo, portanto, limitados pelos exemplos sugeridos acima.
[00101] Por substrato de ancoragem se entende um substrato responsável por fixar os demais elementos da composição no polímero alvo.
[00102] Como pode ser prontamente concebido por um técnico no assunto, o substrato de ancoragem pode ser sólido ou líquido, podendo variar de acordo com a forma final desejada do produto, no caso, do aditivo, por exemplo, sólida (tal como pó, pellet, grânulo ou qualquer outra forma sólida possível de utilização), líquida (tal como solução, dispersão, emulsão, extrato, tintura ou qualquer outra forma líquida possível de utilização) ou mesmo adaptadas, por exemplo, para utilização em spray.
[00103] Um técnico no assunto possui em seu conhecimento uma vasta variedade de compostos que podem ser utilizados como substratos de ancoragem, não sendo, portanto, limitados pelos exemplos acima.
[00104] Apenas para fins ilustrativos, em uma modalidade preferida, e considerando-se o aditivo sendo em uma forma final sólida, o substrato de ancoragem é monoestearato de glicerina (MEG), poliamida 6 (PA 6), lercite (metil 2-metilpropenoato), tetrafluoroetileno, lignina, óxido de zinco, fluido de silicone, tributil citrato e carbonato de cálcio. [00105] Em uma modalidade preferida, o ácido graxo está presente em uma concentração variando entre cerca de 5% e 80% em peso, em relação ao peso total do aditivo (p/p) . Em uma modalidade preferida, o ácido graxo está presente em qualquer concentração entre 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80% ou qualquer intervalo compreendendo as mesmas, em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade ainda mais preferida, o ácido graxo está presente em uma concentração entre 10% e 45%, 15% e 40%, 20% e 40%, 25% e 40% ou 30% e 40% em peso, em relação ao peso total do aditivo (p/p).
[00106] Em uma modalidade preferida, o componente paramagnético está presente em uma concentração variando entre cerca de 1% e 30% em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade preferida, o componente paramagnético está presente em qualquer concentração entre 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, ou qualquer intervalo compreendendo as mesmas, em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade ainda mais preferida, o componente paramagnético está presente em uma concentração entre 2% e 28%, 4% e 25%, 6% e 22%, 8% e 21% ou 10% e 20% em peso, em relação ao peso total do aditivo (P/P)-
[00107] Em uma modalidade preferida o substrato de ancoragem está presente em uma concentração variando entre cerca de 20% e 70% em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade preferida, o substrato de ancoragem está presente em qualquer concentração entre 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, ou qualquer intervalo compreendendo as mesmas, em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade ainda mais preferida, o substrato de ancoragem está presente em uma concentração entre 25% e 65%, 30% e 60%, 35% e 60% ou 40% e 60% em peso, em relação ao peso total do aditivo (p/p).
DO EFEITO TÉCNICO ALCANÇADO PELA INVENÇÃO
[00108] A combinação destes três componentes: ácido graxo, componente paramagnético e substrato de ancoragem resulta no efeito alcançado pela presente invenção.
[00109] Mais precisamente, quando o aditivo aqui descrito é aplicado ou incorporado a composição polimérica ou polímero alvo, cada um dos componentes, em especial o ácido graxo e o componente paramagnético, são capazes de envolver e imobilizar as moléculas da composição polimérica ou polímero alvo, impedindo ou inibindo substancialmente sua movimentação, assim conferindo a estabilidade dimensional e inibição ou limitação da transferência de energia, gerando, por exemplo um bloqueio termodinâmico.
[00110] Mais precisamente, quando em contato com a composição polimérica ou polímero, o presente aditivo realiza uma catálise heterogênea de superfície, onde o grupamento hidroxila (OH) é responsável por doar elétrons para a camada de valência dos átomos da composição polimérica ou polímero, ao passo que o componente paramagnético é capaz de manter o campo magnético negativo (por conta da doação de elétrons pelo grupo OH) (carga eletrostática negativa).
[00111] Ademais, a combinação do aditivo da presente invenção com a composição polimérica ou polímero resulta na formação de uma estrutura molecular de empacotamento hexagonal compacto.
[00112] Como resultado, há a formação de uma ligação covalente dativa entre os átomos da camada de valência da composição polimérica ou polímero, o qual converge para a ausência de movimento molecular no polímero aditivado com o presente aditivo, conferindo, assim, as propriedades aqui descritivas.
[00113] Como na ligação covalente todos os átomos envolvidos apresentam a tendência de receber elétrons, obrigatoriamente, haverá entre eles um compartilhamento dos elétrons presentes na camada de valência (nível mais distante do núcleo). O compartilhamento ocorre quando um elétron da camada de valência de um átomo passa a fazer parte da mesma nuvem eletrônica que envolve outro elétron da camada de valência de outro átomo.
[00114] Já o componente de ancoragem age como o elo entre as moléculas do aditivo e as moléculas da composição polimérica ou polímero.
[00115] Assim, é uma modalidade da invenção um aditivo que compreende estrutura molecular com empacotamento hexagonal compacto e uma carga eletrostática negativa na camada de valência.
[00116] Conforme pode ser verificado a partir da explicação acima, o aditivo aqui descrito resulta em um alinhamento eletrônico específico das moléculas da composição polimérica ou polímero alvo, alcançado os resultados desejados. DA QUANTIDADE DE ADITIVO NA COMPOSIÇÃO POLIMÉRICA OU POLÍMERO ALVO
[00117] Assim, como pode ser prontamente concebido por um técnico no assunto, a quantidade de aditivo a ser utilizada dependerá diretamente das características de alinhamento molecular do aditivo por si. Assim, também é uma concretização da presente invenção um produto, composição polimérica ou polímero compreendendo referido aditivo.
[00118] O aditivo, quando sozinho (ou seja, não em combinação com o polímero alvo) já possui suas moléculas alinhadas na forma de um empacotamento hexagonal compacto, característica essa conferida pelo uso do componente paramagnético.
[00119] Assim, existe uma relação direta entre a porcentagem de empacotamento do aditivo, e a concentração necessária para se alcançar o alinhamento eletrônico desejado na composição polimérica ou polímero alvo.
[00120] Por esta razão, esta propriedade se aplica a um amplo conjunto de materiais que, ao receberem o aditivo nas proporções adequadas, garantem as propriedades de barreira de gases, luz e temperatura desejadas.
[00121] Em um modo de concretização, a composição polimérica ou polímero podem ser selecionados dentre Nylon, Kevlar, poliacetato de vinila, policarbonato (PVA), polimetil metacrilato (PMMA), policloreto de vinila (PVC), acetal (POM), politetrafluoretileno (PTFE), poliéster, poliuretano, Celeron, fenolite, polietileno de baixa densidade, polietileno de alta densidade, polipropileno dentre outros.
[00122] Mais especificamente, observou-se que o aditivo contendo pelo menos 52% de empacotamento hexagonal compacto já é capaz de conferir ao polímero alvo o alinhamento eletrônico necessário para funcionamento. Assim, aditivos possuindo 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% ou 100%, ou quaisquer intervalos entre estes valores, de empacotamento hexagonal compacto então dentro da especificação da presente invenção. Em uma modalidade preferida, o aditivo contém pelo menos 70%, preferencialmente 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% ou 100% de empacotamento hexagonal compacto, modalidade na qual o aditivo é capaz de conferir até 100% de alinhamento eletrônico ao polímero alvo.
[00123] Importante notar que, quanto maior o porcentual em peso utilizado do aditivo na composição polimérica ou polímero alvo, maior o resultado de bloqueio de energia. Neste sentido, não obstantes os valores exemplificativos sugeridos acima, o aditivo pode ser compreendido na composição polimérica ou polímero alvo entre acima de 0% e até 16%. Em uma modalidade preferida, o aditivo da presente invenção está presente em qualquer concentração entre 0,001%, 0,1%, 0,5, 1%, 2%, 3%, 4%, 5%, 6% 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, ou qualquer intervalo compreendendo as mesmas, em peso, em relação ao peso total da composição polimérica (p/p). A diferença de barreira de energia que se deseja obter dependerá da quantidade adicionada. Quanto maior o valor adicionado, maior a barreira obtida. Naturalmente é possível adicionar um valor maior que aquele que garante, por exemplo, um bloqueio termodinâmico máximo, dependendo apenas de uma seleção que, portanto, não é limitante.
[00124] Com esta concentração, a composição polimérica ou polímero alvo apresenta tanto as propriedades de estabilidade dimensional quanto a de barreira (impedimento ou limitação) de transferência de energia.
[00125] Caso se deseje focar na estabilidade dimensional, ou seja, trocas de energia, ainda que limitadas, são aceitáveis e suficientes concentrações a partir de cerca de 4% do peso do aditivo, em relação ao peso final da composição polimérica ou polímero.
[00126] Naturalmente, a utilização de concentrações menores de aditivo, ou de aditivos com um menor grau de empacotamento também conferem certo grau de estabilidade dimensional e limitação das trocas de energia, porém com menor eficiência.
[00127] Ainda, como pode ser concebido por um técnico no assunto, no caso de aditivos com menor grau de empacotamento, concentrações maiores de aditivos podem ser utilizadas em uma relação linear para se alcançar os resultados desejados. Porém, esta não é uma alternativa preferida, tendo em vista que tende a aumentar os gastos com o aditivo e, por consequência, aumentar o valor do polímero final.
[00128] Através de um modelo teórico, é possível conceber que o aditivo será capaz de alcançar o efeito desejado (variando sua concentração) caso fator de empacotamento atômico (ou FEA) seja pelo menos 50%, preferencialmente entre 53 e 80%, preferencialmente 74% ou superior, e preferencialmente 76% ou superior de empacotamento hexagonal compacto.
[00129] É importante frisar que o presente aditivo é um aditivo funcional, que não altera as características da composição polimérica ou polímero alvo, tal como ponto de fusão, resistência a chama etc., mas apenas confere estabilidade dimensional e impedimento ou limitação da transferência de energia a partir das bases teóricas explicadas acima. Naturalmente que nada impede que haja interferência nas características se assim for pretendido, sendo apenas necessário que um técnico no assunto ajuste a composição química ou misture outros aditivos para essa finalidade.
[00130] Assim sendo, o presente aditivo pode ser incorporado a composição polimérica ou polímero de diversas maneiras, por exemplo, durante o processo de fabricação do mesmo (tal como durante a fase de injeção, modelagem, fusão, extrusão, laminação, entre outros) ou mesmo após, através de sua aplicação na superfície, por exemplo, por meio de um spray, tinta, filme, camada etc.
[00131] Ainda, no caso de o aditivo ser incorporado durante a linha de produção da composição polimérica ou polímero, o mesmo pode ser diretamente adicionado durante qualquer etapa da mesma, sem a necessidade de modificação de equipamentos ou processos produtivos.
DEMAIS MODALIDADES - COMPONENTES ADICIONAIS
[00132] Em uma modalidade alternativa, componentes adicionais podem ser adicionados ao aditivo de modo a realizar ajustes, por exemplo, à sua coloração, atribuindo cor, translucidez ou mesmo característica de bloqueio de luz ao aditivo e com isso transferir essa propriedade para a composição polimérica a que vier a ser incorporado.
[00133] Dado os componentes utilizados, o aditivo pode ter um aspecto esbranquiçado, podendo afetar a aparência final da composição polimérica ou polímero, por exemplo, no caso de produtos transparentes. Assim, componentes para ajustar a coloração podem ser utilizados, por exemplo, estabilizantes funcionais, tal como o cloreto de magnésio, em concentrações suficientes para se alcançar o efeito desejado. [00134] Em uma modalidade preferida, o estabilizante funcional está presente em uma concentração variando entre cerca de 5% e 40% em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade preferida, o estabilizante funcional está presente em qualquer concentração entre 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40% ou qualquer intervalo compreendendo as mesmas, em peso, em relação ao peso total do aditivo (p/p). Em uma modalidade ainda mais preferida, o estabilizante funcional está presente em uma concentração entre 7% e 35%, 10% e 33%, 12% e 31%, 15% e 30% ou 15% e 25% em peso, em relação ao peso total do aditivo (p/p).
DO PROCESSO DE OBTENÇÃO DO ADITIVO
[00135] E ainda aqui descrito um processo para a preparação do referido aditivo.
[00136] Por se tratar de um aditivo com características moleculares e eletrostáticas específicas, um técnico no assunto é capaz de conceber que a mera mistura dos componentes finais presentes no aditivo descrito acima não é capaz de produzir os efeitos finais obtidos pelo presente aditivo.
[00137] O processo aqui descrito compreende os passos de: a. Obter uma mistura de ácido graxo com um solvente para a obtenção de um ácido graxo com baixa entropia, quando comparada com a entropia do ácido graxo em seu estado natural; b. Obter uma mistura contendo a mistura do item (a) com o componente paramagnético para a obtenção da estrutura molecular de empacotamento hexagonal compacto e carga eletrostática negativa na camada de valência das moléculas do polímero; e c. Obter uma mistura contendo a mistura do item (b) com o substrato de ancoragem para formação do cavalo de fixação ao polímero alvo.
[00138] Para fins de definição, por “obter” ou “obtenção” se entende uma etapa onde as misturas mencionadas são obtidas, seja por meio da mistura dos componentes específicos ou pela compra/aquisição das misturas já prontas.
[00139] Ainda, em uma modalidade preferida, o componente paramagnético pode ser misturado com o substrato de ancoragem antes da incorporação à mistura obtida no item (a). Dita mistura visa diluir a cor natural do componente paramagnético, por exemplo, no caso do cloreto de titânio, que é arroxeado. Naturalmente, caso a coloração final do aditivo não impacte no produto final (por exemplo, no caso de um polímero de cor escura), a presente etapa não é necessária, mas no caso de se querer um polímero translúcido, tal como um filme transparente, é importante.
[00140] Em uma modalidade preferida, o processo pode ainda compreender a etapa adicional de: a. Incorporar à mistura obtida na etapa (c) componentes adicionais, tal como estabilizantes funcionais, de modo a ajustar as características estéticas finais do aditivo (tal como coloração).
[00141] As particularidades e parâmetros de cada uma das etapas aqui descritas são de conhecimento de um técnico no assunto, o qual é capaz de reproduzir o presente processo sem a necessidade de experimentação indevida, uma vez que os objetivos de cada uma das etapas estão claramente descritos.
[00142] Ademais, os ensinamentos para a realização destas etapas para se alcançar os efeitos desejados estão disponíveis no estado da técnica, não sendo, portanto, necessário se aprofundar nesta discussão. [00143] Solventes em geral possuem alta taxa de evaporação. Assim, o solvente utilizado na etapa (a) é espontaneamente evaporado nas etapas subsequentes do processo aqui descrito e, portanto, não faz parte da composição final do aditivo obtido.
[00144] Conforme explicado acima, o solvente tem a função de diminuir a entropia, o que acontece através da organização das moléculas do ácido graxo. Ademais, o solvente também é útil para diminuir a força do ácido graxo, assim auxiliando nas demais etapas do processo.
[00145] Em uma modalidade preferida, a razão de ácido graxo solvente utilizada na etapa (a) do processo está entre cerca de 0,5:2 a 4:0,5. Em uma modalidade mais preferida, dita razão está entre cerca de 1: 1,5 a 3:1,5, 1:1 a 3:1 ou 1:1 a 2:1.
[00146] Em uma modalidade mais preferida, o solvente é selecionado dentre ciclohexanona, etoxietanol, acetato de metila, acetato de etila e acetato de sódio tridratado. Ainda mais preferencialmente, o solvente é acetato de etila ou acetato de sódio tridratado ou equivalente.
[00147] Em uma outra modalidade preferida, o cavalo de fixação é selecionado dentre poliamida 6 (PA 6), ácido carboxílico, acetato de etila, lercite, metil 2-metilpropenoato, ácido acetilsalicílico, tetrafluoroetileno, lignina, óxido de zinco e monoestearato de glicerina (MEG).
[00148] A concentração dos demais componentes pode ser prontamente inferida por um técnico no assunto a partir da concentração final dos mesmos no aditivo conforme descrito acima.
[00149] Assim, também é uma concretização aqui englobada, um aditivo obtenível ou obtido pelo processo conforme descrito acima.
[00150] O aditivo aqui descrito pode ser incorporado a qualquer composição polimérica ou polímero, como Nylon, Kevlar, poliacetato de vinila, policarbonato (PVA), polimetil metacrilato (PMMA), policloreto de vinila (PVC), acetal (POM), politetrafluoretileno (PTFE), poliéster, poliuretano, Celeron, fenolite, polietileno de baixa densidade, polietileno de alta densidade, polipropileno, dentre outros, em especial qualquer polímero ou composição polimérica derivado de polietileno (PE) ou polipropileno (PP). Uma vez que as características de estabilidade dimensional e impedimento ou limitação de trocas de energia se dá pelo arranjo estrutural e eletrônico final da combinação do polímero com o aditivo aqui descrito, um técnico no assunto é prontamente capaz de conceber os polímeros e composições poliméricas nas quais o aditivo pode ser adicionado.
[00151] Apenas de uma forma exemplificativa e não limitativa da presente invenção, a Tabela 1 abaixo apresenta materiais contendo os aditivos aqui reivindicados.
Tabela 1: Exemplos de materiais e seus aditivos
Figure imgf000033_0001
Figure imgf000034_0001
EXEMPLOS DE APLICAÇÕES E VANTAGENS
[00152] Em uma modalidade preferida, o referido aditivo é para uso como componente aditivo em uma composição polimérica ou polímero.
[00153] Conforme mencionado acima, o uso do referido aditivo tem por objetivo conferir estabilidade dimensional e impedir ou limitar transferências de energia. Não obstante, apesar de focar primariamente na estabilidade dimensional e impedimento ou limitação da transferência de energia, em especial calor ou frio, dada as características obtidas, é possível também conceber que o presente aditivo pode ser utilizado como barreira de som, pelos mesmos princípios já explanados acima (imobilização das moléculas do polímero aditivado com o aditivo da presente invenção).
[00154] Exemplos práticos mais evidentes podem ser observados em aplicações do composto resultante para confecção de itens para os mais variados tipos de artigos ou produtos, incluindo embalagens para conservação de alimentos, artigos de natureza perecível, peças e filmes para a indústria automobilística automobilísticos, revestimento de condutores e semicondutores, eletrônicos em geral, eletrodomésticos, construção civil, indústria aeroespacial, têxtil, itens para motocicletas, vestuário, tintas, vernizes, materiais e equipamentos hospitalares, tendas, coolers, ótica (viseiras e óculos), ou em aplicações mais sensíveis tais como recipientes embalagens para contenção de artigos hospitalares, transporte de órgãos etc.
[00155] Outras aplicações podem envolver artigos ou produtos para construção civil, onde seja necessária a característica de isolamento termodinâmico do referido artigo. Nestes casos, o composto polimérico pode se mostrar substancialmente mais vantajoso do ponto de vista econômico e ambiental do que os materiais tradicionalmente utilizados. Outra aplicação possível é para confecção de artigos na área automobilística, onde múltiplos elementos podem se beneficiar de características de estabilidade dimensional e termodinâmica.
[00156] Outros exemplos de aplicações ou produtos não exaustivas podem ser: recipientes para consumo de sólidos e líquidos (garrafas, potes etc.), indústria têxtil, equipamentos médicos, equipamentos de bloqueio de som, peças de máquinas em geral, camadas para aplicação em produtos e equipamentos (seja na forma de spray ou camada pré-moldada), tintas, vernizes, filmes, camadas laminadas, depositadas, na superfície de materiais ou em sanduíche, em placas, embalagens de alimentos, garrafas, potes de iogurtes, potes de sorvetes, garrafas térmicas, malas térmicas, latas revestidas com filme, embalagens de medicamentos, blisters utilizados para embalar comprimidos na indústria farmacêutica, frascos de vacinas, recipientes para transporte de órgãos, embalagens cartonadas de líquidos, sacolas de gelo, filmes para alimentos, tubulações hidráulicas, tubulações de óleo e gás, tintas para construção civil, filmes e camadas para aplicações diversas, tecidos, plásticos automotivos, painéis solares, pneus e qualquer solução polimérica cujo objetivo seja melhorar a estabilidade dimensional, aumentar isolamento termodinâmico, aumentar isolamento de temperatura, aumentar impermeabilidade gasosa, aumentar isolamento sonoro.
[00157] Considerando que se trata de um bloqueador térmico, sua aplicação vai desde a redução do consumo de energia em sistemas de refrigeração e aquecimento, redução da geração de materiais de alto impacto ambiental como alumínio, redução da pegada de carbono etc.
[00158] A presente invenção permite que um produto seja, por exemplo embalado congelado e assim permaneça sem necessitar de refrigeração, é possível que um sorvete ou iogurte sejam vendidos na prateleira do supermercado comum, isto é, sem refrigeração. É possível, por exemplo, o gelo ser vendido em um saco numa prateleira comum sem refrigeração. O mesmo se aplica a infindáveis produtos, tal como por exemplo, manteigas, chantillys, margarinas, pescados, carnes, vegetais, legumes, entre outros. Tal solução permite manter os produtos de conservação até serem removidos das embalagens, podendo a capacidade ser mantida caso a embalagem permita reutilização.
[00159] Uma embalagem cartonada de acordo com a presente invenção pode ser definida como uma embalagem cartonada para líquidos, pastosos, alimentos prontos (tal como, grão de bico, feijão, milho, ervilhas) compreendendo uma camada cartonada, compreendendo adicionalmente uma camada externa à camada cartonada de polietileno e pelo menos uma camada interna à camada cartonada de polietileno. A camada externa de polietileno e/ou a pelo menos uma camada interna de polietileno compreendem uma camada de valência dativa, catalise heterogênea de superfície e empacotamento hexagonal compacto. A espessura das camadas de polietileno contendo o aditivo da presente invenção compreendem uma espessura que pode variar entre 0,1 nanômetros e 3mm.
[00160] Por outro lado, é possível diminuir drasticamente a energia dispendida para refrigerar alimentos no seu transporte. Isso por poderem ser embalados com a tecnologia da presente invenção, ou mesmo o veículo refrigerado gastará menos energia para manter o ambiente refrigerado uma vez que pode ser isolado termicamente com o material da presente invenção. Um aumento de temperatura não se daria, ou praticamente não se daria, pelas paredes laterais, apenas pela abertura e fechamento da câmara frigorifica. O mesmo se aplica a uma geladeira, freezer ou forno convencional, cuja eficiência energética será muito maior.
[00161] A presente invenção também pode ser aplicada em luvas resistentes ao calor, tecidos, roupas, sacos de dormir, garrafas ou copos térmicos, coolers, marmitas, barracas, tendas, lonas em geral, tal como de caminhão, para garantir uma temperatura desejada ou o conforto térmico. [00162] Naturalmente é possível aplicar a presente invenção a eletrodomésticos, fornos, fogões, interiores e exteriores de veículos (tintas, filmes para vidros, envelopamento), componentes elétricos, embarcações, trens, na área da aviação, aeroespacial, indústrias em geral, sistemas de refrigeração industriais (tais como de água fria), ar- condicionado (equipamentos e tubulações), tubulações e equipamentos de ar aquecidos (bombas de calor etc.).
[00163] Em uma construção predial, os benefícios são imensos, sendo possível reduzir o consumo de energia de forma muito acentuada, por meio de uma tinta, de uma película ou filmes em vidros ou fachadas, telhas, tubulações de sistemas quentes ou frios etc. Isso possibilita construções mais eficientes, com menor impacto ambiental. Ainda em uma construção predial, é possível gastar menos com aquecimento ou menos com arrefecimento pois há uma alta redução da transferência de energia pelo material, reduzindo perda ou aumento de calor, ou seja, bloqueia-se a perda térmica. Em uma tubulação de água quente, por exemplo, é possível manter a água na temperatura do banho mesmo após horas do banho ter sido tomado, o que evita desperdícios com água e aquecimento da mesma.
[00164] Um refrigerante ou cerveja pode, por exemplo, ser embalado gelado em uma garrafa plástica contendo o aditivo da presente invenção, por exemplo do tipo pet, e manter-se gelada por semanas seguidas ou meses, sem necessidade de refrigeração. Altemativamente, uma embalagem convencional pode ser resfriada e posteriormente receber um filme ou uma camada de spray com o produto da presente invenção, garantindo-se que permaneça gelada no tempo. Outra alternativa, seria, por exemplo, uma lata de alumínio revestida intemamente e/ou externam ente com um filme contendo o aditivo da presente invenção, com vista a manter, por exemplo, cervejas, sucos, refrigerantes, sopas, laticínios, chás, entre outros gelados ou quentes para consumo consoante a necessidade de cada aplicação. Em suma, é possível tomar uma cerveja gelada na praia envasada semanas antes na produção.
[00165] O contrário também é possível, ou seja, embalar algo a quente e manter-se quente sem perda térmica ou com perda muito reduzida. Isto é especialmente importante para, por exemplo, embalagens de fast food ou entregas de comida, para marmitas etc.
[00166] Em uma possível configuração o aditivo pode ser utilizado em embalagens aumentando ou garantindo a vida útil de seus produtos. Por exemplo, um refrigerante pode ser envasado gelado e assim mantido na temperatura desejada. O contrário também é possível, ou seja, envasar um produto ou líquido a uma temperatura alta e assim ser mantido até sua abertura.
[00167] Em uma embalagem lacrada com um polímero aditivado com a presente invenção a temperatura foi inferior a 2%. Em alguns casos testados o aumento da temperatura foi inferior a 1% em 20 dias, devido a necessidade de abertura da embalagem para medição. Naturalmente que este efeito pode ser manipulado mediante o uso do peso do aditivo da presente invenção na composição polimérica final, conforme já esclarecido.
[00168] Em uma possível configuração pode ser concebido, por exemplo, um produto e/ou embalagem que contenha uma camada polimérica dotada do aditivo da presente invenção, laminada com uma camada de cartão (origem celulose, por exemplo), onde essa camada polimérica é aplicada na face interna do cartão, sem que haja necessidade de aplicação de uma camada de alumínio, o que prejudicaria ou eliminaria a função de luz e oxigênio. Dessa forma, a presente invenção garante a preservação do alimento de maneira mais eficiente que aquelas que utilizam alumínio, com proteção gasosa, térmica e de luz muito superior e sem o impacto ambiental negativo que o uso do alumínio traz, tanto de sua extração como de sua dificuldade de reciclagem quando extrudadas ao papel e ao polietileno, sem mencionar as vantagens de processo que advêm de um uso mais simples de apenas camadas de cartão e poliméricas.
[00169] Em outra solução técnica, a presente invenção permite que haja uma redução enorme na cadeia de refrigerados, na medida que refrigeradores e freezers possam utilizar o aditivo junto ao polímero expandido de sua caixa e portas ou através de camadas adicionais de tintas e/ou filmes em seu exterior permitindo que o frio seja contido de forma altamente eficiente e com menores paredes de isolamento apresentados nas soluções atuas.
[00170] Em situação oposta, a aplicação em fomos, fogões, churrasqueiras a gás ou carvão, ou outras fontes de calor poderiam evitar a perda de calor com aplicação da tecnologia da presente invenção e ainda, ter suas paredes de isolamento reduzidas oferecendo maior espaço interno. Cumpre notar que um polímero, tal como um polipropileno ou polietileno compreendendo o aditivo da presente invenção, mantêm o ponto de fusão do mesmojDolímero sem adição do aditivo. Ou seja, embora o ponto de fusão seja o mesmo, na presente invenção o material mantém sua estabilidade dimensional até o ponto de fusão, momento em que colapsa. Esta é uma característica muito interessante pois permite que seja aplicado como um retardador ou bloqueador de chama até a sua temperatura de fusão. Esta aplicação em cabos ou componentes elétricos é muito relevante, bem como em tintas ou vernizes para construção predial. Para elevar esta capacidade o aditivo da presente invenção pode ser combinado com uma composição polimérica à base de PTFE para aumentar ou retardar mais ainda um incêndio, por conta da temperatura mais alta de fusão do PTFE.
[00171] Em outra situação, casas, veículos, caixas térmicas, gôndolas etc., podem ser pintados, janelas podem receber camadas para evitar que o ambiente interno aqueça ou arrefeça, resultando em uma economia enorme de energia, contribuindo para resolver um dos grandes problemas atuais da humanidade, qual seja, dentre outros, o impacto ambiental derivado do consumo elevado de energia.
[00172] Tubulações de água quente de habitações, por exemplo, podem ser construídas com a solução da presente invenção para não haver desperdícios de água aquecida que dantes ficava esfriando nas tubulações até o próximo banho quente. Isto gera poupança de água e energia.
[00173] Fibras poliméricas que fazem uso da presente invenção terão capacidade térmica, tal como o nylon, por exemplo, permitindo a construção de tecidos, roupas, calçados. Uma barraca de camping não mais aqueceria seu interior ainda que debaixo de um sol escaldante de por exemplo 40°C. Uma garrafa térmica terá a capacidade de manter a bebida de seu interior, seja gelada ou quente por períodos muitos superiores durante seu consumo, devido a barreira térmica aplicada
[00174] Revestimentos que requeiram a resistência a alta temperatura podem fazer uso de por exemplo teflon com o aditivo da presente invenção, sendo possível, por exemplo, aplicar em escapamentos de moto para impedir a transferência de calor e acidentes com queimaduras.
[00175] Materiais cuja função ótica é importante, tal como uma viseira de um capacete, como não têm a transferência de energia entre as suas superfícies externa e interna, não embaçam por não ocorrer mais o fenômeno de condensação. Revestimentos, camadas, “coatings” podem ser aplicados em lentes com este objetivo.
[00176] Sacos de gelo podem ser vendidos em supermercados em prateleiras sem necessidade de refrigeração, comida pode ser embalada sem necessidade da cadeira de frio ou com um uso muito reduzido.
[00177] Um resultado prático do uso do aditivo da presente invenção é a ausência ou substancial limitação do efeito de condensação que ocorre nas superfícies de produtos, recipientes ou embalagens cujo conteúdo se encontra em temperaturas menores que a temperatura ambiente. Em função da barreira térmica criada pelo uso do aditivo funcional aqui proposto, não existe efetiva transferência de energia ao longo da estrutura do composto, tal que o mesmo não se aquece ou se resfria em função da temperatura do artigo constante no interior do recipiente, de maneira que o efeito de condensação na sua superfície não ocorre, o que é conveniente e benéfico para uma gama de aplicações comerciais e industriais.
[00178] Cumpre notar que o aditivo funcional em questão pode ser utilizado para obtenção de composições poliméricas tais como tintas e vernizes, os quais podem ser utilizados nas aplicações supracitadas de maneira a gerar uma camada sobre uma superfície para conferir a um produto ou parte de um produto as características de estabilidade dimensional e termodinâmica obtidas pelo uso do aditivo.
[00179] O aditivo funcional em questão pode ainda ser utilizado para obtenção de compostos que servirão para formar partes de produtos, por exemplo, peças, placas, superfícies ou camadas que serão utilizadas posteriormente para confecção de produtos finais. No mais, o presente aditivo pode dar origem a compostos a serem utilizados para formação de superfícies multicamadas, por exemplo, em camadas externas, internas e/ou intermediárias de uma superfície, em forma de “sanduíche” ou não.
[00180] Cumpre, ainda, notar que o presente aditivo possui um apelo ecológico. Primeiramente, pela possibilidade de utilização de um ácido graxo natural derivado de óleo de rícino (30%), tal como o ácido ricinoleico. É comum a utilização de aditivos sintéticos ou derivados de petróleo como aditivos de polímero, o que não é uma necessidade da presente invenção.
[00181] Ainda, dadas as suas características de estabilidade dimensional e impedimento ou limitação de trocas de energia, a composição polimérica ou polímero aditivado com o aditivo aqui descrito pode ser utilizado em aplicações onde atualmente é necessário um grande gasto energético, por exemplo, em sistemas de resfriamento. Dada as características obtidas pelo presente aditivo, qualquer câmara ou espaço em que o revestimento possua uma composição polimérica ou polímero aditivado pelo aditivo aqui proposto necessitará de significativamente menor gasto energético para ser resfriado, além de permitir a manutenção do resfriamento por um período de tempo significativamente mais longo.
TESTES LABORATORIAIS
[00182] Os testes representados pelas figuras 7, 8 e 9, foram realizados em potes (base e tampa) de polietileno termoformados com o aditivo da presente invenção, tendo sido aplicado um porcentual em peso do aditivo superior a 5%, objetivando-se um bloqueio termodinâmico, ou seja, um bloqueio da temperatura próximo dos 100%.
[00183] Nesse sentido, foram colocados sólidos, líquidos e pastosos em diferentes potes e na mesma temperatura, submetidos à 20°C abaixo da temperatura ambiente. Dentro das embalagens foi também colocado um termômetro para medição diária da temperatura.
[00184] As medições foram realizadas em tempos controlados e para obtenção da leitura, os potes eram abertos, realizada a leitura e imediatamente fechados.
[00185] Como conclusão, resta claro que o aditivo da presente invenção oferece aos compostos poliméricos ao qual é associado um bloqueio termodinâmico nunca antes detectado em materiais poliméricos. [00186] Para o conteúdo pastoso a perda de temperatura ou de energia em 30 dias foi de 1,59%, sendo que para o conteúdo líquido a perda foi de 3,6% e para o conteúdo sólido foi de 4,5% para os mesmos 30 dias.
[00187] As diferenças encontradas podem ser explicadas pelo tempo de abertura das tampas para aferição da temperatura, pelo fato de que a troca térmica com a atmosfera externa é maior com um sólido, entre outros. Em média, obteve-se resultados em que a perda de temperatura é na ordem de 0,05% por dia (cada 24 horas).
[00188] Por sua vez, a mesma composição polimérica de polietileno sem adição do aditivo da presente invenção tem uma perda de temperatura na ordem de 48% por dia. Ou seja, em um teste prático, a solução da presente invenção conseguiu um comportamento mais de 900 vezes superior ao estado da técnica em termos de resistência termodinâmica ou resistência à perda de temperatura do interior do pote.
[00189] Para um teste realizado sem abertura de tampas, estima-se que a perda de temperatura seja ainda inferior, podendo chegar a 0,01, ou mesmo 0,001 por dia, senão menos ainda. [00190] Assim, a presente invenção oferece uma solução que garante a possibilidade de manter, por exemplo, um estado refrigerado ou aquecido, garantir uma maior barreira de gases, entre outros, oferece uma diminuição no consumo de energia, tendo um impacto absoluto na redução do consumo de CO2, um benefício ambiental tão elevado haja vista que há situações que terão uma poupança energética superior a 50%, 60%, 70%, 80%, ou memo 90%.
DA FORMA DE IDENTIFICAÇÃO DA INVENÇÃO EM UMA COMPOSIÇÃO POLIMÉRICA, POLÍMERO OU PRODUTO [00191] Em uma concretização preferida, dito produto, composição polimérica ou polímero é qualquer produto, composição polimérica ou polímero compreendendo ao menos uma porção dotada de estrutura molecular com empacotamento hexagonal compacto e camada dativa (carga eletrostática negativa na camada de valência), em decorrência a aditivação com o aditivo aqui descrito. Em outras palavras, é possível identificar a tecnologia da presente invenção, ou seja, a presença de empacotamento hexagonal compacto e catálise heterogênea de superfície, por meio de microscopia de varredura.
[00192] Assim, a presente invenção produz uma pirolise que compõe a camada carbonosa de superfície eletromagnética negativa e as ligações são covalentes na estrutura atômica, o que inibe a agitação molecular atômica. Ou seja, as ligações covalentes tomam o fator de empacotamento mais fechado para a penetração de energia.
[00193] Tendo sido descritos exemplos de concretização preferidos, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

Claims

REIVINDICAÇÕES
1. Aditivo caracterizado pelo fato de que compreende:
- um ácido graxo;
- um componente paramagnético; e
- um substrato de ancoragem.
2. Aditivo, de acordo com a reivindicação 1, caracterizado pelo fato de que o ácido graxo está presente em uma concentração cerca de 5% a cerca de 80% em peso, em relação ao peso total do aditivo.
3. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o ácido graxo é um ácido graxo insaturado que contém pelo menos um grupo hidroxila (OH) presente fora das extremidades da cadeia carbônica.
4. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o ácido graxo possui uma hidroxila no carbono 12 da cadeia, preferencialmente em que o ácido graxo possui uma cadeia de 18 carbonos, mais preferencialmente em que o ácido graxo é derivado do óleo de rícino e ainda mais preferencialmente em que o ácido graxo é o ácido ricinoleico.
5. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o componente paramagnético está presente em uma concentração de cerca de 1% a cerca de 30% em peso, em relação ao peso total do aditivo.
6. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o componente paramagnético é qualquer componente capaz de manter a camada de valência da composição polimérica ou polímero alvo, com uma carga negativa.
7. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o componente paramagnético é selecionado dentre sulfato de cobre, sódio, estrôncio, magnésio e cloreto de titânio, preferencialmente em que o componente paramagnético é cloreto de titânio.
8. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o substrato de ancoragem está presente em uma concentração de cerca de 20% a cerca de 70% em peso, em relação ao peso total do aditivo.
9. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o substrato de ancoragem é um substrato de ancoragem sólido ou líquido e é selecionado dentre monoestearato de glicerina (MEG), poliamida 6 (PA 6), lercite (metil 2- metilpropenoato), tetrafluoroetileno, lignina, óxido de zinco, fluido de silicone, tributil citrato e carbonato de cálcio.
10. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o substrato de ancoragem é um substrato de ancoragem sólido.
11. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o substrato de ancoragem sólido é carbonato de cálcio.
12. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que compreende, adicionalmente, estabilizantes funcionais, preferencialmente cloreto de magnésio.
13. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que o estabilizante funcional está presente em uma concentração de cerca de 5% a cerca de 40% em peso, em relação ao peso total do aditivo.
14. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que compreende estrutura molecular com empacotamento hexagonal compacto e uma carga eletrostática negativa na camada de valência.
15. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que é para aditivação de uma composição polimérica ou polímero.
16. Aditivo, de acordo com qualquer uma das reivindicações precedentes, caracterizado pelo fato de que a composição polimérica ou polímero é selecionado dentre Nylon, Kevlar, poliacetato de vinila, policarbonato (PVA), polimetil metacrilato (PMMA), policloreto de vinila (PVC), acetal (POM), politetrafluoretileno (PTFE), papel e celulose, poliéster, poliuretano, Celeron e fenolite, polietileno de baixa densidade, polietileno de alta densidade, polipropileno.
17. Processo de obtenção de um aditivo como definido em qualquer uma das reivindicações 1 a 16, caracterizado pelo fato de que compreende as etapas de: a. obter uma mistura de ácido graxo com um solvente para a obtenção de um ácido graxo com baixa entropia; b. obter uma mistura contendo a mistura do item (a) com o componente paramagnético, para a obtenção da estrutura molecular de empacotamento hexagonal compacto e carga eletrostática negativa na camada de valência das moléculas do polímero; e c. obter uma mistura contendo a mistura do item (b) com o substrato de ancoragem para formação do cavalo de fixação ao polímero alvo.
18. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que compreende a etapa adicional de mistura do componente paramagnético com substrato de ancoragem antes da incorporação à mistura obtida no item (a).
19. Processo, de acordo com a reivindicação 17 ou 18, caracterizado pelo fato de que compreende, adicionalmente, a etapa de: a. incorporar à mistura obtida na etapa (c) componentes adicionais, tal como estabilizantes funcionais, de modo a ajustar as características estéticas finais do aditivo (tal como coloração).
20. Processo, de acordo com qualquer uma das reivindicações 17 a 19, caracterizado pelo fato de que a razão ácido graxo: solvente utilizada na etapa (a) do processo está entre cerca de 0,5:2 a 4:0,5.
21. Processo, de acordo com qualquer uma das reivindicações 17 a 20, caracterizado pelo fato de que o solvente é selecionado dentre ciclohexanona, etoxietanol, acetato de metila, acetato de etila e acetato de sódio tridratado, semelhantes ou suas misturas.
22. Processo, de acordo com qualquer uma das reivindicações 17 a 21, caracterizado pelo fato de que o solvente é o acetato de etila.
23. Processo, de acordo com qualquer uma das reivindicações 17 a 22, caracterizado pelo fato de que o estabilizante funcional é cloreto de magnésio.
24. Processo, de acordo com qualquer uma das reivindicações 17 a 23, caracterizado pelo fato de que o cavalo de fixação é selecionado dentre poliamida 6 (PA 6), ácido carboxílico, acetato de etila, lercite, metil 2-metilpropenoato, ácido acetilsalicílico, tetrafluoroetileno, lignina, óxido de zinco e monoestearato de glicerina (MEG).
25. Aditivo caracterizado pelo fato de que é obtenível ou obtido pelo processo como definido em qualquer uma das reivindicações 17 a 24.
26. Aditivo, de acordo com qualquer uma das reivindicações 1 a 16 ou 25, caracterizado pelo fato de que é para uso em uma composição polimérica ou polímero.
27. Uso de um aditivo como definido em qualquer uma das reivindicações 1 a 16 ou 25, caracterizado pelo fato de ser uma composição polimérica ou polímero.
28. Produto, caracterizado pelo fato de que compreende o aditivo como definido em qualquer uma das reivindicações 1 a 16 ou 25.
29. Produto, caracterizado pelo fato de que compreende ao menos uma porção dotada de estrutura molecular com empacotamento hexagonal compacto e carga eletrostática negativa na camada de valência.
30. Composição polimérica ou polímero caracterizado pelo fato de que compreende o aditivo como definido em qualquer uma das reivindicações 1 a 16 ou 25.
31. Composição polimérica ou polímero caracterizado pelo fato de que o aditivo está compreendido na composição polimérica ou polímero alvo, entre acima de 0,001% e 16%, em peso, em relação ao peso total da composição polimérica (p/p).
32. Composição polimérica ou polímero caracterizado pelo fato de que compreende ao menos uma porção dotada de estrutura molecular, com empacotamento hexagonal compacto e catalise heterogênea de superfície.
33. Material caracterizado pelo fato de que compreende ao menos uma porção dotada simultaneamente de uma camada de valência dativa e catalise heterogênea de superfície.
34. Material de acordo com a reivindicação 33, caracterizado pelo fato de que é selecionado dentre Nylon, Kevlar, poliacetato de vinila, policarbonato (PVA), polimetil metacrilato (PMMA), policloreto de vinila (PVC), acetal (POM), politetrafluoretileno (PTFE), poliéster, poliuretano, Celeron, fenolite polietileno de baixa densidade, polietileno de altar densidade e polipropileno e é aditivado com um aditivo como definido em qualquer uma das reivindicações 1 a 16 ou
PCT/BR2023/050376 2022-11-11 2023-11-08 Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero WO2024098126A1 (pt)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BR102022023030 2022-11-11
BR1020220230307 2022-11-11
BR102023023294-9A BR102023023294A2 (pt) 2023-11-07 Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero
BR1020230232949 2023-11-07

Publications (1)

Publication Number Publication Date
WO2024098126A1 true WO2024098126A1 (pt) 2024-05-16

Family

ID=91031532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2023/050376 WO2024098126A1 (pt) 2022-11-11 2023-11-08 Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero

Country Status (1)

Country Link
WO (1) WO2024098126A1 (pt)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT94525A (pt) * 1989-06-29 1991-02-08 Essroc Corp Processo para introduzir ar em misturas a base de cimentos hidraulicos
WO1999052623A1 (de) * 1998-04-11 1999-10-21 Cognis Deutschland Gmbh Dispersionen enthaltend homo- oder copolymere von hydroxycarbonsäuren als rheologisches additiv
US20040192859A1 (en) * 2003-01-08 2004-09-30 Parker Harry W. Elastomeric material compositions obtained from castor oil and epoxidized soybean oil
WO2008016349A1 (en) * 2006-08-01 2008-02-07 Aaa Commerce Worldwide, Inc. Fuel, and additive therefor
CN104031721A (zh) * 2014-06-23 2014-09-10 天津舜能化学品有限公司 一种硼磁稀土润滑油添加剂及其制备方法
WO2019100058A1 (en) * 2017-11-20 2019-05-23 Resinate Materials Group, Inc. Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders
CN111205442A (zh) * 2020-02-28 2020-05-29 上海壹萨化学科技有限公司 清洁型金属加工液改性蓖麻油酸酯添加剂的制备方法
CN112300852A (zh) * 2019-07-29 2021-02-02 新疆工程学院 一种基于表面修饰的纳米碳材料复合添加剂及其制备方法
CN113088357A (zh) * 2021-03-15 2021-07-09 安徽工程大学 一种多效汽油添加剂及其制备方法和应用
CN113430040A (zh) * 2021-06-23 2021-09-24 煤炭科学技术研究院有限公司 一种液压支架浓缩液用多功能添加剂及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT94525A (pt) * 1989-06-29 1991-02-08 Essroc Corp Processo para introduzir ar em misturas a base de cimentos hidraulicos
WO1999052623A1 (de) * 1998-04-11 1999-10-21 Cognis Deutschland Gmbh Dispersionen enthaltend homo- oder copolymere von hydroxycarbonsäuren als rheologisches additiv
US20040192859A1 (en) * 2003-01-08 2004-09-30 Parker Harry W. Elastomeric material compositions obtained from castor oil and epoxidized soybean oil
WO2008016349A1 (en) * 2006-08-01 2008-02-07 Aaa Commerce Worldwide, Inc. Fuel, and additive therefor
CN104031721A (zh) * 2014-06-23 2014-09-10 天津舜能化学品有限公司 一种硼磁稀土润滑油添加剂及其制备方法
WO2019100058A1 (en) * 2017-11-20 2019-05-23 Resinate Materials Group, Inc. Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders
CN112300852A (zh) * 2019-07-29 2021-02-02 新疆工程学院 一种基于表面修饰的纳米碳材料复合添加剂及其制备方法
CN111205442A (zh) * 2020-02-28 2020-05-29 上海壹萨化学科技有限公司 清洁型金属加工液改性蓖麻油酸酯添加剂的制备方法
CN113088357A (zh) * 2021-03-15 2021-07-09 安徽工程大学 一种多效汽油添加剂及其制备方法和应用
CN113430040A (zh) * 2021-06-23 2021-09-24 煤炭科学技术研究院有限公司 一种液压支架浓缩液用多功能添加剂及其制备方法

Similar Documents

Publication Publication Date Title
Emblem Plastics properties for packaging materials
US7105106B2 (en) Liquid crystalline polymers, processes for their manufacture, and articles thereof
CN102029754B (zh) 高阻隔共挤出拉伸薄膜
AU2014215300B2 (en) Multilayer structure and method for producing same
US10265935B2 (en) Product comprising packaging material comprising multilayer structure
US10800136B2 (en) Layered structures
EP2064287A2 (en) Toughened poly(hydroxyalkanoic acid) compositions
JP2014524489A (ja) フィルム及び構造物用バリアコーティング
US10414144B2 (en) Multilayer structure, method for producing same, packaging material and product including same, and protective sheet for electronic device
ES2712557T3 (es) Polipropileno para la producción de artículos termoformados, artículos grandes, profundos, complejos y/o gruesos, proceso de termoformado de polipropileno modificado en artículos grandes, profundos, complejos y/o gruesos y uso del polipropileno
BR112015004863A2 (pt) material plástico descontaminante de oxigênio
Kim et al. Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films
GB2477733A (en) Biodegradable packaging material
WO2024098126A1 (pt) Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero
BR102023023294A2 (pt) Aditivo, processo para obtenção de aditivo, uso de aditivo, produto e composição polimérica ou polímero
CN103917369A (zh) 单层二氧化碳屏障pet瓶
CN102848621A (zh) 一种珍珠棉复合气泡膜包装材料
CN110438476A (zh) 具有增强的二氧化硅屏蔽涂层的pet容器的制造方法
CN112218803A (zh) 鲜度保持用聚酯系薄膜和包装体
NZ523286A (en) Plastic container having a crystallinity gradient
MX2012008029A (es) Panel termico.
JPH0741685A (ja) ガスバリア性成形体
JPH01289826A (ja) ポリエステル成形体
CN211868841U (zh) 一种耐低温冷冻的包装膜
AU2015230363A1 (en) Oxygen scavenging composition for plastic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23887220

Country of ref document: EP

Kind code of ref document: A1