WO2024096574A1 - Electromagnetic wave shielding multilayered film and manufacturing method therefor - Google Patents

Electromagnetic wave shielding multilayered film and manufacturing method therefor Download PDF

Info

Publication number
WO2024096574A1
WO2024096574A1 PCT/KR2023/017268 KR2023017268W WO2024096574A1 WO 2024096574 A1 WO2024096574 A1 WO 2024096574A1 KR 2023017268 W KR2023017268 W KR 2023017268W WO 2024096574 A1 WO2024096574 A1 WO 2024096574A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
layer
polyurethane layer
multilayer film
electromagnetic wave
Prior art date
Application number
PCT/KR2023/017268
Other languages
French (fr)
Korean (ko)
Inventor
안기석
이선숙
정하균
임순민
지슬기
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2024096574A1 publication Critical patent/WO2024096574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a multilayer film for electromagnetic wave shielding and a method of manufacturing the same. Specifically, it relates to a multilayer film for electromagnetic wave shielding that is formed from polyurethane containing a conductive filler and includes a porous polyurethane layer.
  • the most common electromagnetic wave shielding materials are metal materials such as aluminum (Al) or copper (Cu). Although metal materials have excellent shielding properties, they are difficult to apply in various forms due to poor flexibility and processability, and there is a problem with metal corrosion. In addition, when these materials are applied to automobiles, there is a problem that moldability is insufficient and weight reduction is difficult.
  • Polymer-based electromagnetic wave shielding materials are being actively researched because they can solve the problems of low flexibility and corrosion of existing metal materials and have the advantages of high chemical resistance and low density.
  • polymer-based electromagnetic wave shielding materials have the problem of lower shielding efficiency than existing metal-based shielding materials.
  • the purpose of the present invention is to provide a multilayer film for electromagnetic wave shielding with excellent electromagnetic wave shielding efficiency.
  • Another object of the present invention is to provide a method of manufacturing a multilayer film for electromagnetic wave shielding with excellent electromagnetic wave shielding efficiency even with a simple method.
  • the present inventors As a result of continuous research by the present inventors to produce a polymer-based electromagnetic wave shielding material with excellent electromagnetic wave shielding efficiency, the present inventors have found that all layers are a multi-layer film of three or more layers formed from polyurethane containing a conductive filler, and the middle layer is a metal coating layer formed in the pores.
  • the present invention was completed by discovering that it has excellent flexibility and durability and exhibits superior electromagnetic wave shielding efficiency than conventional polymer-based materials.
  • the present invention relates to a first polyurethane layer; A porous second polyurethane layer on the first polyurethane layer; and a third polyurethane layer on the second polyurethane layer, wherein the first to third polyurethane layers each independently contain a conductive filler, and the inside of the pores of the porous second polyurethane layer
  • a multilayer film for electromagnetic wave shielding in which a metal coating layer is formed.
  • the first polyurethane layer and the third polyurethane layer are each independently thermoplastic polyurethane; and a conductive filler containing carbon nanotubes and carbon black.
  • thermoplastic polyurethane to conductive filler may satisfy a weight ratio of 1:0.1 to 0.5.
  • the porous second polyurethane layer is thermoplastic polyurethane; and a conductive filler containing carbon black.
  • the porous second polyurethane layer may have an open-cell structure with an average pore diameter of 5 to 50 ⁇ m.
  • the porous second polyurethane layer may have a thickness of 100 to 600 ⁇ m.
  • the first polyurethane layer and the third polyurethane layer may each independently have a thickness ratio of 0.2 to 2 with respect to the porous second polyurethane layer.
  • thermoplastic polyurethane to conductive filler may satisfy a weight ratio of 1:0.01 to 0.2.
  • the first polyurethane layer and the third polyurethane layer are each independently located at an interface with the porous second polyurethane layer, a mixed layer in which the two layers forming each interface are physically mixed. It may further include.
  • the mixed layer may be formed when the surfaces of the two layers forming each interface come into contact in the presence of an organic solvent and the two layers are physically mixed.
  • the metal coating layer may include one or more conductive metals selected from gold, silver, platinum, palladium, nickel, and copper.
  • the thermoplastic polyurethane may have a specific gravity of 0.9 to 1.3 g/cc.
  • the multilayer film for electromagnetic wave shielding may have a thickness of 0.1 to 1.5 mm.
  • the multilayer film for electromagnetic wave shielding may have an EMI shielding effectiveness of 60 dB or more, measured under a thickness condition of 1 ⁇ 0.1 mm.
  • the present invention includes the steps of applying an organic solvent to both sides of a second polyurethane layer, then laminating and drying the first polyurethane layer, the second polyurethane layer, and the third polyurethane layer in that order to produce a multilayer film;
  • the first polyurethane layer to the third polyurethane layer each independently contain a conductive filler, and a metal coating layer is formed inside the pores of the second polyurethane layer. there is.
  • the first polyurethane layer and the third polyurethane layer each independently contain a solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon nanotubes and carbon black. It may be manufactured through a non-solvent induced phase separation method from a polyurethane composition containing.
  • the porous second polyurethane layer includes (a-1) a solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon black; manufacturing porous polyurethane through a solvent evaporation method from a polyurethane composition containing; and
  • a mixed layer may be formed by partially drying both surfaces of the second polyurethane layer in contact with the first polyurethane layer and the third polyurethane layer, respectively, in the presence of an organic solvent.
  • the present invention relates to a multilayer film for electromagnetic wave shielding and a method of manufacturing the same. Specifically, it is a multilayer film for electromagnetic wave shielding in which all layers are three or more layers formed from polyurethane containing a conductive filler, and the middle layer is a porous polyurethane layer with a metal coating layer formed in the pores.
  • the multilayer film for electromagnetic wave shielding according to one embodiment has excellent flexibility and chemical resistance, which were problems with conventional metal materials, and can exhibit excellent electromagnetic wave shielding efficiency.
  • Figure 1 is an SEM image measuring the surface and cross-sectional characteristics of polyurethane films according to Preparation Examples 1-1 to 1-3 of the present invention.
  • Figure 2 is a graph of the electromagnetic wave shielding efficiency of polyurethane films according to Preparation Examples 1-1 to 1-3 of the present invention.
  • Figure 3 is an SEM image of the pores of the porous polyurethane film according to Preparation Example 2 of the present invention.
  • Figure 4 is a graph of the electromagnetic wave shielding efficiency of the porous polyurethane film with a copper coating layer according to Preparation Example 2 of the present invention.
  • Figure 5(a) is a cross-sectional SEM image of the multilayer film for electromagnetic wave shielding according to Example 1 of the present invention
  • Figure 5(b) is a graph of electromagnetic wave shielding efficiency.
  • the present invention relates to a first polyurethane layer; A porous second polyurethane layer on the first polyurethane layer; and a third polyurethane layer on the second polyurethane layer, wherein the first to third polyurethane layers each independently contain a conductive filler, and the inside of the pores of the porous second polyurethane layer
  • a multilayer film for shielding electromagnetic waves in which a metal coating layer is formed.
  • the first polyurethane layer and the third polyurethane layer are each independently thermoplastic polyurethane; and a conductive filler containing carbon nanotubes and carbon black. Additionally, the thermoplastic polyurethane to the conductive filler may satisfy a weight ratio of 1:0.01 to 1, preferably 1:0.1 to 0.5, and more preferably 1:0.2 to 0.4.
  • the thermoplastic polyurethane of the first polyurethane layer and the third polyurethane layer may each independently be a commonly used or known thermoplastic polyurethane.
  • the thermoplastic polyurethane may have a weight average molecular weight of 10,000 to 1,000,000 g/mol.
  • the glass transition temperature may be -50°C to 30°C, but is not limited thereto.
  • the thermoplastic polyurethane may have a shore hardness (A) of 70 to 99 Shores A, preferably 80 to 97 Shores A, and a specific gravity (Specific Gravity) of 0.9 to 1.3 g/cc, preferably 1.0 to 1.25. It can be g/cc, but is no longer limited.
  • the conductive filler of the first polyurethane layer and the third polyurethane layer can form a kind of conductive composite by adsorbing carbon black on the surface of the carbon nanotube, and when it includes such a conductive composite, improved shielding performance is achieved.
  • the carbon nanotubes and carbon black may satisfy a weight ratio of 1:0.1 to 5, preferably 1:0.5 to 3, and more preferably 1:0.7 to 2.
  • the carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, bundled carbon nanotubes, and combinations thereof, and the diameter of the carbon nanotubes is preferably 0.5 nm to 200 nm. may be 1 nm to 100 nm, the length may be 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 10 ⁇ m, and the aspect ratio of the carbon nanotube may be 100 to 10,000, but is not limited thereto.
  • the carbon black may be any one or a combination of two or more selected from furnace black, acetylene black, thermal black, and channel black, and carbon black with an average particle diameter of 1 nm to 10 ⁇ m may be used, but for the purpose of the present invention, There is no limitation thereto as long as it does not impair the physical properties.
  • the first polyurethane layer and the third polyurethane layer may each independently have a thickness of 10 ⁇ m to 2 mm, preferably 100 to 800 ⁇ m, and more preferably 200 to 600 ⁇ m. .
  • the porous second polyurethane layer is thermoplastic polyurethane; and a conductive filler containing carbon black.
  • the thermoplastic polyurethane to the conductive filler may satisfy a weight ratio of 1:0.001 to 1, preferably 1:0.01 to 0.2, and more preferably 1:0.02 to 0.1.
  • thermoplastic polyurethane of the porous second polyurethane layer may each independently be a commonly used or known thermoplastic polyurethane.
  • thermoplastic polyurethane may be the same as or different from the thermoplastic polyurethane of the first polyurethane layer described above. Additionally, the detailed description of the carbon black is the same as described above and is therefore omitted.
  • the porous second polyurethane layer may have an open cell structure, and the open cell structure has an average pore diameter of 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m, more preferably. It may be 5 to 40 ⁇ m.
  • the structure and average diameter of the pores can be easily adjusted depending on the manufacturing method.
  • the porous second polyurethane layer may have a thickness of 50 ⁇ m to 1 mm, preferably 100 to 800 ⁇ m, and more preferably 200 to 600 ⁇ m.
  • the first polyurethane layer (l 1 ) and the third polyurethane layer (l 3 ) each independently have a thickness ratio (l) to the porous second polyurethane layer (l 2 ).
  • 1 /l 2 or l 3 /l 2 ) may be 0.05 to 5, preferably 0.1 to 3, and more preferably 0.2 to 2.
  • the first polyurethane layer and the third polyurethane layer are each independently located at an interface with the porous second polyurethane layer, a mixed layer in which the two layers forming each interface are physically mixed. It may further include. Specifically, the mixed layer may be formed when the surfaces of the two layers forming each interface come into contact in the presence of an organic solvent and the two layers are physically mixed.
  • the multilayer film may be laminated in the following order: first polyurethane layer/first mixed layer/porous second polyurethane layer/second mixed layer/third polyurethane layer. Specifically, the first mixed layer is the first mixed layer.
  • a polyurethane layer and a porous second polyurethane layer may be physically mixed, and the second mixed layer may be a physical mixture of a third polyurethane layer and a porous second polyurethane layer.
  • a mixed layer may be formed as polyurethane is dissolved by an organic solvent and contacted in a fluid state to form an interface. Accordingly, by having the multilayer film according to one embodiment further have a mixed layer, it is possible to realize superior flexibility, durability, and electromagnetic wave shielding efficiency.
  • the mixed layer that is, the first mixed layer and the second mixed layer, may be independently 0.01 to 5 ⁇ m and 0.1 to 1 ⁇ m, but are not limited thereto.
  • the first polyurethane layer and the third polyurethane layer may each independently further include an adhesive layer at an interface with the porous second polyurethane layer.
  • the adhesive layer can be used without major limitations as long as it is capable of adhering to the first to third polyurethane layers.
  • epoxy, acrylic, urethane, etc. adhesives can be used, but are not limited thereto.
  • the adhesive layer is not greatly limited as long as it does not impair the physical properties to be implemented in the present invention, and may be, for example, 0.1 to 10 ⁇ m.
  • the metal coating layer may include one or more conductive metals selected from gold, silver, platinum, palladium, nickel, and copper. Additionally, the metal coating layer may be in the form of the conductive metal adsorbed inside the pores in the form of particles, and the thickness of the metal coating layer may be 0.05 to 10 ⁇ m, preferably 0.1 to 3 ⁇ m, but is not limited thereto. The metal coating layer may be included in an amount of 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the thermoplastic polyurethane of the porous second polyurethane layer.
  • the multilayer film for electromagnetic wave shielding may have a thickness of 0.1 to 5 mm, specifically 0.1 to 1.5 mm, and more specifically 0.2 to 1 mm, but can be easily adjusted depending on the application field or use. It can be.
  • the multilayer film for electromagnetic wave shielding has an electromagnetic wave shielding effectiveness (EMI shielding effectiveness) of 50 dB or more, 60 dB or more, 70 dB or more, and 60 to 200 measured under a thickness condition of 1 ⁇ 0.1 mm. It could be dB.
  • EMI shielding effectiveness an electromagnetic wave shielding effectiveness
  • the present invention includes the steps of applying an organic solvent to both sides of a second polyurethane layer, then laminating and drying the first polyurethane layer, the second polyurethane layer, and the third polyurethane layer in that order to produce a multilayer film;
  • a method for manufacturing a multilayer film for electromagnetic wave shielding, wherein the first to third polyurethane layers each independently contain a conductive filler, and a metal coating layer is formed inside the pores of the second polyurethane layer. can be provided.
  • the first polyurethane layer and the third polyurethane layer each independently contain a solvent; thermoplastic polyurethane; It may be manufactured through a non-solvent induced phase separation method from a polyurethane composition (first polyurethane composition) containing; and a conductive filler mixed with carbon nanotubes and carbon black.
  • the first polyurethane composition can be prepared by mixing a first composition containing thermoplastic polyurethane and a solvent with a second composition containing a conductive filler mixed with carbon nanotubes and carbon black.
  • the first composition may contain more than 1% by weight, or more than 5% by weight, of the thermoplastic polyurethane, and the second composition may contain more than 5% by weight, or more than 20% by weight, of the conductive filler. Not limited.
  • the first composition to the second composition may be included in a 1:1 volume ratio, or a 1:2 volume ratio.
  • the solvent can be used without major limitations as long as it is a solvent in which the thermoplastic polyurethane, carbon nanotubes, and carbon black are easily dispersed, and includes DMF (dimethylformamide), MEK (Mathylethylketon), IPA (isopropyl alcohol), and toluene. It may be any one or a combination of two or more selected from the like.
  • a film can be manufactured by adding the first polyurethane composition prepared herein to water according to a non-solvent induced phase separation method.
  • the non-solvent induced phase separation method follows a commonly used or known method. Additionally, the film undergoes a typical heat compression process (temperature conditions of 180°C or higher, preferably 180 to 300°C and pressure conditions of 3 MPa or higher, 3 to 50 MPa) for 5 minutes or more, preferably 10 to 60 minutes. ) can be performed.
  • the film manufactured through this can be applied to the first polyurethane layer and the third polyurethane layer.
  • the porous second polyurethane layer includes (a-1) a solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon black; manufacturing porous polyurethane through a vapor phase-induced phase separation method from a polyurethane composition (second polyurethane composition) containing; and (a-2) contacting the porous polyurethane with a plating composition containing a copper precursor to form a metal coating layer inside the pores.
  • the dry weight of the two-polyurethane composition may be 99% by weight or less, or 80% by weight or less, or 5 to 70% by weight, but is not limited thereto.
  • a porous polyurethane film can be manufactured from the two polyurethane compositions according to a vapor phase-induced phase separation method.
  • the gas phase-induced phase separation method may use commonly used or known methods, for example, humidity conditions of 50 to 99RH%, preferably 70 to 95RH%, and temperature conditions of 60°C or lower, preferably 40°C or lower. Pore may be formed by evaporating the solvent.
  • the solvent can be used without major limitations as long as it is a solvent in which the thermoplastic polyurethane and carbon black are easily dispersed, and any one selected from DMF (dimethylformamide), MEK (Mathylethylketon), IPA (isopropyl alcohol), and toluene. Or it may be a combination of two or more.
  • an adhesive may be applied to both sides of the second polyurethane layer and then adhered to the first polyurethane layer and the third polyurethane layer, respectively.
  • the application thickness of the adhesive can be easily adjusted within a range that does not impair the physical properties targeted by the present invention, and may be, for example, 0.01 to 100 ⁇ m. After applying the adhesive and adhering to each layer, it can be dried under normal conditions, and additionally, a normal heat compression process can be performed.
  • a mixed layer may be formed by partially drying both surfaces of the second polyurethane layer in contact with the first polyurethane layer and the third polyurethane layer, respectively, in the presence of an organic solvent. Specifically, a small amount of organic solvent (0.01 to 0.5 ml/cm2, preferably 0.05 to 0.2 ml/cm2) is applied to both sides of the second polyurethane layer to provide fluidity to the polyurethane on a part of the surface, and then the first polyurethane layer is applied. By contacting the polyurethane layer and the third polyurethane layer, respectively, the above-described first mixed layer and second mixed layer can be formed. Additionally, the organic solvent may be the same as or different from the solvent described above.
  • the step (a-2) of forming a metal coating layer inside the pores by contacting the porous polyurethane with a plating composition containing a copper precursor is a commonly used or known plating method, For example, plating may be performed for more than 1 hour, preferably 2 to 6 hours, using an electroless plating method.
  • the copper precursor is copper acetate, copper acetate hydrate, copper acetylacetonate, copper isobutyrate, copper carbonate, copper chloride, copper chloride hydrate, copper ethyl acetoacetate, and copper 2-ethylhexanoate.
  • the plating composition may include 0.01 to 10% by weight and 0.1 to 5% by weight of the copper precursor.
  • the multilayer film for electromagnetic wave shielding according to an embodiment of the present invention has excellent flexibility and durability, and can achieve excellent electromagnetic wave shielding efficiency by solving the problem of insufficient shielding efficiency, which was a disadvantage of conventional polymer electromagnetic wave shielding materials.
  • the multilayer film for electromagnetic wave shielding can be widely applied to materials that require formability, flexibility, and excellent electromagnetic wave shielding efficiency in various industrial fields such as construction materials, industrial products, and automobiles.
  • Film surface and cross-section characteristics The surface and cross-section of the multilayer film were measured using a scanning electron microscope (JEOL IT-500HR) under 5 kV acceleration voltage conditions.
  • Sheet resistance The sheet resistance of the multilayer film was measured using a CMT-SR1000N device from AIT Co., Ltd. using a 4-point probe measurement method.
  • thermoplastic polyurethane physical properties Weight average molecular weight was measured using GPC, and glass transition temperature was measured using DSC. In addition, Shore Hardness (A) was measured according to ASTM D 2240, and Specific Gravity (Specific Gravity) was measured according to ASTM D 792.
  • Electromagnetic wave shielding efficiency (EMI SE, dB): The electromagnetic wave shielding efficiency of the multilayer film was manufactured to the standard of 41.4 ⁇ 41.4 mm 2 according to the waveguides of the vector network analyzer and was measured using a Keysight PNA N5224B analysis device. The frequency range was measured in the X-band frequency range of 8-12 GHz.
  • 10% by weight of the first composition was prepared by dispersing thermoplastic polyurethane (TPU, Neothane 5195AP: hardness: 97 Shores A, specific gravity 1.21 g/cc) in DMF (Dimethylformamide), and CNT (CNT MR99) and carbon black were added to DMF.
  • TPU thermoplastic polyurethane
  • CNT MR99 CNT MR99
  • Carbon black were added to DMF.
  • Super P weight ratio 1:1
  • the first polyurethane composition was added to water to induce a non-solvent-induced phase separation method, and the phase-separated polyurethane film was dried in a drying oven at 60°C for 12 hours.
  • the dried polyurethane film was subjected to a hot press process at a temperature of 200°C and a pressure of 10MPa for 30 minutes to produce a polyurethane film with a thickness of approximately 300 ⁇ m.
  • Preparation Example 1-1 was performed in the same manner except that Neothane 5075AP (hardness: 77 Shores A, specific gravity: 1.18 g/cc) was used as thermoplastic polyurethane (TPU).
  • Neothane 5075AP hardness: 77 Shores A, specific gravity: 1.18 g/cc
  • TPU thermoplastic polyurethane
  • Preparation Example 1-1 was performed in the same manner except that Neothane 6175AP (hardness: 78 Shores A, specific gravity: 1.09 g/cc) was used as thermoplastic polyurethane (TPU).
  • Neothane 6175AP hardness: 78 Shores A, specific gravity: 1.09 g/cc
  • TPU thermoplastic polyurethane
  • a third composition of 10% by weight was prepared by dissolving thermoplastic polyurethane (TPU, Neothane 5195AP) in DMF, and 5 parts by weight of carbon black (Super P) was added and dispersed in the third composition based on 100 parts by weight of the TPU.
  • a second polyurethane composition was prepared. The second polyurethane composition was injected into a 10x10cm2 silicone mold, and the solvent was evaporated under 90RH% humidity and 30°C temperature conditions to prepare a porous polyurethane film. The pores of the prepared porous polyurethane film were analyzed by SEM and shown in Figure 3 (a), and the measured sheet resistance was 22.88 ⁇ 6.8 K ⁇ .
  • the prepared porous polyurethane film was immersed in a plating composition containing 1.2 wt% of a copper precursor (copper sulfate), electroless plating was performed for 3 hours, and then dried to prepare a porous polyurethane film with a copper coating layer formed. .
  • a plating composition containing 1.2 wt% of a copper precursor (copper sulfate)
  • electroless plating was performed for 3 hours, and then dried to prepare a porous polyurethane film with a copper coating layer formed.
  • FIG. 3 shows a graph measuring the electromagnetic wave shielding efficiency of the porous polyurethane film with the copper coating layer of Preparation Example 2.
  • a small amount (about 0.05 to 0.2 mL/cm2) of DMF was applied to both sides of the porous polyurethane film on which the copper coating layer of Preparation Example 2 was formed, and then the polyurethane film of Preparation Example 1-1 was brought into contact with both sides at room temperature. was pressed for 10 minutes at a pressure of 2 kPa.
  • Example 2 The same procedure as Example 1 was performed except that a polyurethane-based adhesive (3M) was applied instead of DMF.
  • 3M polyurethane-based adhesive
  • Example 2 the same procedure as Example 1 was performed, except that a thermoplastic polyurethane (TPU) film of the same thickness used in Preparation Example 1-1 was used instead of the polyurethane film of Preparation Example 1-1.
  • TPU thermoplastic polyurethane
  • Example 1 The electromagnetic wave shielding efficiencies of Example 1, Preparation Examples 1-1, 2, and Comparative Example 1 were compared in Table 2 below.
  • Example 1 Example 2 Manufacturing Example 1-1 Production example 2 Comparative Example 1 Electromagnetic wave shielding efficiency [dB] 78.7 65.3 39.8 50.7 52.9
  • the multilayer film for electromagnetic wave shielding according to Example 1 showed remarkable electromagnetic wave shielding efficiency compared to Comparative Example 1, which was manufactured using a polyurethane layer containing no conductive filler, and Preparation Example 1- It was confirmed that when the polyurethane film of 1 or Preparation Example 2 was manufactured as a multilayer film, it showed more excellent electromagnetic wave shielding efficiency than when used alone.
  • the multilayer film of Example 1 has a thickness at each interface (interface between the first polyurethane layer and the porous second polyurethane layer, and between the second polyurethane layer and the porous third polyurethane layer). It was confirmed that the electromagnetic wave shielding efficiency was further improved by including a mixed layer in which the two layers forming the interface were physically mixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to an electromagnetic wave shielding multilayered film and a manufacturing method therefor. Specifically, the provided electromagnetic wave shielding multilayered film is formed from polyurethane comprising a conductive filler and comprises a porous polyurethane layer. The electromagnetic wave shielding multilayered film can exhibit excellent electromagnetic wave shielding efficiency while having the advantages of flexibility, chemical resistance and the like.

Description

전자파 차폐용 다층필름 및 이의 제조방법Multilayer film for electromagnetic wave shielding and its manufacturing method
본 발명은 전자파 차폐용 다층필름 및 이의 제조방법에 대한 것이다. 구체적으로 전도성 필러를 포함하는 폴리우레탄으로부터 형성되고, 다공성 폴리우레탄층을 포함하는 전자파 차폐용 다층필름에 대한 것이다.The present invention relates to a multilayer film for electromagnetic wave shielding and a method of manufacturing the same. Specifically, it relates to a multilayer film for electromagnetic wave shielding that is formed from polyurethane containing a conductive filler and includes a porous polyurethane layer.
사물인터넷, 5G 통신 등 전자 통신의 발달과 일상생활에서의 전자기기 사용이 많아짐에 따라 인체에 대한 전자파 노출 빈도가 증가하고 있다. 이에 유해한 전자파로부터 인체를 보호하기 위하여 다양한 전자파 차폐 소재가 개발되고 있다.With the development of electronic communications such as the Internet of Things and 5G communications and the increased use of electronic devices in daily life, the frequency of exposure of the human body to electromagnetic waves is increasing. Accordingly, various electromagnetic wave shielding materials are being developed to protect the human body from harmful electromagnetic waves.
가장 일반적인 전자파 차폐 소재는 알루미늄 (Al)이나 구리 (Cu)와 같은 금속 소재인데, 금속 소재는 차폐성은 우수하지만 유연성이나 가공성이 떨어져 다양한 형태로 적용하기 어렵고, 금속 부식에 대한 문제가 있다. 또한, 이러한 소재를 자동차에 적용하였을 경우, 성형성이 미흡하며 경량화가 어렵다는 문제가 있다.The most common electromagnetic wave shielding materials are metal materials such as aluminum (Al) or copper (Cu). Although metal materials have excellent shielding properties, they are difficult to apply in various forms due to poor flexibility and processability, and there is a problem with metal corrosion. In addition, when these materials are applied to automobiles, there is a problem that moldability is insufficient and weight reduction is difficult.
고분자 기반의 전자파 차폐 소재는 기존 금속 소재의 낮은 유연성과 부식성에 대한 문제를 해결할 수 있고, 높은 내화학성 및 저밀도 특성의 장점을 가지기 때문에 활발히 연구가 진행되고 있다. 하지만, 고분자 기반의 전자파 차폐 소재는 기존 금속 기반 차폐 소재보다 낮은 차폐 효율을 나타낸다는 문제가 있다.Polymer-based electromagnetic wave shielding materials are being actively researched because they can solve the problems of low flexibility and corrosion of existing metal materials and have the advantages of high chemical resistance and low density. However, polymer-based electromagnetic wave shielding materials have the problem of lower shielding efficiency than existing metal-based shielding materials.
따라서, 기존 금속 소재의 문제를 극복하면서도 차폐 효율이 탁월한 전자파 차폐 소재에 대한 연구개발이 절실히 요구되고 있다. Therefore, there is an urgent need for research and development on electromagnetic wave shielding materials that overcome the problems of existing metal materials and have excellent shielding efficiency.
종래의 문제점을 해결하기 위하여 본 발명의 목적은 전자파 차폐 효율이 탁월한 전자파 차폐용 다층필름을 제공하는 것이다. In order to solve the conventional problems, the purpose of the present invention is to provide a multilayer film for electromagnetic wave shielding with excellent electromagnetic wave shielding efficiency.
본 발명의 또다른 목적은 간단한 방법으로도 전자파 차폐 효율이 탁월한 전자파 차폐용 다층필름을 제조하는 방법을 제공하고자 한다.Another object of the present invention is to provide a method of manufacturing a multilayer film for electromagnetic wave shielding with excellent electromagnetic wave shielding efficiency even with a simple method.
본 발명자들은 전자파 차폐 효율이 탁월한 고분자 기반의 전자파 차폐용 소재를 제조하기 위하여 끊임없이 연구한 결과, 모든 층이 전도성 필러를 포함하는 폴리우레탄으로부터 형성된 3층이상의 다층필름이고 중간층은 기공내에 금속코팅층이 형성된 다공성 폴리우레탄층인 필름의 경우, 유연성 및 내구성이 우수하며, 종래의 고분자 기반의 소재보다 탁월한 전자파 차폐 효율을 나타냄을 발견하여 본 발명을 완성하였다. As a result of continuous research by the present inventors to produce a polymer-based electromagnetic wave shielding material with excellent electromagnetic wave shielding efficiency, the present inventors have found that all layers are a multi-layer film of three or more layers formed from polyurethane containing a conductive filler, and the middle layer is a metal coating layer formed in the pores. In the case of a porous polyurethane layer film, the present invention was completed by discovering that it has excellent flexibility and durability and exhibits superior electromagnetic wave shielding efficiency than conventional polymer-based materials.
본 발명은 제1폴리우레탄층; 상기 제1폴리우레탄층 상의 다공성 제2폴리우레탄층; 및 상기 제2폴리우레탄층 상의 제3폴리우레탄층;을 포함하고, 상기 제1폴리우레탄층 내지 제3폴리우레탄층은 각각 독립적으로 전도성 필러를 함유하며, 상기 다공성 제2폴리우레탄층의 기공 내부에 금속코팅층이 형성된, 전자파 차폐용 다층필름을 제공한다.The present invention relates to a first polyurethane layer; A porous second polyurethane layer on the first polyurethane layer; and a third polyurethane layer on the second polyurethane layer, wherein the first to third polyurethane layers each independently contain a conductive filler, and the inside of the pores of the porous second polyurethane layer Provided is a multilayer film for electromagnetic wave shielding, in which a metal coating layer is formed.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 열가소성 폴리우레탄; 및 탄소나노튜브 및 카본블랙을 함유하는 전도성 필러;를 포함할 수 있다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer are each independently thermoplastic polyurethane; and a conductive filler containing carbon nanotubes and carbon black.
본 발명의 일 실시예에 따라, 상기 열가소성 폴리우레탄 대 전도성 필러는 1 : 0.1 내지 0.5의 중량비를 만족할 수 있다.According to one embodiment of the present invention, the thermoplastic polyurethane to conductive filler may satisfy a weight ratio of 1:0.1 to 0.5.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 열가소성 폴리우레탄; 및 카본블랙을 함유하는 전도성 필러;를 포함할 수 있다.According to one embodiment of the present invention, the porous second polyurethane layer is thermoplastic polyurethane; and a conductive filler containing carbon black.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 기공의 평균직경이 5 내지 50㎛의 오픈셀 구조일 수 있다.According to one embodiment of the present invention, the porous second polyurethane layer may have an open-cell structure with an average pore diameter of 5 to 50 μm.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 두께가 100 내지 600㎛일 수 있다.According to one embodiment of the present invention, the porous second polyurethane layer may have a thickness of 100 to 600 μm.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 상기 다공성 제2폴리우레탄층에 대한 두께 비가 0.2 내지 2일 수 있다.According to an embodiment of the present invention, the first polyurethane layer and the third polyurethane layer may each independently have a thickness ratio of 0.2 to 2 with respect to the porous second polyurethane layer.
본 발명의 일 실시예에 따른 다공성 제2폴리우레탄층에 있어서, 상기 열가소성 폴리우레탄 대 전도성 필러는 1 : 0.01 내지 0.2의 중량비를 만족할 수 있다.In the porous second polyurethane layer according to an embodiment of the present invention, the thermoplastic polyurethane to conductive filler may satisfy a weight ratio of 1:0.01 to 0.2.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 상기 다공성 제2폴리우레탄층과의 계면에, 각 계면을 형성하는 두 층이 물리적으로 혼합된 혼합층을 더 포함할 수 있다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer are each independently located at an interface with the porous second polyurethane layer, a mixed layer in which the two layers forming each interface are physically mixed. It may further include.
본 발명의 일 실시예에 따라, 상기 혼합층은 각 계면을 형성하는 두 층의 표면이 유기용매 존재 하에 접촉되어 두 층이 물리적으로 혼합됨으로써 형성되는 것일 수 있다.According to one embodiment of the present invention, the mixed layer may be formed when the surfaces of the two layers forming each interface come into contact in the presence of an organic solvent and the two layers are physically mixed.
본 발명의 일 실시예에 따라, 상기 금속코팅층은 금, 은, 플라티늄, 팔라듐, 니켈 및 구리 등에서 선택되는 어느 하나 또는 둘 이상의 전도성 금속을 포함할 수 있다.According to an embodiment of the present invention, the metal coating layer may include one or more conductive metals selected from gold, silver, platinum, palladium, nickel, and copper.
본 발명의 일 실시예에 따라, 상기 열가소성 폴리우레탄은 비중(Specific Gravity)이 0.9 내지 1.3g/cc일 수 있다.According to one embodiment of the present invention, the thermoplastic polyurethane may have a specific gravity of 0.9 to 1.3 g/cc.
본 발명의 일 실시예에 따라, 상기 전자파 차폐용 다층필름은 두께가 0.1 내지 1.5㎜일 수 있다.According to one embodiment of the present invention, the multilayer film for electromagnetic wave shielding may have a thickness of 0.1 to 1.5 mm.
본 발명의 일 실시예에 따라, 상기 전자파 차폐용 다층필름은 1±0.1㎜의 두께 조건에서 측정한 전자기파 차폐 효율(EMI shielding effectiveness)이 60 dB 이상일 수 있다.According to one embodiment of the present invention, the multilayer film for electromagnetic wave shielding may have an EMI shielding effectiveness of 60 dB or more, measured under a thickness condition of 1 ± 0.1 mm.
본 발명은 제2폴리우레탄층의 양면에 유기용매를 도포한 뒤, 제1폴리우레탄층, 제2폴리우레탄층 및 제3폴리우레탄층의 순서로 적층 및 건조하여 다층필름을 제조하는 단계;를 포함하며,The present invention includes the steps of applying an organic solvent to both sides of a second polyurethane layer, then laminating and drying the first polyurethane layer, the second polyurethane layer, and the third polyurethane layer in that order to produce a multilayer film; Includes,
상기 제1폴리우레탄층 내지 제3폴리우레탄층은 각각 독립적으로 전도성 필러를 함유하며, 상기 제2폴리우레탄층의 기공 내부에 금속코팅층이 형성된 것인 전자파 차폐용 다층필름의 제조방법을 제공할 수 있다.The first polyurethane layer to the third polyurethane layer each independently contain a conductive filler, and a metal coating layer is formed inside the pores of the second polyurethane layer. there is.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 용매; 열가소성 폴리우레탄; 및 탄소나노튜브 및 카본블랙이 혼합된 전도성 필러;를 함유하는 폴리우레탄 조성물로부터 비용매 유도 상분리법을 통해 제조된 것일 수 있다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer each independently contain a solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon nanotubes and carbon black. It may be manufactured through a non-solvent induced phase separation method from a polyurethane composition containing.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 (a-1) 용매; 열가소성 폴리우레탄; 및 카본블랙이 혼합된 전도성 필러;를 함유하는 폴리우레탄 조성물로부터 용매증발법을 통해 다공성 폴리우레탄을 제조하는 단계; 및 According to one embodiment of the present invention, the porous second polyurethane layer includes (a-1) a solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon black; manufacturing porous polyurethane through a solvent evaporation method from a polyurethane composition containing; and
(a-2) 상기 다공성 폴리우레탄을 구리 전구체를 포함하는 도금용 조성물에 접촉시켜 기공 내부에 금속코팅층을 형성하는 단계;를 통해 제조되는 것일 수 있다.(a-2) contacting the porous polyurethane with a plating composition containing a copper precursor to form a metal coating layer inside the pores.
본 발명의 일 실시예에 따라, 상기 제2폴리우레탄층의 양면의 일부가 유기용매 존재 하에 제1폴리우레탄층 및 제3폴리우레탄층과 각각 접촉하여 건조됨으로써, 혼합층을 형성하는 것일 수 있다.According to one embodiment of the present invention, a mixed layer may be formed by partially drying both surfaces of the second polyurethane layer in contact with the first polyurethane layer and the third polyurethane layer, respectively, in the presence of an organic solvent.
본 발명은 전자파 차폐용 다층필름 및 이의 제조방법에 대한 것이다. 구체적으로 모든 층이 전도성 필러를 포함하는 폴리우레탄으로부터 형성된 3층 이상의 다층필름이고 중간층은 기공내에 금속코팅층이 형성된 다공성 폴리우레탄층인 전자파 차폐용 다층필름에 대한 것이다. 일 실시예에 따른 전자파 차폐용 다층필름은 종래 금속 소재의 문제점이였던 유연성, 내화학성 등이 우수하면서도 탁월한 전자파 차폐효율을 나타낼 수 있다.The present invention relates to a multilayer film for electromagnetic wave shielding and a method of manufacturing the same. Specifically, it is a multilayer film for electromagnetic wave shielding in which all layers are three or more layers formed from polyurethane containing a conductive filler, and the middle layer is a porous polyurethane layer with a metal coating layer formed in the pores. The multilayer film for electromagnetic wave shielding according to one embodiment has excellent flexibility and chemical resistance, which were problems with conventional metal materials, and can exhibit excellent electromagnetic wave shielding efficiency.
도 1은 본 발명의 제조예 1-1 내지 1-3에 따른 폴리우레탄 필름의 표면 및 단면 특성을 측정한 SEM이미지이다.Figure 1 is an SEM image measuring the surface and cross-sectional characteristics of polyurethane films according to Preparation Examples 1-1 to 1-3 of the present invention.
도 2는 본 발명의 제조예 1-1 내지 1-3에 따른 폴리우레탄 필름의 전자파 차폐 효율 그래프이다.Figure 2 is a graph of the electromagnetic wave shielding efficiency of polyurethane films according to Preparation Examples 1-1 to 1-3 of the present invention.
도 3은 본 발명의 제조예 2에 따른 다공성 폴리우레탄 필름의 기공의 SEM이미지이다.Figure 3 is an SEM image of the pores of the porous polyurethane film according to Preparation Example 2 of the present invention.
도 4는 본 발명의 제조예 2에 따른 구리코팅층이 형성된 다공성 폴리우레탄 필름의 전자파 차폐 효율 그래프이다.Figure 4 is a graph of the electromagnetic wave shielding efficiency of the porous polyurethane film with a copper coating layer according to Preparation Example 2 of the present invention.
도 5의 (a)는 본 발명의 실시예 1에 따른 전자파 차폐용 다층필름의 단면 SEM 이미지이고, 도 5의 (b)는 전자파 차폐 효율 그래프이다.Figure 5(a) is a cross-sectional SEM image of the multilayer film for electromagnetic wave shielding according to Example 1 of the present invention, and Figure 5(b) is a graph of electromagnetic wave shielding efficiency.
이하 첨부된 도면들을 포함한 구체예 또는 실시예를 통해 본 발명을 더욱 상세히 설명한다. 다만 하기 구체예 또는 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.Hereinafter, the present invention will be described in more detail through specific examples or examples including the attached drawings. However, the following specific examples or examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 발명에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. Additionally, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention pertains. The terminology used in the description herein is merely to effectively describe specific embodiments and is not intended to limit the invention.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. Additionally, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” are intended to also include the plural forms, unless the context clearly dictates otherwise.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Additionally, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.
본 명세서에서, 층, 막, 영역, 판 등의 부분이 다른 부분 ‘위에’ 또는 ‘상에’ 있다고 할 때, 이는 다른 부분 ‘바로 위에’ 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.In this specification, when a part such as a layer, membrane, region, plate, etc. is said to be 'on' or 'on' another part, this refers not only to the case where it is 'right on' the other part, but also to the case where there is another part in between. Includes.
이하, 본 발명에 따른 일 양태에 대하여 보다 구체적으로 설명한다.Hereinafter, one aspect according to the present invention will be described in more detail.
본 발명은 제1폴리우레탄층; 상기 제1폴리우레탄층 상의 다공성 제2폴리우레탄층; 및 상기 제2폴리우레탄층 상의 제3폴리우레탄층;을 포함하고, 상기 제1폴리우레탄층 내지 제3폴리우레탄층은 각각 독립적으로 전도성 필러를 함유하며, 상기 다공성 제2폴리우레탄층의 기공 내부에 금속코팅층이 형성된, 전자파 차폐용 다층필름을 제공한다.The present invention relates to a first polyurethane layer; A porous second polyurethane layer on the first polyurethane layer; and a third polyurethane layer on the second polyurethane layer, wherein the first to third polyurethane layers each independently contain a conductive filler, and the inside of the pores of the porous second polyurethane layer Provided is a multilayer film for shielding electromagnetic waves, in which a metal coating layer is formed.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 열가소성 폴리우레탄; 및 탄소나노튜브 및 카본블랙을 함유하는 전도성 필러;를 포함할 수 있다. 또한, 상기 열가소성 폴리우레탄 대 전도성 필러는 1 : 0.01 내지 1의 중량비, 좋게는 1 : 0.1 내지 0.5의 중량비, 더 좋게는 1 : 0.2 내지 0.4의 중량비를 만족할 수 있다. According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer are each independently thermoplastic polyurethane; and a conductive filler containing carbon nanotubes and carbon black. Additionally, the thermoplastic polyurethane to the conductive filler may satisfy a weight ratio of 1:0.01 to 1, preferably 1:0.1 to 0.5, and more preferably 1:0.2 to 0.4.
구체적으로 상기 제1폴리우레탄층 및 제3폴리우레탄층의 열가소성 폴리우레탄은 각각 독립적으로 통상적으로 사용되거나 공지된 열가소성 폴리우레탄을 사용할 수 있다. 구체적으로 상기 열가소성 폴리우레탄은 중량평균분자량이 10,000 내지 1,000,000g/mol일 수 있다. 또한, 유리전이온도는 -50℃ 내지 30℃일 수 있지만, 이에 제한되지 않는다. 또한, 상기 열가소성 폴리우레탄은 경도(Shore Hardness, A)가 70 내지 99 Shores A, 좋게는 80 내지 97 Shores A일 수 있고, 비중(Specific Gravity)은 0.9 내지 1.3g/cc, 좋게는 1.0 내지 1.25g/cc일 수 있지만, 이제 제한되지 않는다.Specifically, the thermoplastic polyurethane of the first polyurethane layer and the third polyurethane layer may each independently be a commonly used or known thermoplastic polyurethane. Specifically, the thermoplastic polyurethane may have a weight average molecular weight of 10,000 to 1,000,000 g/mol. Additionally, the glass transition temperature may be -50°C to 30°C, but is not limited thereto. In addition, the thermoplastic polyurethane may have a shore hardness (A) of 70 to 99 Shores A, preferably 80 to 97 Shores A, and a specific gravity (Specific Gravity) of 0.9 to 1.3 g/cc, preferably 1.0 to 1.25. It can be g/cc, but is no longer limited.
구체적으로 상기 제1폴리우레탄층 및 제3폴리우레탄층의 전도성 필러는 탄소나노튜브의 표면에 카본블랙이 흡착되어 일종의 전도성 복합체를 형성할 수 있고, 이러한 전도성 복합체를 포함하는 경우, 보다 향상된 차폐성능을 구현할 수 있다. 또한, 상기 탄소나노튜브 및 카본블랙은 1 : 0.1 내지 5의 중량비, 좋게는 1 : 0.5 내지 3의 중량비, 더 좋게는 1 : 0.7 내지 2의 중량비를 만족할 수 있다. Specifically, the conductive filler of the first polyurethane layer and the third polyurethane layer can form a kind of conductive composite by adsorbing carbon black on the surface of the carbon nanotube, and when it includes such a conductive composite, improved shielding performance is achieved. can be implemented. In addition, the carbon nanotubes and carbon black may satisfy a weight ratio of 1:0.1 to 5, preferably 1:0.5 to 3, and more preferably 1:0.7 to 2.
상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브, 다발형 탄소나노튜브 및 이들의 조합을 사용할 수 있으며, 상기 탄소나노튜브의 직경은 0.5 ㎚ 내지 200 nm, 좋게는 1nm 내지 100 nm일 수 있고, 길이는 1 ㎛ 내지 50 ㎛, 좋게는 2 ㎛ 내지 10 ㎛으며, 상기 탄소나노튜브의 종횡비가 100 내지 10,000인 것을 사용할 수 있지만, 이에 제한되지 않는다.The carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, bundled carbon nanotubes, and combinations thereof, and the diameter of the carbon nanotubes is preferably 0.5 nm to 200 nm. may be 1 nm to 100 nm, the length may be 1 ㎛ to 50 ㎛, preferably 2 ㎛ to 10 ㎛, and the aspect ratio of the carbon nanotube may be 100 to 10,000, but is not limited thereto.
상기 카본블랙은 퍼니스 블랙, 아세틸렌 블랙, 써말 블랙 및 채널 블랙 등에서 선택되는 어느 하나 또는 둘 이상의 조합을 사용할 수 있고, 평균입경이 1㎚ 내지 10㎛의 카본블랙을 사용할 수 있지만, 본 발명이 목적으로 하는 물성을 저해하지 않는 범위라면 이에 제한되지 않는다.The carbon black may be any one or a combination of two or more selected from furnace black, acetylene black, thermal black, and channel black, and carbon black with an average particle diameter of 1 nm to 10 μm may be used, but for the purpose of the present invention, There is no limitation thereto as long as it does not impair the physical properties.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 두께가 10㎛ 내지 2㎜, 좋게는 100 내지 800㎛, 더 좋게는 200 내지 600㎛일 수 있다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer may each independently have a thickness of 10 μm to 2 mm, preferably 100 to 800 μm, and more preferably 200 to 600 μm. .
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 열가소성 폴리우레탄; 및 카본블랙을 함유하는 전도성 필러;를 포함할 수 있다. 구체적으로 상기 열가소성 폴리우레탄 대 전도성 필러는 1 : 0.001 내지 1의 중량비, 좋게는 1 : 0.01 내지 0.2의 중량비, 더 좋게는 1 : 0.02 내지 0.1의 중량비를 만족할 수 있다. According to one embodiment of the present invention, the porous second polyurethane layer is thermoplastic polyurethane; and a conductive filler containing carbon black. Specifically, the thermoplastic polyurethane to the conductive filler may satisfy a weight ratio of 1:0.001 to 1, preferably 1:0.01 to 0.2, and more preferably 1:0.02 to 0.1.
구체적으로 상기 다공성 제2폴리우레탄층의 열가소성 폴리우레탄은 각각 독립적으로 통상적으로 사용되거나 공지된 열가소성 폴리우레탄을 사용할 수 있다. 구체적으로 상기 열가소성 폴리우레탄은 상술한 제1폴리우레탄층의 열가소성 폴리우레탄과 동일하거나 상이할 수 있다. 또한, 상기 카본블랙에 대한 구체적인 설명은 상술한 바와 동일하므로 생략한다. Specifically, the thermoplastic polyurethane of the porous second polyurethane layer may each independently be a commonly used or known thermoplastic polyurethane. Specifically, the thermoplastic polyurethane may be the same as or different from the thermoplastic polyurethane of the first polyurethane layer described above. Additionally, the detailed description of the carbon black is the same as described above and is therefore omitted.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 오픈셀 구조를 가질 수 있고, 상기 오픈셀 구조는 기공의 평균직경이 1 내지 100㎛, 좋게는 5 내지 50㎛, 더 좋게는 5 내지 40㎛일 수 있다. 기공의 구조나 평균직경은 제법에 따라 용이하게 조절될 수 있다.According to one embodiment of the present invention, the porous second polyurethane layer may have an open cell structure, and the open cell structure has an average pore diameter of 1 to 100㎛, preferably 5 to 50㎛, more preferably. It may be 5 to 40㎛. The structure and average diameter of the pores can be easily adjusted depending on the manufacturing method.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 두께가 50㎛ 내지 1㎜, 좋게는 100 내지 800㎛, 더 좋게는 200 내지 600㎛일 수 있다.According to one embodiment of the present invention, the porous second polyurethane layer may have a thickness of 50 μm to 1 mm, preferably 100 to 800 μm, and more preferably 200 to 600 μm.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층(l1) 및 제3폴리우레탄층(l3)은 각각 독립적으로 상기 다공성 제2폴리우레탄층(l2)에 대한 두께 비(l1/l2 또는 l3/l2)가 0.05 내지 5, 좋게는 0.1 내지 3, 더 좋게는 0.2 내지 2일 수 있다.According to one embodiment of the present invention, the first polyurethane layer (l 1 ) and the third polyurethane layer (l 3 ) each independently have a thickness ratio (l) to the porous second polyurethane layer (l 2 ). 1 /l 2 or l 3 /l 2 ) may be 0.05 to 5, preferably 0.1 to 3, and more preferably 0.2 to 2.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 상기 다공성 제2폴리우레탄층과의 계면에, 각 계면을 형성하는 두 층이 물리적으로 혼합된 혼합층을 더 포함할 수 있다. 구체적으로 상기 혼합층은 각 계면을 형성하는 두 층의 표면이 유기용매 존재 하에 접촉되어 두 층이 물리적으로 혼합됨으로써 형성되는 것일 수 있다. 다시 말해 상기 다층필름은 제1폴리우레탄층/제1혼합층/다공성 제2폴리우레탄층/제2혼합층/제3폴리우레탄층의 순서로 적층된 것일 수 있고, 구체적으로 상기 제1혼합층은 제1폴리우레탄층과 다공성 제2폴리우레탄층이 물리적으로 혼합된 것이고, 상기 제2혼합층은 제3폴리우레탄층과 다공성 제2폴리우레탄층이 물리적으로 혼합된 것일 수 있다. 이들은 유기용매에 의해 폴리우레탄이 용해되어 유동성을 가지는 상태에서 접촉되어 계면을 형성함에 따라 혼합층이 형성되는 것일 수 있다. 이에 따라 일 실시예에 따른 다층필름이 혼합층을 더 가짐으로써, 보다 탁월한 유연성, 내구성 및 전자파 차폐 효율을 구현할 수 있다. 또한, 상기 혼합층 즉, 제1혼합층 및 제2혼합층은 서로 독립적으로 0.01 내지 5㎛, 0.1 내지 1㎛일 수 있지만 이에 제한되지 않는다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer are each independently located at an interface with the porous second polyurethane layer, a mixed layer in which the two layers forming each interface are physically mixed. It may further include. Specifically, the mixed layer may be formed when the surfaces of the two layers forming each interface come into contact in the presence of an organic solvent and the two layers are physically mixed. In other words, the multilayer film may be laminated in the following order: first polyurethane layer/first mixed layer/porous second polyurethane layer/second mixed layer/third polyurethane layer. Specifically, the first mixed layer is the first mixed layer. A polyurethane layer and a porous second polyurethane layer may be physically mixed, and the second mixed layer may be a physical mixture of a third polyurethane layer and a porous second polyurethane layer. A mixed layer may be formed as polyurethane is dissolved by an organic solvent and contacted in a fluid state to form an interface. Accordingly, by having the multilayer film according to one embodiment further have a mixed layer, it is possible to realize superior flexibility, durability, and electromagnetic wave shielding efficiency. In addition, the mixed layer, that is, the first mixed layer and the second mixed layer, may be independently 0.01 to 5 μm and 0.1 to 1 μm, but are not limited thereto.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 상기 다공성 제2폴리우레탄층과의 계면에, 접착층을 더 포함할 수 있다. 상기 접착층은 상기 제1폴리우레탄층 내지 제3폴리우레탄층과 접착이 가능한 접착제라면 크게 제한되지 않고 사용할 수 있고, 일예로, 에폭시, 아크릴계, 우레탄계 등의 접착제를 사용할 수 있지만 이에 제한되지 않는다. 상기 접착층은 본 발명에서 구현하고자 하는 물성을 저해하지 않는다면 크게 제한되지 않으며, 예로, 0.1 내지 10㎛일 수 있다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer may each independently further include an adhesive layer at an interface with the porous second polyurethane layer. The adhesive layer can be used without major limitations as long as it is capable of adhering to the first to third polyurethane layers. For example, epoxy, acrylic, urethane, etc. adhesives can be used, but are not limited thereto. The adhesive layer is not greatly limited as long as it does not impair the physical properties to be implemented in the present invention, and may be, for example, 0.1 to 10㎛.
본 발명의 일 실시예에 따라, 상기 금속코팅층은 금, 은, 플라티늄, 팔라듐, 니켈 및 구리 등에서 선택되는 어느 하나 또는 둘 이상의 전도성 금속을 포함할 수 있다. 또한, 상기 금속코팅층은 상기 전도성 금속이 입자형태로 기공 내부에 흡착된 형태일 수 있으며, 금속코팅층의 두께는 0.05 내지 10㎛, 좋게는 0.1 내지 3㎛일 수 있지만 이에 제한되지 않는다. 상기 금속코팅층은 상기 다공성 제2폴리우레탄층의 열가소성 폴리우레탄 100 중량부에 대하여 0.1 내지 10 중량부, 좋게는 0.5 내지 5 중량부로 포함될 수 있다.According to an embodiment of the present invention, the metal coating layer may include one or more conductive metals selected from gold, silver, platinum, palladium, nickel, and copper. Additionally, the metal coating layer may be in the form of the conductive metal adsorbed inside the pores in the form of particles, and the thickness of the metal coating layer may be 0.05 to 10 μm, preferably 0.1 to 3 μm, but is not limited thereto. The metal coating layer may be included in an amount of 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the thermoplastic polyurethane of the porous second polyurethane layer.
본 발명의 일 실시예에 따라, 상기 전자파 차폐용 다층필름은 두께가 0.1 내지 5㎜, 구체적으로 0.1 내지 1.5㎜, 보다 구체적으로 0.2 내지 1㎜일 수 있지만, 적용분야나 용도에 따라 용이하게 조절될 수 있다.According to one embodiment of the present invention, the multilayer film for electromagnetic wave shielding may have a thickness of 0.1 to 5 mm, specifically 0.1 to 1.5 mm, and more specifically 0.2 to 1 mm, but can be easily adjusted depending on the application field or use. It can be.
본 발명의 일 실시예에 따라, 상기 전자파 차폐용 다층필름은 1±0.1㎜의 두께 조건에서 측정한 전자기파 차폐 효율(EMI shielding effectiveness)이 50 dB 이상, 60 dB 이상, 70 dB 이상, 60 내지 200 dB일 수 있다.According to one embodiment of the present invention, the multilayer film for electromagnetic wave shielding has an electromagnetic wave shielding effectiveness (EMI shielding effectiveness) of 50 dB or more, 60 dB or more, 70 dB or more, and 60 to 200 measured under a thickness condition of 1 ± 0.1 mm. It could be dB.
본 발명은 제2폴리우레탄층의 양면에 유기용매를 도포한 뒤, 제1폴리우레탄층, 제2폴리우레탄층 및 제3폴리우레탄층의 순서로 적층 및 건조하여 다층필름을 제조하는 단계;를 포함하며, 상기 제1폴리우레탄층 내지 제3폴리우레탄층은 각각 독립적으로 전도성 필러를 함유하며, 상기 제2폴리우레탄층의 기공 내부에 금속코팅층이 형성된 것인 전자파 차폐용 다층필름의 제조방법을 제공할 수 있다.The present invention includes the steps of applying an organic solvent to both sides of a second polyurethane layer, then laminating and drying the first polyurethane layer, the second polyurethane layer, and the third polyurethane layer in that order to produce a multilayer film; A method for manufacturing a multilayer film for electromagnetic wave shielding, wherein the first to third polyurethane layers each independently contain a conductive filler, and a metal coating layer is formed inside the pores of the second polyurethane layer. can be provided.
본 발명의 일 실시예에 따라, 상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 용매; 열가소성 폴리우레탄; 및 탄소나노튜브 및 카본블랙이 혼합된 전도성 필러;를 함유하는 폴리우레탄 조성물(제1폴리우레탄 조성물)로부터 비용매 유도 상분리법을 통해 제조된 것일 수 있다.According to one embodiment of the present invention, the first polyurethane layer and the third polyurethane layer each independently contain a solvent; thermoplastic polyurethane; It may be manufactured through a non-solvent induced phase separation method from a polyurethane composition (first polyurethane composition) containing; and a conductive filler mixed with carbon nanotubes and carbon black.
상기 제1폴리우레탄 조성물은 열가소성 폴리우레탄 및 용매를 포함하는 제1조성물과 탄소나노튜브 및 카본블랙이 혼합된 전도성 필러를 포함하는 제2조성물을 혼합하여 제조할 수 있다.The first polyurethane composition can be prepared by mixing a first composition containing thermoplastic polyurethane and a solvent with a second composition containing a conductive filler mixed with carbon nanotubes and carbon black.
상기 제1조성물은 상기 열가소성 폴리우레탄을 1중량%이상, 또는 5 중량%이상 포함할 수 있고, 상기 제2조성물은 상기 전도성 필러를 5중량%이상, 또는 20 중량%이상 포함할 수 있지만, 이에 제한되지 않는다. 상기 제1조성물 대 제2조성물은 1 : 1 부피비, 또는 1 : 2 부피비로 포함할 수 있다.The first composition may contain more than 1% by weight, or more than 5% by weight, of the thermoplastic polyurethane, and the second composition may contain more than 5% by weight, or more than 20% by weight, of the conductive filler. Not limited. The first composition to the second composition may be included in a 1:1 volume ratio, or a 1:2 volume ratio.
상기 용매는 상기 열가소성 폴리우레탄, 탄소나노튜브, 및 카본블랙이 용이하게 분산되는 용매라면 크게 제한되지 않고 사용할 수 있고, DMF(dimethylformamide), MEK(Mathylethylketon), IPA(isopropyl alcohol) 및 톨루엔(Toluene) 등에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있다.The solvent can be used without major limitations as long as it is a solvent in which the thermoplastic polyurethane, carbon nanotubes, and carbon black are easily dispersed, and includes DMF (dimethylformamide), MEK (Mathylethylketon), IPA (isopropyl alcohol), and toluene. It may be any one or a combination of two or more selected from the like.
이에서 제조된 상기 제1폴리우레탄 조성물을 비용매 유도 상분리법에 따라 물에 투입하여 필름을 제조할 수 있다. 상기 비용매 유도 상분리법은 통상적으로 사용되거나 공지된 방법에 따른다. 추가적으로 상기 필름은 통상적인 열압착의 공정(180℃ 이상, 좋게는 180 내지 300℃의 온조조건 및 3MPa 이상, 3 내지 50 MPa의 압력 조건)을 더(5분 이상, 좋게는 10 내지 60분 동안) 수행할 수 있다. 이를 통해 제조된 필름은 상기 제1폴리우레탄층과 제3폴리우레탄층에 적용될 수 있다. A film can be manufactured by adding the first polyurethane composition prepared herein to water according to a non-solvent induced phase separation method. The non-solvent induced phase separation method follows a commonly used or known method. Additionally, the film undergoes a typical heat compression process (temperature conditions of 180°C or higher, preferably 180 to 300°C and pressure conditions of 3 MPa or higher, 3 to 50 MPa) for 5 minutes or more, preferably 10 to 60 minutes. ) can be performed. The film manufactured through this can be applied to the first polyurethane layer and the third polyurethane layer.
본 발명의 일 실시예에 따라, 상기 다공성 제2폴리우레탄층은 (a-1) 용매; 열가소성 폴리우레탄; 및 카본블랙이 혼합된 전도성 필러;를 함유하는 폴리우레탄 조성물(제2폴리우레탄 조성물)로부터 기상유도 상분리법을 통해 다공성 폴리우레탄을 제조하는 단계; 및 (a-2) 상기 다공성 폴리우레탄을 구리 전구체를 포함하는 도금용 조성물에 접촉시켜 기공 내부에 금속코팅층을 형성하는 단계;를 통해 제조되는 것일 수 있다.According to one embodiment of the present invention, the porous second polyurethane layer includes (a-1) a solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon black; manufacturing porous polyurethane through a vapor phase-induced phase separation method from a polyurethane composition (second polyurethane composition) containing; and (a-2) contacting the porous polyurethane with a plating composition containing a copper precursor to form a metal coating layer inside the pores.
상기 (a-1) 단계에서, 상기 2폴리우레탄 조성물의 건조중량은 99중량% 이하, 또는 80중량% 이하, 또는 5 내지 70 중량%일 수 있지만, 이에 제한되지 않는다. 이어서 상기 2폴리우레탄 조성물을 기상유도 상분리법에 따라 다공성 폴리우레탄 필름을 제조할 수 있다. 구체적으로 상기 기상유도 상분리법은 통상적으로 사용되거나 공지된 방법을 이용할 수 있고, 일 예로, 50 내지 99RH%, 좋게는 70 내지 95RH%의 습도조건과 60℃ 이하, 좋게는 40℃ 이하의 온도조건에서 용매를 증발시켜 기공을 형성하는 것일 수 있다.In step (a-1), the dry weight of the two-polyurethane composition may be 99% by weight or less, or 80% by weight or less, or 5 to 70% by weight, but is not limited thereto. Subsequently, a porous polyurethane film can be manufactured from the two polyurethane compositions according to a vapor phase-induced phase separation method. Specifically, the gas phase-induced phase separation method may use commonly used or known methods, for example, humidity conditions of 50 to 99RH%, preferably 70 to 95RH%, and temperature conditions of 60°C or lower, preferably 40°C or lower. Pore may be formed by evaporating the solvent.
상기 용매는 상기 열가소성 폴리우레탄과 카본블랙이 용이하게 분산되는 용매라면 크게 제한되지 않고 사용할 수 있고, DMF(dimethylformamide), MEK(Mathylethylketon), IPA(isopropyl alcohol) 및 톨루엔(Toluene) 등에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있다.The solvent can be used without major limitations as long as it is a solvent in which the thermoplastic polyurethane and carbon black are easily dispersed, and any one selected from DMF (dimethylformamide), MEK (Mathylethylketon), IPA (isopropyl alcohol), and toluene. Or it may be a combination of two or more.
본 발명의 일 실시예에 따라, 상기 제2폴리우레탄층의 양면에 접착제를 도포한 뒤, 상기 제1폴리우레탄층 및 제3폴리우레탄층과 각각 접착하는 것일 수 있다. 접착제의 도포 두께는 본 발명이 목적으로 하는 물성을 저해하지 않는 범위 내에서 용이하게 조절 가능하며, 예로, 0.01 내지 100㎛일 수 있다. 접착제 도포 및 각 층과의 접착 후 통상의 조건에서 건조할 수 있고, 추가적으로 통상적인 열압착의 공정을 더 수행할 수 있다.According to one embodiment of the present invention, an adhesive may be applied to both sides of the second polyurethane layer and then adhered to the first polyurethane layer and the third polyurethane layer, respectively. The application thickness of the adhesive can be easily adjusted within a range that does not impair the physical properties targeted by the present invention, and may be, for example, 0.01 to 100 μm. After applying the adhesive and adhering to each layer, it can be dried under normal conditions, and additionally, a normal heat compression process can be performed.
본 발명의 일 실시예에 따라, 상기 제2폴리우레탄층의 양면의 일부가 유기용매 존재 하에 제1폴리우레탄층 및 제3폴리우레탄층과 각각 접촉하여 건조됨으로써, 혼합층을 형성하는 것일 수 있다. 구체적으로 상기 제2폴리우레탄층의 양면에 유기용매를 소량(0.01 내지 0.5㎖/㎠, 좋게는 0.05 내지 0.2㎖/㎠) 도포하여 표면의 일부에 있는 폴리우레탄에 유동성을 부여해준 뒤에, 제1폴리우레탄층 및 제3폴리우레탄층과 각각 접촉함으로써, 상술한 제1혼합층과 제2혼합층이 형성될 수 있다. 또한, 상기 유기용매는 상술한 용매와 동일하거나 상이할 수 있다.According to one embodiment of the present invention, a mixed layer may be formed by partially drying both surfaces of the second polyurethane layer in contact with the first polyurethane layer and the third polyurethane layer, respectively, in the presence of an organic solvent. Specifically, a small amount of organic solvent (0.01 to 0.5 ㎖/㎠, preferably 0.05 to 0.2 ㎖/㎠) is applied to both sides of the second polyurethane layer to provide fluidity to the polyurethane on a part of the surface, and then the first polyurethane layer is applied. By contacting the polyurethane layer and the third polyurethane layer, respectively, the above-described first mixed layer and second mixed layer can be formed. Additionally, the organic solvent may be the same as or different from the solvent described above.
본 발명의 일 실시예에 따라, (a-2) 상기 다공성 폴리우레탄을 구리 전구체를 포함하는 도금용 조성물에 접촉시켜 기공 내부에 금속코팅층을 형성하는 단계는 통상적으로 사용되거나 공지된 도금의 방법, 예를 들면 무전해 도금법 등을 이용하여 1시간 이상, 좋게는 2시간 내지 6시간 동안 도금이 수행될 수 있다. 상기 구리 전구체는 구리 전구체는 아세트산구리, 아세트산구리수화물, 구리아세 틸아세토네이트, 구리아이소부티레이트, 탄산구리(Copper carbonate), 염화구리, 염화구리수화물, 구리에틸아세토아세테이트, 구리2-에틸헥사노에이트, 불화구리, 포름산구리수화물, 구리글루코네이트, 구리헥사플로로아세틸아세토네이트, 구리헥사플로로아세틸아세토네이트수화물, 구리메톡사이드, 구리네오데카노에이트, 질산구리수화물, 질산구리, 과염소산구리수화물, 황산구리, 황산구리수화물, 주석 산구리수화물, 구리트리플로로아세틸아세토네이트, 구리트리플로로메탄설포네이트, 및 테트라아 민구리황산염수화물 등에서 선택되는 어느 하나 또는 둘 이상의 조합일 수 있지만, 이에 제한되지 않는다. 또한, 상기 도금용 조성물은 상기 구리전구체를 0.01 내지 10 중량%, 0.1 내지 5 중량%로 포함할 수 있다.According to one embodiment of the present invention, the step (a-2) of forming a metal coating layer inside the pores by contacting the porous polyurethane with a plating composition containing a copper precursor is a commonly used or known plating method, For example, plating may be performed for more than 1 hour, preferably 2 to 6 hours, using an electroless plating method. The copper precursor is copper acetate, copper acetate hydrate, copper acetylacetonate, copper isobutyrate, copper carbonate, copper chloride, copper chloride hydrate, copper ethyl acetoacetate, and copper 2-ethylhexanoate. , copper fluoride, copper formate hydrate, copper gluconate, copper hexafluoroacetylacetonate, copper hexafluoroacetylacetonate hydrate, copper methoxide, copper neodecanoate, copper nitrate hydrate, copper nitrate, copper perchlorate hydrate, It may be any one or a combination of two or more selected from copper sulfate, copper sulfate hydrate, copper stannous hydrate, copper trifluoroacetylacetonate, copper trifluoromethanesulfonate, and tetraamine copper sulfate hydrate, but is not limited thereto. . Additionally, the plating composition may include 0.01 to 10% by weight and 0.1 to 5% by weight of the copper precursor.
본 발명의 일 실시예에 따른 전자파 차폐용 다층필름은 유연성 및 내구성이 우수하고, 종래 고분자 소재 전자파 차폐 소재의 단점이었던 미흡한 차폐 효율의 문제를 해결하여 뛰어난 전자파 차폐 효율의 효과를 구현할 수 있다. 또한, 상기 전자파 차폐용 다층필름은 건자재, 산업용품, 자동차 등의 다양한 산업분야에서 성형성 및 유연성과 우수한 전자파 차폐 효율이 요구되는 소재에 폭넓게 응용될 수 있다.The multilayer film for electromagnetic wave shielding according to an embodiment of the present invention has excellent flexibility and durability, and can achieve excellent electromagnetic wave shielding efficiency by solving the problem of insufficient shielding efficiency, which was a disadvantage of conventional polymer electromagnetic wave shielding materials. In addition, the multilayer film for electromagnetic wave shielding can be widely applied to materials that require formability, flexibility, and excellent electromagnetic wave shielding efficiency in various industrial fields such as construction materials, industrial products, and automobiles.
이하 실시예 및 비교예를 바탕으로 본 발명을 더욱 상세히 설명한다. 다만 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 의해 제한되는 것은 아니다. The present invention will be described in more detail below based on examples and comparative examples. However, the following Examples and Comparative Examples are only one example to explain the present invention in more detail, and the present invention is not limited by the following Examples and Comparative Examples.
[물성 측정 방법][Method of measuring physical properties]
1. 필름 표면 및 단면 특성 : 다층필름의 표면 및 단면은 5 kV 가속 전압 조건에서 주사전자 현미경(Scanning electron microscope, JEOL IT-500HR)을 이용하여 측정하였다.1. Film surface and cross-section characteristics: The surface and cross-section of the multilayer film were measured using a scanning electron microscope (JEOL IT-500HR) under 5 kV acceleration voltage conditions.
2. 면저항 : 다층필름의 면저항은 4-point probe 측정방법으로 ㈜에이아이티 社의 CMT-SR1000N 기기를 이용하여 측정하였다.2. Sheet resistance: The sheet resistance of the multilayer film was measured using a CMT-SR1000N device from AIT Co., Ltd. using a 4-point probe measurement method.
3. 열가소성 폴리우레탄 물성 측정 : 중량평균분자량은 GPC를 이용하여 측정하였으며, 유리전이온도는 DSC를 이용하여 측정하였다. 또한, 경도(Shore Hardness, A)는 ASTM D 2240에 의거하여 측정하였고, 비중(Specific Gravity)은 ASTM D 792에 의거하여 측정하였다.3. Measurement of thermoplastic polyurethane physical properties: Weight average molecular weight was measured using GPC, and glass transition temperature was measured using DSC. In addition, Shore Hardness (A) was measured according to ASTM D 2240, and Specific Gravity (Specific Gravity) was measured according to ASTM D 792.
4. 전자파 차폐 효율(EMI SE, dB) : 다층필름의 전자파 차폐 효율은 vector network analyzer의 waveguides에 맞춰 41.4 Х 41.4 mm2 의 규격으로 제조되며 Keysight PNA N5224B 분석기기를 이용하여 측정하였다. 주파수범위는 X-band 인 8-12 GHz의 주파수 범위에서 측정하였다.4. Electromagnetic wave shielding efficiency (EMI SE, dB): The electromagnetic wave shielding efficiency of the multilayer film was manufactured to the standard of 41.4 Х 41.4 mm 2 according to the waveguides of the vector network analyzer and was measured using a Keysight PNA N5224B analysis device. The frequency range was measured in the X-band frequency range of 8-12 GHz.
[제조예 1-1] [Production Example 1-1]
DMF(Dimethylformamide)에 열가소성 폴리우레탄(TPU, Neothane 5195AP:경도 :97 Shores A, 비중 1.21 g/cc)을 분산시켜 10중량%의 제1조성물을 제조하고, DMF에 CNT(CNT MR99) 및 카본블랙(Super P)(중량비1:1)을 분산시켜 30중량%의 제2조성물을 제조한 뒤, 상기 제1조성물과 제2조성물을 1:0.1의 부피비로 혼합하여 제1폴리우레탄 조성물을 제조하였다. 상기 제1폴리우레탄 조성물을 물에 투입하여 비용매 유도 상분리법을 유도하였으며, 상분리된 폴리우레탄 필름을 60℃의 건조오븐에서 12시간동안 건조하였다. 건조된 폴리우레탄 필름을 200℃온도조건, 10MPa압력조건의 핫프레스 공정을 30분간 진행하여 약 300㎛ 두께의 폴리우레탄 필름을 제조하였다. 10% by weight of the first composition was prepared by dispersing thermoplastic polyurethane (TPU, Neothane 5195AP: hardness: 97 Shores A, specific gravity 1.21 g/cc) in DMF (Dimethylformamide), and CNT (CNT MR99) and carbon black were added to DMF. (Super P) (weight ratio 1:1) was dispersed to prepare a second composition of 30% by weight, and then the first composition and the second composition were mixed at a volume ratio of 1:0.1 to prepare the first polyurethane composition. . The first polyurethane composition was added to water to induce a non-solvent-induced phase separation method, and the phase-separated polyurethane film was dried in a drying oven at 60°C for 12 hours. The dried polyurethane film was subjected to a hot press process at a temperature of 200°C and a pressure of 10MPa for 30 minutes to produce a polyurethane film with a thickness of approximately 300㎛.
[제조예 1-2][Production Example 1-2]
상기 제조예 1-1에서 열가소성 폴리우레탄(TPU)을 Neothane 5075AP(경도 :77 Shores A, 비중 1.18 g/cc)를 사용하였다는 점을 제외하고 동일하게 수행하였다.Preparation Example 1-1 was performed in the same manner except that Neothane 5075AP (hardness: 77 Shores A, specific gravity: 1.18 g/cc) was used as thermoplastic polyurethane (TPU).
[제조예 1-3][Production Example 1-3]
상기 제조예 1-1에서 열가소성 폴리우레탄(TPU)을 Neothane 6175AP(경도 :78 Shores A, 비중 1.09 g/cc)를 사용하였다는 점을 제외하고 동일하게 수행하였다.Preparation Example 1-1 was performed in the same manner except that Neothane 6175AP (hardness: 78 Shores A, specific gravity: 1.09 g/cc) was used as thermoplastic polyurethane (TPU).
상기 제조예 1-1 내지 1-3에 따른 폴리우레탄 필름의 표면 및 단면 특성을 측정하여 도 1에 도시하였고, 면저항을 측정하여 하기 표 1에 나타내었다. 또한, 전자파 차폐 효율을 측정하여 도 2에 도시하였다.The surface and cross-sectional properties of the polyurethane films according to Preparation Examples 1-1 to 1-3 were measured and shown in Figure 1, and the sheet resistance was measured and shown in Table 1 below. Additionally, the electromagnetic wave shielding efficiency was measured and shown in Figure 2.
제조예 1-1Manufacturing Example 1-1 제조예 1-2Manufacturing Example 1-2 제조예 1-3Manufacturing Example 1-3
면저항[Ω]Sheet resistance [Ω] 3.21 ±0.453.21 ±0.45 3.40 ±0.713.40 ±0.71 6.46 ±1.336.46 ±1.33
[제조예 2] [Production Example 2]
DMF에 열가소성 폴리우레탄(TPU, Neothane 5195AP)을 용해시켜 10중량%의 제3조성물을 제조하고, 상기 제3조성물에 카본블랙(Super P)을 상기 TPU 100 중량부에 대하여 5 중량부를 투입 및 분산시켜 제2폴리우레탄 조성물을 제조하였다. 10x10㎠의 실리콘 몰드에 상기 제2폴리우레탄 조성물을 주입한 뒤 90RH% 습도조건, 30℃ 온도조건에서 용매를 증발시켜 다공성 폴리우레탄 필름을 제조하였다. 제조된 다공성 폴리우레탄 필름의 기공을 SEM으로 분석하여 도 3 (a)에 도시하였으며, 측정된 면저항은 22.88 ± 6.8 KΩ이었다.A third composition of 10% by weight was prepared by dissolving thermoplastic polyurethane (TPU, Neothane 5195AP) in DMF, and 5 parts by weight of carbon black (Super P) was added and dispersed in the third composition based on 100 parts by weight of the TPU. A second polyurethane composition was prepared. The second polyurethane composition was injected into a 10x10㎠ silicone mold, and the solvent was evaporated under 90RH% humidity and 30°C temperature conditions to prepare a porous polyurethane film. The pores of the prepared porous polyurethane film were analyzed by SEM and shown in Figure 3 (a), and the measured sheet resistance was 22.88 ± 6.8 KΩ.
이어서 상기 제조된 다공성 폴리우레탄 필름을 구리 전구체(황산구리)가 1.2wt% 함유된 도금용 조성물에 침지한 뒤 3시간동안 무전해 도금을 진행한 뒤 건조함으로써 구리코팅층이 형성된 다공성 폴리우레탄 필름을 제조하였다.Subsequently, the prepared porous polyurethane film was immersed in a plating composition containing 1.2 wt% of a copper precursor (copper sulfate), electroless plating was performed for 3 hours, and then dried to prepare a porous polyurethane film with a copper coating layer formed. .
상기 구리코팅층이 형성된 다공성 폴리우레탄 필름 기공을 SEM으로 분석하여 도 3 (b)에 도시하였으며, 또한 다공성 폴리우레탄 필름의 두께는 약 500㎛로 측정되었다. 또한, 도 4에 상기 제조예 2의 구리코팅층이 형성된 다공성 폴리우레탄 필름의 전자파 차폐 효율을 측정한 그래프를 도시하였다.The pores of the porous polyurethane film on which the copper coating layer was formed were analyzed by SEM and shown in Figure 3 (b), and the thickness of the porous polyurethane film was measured to be about 500㎛. In addition, Figure 4 shows a graph measuring the electromagnetic wave shielding efficiency of the porous polyurethane film with the copper coating layer of Preparation Example 2.
[실시예 1][Example 1]
상기 제조예 2의 구리코팅층이 형성된 다공성 폴리우레탄 필름의 양면에 DMF를 소량(0.05 내지 0.2㎖/㎠정도) 도포한 뒤에, 상기 제조예 1-1의 폴리우레탄 필름을 양면에 접촉시켰으며, 상온에서 2kPa의 압력으로 10분간 눌러주었다. 이를 통해 제조예 1-1의 폴리우레탄 필름(제1폴리우레탄층)/제조예 2의구리코팅층이 형성된 다공성 폴리우레탄 필름(제2폴리우레탄층)/제조예 1-1의 폴리우레탄 필름(제3폴리우레탄층)이 순서대로 적층된 두께 1.1㎜의 전자파 차폐용 다층필름을 제조하였으며, 도 5 (a)에 전자파 차폐용 다층필름의 단면 SEM 이미지를 도시하였고, 상기 도 5 (b)에 상기 전자파 차폐용 다층필름의 전자파 차폐 효율을 측정한 그래프를 도시하였다.A small amount (about 0.05 to 0.2 mL/cm2) of DMF was applied to both sides of the porous polyurethane film on which the copper coating layer of Preparation Example 2 was formed, and then the polyurethane film of Preparation Example 1-1 was brought into contact with both sides at room temperature. was pressed for 10 minutes at a pressure of 2 kPa. Through this, the polyurethane film of Preparation Example 1-1 (first polyurethane layer) / the porous polyurethane film with the copper coating layer of Preparation Example 2 (second polyurethane layer) / the polyurethane film of Preparation Example 1-1 (first polyurethane layer) A multilayer film for electromagnetic wave shielding with a thickness of 1.1 mm was manufactured in which 3 polyurethane layers were laminated in order. A cross-sectional SEM image of the multilayer film for electromagnetic wave shielding is shown in Figure 5 (a), and Figure 5 (b) shows the cross-sectional SEM image of the multilayer film for electromagnetic wave shielding. A graph measuring the electromagnetic wave shielding efficiency of the multilayer film for electromagnetic wave shielding is shown.
[실시예 2][Example 2]
상기 실시예 1에서 DMF 대신 폴리우레탄계 접착제(3M사)를 도포하였다는 점을 제외하고 실시예 1과 동일하게 수행하였다.The same procedure as Example 1 was performed except that a polyurethane-based adhesive (3M) was applied instead of DMF.
[비교예 1][Comparative Example 1]
상기 실시예 2에서 제조예 1-1의 폴리우레탄 필름 대신 동일 두께의 제조예 1-1에서 사용한 열가소성 폴리우레탄(TPU)의 필름을 사용하였다는 점을 제외하고 실시예 1과 동일하게 수행하였다.In Example 2, the same procedure as Example 1 was performed, except that a thermoplastic polyurethane (TPU) film of the same thickness used in Preparation Example 1-1 was used instead of the polyurethane film of Preparation Example 1-1.
상기 실시예 1, 제조예 1-1, 2 및 비교예 1의 전자파 차폐 효율을 하기 표 2에서 비교하였다.The electromagnetic wave shielding efficiencies of Example 1, Preparation Examples 1-1, 2, and Comparative Example 1 were compared in Table 2 below.
실시예 1Example 1 실시예 2Example 2 제조예 1-1Manufacturing Example 1-1 제조예 2Production example 2 비교예 1Comparative Example 1
전자파 차폐 효율[dB]Electromagnetic wave shielding efficiency [dB] 78.778.7 65.365.3 39.839.8 50.750.7 52.952.9
상기 표 2에서 보는 바와 같이, 실시예 1에 따른 전자파 차폐용 다층필름은 전도성 필러를 함유하지 않는 폴리우레탄층을 이용하여 제조된 비교예 1에 비하여 현저한 전자파 차폐 효율을 나타내었으며, 제조예 1-1이나 제조예 2의 폴리우레탄 필름을 단독으로 사용하는 것보다 다층필름으로 제조할 경우, 보다 탁월한 전자파 차폐 효율을 나타낸다는 것을 확인하였다.As shown in Table 2, the multilayer film for electromagnetic wave shielding according to Example 1 showed remarkable electromagnetic wave shielding efficiency compared to Comparative Example 1, which was manufactured using a polyurethane layer containing no conductive filler, and Preparation Example 1- It was confirmed that when the polyurethane film of 1 or Preparation Example 2 was manufactured as a multilayer film, it showed more excellent electromagnetic wave shielding efficiency than when used alone.
또한, 상기 실시예 1 및 2를 비교할 경우, 실시예 1의 다층필름은 각 계면(제1폴리우레탄층과 다공성 제2폴리우레탄층의 계면, 제2폴리우레탄층과 다공성 제3폴리우레탄층의 계면)을 형성하는 두 층이 물리적으로 혼합된 혼합층을 포함함으로써, 더욱 향상된 전자파 차폐 효율을 나타낸다는 것을 확인하였다.In addition, when comparing Examples 1 and 2, the multilayer film of Example 1 has a thickness at each interface (interface between the first polyurethane layer and the porous second polyurethane layer, and between the second polyurethane layer and the porous third polyurethane layer). It was confirmed that the electromagnetic wave shielding efficiency was further improved by including a mixed layer in which the two layers forming the interface were physically mixed.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described with specific details, limited embodiments, and drawings, but these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above embodiments, and the present invention Anyone skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described later as well as all things that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .

Claims (18)

  1. 제1폴리우레탄층; 상기 제1폴리우레탄층 상의 다공성 제2폴리우레탄층; 및 상기 제2폴리우레탄층 상의 제3폴리우레탄층;을 포함하고,First polyurethane layer; A porous second polyurethane layer on the first polyurethane layer; And a third polyurethane layer on the second polyurethane layer,
    상기 제1폴리우레탄층 내지 제3폴리우레탄층은 각각 독립적으로 전도성 필러를 함유하며, The first to third polyurethane layers each independently contain a conductive filler,
    상기 다공성 제2폴리우레탄층의 기공 내부에 금속코팅층이 형성된, 전자파 차폐용 다층필름.A multilayer film for electromagnetic wave shielding, wherein a metal coating layer is formed inside the pores of the second porous polyurethane layer.
  2. 제 1항에 있어서,According to clause 1,
    상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 열가소성 폴리우레탄; 및 탄소나노튜브 및 카본블랙을 함유하는 전도성 필러;를 포함하는 전자파 차폐용 다층필름.The first polyurethane layer and the third polyurethane layer are each independently thermoplastic polyurethane; And a conductive filler containing carbon nanotubes and carbon black. A multilayer film for electromagnetic wave shielding comprising a.
  3. 제 2항에 있어서,According to clause 2,
    상기 열가소성 폴리우레탄 대 전도성 필러는 1 : 0.1 내지 0.5의 중량비를 만족하는 것인 전자파 차폐용 다층필름.A multilayer film for electromagnetic wave shielding, wherein the thermoplastic polyurethane to conductive filler satisfies a weight ratio of 1:0.1 to 0.5.
  4. 제 1항에 있어서,According to clause 1,
    상기 다공성 제2폴리우레탄층은 열가소성 폴리우레탄; 및 카본블랙을 함유하는 전도성 필러;를 포함하는 전자파 차폐용 다층필름.The porous second polyurethane layer is thermoplastic polyurethane; and a conductive filler containing carbon black. A multilayer film for shielding electromagnetic waves comprising a conductive filler containing carbon black.
  5. 제 1항에 있어서,According to clause 1,
    상기 다공성 제2폴리우레탄층은 기공의 평균직경이 5 내지 50㎛의 오픈셀 구조인 평균전자파 차폐용 다층필름.The porous second polyurethane layer is a multilayer film for shielding average electromagnetic waves having an open cell structure with an average pore diameter of 5 to 50㎛.
  6. 제 1항에 있어서,According to clause 1,
    상기 다공성 제2폴리우레탄층은 두께가 100 내지 800㎛인 전자파 차폐용 다층필름.The porous second polyurethane layer is a multilayer film for electromagnetic wave shielding with a thickness of 100 to 800㎛.
  7. 제 6항에 있어서,According to clause 6,
    상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 상기 다공성 제2폴리우레탄층에 대한 두께 비가 0.1 내지 3인 전자파 차폐용 다층필름.The first polyurethane layer and the third polyurethane layer each independently have a thickness ratio of 0.1 to 3 with respect to the porous second polyurethane layer.
  8. 제 4항에 있어서,According to clause 4,
    상기 열가소성 폴리우레탄 대 전도성 필러는 1 : 0.01 내지 0.2의 중량비를 만족하는 것인 전자파 차폐용 다층필름.A multilayer film for electromagnetic wave shielding, wherein the thermoplastic polyurethane to conductive filler satisfies a weight ratio of 1:0.01 to 0.2.
  9. 제 1항에 있어서,According to clause 1,
    상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 상기 다공성 제2폴리우레탄층과의 계면에, 각 계면을 형성하는 두 층이 물리적으로 혼합된 혼합층을 더 포함하는 것인 전자파 차폐용 다층필름.The first polyurethane layer and the third polyurethane layer each independently further include, at an interface with the porous second polyurethane layer, a mixed layer in which the two layers forming each interface are physically mixed. Multilayer film.
  10. 제 9항에 있어서,According to clause 9,
    상기 혼합층은 각 계면을 형성하는 두 층의 표면이 유기용매 존재 하에 접촉되어 두 층이 물리적으로 혼합됨으로써 형성되는 것인 전자파 차폐용 다층필름.The mixed layer is a multilayer film for electromagnetic wave shielding that is formed when the surfaces of the two layers forming each interface come into contact in the presence of an organic solvent and the two layers are physically mixed.
  11. 제 1항에 있어서,According to clause 1,
    상기 금속코팅층은 금, 은, 플라티늄, 팔라듐, 니켈 및 구리에서 선택되는 어느 하나 또는 둘 이상의 전도성 금속을 포함하는 전자파 차폐용 다층필름.The metal coating layer is a multilayer film for electromagnetic wave shielding containing one or more conductive metals selected from gold, silver, platinum, palladium, nickel, and copper.
  12. 제 2항 또는 제4항에 있어서,According to claim 2 or 4,
    상기 열가소성 폴리우레탄은 비중(Specific Gravity)이 0.9 내지 1.3g/cc인 전자파 차폐용 다층필름.The thermoplastic polyurethane is a multilayer film for electromagnetic wave shielding with a specific gravity of 0.9 to 1.3 g/cc.
  13. 제 1항에 있어서,According to clause 1,
    상기 전자파 차폐용 다층필름은 두께가 0.1 내지 1.5㎜인 전자파 차폐용 다층필름.The multilayer film for shielding electromagnetic waves is a multilayer film for shielding electromagnetic waves with a thickness of 0.1 to 1.5 mm.
  14. 제 1항에 있어서,According to clause 1,
    상기 전자파 차폐용 다층필름은 1±0.1㎜의 두께 조건에서 측정한 전자기파 차폐 효율(EMI shielding effectiveness)이 60 dB 이상인 전자파 차폐용 다층필름.The multilayer film for shielding electromagnetic waves has an EMI shielding effectiveness of 60 dB or more, measured at a thickness of 1 ± 0.1 mm.
  15. 제2폴리우레탄층의 양면에 유기용매를 도포한 뒤, 제1폴리우레탄층, 제2폴리우레탄층 및 제3폴리우레탄층의 순서로 적층 및 건조하여 다층필름을 제조하는 단계;를 포함하며,A step of applying an organic solvent to both sides of the second polyurethane layer, then laminating and drying the first polyurethane layer, the second polyurethane layer, and the third polyurethane layer in that order to produce a multilayer film,
    상기 제1폴리우레탄층 내지 제3폴리우레탄층은 각각 독립적으로 전도성 필러를 함유하며, 상기 제2폴리우레탄층의 기공 내부에 금속코팅층이 형성된 것인 전자파 차폐용 다층필름의 제조방법.The first to third polyurethane layers each independently contain a conductive filler, and a metal coating layer is formed inside the pores of the second polyurethane layer.
  16. 제 15항에 있어서,According to clause 15,
    상기 제1폴리우레탄층 및 제3폴리우레탄층은 각각 독립적으로 용매; 열가소성 폴리우레탄; 및 탄소나노튜브 및 카본블랙이 혼합된 전도성 필러;를 함유하는 폴리우레탄 조성물로부터 비용매 유도 상분리법을 통해 제조된 것인 전자파, 차폐용 다층필름의 제조방법.The first polyurethane layer and the third polyurethane layer are each independently solvent; thermoplastic polyurethane; A method of manufacturing a multilayer film for electromagnetic wave shielding, which is manufactured through a non-solvent induced phase separation method from a polyurethane composition containing a conductive filler mixed with carbon nanotubes and carbon black.
  17. 제 15항에 있어서,According to clause 15,
    상기 다공성 제2폴리우레탄층은 (a-1) 용매; 열가소성 폴리우레탄; 및 카본블랙이 혼합된 전도성 필러;를 함유하는 폴리우레탄 조성물로부터 용매증발법을 통해 다공성 폴리우레탄을 제조하는 단계; 및 The porous second polyurethane layer includes (a-1) solvent; thermoplastic polyurethane; and a conductive filler mixed with carbon black; manufacturing porous polyurethane through a solvent evaporation method from a polyurethane composition containing; and
    (a-2) 상기 다공성 폴리우레탄을 구리 전구체를 포함하는 도금용 조성물에 접촉시켜 기공 내부에 금속코팅층을 형성하는 단계;를 통해 제조되는 것인 전자파 차폐용 다층필름의 제조방법.(a-2) contacting the porous polyurethane with a plating composition containing a copper precursor to form a metal coating layer inside the pores. A method of manufacturing a multilayer film for electromagnetic wave shielding.
  18. 제 15항에 있어서,According to clause 15,
    상기 제2폴리우레탄층의 양면의 일부가 유기용매 존재 하에 제1폴리우레탄층 및 제3폴리우레탄층과 각각 접촉하여 건조됨으로써, 혼합층을 형성하는 것인 전자파 차폐용 다층필름의 제조방법.A method of manufacturing a multilayer film for electromagnetic wave shielding, wherein a portion of both surfaces of the second polyurethane layer is dried in contact with the first polyurethane layer and the third polyurethane layer, respectively, in the presence of an organic solvent, thereby forming a mixed layer.
PCT/KR2023/017268 2022-11-04 2023-11-01 Electromagnetic wave shielding multilayered film and manufacturing method therefor WO2024096574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0146151 2022-11-04
KR1020220146151A KR20240064304A (en) 2022-11-04 2022-11-04 Multilayer Film for Electromagnetic Wave Shielding and Manufacturing Method thereof

Publications (1)

Publication Number Publication Date
WO2024096574A1 true WO2024096574A1 (en) 2024-05-10

Family

ID=90931127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017268 WO2024096574A1 (en) 2022-11-04 2023-11-01 Electromagnetic wave shielding multilayered film and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20240064304A (en)
WO (1) WO2024096574A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220283A (en) * 1998-01-30 1999-08-10 Seiren Co Ltd Conductive material
KR20090028278A (en) * 2007-09-14 2009-03-18 주식회사 유비텍 An electroconductive elastic composite sheet and a method and for preparation of the same
KR20170069069A (en) * 2015-12-10 2017-06-20 현대자동차주식회사 electro-magnetic interference shielding film, manufacturing method for the same, and dash isolation pad having electro-magnetic interference shielding film
KR20190008006A (en) * 2017-07-14 2019-01-23 윤일구 Isotropic conductive foam using porous polyurethane foam and manufacturing method thereof
KR20220105186A (en) * 2021-01-18 2022-07-27 한국재료연구원 Composite material for shielding electromagnetic waves and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220283A (en) * 1998-01-30 1999-08-10 Seiren Co Ltd Conductive material
KR20090028278A (en) * 2007-09-14 2009-03-18 주식회사 유비텍 An electroconductive elastic composite sheet and a method and for preparation of the same
KR20170069069A (en) * 2015-12-10 2017-06-20 현대자동차주식회사 electro-magnetic interference shielding film, manufacturing method for the same, and dash isolation pad having electro-magnetic interference shielding film
KR20190008006A (en) * 2017-07-14 2019-01-23 윤일구 Isotropic conductive foam using porous polyurethane foam and manufacturing method thereof
KR20220105186A (en) * 2021-01-18 2022-07-27 한국재료연구원 Composite material for shielding electromagnetic waves and its manufacturing method

Also Published As

Publication number Publication date
KR20240064304A (en) 2024-05-13

Similar Documents

Publication Publication Date Title
WO2017164437A1 (en) Heat dissipation sheet having excellent heat dissipation characteristics and manufacturing method therefor
WO2010090480A2 (en) Method for preparing carbon particles / copper composite materials
WO2011102572A1 (en) Heat sink sheet including an adhesive having good heat conductivity
EP2410824A2 (en) Porous film and layered product including porous film
WO2019182356A1 (en) High strength graphene composite fiber and method for manufacturing same
WO2017115921A1 (en) Graphene dispersion, method for preparing graphene-polymer composite, and method for manufacturing barrier film using same
WO2015178696A1 (en) Conductive composition
WO2010123265A2 (en) Carbon nanotube conductive film and method for manufacturing same
WO2013036038A2 (en) Transparent conductive film, method of manufacturing the same, and touch panel having the same
WO2010067949A1 (en) Conductive paste containing silver-decorated carbon nanotubes
WO2018084518A1 (en) Epoxy paste composition including silver-coated copper nanowires having core-shell structure, and conductive film including same
CN109971020B (en) Functional nano cellulose-boron nitride composite film and preparation method thereof
WO2011027946A1 (en) Heat-emitting graphite material comprising amorphous carbon particles and a production method therefor
WO2024096574A1 (en) Electromagnetic wave shielding multilayered film and manufacturing method therefor
WO2017159917A1 (en) Method for fabricating electrically conductive carbon paper
WO2011078537A2 (en) Metal-oxide/carbon-nanotube composite membrane to be used as a p-type conductive membrane for an organic solar cell, method for preparing same, and organic solar cell having improved photovoltaic conversion efficiency using same
KR102077766B1 (en) GRAPHITE FILM, preparing method thereof, and heat emission structure including the same
WO2017010620A1 (en) Method for preparing water-dispersible polyurethane resin-based conductive film, and water-dispersible polyurethane resin-based conductive film prepared thereby
WO2017176003A1 (en) Semiconductor ink composition containing carbon nanotubes and method for manufacturing thin film transistor using same
WO2011013928A2 (en) Paste for forming of an electrode of a solar cell
KR20190053666A (en) Carbon material composites
WO2018182353A1 (en) Polymer nanoparticle composite and method for preparing same
WO2014129776A1 (en) Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same
WO2014061949A1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing same
WO2021045307A1 (en) Conductive paste composition comprising silver-coated copper nanowire with core-shell structure and conductive film comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23886270

Country of ref document: EP

Kind code of ref document: A1