WO2024096695A1 - 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법 - Google Patents

탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법 Download PDF

Info

Publication number
WO2024096695A1
WO2024096695A1 PCT/KR2023/017570 KR2023017570W WO2024096695A1 WO 2024096695 A1 WO2024096695 A1 WO 2024096695A1 KR 2023017570 W KR2023017570 W KR 2023017570W WO 2024096695 A1 WO2024096695 A1 WO 2024096695A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
support
carbon
producing
carbon nanotubes
Prior art date
Application number
PCT/KR2023/017570
Other languages
English (en)
French (fr)
Inventor
박훈민
장형식
강현준
김세현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024096695A1 publication Critical patent/WO2024096695A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Definitions

  • the present invention relates to a catalyst for producing carbon nanotubes that exhibits high productivity and a method for producing the catalyst for producing carbon nanotubes.
  • carbon nanomaterials include Fullerene, Carbon Nanotube (CNT), Graphene, and Graphite Nano Plate.
  • CNT Carbon Nanotube
  • Graphene Graphene
  • Graphite Nano Plate Graphite Nano Plate
  • carbon nanotubes are 1. It is a macromolecule with a hexagonal honeycomb-shaped graphite surface, in which two carbon atoms are bonded to three other carbon atoms, and is rounded to a nano-sized diameter.
  • Carbon nanotubes are hollow and light, have electrical conductivity as good as copper, thermal conductivity as good as diamond, and tensile strength as good as steel. Depending on the rolled shape, they are classified into Single-Walled Carbon Nanotube (SWCNT), Multi-Walled Carbon Nanotube (MWCNT), and Rope Carbon Nanotube.
  • SWCNT Single-Walled Carbon Nanotube
  • MWCNT Multi-Walled Carbon Nanotube
  • Rope Carbon Nanotube Rope Carbon Nanotube.
  • a catalyst for producing carbon nanotubes in the form of particles is charged into a fluidized bed reactor, and then the catalyst is suspended while injecting a carbon source gas and a fluidizing gas into the fluidized bed reactor. Afterwards, the reactor is heated to decompose the carbon source gas on the surface of the floating catalyst, thereby synthesizing carbon nanotubes.
  • the activity of the catalyst serves as a main factor in determining the productivity of the overall manufacturing process, and accordingly, research on catalysts with higher activity and their manufacturing methods is active. do.
  • the activity of the catalyst can be further increased by increasing the amount of main catalyst component supported in the support or by supporting the co-catalyst component together.
  • the cocatalyst actually inhibits the dispersion of the main catalyst component, and there is a limit to the method of increasing the catalytic activity by increasing the amount of the main catalyst supported. there is.
  • the catalyst is supported on a support, there is a problem that the performance of the catalyst is reduced due to strong bonding between the support and the catalyst.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2015-0007266
  • the present invention is intended to solve the above problems and to provide a method for producing a catalyst for producing carbon nanotubes with improved production of carbon nanotubes per unit catalyst.
  • the present invention provides a catalyst for producing carbon nanotubes and a method for producing the catalyst for producing carbon nanotubes.
  • the present invention includes a support coated with carbon; and a main catalyst component and a co-catalyst component supported on the support, and wherein the support includes 0.1 to 3.0 parts by weight of a carbon coating based on 100 parts by weight of the support.
  • the present invention provides the catalyst for producing carbon nanotubes according to [1] above, wherein the BET specific surface area of the carbon-coated support is 70 to 150 m 2 /g.
  • the present invention provides the catalyst for producing carbon nanotubes according to [1] or [2] above, wherein the pore volume of the carbon-coated support is 0.18 to 0.30 cm 3 /g.
  • the present invention provides a catalyst for producing carbon nanotubes according to any one of [1] to [3] above, wherein the carbon-coated support includes 0.1 to 2.0 parts by weight of a carbon coating based on 100 parts by weight of the support. .
  • the present invention provides the catalyst for producing carbon nanotubes according to any one of [1] to [4] above, wherein the catalyst for producing carbon nanotubes has a specific surface area of 50 to 90 m 2 /g.
  • the present invention includes the steps of (S1) immersing a carbon source in a support; (S2) manufacturing a carbon-coated support coated with carbon by sintering a support on which a carbon source is supported; (S3) preparing a mixture by mixing the carbon-coated support and the catalyst support liquid; and (S4) calcining the mixture to prepare a supported catalyst, wherein the calcining temperature in step (S2) is 450 to 950°C.
  • the carbon source is C 4 to C 20 carboxylic acid, glucose, lactose, glucose, cellulose, sucrose, sugar polymer, carbohydrate, urea, thiourea, ethylene glycol, and glycerol.
  • a method for producing a catalyst for producing carbon nanotubes, which is at least one selected from the group consisting of, is provided.
  • step (S1) includes (S1-1) mixing a solution containing a support and a carbon source; and (S1-2) drying the mixture obtained in the above step. It provides a method for producing a catalyst for producing carbon nanotubes.
  • the present invention provides a method for producing a catalyst for producing carbon nanotubes according to any one of [6] to [8] above, wherein the drying in step (S1-2) is performed at a temperature of 50 to 200 ° C. .
  • the present invention provides a method for producing a catalyst for producing carbon nanotubes according to any one of [6] to [10] above, wherein the calcination in step (S2) is performed in a reducing atmosphere.
  • step (S3) includes (S3-1) mixing a carbon coating support and a carbon nanotube production catalyst solution to prepare a mixture; and (S3-2) drying the mixture.
  • a method for producing a catalyst for producing carbon nanotubes is provided.
  • the present invention provides a method for producing a catalyst for producing carbon nanotubes according to any one of [6] to [12] above, wherein the drying in step (S3-2) is performed at a temperature of 50 to 200 ° C. .
  • the present invention provides a method for producing a catalyst for producing carbon nanotubes according to any one of [6] to [13] above, wherein the calcination in step (S4) is performed in a reducing atmosphere.
  • the present invention provides a method for producing a catalyst for producing carbon nanotubes according to any one of [6] to [14] above, wherein the calcination temperature in step (S4) is 300 to 800°C.
  • Figure 1 is a graph showing the BET specific surface area according to the firing temperature during carbon coating of the carbon-coated supports prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • Figure 2 is a graph showing the carbon content according to the firing temperature during carbon coating of the carbon-coated supports prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • Figure 3 is a graph showing the void volume according to the firing temperature during carbon coating of the carbon-coated supports prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • Figure 4 is a graph showing the BET specific surface area of carbon nanotubes synthesized using the catalyst prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • Figure 5 is a graph showing the bulk density of carbon nanotubes synthesized using the catalyst prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • Figure 6 is a graph showing the yield when carbon nanotubes were synthesized using the catalyst prepared in Examples 1 to 4 and Comparative Examples 1 and 2.
  • the term 'carbon nanotube' used in the present invention is a secondary structure formed by completely or partially gathering carbon nanotube units to form a bundle, and the carbon nanotube units have graphite sheets of nano size. It has a cylindrical shape and an sp2 bond structure. At this time, the characteristics of a conductor or a semiconductor can be displayed depending on the angle and structure at which the graphite surface is rolled.
  • the carbon nanotube unit is divided into single-walled carbon nanotube (SWCNT, single-walled carbon nanotube), double-walled carbon nanotube (DWCNT, double-walled carbon nanotube), and multi-walled carbon nanotube (MWCNT). , multi-walled carbon nanotube), and the thinner the wall thickness, the lower the resistance.
  • the carbon nanotubes of the present invention may include one or more of single-walled, double-walled, and multi-walled carbon nanotube units.
  • the catalyst used in the synthesis of carbon nanotubes using the chemical vapor deposition method is in the form of solid particles and can be manufactured through various methods, but is generally manufactured using the supporting method, which is a method of supporting a metal component on a support.
  • the catalyst manufacturing method using the supported method can produce a large amount of catalyst in a faster time compared to the catalyst manufacturing method using physical or chemical vapor deposition, and the cost of catalyst manufacturing is low while also maintaining the activity of the catalyst itself, making it the most popular in the industrial field. It is widely used.
  • the method of supporting a co-catalyst component together with the main catalyst component to improve the activity of the catalyst component is preferred.
  • the catalyst for producing carbon nanotubes of the present invention uses a support coated with an appropriate amount of carbon as a support on which catalyst particles are supported, so that the catalyst particles are properly dispersed within the support, thereby improving the yield of the catalyst.
  • the catalyst for producing carbon nanotubes of the present invention includes a support coated with carbon; and a main catalyst component and a co-catalyst component supported on the support, and the support includes 0.1 to 3.0 parts by weight of a carbon coating based on 100 parts by weight of the support.
  • the support may be one or more metal oxides or hydroxides selected from the group consisting of aluminum, magnesium, calcium, and silicon, and may specifically be aluminum oxide or aluminum hydroxide, and more specifically, It could be boehmite.
  • metal oxides are porous and have a large specific surface area, so they can exhibit high catalytic activity when loaded with catalyst components, and their mechanical strength is also excellent, preventing phenomena such as collapse of catalyst particles during the manufacturing process of carbon nanotubes. can do.
  • aluminum oxide is preferred because it is easy to support catalyst components and has excellent durability.
  • the shape of the support is not particularly limited, but may be spherical or potato-shaped. Additionally, the support may have a porous structure, molecular sieve structure, honeycomb structure, etc. to have a relatively high surface area per unit mass or unit volume.
  • the carbon may be coated on the surface and pores of the support.
  • the carbon-coated support may include 0.1 to 3.0 parts by weight of the carbon coating, specifically 0.1 to 2.0 parts by weight, and more specifically 0.5 to 1.5 parts by weight, based on 100 parts by weight of the carbon-coated support. there is.
  • the catalyst for carbon nanotube production can exhibit excellent carbon nanotube production yield by having appropriate pores and excellent catalyst dispersibility. If the content of the carbon coating is too small, the effect of improving carbon nanotube yield is insufficient, and if the content of the carbon coating is excessive, the pores of the support may be blocked and the dispersibility of the supported catalyst may deteriorate.
  • the content of the carbon coating refers to the content of carbon coated on the support.
  • the BET specific surface area of the carbon-coated support may be 70 to 600 m 2 /g, specifically 70 to 500 m 2 /g, 70 to 400 m 2 /g, 70 to 300 m 2 /g, 75 It may be from 300 m 2 /g, 75 to 200 m 2 /g, and more specifically, from 75 to 150 m 2 /g.
  • the specific surface area may be measured by the BET method, and more specifically, it may be calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mini II from BEL Japan.
  • the pore volume of the carbon-coated support may be 0.18 to 0.30 cm 3 /g, specifically 0.18 to 0.28 cm 3 /g, and more specifically 0.20 to 0.25 cm 3 /g. .
  • the carbon coating of the support may be manufactured by supporting a carbon source on a support and then baking the support on which the carbon source is supported. By calcining the support on which the carbon source is supported, the carbon coating can be formed on the surface and pores of the support.
  • the carbon source may be an organic acid, and the organic acid may be, for example, a multicarboxylic acid.
  • the multicarboxylic acid is a compound containing one or more carboxyl groups and may be one or more selected from dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid, for example, citric acid, oxalic acid, malonic acid, succinic acid, or tartaric acid. .
  • the main catalyst component may be one or more selected from the group consisting of Co, Ni, and Fe, and is preferably Co.
  • the main catalyst component plays a role in lowering the activation energy of the reaction in which the carbon source gas for producing carbon nanotubes is decomposed to form carbon nanotubes, thereby allowing the reaction to proceed smoothly.
  • the main catalyst components listed above have high catalytic activity and It also has the advantage of being durable.
  • the cocatalyst component may be one or more selected from the group consisting of Mo and V, and may preferably be V.
  • the co-catalyst component plays a role in further increasing the activity of the catalyst by increasing the dispersion of the main catalyst component.
  • the co-catalyst components listed above have the advantage of having a high synergy effect with the co-catalyst components described above and being easy to support on a support. there is.
  • the specific surface area of the catalyst for producing carbon nanotubes according to an embodiment of the present invention may be 50 to 90 m 2 /g, specifically 50 to 85 m 2 /g, and more specifically 50 to 80 m 2 /g. It may be g.
  • the main catalyst component content of the catalyst for producing carbon nanotubes according to an embodiment of the present invention may be 5 to 20% by weight, preferably 10 to 15% by weight.
  • the content of the main catalyst component can be calculated by dividing the mass of the main catalyst component in the main catalyst precursor introduced during the manufacturing process by the mass of the finally obtained catalyst, and separately, the main catalyst component in the catalyst particles through ICP-OES analysis. It can also be calculated by measuring the content of.
  • the molar ratio between the main catalyst component and the cocatalyst component may be 10:0.1 to 10:10, preferably 10:0.5 to 10:5.
  • the synergistic effect between the two components can be maximized, and specifically, the agglomeration of the active components in the support can be minimized and the activity of the catalyst can be maximized.
  • the method for producing a catalyst for producing carbon nanotubes of the present invention involves first manufacturing a carbon-coated support coated with carbon, and then supporting a catalyst and a co-catalyst on the produced carbon-coated support to produce a supported catalyst for producing carbon nanotubes. Includes.
  • the supported catalyst for producing carbon nanotubes of the present invention includes the steps of (S1) immersing a carbon source in a support; (S2) manufacturing a carbon-coated support coated with carbon by sintering a support on which a carbon source is supported; (S3) preparing a mixture by mixing the carbon-coated support and the catalyst support liquid; and (S4) calcining the mixture to prepare a supported catalyst, wherein the calcining temperature in step (S2) is 450 to 950°C.
  • step S1 the carbon source is immersed in the support.
  • the carbon source may be immersed in the support by mixing the support with a solution containing the carbon source.
  • the support may be one or more metal oxides or hydroxides selected from the group consisting of aluminum, magnesium, calcium, and silicon. Specifically, it may be aluminum oxide or aluminum hydroxide, and more specifically, it may be boehmite.
  • the support may have a specific surface area of 100 to 1000 m 2 /g, preferably 150 to 600 m 2 /g.
  • specific surface area of the support is within the above-mentioned range, there is an advantage in that the activity of the catalyst can be increased while durability can also be maintained at a decent level.
  • the support may have a D 50 of 10 to 70 ⁇ m, a D 90 of 20 to 90 ⁇ m, and preferably a D 50 of 20 to 60 ⁇ m, and a D 90 of 30 to 80 ⁇ m. Additionally, the support may have a bulk density of 300 to 1200 kg/m 3 , and preferably may have a bulk density of 500 to 1000 kg/m 3 . When the physical properties of the support satisfy the above-mentioned range, the durability of the catalyst including the support can be excellent, and the size and physical properties of the carbon nanotubes manufactured from the catalyst can be excellent.
  • the bulk density can be calculated by filling a 5 ml cylinder with the support to be measured, measuring the volume by reading the scale, and dividing the confirmed weight by the previously measured volume.
  • the shape of the support is not particularly limited, but may be spherical or potato-shaped. Additionally, the support may have a porous structure, molecular sieve structure, honeycomb structure, etc. to have a relatively high surface area per unit mass or unit volume.
  • the carbon source may be one or more selected from the group consisting of C 4 to C 20 carboxylic acids, glucose, lactose, glucose, cellulose, sucrose, sugar polymers, carbohydrates, urea, thio-urea, ethylene glycol, and glycerol.
  • the C 4 to C 20 carboxylic acid may be one or more multicarboxylic acids selected from dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid, such as oxalic acid, citric acid, glycolic acid, lactic acid, tartaric acid, malic acid, succinic acid, Includes saturated carboxylic or polycarboxylic acids such as glycolic acid, malonic acid, glutaric acid, adipic acid, isocitric acid, oxalosuccinic acid, tricarbalic acid, and unsaturated carboxylic acids or polycarboxylic acids such as maleic acid, fumaric acid, and aconitic acid.
  • multicarboxylic acids selected from dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid, such as oxalic acid, citric acid, glycolic acid, lactic acid, tartaric acid, malic acid, succinic acid, Includes saturated carboxylic or polycarboxy
  • an additional solvent in addition to the organic acid may be used.
  • the solvent may be one that can dilute the organic acid and be easily removed during the subsequent drying process.
  • water or alcohol solvents such as ethanol, methanol, or butanol may be used, but are not particularly limited.
  • the carbon source may be used in an amount of 5 to 50 parts by weight, specifically 10 to 40 parts by weight, and more specifically 15 to 30 parts by weight. If the amount of the carbon source used is too small, the carbon coating formed on the support may not be properly formed, and if the amount of the carbon source used is excessive, it may be difficult to smoothly immerse the support.
  • a drying step is performed to first remove the solvent of the solution containing the carbon source in order to efficiently convert the carbon source into a carbon coating on the surface of the support. It can be.
  • the step of immersing the carbon source in the support in step (S1) specifically includes the step of (S1-1) mixing a solution containing the support and the carbon source; and (S1-2) drying the mixture obtained in the above step.
  • Drying in this step may be performed using equipment commonly used for drying, and may be performed under normal pressure or reduced pressure conditions.
  • drying When drying is performed at normal pressure, it may be performed through facilities such as an oven, and when performed under reduced pressure conditions, it may be performed through facilities such as a dryer equipped with a reduced pressure facility.
  • the pressure When drying is performed under reduced pressure conditions, the pressure may be 10 to 100 mbar, specifically 50 to 100 mbar.
  • the temperature at which drying is performed may be 50 to 200°C, specifically, in the case of normal pressure drying, it may be performed at 100 to 150°C, and in the case of reduced pressure drying, it may be performed at 50 to 100°C. Since drying under reduced pressure conditions is easier, the temperature during reduced pressure drying may be lower than that of normal pressure drying. Within the above-mentioned temperature conditions, the solvent in the catalyst support liquid can be removed more smoothly. If the temperature is too low, the solvent may not be sufficiently removed. If the temperature is too high, the solvent may be sufficiently removed, but the catalyst component or support may not be removed. Disappearance problems may also occur.
  • the drying time may be 1 hour to 10 hours, specifically 2 hours to 8 hours, and more specifically 3 hours to 8 hours.
  • step S2 the support in which the carbon source is immersed is fired to produce a carbon-coated support.
  • the calcination temperature in step (S2) may be 450 to 950°C, specifically 500 to 950°C, 500 to 900°C, 600 to 900°C, and more specifically 700 to 900°C.
  • the surface area and content of the carbon coating formed on the surface of the support may change.
  • carbonization of the carbon source progresses more and the surface area of the carbon-coated support decreases, The carbon content of the carbon coating formed on the carbon coating support decreases.
  • the firing temperature is excessively increased, the structure of the support may collapse and the pore volume may decrease.
  • the surface area, carbon content, and pore volume of the produced carbon-coated support can satisfy appropriate ranges, and when a carbon nanotube production catalyst is manufactured using such a carbon-coated support, the produced carbon Nanotube manufacturing catalysts can exhibit excellent manufacturing yields.
  • the baking in step (S2) may be performed for 0.5 to 3 hours, preferably 0.5 to 2 hours. If the firing time is too short, the carbon source cannot be sufficiently converted into the carbon coating, and if the firing time is too long, it may cause structural collapse of the support or the surface area of the carbon coating support and the carbon content of the carbon coating may decrease below an appropriate level. .
  • the carbon coated support prepared in this way will include 0.1 to 3.0 parts by weight of the carbon coating, specifically 0.1 to 2.0 parts by weight, and more specifically 0.5 to 1.5 parts by weight, based on 100 parts by weight of the carbon coated support. You can.
  • the carbon coating content of the carbon coating support satisfies the above range, the catalyst for producing carbon nanotubes has appropriate pores and has excellent catalyst dispersibility, so that it can exhibit excellent carbon nanotube production yield. If the carbon coating content is too small, the effect of improving carbon nanotube yield when producing carbon nanotubes using a carbon nanotube catalyst manufactured using the carbon coating support is insufficient, and if the carbon coating content is excessive, the support The dispersibility of the supported catalyst may deteriorate by blocking the pores.
  • the content of the carbon coating refers to the content of carbon coated on the support.
  • the firing in step (S2) can be performed in a reducing atmosphere, and through this, a carbon coating can be formed on the surface and pores of the support to manufacture a carbon-coated support.
  • the reducing atmosphere may be created due to decomposition of the carbon source that decomposes at the temperature at which calcination is performed.
  • the carbon-coated support After manufacturing and obtaining the carbon-coated support through steps (S1) and (S2), the carbon-coated support is used as a support on which a catalyst for producing carbon nanotubes is supported to prepare a supported catalyst for producing carbon nanotubes.
  • the step (S3) of preparing a mixture by mixing the carbon-coated support and the catalyst support liquid and (S4) the step of calcining the mixture to prepare the supported catalyst are performed in place of a conventional support as a support on which the catalyst is supported. Except for using the carbon-coated support prepared by performing (S1) and (S2), it can be performed by a conventional method for producing a supported catalyst for producing carbon nanotubes.
  • step (S3) a mixture is prepared by mixing the carbon coating support obtained in step (S2) and the catalyst support liquid.
  • the catalyst support liquid is for supporting an active ingredient that plays a substantial catalyst role on the carbon coating support.
  • the catalyst support liquid is capable of increasing the main catalyst component that can exhibit catalytic activity and the catalytic activity of the main catalyst component. It may contain co-catalyst components.
  • the main catalyst component may be one or more selected from the group consisting of Co, Ni, and Fe, and is preferably Co.
  • the main catalyst component plays a role in lowering the activation energy of the reaction in which carbon source gas decomposes to form carbon nanotubes, thereby allowing the reaction to proceed smoothly.
  • the main catalyst components listed above have the advantage of having high catalytic activity and durability as well. There is.
  • the main catalyst component may be included in the form of a precursor in the catalyst support liquid.
  • the cocatalyst component may be one or more selected from the group consisting of Mo and V, and may be preferably V.
  • the co-catalyst component plays a role in further increasing the activity of the catalyst by increasing the dispersion of the main catalyst component.
  • the co-catalyst components listed above have the advantage of having a high synergy effect with the co-catalyst components described above and being easy to support on a support. there is.
  • the co-catalyst component may also be included in the catalyst support liquid in precursor form.
  • the cocatalyst precursor may include a halide, nitride, oxide, nitroxide, sulfur oxide, sulfide, hydroxide, or metal salt of a cocatalyst component, and more specifically, in the case of Mo, (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O, Mo(CO) 6 , (NH 4 )MoS 4 or MoO 3 , for V NH 4 VO 3 , NaVO 3 , V(CO) 6 , V 2 SO 4 ⁇ 7H 2 O, V 2 O 3 or V 2 O 5 can be used.
  • the precursors listed above are relatively easy to obtain and have the advantage of being easily converted to oxide form.
  • the catalyst support liquid may further include a solvent capable of dissolving the main catalyst precursor and co-catalyst precursor.
  • the solvent of the catalyst support liquid is sufficient as long as it can dissolve the main catalyst precursor and the cocatalyst precursor and can be easily removed during the subsequent drying process, for example, water, alcohol solvents such as ethanol, methanol or butanol, toluene or xylene.
  • Aromatic hydrocarbon solvents such as ren may be used, but are not limited thereto.
  • the molar ratio between the main catalyst component and the cocatalyst component in the catalyst support liquid may be 10:0.1 to 10:10, preferably 10:0.5 to 10:5.
  • the synergistic effect between the two components can be maximized, and specifically, the activity of the catalyst can be maximized while minimizing agglomeration of the active component in the support.
  • the catalyst support liquid may further contain an organic acid in addition to the main catalyst precursor and co-catalyst precursor.
  • the organic acid used in the present invention may be, for example, a multicarboxylic acid, which is a compound containing one or more carboxyl groups and is highly soluble as a complexing agent, inhibits precipitation, facilitates the synthesis of catalysts, and acts as an activator. As an activator, it increases the synthesis of carbon nanotubes.
  • the multicarboxylic acid may be one or more selected from dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid, for example, citric acid, oxalic acid, malonic acid, succinic acid, or tartaric acid.
  • the organic acid may be included in an amount of 0.1 to 1.5% by weight based on the total weight of the catalyst supporting liquid. Within this range, precipitation of metal components of the main catalyst and cocatalyst does not occur in the catalyst solution, and the occurrence of cracks during the subsequent firing process can also be suppressed.
  • the molar ratio of the sum of the main catalyst precursor and cocatalyst precursor and the organic acid can be appropriately mixed in the range of about 5:1 to 30:1, and if this molar ratio is satisfied, the carbon nanotubes synthesized from the prepared supported catalyst The bulk density can be further increased.
  • step (S3) includes (S3-1) mixing a carbon coating support and a catalyst support liquid to prepare a mixture; and (S3-2) drying the mixture.
  • the content of the main catalyst component is 1 to 30% by weight, specifically 3 to 20% by weight, and more specifically 5 to 15% by weight.
  • the support and catalyst support liquid may be mixed.
  • the solvent of the catalyst support liquid is removed through the step of drying the mixture in step (S3-2), so that the main catalyst and cocatalyst precursors of the catalyst support liquid mixed with the carbon coating support and immersed in the carbon coating support are then mixed with the carbon coating support. It can be converted to the oxide form more efficiently in the calcination step.
  • Drying in this step can be performed using equipment commonly used for drying, and can be performed under normal pressure or reduced pressure conditions.
  • drying When drying is performed at normal pressure, it can be performed through equipment such as an oven, and when drying is performed under reduced pressure conditions, it can be performed through equipment such as a dryer equipped with a reduced pressure equipment.
  • the pressure When drying is performed under reduced pressure conditions, the pressure may be 10 to 100 mbar, preferably 50 to 100 mbar.
  • the temperature at which drying is performed may be 50 to 200°C, particularly 100 to 150°C in the case of normal pressure drying, and 50 to 100°C in the case of reduced pressure drying. Since drying under reduced pressure conditions is easier, the temperature during reduced pressure drying may be lower than that of normal pressure drying.
  • the solvent in the catalyst support liquid can be removed more smoothly. If the temperature is too low, the solvent may not be sufficiently removed. If the temperature is too high, the solvent may be sufficiently removed, but the catalyst component or support may not be removed. Disappearance problems may also occur.
  • the drying time may be 1 hour to 10 hours, specifically 2 hours to 8 hours, and more specifically 3 hours to 8 hours.
  • the final catalyst can be obtained by calcining the dried mixture.
  • the main catalyst and co-catalyst precursor components on the surface and inside the support are converted to oxides, which may result in catalytic activity.
  • the firing may be performed at a temperature of 300 to 800°C, specifically 600 to 800°C, and more specifically 650 to 750°C. Additionally, the firing may be performed for 0.5 to 3 hours, specifically 1 to 2 hours. If the calcination temperature in this step is too low or the calcination time is too short, the catalyst precursor cannot be sufficiently converted to the oxide form, and if the calcination temperature is too high or the calcination time is too long, structural collapse of the support or support may occur. Loss of co-catalyst and main catalyst components may occur.
  • the main catalyst component content of the catalyst for producing carbon nanotubes prepared through this step may be 5 to 20% by weight, preferably 10 to 15% by weight.
  • the content of the main catalyst component can be calculated by dividing the mass of the main catalyst component in the main catalyst precursor introduced during the manufacturing process by the mass of the finally obtained catalyst, and separately, the main catalyst component in the catalyst particles through ICP-OES analysis. It can also be calculated by measuring the content of.
  • the catalyst for producing carbon nanotubes of the present invention can be usefully used in the production of carbon nanotubes.
  • carbon nanotubes can be manufactured through a method including the step of putting the catalyst for producing carbon nanotubes into a chemical vapor deposition reactor, injecting carbon source gas into the reactor, and then heating to synthesize carbon nanotubes.
  • the carbon source gas that can be used in the production of the carbon nanotubes is a carbon-containing gas that can be decomposed at high temperature to form carbon nanotubes, and specific examples include various carbon-containing compounds such as aliphatic alkanes, aliphatic alkenes, aliphatic alkynes, and aromatic compounds. It can be used, and more specifically, methane, ethane, ethylene, acetylene, ethanol, methanol, acetone, carbon monoxide, propane, butane, benzene, cyclohexane, propylene, butene, isobutene, toluene, xylene, cumene, and ethylbenzene.
  • Compounds such as , naphthalene, phenanthrene, anthracene, acetylene, formaldehyde, and acetaldehyde can be used.
  • a flowing gas together with the carbon source gas may be injected into the chemical vapor deposition reactor.
  • the fluidizing gas is intended to provide fluidity to the carbon nanotubes and catalyst particles synthesized in the fluidized bed reactor, and a gas having high thermal stability without reacting with the carbon source gas or carbon nanotubes can be used.
  • nitrogen gas or inert gas can be used as the fluidizing gas.
  • a reducing gas may be injected together with the carbon source gas and the flowing gas.
  • the reducing gas can further promote decomposition of the carbon source gas, and for example, hydrogen gas can be used as the reducing gas.
  • Heating in the carbon nanotube synthesis step may be performed so that the temperature inside the reactor is 600 to 800°C. If the temperature within the reactor is within the above-mentioned range, the carbon source gas is easily decomposed and carbon nanotubes can be easily synthesized. If the temperature is below the above-mentioned range, there may be a problem in which carbon nanotubes are not manufactured well, and if the temperature is above the above-mentioned range, not only is a lot of money spent on heating, but the catalyst particles themselves are decomposed. This can happen.
  • Carbon nanotubes manufactured using the carbon nanotube catalyst may exhibit a bulk density of 20 kg/m 3 or more, specifically 25 kg/m 3 or more, more specifically 27 kg/m 3 or more, and 50 kg/m It may exhibit a bulk density of 3 or less, specifically 45 kg/m 3 or less, more specifically 42 kg/m 3 or less.
  • a boehmite support with a specific surface area of 190 m 2 /g and a D 50 of 50 ⁇ m was prepared. Mixing was completed by immersing 50 g of the boehmite support in a solution of 10 g of citric acid and 100 g of water at 120°C for 4 hours. After drying the mixture for 5 hours at normal pressure and 120°C, the carbon coated support was produced by baking it at 900°C for 1 hour in a double-layered container that allows the gas flowing inside to be absorbed and purified by carbon nanotubes. did.
  • a catalyst support solution was prepared by mixing and dissolving 16 g of cobalt precursor Co(NO 3 ) 2 .6H 2 O and 0.63 g of vanadium precursor NH 4 VO 3 in 21 g of distilled water. 20 g of the carbon coating support prepared above was added to the prepared catalyst support solution and mixed. After mixing was completed, the mixture was dried at normal pressure and 120°C for 5 hours and then calcined at 680°C for 1 hour to obtain a catalyst.
  • a catalyst was obtained in the same manner as in Example 1, except that the calcination temperature during production of the carbon-coated support was different from 900°C as shown in Table 1 below.
  • a catalyst support solution was prepared by mixing and dissolving 16 g of cobalt precursor Co(NO 3 ) 2 .6H 2 O and 0.63 g of vanadium precursor NH 4 VO 3 in 21 g of distilled water. 20 g of boehmite support with a specific surface area of 190 m 2 /g and D 50 of 50 ⁇ m was added to the prepared catalyst support solution and mixed. After mixing was completed, the mixture was dried at normal pressure and 120°C for 5 hours and then calcined at 680°C for 1 hour to obtain a catalyst.
  • BJH barrett-joyner-halenda
  • the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) was measured using the BET 6-point method using BELSORP-mini II from BEL Japan.
  • the content of Co was confirmed by atomic emission spectroscopy (ICP, ICP-OES, Optima 5300DV).
  • Example 1 900 82.32 0.22 58.97 63.67
  • Example 2 800 87.00 0.23 60.23 64.19
  • Example 3 700 97.84 0.23 65.83 70.28
  • Example 4 500 126.95 0.21 75.62 81.05
  • Comparative Example 1 300 171.89 0.13 74.99 80.06 Comparative Example 2 - - - 100.40 113.15
  • Example 1 900 N/D 12.8
  • Example 2 800 0.7 13.3
  • Example 3 700
  • Example 4 500 1.4 13.2 Comparative Example 1 300 3.7 13.9 Comparative Example 2 - - 13.6
  • Carbon nanotubes were prepared using the catalysts prepared in Examples 1 to 4 and Comparative Examples 1 and 2, and their physical properties were analyzed and shown in Table 3 and Figures 4 to 6 below.
  • the catalysts prepared in the examples and comparative examples were introduced into a chemical vapor deposition reactor, and nitrogen, hydrogen, and ethylene gas were added into the reactor at a volume ratio of 1:1:1. Afterwards, the temperature in the reactor was set to 680°C to synthesize carbon nanotubes. The yield, specific surface area, and bulk density of the obtained carbon nanotubes were measured and summarized in Table 3 below, and the yield and bulk density were measured by the methods below.
  • Yield (total weight of carbon nanotubes produced - weight of catalyst used during production)/weight of catalyst used during production
  • Example 1 19.47 176.68 34.41
  • Example 2 20.48 215.50 29.59
  • Example 3 16.67 198.10 40.56
  • Example 4 10.19 238.95 35.24 Comparative Example 1 4.63 177.21 42.13 Comparative Example 2 9.16 214.20 23.79

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 탄소가 코팅되어 있는 지지체에 촉매 성분이 담지되어 있는 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법에 관한 것이다.

Description

탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법
관련출원과의 상호인용
본 출원은 2022년 11월 03일에 출원된 한국특허출원 제10-2022-0145311호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 높은 생산성을 나타내는 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법에 관한 것이다.
탄소나노소재는 소재의 모양에 따라 퓰러렌(Fullerene), 탄소나노튜브(Carbon Nanotube; CNT), 그래핀(Graphene), 흑연 나노 플레이트(Graphite Nano Plate) 등이 있으며, 이 중 탄소나노튜브는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 흑연 면이 나노 크기의 직경으로 둥글게 말린 거대 분자이다.
탄소나노튜브는 속이 비어 있어 가볍고 전기 전도도는 구리만큼 좋으며, 열전도도는 다이아몬드만큼 우수하고 인장력은 철강에 못지 않다. 말려진 형태에 따라서 단층벽 탄소나노튜브(Single-Walled Carbon Nanotube; SWCNT), 다중벽 탄소나노튜브(Multi-Walled Carbon Nanotube; MWCNT), 다발형 탄소나노튜브(Rope Carbon Nanotube)로 구분되기도 한다.
최근에는 한 번에 많은 양의 탄소나노튜브를 합성할 수 있는 탄소나노튜브 합성 기술에 대한 연구가 활발히 진행 중인 상황이며, 다양한 방법 중 유동층 반응기를 이용한 화학 기상 증착법(Chemical Vapor Depostion, CVD)의 경우, 쉽게 많은 양의 탄소나노튜브를 합성할 수 있다는 점에서 실제 산업 분야에서 가장 선호되고 있다.
구체적으로, 상기 화학 기상 증착법에서는 입자 형태의 탄소나노튜브 제조용 촉매를 유동층 반응기에 충전한 후, 유동층 반응기 내부로 탄소원 가스 및 유동 가스를 주입하면서 상기 촉매를 부유시킨다. 그 후 반응기를 가열하여 부유하는 촉매의 표면에서 탄소원 가스가 분해됨으로써 탄소나노튜브가 합성된다.
이와 같은 화학 기상 증착법을 이용한 탄소나노튜브의 제조공정에서는 촉매의 활성이 전체적인 제조공정의 생산성을 결정할 수 있는 주 요소로 작용하며, 이에 따라 더 높은 활성을 갖는 촉매와 그 제조방법에 관한 연구가 활발하다. 예컨대, 지지체 내 주촉매 성분의 담지량을 더 높이거나, 조촉매 성분을 함께 담지함으로써 촉매의 활성을 더 높일 수 있음이 알려져 있다. 다만 조촉매와 함께 과도한 양의 주촉매 성분을 담지할 경우에는 오히려 조촉매가 주촉매 성분의 분산도를 저해하는 문제가 존재하며, 주촉매의 담지량을 증가시켜 촉매 활성을 증가시키는 방법에는 한계가 있다. 또한, 지지체 내 촉매를 담지 시켰을 때, 지지체와 촉매 간의 강한 결합으로 인하여 촉매의 성능이 저하되는 문제가 있다.
따라서, 탄소나노튜브 제조용 촉매의 활성을 더욱 개선할 수 있는 방법에 대한 추가적인 연구가 필요한 상황이다.
선행기술문헌
(특허문헌 1) 대한민국 공개특허공보 제10-2015-0007266호
본 발명은 상기의 문제점을 해결하기 위한 것으로, 단위 촉매 당 탄소나노튜브의 생산량이 향상된 탄소나노튜브 제조용 촉매의 제조방법을 제공하기 위한 것이다.
상기한 과제를 해결하기 위하여, 본 발명은 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[1] 본 발명은 탄소가 코팅되어 있는 지지체; 및 상기 지지체에 담지되어 있는 주촉매 성분 및 조촉매 성분을 포함하고, 상기 지지체가 상기 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하는 탄소나노튜브 제조용 촉매를 제공한다.
[2] 본 발명은 상기 [1]에 있어서, 상기 탄소가 코팅되어 있는 지지체의 BET 비표면적은 70 내지 150 m2/g인 탄소나노튜브 제조용 촉매를 제공한다.
[3] 본 발명은 상기 [1] 또는 [2]에 있어서, 상기 탄소가 코팅되어 있는 지지체의 공극 부피는 0.18 내지 0.30 cm3/g인 탄소나노튜브 제조용 촉매를 제공한다.
[4] 본 발명은 상기 [1] 내지 [3] 중 어느 하나에 있어서, 상기 탄소 코팅 지지체는 상기 지지체 100 중량부를 기준으로 0.1 내지 2.0 중량부의 탄소 코팅을 포함하는 탄소나노튜브 제조용 촉매를 제공한다.
[5] 본 발명은 상기 [1] 내지 [4] 중 어느 하나에 있어서, 상기 탄소나노튜브 제조용 촉매의 비표면적은 50 내지 90 m2/g인 탄소나노튜브 제조용 촉매를 제공한다.
[6] 또한, 본 발명은 (S1) 지지체에 탄소원을 침지시키는 단계; (S2) 탄소원이 담지된 지지체를 소성시켜 탄소가 코팅되어 있는 탄소 코팅 지지체를 제조하는 단계; (S3) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계; 및 (S4) 상기 혼합물을 소성시켜 담지 촉매를 제조하는 단계를 포함하고, 상기 단계 (S2)에서의 소성 온도는 450 내지 950℃인 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[7] 본 발명은 상기 [6]에 있어서, 상기 탄소원은 C4 내지 C20의 카르복실산, 포도당, 락토오스, 글루코오스, 셀룰로오스, 수크로오스, 설탕 고분자, 탄수화물, 유레아, 티오 유레아, 에틸렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1종 이상인 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[8] 본 발명은 상기 [6] 또는 [7]에 있어서, 상기 단계 (S1)은, (S1-1) 지지체와 탄소원을 포함하는 용액을 혼합하는 단계; 및 (S1-2) 상기 단계에서 수득한 혼합물을 건조하는 단계를 포함하는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[9] 본 발명은 상기 [6] 내지 [8] 중 어느 하나에 있어서, 상기 단계 (S1-2)의 건조는 50 내지 200℃의 온도에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[10] 본 발명은 상기 [6] 내지 [9] 중 어느 하나에 있어서, 상기 단계 (S2)의 소성을 통하여 제조된 탄소 코팅 지지체는 상기 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[11] 본 발명은 상기 [6] 내지 [10] 중 어느 하나에 있어서, 상기 단계 (S2)의 소성은 환원 분위기에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[12] 본 발명은 상기 [6] 내지 [11] 중 어느 하나에 있어서, 상기 단계 (S3)는 (S3-1) 탄소 코팅 지지체와 탄소나노튜브 제조 촉매 용액을 혼합하여 혼합물을 제조하는 단계; 및 (S3-2) 상기 혼합물을 건조하는 단계를 포함하는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[13] 본 발명은 상기 [6] 내지 [12] 중 어느 하나에 있어서, 상기 단계 (S3-2)의 건조는 50 내지 200℃의 온도에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[14] 본 발명은 상기 [6] 내지 [13] 중 어느 하나에 있어서, 상기 단계 (S4)의 소성은 환원 분위기에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
[15] 본 발명은 상기 [6] 내지 [14] 중 어느 하나에 있어서, 상기 단계 (S4)에서의 소성 온도는 300 내지 800℃인 탄소나노튜브 제조용 촉매의 제조방법을 제공한다.
본 발명의 제조방법을 통해 제조된 촉매를 사용하여 탄소나노튜브를 제조할 경우, 우수한 수율로 더 많은 탄소나노튜브 제조가 가능하다.
도 1은 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 탄소 코팅 지지체의 탄소 코팅시 소성 온도에 따른 BET 비표면적을 나타낸 그래프이다.
도 2는 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 탄소 코팅 지지체의 탄소 코팅시 소성 온도에 따른 탄소 함량을 나타낸 그래프이다.
도 3은 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 탄소 코팅 지지체의 탄소 코팅시 소성 온도에 따른 공극 부피를 나타낸 그래프이다.
도 4는 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 제조된 촉매를 이용하여 합성된 탄소나노튜브의 BET 비표면적을 나타낸 그래프이다.
도 5는 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 제조된 촉매를 이용하여 합성된 탄소나노튜브의 벌크 밀도를 나타낸 그래프이다.
도 6은 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 촉매를 이용하여 탄소나노튜브를 합성하였을 때의 수율을 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용하는 용어 '탄소나노튜브'는 탄소나노튜브의 단위체가 전체 또는 부분적으로 번들형을 이루도록 집합되어 형성된 2차 구조물로서, 상기 탄소나노튜브의 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 탄소나노튜브의 단위체는 벽을 이루고 있는 결합수에 따라서 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 및 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube)로 분류될 수 있으며, 벽 두께가 얇을수록 저항이 낮다.
본 발명의 탄소나노튜브는 단일벽, 이중벽 및 다중벽의 탄소나노튜브 단위체 중 어느 하나 또는 둘 이상을 포함할 수 있다.
탄소나노튜브 제조용 촉매
화학 기상 증착법을 이용한 탄소나노튜브의 합성에 사용되는 촉매는 고체 입자 형태로, 다양한 방법을 통해 제조될 수 있으나, 일반적으로는 지지체에 금속 성분을 담지하는 방식인 담지법을 이용하여 제조된다. 특히 담지법을 이용한 촉매 제조 방법은 물리 또는 화학 증착을 이용한 촉매 제조 방법 대비 빠른 시간 내 다량의 촉매를 제조할 수 있고, 촉매 제조의 비용 역시 낮으면서도, 촉매 자체의 활성 역시 준수하여 산업 분야에서 가장 널리 이용되고 있다. 나아가 최근에는 담지법을 이용하여 촉매를 제조하면서도, 촉매 성분의 활성을 향상시키기 위한 조촉매 성분을 주촉매 성분과 함께 담지하는 방식이 선호된다.
다만, 담지법을 이용하여 제조된 촉매의 경우, 지지체 자체의 물리적인 특성에 따라 담지될 수 있는 촉매량의 한계가 존재하기 때문에, 어느 정도 이상으로 촉매 활성을 끌어올리기는 쉽지 않다. 또한, 지지체와 촉매간의 결합은 활성을 저하시킬 수 있으므로 지지체에 담지된 촉매의 활성을 높게 할 수 있는 방법의 개발을 필요로 한다.
이에 따라, 본 발명의 탄소나노튜브 제조용 촉매는 촉매 입자가 담지되는 지지체로서 적정 함량의 탄소로 코팅되어 있는 지지체를 사용함으로써 촉매 입자가 지지체 내에 적절히 분산되어 촉매의 수율 개선 효과를 나타낼 수 있다.
구체적으로, 본 발명의 탄소나노튜브 제조용 촉매는 탄소가 코팅되어 있는 지지체; 및 상기 지지체에 담지되어 있는 주촉매 성분 및 조촉매 성분을 포함하고, 상기 지지체가 상기 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하는 것이다.
상기 탄소가 코팅되어 있는 지지체에서, 상기 지지체는 알루미늄, 마그네슘, 칼슘 및 실리콘으로 이루어진 군에서 선택되는 1종 이상의 금속 산화물 또는 수산화물일 수 있으며, 구체적으로 알루미늄 산화물 또는 알루미늄 수산화물일 수 있고, 더욱 구체적으로 보헤마이트(boehmite)일 수 있다. 이와 같은 금속 산화물들은 다공성을 가져 비표면적이 넓기 때문에, 촉매 성분 담지 시 높은 촉매 활성을 나타낼 수 있고, 기계적 강도 역시 우수하기 때문에 탄소나노튜브의 제조 과정 중 촉매가 입자가 붕괴되는 등의 현상을 억제할 수 있다. 특히, 알루미늄 산화물의 경우, 촉매 성분의 담지가 용이하면서도 내구성이 뛰어나 선호된다.
상기 지지체의 형상은 특별히 한정되지 않으나, 구형 또는 포테이토형일 수 있다. 또한, 상기 지지체는 단위 질량 또는 단위 부피당 비교적 높은 표면적을 갖도록 다공성 구조, 분자체 구조, 벌집 구조 등을 가질 수 있다.
상기 탄소가 코팅되어 있는 지지체에서, 상기 탄소는 상기 지지체의 표면 및 공극에 코팅되어 있을 수 있다. 상기 탄소가 코팅되어 있는 지지체는 상기 탄소가 코팅되어 있는 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하고, 구체적으로 0.1 내지 2.0 중량부, 더욱 구체적으로 0.5 내지 1.5 중량부 포함할 수 있다. 상기 탄소가 코팅되어 있는 지지체의 탄소 코팅의 함량이 상기 범위를 만족할 경우 탄소나노튜브 제조용 촉매가 적절한 공극과 함께 우수한 촉매 분산성을 가져 우수한 탄소나노튜브 제조 수율을 나타낼 수 있다. 상기 탄소 코팅의 함량이 과소하면 탄소나노튜브 수율 개선 효과가 부족하고, 탄소코팅의 함량이 과대하면 지지체의 공극을 막을 수 있으며 담지되는 촉매의 분산성이 나빠질 수 있다. 상기 탄소 코팅의 함량은 지지체에 코팅되는 탄소의 함량을 의미한다.
상기 탄소가 코팅되어 있는 지지체의 BET 비표면적은 70 내지 600 m2/g일 수 있고, 구체적으로 70 내지 500 m2/g, 70 내지 400 m2/g, 70 내지 300 m2/g, 75 내지 300 m2/g, 75 내지 200 m2/g일 수 있으며, 더욱 구체적으로 75 내지 150 m2/g일 수 있다. 상기 비표면적은 BET 법에 의해 측정된 것일 수 있으며, 더욱 구체적으로는 BEL Japan 사의 BELSORP-mini II를 이용하여 액체 질소 온도(77K) 하에서의 질소 가스 흡착량으로부터 계산될 수 있다.
또한, 상기 탄소가 코팅되어 있는 지지체의 공극 부피는 0.18 내지 0.30 cm3/g일 수 있고, 구체적으로 0.18 내지 0.28 cm3/g일 수 있으며, 더욱 구체적으로 0.20 내지 0.25 cm3/g일 수 있다.
상기 지지체의 탄소 코팅은 지지체에 탄소원을 담지시킨 후, 탄소원이 담지된 지지체를 소성시켜 제조된 것일 수 있다. 상기 탄소원이 담지된 지지체를 소성시킴으로써 상기 탄소 코팅이 상기 지지체의 표면 및 공극에 형성될 수 있다.
상기 탄소원은 유기산일 수 있고, 상기 유기산은 예컨대, 멀티카르복시산일 수 있다. 상기 멀티카르복시산은 카르복시기를 하나 이상 포함하는 화합물로 디카르복실산, 트리카르복실산 및 테트라카르복실산중에서 선택된 1 이상일 수 있으며, 예컨대 시트르산, 옥살산, 말론산, 숙신산, 또는 타르타르산 등을 사용할 수 있다.
상기 주촉매 성분은 Co, Ni 및 Fe로 이루어진 군에서 선택되는 1 이상일 수 있고, 바람직하게는 Co 일 수 있다. 주촉매 성분은 탄소나노튜브 제조를 위한 탄소원 가스가 분해되어 탄소나노튜브를 형성하는 반응의 활성화 에너지를 낮추어 반응이 원활하게 진행되게끔 하는 역할을 수행하며, 앞서 나열한 주촉매 성분들은 촉매 활성이 높으면서도 내구성 역시 준수하다는 장점이 있다
상기 조촉매 성분은 Mo 및 V로 이루어진 군에서 선택된 1 이상일 수 있고, 바람직하게는 V 일 수 있다. 조촉매 성분은 주촉매 성분의 분산도를 높여 촉매의 활성을 더욱 높이는 역할을 수행하며, 앞서 나열한 조촉매 성분들은 앞서 설명한 조촉매 성분들과의 시너지 효과가 높고, 지지체에 담지가 용이하다는 장점이 있다.
본 발명의 일 실시예에 따른 탄소나노튜브 제조용 촉매의 비표면적은 50 내지 90 m2/g일 수 있고, 구체적으로 50 내지 85 m2/g일 수 있으며, 더욱 구체적으로 50 내지 80 m2/g일 수 있다.
본 발명의 일 실시예에 따른 탄소나노튜브 제조용 촉매의 주촉매 성분 함량은 5 내지 20 중량%, 바람직하게는 10 내지 15 중량%일 수 있다. 상기 주촉매 성분 함량은 제조 과정에서 투입되는 주촉매 전구체 내 주촉매 성분의 질량을 최종적으로 수득된 촉매의 질량으로 나누어 계산될 수 있고, 이와는 별개로 ICP-OES 분석을 통해 촉매 입자 내 주촉매 성분의 함량을 측정함으로써도 계산될 수 있다.
또한, 상기 주촉매 성분 및 조촉매 성분 사이의 몰 비는 10:0.1 내지 10:10, 바람직하게는 10:0.5 내지 10:5일 수 있다. 주촉매 성분과 조촉매 성분 사이의 몰 비가 상술한 조건을 만족할 경우, 두 성분 사이의 상승 효과가 최대화될 수 있으며, 구체적으로 지지체 내 활성 성분의 뭉침이 최소화되면서 촉매의 활성이 극대화될 수 있다.
탄소나노튜브 제조용 촉매의 제조방법
본 발명의 탄소나노튜브 제조용 촉매의 제조방법은 먼저 탄소가 코팅되어 있는 탄소 코팅 지지체를 제조한 후, 제조된 탄소 코팅 지지체에 촉매 및 조촉매를 담지하여 탄소나노튜브 제조용 담지 촉매를 제조하는 과정을 포함한다.
구체적으로, 본 발명의 탄소나노튜브 제조용 담지 촉매는 (S1) 지지체에 탄소원을 침지시키는 단계; (S2) 탄소원이 담지된 지지체를 소성시켜 탄소가 코팅되어 있는 탄소 코팅 지지체를 제조하는 단계; (S3) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계; 및 (S4) 상기 혼합물을 소성시켜 담지 촉매를 제조하는 단계를 포함하고, 상기 단계 (S2)에서의 소성 온도는 450 내지 950℃인 탄소나노튜브 제조용 촉매 제조방법에 의해 제조될 수 있다.
(S1) 지지체에 탄소원을 침지시키는 단계
단계 S1에서는 지지체에 탄소원을 침지시킨다. 본 발명의 일례에 있어서, 상기 지지체를 상기 탄소원을 포함하는 용액과 혼합시키는 방법으로 상기 지지체에 탄소원을 침지시킬 수 있다.
상기 지지체는 알루미늄, 마그네슘, 칼슘 및 실리콘으로 이루어진 군에서 선택되는 1종 이상의 금속 산화물 또는 수산화물일 수 있으며, 구체적으로 알루미늄 산화물 또는 알루미늄 수산화물일 수 있고, 더욱 구체적으로 보헤마이트(boehmite)일 수 있다.
상기 지지체는 비표면적이 100 내지 1000m2/g, 바람직하게는 150 내지 600m2/g일 수 있다. 지지체의 비표면적이 상술한 범위 내인 경우, 촉매의 활성을 높이면서도, 내구성 역시 준수한 수준에서 유지할 수 있다는 장점이 있다.
상기 지지체는 D50이 10 내지 70 ㎛이고, D90이 20 내지 90 ㎛일 수 있으며, 바람직하게는 D50이 20 내지 60 ㎛이고, D90이 30 내지 80 ㎛일 수 있다. 또한, 상기 지지체는 벌크 밀도가 300 내지 1200 kg/m3일 수 있고, 바람직하게는 벌크 밀도가 500 내지 1000 kg/m3일 수 있다. 지지체의 물성이 상술한 범위를 만족하는 경우, 상기 지지체를 포함하는 촉매의 내구성이 우수하면서도, 상기 촉매로부터 제조되는 탄소나노튜브의 크기 및 물성이 우수할 수 있다. 상기 벌크 밀도는 5 ml의 실린더에 측정 대상이 되는 지지체를 가득 채우고, 눈금을 읽어 부피를 측정한 후, 저울에 올려 확인된 무게를 앞서 측정한 부피로 나누어 계산될 수 있다.
상기 지지체의 형상은 특별히 한정되지 않으나, 구형 또는 포테이토형일 수 있다. 또한, 상기 지지체는 단위 질량 또는 단위 부피당 비교적 높은 표면적을 갖도록 다공성 구조, 분자체 구조, 벌집 구조 등을 가질 수 있다.
상기 탄소원은 C4 내지 C20의 카르복실산, 포도당, 락토오스, 글루코오스, 셀룰로오스, 수크로오스, 설탕 고분자, 탄수화물, 유레아, 티오 유레아, 에틸렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 C4 내지 C20의 카르복실산은 디카르복실산, 트리카르복실산 및 테트라카르복실산중에서 선택된 1 이상인 멀티카르복시산일 수 있으며, 옥살산, 시트르산, 글리콜산, 락트산, 타르타르 산, 말산, 숙신산, 글리콜산, 말론산, 글루타르산, 아디프산, 아이소시트르산, 옥살로숙신산, 트라이카발릭산과 같은 포화 카복실산 또는 폴리카복실산 및 말레산, 푸마르산 및 아코니트산과 같은 불포화 카복실산 또는 폴리 카복실산을 포함한다.
상기 탄소원을 침지시킬 때 상기 유기산 외에 추가로 용매가 함께 사용될 수 있다. 상기 용매로는 상기 유기산을 희석시킬 수 있으면서 이후 건조 과정에서 쉽게 제거될 수 있는 것이 사용될 수 있고, 예컨대 물, 또는 에탄올, 메탄올 또는 부탄올과 같은 알코올류 용매 등이 사용될 수 있으며 특별히 제한되지 않는다.
상기 지지체 100 중량부에 대하여 상기 탄소원은 5 중량부 내지 50 중량부, 구체적으로 10 중량부 내지 40 중량부, 더욱 구체적으로 15 중량부 내지 30 중량부 사용될 수 있다. 상기 탄소원의 사용량이 과소할 경우, 상기 지지체에 형성되는 탄소 코팅이 적절히 형성되지 못할 수 있고, 상기 탄소원의 사용량이 과대할 경우 상기 지지체에의 침지가 원활히 수행되기 어려울 수 있다.
본 발명의 일 실시예에 있어서, 상기 지지체에 탄소원을 담지시킨 후, 상기 탄소원을 상기 지지체 표면의 탄소 코팅으로 효율적으로 전환시키기 위해서 우선적으로 탄소원을 포함하는 용액의 용매를 제거하는 건조하는 단계가 수행될 수 있다.
즉, 상기 단계 (S1)에서 지지체에 탄소원을 침지시키는 단계는, 구체적으로 (S1-1) 지지체와 탄소원을 포함하는 용액을 혼합하는 단계; 및 (S1-2) 상기 단계에서 수득한 혼합물을 건조하는 단계를 포함할 수 있다.
본 단계에서의 건조는 통상적으로 건조에 사용되는 설비를 통해 수행될 수 있고, 상압 또는 감압 조건에서 수행될 수 있다. 건조가 상압에서 수행되는 경우, 오븐 등의 설비를 통해 수행될 수 있으며, 감압 조건에서 수행되는 경우에는 감압 설비가 구비된 건조기 등의 설비를 통해 수행될 수 있다. 건조가 감압 조건에서 수행되는 경우, 그 압력은 10 내지 100 mbar, 구체적으로 50 내지 100 mbar일 수 있다. 상술한 압력 범위 내로 감압하여 건조를 수행할 경우, 더 많은 용매가 제거될 수 있다는 이점이 있다.
건조가 수행되는 온도는 50 내지 200℃일 수 있고, 구체적으로 상압 건조의 경우에는 100 내지 150℃, 감압 건조의 경우에는 50 내지 100℃에서 수행될 수 있다. 감압 조건에서의 건조가 보다 용이하기 때문에, 감압 건조에서의 온도는 상압 건조 대비 낮아도 무방하다. 상술한 온도 조건 내에서 촉매 담지액의 용매가 더욱 원활히 제거될 수 있으며, 온도가 지나치게 낮은 경우에는 용매가 충분히 제거되지 않을 수 있고, 용매가 너무 높은 경우에는 용매는 충분히 제거되나 촉매 성분이나 지지체가 소실되는 문제가 함께 발생할 수 있다.
상기 건조 시간은 1 시간 내지 10 시간일 수 있고, 구체적으로 2 시간 내지 8시간, 더욱 구체적으로 3 시간 내지 8시간일 수 있다.
(S2) 탄소원이 침지된 지지체를 소성시켜 탄소가 코팅되어 있는 탄소 코팅 지지체를 제조하는 단계
단계 S2에서는 탄소원이 침지된 지지체를 소성시켜 탄소가 코팅되어 있는 탄소 코팅 지지체를 제조하게 된다.
상기 단계 (S2)에서의 소성 온도는 450 내지 950℃이고, 구체적으로 500 내지 950℃, 500 내지 900℃, 600 내지 900℃, 더욱 구체적으로 700 내지 900℃일 수 있다. 상기 소성 온도에 따라 지지체 표면에 형성되는 탄소 코팅의 표면적과 탄소 코팅의 함량이 변화될 수 있으며, 상기 소성 온도가 증가할 수록 탄소원의 탄소화가 더욱 많이 진행되며 탄소 코팅 지지체의 표면적은 감소하게 되고, 상기 탄소 코팅 지지체에 형성되는 탄소 코팅의 탄소 함량은 감소하게 된다. 또한, 상기 소성 온도가 지나치게 증가하게 되면 지지체의 구조가 붕괴되어 공극 부피가 감소할 수 있다. 따라서, 상기 소성 온도를 만족할 경우, 제조되는 탄소 코팅 지지체의 표면적, 탄소 함량 및 공극 부피가 적절한 범위를 만족할 수 있으며, 이와 같은 탄소 코팅 지지체를 이용하여 탄소나노튜브 제조 촉매를 제조할 경우 제조된 탄소나노튜브 제조 촉매가 우수한 제조 수율을 나타낼 수 있다.
상기 단계 (S2)의 소성은 0.5 내지 3시간, 바람직하게는 0.5 내지 2시간 동안 수행될 수 있다. 상기 소성 시간이 너무 짧으면 탄소원이 탄소 코팅으로 충분히 전화될 수 없고, 소성 시간이 너무 길면 지지체의 구조적 붕괴의 원인이 되거나 탄소 코팅 지지체의 표면적과 탄소 코팅의 탄소 함량이 적정 수준 미만으로 감소할 수 있다.
이와 같이 제조된 상기 탄소 코팅 지지체는 상기 탄소 코팅 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하고, 구체적으로 0.1 내지 2.0 중량부, 더욱 구체적으로 0.5 내지 1.5 중량부의 탄소 코팅을 포함할 수 있다. 상기 탄소 코팅 지지체의 탄소 코팅 함량이 상기 범위를 만족할 경우 탄소나노튜브 제조용 촉매가 적절한 공극과 함께 우수한 촉매 분산성을 가져 우수한 탄소나노튜브 제조 수율을 나타낼 수 있다. 상기 탄소 코팅 함량이 과소하면, 상기 탄소 코팅 지지체를 사용하여 제조한 탄소나노튜브 촉매를 이용하여 탄소나노튜브를 제조했을 때의 탄소나노튜브 수율 개선 효과가 부족하고, 상기 탄소 코팅 함량이 과대하면 지지체의 공극을 막아 담지되는 촉매의 분산성이 나빠질 수 있다. 상기 탄소 코팅의 함량은 상기 지지체에 코팅되는 탄소의 함량을 의미한다.
상기 단계 (S2)의 소성은 환원 분위기에서 수행될 수 있고, 이를 통해 상기 지지체의 표면 및 공극에 탄소 코팅을 형성시켜 탄소 코팅 지지체를 제조할 수 있다. 상기 환원 분위기는 소성이 수행되는 온도에서 분해되는 탄소원의 분해로 인하여 조성될 수 있다.
상기 단계 (S1) 및 (S2)를 통해 탄소 코팅 지지체를 제조하여 수득한 후에는 상기 탄소 코팅 지지체를 탄소나노튜브 제조를 위한 촉매가 담지되는 지지체로서 사용하여 탄소나노튜브 제조용 담지 촉매를 제조한다.
상기 (S3) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계 및 (S4) 상기 혼합물을 소성시켜 담지 촉매를 제조하는 단계는, 촉매가 담지되는 지지체로서 통상적인 지지체를 대신하여 상기 단계 (S1) 및 (S2)를 수행하여 제조한 탄소 코팅 지지체를 사용하는 것을 제외하고는, 종래의 탄소나노튜브 제조용 담지 촉매의 제조방법에 의해 수행될 수 있다.
(S3) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계
본 발명의 일 실시예에 있어서, 단계 (S3)에서는 상기 단계 (S2)에서 수득한 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조한다.
상기 촉매 담지액은 상기 탄소 코팅 지지체에 실질적인 촉매 역할을 수행하는 활성 성분을 담지시키기 위한 것으로, 상기 촉매 담지액은 촉매 활성을 나타낼 수 있는 주촉매 성분과 상기 주촉매 성분의 촉매 활성을 상승시킬 수 있는 조촉매 성분을 포함할 수 있다.
상기 주촉매 성분은 Co, Ni 및 Fe로 이루어진 군에서 선택되는 1 이상일 수 있으며, 바람직하게는 Co 일 수 있다. 주촉매 성분은 탄소원 가스가 분해되어 탄소나노튜브를 형성하는 반응의 활성화 에너지를 낮추어 반응이 원활하게 진행되게끔 하는 역할을 수행하며, 앞서 나열한 주촉매 성분들은 촉매 활성이 높으면서도 내구성 역시 준수하다는 장점이 있다.
상기 주촉매 성분은 촉매 담지액 내 전구체의 형태로 포함될 수 있다. 구체적으로, 상기 주촉매 전구체는 주촉매 성분의 할로겐화물, 질화물, 산화물, 질산화물, 황산화물, 황화물, 수산화물 또는 금속 염 등을 포함할 수 있고, 더욱 구체적으로는 Co의 경우 Co(NO3)2ㆍ6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)], Co(OAc)2 또는 CoCl2ㆍ6H2O를, Fe의 경우 Fe(NO3)2ㆍ6H2O, Fe(NO3)2ㆍ9H2O, Fe(NO3)3, Fe(OAc)2, FeSO4ㆍ7H2O 또는 FeCl2ㆍ4H2O를, Ni의 경우 Ni(NO3)2ㆍ6H2O, NiCl2ㆍ2H2O, Ni(CO)4 또는 Ni(OAc)2ㆍ4H2O를 사용할 수 있다. 상기 나열한 주촉매 전구체를 사용할 경우, 이후 건조 및 소성 과정에서 주촉매 성분의 소실을 최소화하면서 높은 활성을 갖는 촉매를 제조할 수 있다는 이점이 있다.
상기 조촉매 성분은 Mo 및 V로 이루어진 군에서 선택된 1 이상일 수 있으며, 바람직하게는 V 일 수 있다. 조촉매 성분은 주촉매 성분의 분산도를 높여 촉매의 활성을 더욱 높이는 역할을 수행하며, 앞서 나열한 조촉매 성분들은 앞서 설명한 조촉매 성분들과의 시너지 효과가 높고, 지지체의 담지가 용이하다는 장점이 있다.
상기 조촉매 성분 역시 전구체 형태로 촉매 담지액에 포함될 수 있다. 구체적으로, 상기 조촉매 전구체는 조촉매 성분의 할로겐화물, 질화물, 산화물, 질산화물, 황산화물, 황화물, 수산화물 또는 금속 염 등을 포함할 수 있고, 더욱 구체적으로는 Mo의 경우, (NH4)6Mo7O24ㆍ4H2O, Mo(CO)6, (NH4)MoS4 또는 MoO3를, V의 경우 NH4VO3, NaVO3, V(CO)6, V2SO4ㆍ7H2O, V2O3 또는 V2O5를 사용할 수 있다. 앞서 나열한 전구체들은 입수가 상대적으로 용이하면서도, 쉽게 산화물 형태로 전환될 수 있는 장점이 있다.
상기 촉매 담지액은 추가로 상기 주촉매 전구체 및 조촉매 전구체를 용해시킬 수 있는 용매를 포함할 수 있다. 상기 촉매 담지액의 용매는 상기 주촉매 전구체 및 조촉매 전구체를 용해시킬 수 있으면서도, 이후 건조 과정에서 쉽게 제거될 수 있는 것이면 족하고, 예컨대 물, 에탄올, 메탄올 또는 부탄올과 같은 알코올류 용매, 톨루엔 또는 자일렌과 같은 방향족 탄화수소 용매 등을 사용할 수 있으나, 이에 제한되지는 않는다.
상기 촉매 담지액 내 주촉매 성분과 조촉매 성분 사이의 몰 비는 10:0.1 내지 10:10, 바람직하게는 10:0.5 내지 10:5일 수 있다. 주촉매 성분과 조촉매 성분 사이의 몰 비가 상술한 조건을 만족할 경우, 두 성분 사이의 상승 효과가 최대화될 수 있으며, 구체적으로 지지체 내 활성 성분의 뭉침을 최소화하면서 촉매의 활성을 극대화할 수 있다.
상기 촉매 담지액 내에는 주촉매 전구체 및 조촉매 전구체 이외에 유기산이 더 포함될 수 있다. 본 발명에서 사용되는 유기산은 예컨대, 멀티카르복실산일 수 있고, 이는 카르복실기를 하나 이상 포함하는 화합물로, 착화제(complexing agent)로서 용해성이 높고 침전을 억제하며 촉매의 합성을 용이하게 하고, 활성화제(activator)로서 탄소나노튜브의 합성을 증대시킨다. 상기 멀티카르복실산은 디카르복실산, 트리카르복실산 및 테트라카르복실산중에서 선택된 1 이상일 수 있으며, 예컨대 시트르산, 옥살산, 말론산, 숙신산, 또는 타르타르산 등을 사용할 수 있다.
상기 유기산은 촉매 담지액의 총 중량을 기준으로 하여 0.1 내지 1.5 중량%로 포함될 수 있다. 이러한 범위 내에서 촉매 용액에서의 주촉매 및 조촉매의 금속 성분 침전이 발생하지 않으며, 이후 소성 과정에서의 크랙 발생 역시 억제될 수 있다.
또한, 주촉매 전구체 및 조촉매 전구체의 합과 유기산의 몰비로는 약 5:1 내지 30:1의 범위에서 적절하게 혼합될 수 있으며, 이러한 몰비를 만족한다면 제조된 담지 촉매로부터 합성되는 탄소나노튜브의 벌크 밀도를 더욱 높일 수 있다.
본 발명의 일 실시예에 있어서, 상기 단계 (S3)는 (S3-1) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계; 및 (S3-2) 상기 혼합물을 건조하는 단계를 포함할 수 있다.
단계 (S3-1)에서 제조되는 탄소나노튜브 제조용 담지 촉매의 총 중량 대비, 주촉매 성분의 함량이 1 내지 30 중량%, 구체적으로 3 내지 20 중량%, 더욱 구체적으로 5 내지 15 중량%가 되도록 지지체 및 촉매 담지액이 혼합될 수 있다. 상기 주촉매 성분의 함량이 상기 범위를 만족할 경우, 촉매 활성이 극대화될 수 있다.
단계 (S3-2)의 상기 혼합물을 건조하는 단계를 통하여 촉매 담지액의 용매가 제거됨으로써, 상기 탄소 코팅 지지체와 혼합되어 상기 탄소 코팅 지지체에 침지된 촉매 담지액의 주촉매 및 조촉매 전구체가 이후의 소성 단계에서 더욱 효율적으로 산화물 형태로 전환될 수 있다.
본 단계에서의 건조는 통상적으로 건조에 사용되는 설비를 통해 수행될 수 있으며, 상압 또는 감압 조건에서 수행될 수 있다. 건조가 상압에서 수행되는 경우, 오븐 등의 설비를 통해 수행될 수 있으며, 감압 조건에서 수행되는 경우에는 감압 설비가 구비된 건조기 등의 설비를 통해 수행될 수 있다. 건조가 감압 조건에서 수행되는 경우, 그 압력은 10 내지 100mbar, 바람직하게는 50 내지 100mbar일 수 있다. 상술한 압력 범위 내로 감압하여 건조를 수행할 경우, 더 많은 용매가 제거될 수 있다는 이점이 있다.
건조가 수행되는 온도는 50 내지 200℃일 수 있고, 상압 건조의 경우에는 특히 100 내지 150℃, 감압 건조의 경우에는 50 내지 100℃일 수 있다. 감압 조건에서의 건조가 보다 용이하기 때문에, 감압 건조에서의 온도는 상압 건조 대비 낮아도 무방하다. 상술한 온도 조건 내에서 촉매 담지액의 용매가 더욱 원활히 제거될 수 있으며, 온도가 지나치게 낮은 경우에는 용매가 충분히 제거되지 않을 수 있고, 용매가 너무 높은 경우에는 용매는 충분히 제거되나 촉매 성분이나 지지체가 소실되는 문제가 함께 발생할 수 있다.
상기 건조 시간은 1 시간 내지 10 시간일 수 있고, 구체적으로 2 시간 내지 8시간, 더욱 구체적으로 3 시간 내지 8시간일 수 있다.
상기 건조 단계를 거쳐 용매를 충분히 제거한 후, 건조된 혼합물을 소성함으로써 최종적인 촉매를 수득할 수 있다. 소성 과정에서는 지지체 표면 및 내부의 주촉매와 조촉매 전구체 성분이 산화물로 전환되면서, 촉매 활성을 갖게 될 수 있다.
상기 소성은 300 내지 800℃, 구체적으로 600 내지 800℃, 더욱 구체적으로 650 내지 750℃의 온도에서 수행될 수 있다. 또한 상기 소성은 0.5 내지 3시간, 구체적으로 1 내지 2시간 동안 수행될 수 있다. 본 단계에서의 소성 온도가 너무 낮거나 소성 시간이 너무 짧은 경우에는 촉매 전구체가 충분히 산화물 형태로 전환될 수 없고, 소성 온도가 너무 높거나 소성 시간이 너무 긴 경우에는 오히려 지지체의 구조적 붕괴나, 담지된 조촉매 및 주촉매 성분의 탈락 등이 발생할 수 있다.
본 단계까지 거쳐 제조된 탄소나노튜브 제조용 촉매의 주촉매 성분 함량은 5 내지 20 중량%, 바람직하게는 10 내지 15 중량%일 수 있다. 상기 주촉매 성분 함량은 제조 과정에서 투입되는 주촉매 전구체 내 주촉매 성분의 질량을 최종적으로 수득된 촉매의 질량으로 나누어 계산될 수 있고, 이와는 별개로 ICP-OES 분석을 통해 촉매 입자 내 주촉매 성분의 함량을 측정함으로써도 계산될 수 있다.
본 발명의 탄소나노튜브 제조용 촉매는 탄소나노튜브의 제조에 유용하게 사용될 수 있다. 예컨대, 상기 탄소나노튜브 제조용 촉매를 화학기상증착 반응기에 투입하고, 상기 반응기에 탄소원 가스를 주입한 다음 가열하여 탄소나노튜브를 합성하는 단계를 포함하는 방법을 통하여 탄소나노튜브를 제조할 수 있다.
상기 탄소나노튜브의 제조에 사용될 수 있는 상기 탄소원 가스는 고온 상태에서 분해되어 탄소나노튜브를 형성할 수 있는 탄소 함유 가스이고, 구체적인 예로 지방족 알칸, 지방족 알켄, 지방족 알킨, 방향족 화합물 등 다양한 탄소 함유 화합물이 사용 가능하며, 보다 구체적으로는 메탄, 에탄, 에틸렌, 아세틸렌, 에탄올, 메탄올, 아세톤, 일산화탄소, 프로판, 부탄, 벤젠, 시클로헥산, 프로필렌, 부텐, 이소부텐, 톨루엔, 자일렌, 큐멘, 에틸벤젠, 나프탈렌, 페난트렌, 안트라센, 아세틸렌, 포름알데히드, 아세트알데히드 등의 화합물을 사용할 수 있다.
상기 탄소나노튜브의 제조시, 상기 탄소원 가스와 함께 유동 가스를 화학기상증착 반응기로 주입할 수 있다. 상기 유동 가스는 유동층 반응기 내에서 합성되는 탄소나노튜브와 촉매 입자의 유동성을 부여하기 위한 것으로, 탄소원 가스나 탄소나노튜브와 반응하지 않으면서도, 높은 열적 안정성을 갖는 가스를 사용할 수 있다. 예컨대, 질소 가스나 불활성 가스를 상기 유동 가스로 사용할 수 있다.
또한, 상기 탄소나노튜브 제조시, 상기 탄소원 가스 및 유동 가스와 함께 환원 가스를 주입할 수 있다. 상기 환원 가스는 탄소원 가스의 분해를 더욱 촉진할 수 있으며, 예컨대 수소 가스를 상기 환원 가스로 사용할 수 있다.
상기 탄소나노튜브의 합성 단계에서의 가열은 반응기 내부 온도가 600 내지 800℃가 되게끔 하는 것일 수 있다. 반응기 내 온도가 상술한 범위 내일 경우 탄소원 가스가 쉽게 분해되어 용이하게 탄소나노튜브를 합성할 수 있다. 온도가 상술한 범위에 미치지 못한 경우에는 탄소나노튜브가 잘 제조되지 않는 문제가 있을 수 있고, 온도가 상술한 범위를 넘어서는 경우에는 가열에 많은 비용에 소모될 뿐 아니라, 촉매 입자 자체가 분해되는 문제점이 발생할 수 있다.
상기 탄소나노튜브 촉매를 이용하여 제조된 탄소나노튜브는 20 kg/m3 이상, 구체적으로 25 kg/m3 이상, 더욱 구체적으로 27 kg/m3 이상의 벌크 밀도를 나타낼 수 있고, 50 kg/m3 이하, 구체적으로 45 kg/m3 이하, 더욱 구체적으로 42 kg/m3 이하의 벌크 밀도를 나타낼 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예 및 실험예를 들어 더욱 상세하게 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다. 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
비표면적이 190 m2/g, D50이 50 ㎛인 보헤마이트 지지체를 준비하였다. 시트르산 10 g 및 물 100 g의 용액에 상기 보헤마이트 지지체 50 g을 120℃에서 4시간 동안 침지시켜 혼합을 완료시켰다. 혼합물을 상압 및 120℃ 조건에서 5시간 건조한 후, 내부로 유입되는 기체를 탄소나노튜브로 흡수시켜 정제시킬 수 있는 2중 구조의 용기 내에서 900℃ 온도로 1시간 동안 소성하여 탄소 코팅 지지체를 제조하였다.
증류수 21 g에 코발트 전구체 Co(NO3)2ㆍ6H2O 16 g과 바나듐 전구체 NH4VO3 0.63 g을 혼합 및 용해시켜 촉매 담지액을 제조하였다. 제조된 촉매 담지액에 상기에서 제조된 탄소 코팅 지지체 20 g을 투입하고 혼합하였다. 혼합이 완료된 후, 혼합물을 상압 및 120℃ 조건에서 5시간 건조한 후, 680℃에서 1시간 동안 소성하여 촉매를 수득하였다.
실시예 2 내지 4 및 비교예 1
상기 실시예 1과 동일하게 실시하되, 탄소 코팅 지지체 제조시의 소성 온도를 900℃가 아닌 하기 표 1과 같이 달리하여 촉매를 수득하였다.
비교예 2
증류수 21 g에 코발트 전구체 Co(NO3)2ㆍ6H2O 16 g과 바나듐 전구체 NH4VO3 0.63 g을 혼합 및 용해시켜 촉매 담지액을 제조하였다. 제조된 촉매 담지액에 비표면적이 190 m2/g, D50이 50 ㎛인 보헤마이트 지지체 20 g을 투입하고 혼합하였다. 혼합이 완료된 후, 혼합물을 상압 및 120℃ 조건에서 5시간 건조한 후, 680℃에서 1시간 동안 소성하여 촉매를 수득하였다.
실험예 1
상기 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 탄소 코팅 지지체 및 촉매를 분석하여 하기 표 1 및 도 1 내지 3에 나타내었다.
(1) BET 비표면적 및 BJH(barrett-joyner-halenda) 공극 크기
BEL Japan 사의 BELSORP-mini II를 이용하여 액체 질소 온도(77K) 하에서의 질소 가스 흡착량으로부터 BET 6 점법으로 측정하였다.
(2) EA 분석
i) Furnance 900℃, 오븐 65 ℃
ii) Gas flow carrier (He): 140 mL/min, Oxygen: 250 mL/min, Reference(He): 100 mL/min
iii) System timing cycle (run time): 720 sec, Sampling delay: 12 sec, Oxygen injection end: 5 sec
iv) Detector level: 1000 μA
(3) ICP Co 함량
원자 방출 분광기(ICP, ICP-OES, Optima 5300DV)에 의해 포함된 Co의 함량을 확인하였다.
소성온도
(℃)
탄소 코팅 지지체 담지 촉매
BET
비표면적 (m2/g)
공극 부피
(cm3/g)
BET 비표면적
(m2/g)
BJH 공극크기
(m2/g)
실시예 1 900 82.32 0.22 58.97 63.67
실시예 2 800 87.00 0.23 60.23 64.19
실시예 3 700 97.84 0.23 65.83 70.28
실시예 4 500 126.95 0.21 75.62 81.05
비교예 1 300 171.89 0.13 74.99 80.06
비교예 2 - - - 100.40 113.15
소성온도
(℃)
탄소 코팅 지지체의 탄소 함량
(wt%)
담지 촉매의 Co 함량
(wt%)
실시예 1 900 N/D 12.8
실시예 2 800 0.7 13.3
실시예 3 700 1.0 13.6
실시예 4 500 1.4 13.2
비교예 1 300 3.7 13.9
비교예 2 - - 13.6
상기 표 1, 2 및 도 1, 2를 참조하면, 지지체에 탄소 코팅을 형성할 때 높은 온도에서 소성이 수행될 수록 탄소 코팅 지지체의 비표면적 및 탄소 함량이 감소함을 확인할 수 있다. 이를 통해, 소성 온도가 증가될수록 탄화(carbonization)가 진행되어 표면적이 감소하고, 지지체 표면에 형성되는 탄소 코팅의 함량은 감소함을 확인할 수 있었다.
또한, 상기 표 1, 2 및 도 3을 참조하면, 지지체에 탄소 코팅을 형성할 때 소성 온도가 증가함에 따라 지지체의 공극 부피가 점차 증가하지만 일정 온도 이상에서는 공극 부피가 감소함을 확인함을 확인할 수 있다. 이를 통해 소성 온도가 지나치게 높아질 경우, 지지체의 구조가 붕괴되어 공극 부피가 감소함을 확인할 수 있었다.
이와 같은 결과를 통하여, 지지체에 탄소 코팅을 형성할 때 소성 온도를 조절함에 따라 탄소 코팅 지지체의 비표면적 및 탄소 함량을 조절할 수 있음을 확인할 수 있었다.
실험예 2
상기 실시예 1 내지 4, 및 비교예 1 및 2에서 제조된 촉매를 이용하여 탄소나노튜브를 제조하고, 그 물성을 분석하여 하기 표 3 및 도 4 내지 6에 나타내었다.
상기 실시예 및 비교예에서 제조된 촉매를 화학기상증착 반응기에 투입하고, 상기 반응기로 질소, 수소 및 에틸렌 가스를 1:1:1의 부피비로 투입하였다. 그 후 반응기 내 온도를 680℃로 하여 탄소나노튜브를 합성하였다. 수득한 탄소나노튜브의 수율, 비표면적 및 벌크 밀도를 측정하여 하기 표 3으로 정리하였으며, 수율 및 벌크 밀도는 아래의 방법으로 측정하였다.
(1) 수율: 하기 식에 따라 계산하였다.
수율 = (제조된 탄소나노튜브의 총 중량 - 제조 시 사용된 촉매의 중량)/제조 시 사용된 촉매의 중량
(2) 벌크 밀도: 5 mL의 실린더에 제조된 탄소나노튜브 파우더를 채우고, 눈금을 읽어 부피를 측정한 후, 저울에 올려 확인된 탄소나노튜브의 무게를 앞서 측정한 부피로 나누어 계산하였다.
수율 (배) BET 비표면적 (m2/g) 벌크 밀도 (kg/m3)
실시예 1 19.47 176.68 34.41
실시예 2 20.48 215.50 29.59
실시예 3 16.67 198.10 40.56
실시예 4 10.19 238.95 35.24
비교예 1 4.63 177.21 42.13
비교예 2 9.16 214.20 23.79
상기 표 3에서 확인할 수 있는 바와 같이, 실시예 1 내지 4의 촉매를 사용한 경우 비교예 1 및 2의 촉매를 사용한 경우 대비 더 높은 수율로 탄소나노튜브가 제조됨을 확인하였다. 도 4와 같이 실시예 1 내지 4의 촉매를 사용하여 제조된 탄소나노튜브는 비교예 1 및 2의 촉매를 사용하여 제조된 탄소나노튜브와 동등한 수준의 BET 비표면적을 나타내었다.
도 5에서 확인할 수 있는 바와 같이, 탄소 코팅 지지체를 이용하여 제조된 탄소나노튜브 제조용 촉매를 사용하여 탄소나노튜브를 제조할 경우, 제조된 탄소나노튜브가 높은 벌크 밀도를 나타내므로 동일한 반응기 부피 내에서 더 많은 양의 탄소나노튜브를 합성할 수 있는 효과를 나타낼 수 있다. 다만, 도 6에서 확인할 수 있는 바와 같이, 비교예 1과 같이 낮은 소성 온도에서 탄소 코팅이 형성된 탄소 코팅 지지체를 이용하여 제조된 탄소나노튜브 제조용 촉매는, 과량의 탄소가 지지체의 공극을 막아 촉매의 분산성이 저해된 것이므로, 수율은 크게 감소하였음을 확인할 수 있었다.

Claims (15)

  1. 탄소가 코팅되어 있는 지지체; 및
    상기 지지체에 담지되어 있는 주촉매 성분 및 조촉매 성분을 포함하고,
    상기 지지체가 상기 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하는 탄소나노튜브 제조용 촉매.
  2. 제1항에 있어서,
    상기 탄소가 코팅되어 있는 지지체의 BET 비표면적은 70 내지 150 m2/g인 탄소나노튜브 제조용 촉매.
  3. 제1항에 있어서,
    상기 탄소가 코팅되어 있는 지지체의 공극 부피는 0.18 내지 0.30 cm3/g인 탄소나노튜브 제조용 촉매.
  4. 제1항에 있어서,
    상기 탄소 코팅 지지체는 상기 지지체 100 중량부를 기준으로 0.1 내지 2.0 중량부의 탄소 코팅을 포함하는 탄소나노튜브 제조용 촉매.
  5. 제1항에 있어서,
    상기 탄소나노튜브 제조용 촉매의 비표면적은 50 내지 90 m2/g인 탄소나노튜브 제조용 촉매.
  6. (S1) 지지체에 탄소원을 침지시키는 단계;
    (S2) 탄소원이 침지된 지지체를 소성시켜 탄소가 코팅되어 있는 탄소 코팅 지지체를 제조하는 단계;
    (S3) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계; 및
    (S4) 상기 혼합물을 소성시켜 담지 촉매를 제조하는 단계를 포함하고,
    상기 단계 (S2)에서의 소성 온도는 450 내지 950℃인 탄소나노튜브 제조용 촉매의 제조방법.
  7. 제6항에 있어서,
    상기 탄소원은 C4 내지 C20의 카르복실산, 포도당, 락토오스, 글루코오스, 셀룰로오스, 수크로오스, 설탕 고분자, 탄수화물, 유레아, 티오 유레아, 에틸렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1종 이상인 탄소나노튜브 제조용 촉매의 제조방법.
  8. 제6항에 있어서,
    상기 단계 (S1)은,
    (S1-1) 지지체와 탄소원을 포함하는 용액을 혼합하는 단계; 및
    (S1-2) 상기 단계에서 수득한 혼합물을 건조하는 단계를 포함하는 탄소나노튜브 제조용 촉매의 제조방법.
  9. 제8항에 있어서,
    상기 단계 (S1-2)의 건조는 50 내지 200℃의 온도에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법.
  10. 제6항에 있어서,
    상기 단계 (S2)의 소성을 통하여 제조된 탄소 코팅 지지체는 상기 지지체 100 중량부를 기준으로 0.1 내지 3.0 중량부의 탄소 코팅을 포함하는 탄소나노튜브 제조용 촉매의 제조방법.
  11. 제6항에 있어서,
    상기 단계 (S2)의 소성은 환원 분위기에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법.
  12. 제6항에 있어서,
    상기 단계 (S3)는
    (S3-1) 탄소 코팅 지지체와 촉매 담지액을 혼합하여 혼합물을 제조하는 단계; 및
    (S3-2) 상기 혼합물을 건조하는 단계를 포함하는 탄소나노튜브 제조용 촉매의 제조방법.
  13. 제12항에 있어서,
    상기 단계 (S3-2)의 건조는 50 내지 200℃의 온도에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법.
  14. 제6항에 있어서,
    상기 단계 (S4)의 소성은 환원 분위기에서 수행되는 탄소나노튜브 제조용 촉매의 제조방법.
  15. 제6항에 있어서,
    상기 단계 (S4)에서의 소성 온도는 300 내지 800℃인 탄소나노튜브 제조용 촉매의 제조방법.
PCT/KR2023/017570 2022-11-03 2023-11-03 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법 WO2024096695A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220145311 2022-11-03
KR10-2022-0145311 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024096695A1 true WO2024096695A1 (ko) 2024-05-10

Family

ID=90931032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017570 WO2024096695A1 (ko) 2022-11-03 2023-11-03 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법

Country Status (2)

Country Link
KR (1) KR20240063802A (ko)
WO (1) WO2024096695A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199727C (zh) * 2003-03-03 2005-05-04 清华大学 用于制备碳纳米管的催化剂
KR20090037059A (ko) * 2007-10-11 2009-04-15 한국에너지기술연구원 셀룰로우스 섬유의 열처리를 통한 탄소를 지지체로 이용한탄화물-탄소나노튜브 구조체의 합성방법과 그탄화물-탄소나노튜브 구조체, 탄화물-탄소나노튜브구조체를 이용한 탄소나노튜브 필터
KR20130078855A (ko) * 2011-12-31 2013-07-10 제일모직주식회사 표면결정성이 우수한 다중벽 탄소나노튜브 합성용 담지촉매 및 그 제조방법
KR20150007266A (ko) 2013-07-10 2015-01-20 주식회사 엘지화학 탄소나노튜브 제조방법 및 이를 이용하여 제조된 탄소나노튜브
KR101605938B1 (ko) * 2013-07-10 2016-03-23 주식회사 엘지화학 담지 촉매 및 이를 이용하여 제조된 탄소나노튜브
KR20170028117A (ko) * 2015-09-03 2017-03-13 한국에너지기술연구원 금속산화물-탄소나노물질 복합체 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199727C (zh) * 2003-03-03 2005-05-04 清华大学 用于制备碳纳米管的催化剂
KR20090037059A (ko) * 2007-10-11 2009-04-15 한국에너지기술연구원 셀룰로우스 섬유의 열처리를 통한 탄소를 지지체로 이용한탄화물-탄소나노튜브 구조체의 합성방법과 그탄화물-탄소나노튜브 구조체, 탄화물-탄소나노튜브구조체를 이용한 탄소나노튜브 필터
KR20130078855A (ko) * 2011-12-31 2013-07-10 제일모직주식회사 표면결정성이 우수한 다중벽 탄소나노튜브 합성용 담지촉매 및 그 제조방법
KR20150007266A (ko) 2013-07-10 2015-01-20 주식회사 엘지화학 탄소나노튜브 제조방법 및 이를 이용하여 제조된 탄소나노튜브
KR101605938B1 (ko) * 2013-07-10 2016-03-23 주식회사 엘지화학 담지 촉매 및 이를 이용하여 제조된 탄소나노튜브
KR20170028117A (ko) * 2015-09-03 2017-03-13 한국에너지기술연구원 금속산화물-탄소나노물질 복합체 및 그 제조방법

Also Published As

Publication number Publication date
KR20240063802A (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
WO2013105779A1 (ko) 카본나노튜브 및 그 제조방법
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015008988A1 (ko) 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2015190774A1 (ko) 벌크밀도가 조절된 탄소나노튜브 응집체의 제조방법
EP3053880A1 (en) Method for controlling bulk density of carbon nanotube agglomerate
WO2015047042A1 (ko) 높은 비표면적을 갖는 탄소나노튜브 및 그 제조 방법
WO2017039132A1 (ko) 카본나노튜브의 정제방법
WO2017126776A1 (ko) 카본나노튜브 펠렛 제조장치
KR20210036725A (ko) 탄소나노튜브 제조용 촉매
WO2013133651A1 (ko) 피셔-트롭시 합성용 촉매의 활성화 방법
WO2017126777A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2013095045A1 (ko) 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재
WO2016126133A1 (ko) 고밀도 번들형 카본나노튜브 및 그의 제조방법
WO2017018667A1 (ko) 열안정성이 개선된 카본나노튜브
WO2022124799A1 (ko) 탄소나노튜브 제조용 담지촉매
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
WO2024096695A1 (ko) 탄소나노튜브 제조용 촉매 및 탄소나노튜브 제조용 촉매의 제조방법
WO2019245157A1 (ko) 경질올레핀 제조용 촉매, 이의 제조방법, 및 이를 이용하여 경질올레핀을 제조하는 방법
WO2017126775A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2024123020A1 (ko) 인탱글형 탄소나노튜브 제조용 담지 촉매 및 이를 이용한 인탱글형 탄소나노튜브의 제조방법
WO2019107884A1 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 부타디엔 제조용 반응기 및 1,3-부타디엔의 제조방법
WO2015047048A1 (ko) 탄소나노튜브 집합체의 벌크 밀도 조절 방법
WO2023136633A1 (ko) 탄소나노튜브 제조용 촉매
WO2016053004A1 (ko) 산화 몰리브덴의 복합체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886389

Country of ref document: EP

Kind code of ref document: A1