WO2018182353A1 - Polymer nanoparticle composite and method for preparing same - Google Patents

Polymer nanoparticle composite and method for preparing same Download PDF

Info

Publication number
WO2018182353A1
WO2018182353A1 PCT/KR2018/003767 KR2018003767W WO2018182353A1 WO 2018182353 A1 WO2018182353 A1 WO 2018182353A1 KR 2018003767 W KR2018003767 W KR 2018003767W WO 2018182353 A1 WO2018182353 A1 WO 2018182353A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
adhesive layer
composite
adhesive
inorganic
Prior art date
Application number
PCT/KR2018/003767
Other languages
French (fr)
Korean (ko)
Inventor
김태일
홍혜린
김윤철
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2018182353A1 publication Critical patent/WO2018182353A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Definitions

  • the present invention relates to a polymer-nano inorganic particle composite, and more particularly, to a polymer-nano inorganic particle composite that can be used as a heat sink and an electromagnetic wave shielding agent because of its excellent thermal and electrical conductivity.
  • High thermal conductivity substrates are frequently used to effectively remove heat from devices having heat-generating properties to protect products or to maintain performance of devices.
  • the nanoparticles were manufactured by physically dispersing the nanoparticles in the polymer. This has the advantages of the polymer and at the same time have the properties of the functional nanoparticles, the process is easy and simple has shown an advantage in mass production.
  • the nanoparticles are randomly located in the polymer, high nanoparticle ratios are required in order to secure high thermal conductivity, thereby degrading the polymer properties such as low flexibility, fragile and low adhesion, and high unit cost.
  • the vertical heat transfer rate is reported to be 10 times smaller than the horizontal heat transfer rate.
  • a method of aligning the nanoparticles in the polymer was also used. According to a specific manufacturing method, a method of dispersing metalized nanoparticles in a flowable polymer and then aligning them using magnetic force, and aligning the nanoparticles such as filtration using a filter paper or freezing molding, and then emptying the polymer This can be broken down by filling in.
  • the surface of the particles was coated with metal ions or the like, so that the insulation was poor and the process was time-consuming due to the viscosity of the polymer. .
  • alignment in only one direction is possible, so that the thermal conductivity in the vertical direction is rather reduced.
  • the volume is increased during the injection of the polymer, the alignment is disturbed.
  • the reproducibility was greatly reduced because the alignment interval and density cannot be precisely controlled during the alignment process.
  • One object of the present invention is to provide a polymer-nano inorganic particle composite having excellent electrical or thermal transfer property vertically and horizontally and a method for producing the same.
  • the polymer nano-inorganic composite is a substrate, a first adhesive layer having a first negative surface on the substrate, a first laminated on the first adhesive layer, along the first negative surface A nanoinorganic particle layer, on the first nanoinorganic particle layer, a second adhesive layer having a second intaglio surface having a constant thickness and a second intaglio space on the first intaglio surface, and the second intaglio on the second adhesive layer And a second nanoinorganic particle layer stacked along the surface, wherein the first nanoinorganic particle layer and the second nanoinorganic particle layer are electrically or thermally connected in a vertical direction.
  • the substrate may be a flexible transparent substrate.
  • the coating on the adhesive layer of the first and second nanoinorganic particles may be located on the surface of the adhesive layer, or all or part of the nanoinorganic particles may be impregnated into the adhesive layer.
  • the adhesive may include a bisphenol A acrylate compound and an alkoxysilyl acrylate compound.
  • the bisphenol A-based diacrylate compound may include bisphenol A glycerolate (1 glycerol / phenol) diacrylate of Formula 1 below.
  • the alkoxysilyl-based acrylate compound may include 3- (trimethoxysilyl) propyl methacrylate (Formula 2) below.
  • the adhesive may comprise a photoinitiator.
  • the photoinitiator comprises 2-benzyl-2- (dimethylamino) -4-morpholinobutyrophenone (2-Benzyl-2- (dimethylamino) -4-morpholinobutyrophenone) of Formula 3 below, Polymer Nano Inorganic Particle Complex:
  • the adhesive may comprise poly (methyl silsesquioxane).
  • the thickness of the adhesive layer may be smaller than the thickness of the intaglio surface.
  • the nano-inorganic particles may include at least one of graphene, metallic grid, carbon nanotubes, silver nanowires and boron nitride.
  • Another embodiment of the heat sink may include any one of the above-described polymer nano-inorganic composites.
  • the electromagnetic wave shielding agent may include any one of the above-described polymer nano-inorganic composites.
  • a method for preparing a polymer nanoinorganic particle composite includes a first step of preparing a substrate, a second step of forming a first adhesive layer on the substrate, and a stamp having nano inorganic particles located on an embossed surface thereof.
  • the first negative surface is formed on one surface of the first adhesive layer, the third step of laminating the nano-inorganic particle layer along the first negative surface, while the first negative surface formed by the nano-inorganic particle layer
  • the first nano-inorganic particle layer and the second nano-inorganic particle layer adjacent to the first nano-inorganic particle layer is electrically or thermally connected in the vertical direction.
  • the adhesive is a thermosetting or light curing adhesive, and in the third step, the adhesive is cured by irradiation with heat or light.
  • the present invention even if a low content of the nano-inorganic particles, it is possible to implement a high thermal conductivity, it is possible to maintain the flexibility, adhesion and the like properties of the polymer.
  • the mold since the mold is manufactured, high reliability can be maintained even in mass production, and the thermal conductivity can be effectively controlled by adjusting the size of the structure and the aspect ratio.
  • the present invention can be applied to various fields such as a TIM and a heat dissipation substrate.
  • high thermal conductivity may be achieved even at a low nanoparticle ratio.
  • 3D structures having various densities can be fabricated, and the selective thermal conductivity in the axial (vertical) and plane (horizontal) directions can also be controlled using the same.
  • the adhesive polymer it is possible to easily transfer the device to the substrate without a separate process.
  • the photocurable polymer the adhesiveness of the part in which an element is not transferred can be removed easily.
  • a polymer having a high flexibility it can be applied to the bending device.
  • FIG. 1 is a schematic diagram of a method for producing a composite of an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a cross-sectional view of a composite according to another embodiment of the present invention.
  • Figure 3 is a schematic diagram of a cross-sectional view of a composite according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a heat sink and an IC chip including a composite according to another embodiment of the present invention.
  • FIG. 6 is an electron micrograph, an energy dispersive spectroscopy (EDS) result graph, and a result table of a part of the composite shown in FIG. 5.
  • EDS energy dispersive spectroscopy
  • first”, “second”, and the like do not limit the components of the present invention, but are merely set to distinguish the components.
  • the meaning of “on” or “on” includes not only directly placing another component on one component, but also inserting and placing a third component between two components. do.
  • Figure 1 shows a schematic diagram of a method for producing a composite of an embodiment of the present invention.
  • the adhesive layer (Adhesive) laminated on the substrate is transferred to a polydimethylsiloxane (PDMS) -coated stamp (PDMS) coated with nano-inorganic particles, and the embossed layer is formed on the stamp.
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsiloxane
  • PDMS polydimethylsi
  • the nano-inorganic particle layer can be better transferred, and the adhesive layer can be cured.
  • the order disclosed in FIG. 1 is only one example, and the specific manufacturing method thereof is not limited to FIG. 1.
  • a substrate is prepared.
  • the substrate is not particularly limited, but may be a polymer substrate, preferably a flexible transparent polymer such as PET.
  • a first adhesive layer is formed on the substrate.
  • the first adhesive layer may be positioned on the substrate by various methods in a range consistent with the object of the present invention.
  • the adhesive is a thermosetting or light curing adhesive, and in the third step, it may be cured by irradiating heat or light.
  • the adhesive may include a transparent adhesive including a bisphenol A acrylate compound and an alkoxysilyl acrylate compound.
  • the bisphenol A-based diacrylate compound may be bisphenol A glycerolate (1 glycerol / phenol) diacrylate of Formula 1 below.
  • the alkoxysilyl acrylate compound may be 3- (trimethoxysilyl) propyl methacrylate of Formula 2 below.
  • the adhesive may include a photoinitiator.
  • the photoinitiator may be 2-benzyl-2- (dimethylamino) -4-morpholinobutyrophenone (2-Benzyl-2- (dimethylamino) -4-morpholinobutyrophenone) of Formula 3 below.
  • the adhesive may comprise poly (methyl silsesquioxane).
  • the adhesive of the present invention can provide sufficient adhesion to the nano-inorganic particles while forming a thin layer, and facilitates percolation between the nano-inorganic particles. This percolation maximizes the conduction and heat dissipation characteristics.
  • the thickness of the adhesive layer of the present invention is characterized in that 100nm to 150nm, less than 100nm may cause a process defect. Thickness of 150 nm or more may lower the mechanical stability.
  • a stamp in which the nano-inorganic particles are located on the embossed surface, a first negative surface is formed on one surface of the first adhesive layer, and the nano-inorganic particle layer is stacked along the first negative surface.
  • the coating on the adhesive layer of the nano-inorganic particles may be located on the surface of the adhesive layer, or include impregnating some or all of the nano-inorganic particles into the folding layer.
  • a stamp can be used.
  • the stamp may use a polymethylsiloxane (PMDS) mold for structures such as lines, spaces, pillars, prisms, and the like.
  • PMDS polymethylsiloxane
  • the mold is only one example of performing a stamping process, but is not limited thereto.
  • the boron nitride particles dispersed in ethanol are uniformly coated on the PDMS structure, and when the PDMS coating is applied with heat, the solvent is blown away immediately after passing the bar coater with the solution. Boron is coated onto the PDMS in the plane direction, increasing contact between the nanoparticles, thereby increasing thermal conductivity.
  • the coating thickness may be controlled by adjusting the concentration of the boron nitride dispersion, the coating speed, and the temperature.
  • the 3D structure of the nanoparticles in the polymer is made through the multi-layer transfer method of the nanoparticles through the PDMS mold, it is easy to modify the nanoparticle structure according to the size and aspect ratio of the mold.
  • transfer using a mold since it has high reproducibility, large area production using roll-to-roll is also possible.
  • the nano-inorganic particles may include at least one of graphene, a metallic grid, carbon nanotubes, silver nanowires and boron nitride.
  • nano-inorganic particles coated stamp is physically contacted with the adhesive layer and pressure is applied, an embossed surface is formed on the adhesive layer so as to correspond to the relief formed on the stamp.
  • the nano-inorganic particle layer coated on the surface of the stamp is transferred, located along the embossed surface of the adhesive layer.
  • the embossed or engraved surface is not particularly limited in the specific surface form, but represents a surface shape such as an uneven or serrated form formed on the surface of the adhesive layer.
  • the stamp is peeled off after partially curing the adhesive layer by irradiation with heat or light, the structure of the relief surface is formed to correspond to the relief formed on the surface of the stamp on the adhesive layer, and simultaneously coated on the stamp due to the adhesive property of the adhesive.
  • the nano inorganic particle layer can be easily transferred to the adhesive layer.
  • the sheet having the nanoparticle 3D structure in the adhesive layer may be prepared by coating the adhesive layer thereon and transferring the inorganic nanoparticles several times.
  • the second adhesive layer is formed to have a predetermined thickness while forming the first intaglio surface formed by the nano-inorganic particle layer.
  • the description of the second adhesive layer used here is the same as that described in the first adhesive layer, and thus no particular description is given.
  • the second adhesive layer and the first adhesive layer may be the same composition, or may be different.
  • the shape of the intaglio surface may be the same or may be different.
  • a second negative surface is formed on one surface of the second adhesive layer by using a stamp in which nano-inorganic particles are positioned on the relief surface.
  • the stamp used here may use the same stamp as described in the above-described third step. However, it is not limited to this.
  • the second and third steps may be performed two or more times to form a composite in which the adhesive layer coated with the nano-inorganic particle layer is alternately laminated.
  • the adhesive layer on which the nanoparticle layer formed first is laminated and the adhesive layer on which the nanoparticle layer formed second are laminated will be described.
  • the first adhesive layer in which the first nano-inorganic particle layer is laminated on the negative surface, laminated on the substrate and the substrate is formed.
  • An additional adhesive is applied on the intaglio surface to laminate the second adhesive layer.
  • the second adhesive layer also forms an intaglio surface through the third step, and stacks the second nano-inorganic particle layer. This process can be carried out repeatedly to suit the purpose of the present invention.
  • the first nano inorganic particle layer and the first adhesive layer, the second nano inorganic particle layer and the second adhesive layer may be alternately stacked.
  • the alternating stacking means that the first layer and the second layer stacked on the first layer do not overlap and overlap each other.
  • the first layer and the second layer stacked alternately or at an angle are stacked at an angle. It is used herein in the sense of inclusion.
  • the first nano-inorganic particle layer and the second nano-inorganic particle layer adjacent to the first nano-inorganic particle layer may be electrically or thermally connected in the vertical direction.
  • “connected” means that some or all of the first nano inorganic particle layer is in physical contact with the second nano inorganic particle layer.
  • the thickness of the second adhesive layer is the intaglio of the second adhesive layer except for the depth to fill the intaglio surface of the first adhesive layer. It is desirable to be smaller than the thickness of the surface.
  • the pattern, direction, depth, etc. of the intaglio surface of the first composite layer and the intaglio surface of the second composite layer are the same, or It may be different.
  • a composite according to another embodiment of the present invention is a substrate, a first adhesive layer having a first negative surface on the substrate, the first nano-inorganic particle layer laminated on the first adhesive layer, along the first negative surface On the first nano-inorganic particle layer, a second adhesive layer having a second intaglio surface having a constant thickness and a second intaglio space of the first intaglio surface, and along the second intaglio surface on the second adhesive layer
  • the stacked second nano inorganic particle layer, wherein the first nano inorganic particle layer and the second nano inorganic particle layer is electrically or thermally connected in the vertical direction.
  • 2 and 3 is a schematic view of a cross-sectional view of the composite according to an embodiment of the present invention. 2 and 3 are only examples of the present invention, and the present invention is not limited to these structures. As shown in FIG. 2 and FIG. 3, the first nanoinorganic particle layer 22 and the second nanoinorganic particle layer 32 are vertically connected, so that thermal or electrical conduction can be quickly performed.
  • the composite 1 of the present invention includes a substrate 10 and composite layers 20 and 30 stacked on the substrate 10.
  • the composite layers 20 and 30 are composed of adhesive layers 21 and 31 and nano inorganic particle layers 22 and 32.
  • a negative surface exists on the surface of the adhesive layer that does not face the substrate, and a nano inorganic particle layer is laminated along the negative surface.
  • the composite layers may be laminated alternately. The number of laminated composite layers can be variously applied as desired by the present invention.
  • the nano-inorganic particle layer should be in contact with the nano-inorganic particle layer which is partially or entirely adjacent to the layers to be stacked in the vertical direction, through which, it should be electrically or thermally connected.
  • Another embodiment of the heat sink of the present invention includes any one of the various composites described above.
  • h-BN & polymer composite refers to a composite obtained by alternately stacking an inorganic nanoparticle layer and an adhesive layer.
  • the enlarged inset shows a composite placed on a heat sink and alternately stacked layers comprising adhesive and nano-inorganic particles (H-BN). Since the nano-inorganic particle layers are vertically thermally or electrically connected inside the composite, heat generated in an electronic device including an IC chip is easily released to the heat sink.
  • the electromagnetic wave shielding agent includes any one of the above-described various composites.
  • bisphenol A glycerol (1 glycerol / phenol) diacrylate, 3- (trimethoxysilyl) propyl methacrylate, spin-on glass (SOG 500F), as an ultra-thin adhesive 2-benzyl-2- (dimethylamino) -4 and anhydrous ethanol were prepared by mixing in a ratio of 200: 100: 100: 9: 1700.
  • the PET film was prepared as a substrate, which was treated with oxygen plasma, and then the adhesive prepared on the substrate was spin coated at 3000 rpm for 30 seconds to form a 100-120 nm thick adhesive layer.
  • PDMS was prepared as a stamp material to transfer the nano-inorganic particles to the adhesive layer by a stamping method.
  • PDMS stamps were prepared using the SYLGARD 184 silicone elastomer kit (Dow Corning Inc.). In SYLGARD 184, the PDMS precursor and the curing agent are mixed in a 10: 1 ratio and poured into a Petri dish. The bubbles were removed and cured at 70 ° C. for 1 hour. Boron nitride was coated to form a nano-inorganic particle layer on the PDMS mold. Using a boron nitride-coated PDMS mold, a stamping process was performed to form a negative surface on the adhesive layer, and the nano-inorganic particle layer was transferred onto the negative surface. This process was repeated 5 or more times.
  • FIG. 6 shows an electron micrograph, an energy dispersive spectroscopy (EDS) result graph, and a result table of a part of the composite shown in FIG. 5. As shown in Figure 6, it was confirmed that the presence of a large amount of nitrogen and boron in the portion connected to the nano-inorganic particle layer.
  • EDS energy dispersive spectroscopy

Abstract

A polymer nanoparticle composite according to one embodiment of the present invention comprises: a substrate; a first adhesive layer, on the surface layer, having a first engraved surface; a first inorganic nanoparticle layer, stacked on the first engraved surface, on the first adhesive layer; a second adhesive layer, on the first inorganic nanoparticle layer, filling the engraved space of the first engraved surface, having a predetermined thickness, and having a second engraved surface; and a second inorganic nanoparticle layer, stacked on the second engraved surface, on the second adhesive layer, wherein the first inorganic nanoparticle layer and the second inorganic nanoparticle layer are electrically or thermally connected in a vertical direction.

Description

고분자 나노무기입자 복합체 및 이를 제조하는 방법Polymer nanoinorganic particle composite and method for manufacturing same
본 발명은 고분자-나노무기입자 복합체에 관한 것으로서, 보다 상세하게는 열적 및 전기적 전도성이 우수하여, 히트 싱크 및 전자파 차폐제로 이용될 수 있는 고분자-나노무기입자 복합체에 관한 것이다.The present invention relates to a polymer-nano inorganic particle composite, and more particularly, to a polymer-nano inorganic particle composite that can be used as a heat sink and an electromagnetic wave shielding agent because of its excellent thermal and electrical conductivity.
발열 특성을 가진 소자등에서 열을 효과적으로 제거하여, 제품을 보호하거나, 소자 등의 성능을 유지하기 위해, 고 열전도성 기판이 많이 사용되고 있다. BACKGROUND ART High thermal conductivity substrates are frequently used to effectively remove heat from devices having heat-generating properties to protect products or to maintain performance of devices.
열전도성을 갖는 종래의 고분자-나노입자 복합체의 경우, 나노입자를 고분자 내에 물리적으로 분산시키는 방식을 이용하여 제작되었다. 이는 고분자의 장점을 가지는 동시에 기능성 나노 입자의 성질을 함께 가지며, 프로세스가 쉽고 간단하여 대량 생산에 유리한 이점을 나타내었다. 하지만 나노입자가 고분자 내에 랜덤하게 위치하고 있어, 높은 열전도성을 확보하기 위해서 높은 나노입자 비율이 요구되어, 복합체의 유연성이 떨어지고, 깨지기 쉬우며 접착성이 낮아지는 등 고분자 특성을 저하시키고, 단가 또한 높다는 단점이 있었다. 그리고, 효과적인 나노입자 배열을 제어하기 어려워, 수직적 열전달율이 수평적 열전달율보다 10배 정도 작다고 보고되었다. In the case of the conventional polymer-nanoparticle composite having thermal conductivity, the nanoparticles were manufactured by physically dispersing the nanoparticles in the polymer. This has the advantages of the polymer and at the same time have the properties of the functional nanoparticles, the process is easy and simple has shown an advantage in mass production. However, since the nanoparticles are randomly located in the polymer, high nanoparticle ratios are required in order to secure high thermal conductivity, thereby degrading the polymer properties such as low flexibility, fragile and low adhesion, and high unit cost. There was a downside. In addition, it is difficult to control the effective nanoparticle arrangement, so that the vertical heat transfer rate is reported to be 10 times smaller than the horizontal heat transfer rate.
또한, 나노입자를 낮은 비율로 첨가함에도 불구하고, 높은 열전도성을 구현하기 위해, 고분자내에 나노입자를 정렬하는 방식도 이용되었다. 이러한 방식은, 구체적인 제작 방식에 따라, 유동성 고분자 내에 금속을 입힌 나노입자를 분산시킨 후 자기력을 이용하여 정렬시키는 방법과, 여과지를 이용한 여과나, 동결성형 등 나노입자를 우선 정렬 후 고분자를 빈 공간에 채워넣는 방법으로 나눌 수 있다. In addition, despite the addition of nanoparticles in a low ratio, in order to realize high thermal conductivity, a method of aligning the nanoparticles in the polymer was also used. According to a specific manufacturing method, a method of dispersing metalized nanoparticles in a flowable polymer and then aligning them using magnetic force, and aligning the nanoparticles such as filtration using a filter paper or freezing molding, and then emptying the polymer This can be broken down by filling in.
자기력을 이용하여 정렬시키는 방법의 경우, 나노입자가 자기력에 반응되도록 하기 위해, 입자 표면을 금속이온 등으로 코팅한 후 사용하였으므로, 절연성이 불량하였고, 고분자의 점성에 따라 공정에 많은 시간이 소모되었다. 또한, 한 방향으로만 정렬이 가능하여,수직방향으로의 열전도도는 오히려 감소하였다. In the case of the method of aligning using magnetic force, in order to make the nanoparticles react with the magnetic force, the surface of the particles was coated with metal ions or the like, so that the insulation was poor and the process was time-consuming due to the viscosity of the polymer. . In addition, alignment in only one direction is possible, so that the thermal conductivity in the vertical direction is rather reduced.
*또한, 여과의 경우에도, 면방향으로만 정렬이 가능하여, 축방향으로의 열전도성이 크게 감소하였다. In addition, even in the case of filtration, alignment can be performed only in the plane direction, and the thermal conductivity in the axial direction is greatly reduced.
더불어, 여과나 동결성형과 같이 나노입자 정렬 후 고분자를 채워넣는 방법의 경우, 고분자를 주입하는 과정에서, 부피가 늘어나, 정렬이 흐트러졌다. 또한 정렬과정에서 정렬되는 간격이나 밀도 등을 정밀하게 컨트롤 할 수 없기 때문에 재현성이 크게 떨어졌다. 이외에도, 나노필러의 충진율을 극대화 할 수 없다는 단점도 있었다. In addition, in the case of the method of filling the polymer after the nanoparticle alignment, such as filtration or freeze-molding, the volume is increased during the injection of the polymer, the alignment is disturbed. In addition, the reproducibility was greatly reduced because the alignment interval and density cannot be precisely controlled during the alignment process. In addition, there was a disadvantage in that the filling rate of the nanofiller could not be maximized.
따라서, 수직적 및 수평적 방향으로 유사한 열전도성을 가지고, 축적된 열로 인한 고온 환경에서도 안정적으로 열을 전달하며, 고집적회로에서 혼선을 막기 위한 전기절연성이 우수하고, 소자와 기판을 연결하기 위한 접착특성이 우수한 복합체 제조 기술 개발이 필요한 시점이다.Therefore, it has similar thermal conductivity in the vertical and horizontal directions, transmits heat stably even in high temperature environment due to accumulated heat, and has excellent electrical insulation to prevent crosstalk in high-integrated circuits, and adhesive properties for connecting elements and substrates. It is time to develop this excellent composite manufacturing technology.
본 발명의 일 목적은 수직적 및 수평적으로 전기적 또는 열적 전달성이 우수한 고분자-나노무기입자 복합체 및 이를 제조하기 위한 방법를 제공하고자 한다.One object of the present invention is to provide a polymer-nano inorganic particle composite having excellent electrical or thermal transfer property vertically and horizontally and a method for producing the same.
본 발명의 일시예에 따르면, 고분자 나노무기입자 복합체는 기판, 상기 기판 상에 제1 음각표면을 갖는 제1 접착제층, 상기 제1 접착제층 상에, 상기 제1 음각표면을 따라 적층된 제1 나노무기입자층, 상기 제1 나노무기입자층 상에, 제1 음각표면의 음각공간을 매우고 일정두께를 가지고 제2 음각표면을 갖는 제2 접착제층, 및 상기 제2 접착제층 상에 상기 제2 음각표면을 따라 적층된 제2 나노무기입자층을 포함하고, 제1 나노무기입자층과 제2 나노무기입자층은 수직방향으로 전기적 또는 열적으로 연결된다.According to one embodiment of the invention, the polymer nano-inorganic composite is a substrate, a first adhesive layer having a first negative surface on the substrate, a first laminated on the first adhesive layer, along the first negative surface A nanoinorganic particle layer, on the first nanoinorganic particle layer, a second adhesive layer having a second intaglio surface having a constant thickness and a second intaglio space on the first intaglio surface, and the second intaglio on the second adhesive layer And a second nanoinorganic particle layer stacked along the surface, wherein the first nanoinorganic particle layer and the second nanoinorganic particle layer are electrically or thermally connected in a vertical direction.
일실시예에서, 상기 기판은 플렉서블 투명 기판일 수 있다. In one embodiment, the substrate may be a flexible transparent substrate.
일실시예에서, 상기 제1 및 제2 나노무기입자의 접착제 층 위의 코팅은 상기 접착제 층 표면에 위치하거나 상기 접착제 층 내로 상기 나노무기입자의 전부 또는 일부가 함침될 수 있다.In one embodiment, the coating on the adhesive layer of the first and second nanoinorganic particles may be located on the surface of the adhesive layer, or all or part of the nanoinorganic particles may be impregnated into the adhesive layer.
일실시예에서, 상기 접착제는, 비스페놀A계 아크릴레이트 화합물 및 알콕시실릴계 아크릴레이트 화합물을 포함할 수 있다.In one embodiment, the adhesive may include a bisphenol A acrylate compound and an alkoxysilyl acrylate compound.
일실시예에서, 상기 비스페놀A계 디아크릴레이트 화합물은 아래 화학식1의 비스페놀 에이 글리세롤레이트(1 글리세롤/페놀) 다이아크릴레이트 (Bisphenol A glycerolate (1 glycerol/phenol) diacrylate)을 포함할 수 있다.In one embodiment, the bisphenol A-based diacrylate compound may include bisphenol A glycerolate (1 glycerol / phenol) diacrylate of Formula 1 below.
화학식1 Formula 1
Figure PCTKR2018003767-appb-I000001
Figure PCTKR2018003767-appb-I000001
일실시예에서, 상기 알콕시실릴계 아크릴레이트 화합물은 아래 화학식 2의 3-(트리메톡시실릴)프로필 메타크릴레이트(3-(trimethoxysilyl)propyl methacrylate)를 포함할 수 있다.In one embodiment, the alkoxysilyl-based acrylate compound may include 3- (trimethoxysilyl) propyl methacrylate (Formula 2) below.
화학식 2Formula 2
Figure PCTKR2018003767-appb-I000002
Figure PCTKR2018003767-appb-I000002
일실시예에서, 상기 접착제는 광개시제를 포함할 수 있다.In one embodiment, the adhesive may comprise a photoinitiator.
일실시예에서, 상기 광개시제는 아래 화학식 3의 2-벤질-2-(디메틸아미노)-4-모르폴리노부티로페논(2-Benzyl-2-(dimethylamino)-4-morpholinobutyrophenone)을 포함하는, 고분자 나노무기입자 복합체:In one embodiment, the photoinitiator comprises 2-benzyl-2- (dimethylamino) -4-morpholinobutyrophenone (2-Benzyl-2- (dimethylamino) -4-morpholinobutyrophenone) of Formula 3 below, Polymer Nano Inorganic Particle Complex:
화학식 3 Formula 3
Figure PCTKR2018003767-appb-I000003
Figure PCTKR2018003767-appb-I000003
일실시예에서, 상기 접착제는 폴리(메틸 실세스퀴녹산)(poly(methyl silsesquioxane))을 포함할 수 있다. In one embodiment, the adhesive may comprise poly (methyl silsesquioxane).
일실시예에서, 상기 접착층의 두께는 상기 음각표면의 두께보다 작을 수 있다.In one embodiment, the thickness of the adhesive layer may be smaller than the thickness of the intaglio surface.
일실시예에서, 상기 나노무기입자는, 그래핀, 금속성 그리드, 탄소나노튜브, 실버나노와이어 및 보론나이트라이드 중 적어도 하나를 포함할 수 있다. In one embodiment, the nano-inorganic particles, may include at least one of graphene, metallic grid, carbon nanotubes, silver nanowires and boron nitride.
본 발명의 다른 실시예인 히트 싱크는 상술한 고분자 나노무기입자 복합체들 중 어느 하나를 포함할 수 있다. Another embodiment of the heat sink may include any one of the above-described polymer nano-inorganic composites.
본 발명의 또 다른 실시예인 전자파 차폐제는 상술한 고분자 나노무기입자 복합체들 중 어느 하나를 포함할 수 있다. Another embodiment of the present invention, the electromagnetic wave shielding agent may include any one of the above-described polymer nano-inorganic composites.
본 발명의 또 다른 실시예인 고분자 나노무기입자 복합체의 제조방법은 기판을 준비하는 제1 단계, 상기 기판 상에 제1 접착제층을 형성하는 제2 단계, 양각표면에 나노무기입자가 위치된 스탬프를 이용하여, 상기 제1 접착제층의 일면에 제1 음각표면을 형성하고, 상기 제1 음각표면을 따라 나노무기입자층이 적층되는 제3 단계, 상기 나노무기입자층이 형성하는 제1 음각표면을 매우면서 일정두께를 가지도록 제2 접착제층을 형성하는 제4 단계, 및 양각표면에 나노무기입자가 위치된 스탬프를 이용하여, 상기 제2 접착제층의 일면에 제2 음각표면을 형성하는 제5 단계를 포함하는, 제1 나노무기입자층과 상기 제1 나노무기입자층과 이웃한 제2 나노무기입자층은 수직방향으로 전기적 또는 열적으로 연결된다. In another embodiment of the present invention, a method for preparing a polymer nanoinorganic particle composite includes a first step of preparing a substrate, a second step of forming a first adhesive layer on the substrate, and a stamp having nano inorganic particles located on an embossed surface thereof. By using, the first negative surface is formed on one surface of the first adhesive layer, the third step of laminating the nano-inorganic particle layer along the first negative surface, while the first negative surface formed by the nano-inorganic particle layer A fourth step of forming a second adhesive layer to have a predetermined thickness, and a fifth step of forming a second negative surface on one surface of the second adhesive layer by using a stamp in which nano-inorganic particles are placed on the embossed surface; Including, the first nano-inorganic particle layer and the second nano-inorganic particle layer adjacent to the first nano-inorganic particle layer is electrically or thermally connected in the vertical direction.
일실시예로서, 상기 접착제는 열경화성 또는 빛경화성 접착제이며, 상기 제3 단계시, 열 또는 빛을 조사하여 경화시킨다.In one embodiment, the adhesive is a thermosetting or light curing adhesive, and in the third step, the adhesive is cured by irradiation with heat or light.
본 발명의 일실시예에 따르면, 낮은 함량의 나노무기입자를 포함하여도, 높은 열전도성을 구현할 수 있어, 고분자의 특성인 유연성, 접착성 등을 유지할 수 있다. 또한 몰드를 이용하여 제작하므로 대량 생산에서도 높은 신뢰도를 유지할 수 있으며, 구조의 크기, 종횡비 등을 조절하여 열전도 특성을 효과적으로 제어가 가능하다. 본 발명은 추후 TIM, 방열 기판 등 여러 분야에 응용할 수 있다.According to one embodiment of the present invention, even if a low content of the nano-inorganic particles, it is possible to implement a high thermal conductivity, it is possible to maintain the flexibility, adhesion and the like properties of the polymer. In addition, since the mold is manufactured, high reliability can be maintained even in mass production, and the thermal conductivity can be effectively controlled by adjusting the size of the structure and the aspect ratio. The present invention can be applied to various fields such as a TIM and a heat dissipation substrate.
구체적으로, 낮은 나노입자 비율에도 높은 열전도성을 구현할 수 있다. 몰드 구조의 크기 및 종횡비를 조절하여, 다양한 밀도의 3D 구조체를 제작할 수 있으며, 이를 이용한 축방향(수직적) 및 면방향(수평적)의 선택적인 열전도도 조절할 수 있다. 또한, 접착성 고분자를 이용하여, 별도의 공정 없이 기판에 손쉽게 소자를 전사할 수 있다. 그리고, 광경화성 고분자를 이용하여, 소자가 전사되지 않는 부분의 접착성을 용이하게 제거할 수 있다. 더불어, 높은 유연성을 가지는 고분자를 이용하여, 휘어지는 디바이스에도 적용이 가능하다.Specifically, high thermal conductivity may be achieved even at a low nanoparticle ratio. By controlling the size and aspect ratio of the mold structure, 3D structures having various densities can be fabricated, and the selective thermal conductivity in the axial (vertical) and plane (horizontal) directions can also be controlled using the same. In addition, by using the adhesive polymer, it is possible to easily transfer the device to the substrate without a separate process. And using the photocurable polymer, the adhesiveness of the part in which an element is not transferred can be removed easily. In addition, by using a polymer having a high flexibility, it can be applied to the bending device.
도 1은 본 발명의 일실시예인 복합체의 제조방법에 대한 모식도이다. 1 is a schematic diagram of a method for producing a composite of an embodiment of the present invention.
도 2은 본 발명의 다른 일실시예에 따른 복합체의 단면도에 대한 모식도이다.Figure 2 is a schematic diagram of a cross-sectional view of a composite according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 일실시예에 따른 복합체의 단면도에 대한 모식도이다.Figure 3 is a schematic diagram of a cross-sectional view of a composite according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 일실시예에 따른 복합체를 포함하는 히트 싱크(heat sink)와 IC 칩에 대한 모식도이다. 4 is a schematic diagram of a heat sink and an IC chip including a composite according to another embodiment of the present invention.
도 5(a) 및 (b)은 본 발명의 또 다른 실시예에 따른 복합체의 단면에 대한 전자 현미경 사진이다. 5 (a) and (b) are electron micrographs of the cross section of the composite according to another embodiment of the present invention.
도 6는 도 5에 나타낸 복합체 일부의 전자현미경 사진과 에너지 분산형 분광분석(EDS) 결과그래프 및 결과표이다.FIG. 6 is an electron micrograph, an energy dispersive spectroscopy (EDS) result graph, and a result table of a part of the composite shown in FIG. 5.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that a feature, component, or the like described in the specification exists, and one or more other features or components may not be present or added thereto. It does not mean nothing.
본 출원에서 사용되는 "제1" 및 "제2" 등은, 본 발명의 구성요소를 한정하는 것은 아니며, 단지 구성요소를 구분하기 위하여 설정된 것이다.As used herein, "first", "second", and the like do not limit the components of the present invention, but are merely set to distinguish the components.
본 출원에서 사용되는 "위에" 또는 "상의"의 의미는, 직접적으로 하나의 구성요소 위에 다른 구성요소가 위치하는 것 뿐만 아니라, 두 구성요소 사이에 제3의 구성요소가 삽입되어 위치되는 것을 포함한다. As used in this application, the meaning of “on” or “on” includes not only directly placing another component on one component, but also inserting and placing a third component between two components. do.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 본 발명을 도면을 참고하여 각각의 실시예들을 상세히 설명한다.Hereinafter, each embodiment will be described in detail with reference to the accompanying drawings.
도 1에 본 발명의 일실시예인 복합체의 제조방법의 모식도를 나타내었다. 도 1에 나타낸 바와 같이, 기판 상에 적층된 접착제층 (Adhesive) 위로, 나노무기입자(boron nitride)가 코팅된 스탬프(PDMS (polydimethylsiloxane) mold)로 전사하여, 상기 접착제층에 스탬프에 형성된 양각에 대응되는 음각이 형성되고, 상기 음각표면을 따라, 나노무기입자층이 적층된다. 그리고, 교호적으로, 접착제층을 도포하고, 스탬프로 상기 접착제층에 음각표면을 형성하는 공정을 반복하여, 복합체를 제조할 수 있다. 여기서, 스탬핑시 열 또는 빛을 조사하여, 나노무기입자층을 보다 더 잘 전사시키고, 접착제층을 경화시킬 수 있다. 그러나, 본 발명에서, 도 1에 개시된 순서는 하나의 예시일 뿐, 그 구체적인 제조방법은 도 1에 한정되는 것은 아니다. Figure 1 shows a schematic diagram of a method for producing a composite of an embodiment of the present invention. As shown in FIG. 1, the adhesive layer (Adhesive) laminated on the substrate is transferred to a polydimethylsiloxane (PDMS) -coated stamp (PDMS) coated with nano-inorganic particles, and the embossed layer is formed on the stamp. A corresponding intaglio is formed, and along the intaglio surface, nano inorganic particle layers are stacked. Alternatively, the composite may be prepared by applying an adhesive layer and repeating the process of forming a negative surface on the adhesive layer with a stamp. Here, by irradiating heat or light at the time of stamping, the nano-inorganic particle layer can be better transferred, and the adhesive layer can be cured. However, in the present invention, the order disclosed in FIG. 1 is only one example, and the specific manufacturing method thereof is not limited to FIG. 1.
(1) 제1 단계(1) first step
본 발명의 일실시예인 복합체의 제조방법은, 먼저, 제1단계로서, 기판을 준비한다. 상기 기판은 특별히 한정되는 것은 아니지만, 고분자 기판일 수 있으며, 바람직하게는 유연성 투명 고분자, 예컨대 PET일 수 있다. In the method of manufacturing a composite according to an embodiment of the present invention, first, as a first step, a substrate is prepared. The substrate is not particularly limited, but may be a polymer substrate, preferably a flexible transparent polymer such as PET.
(2) 제2 단계(2) second stage
제2단계로서, 상기 기판 상에 제1 접착제층으로 형성한다. 상기 제1 접착제층은 본 발명의 목적에 부합되는 범위에서 다양한 방법에 의하여 상기 기판 상에 위치될 수 있다.As a second step, a first adhesive layer is formed on the substrate. The first adhesive layer may be positioned on the substrate by various methods in a range consistent with the object of the present invention.
상기 접착제는 열경화성 또는 빛경화성 접착제이며, 상기 제3 단계시, 열 또는 빛을 조사하여 경화시킬 수 있다. The adhesive is a thermosetting or light curing adhesive, and in the third step, it may be cured by irradiating heat or light.
상기 접착제는, 비스페놀A계 아크릴레이트 화합물 및 알콕시실릴계 아크릴레이트 화합물을 포함하는 투명 접착제를 포함할 수 있다. The adhesive may include a transparent adhesive including a bisphenol A acrylate compound and an alkoxysilyl acrylate compound.
상기 비스페놀A계 디아크릴레이트 화합물은 아래 화학식 1의 비스페놀 에이 글리세롤레이트(1 글리세롤/페놀) 다이아크릴레이트 (Bisphenol A glycerolate (1 glycerol/phenol) diacrylate)일 수 있다.The bisphenol A-based diacrylate compound may be bisphenol A glycerolate (1 glycerol / phenol) diacrylate of Formula 1 below.
Figure PCTKR2018003767-appb-C000001
Figure PCTKR2018003767-appb-C000001
상기 알콕시실릴계 아크릴레이트 화합물은 아래 화학식 2의 3-(트리메톡시실릴)프로필 메타크릴레이트(3-(trimethoxysilyl)propyl methacrylate)일 수 있다.The alkoxysilyl acrylate compound may be 3- (trimethoxysilyl) propyl methacrylate of Formula 2 below.
Figure PCTKR2018003767-appb-C000002
Figure PCTKR2018003767-appb-C000002
또한, 상기 접착제는 광개시제를 포함할 수 있다.In addition, the adhesive may include a photoinitiator.
상기 광개시제는 아래 화학식 3의 2-벤질-2-(디메틸아미노)-4-모르폴리노부티로페논(2-Benzyl-2-(dimethylamino)-4-morpholinobutyrophenone)일 수 있다.The photoinitiator may be 2-benzyl-2- (dimethylamino) -4-morpholinobutyrophenone (2-Benzyl-2- (dimethylamino) -4-morpholinobutyrophenone) of Formula 3 below.
Figure PCTKR2018003767-appb-C000003
Figure PCTKR2018003767-appb-C000003
상기 접착제는 폴리(메틸 실세스퀴녹산)(poly(methyl silsesquioxane))을 포함할 수 있다.The adhesive may comprise poly (methyl silsesquioxane).
본 발명의 접착제는 얇은 층이 형성되면서 나노무기입자에 대한 충분한 접착력을 제공할 수 있으며, 나노무기입자 간의 퍼콜레이션(percolation)을 용이하게 한다. 이 퍼콜레이션에 따라 전도 특성 및 열방출 특성을 극대화 한다.The adhesive of the present invention can provide sufficient adhesion to the nano-inorganic particles while forming a thin layer, and facilitates percolation between the nano-inorganic particles. This percolation maximizes the conduction and heat dissipation characteristics.
본 발명의 상기 접착층의 두께는 100nm 내지 150nm 임을 특징으로 하며, 100nm 이하에서는 공정상의 불량이 발생될 수 있다. 150nm 이상의 두께는 기계적 안정성이 저하될 수 있다.The thickness of the adhesive layer of the present invention is characterized in that 100nm to 150nm, less than 100nm may cause a process defect. Thickness of 150 nm or more may lower the mechanical stability.
(3) 제3 단계(3) third stage
그리고, 제3 단계로서, 양각표면에 나노무기입자가 위치된 스탬프를 이용하여, 상기 제1 접착제층의 일면에 제1 음각표면을 형성하고, 상기 제1 음각표면을 따라 나노무기입자층이 적층된다.Then, as a third step, by using a stamp in which the nano-inorganic particles are located on the embossed surface, a first negative surface is formed on one surface of the first adhesive layer, and the nano-inorganic particle layer is stacked along the first negative surface. .
여기서, 상기 나노무기입자의 접착제층 위의 코팅은 상기 접착제층 표면에 위치하거나, 상기 접차게 층 내로 상기 나노무기입자의 일부 또는 전부가 함침되는 것을 포함한다. Here, the coating on the adhesive layer of the nano-inorganic particles may be located on the surface of the adhesive layer, or include impregnating some or all of the nano-inorganic particles into the folding layer.
상기 스탬핑을 위하여, 스탬프를 이용할 수 있다. 상기 스탬프는 라인, 스페이스, 필라, 프리즘 등의 구조를 폴리메틸실록산 (PMDS) 몰드를 이용할 수 있다. 본 발명에서, 상기 몰드는 스탬핑 공정을 수행하는 하나의 예시일 뿐, 여기에 한정되는 것은 아니다. For the stamping, a stamp can be used. The stamp may use a polymethylsiloxane (PMDS) mold for structures such as lines, spaces, pillars, prisms, and the like. In the present invention, the mold is only one example of performing a stamping process, but is not limited thereto.
이러한 몰드를 이용하는 방법은, 우선 에탄올에 분산된 질화붕소 입자를 PDMS 구조 위에 균일하게 코팅하는데, 이 때 PDMS에 열을 가한 상태로 코팅을 하면, 용액이 묻은 바코터가 지나간 직후 용매가 날아가, 질화붕소가 PDMS 위에 면 방향으로 코팅되어, 나노 입자 간의 접촉을 증가시켜 열 전도성이 증가된다. 질화붕소 분산액의 농도와 코팅 속도, 온도 등을 조절하여 코팅 두께를 조절할 수 도 있다. In the method using such a mold, first, the boron nitride particles dispersed in ethanol are uniformly coated on the PDMS structure, and when the PDMS coating is applied with heat, the solvent is blown away immediately after passing the bar coater with the solution. Boron is coated onto the PDMS in the plane direction, increasing contact between the nanoparticles, thereby increasing thermal conductivity. The coating thickness may be controlled by adjusting the concentration of the boron nitride dispersion, the coating speed, and the temperature.
고분자내 나노입자의 3D구조는 PDMS 몰드를 통한 나노입자의 다층 전사 방식을 통해 이루어지므로, 몰드의 크기 및 종횡비에 따라 나노입자 구조의 변형이 용이하다. 또한 몰드를 이용한 전사의 경우, 높은 재현성을 가지므로, 롤투롤을 이용한 대면적 제작도 가능하다. Since the 3D structure of the nanoparticles in the polymer is made through the multi-layer transfer method of the nanoparticles through the PDMS mold, it is easy to modify the nanoparticle structure according to the size and aspect ratio of the mold. In addition, in the case of transfer using a mold, since it has high reproducibility, large area production using roll-to-roll is also possible.
또한, 상기 나노무기입자는, 그래핀, 금속성 그리드, 탄소나노튜브, 실버나노와이어 및 보론나이트라이드 중 적어도 하나를 포함할 수 있다.In addition, the nano-inorganic particles may include at least one of graphene, a metallic grid, carbon nanotubes, silver nanowires and boron nitride.
상기 나노무기입자가 코팅된 스탬프를 상기 접착제 층에 물리적으로 접촉되고, 압력이 가해짐에 따라, 상기 스탬프 상에 형성된 양각에 대응되도록 접착제층에 양각표면이 형성된다. 또한, 상기 스탬프의 표면에 코팅된 나노무기입자층이 전사되어, 상기 접착제층의 양각표면을 따라 위치한다.As the nano-inorganic particles coated stamp is physically contacted with the adhesive layer and pressure is applied, an embossed surface is formed on the adhesive layer so as to correspond to the relief formed on the stamp. In addition, the nano-inorganic particle layer coated on the surface of the stamp is transferred, located along the embossed surface of the adhesive layer.
여기서, 양각 또는 음각 표면이란, 구체적인 표면 형태가 특별히 제한되는 것은 아니지만, 접착제층의 표면에 형성된 요철형태 또는 톱니형태 등의 표면 형상을 나타낸다. Here, the embossed or engraved surface is not particularly limited in the specific surface form, but represents a surface shape such as an uneven or serrated form formed on the surface of the adhesive layer.
또한, 제3 단계시, 추가로 열 또는 빛을 조사할 수 있다. 열 또는 빛을 조사하여 부분적으로 접착제층을 경화시킨 후 스탬프를 떼어내면, 접착제층에 스탬프 표면에 형성된 양각에 대응되도록 양각표면의 구조가 만들어지고, 동시에 접착제의 접착 특성으로 인해 스탬프 상에 코팅된 나노무기입자층이 접착제층에 용이하게 전사될 수 있다. 또한, 전사시 열 또는 빛을 통한 부분 경화를 이용함으로써, 층간의 분리를 방지할 수 있다. 그리고, 후술하는 바와 같이, 그 위에 다시 접착제층을 코팅하고 나노무기입자를 전사하는 과정을 여러 번 거치면 접착제층 내에 나노입자 3D 구조를 가진 시트를 제조할 수 있다. In the third step, heat or light can be further irradiated. When the stamp is peeled off after partially curing the adhesive layer by irradiation with heat or light, the structure of the relief surface is formed to correspond to the relief formed on the surface of the stamp on the adhesive layer, and simultaneously coated on the stamp due to the adhesive property of the adhesive. The nano inorganic particle layer can be easily transferred to the adhesive layer. In addition, by using partial curing through heat or light during transfer, separation between layers can be prevented. As described below, the sheet having the nanoparticle 3D structure in the adhesive layer may be prepared by coating the adhesive layer thereon and transferring the inorganic nanoparticles several times.
(4) 제4단계(4) 4th step
제4단계로서, 상기 나노무기입자층이 형성하는 제1 음각표면을 매우면서 일정두께를 가지도록 제2 접착제층을 형성한다. As a fourth step, the second adhesive layer is formed to have a predetermined thickness while forming the first intaglio surface formed by the nano-inorganic particle layer.
여기서 사용되는 제2 접착제층에 대한 설명은 상기 제1 접착제층에서 설명한 바와 동일하므로 특별히 설명하지 않는다. 다만, 상기 제2 접착제층과 제1 접착제층이 동일한 조성물일 수 도 있고, 상이할 수 도 있다. 또한, 상기 음각표면의 형태도 동일할 수 도 있고, 상이할 수 도 있다. The description of the second adhesive layer used here is the same as that described in the first adhesive layer, and thus no particular description is given. However, the second adhesive layer and the first adhesive layer may be the same composition, or may be different. In addition, the shape of the intaglio surface may be the same or may be different.
(5) 제5단계(5) 5th step
제5단계로서, 양각표면에 나노무기입자가 위치된 스탬프를 이용하여, 상기 제2 접착제층의 일면에 제2 음각표면을 형성한다.As a fifth step, a second negative surface is formed on one surface of the second adhesive layer by using a stamp in which nano-inorganic particles are positioned on the relief surface.
여기서 사용되는 스탬프는 상술한 제3단계에서 설명한 스탬프와 동일한 것을 이용할 수도 있다. 다만, 여기에 한정되는 것은 아니다. The stamp used here may use the same stamp as described in the above-described third step. However, it is not limited to this.
또한, 상기 제2 단계 및 제3 단계를 2회 이상 실시하여, 나노무기입자층이 코팅된 접착제층이 교호적으로 적층된 복합체를 형성할 수 도 있다. In addition, the second and third steps may be performed two or more times to form a composite in which the adhesive layer coated with the nano-inorganic particle layer is alternately laminated.
이하, 제1 및 제2의 수식어를 이용하여, 1차적으로 형성된 나노입자층이 적층된 접착제층과 2차적으로 형성된 나노입자층이 적층된 접착제층을 구분하여 설명한다. Hereinafter, using the first and second modifiers, the adhesive layer on which the nanoparticle layer formed first is laminated and the adhesive layer on which the nanoparticle layer formed second are laminated will be described.
구체적으로, 먼저, 제1 내지 제3 단계를 통하여, 기판 및 기판에 적층된, 음각표면에 제1 나노무기입자층이 적층된 제1 접착제층이 형성된다. 상기 음각표면 상에 추가적으로 접착제를 도포하여, 제2 접착제층을 적층한다. 상기 제2 접착제층도 상기 제3 단계를 거쳐 음각표면을 형성하고, 제2 나노무기입자층을 적층시킨다. 이러한 공정을 본 발명의 목적에 맞게 반복적으로 실시할 수 있다. Specifically, first, through the first to the third step, the first adhesive layer in which the first nano-inorganic particle layer is laminated on the negative surface, laminated on the substrate and the substrate is formed. An additional adhesive is applied on the intaglio surface to laminate the second adhesive layer. The second adhesive layer also forms an intaglio surface through the third step, and stacks the second nano-inorganic particle layer. This process can be carried out repeatedly to suit the purpose of the present invention.
다만, 이 때, 제1 나노무기입자층 및 제1 접착제층과, 제2 나노무기입자층 및 제2 접착제층은 교호적으로 적층될 수 있다. 상기 교호적으로 적층된다는 의미는, 제1 층과 상기 제1 층 상에 적층된 제2 층이 겹쳐져 일치되는 형태로 적층되지 않는 것을 의미하는 것으로, 예를 들어, 교차로 적층되거나, 비스듬히 적층되는 것을 포함하는 의미로 본 명세서에서 사용된다.However, in this case, the first nano inorganic particle layer and the first adhesive layer, the second nano inorganic particle layer and the second adhesive layer may be alternately stacked. The alternating stacking means that the first layer and the second layer stacked on the first layer do not overlap and overlap each other. For example, the first layer and the second layer stacked alternately or at an angle are stacked at an angle. It is used herein in the sense of inclusion.
본 발명에서는 이러한 적층구조를 통하여, 상기 복합체내의 복수의 나노무기입자층 중, 제1 나노무기입자층과 상기 제1 나노무기입자층과 이웃한 제2 나노무기입자층이, 수직방향으로 전기적 또는 열적으로 연결될 수 있다. 여기서, "연결된다"의 의미는 제1 나노무기입자층의 일부 또는 전부가 제2 나노무기입자층과 물리적으로 접촉되는 것을 의미한다. In the present invention, through the stacked structure, among the plurality of nano-inorganic particle layers in the composite, the first nano-inorganic particle layer and the second nano-inorganic particle layer adjacent to the first nano-inorganic particle layer may be electrically or thermally connected in the vertical direction. have. Here, "connected" means that some or all of the first nano inorganic particle layer is in physical contact with the second nano inorganic particle layer.
또한, 이러한 수직방향으로 제1 나노무기입자층과 제2 나노무기입자층을 연결시키기 위하여, 제2 접착제층의 두께는, 제1 접착제층의 음각 표면을 메우는 깊이를 제외하고, 제2 접착제층의 음각 표면의 두께보다 작은 것이 바람직하다. Further, in order to connect the first nanoinorganic particle layer and the second nanoinorganic particle layer in such a vertical direction, the thickness of the second adhesive layer is the intaglio of the second adhesive layer except for the depth to fill the intaglio surface of the first adhesive layer. It is desirable to be smaller than the thickness of the surface.
다만, 상기 제1 나노무기입자층과 이웃하는 제2 나노무기입자층이 수직적으로 연결될 수 있다면, 상기 제1 복합층의 음각표면과 제2 복합층의 음각표면의 패턴, 방향, 깊이 등은 동일하거나, 상이하여도 무방하다.However, if the first nanoinorganic particle layer and the adjacent second nanoinorganic particle layer can be vertically connected, the pattern, direction, depth, etc. of the intaglio surface of the first composite layer and the intaglio surface of the second composite layer are the same, or It may be different.
본 발명의 다른 일실시예에 따른 복합체는 기판, 상기 기판 상에 제1 음각표면을 갖는 제1 접착제층, 상기 제1 접착제층 상에, 상기 제1 음각표면을 따라 적층된 제1 나노무기입자층, 상기 제1 나노무기입자층 상에, 제1 음각표면의 음각공간을 매우고 일정두께를 가지고 제2 음각표면을 갖는 제2 접착제층, 및 상기 제2 접착제층 상에 상기 제2 음각표면을 따라 적층된 제2 나노무기입자층을 포함하고, 제1 나노무기입자층과 제2 나노무기입자층은 수직방향으로 전기적 또는 열적으로 연결된다. A composite according to another embodiment of the present invention is a substrate, a first adhesive layer having a first negative surface on the substrate, the first nano-inorganic particle layer laminated on the first adhesive layer, along the first negative surface On the first nano-inorganic particle layer, a second adhesive layer having a second intaglio surface having a constant thickness and a second intaglio space of the first intaglio surface, and along the second intaglio surface on the second adhesive layer The stacked second nano inorganic particle layer, wherein the first nano inorganic particle layer and the second nano inorganic particle layer is electrically or thermally connected in the vertical direction.
본 실시예에 관한 설명에서는, 상술한 제조방법에서 설명된 구성요소는 생략한다. In the description of this embodiment, the components described in the above-described manufacturing method are omitted.
도 2 및 도 3에 본 발명의 일실시예에 따른 복합체의 단면도에 대한 모식도를 나타내었다. 도 2 및 도 3에 각각 나타낸 구조는 본 발명의 하나의 예시일 뿐, 이러한 구조에 본 발명이 제한되는 것은 아니다. 도 2 및 도 3에 각각 나타낸 바와 같이, 제1 나노무기입자층 (22)과 제2 나노무기입자층 (32)이 수직적으로 연결되어, 열적 또는 전기적 전도가 신속하게 이루어질 수 있다. 2 and 3 is a schematic view of a cross-sectional view of the composite according to an embodiment of the present invention. 2 and 3 are only examples of the present invention, and the present invention is not limited to these structures. As shown in FIG. 2 and FIG. 3, the first nanoinorganic particle layer 22 and the second nanoinorganic particle layer 32 are vertically connected, so that thermal or electrical conduction can be quickly performed.
구체적으로 살펴보면, 본 발명의 복합체 (1)는 기판 (10)과 상기 기판 (10)상에 적층된 복합층 (20, 30)을 포함한다. 상기 복합층 (20, 30)은 접착제층 (21, 31)과 나노무기입자층 (22, 32)으로 구성된다. 상기 접착제층의, 기판과 대면하지 않는 면에 음각표면이 존재하고, 상기 음각표면을 따라서, 나노무기입자층이 적층된다. 상기 복합층이 각각 교호적으로 적층될 수 있다. 적층되는 복합층의 수는 본 발명이 목적하는 바에 따라 다양하게 적용될 수 있다.Specifically, the composite 1 of the present invention includes a substrate 10 and composite layers 20 and 30 stacked on the substrate 10. The composite layers 20 and 30 are composed of adhesive layers 21 and 31 and nano inorganic particle layers 22 and 32. A negative surface exists on the surface of the adhesive layer that does not face the substrate, and a nano inorganic particle layer is laminated along the negative surface. The composite layers may be laminated alternately. The number of laminated composite layers can be variously applied as desired by the present invention.
다만, 나노무기입자층은 적층되는 층들과 수직방향으로 일부 또는 전부가 이웃한 나노무기입자층과 맞닿아야하고, 이를 통하여, 전기적 또는 열적으로 연결되어야 한다.However, the nano-inorganic particle layer should be in contact with the nano-inorganic particle layer which is partially or entirely adjacent to the layers to be stacked in the vertical direction, through which, it should be electrically or thermally connected.
본 발명의 또 다른 일실시예인 히트 싱크는 상술한 다양한 복합체 중 어느 하나를 포함한다. Another embodiment of the heat sink of the present invention includes any one of the various composites described above.
도 4에 본 발명의 또 다른 일실시예에 따른 복합체를 포함하는 히트 싱크(heat sink)와 IC 칩에 대한 모식도를 나타내었다. 도 4에서, h-BN & polymer composite은 나노무기입자층와 접착제층 교호적으로 적층된 복합체를 의미하는 것이다. 확대된 삽입도는, 히트 싱크 상에 위치하고, 접착제(adhesive)와 나노무기입자(H-BN)을 포함하는 층들이 교호적으로 적층된 복합체를 나타낸다. 복합체 내부에서 수직적으로 열적 또는 전기적으로 나노무기입자층이 연결되어 있기 때문에, 히트 싱크로 IC 칩을 포함한 전자 소자에서 발생된 열이 용이하게 히트 싱크로 빠져나간다. 4 is a schematic view of a heat sink and an IC chip including a composite according to another embodiment of the present invention. In FIG. 4, h-BN & polymer composite refers to a composite obtained by alternately stacking an inorganic nanoparticle layer and an adhesive layer. The enlarged inset shows a composite placed on a heat sink and alternately stacked layers comprising adhesive and nano-inorganic particles (H-BN). Since the nano-inorganic particle layers are vertically thermally or electrically connected inside the composite, heat generated in an electronic device including an IC chip is easily released to the heat sink.
본 발명의 또 다른 일실시예인 전자파 차폐제는 상술한 다양한 복합체 중 어느 하나를 포함한다. Another embodiment of the present invention, the electromagnetic wave shielding agent includes any one of the above-described various composites.
이하, 구체적인 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through specific examples.
[실시예 1]Example 1
고분자-나노무기입자 복합체를 제조하기 위하여, 초박막 접착제로서 비스페놀 A 글리세롤레이트(1 글리세롤/페놀) 디아크릴레이트, 3-(트리메톡시실릴) 프로필 메타크릴레이트, 스핀-온 글라스(SOG 500F), 2-벤질-2-(디메틸아미노)-4, 무수에탄올을 200:100:100:9:1700 질량 비율로 섞어 제조하였다. PET 필름을 기판으로서 준비하였고, 이를 산소 플라즈마로 처리한 후, 이 기판 위에 준비된 접착제를 30초 동안 3000 rpm으로 스핀 코팅하여 100-120 nm 두께의 접착제 층을 형성하였다. To prepare the polymer-nano inorganic particle composite, bisphenol A glycerol (1 glycerol / phenol) diacrylate, 3- (trimethoxysilyl) propyl methacrylate, spin-on glass (SOG 500F), as an ultra-thin adhesive 2-benzyl-2- (dimethylamino) -4 and anhydrous ethanol were prepared by mixing in a ratio of 200: 100: 100: 9: 1700. The PET film was prepared as a substrate, which was treated with oxygen plasma, and then the adhesive prepared on the substrate was spin coated at 3000 rpm for 30 seconds to form a 100-120 nm thick adhesive layer.
상기 접착제층에, 스탬핑 방식으로 나노무기입자를 전사하기 위하여, 스탬프 재료로서 PDMS를 준비하였다. PDMS 스탬프를 SYLGARD 184 silicone elastomer kit (Dow Corning Inc.)를 사용하여 제조하였다. SYLGARD 184에서 PDMS 전구체와 경화제를 10:1 비율로 섞어준 후 페트리 디쉬에 부어준다. 기포를 제거하고 70℃에서 1시간 경화하였다. 상기 PDMS 몰드 위에 나노무기입자층을 형성하기 위하여 보론 나이트라이드를 코팅하였다. 보론 나이트라이드가 코팅된 PDMS 몰드를 이용하여, 스탬핑 공정을 실시하여, 상기 접착제층에 음각표면을 형성하고, 그 음각표면 상에 나노무기입자층을 전사하였다. 이러한 공정을 5회 이상 반복하여 실시하였다. PDMS was prepared as a stamp material to transfer the nano-inorganic particles to the adhesive layer by a stamping method. PDMS stamps were prepared using the SYLGARD 184 silicone elastomer kit (Dow Corning Inc.). In SYLGARD 184, the PDMS precursor and the curing agent are mixed in a 10: 1 ratio and poured into a Petri dish. The bubbles were removed and cured at 70 ° C. for 1 hour. Boron nitride was coated to form a nano-inorganic particle layer on the PDMS mold. Using a boron nitride-coated PDMS mold, a stamping process was performed to form a negative surface on the adhesive layer, and the nano-inorganic particle layer was transferred onto the negative surface. This process was repeated 5 or more times.
도 5(a) 및 (b)에 상술한 실험조건에서 제조된 실시예의 단면에 대한 전자 현미경 사진을 나타내었다. 도 5(a) 및 (b)에 나타낸 바와 같이, 나노무기입자층이 수직적으로 연결되었음을 확인할 수 있었다. 5 (a) and (b) show electron micrographs of the cross sections of the examples prepared under the experimental conditions described above. As shown in Figure 5 (a) and (b), it was confirmed that the nano-inorganic particle layer is vertically connected.
도 6에 도 5에 나타낸 복합체 일부의 전자현미경 사진과 에너지 분산형 분광분석(EDS) 결과그래프 및 결과표를 나타내었다. 도 6에 나타낸 바와 같이, 나노무기입자층이 연결된 부분에서, 질소 및 붕소가 대량 존재함을 확인할 수 있었다. 6 shows an electron micrograph, an energy dispersive spectroscopy (EDS) result graph, and a result table of a part of the composite shown in FIG. 5. As shown in Figure 6, it was confirmed that the presence of a large amount of nitrogen and boron in the portion connected to the nano-inorganic particle layer.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (25)

  1. 기판;Board;
    상기 기판 상에 제1 음각표면을 갖는 제1 접착제층;A first adhesive layer having a first negative surface on the substrate;
    상기 제1 접착제층 상에, 상기 제1 음각표면을 따라 적층된 제1 나노무기입자층;A first nano-inorganic particle layer laminated on the first adhesive layer along the first intaglio surface;
    상기 제1 나노무기입자층 상에, 제1 음각표면의 음각공간을 매우고 일정두께를 가지고 제2 음각표면을 갖는 제2 접착제층; 및 A second adhesive layer on the first nanoinorganic particle layer, having a second intaglio surface having a constant thickness and having an intaglio space of the first intaglio surface; And
    상기 제2 접착제층 상에 상기 제2 음각표면을 따라 적층된 제2 나노무기입자층을 포함하고, A second nano-inorganic particle layer laminated on the second adhesive layer along the second engraved surface,
    제1 나노무기입자층과 제2 나노무기입자층은 수직방향으로 전기적 또는 열적으로 연결된, 고분자 나노무기입자 복합체.The first nano-inorganic particle layer and the second nano-inorganic particle layer is electrically or thermally connected in the vertical direction, the polymer nano-inorganic particle composite.
  2. 제1항에 있어서,The method of claim 1,
    상기 기판은, 플렉서블 투명 기판인, 고분자 나노무기입자 복합체.Wherein the substrate is a flexible transparent substrate, the polymer nano-inorganic particles composite.
  3. 제1항에 있어서, The method of claim 1,
    상기 제1 및 제2 나노무기입자의 접착제 층 위의 코팅은 상기 접착제 층 표면에 위치하거나 상기 접착제 층 내로 상기 나노무기입자의 전부 또는 일부가 함침됨을 포함하는, 고분자 나노무기입자 복합체.The coating on the adhesive layer of the first and second nanoinorganic particles comprises polymer nanoinorganic particle composites which are located on the surface of the adhesive layer or in which all or a portion of the nanoinorganic particles are impregnated into the adhesive layer.
  4. 제1항에 있어서,The method of claim 1,
    상기 접착제는, 비스페놀A계 아크릴레이트 화합물 및 알콕시실릴계 아크릴레이트 화합물을 포함하는 투명 접착제를 포함하는, 고분자 나노무기입자 복합체.The adhesive is a polymer nano-inorganic composite, comprising a transparent adhesive comprising a bisphenol A acrylate compound and an alkoxysilyl acrylate compound.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 비스페놀A계 디아크릴레이트 화합물은 아래 화학식1의 비스페놀 에이 글리세롤레이트(1 글리세롤/페놀) 다이아크릴레이트 (Bisphenol A glycerolate (1 glycerol/phenol) diacrylate)을 포함하는, 고분자 나노무기입자 복합체:The bisphenol A-based diacrylate compound includes bisphenol A glycerolate (1 glycerol / phenol) diacrylate of Formula 1 below, polymer nano inorganic particle complex:
    화학식1Formula 1
    Figure PCTKR2018003767-appb-I000004
    Figure PCTKR2018003767-appb-I000004
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 알콕시실릴계 아크릴레이트 화합물은 아래 화학식2의 3-(트리메톡시실릴)프로필 메타크릴레이트(3-(trimethoxysilyl)propyl methacrylate)를 포함하는, 고분자 나노무기입자 복합체:The alkoxysilyl acrylate compound includes 3- (trimethoxysilyl) propyl methacrylate (3- (trimethoxysilyl) propyl methacrylate) of Formula 2 below, polymer nano-inorganic particle composite:
    화학식 2Formula 2
    Figure PCTKR2018003767-appb-I000005
    Figure PCTKR2018003767-appb-I000005
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 접착제는 광개시제를 포함하는, 고분자 나노무기입자 복합체.The adhesive comprises a photoinitiator, polymer nano inorganic particles composite.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 광개시제는 아래 화학식 3의 2-벤질-2-(디메틸아미노)-4-모르폴리노부티로페논(2-Benzyl-2-(dimethylamino)-4-morpholinobutyrophenone)을 포함하는, 고분자 나노무기입자 복합체:The photoinitiator comprises 2-benzyl-2- (dimethylamino) -4-morpholinobutyrophenone (2-Benzyl-2- (dimethylamino) -4-morpholinobutyrophenone) of Formula 3 below, a polymer nano-inorganic composite :
    화학식 3Formula 3
    Figure PCTKR2018003767-appb-I000006
    Figure PCTKR2018003767-appb-I000006
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 접착제는 폴리(메틸 실세스퀴녹산)(poly(methyl silsesquioxane))을 포함하는, 고분자 나노무기입자 복합체.The adhesive comprises a poly (methyl silsesquioxane) (poly (methyl silsesquioxane)), polymer nano inorganic particles composite.
  10. 제1항에 있어서,The method of claim 1,
    상기 접착층의 두께는 상기 음각표면의 두께보다 작은, 고분자 나노무기입자 복합체.The thickness of the adhesive layer is smaller than the thickness of the intaglio surface, polymer nano inorganic particles composite.
  11. 제1항에 있어서,The method of claim 1,
    상기 나노무기입자는, 그래핀, 금속성 그리드, 탄소나노튜브, 실버나노와이어 및 보론나이트라이드 중 적어도 하나를 포함하는, 고분자 나노무기입자 복합체.The nano-inorganic particles, graphene, metallic grid, carbon nanotubes, silver nanowires and boron nitride at least one of, the nano nanoparticles composite.
  12. 제1항 내지 제 11항 중 어느 한 항의 고분자 나노무기입자 복합체를 포함하는 히트싱크.A heat sink comprising the polymer nanoinorganic particle composite of any one of claims 1 to 11.
  13. 제1항 내지 제 11항 중 어느 한 항의 고분자 나노무기입자 복합체 다층 박막을 포함하는 전자파 차폐재.An electromagnetic wave shielding material comprising a multilayer thin film of the polymer nanoinorganic particle composite according to any one of claims 1 to 11.
  14. 기판을 준비하는 제1 단계;A first step of preparing a substrate;
    상기 기판 상에 제1 접착제층을 형성하는 제2 단계; 및A second step of forming a first adhesive layer on the substrate; And
    양각표면에 나노무기입자가 위치된 스탬프를 이용하여, 상기 제1 접착제층의 일면에 제1 음각표면을 형성하고, 상기 제1 음각표면을 따라 나노무기입자층이 적층되는 제3 단계;A third step of forming a first negative surface on one surface of the first adhesive layer by using a stamp having nano inorganic particles on an embossed surface, and stacking the nano inorganic particle layer along the first negative surface;
    상기 나노무기입자층이 형성하는 제1 음각표면을 매우면서 일정두께를 가지도록 제2 접착제층을 형성하는 제4 단계; 및A fourth step of forming a second adhesive layer so as to have a predetermined thickness while forming the first intaglio surface formed by the nano-inorganic particle layer; And
    양각표면에 나노무기입자가 위치된 스탬프를 이용하여, 상기 제2 접착제층의 일면에 제2 음각표면을 형성하는 제5 단계를 포함하는,And a fifth step of forming a second engraved surface on one surface of the second adhesive layer by using a stamp having nano inorganic particles located on an embossed surface.
    제1 나노무기입자층과 상기 제1 나노무기입자층과 이웃한 제2 나노무기입자층은 수직방향으로 전기적 또는 열적으로 연결된, 고분자 나노무기입자 복합체의 제조방법.The first nano-inorganic particle layer and the second nano-inorganic particle layer adjacent to the first nano-inorganic particle layer is electrically or thermally connected in the vertical direction, the method for producing a polymer nano-inorganic particle composite.
  15. 제14항에 있어서,The method of claim 14,
    상기 접착제는 열경화성 또는 빛경화성 접착제이며,The adhesive is a thermosetting or light curing adhesive,
    상기 제3 단계시, 열 또는 빛을 조사하여 경화시키는, 고분자 나노무기입자 복합체의 제조방법.In the third step, the curing method by irradiating heat or light, polymer nano-inorganic particle composite.
  16. 제14항에 있어서,The method of claim 14,
    상기 기판은 플렉서블 투명 기판인, 고분자 나노무기입자 복합체의 제조방법.The substrate is a flexible transparent substrate, a method for producing a polymer nano-inorganic particle composite.
  17. 제14항에 있어서, The method of claim 14,
    상기 나노무기입자의 접착제 층 위의 코팅은 상기 접착제 층 표면에 위치하거나 상기 접착제 층 내로 상기 나노무기입자의 전부 또는 일부가 함침됨을 포함하는, 고분자 나노무기입자 복합체의 제조방법.The coating on the adhesive layer of the nano-inorganic particles includes the impregnation of all or a portion of the nano-inorganic particles on the surface of the adhesive layer or into the adhesive layer.
  18. 제14항에 있어서,The method of claim 14,
    상기 접착제는, 비스페놀A계 아크릴레이트 화합물 및 알콕시실릴계 아크릴레이트 화합물을 포함하는 투명 접착제를 포함하는, 고분자 나노무기입자 복합체의 제조방법.The adhesive includes a transparent adhesive comprising a bisphenol A acrylate compound and an alkoxysilyl acrylate compound.
  19. 제18항에 있어서,The method of claim 18,
    상기 비스페놀A계 디아크릴레이트 화합물은 아래 화학식1의 비스페놀 에이 글리세롤레이트(1 글리세롤/페놀) 다이아크릴레이트 (Bisphenol A glycerolate (1 glycerol/phenol) diacrylate)을 포함하는, 고분자 나노무기입자 복합체의 제조방법:The bisphenol A-based diacrylate compound includes a bisphenol A glycerolate (1 glycerol / phenol) diacrylate of the formula (1) below, a method for producing a polymer nano inorganic particle composite :
    화학식1Formula 1
    Figure PCTKR2018003767-appb-I000007
    Figure PCTKR2018003767-appb-I000007
  20. 제18항에 있어서,The method of claim 18,
    상기 알콕시실릴계 아크릴레이트 화합물은 아래 화학식 2의 3-(트리메톡시실릴)프로필 메타크릴레이트(3-(trimethoxysilyl)propyl methacrylate)를 포함하는, 고분자 나노무기입자 복합체의 제조방법:The alkoxysilyl acrylate compound includes 3- (trimethoxysilyl) propyl methacrylate (3- (trimethoxysilyl) propyl methacrylate) of Formula 2 below:
    화학식 2Formula 2
    Figure PCTKR2018003767-appb-I000008
    Figure PCTKR2018003767-appb-I000008
  21. 제18항에 있어서,The method of claim 18,
    상기 접착제는 광개시제를 포함하는, 고분자 나노무기입자 복합체의 제조방법.The adhesive comprises a photoinitiator, a method for producing a polymer nano-inorganic particle composite.
  22. 제21항에 있어서,The method of claim 21,
    상기 광개시제는 아래 화학식 3의 2-벤질-2-(디메틸아미노)-4-모르폴리노부티로페논(2-Benzyl-2-(dimethylamino)-4-morpholinobutyrophenone)을 포함하는, 고분자 나노무기입자 복합체의 제조방법:The photoinitiator comprises 2-benzyl-2- (dimethylamino) -4-morpholinobutyrophenone (2-Benzyl-2- (dimethylamino) -4-morpholinobutyrophenone) of Formula 3 below, a polymer nano-inorganic composite Manufacturing Method:
    화학식 3Formula 3
    Figure PCTKR2018003767-appb-I000009
    Figure PCTKR2018003767-appb-I000009
  23. 제18항에 있어서,The method of claim 18,
    상기 접착제는 폴리(메틸 실세스퀴녹산)(poly(methyl silsesquioxane))을 포함하는, 고분자 나노무기입자 복합체의 제조방법.The adhesive comprises a poly (methyl silsesquioxane) (poly (methyl silsesquioxane)), a method for producing a polymer nano-inorganic particle composite.
  24. 제14항에 있어서,The method of claim 14,
    상기 접착층의 두께는 상기 음각표면의 두께보다 작은, 고분자 나노무기입자 복합체의 제조방법.The thickness of the adhesive layer is smaller than the thickness of the intaglio surface, the manufacturing method of the polymer nano-inorganic particle composite.
  25. 제14항에 있어서,The method of claim 14,
    상기 나노무기입자는, 그래핀, 금속성 그리드, 탄소나노튜브, 실버나노와이어 및 보론나이트라이드 중 적어도 하나를 포함하는, 고분자 나노무기입자 복합체의 제조방법.The nano-inorganic particles, graphene, metallic grid, carbon nanotubes, silver nanowires and boron nitride at least one of, the method of producing a polymer nano inorganic particles composite.
PCT/KR2018/003767 2017-03-31 2018-03-30 Polymer nanoparticle composite and method for preparing same WO2018182353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170041715A KR101808985B1 (en) 2017-03-31 2017-03-31 Complex with polymer and nano inorganic particle layer and method for preparing same
KR10-2017-0041715 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018182353A1 true WO2018182353A1 (en) 2018-10-04

Family

ID=60944343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003767 WO2018182353A1 (en) 2017-03-31 2018-03-30 Polymer nanoparticle composite and method for preparing same

Country Status (2)

Country Link
KR (1) KR101808985B1 (en)
WO (1) WO2018182353A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808985B1 (en) * 2017-03-31 2017-12-13 성균관대학교산학협력단 Complex with polymer and nano inorganic particle layer and method for preparing same
KR102563235B1 (en) * 2020-01-10 2023-08-03 성균관대학교산학협력단 Method of fabricating heat dissipation coating and sheet comprising embos

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184155A (en) * 2008-02-04 2009-08-20 Touch Panel Kenkyusho:Kk Conductive film or conductive sheet, and resistive touch panel structure
KR20100075404A (en) * 2008-12-24 2010-07-02 닛토덴코 가부시키가이샤 Composition for silicone resin
KR20110081889A (en) * 2008-10-29 2011-07-14 쿠라미크 엘렉트로닉스 게엠베하 Composite material, method for producing a composite material and adhesive or binding material
KR101193315B1 (en) * 2003-10-24 2012-10-19 레오나르트 쿠르츠 스티프퉁 운트 코. 카게 Structuring of electrical functional layers by means of a transfer film and structuring the adhesive
KR20140092585A (en) * 2013-01-16 2014-07-24 주식회사 엘엠에스 Heat Sink Sheet Having Adhesion Part in Dent Groove
KR101542702B1 (en) * 2014-12-31 2015-08-06 성균관대학교산학협력단 A composition for transparent adhesive and a method thereof
KR20160064772A (en) * 2014-11-28 2016-06-08 엘지디스플레이 주식회사 Flexible radiating film and method for manufacturing the same
KR20160106266A (en) * 2015-03-02 2016-09-12 주식회사 엘엠에스 Heat Spreader
KR101808985B1 (en) * 2017-03-31 2017-12-13 성균관대학교산학협력단 Complex with polymer and nano inorganic particle layer and method for preparing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193315B1 (en) * 2003-10-24 2012-10-19 레오나르트 쿠르츠 스티프퉁 운트 코. 카게 Structuring of electrical functional layers by means of a transfer film and structuring the adhesive
JP2009184155A (en) * 2008-02-04 2009-08-20 Touch Panel Kenkyusho:Kk Conductive film or conductive sheet, and resistive touch panel structure
KR20110081889A (en) * 2008-10-29 2011-07-14 쿠라미크 엘렉트로닉스 게엠베하 Composite material, method for producing a composite material and adhesive or binding material
KR20100075404A (en) * 2008-12-24 2010-07-02 닛토덴코 가부시키가이샤 Composition for silicone resin
KR20140092585A (en) * 2013-01-16 2014-07-24 주식회사 엘엠에스 Heat Sink Sheet Having Adhesion Part in Dent Groove
KR20160064772A (en) * 2014-11-28 2016-06-08 엘지디스플레이 주식회사 Flexible radiating film and method for manufacturing the same
KR101542702B1 (en) * 2014-12-31 2015-08-06 성균관대학교산학협력단 A composition for transparent adhesive and a method thereof
KR20160106266A (en) * 2015-03-02 2016-09-12 주식회사 엘엠에스 Heat Spreader
KR101808985B1 (en) * 2017-03-31 2017-12-13 성균관대학교산학협력단 Complex with polymer and nano inorganic particle layer and method for preparing same

Also Published As

Publication number Publication date
KR101808985B1 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
KR100462451B1 (en) Polymer and ceramic composite electronic substrates
TWI325745B (en) Circuit board structure and fabrication method thereof
WO2018070801A2 (en) Multilayered carrier film, element transfer method using same, and electronic product manufacturing method for manufacturing electronic product by using same element transfer method
WO2016163695A1 (en) Method for manufacturing multi-layer printed circuit board using conductive copper ink and light sintering, and multi-layer printed circuit board manufactured thereby
WO2018182353A1 (en) Polymer nanoparticle composite and method for preparing same
TWI743243B (en) Systems and methods for creating fluidic assembly structures on a substrate
CN102334392A (en) Electronic part manufacturing method and electronic part manufactured by the method
KR20150069858A (en) Method for forming the metal electrode pattern with high conductivity using metal nanoparticle based-ink on a flexible substrate
WO2014069734A1 (en) Printed circuit board
KR20070062971A (en) Method for manufacturing ceramic electronic component
CN109749362A (en) Resin combination
WO2018084518A1 (en) Epoxy paste composition including silver-coated copper nanowires having core-shell structure, and conductive film including same
JP2007067392A (en) Member for electronic elements and method of manufacturing same
WO2014196776A1 (en) Method for transfer and adhesion of nano thin film
WO2013032277A2 (en) Method of manufacturing substrate for chip packages and method of manufacturing chip package
CN110016203A (en) Resin combination
WO2020032535A1 (en) Asymmetric composite material
WO2017188752A1 (en) Coating composition having improved heat dissipation characteristics, and method for forming coating film by using same
Yu et al. Additive Manufacturing of Sandwich–Structured Conductors for Applications in Flexible and Stretchable Electronics
JP3850956B2 (en) Heat dissipation carbon composite board
WO2013119032A1 (en) Method for forming functional composition pattern on substrate, and electronic device including functional pattern formed by said method
US20140131076A1 (en) Ceramic substrate composite and method for manufacturing ceramic substrate composite
CN109302806A (en) A kind of preparation method of wiring board
WO2017090899A1 (en) Method for forming electrode pattern having floating structure and transfer printing method using same
WO2020153642A1 (en) Flexible cable jumper structure, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775520

Country of ref document: EP

Kind code of ref document: A1