WO2024095874A1 - Pulverizing roller, pulverizing table, solid fuel pulverization device, and method for manufacturing pulverizing roller - Google Patents
Pulverizing roller, pulverizing table, solid fuel pulverization device, and method for manufacturing pulverizing roller Download PDFInfo
- Publication number
- WO2024095874A1 WO2024095874A1 PCT/JP2023/038597 JP2023038597W WO2024095874A1 WO 2024095874 A1 WO2024095874 A1 WO 2024095874A1 JP 2023038597 W JP2023038597 W JP 2023038597W WO 2024095874 A1 WO2024095874 A1 WO 2024095874A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- density
- roller
- crushing
- solid fuel
- Prior art date
Links
- 239000004449 solid propellant Substances 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 57
- 238000010298 pulverizing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 32
- 239000000919 ceramic Substances 0.000 claims abstract description 391
- 239000002245 particle Substances 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 42
- 238000000227 grinding Methods 0.000 claims description 157
- 238000005266 casting Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 3
- 238000005299 abrasion Methods 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 49
- 239000003245 coal Substances 0.000 description 41
- 239000007789 gas Substances 0.000 description 41
- 230000002093 peripheral effect Effects 0.000 description 23
- 230000008646 thermal stress Effects 0.000 description 13
- 230000007423 decrease Effects 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 239000002028 Biomass Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 239000000567 combustion gas Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C15/00—Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
- B02C15/04—Mills with pressed pendularly-mounted rollers, e.g. spring pressed
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
Definitions
- This disclosure relates to a grinding roller, a grinding table, a solid fuel grinding device, and a method for manufacturing a grinding roller.
- solid fuels such as biomass fuels and coal are pulverized into fine powder within a specified particle size range in a pulverizer (mill) and then supplied to a combustion device.
- a pulverizer mill
- the solid fuel fed onto the pulverizing table is pinched between the pulverizing table and the pulverizing rollers to pulverize it, and from the pulverized solid fuel, fine fuel within a specified particle size range is selected using a classifier.
- the fine fuel is transported to a boiler by a carrier gas (primary air) supplied from the outer periphery of the pulverizing table, and is burned in the combustion device.
- steam is generated by heat exchange with the combustion gas generated by burning the pulverized fuel in the boiler, and the steam is used to rotate and drive a steam turbine, which then rotates and drives a generator connected to the steam turbine to generate electricity.
- Patent Document 1 describes a crushing member that includes a high Cr steel support having a continuous support wall that forms a polygonal space, and a ceramic member that is disposed within the space of the high Cr steel support.
- ceramic-embedded grinding rollers or grinding tables When manufacturing ceramic-embedded grinding rollers or grinding tables, first, particulate ceramics (hereafter referred to as "ceramic particles") are molded into a block shape to produce a ceramic block that constitutes part of the ceramic portion. Next, with the ceramic block placed in a designated position within a mold, molten metal is poured into the mold. The metal in the mold is then cooled and solidified. In this way, ceramic-embedded grinding rollers or grinding tables are manufactured in which the ceramic portion (portion containing ceramic) and base (portion not containing ceramic) are fixed together.
- ceramic particles particulate ceramics
- the ceramic part has a smaller linear expansion coefficient than the metal in the mold. Therefore, the contraction rate of the ceramic part during cooling is smaller than that of the base. Therefore, the amount of contraction of the ceramic part and the base differs during cooling.
- the base since the ceramic part and the base are integrated, the base tries to shrink the ceramic part, and the ceramic part tries to suppress the contraction of the base. Therefore, thermal stress acts on the inside of the base and ceramic part, and there is a possibility that the grinding roller or grinding table may be damaged. In this way, ceramic-embedded grinding rollers and grinding tables may be damaged during manufacturing due to the difference in linear expansion coefficient between the ceramic part and the base. Therefore, there is a possibility that the yield rate when manufacturing grinding rollers and grinding tables may decrease.
- the rigidity of a member When the rigidity of a member is reduced, the member becomes more stretchable. Therefore, the stress generated when the same displacement is applied is kept low, and the thermal stress is reduced. Therefore, in order to reduce the internal thermal stress of the ceramic-embedded grinding roller or grinding table, it is possible to reduce the rigidity of the ceramic part by reducing the density of the ceramic particles in the entire ceramic part.
- the rigidity when the rigidity is reduced by reducing the density of the ceramic particles in the ceramic part, the wear resistance and allowable wear amount of the grinding roller or grinding table are reduced, which is a problem in that the life of the grinding roller or grinding table is shortened. Under these circumstances, it has been desired to improve the yield rate in manufacturing the crushing rollers and the crushing tables, and to extend the life of the crushing rollers and the crushing tables.
- the present disclosure has been made in consideration of these circumstances, and aims to provide a crushing roller, a crushing table, and a solid fuel crushing device, as well as a method for manufacturing a crushing roller, that can improve the yield rate when manufacturing the crushing roller and the crushing table, and can extend the life of the crushing roller and the crushing table.
- a grinding roller according to one embodiment of the present disclosure is a grinding roller that is housed inside a housing, pinches solid fuel between itself and a rotating grinding table to grind the solid fuel, and rotates about a rotation axis when subjected to a rotational force from the grinding table.
- the grinding roller includes a support portion rotatably supported relative to the housing, and an annular roller portion fixed to the support portion and grinds the solid fuel between itself and the grinding table.
- the roller portion has a base portion fixed to the support portion, and a ceramic portion provided on the outer periphery of the base, the ceramic portion having a linear expansion coefficient different from that of the base and superior wear resistance to the base.
- the ceramic portion has a base material and ceramic provided on the base material, and the ceramic density, which is the content of the ceramic in the base material, varies along the direction of the rotation axis.
- a method for manufacturing a grinding roller is a method for manufacturing a grinding roller that is housed inside a housing, that grinds solid fuel by sandwiching the solid fuel between the grinding roller and a rotating grinding table, and that rotates around a rotation axis when it receives a rotational force from the grinding table, the grinding roller includes a support portion that is rotatably supported by the housing, and an annular roller portion that is fixed to the support portion and grinds the solid fuel between the grinding table, the roller portion includes a base portion that is fixed to the support portion, and a ceramic portion that is provided on the outer periphery of the base portion and has a linear expansion coefficient different from that of the base portion and is more wear-resistant than the base portion, the ceramic portion includes a matrix and ceramic provided on the matrix portion, the ceramic density, which is the content of the ceramic in the matrix, varies along the direction of the rotation axis, and the method includes a step of integrally molding the base portion and the ceramic portion by casting.
- This disclosure makes it possible to improve the yield rate when manufacturing grinding rollers and grinding tables, and to extend the lifespan of the grinding rollers and grinding tables.
- FIG. 2 is a configuration diagram showing a solid fuel pulverizer and a boiler according to the first embodiment of the present disclosure.
- FIG. 2 is a schematic side view of a crushing roller provided in the solid fuel crushing device according to the first embodiment of the present disclosure.
- 1 is a cross-sectional view of a main portion of a crushing roller according to a first embodiment of the present disclosure.
- 10 is a cross-sectional view of a main portion of a crushing roller according to a modified example of the first embodiment of the present disclosure.
- FIG. FIG. 13 is a perspective view of a roller portion according to a modified example of the first embodiment of the present disclosure.
- FIG. 6 is an enlarged view of a portion VI in FIG. 5 .
- FIG. 7 is a diagram showing a modification of FIG. 6 .
- FIG. 2 is a schematic vertical cross-sectional view of a grinding table provided in the solid fuel grinding device according to the first embodiment of the present disclosure.
- FIG. 9 is an enlarged view of part IX in FIG. 8 .
- FIG. 2 is a schematic diagram showing a mold for manufacturing the crushing roller according to the first embodiment of the present disclosure.
- FIG. 11 is a diagram showing a modified example of FIG. 10 .
- FIG. 11 is a diagram showing a modification of FIG. 10 .
- FIG. 2 is a schematic side view of the crushing roller according to the first embodiment of the present disclosure, showing the progress of wear.
- FIG. 6 is a cross-sectional view of a main portion of a crushing roller according to a second embodiment of the present disclosure.
- FIG. 15 is a diagram showing a modified example of FIG.
- FIG. 11 is a diagram showing the position in the direction of the rotation center axis of a crushing roller according to a second embodiment of the present disclosure.
- 13 is a graph showing the required wear resistance and ceramic density at the position in the direction of the rotation center axis of a crushing roller according to a second embodiment of the present disclosure.
- a power plant 1 includes a solid fuel pulverizer 100 and a boiler 200.
- “upper” refers to the vertically upper direction
- “upper” in terms such as upper part and upper surface refers to the vertically upper part.
- “lower” refers to the vertically lower part, and the vertical direction is not precise and may include errors.
- the solid fuel pulverizing device 100 of this embodiment is a device that pulverizes solid fuel, such as biomass fuel or coal, generates pulverized fuel, and supplies it to a burner (combustion device) 220 of a boiler 200.
- the power plant 1 including the solid fuel pulverizer 100 and the boiler 200 shown in FIG. 1 is equipped with one solid fuel pulverizer 100, but it may also be a system equipped with multiple solid fuel pulverizers 100 corresponding to each of the multiple burners 220 of one boiler 200.
- the solid fuel pulverizing device 100 of this embodiment includes a mill (pulverizing section) 10, a bunker (storage section) 21, a coal feeder (fuel supplying machine) 25, a blower section (carrier gas supplying section) 30, a status detection section 40, and a control section 50.
- the mill 10, which pulverizes solid fuel such as coal or biomass fuel to be supplied to the boiler 200 into fine fuel, which is a finely powdered solid fuel, may be of a type that pulverizes only coal, may be of a type that pulverizes only biomass fuel, or may be of a type that pulverizes biomass fuel together with coal.
- biomass fuels are organic resources derived from renewable living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuels (pellets and chips) made from these materials, but are not limited to the ones presented here.
- Biomass fuels are carbon neutral, meaning they do not emit carbon dioxide, a greenhouse gas, because they capture carbon dioxide during the biomass growth process, and various uses for them are being considered.
- the mill 10 comprises a housing 11, a grinding table 12, grinding rollers 13, a reducer (drive transmission unit) 14, a mill motor (drive unit) 15 connected to the reducer 14 and driving the grinding table 12 to rotate, a rotary classifier (classification unit) 16, a coal supply pipe (fuel supply unit) 17, and a classifier motor 18 that drives the rotary classifier 16 to rotate.
- the housing 11 is formed in a cylindrical shape extending in the vertical direction, and is a case that accommodates the grinding table 12, the grinding rollers 13, the rotary classifier 16, and the coal supply pipe 17.
- a coal feed pipe 17 is attached to the center of the ceiling portion 42 of the housing 11. This coal feed pipe 17 supplies solid fuel guided from the bunker 21 via the coal feeder 25 into the housing 11.
- the coal feed pipe 17 is disposed in the vertical direction at the center position of the housing 11 and has a lower end extending into the interior of the housing 11.
- a reduction gear 14 is provided near the bottom surface 41 of the housing 11, and the grinding table 12 is rotatably disposed and rotated by the driving force transmitted from a mill motor 15 connected to the reduction gear 14.
- the grinding table 12 is a circular member in a plan view, and is arranged so that the lower end of the coal supply pipe 17 faces the grinding table 12.
- the upper surface of the grinding table 12 may have an inclined shape that is low in the center and high toward the outside, and the outer periphery may have a shape that is bent upward.
- the coal supply pipe 17 supplies solid fuel (for example, coal or biomass fuel in this embodiment) from above toward the grinding table 12 below, and the grinding table 12 pinches the supplied solid fuel between the grinding roller 13 and grinds it.
- the centrifugal force generated by the rotation of the grinding table 12 guides the solid fuel to the outer periphery of the grinding table 12, where it is pinched and ground between the grinding table 12 and the grinding rollers 13.
- the ground solid fuel is blown upward by the carrier gas (hereinafter referred to as primary air) guided from the carrier gas flow path (hereinafter referred to as primary air flow path) 110, and is guided to the rotary classifier 16.
- An outlet (not shown) is provided on the outer periphery of the grinding table 12, through which the primary air flowing in from the primary air passage 110 flows out into the space above the grinding table 12 in the housing 11.
- a swirling blade (not shown) is provided at the outlet, which applies a swirling force to the primary air blown out from the outlet.
- the primary air given a swirling force by the swirling blade becomes an airflow having a swirling velocity component, and conveys the solid fuel pulverized on the grinding table 12 to the rotary classifier 16 located at the upper part in the housing 11.
- the rotary classifier 16 located at the upper part in the housing 11.
- particles larger than a predetermined particle size are classified by the rotary classifier 16, or fall without reaching the rotary classifier 16, are returned to the grinding table 12, and are pulverized again between the grinding table 12 and the grinding roller 13.
- the crushing roller 13 is a rotating body that crushes the solid fuel supplied onto the crushing table 12 from the coal supply pipe 17.
- the crushing roller 13 is pressed against the upper surface of the crushing table 12 and cooperates with the crushing table 12 to crush the solid fuel.
- 1 shows only one representative crushing roller 13, but multiple crushing rollers 13 are arranged at regular intervals in the circumferential direction so as to press against the upper surface of the crushing table 12.
- three crushing rollers 13 are arranged at equal intervals in the circumferential direction on the outer periphery at angular intervals of 120°. In this case, the portions where the three crushing rollers 13 come into contact with the upper surface of the crushing table 12 (pressing portions) are equidistant from the rotation center axis of the crushing table 12.
- the crushing roller 13 can be swung and displaced up and down by the journal head 45, and is supported so that it can move toward and away from the upper surface of the crushing table 12.
- the crushing table 12 rotates, with the outer circumferential surface of the crushing roller 13 in contact with the solid fuel on the upper surface of the crushing table 12, the crushing roller 13 receives a rotational force from the crushing table 12 and rotates with it.
- solid fuel is supplied from the coal supply pipe 17, the solid fuel is pressed between the crushing roller 13 and the crushing table 12 and crushed. This pressing force is called the crushing load.
- the support arm 47 of the journal head 45 is supported on the side of the housing 11 by a support shaft 48 whose middle part is aligned horizontally, so that the crushing roller 13 can be swung and displaced in the vertical direction around the support shaft 48.
- a pressing device (crushing load applying part) 46 is provided at the upper end part on the vertically upper side of the support arm 47.
- the pressing device 46 is fixed to the housing 11, and applies a crushing load to the crushing roller 13 via the support arm 47, etc., so as to press the crushing roller 13 against the crushing table 12.
- the crushing load is applied, for example, by a hydraulic cylinder (not shown) that operates by the pressure of hydraulic oil supplied from a hydraulic device (not shown) installed outside the mill 10.
- the crushing load may also be applied by the repulsive force of a spring (not shown).
- the reducer 14 is connected to the mill motor 15 and transmits the driving force of the mill motor 15 to the grinding table 12, causing the grinding table 12 to rotate around its central axis.
- the rotary classifier (classifying section) 16 is provided at the top of the housing 11 and has a hollow inverted cone-like outer shape.
- the rotary classifier 16 is provided with a plurality of blades 16a extending in the vertical direction at its outer periphery.
- the blades 16a are provided at predetermined intervals (equally spaced) around the central axis of the rotary classifier 16.
- the rotary classifier 16 is a device that classifies the solid fuel pulverized by the pulverizing table 12 and the pulverizing rollers 13 (hereinafter, the pulverized solid fuel is referred to as "pulverized fuel") into particles larger than a predetermined particle size (for example, 70 to 100 ⁇ m for coal) (hereinafter, the pulverized fuel exceeding the predetermined particle size is referred to as “coarse pulverized fuel”) and particles smaller than the predetermined particle size (hereinafter, the pulverized fuel smaller than the predetermined particle size is referred to as "fine pulverized fuel”).
- the rotary classifier 16 is given a rotational driving force by a classifier motor 18 controlled by the control unit 50, and rotates around a coal feed pipe 17 centered on a cylindrical axis (not shown) extending in the vertical direction of the housing 11.
- the classifying section may be a fixed classifier having a fixed hollow inverted cone-shaped casing and a plurality of fixed swirling vanes on the outer periphery of the casing instead of the blades 16a.
- the coal supply pipe 17 is attached so that its lower end extends vertically into the interior of the housing 11 so as to penetrate the ceiling portion 42 of the housing 11, and supplies solid fuel fed from the top of the coal supply pipe 17 to the center of the grinding table 12.
- a coal supply machine 25 is connected to the upper end of the coal supply pipe 17, and solid fuel is supplied.
- the coal feeder 25 is connected to the bunker 21 by the downspout 22, which is a pipe extending vertically from the lower end of the bunker 21.
- a valve (coal gate, not shown) for switching the discharge state of the solid fuel from the bunker 21 may be provided midway in the downspout 22.
- the coal feeder 25 includes a transport unit 26 and a coal feeder motor 27.
- the transport unit 26 is, for example, a belt conveyor, and transports the solid fuel discharged from the lower end of the downspout 22 to the upper part of the coal feeder pipe 17 by the driving force of the coal feeder motor 27, and inputs it inside.
- the amount of solid fuel supplied to the mill 10 is controlled by a signal from the control unit 50, for example by adjusting the moving speed of the belt conveyor of the transport unit 26.
- the blower section 30 is a device that blows primary air into the housing 11 to dry the pulverized fuel and to transport the fuel to the rotary classifier 16 .
- the blower 30 includes a primary air fan (PAF) 31, a hot gas flow path 30a, a cold gas flow path 30b, a hot gas damper 30c, and a cold gas damper 30d.
- PAF primary air fan
- the hot gas flow path 30a supplies a portion of the air sent out from the primary air ventilator 31 as hot gas that has been heated by passing through an air preheater (heat exchanger) 34.
- a hot gas damper 30c is provided in the hot gas flow path 30a.
- the opening degree of the hot gas damper 30c is controlled by the control unit 50.
- the flow rate of the hot gas supplied from the hot gas flow path 30a is determined by the opening degree of the hot gas damper 30c.
- the cold gas flow path 30b supplies a portion of the air sent out from the primary air ventilator 31 as cold gas at room temperature.
- a cold gas damper 30d is provided in the cold gas flow path 30b.
- the opening degree of the cold gas damper 30d is controlled by the control unit 50.
- the flow rate of the cold gas supplied from the cold gas flow path 30b is determined by the opening degree of the cold gas damper 30d.
- the flow rate of the primary air is the sum of the flow rate of the hot gas supplied from the hot gas flow path 30a and the flow rate of the cold gas supplied from the cold gas flow path 30b, and the temperature of the primary air is determined by the mixing ratio of the hot gas supplied from the hot gas flow path 30a and the cold gas supplied from the cold gas flow path 30b, and is controlled by the control unit 50.
- the oxygen concentration in the primary air blown from the primary air passage 110 to the inside of the housing 11 may be adjusted by, for example, introducing a part of the combustion gas discharged from the boiler 200 by a gas recirculation fan (not shown) into the hot gas supplied from the hot gas passage 30a and mixing it.
- a gas recirculation fan not shown
- the state detection unit 40 of this embodiment is, for example, a differential pressure measurement means, and measures the differential pressure of the mill 10 as the pressure difference between the pressure at the portion where the primary air flows into the inside of the housing 11 from the primary air flow passage 110 and the pressure at the outlet port 19 where the primary air and the pulverized fuel are discharged from the inside of the housing 11 to the pulverized fuel supply pipe 120.
- An increase or decrease in this differential pressure of the mill 10 corresponds to an increase or decrease in the amount of pulverized fuel circulating between the vicinity of the rotary classifier 16 inside the housing 11 and the vicinity of the grinding table 12 due to the classification effect of the rotary classifier 16.
- the amount and particle size range of the pulverized fuel discharged from the outlet port 19 can be adjusted, so that an amount of pulverized fuel corresponding to the amount of solid fuel supplied to the mill 10 can be stably supplied to the burner 220 provided in the boiler 200, while maintaining the particle size of the pulverized fuel within a range that does not affect the combustibility of the solid fuel in the burner 220.
- the state detection unit 40 of this embodiment is, for example, a temperature measuring means, which detects the temperature of the primary air supplied to the inside of the housing 11 (mill inlet primary air temperature) and the temperature of the mixed gas of the primary air and the pulverized fuel at the outlet port 19 (mill outlet primary air temperature), and controls the blower unit 30 so that the respective upper limit temperatures are not exceeded.
- Each upper limit temperature is determined in consideration of the possibility of ignition according to the properties of the solid fuel. Note that, since the primary air is cooled inside the housing 11 by transporting the pulverized fuel while drying it, the primary air temperature at the mill inlet is, for example, about room temperature to about 300°C, and the primary air temperature at the mill outlet is, for example, about room temperature to about 90°C.
- the control unit 50 is a device that controls each part of the solid fuel pulverization device 100 .
- the control unit 50 may, for example, transmit a drive command to the mill motor 15 to control the rotation speed of the grinding table 12 .
- the control unit 50 for example, transmits a drive command to the classifier motor 18 to control the rotational speed of the rotary classifier 16 to adjust the classification performance, and can stably supply an amount of pulverized fuel corresponding to the amount of solid fuel supplied to the mill 10 to the burner 220 while maintaining the particle size of the pulverized fuel within a range that does not affect the combustibility of the solid fuel in the burner 220.
- control unit 50 can adjust the amount of solid fuel supplied (amount of coal supplied) to the mill 10 by, for example, transmitting a drive command to the coal feeder motor 27 .
- control unit 50 can adjust the flow rate and temperature of the primary air by controlling the opening of the hot gas damper 30c and the cold gas damper 30d by transmitting an opening command to the blower unit 30.
- the control unit 50 controls the opening of the hot gas damper 30c and the cold gas damper 30d so that the flow rate of the primary air supplied to the inside of the housing 11 and the temperature of the primary air at the outlet port 19 (mill outlet primary air temperature) become predetermined values set corresponding to the coal feed amount for each type of solid fuel.
- the temperature of the primary air may be controlled with respect to the temperature at the mill inlet (mill inlet primary air temperature).
- the control unit 50 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
- a series of processes for realizing various functions is stored in a storage medium in the form of a program, for example, and the CPU reads this program into the RAM and executes information processing and arithmetic processing to realize various functions.
- the program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Examples of computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, and semiconductor memories.
- the HDD may also be replaced with a solid-state disk (SSD), etc.
- the boiler 200 that generates steam by burning the pulverized fuel supplied from the solid fuel pulverizer 100.
- the boiler 200 is equipped with a furnace 210 and a burner 220.
- the burner 220 is a device that burns pulverized fuel to form a flame using a mixture of pulverized fuel and primary air supplied from the pulverized fuel supply pipe 120, and secondary air supplied by heating the air (outside air) sent out from the forced draft fan (FDF: Forced Draft Fan) 32 in an air preheater 34.
- the pulverized fuel is burned in the furnace 210, and the high-temperature combustion gas is exhausted to the outside of the boiler 200 after passing through heat exchangers (not shown) such as an evaporator, superheater, and economizer.
- the combustion gas discharged from the boiler 200 undergoes predetermined treatment in an environmental device (such as a denitration device, dust collector, and desulfurization device, not shown), and is then heat-exchanged with primary air and secondary air in an air preheater 34, and is then guided to a chimney (not shown) via an induced draft fan (IDF) 33 and released into the outside air.
- an environmental device such as a denitration device, dust collector, and desulfurization device, not shown
- IDF induced draft fan
- each heat exchanger of boiler 200 is heated in a coal economizer (not shown), and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature, high-pressure superheated steam.
- This is then sent to the steam turbine (not shown), which is the power generation section, to rotate the steam turbine, which in turn rotates a generator (not shown) connected to the steam turbine to generate electricity, thereby constituting power generation plant 1.
- each of the crushing rollers 13 is supported by the housing 11 via a journal shaft 44, a journal head 45, and a support shaft 48 so as to be rotatable about the rotation center axis C2.
- the journal shaft 44 extends from the vicinity of the side portion of the housing 11 to the central portion of the housing 11 so as to be inclined downward.
- the journal shaft 44 has a base end (an end portion on the side portion side of the housing 11) fixed to the journal head 45.
- the crushing roller 13 is rotatably supported by a tip end (an end portion on the central portion side of the mill 10) of the journal shaft 44 via a bearing (not shown). That is, the crushing roller 13 is rotatably supported vertically above the crushing table 12 in an inclined state in which the upper side faces the central portion of the housing 11 more than the lower side.
- the crushing roller 13 includes a journal housing (support portion) 43 that is supported at the tip of the journal shaft 44 so as to be rotatable about the central axis of rotation C2, and a substantially annular roller portion 49 that is fitted onto the outside of the journal housing 43.
- the journal housing 43 is provided to cover the tip of the journal shaft 44, and has a cylindrical outer circumferential surface.
- the roller portion 49 includes a base portion 51 made of high chromium cast iron that fits into the journal housing 43, and a ceramic portion 52 that includes a ceramic member provided on an outer circumferential surface 51a of the base portion 51.
- the roller portion 49 according to this embodiment is a so-called ceramic-embedded high chromium cast iron roller.
- the roller portion 49 has an outer peripheral surface 49a that is substantially annular, and an inner peripheral surface (the surface that comes into contact with the outer peripheral surface of the journal housing 43) that is substantially cylindrical.
- the outer peripheral surface 49a and the inner peripheral surface of the roller portion 49 are connected at end faces.
- the outer peripheral surface 49a of the roller portion 49 is curved so as to form an arc shape centered on a center point CP in an axial cross section.
- the inner peripheral surface of the roller portion 49 is a straight line parallel to the central rotation axis C2 in an axial cross section.
- the base 51 is supported by the journal housing 43.
- the base 51 is formed in a substantially annular shape.
- the base 51 is fitted to the journal housing 43 so that the inner peripheral surface of the base 51 contacts the outer peripheral surface of the journal housing 43.
- the ceramic part 52 is fixed to the outer peripheral part of the annular base 51.
- the ceramic part 52 is provided over substantially the entire circumferential area of the base 51. That is, the ceramic part 52 is formed in a substantially annular shape.
- the ceramic part 52 does not cover the entire outer peripheral surface 51a of the base 51, but covers the base end side of the roller part 49 of the outer peripheral surface 51a of the base 51.
- the base end side refers to the journal shaft 44 side to which the grinding roller 13 is connected, and refers to the outer peripheral side in the radial direction of the grinding table 12, and the tip side refers to the rotation center axis C1 (see FIG. 1) side in the radial direction of the grinding table 12. That is, the outer peripheral surface 49a of the roller portion 49 (the surface that crushes the solid fuel) is formed by the outer peripheral surface 52a of the ceramic portion 52 on the base end side, and by the outer peripheral surface 51a of the base portion 51 on the tip end side (the side opposite the base end side).
- the ceramic portion 52 contains ceramic members (ceramic particles 52c), and therefore has a smaller linear expansion coefficient than the base portion 51 made of high chromium cast iron.
- the ceramic portion 52 also has better wear resistance than the base portion 51.
- the material of the base portion 51 is not limited to the materials described above.
- the dashed line L1 in FIG. 2 shows the progression of wear of the roller portion 49 as a result of a general mill 10 (in other words, a mill not applying the grinding roller 13 or grinding table 12 according to the present disclosure) grinding solid fuel. That is, the roller portion 49 is in a state where a portion P1 (hereinafter referred to as the "maximum wear point P1") on the base end side (i.e., the side opposite to the tip end side) of the roller portion 49 is worn more than other portions.
- the base end side refers to the outer periphery side in the radial direction of the grinding table 12
- the tip side refers to the side of the rotation center axis C1 (see FIG. 1) of the grinding table 12.
- the dashed line L2 in FIG. 2 shows the progression of wear of the grinding table 12.
- the table portion 12a of the grinding table 12 (see FIG. 8) is in a state where a portion P2 (hereinafter referred to as the "maximum wear point P2") is worn more than other portions.
- the maximum wear points before wear are indicated by the symbols "P1" and "P2”
- the maximum wear points after wear has actually progressed are indicated by the symbols "P1'" and "P2'.”
- the maximum wear points P1 and P2 before wear are the points at which wear is expected to progress most easily if no measures against wear are taken.
- the maximum wear point P1 is a position on the outer circumferential surface 49a of the roller part 49 that forms a predetermined angle ⁇ 1 on the base end side at the center point CP with respect to a center line C3 that is a line that is perpendicular to the rotation central axis C2 and passes through the center in the direction in which the rotation central axis C2 extends. More specifically, it is a position where a line L3 that forms a predetermined angle ⁇ 1 with the center line C3 intersects with the outer circumferential surface 49a.
- the angle ⁇ 1 is set to 8 degrees as an example, but the angle ⁇ 1 is not limited to 8 degrees.
- the angle ⁇ 1 may be within the range of 3 degrees to 13 degrees (a range of 8 degrees plus or minus 5 degrees).
- the thickness of the ceramic portion 52 in the axial cross section is greatest at a portion where a line L3 that forms a predetermined angle ⁇ 1 with the center line C3 passes.
- FIGS. Fig. 3 shows the ceramic part 52 according to this embodiment
- Fig. 4 shows a ceramic part 52A according to a modified example of this embodiment.
- the ceramic part 52 has a metallic base material 52b and a large number of ceramic particles 52c contained in the base material 52b.
- the large number of ceramic particles 52c are scattered in the base material 52b and are bonded to adjacent ceramic particles 52c.
- the particle size of the ceramic particles 52c is, for example, about 1 mm to 2 mm.
- the ceramic part 52A according to the modified embodiment of the present invention has a high-density part 52Aa having a high ceramic density, two medium-density parts 52Ab provided adjacent to both sides of the high-density part 52Aa in the direction of the rotation axis C2 and having a lower ceramic density than the high-density part 52Aa, and two low-density parts 52Ac provided adjacent to each of the medium-density parts 52Ab on the opposite side of the high-density part 52Aa in the direction of the rotation axis C2 and having a lower ceramic density than the medium-density part 52Ab.
- the density (ceramic density) of the ceramic particles 52c decreases stepwise (in the present embodiment, three steps are used as an example) as it moves away from the maximum wear point P1 in the direction of the rotation axis C2.
- the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are connected by bonding between the base materials contained in each portion.
- the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each provided over the entire area in the circumferential direction of the roller portion 49.
- the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each formed so as to have a uniform ceramic density.
- the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac which have different ceramic densities, can be manufactured, and by simply arranging the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac side by side in the direction of the rotation axis, the ceramic portion 52A with the ceramic density changed in the direction of the rotation axis of the ceramic portion 52A can be easily manufactured.
- the high density portion 52Aa is positioned so as to include the maximum wear point P1. More specifically, the high density portion 52Aa is positioned so that the maximum wear point P1 overlaps with the middle of the high density portion 52Aa in the direction of the central axis C2 of rotation.
- the two medium density portions 52Ab are positioned so as to sandwich the high density portion 52Aa in the direction of the central axis C2 of rotation. Each medium density portion 52Ab is positioned so as to be sandwiched between the high density portion 52Aa and the low density portion 52Ac.
- the two low density portions 52Ac are positioned so as to sandwich the medium density portion 52Ab in the direction of the central axis C2 of rotation. Each low density portion 52Ac is positioned at both ends of the ceramic portion 52A in the direction of the central axis C2 of rotation.
- the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each provided over the entire circumferential area of the roller portion 49 , but the present disclosure is not limited thereto.
- the high density portion 52Aa and the low density portion 52Ac may be arranged alternately in the circumferential direction of the roller portion 49 to substitute for the medium density portion 52Ab. In this way, the number of types of parts with different ceramic densities can be reduced, and the manufacture of the ceramic portion 52A can be facilitated.
- FIG. 6 and 7 are enlarged views of a main portion (portion VI) of the outer circumferential surface 49a of the roller portion 49 shown in Fig. 5.
- the arrows in Fig. 6 and 7 indicate the direction of rotation of the roller portion 49.
- the high density portion 52Aa arranged in the medium density region may be provided separately from the high density portion 52Aa arranged in the high density region.
- the high density portion 52Aa arranged in the medium density region and the high density portion 52Aa arranged in the high density region may be arranged to be shifted in the circumferential direction.
- the low density portion 52Ac arranged in the medium density region may be provided separately from the low density portion 52Ac arranged in the low density region.
- the low density portion 52Ac arranged in the medium density region and the low density portion 52Ac arranged in the low density region may be arranged to be shifted in the circumferential direction.
- each of the high density portions 52Aa and each of the low density portions 52Ac are formed in a rectangular shape in a plan view.
- the high density portions 52Aa and the low density portions 52Ac can be easily manufactured.
- the high density portion 52Aa arranged in the medium density region may be provided integrally with the high density portion 52Aa arranged in the high density region.
- the high density portion 52Aa and the low density portion 52Ac are arranged to be shifted in the circumferential direction.
- both ends of the high density portion 52Aa in the direction of the rotation center axis C2 are arranged in the medium density region.
- the portion of the high density portion 52Aa arranged in the medium density region is formed so that the circumferential length becomes shorter toward the end in the direction of the rotation center axis C2.
- the end of the low-density portion 52Ac on the center side in the direction of the rotation axis C2 is disposed in the medium-density region.
- the portion of the low-density portion 52Ac disposed in the medium-density region is formed so that the circumferential length becomes shorter toward the center in the direction of the rotation axis C2.
- tapered high density portions 52Aa and low density portions 52Ac are alternately arranged so as to mesh with each other.
- the grinding table 12 will be described with reference to FIGS.
- solid fuel is supplied to the grinding table 12 from a coal supply pipe 17 (see Fig. 1).
- the grinding table 12 rotates about a central rotation axis C1 by a driving force transmitted from a mill motor 15.
- the grinding table 12 includes a table portion 12a to which solid fuel is supplied and a support portion 12b that supports the table portion 12a from below.
- the table portion 12a has a base portion 12c supported by the support portion 12b, and a ceramic portion 12d provided on the upper surface of the base portion 12c, which has a linear expansion coefficient different from that of the base portion 12c and is more wear-resistant than the base portion 12c.
- the solid fuel is supplied to the upper surface of the ceramic portion 12d.
- the ceramic portion 12d is formed over substantially the entire circumferential area of the table portion 12a. That is, the ceramic portion 12d has a circular ring shape when viewed from above.
- the ceramic portion 12d has a metallic base material and a large number of ceramic particles 52c contained in the base material.
- the large number of ceramic particles 52c are scattered in the base material and bonded to adjacent ceramic particles 52c.
- the particle size of the ceramic particles 52c is, for example, about 1 mm to 2 mm.
- the ceramic density (density of ceramic particles 52c), which is the content of ceramic in the base material, varies in the radial direction (left-right direction on the paper) of the table portion 12a in the ceramic portion 12d.
- the ceramic density of the region (first region) of the ceramic portion 12d that includes the maximum wear point P2 which is the point on the top surface of the table portion 12a that is most susceptible to wear, is higher than the ceramic density of the other region (second region).
- the ceramic density of the ceramic portion 12d decreases as it moves away from the maximum wear point P2 in the radial direction of the table portion 12a.
- the maximum wear point P2 of the table portion 12a is located toward the center in the radial direction from the center line C3 of the grinding roller 13.
- the ceramic portion 12d has a high density portion 12da having a high ceramic density, two medium density portions 12db provided adjacent to both radial sides of the high density portion 12da and having a lower ceramic density than the high density portion 12da, and two low density portions 12dc provided adjacent to each of the medium density portions 12db on the radial opposite side to the high density portion 12da and having a lower ceramic density than the medium density portion 12db.
- the ceramic density of the ceramic portion 12d decreases in stages (in this embodiment, three stages as an example) as it moves away from the maximum wear point P2 in the radial direction of the table portion 12a.
- the high density portion 12da, the medium density portion 12db, and the low density portion 12dc are connected to each other by bonding between the base materials contained in each portion.
- the high density portion 12da, the medium density portion 12db, and the low density portion 12dc are each provided over the entire circumferential area of the table portion 12a.
- the high density portion 12da is positioned so as to include the maximum wear point P2. More specifically, the high density portion 12da is positioned so that the maximum wear point P2 overlaps with approximately the center in the radial direction.
- the two medium density portions 12db are positioned so as to sandwich the high density portion 12da in the radial direction. Each medium density portion 12db is positioned so as to be sandwiched between the high density portion 12da and the low density portion 12dc.
- the two low density portions 12dc are positioned so as to sandwich the medium density portion 12db in the radial direction. Each low density portion 12dc is positioned at both ends in the radial direction of the ceramic portion 12d.
- the ceramic particles 52c are shaped into a block shape (a shape corresponding to the ceramic portion 52) to manufacture a ceramic block CB that constitutes a part of the ceramic portion 52.
- the ceramic block CB is made by bonding particulate ceramics, and a relatively large number of gaps are formed between the ceramic particles 52c.
- the shape of the outer circumferential surface of the ceramic block CB is substantially the same as the shape of the outer circumferential surface 52a of the ceramic portion 52 (see Figures 3 and 4, etc.).
- the ceramic block CB is manufactured to correspond to the ceramic part 52 to be provided in the roller part 49 to be manufactured.
- the ceramic block CB is manufactured so that the density of the ceramic particles 52c (ceramic density) decreases continuously with increasing distance from the maximum wear point P1 (see Fig. 3, etc.) in the direction of the central axis of rotation C2.
- the manufactured ceramic block CB is placed at a predetermined position in the mold 60.
- molten metal is poured into the mold 60 from the sprue 61 through the runner 62. This fills the mold 60 with molten metal (see arrow m).
- the ceramic block CB has a lower specific gravity than the molten metal, so it is pressed against a predetermined position on the inner surface of the mold 60 by buoyancy.
- the upper surface CBa of the ceramic block CB (the surface corresponding to the end surface on the base end side of the ceramic part 52) is pressed against the ceiling surface of the mold 60, and the ceramic block CB is supported by this upper surface CBa in the mold 60.
- the molten metal also flows into the gaps formed between the ceramic particles 52c inside the ceramic block CB.
- the ceramic part 52 is provided so that the ceramic particles 52c are scattered.
- the molten metal is cooled and solidified, thereby completing the roller part 49 in which the ceramic part 52 with excellent abrasion resistance, in which the metal has entered between the ceramic particles 52c inside the ceramic block CB, and the base part 51 made only of the solidified metal are integrated together.
- the metal flows into the gaps between the bonded ceramic particles 52 c and solidifies to become the base material 52 b of the ceramic portion 52 .
- the roller portion 49 of the present embodiment is manufactured by insert-casting the base portion 51 and the ceramic portion 52 together.
- the manufactured ceramic block CBA is placed at a predetermined position in the mold 60. That is, the ceramic block CBA is placed at a predetermined position in the mold 60 in a state in which the high density block CBAa corresponding to the high density portion 52Aa, the medium density block CBAb corresponding to the medium density portion 52Ab, and the low density block CBAc corresponding to the low density portion 52Ac are fixed (ceramic portion placement process).
- the steps thereafter are the same as those in the manufacturing method for the roller portion 49 having the ceramic portion 52 described above, and therefore the description thereof will be omitted.
- the ceramic blocks CBA can be arranged with the relative positions of the high density block CBAa corresponding to the high density portion 52Aa, the medium density block CBAb corresponding to the medium density portion 52Ab, and the low density block CBAc corresponding to the low density portion 52Ac determined, so that the ceramic blocks CBA can be arranged easily. Therefore, the ceramic portion 52A having the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac can be easily manufactured.
- the ceramic portion 52A shown in FIG. 4 may be manufactured as follows, which will be described with reference to FIG. First, a high density block CBAa corresponding to the high density portion 52Aa, a medium density block CBAb corresponding to the medium density portion 52Ab, and a low density block CBAc corresponding to the low density portion 52Ac are manufactured. At this time, a high density portion fixing portion FAa protruding from the outer peripheral surface is provided in the high density block CBAa. Similarly, a medium density portion fixing portion FAb protruding from the outer peripheral surface is provided in the medium density block CBAb. Similarly, a low density portion fixing portion FAc protruding from the outer peripheral surface is provided in the low density block CBAc.
- the manufactured high density block CBAa, medium density block CBAb, and low density block CBAc are placed at predetermined positions in the mold 60.
- the mold 60 has a high density recess that fits with the high density portion fixing portion FAa, a medium density recess that fits with the medium density block CBAb, and a low density recess that fits with the low density block CBAc at predetermined positions.
- the high density portion fixing portion FAa is fitted into the high density recess
- the medium density block CBAb is fitted into the medium density recess
- the low density block CBAc is fitted into the low density recess.
- the subsequent steps are the same as those in the manufacturing method of the roller part 49 including the ceramic part 52 described above, and therefore will not be described here.
- the high density part fixing part FAa, the medium density part fixing part FAb, and the low density part fixing part FAc are removed from the roller part 49 removed from the mold 60.
- the ceramic block CB shown in FIG. 10 may be fixed to the mold 60 by the method shown in FIG. 12. That is, a fixing portion may be provided on the ceramic block CB, and a recess may be provided on the mold 60 to fit the fixing portion, and the ceramic block CB may be fixed at a predetermined position in the mold 60 by fitting the fixing portion into the recess.
- the high density block CBAa corresponding to the high density portion 52Aa, the medium density block CBAb corresponding to the medium density portion 52Ab, and the low density block CBAc corresponding to the low density portion 52Ac can be easily fixed to predetermined locations of the mold 60. Therefore, the ceramic portion 52A having the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac can be easily manufactured.
- the ceramic density of the ceramic portion 52 changes along the rotation axis direction.
- the ceramic density affects the rigidity. This allows the rigidity of the ceramic portion 52 to change along the rotation axis direction.
- the ceramic density of the region including the maximum wear point P1 is higher than the ceramic density of the other regions. This improves the wear resistance of the region including the maximum wear point P1. This improves the wear resistance of the crushing roller 13. This prevents the life of the crushing roller 13 from being shortened, and extends the life of the crushing roller 13.
- the ceramic density of the other regions is low, the rigidity of the ceramic portion 52 as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion 52 can easily absorb the thermal stress between the base portion 51 and the ceramic portion 52, and damage to the ceramic portion 52 caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the crushing roller 13 can be improved, and the manufacturing cost can be reduced.
- the yield rate in manufacturing the crushing roller 13 can be improved, and the life of the crushing roller 13 can be extended.
- the thickness of the ceramic portion 52 can be increased compared to the conventional case, and the life of the crushing roller 13 can be further extended.
- the ceramic density in the region including the maximum wear point P1 is higher than the ceramic density in the other regions. Therefore, as shown by the dashed line in Fig. 13, wear is suppressed in the region that is easily worn including the maximum wear point P1, while wear in the other regions is relatively easy to progress. This makes the amount of wear uniform between the region including the maximum wear point P1 and the other regions. Therefore, as shown by the dashed line in Fig. 13, local wear on the outer surface of the ceramic part 52 can be suppressed. Therefore, deterioration of the meshing between the crushing roller 13 and the crushing table 12 can be suppressed, and the deterioration of the crushing performance can be suppressed.
- the gap between the grinding roller 13 and the grinding table 12 increases. When this gap becomes large, the gap is reduced by using a gap bolt (not shown) that can adjust the length of the gap.
- the roller portion 49 when attaching the roller portion 49 to the journal housing 43, the roller portion 49 may be heated and shrink-fitted into the journal housing 43. At this time, thermal stress is generated inside the roller portion 49, but in this embodiment, as described above, the ceramic portion 52 can easily absorb the thermal stress between the base portion 51 and the ceramic portion 52, so that damage to the ceramic portion 52 caused by the difference in linear expansion coefficient can be suppressed. Furthermore, when removing the roller portion 49 from the journal housing 43, the roller portion 49 may be heated to facilitate removal. In this case, thermal stress is also generated inside the roller portion 49, but in this embodiment, the ceramic portion 52 can easily absorb the thermal stress between the base portion 51 and the ceramic portion 52 as described above, so that damage to the ceramic portion 52 caused by the difference in linear expansion coefficient can be suppressed. In this manner, in this embodiment, the roller portion 49 can be easily handled when being attached or replaced.
- the ceramic density of the ceramic portion 12d of the grinding table 12 changes along the radial direction of the table portion 12a.
- the ceramic density affects the rigidity. This allows the rigidity of the ceramic portion 12d to change along the radial direction of the table portion 12a.
- the ceramic density of the region including the maximum wear point P2 of the grinding table 12 is higher than the ceramic density of the other regions. This makes it possible to improve the wear resistance of the region including the maximum wear point P2. Therefore, it is possible to improve the wear resistance of the grinding table 12. This makes it possible to prevent the life of the grinding table 12 from being shortened, and to extend the life of the grinding table 12.
- the ceramic density of the other regions is low, the rigidity of the ceramic portion 12d as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion 12d can easily absorb the thermal stress between the base portion 12c and the ceramic portion 12d, so that damage to the ceramic portion 12d caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table 12 can be improved, and the manufacturing cost can be reduced. In this way, in this embodiment, the yield rate when manufacturing the rotary table 12 can be improved, and the service life of the rotary table 12 can be extended.
- the roller portion 49 may be reversed for use. That is, the roller portion 49 may be removed from the journal housing 43, the base end side and the tip end side may be swapped, and the roller portion 49 may be reattached to the journal housing 43 for use.
- the maximum wear point is a position symmetrical with respect to the center line C3.
- it is a point P3 where the outer peripheral surface 49a of the roller portion 49 intersects with a line L4 that is symmetrical with a line L3 that forms a predetermined angle ⁇ 1 with the center line C3.
- the ceramic density of region A between point P3 and maximum wear point P1 in the direction of the rotation center axis C2 (left-right direction on the page) is higher than the ceramic density of other regions. That is, region A has the highest ceramic density.
- Region A includes maximum wear point P1 and point P3. Since the other points are similar to those of the first embodiment, similar configurations are denoted by the same reference numerals and detailed description thereof will be omitted. In this way, even when the roller portion 49 is used in an inverted manner, the ceramic density in the region that is likely to wear out can be increased, and the life of the crushing roller 13 can be further extended.
- the required wear resistance of the ceramic part 152 differs at each position in the direction of the central axis of rotation C2, as shown in FIG. 17.
- the horizontal axis of FIG. 17 corresponds to the numerical values indicating each position in the direction of the central axis of rotation C2 shown in FIG. 16.
- the vertical axis of FIG. 17 indicates the required wear resistance and ceramic density. Note that FIG. 16 illustrates the state in which the position of the roller part 49 is indicated using a device 80 that indicates the position of the roller part 49 in the direction of the central axis of rotation C2.
- the required wear resistance of the ceramic part 152 is maximum (100%) at position 5 (maximum wear point P1) and position 7 (point P3 symmetrical to maximum wear point P1), as shown by the solid line in Figure 17. 10% is subtracted for each position away from positions 5 and 7.
- the dashed lines indicate the ceramic density at each position as the 0.5th power of the required wear resistance
- the dashed lines indicate the ceramic density at each position as the square of the required wear resistance
- the two-dot chain lines indicate the ceramic density at each position as the 0th power (constant) of the required wear resistance. From FIG. 17, in the present disclosure, it is desirable to make the ceramic density a hatched region. Specifically, it is desirable that the ceramic density value between positions 1 to 9 where the ceramic part 152 exists is smaller than the value of the ceramic density of the dashed line 0.5. From the above, it is preferable that the rate of change of the ceramic density has a slope of 0.5 or more of the wear resistance required at that position.
- the solid fuel used is not limited to that disclosed herein, and may be coal, biomass fuel, petroleum coke (PC), etc. Furthermore, these solid fuels may be used in combination.
- the method of changing the ceramic density is described as changing the number of ceramic particles 52c, but the present disclosure is not limited to this.
- the ceramic density may be changed by changing the particle diameter or particle shape of the ceramic particles 52c.
- the ceramic density may be changed by combining these methods.
- the thickness of the ceramic portion varies depending on the location of the grinding roller 13. In locations where the ceramic portion is thick, it is easy to achieve a long life even if the ceramic density is low and the wear resistance is low. On the other hand, in order to obtain the same life in locations where the ceramic portion is thin as in locations where the ceramic portion is thick, it is necessary to increase the ceramic density and achieve high wear resistance. Therefore, the thickness of the ceramic portion may be taken into account when determining the ceramic density in each location.
- the crushing roller, the crushing table, the solid fuel crushing device, and the method of manufacturing the crushing roller according to the above-described embodiments can be understood, for example, as follows.
- the crushing roller according to the first aspect of the present disclosure is a crushing roller (13) that is housed inside a housing (11), pinches solid fuel between itself and a rotating crushing table (12) to crush the solid fuel, and receives a rotational force from the crushing table (12) to rotate about a rotation axis (C2).
- the crushing roller (13) includes a support portion (43) that is rotatably supported by the housing (11), and an annular roller portion (49) that is fixed to the support portion (43) and crushes the solid fuel between itself and the crushing table (12), and the roller portion (49) has a base (51) fixed to the support, and a ceramic part (52, 52A) provided on the outer periphery of the base (51), the ceramic part (52, 52A) having a linear expansion coefficient different from that of the base (51) and superior wear resistance to the base (51), the ceramic part (52, 52A) has a base material (52b) and ceramic particles (52c) provided in the base material (52b), and a ceramic density, which is the content of the ceramic particles (52c) relative to the base material (52b), changes along the direction of the rotation axis (C2).
- the ceramic density of the ceramic portion changes along the direction of the rotation axis.
- the ceramic density affects the rigidity of the ceramic portion. This makes it possible to change the rigidity of the ceramic portion along the direction of the rotation axis. Therefore, for example, when the ceramic density of the portion susceptible to wear is increased (i.e., the rigidity is increased) and the ceramic density of the other portion less susceptible to wear is decreased (i.e., the rigidity is decreased), the rigidity of the ceramic portion as a whole can be decreased. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, so that damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed.
- the yield rate when manufacturing the crushing roller can be improved, so that the manufacturing cost can be reduced.
- the ceramic density is high in the portion susceptible to wear, the wear resistance of the crushing roller can be maintained. Therefore, the situation in which the life of the crushing roller is shortened can be suppressed, and the life of the crushing roller can be extended. From the above, the yield rate when manufacturing the crushing roller can be improved and the life of the crushing roller can be extended.
- methods for changing the ceramic content (ceramic density) relative to the base material include a method for changing the number of particulate ceramics, a method for changing the particle size or particle shape of the particulate ceramics, and a combination of these methods.
- the grinding roller according to the second aspect of the present disclosure is the grinding roller according to the first aspect described above, in which the ceramic density of the ceramic portion (52, 52A) in a first region including the maximum wear point (P1), which is the most susceptible point of wear on the outer circumferential surface of the roller portion (49), is higher than the ceramic density of a second region located closer to the end in the direction of the rotation axis (C2) than the first region.
- the ceramic density of the first region including the maximum wear point is higher than the ceramic density of the second region located closer to the end in the rotation axis direction than the first region. This improves the wear resistance of the first region including the maximum wear point. This improves the wear resistance of the crushing roller. This prevents the life of the crushing roller from being shortened, and extends the life of the crushing roller.
- the ceramic density of the second region is low, the rigidity of the ceramic portion as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, and damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed.
- the above-described configuration can improve the yield in manufacturing the crushing roller and extend the life of the crushing roller.
- the ceramic density of the first region including the maximum wear point is higher than that of the second region, so that wear in the region that is easily worn including the maximum wear point is suppressed, and wear in the second region is relatively easy to progress. This makes the amount of wear in the first region including the maximum wear point and the second region uniform. Therefore, local wear on the outer surface of the ceramic part can be suppressed. Therefore, deterioration of the meshing between the grinding roller and the grinding table can be suppressed, and the deterioration of the grinding performance can be suppressed.
- the grinding roller according to the third aspect of the present disclosure is the grinding roller according to the second aspect described above, in which the ceramic density of the ceramic portion (52, 52A) is higher in a third region including a point (P3) that is symmetrical to the maximum wear point (P1) with respect to a plane passing through the midpoint of the outer circumferential surface of the roller portion (49) in the direction of the rotation axis (C2) than the ceramic density of the second region.
- the roller portion may be used in an inverted manner. That is, the base end side and the tip end side of the rotation axis direction of the roller portion may be reversed.
- the maximum wear point of the roller portion is located symmetrically with respect to a plane passing through the midpoint of the outer circumferential surface.
- the ceramic density of the third region which includes the maximum wear point and the target point, is higher than that of the second region, based on a plane passing through the midpoint of the outer circumferential surface of the roller. This makes it possible to increase the ceramic density in the region susceptible to wear even when the roller is used in an inverted state. This further extends the life of the grinding roller.
- the grinding roller according to the fourth aspect of the present disclosure is the grinding roller according to the second aspect described above, wherein the ceramic density of the ceramic portion (52, 52A) is higher in the direction of the rotation axis (C2) in the region between the maximum wear point (P1) and a point (P3) that is symmetrical to the maximum wear point (P1) with respect to a plane passing through the midpoint of the outer circumferential surface of the roller portion (49) than in the other regions.
- the ceramic density of the area between the maximum wear point and the target point and the maximum wear point, based on a plane passing through the midpoint of the outer circumferential surface of the roller part, is higher than the ceramic density of other areas. This makes it possible to increase the ceramic density in areas prone to wear, even when the roller part is used in an inverted position. This makes it possible to further extend the life of the grinding roller.
- the grinding roller according to the fifth aspect of the present disclosure is a grinding roller according to any one of the second to fourth aspects, wherein the ceramic portion (52, 52A) has a high density portion (52Aa) including the first region and having a uniform ceramic density, and a low density portion (52Ab, 52Ac) including the second region and having a uniform ceramic density, disposed adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2), and having a lower ceramic density than the high density portion (52Aa), and the high density portion and the low density portion are fixed.
- the ceramic portion (52, 52A) has a high density portion (52Aa) including the first region and having a uniform ceramic density, and a low density portion (52Ab, 52Ac) including the second region and having a uniform ceramic density, disposed adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2), and having a lower ceramic density than the high density portion (52Aa), and the high density portion and the
- the ceramic part has a high density part with a uniform ceramic density, and a low density part that is disposed adjacent to the high density part in the rotation axis direction, has a uniform ceramic density, and has a lower ceramic density than the high density part.
- Parts with a uniform ceramic density are easier to manufacture than parts with non-uniform ceramic density.
- the grinding table according to the first aspect of the present disclosure is a grinding table (12) that is housed inside a housing (11), rotates around a central axis (C1) by a driving force transmitted from a driving unit (15), and grinds solid fuel by sandwiching the solid fuel between the grinding roller (13).
- the grinding table (12) includes a table portion (12a) to which the solid fuel is supplied, the table portion (12a) includes a base portion (12c) and a ceramic portion (12d) that is provided on the upper surface of the base portion (12c) and has a linear expansion coefficient different from that of the base portion (12c) and is more wear-resistant than the base portion (12c).
- the ceramic portion (12d) includes a base material and a ceramic contained in the base material, and the ceramic density, which is the content of the ceramic relative to the base material, varies along the radial direction based on the central axis (C1).
- the ceramic density of the ceramic portion changes along the radial direction of the grinding table.
- the ceramic density affects the rigidity. This allows the rigidity of the ceramic portion to be changed along the radial direction of the grinding table. Therefore, for example, when the ceramic density of the portion susceptible to wear is increased (i.e., the rigidity is increased) and the ceramic density of the other portion less susceptible to wear is decreased (i.e., the rigidity is decreased), the rigidity of the ceramic portion as a whole can be decreased. Therefore, since the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, damage to the ceramic portion caused by the difference in the linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table can be improved, and the manufacturing cost can be reduced.
- the ceramic density is high in the portion susceptible to wear, the wear resistance of the grinding table can be maintained. Therefore, the situation in which the life of the grinding table is shortened can be suppressed, and the life of the grinding table can be extended. From the above, the yield rate when manufacturing the grinding table can be improved and the life of the grinding table can be extended.
- methods for changing the ceramic content (ceramic density) relative to the base material include a method for changing the number of particulate ceramics, a method for changing the particle size or particle shape of the particulate ceramics, and a combination of these methods.
- the grinding table according to the second aspect of the present disclosure is the grinding table according to the first aspect described above, in which the ceramic density of the ceramic part (12d) in a first region including a maximum wear point (P2) that is the most susceptible point to wear on the upper surface of the table part (12a) in the radial direction is higher than the ceramic density of a second region located toward the end side in the radial direction from the first region.
- P2 maximum wear point
- the ceramic density of the first region including the maximum wear point is higher than the ceramic density of the second region located on the radial end side of the first region. This improves the wear resistance of the first region including the maximum wear point. Therefore, the wear resistance of the grinding table can be improved. This prevents the life of the grinding table from being shortened, and extends the life of the grinding table.
- the ceramic density of the second region is low, the rigidity of the ceramic portion as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, and damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table can be improved, and the manufacturing cost can be reduced. In this way, with the above configuration, the yield rate when manufacturing the rotary table can be improved, and the rotary table can have a longer life.
- the solid fuel pulverizing device includes a pulverizing roller as described in any one of the first to fifth aspects and/or a pulverizing table as described in the first or second aspect.
- the manufacturing method of the grinding roller according to the first aspect of the present disclosure is a manufacturing method of a grinding roller (13) that is housed inside a housing (11), grinds solid fuel by sandwiching the solid fuel between the grinding roller (13) and a rotating grinding table (12), and rotates around a rotation axis (C2) by receiving a rotational force from the grinding table (12), and the grinding roller (13) comprises a support part (43) that is rotatably supported with respect to the housing (11), and an annular roller part (49) that is fixed to the support part (43) and grinds the solid fuel between the grinding table (12), and the roller part (49) is fixed to the support part (43) and grinds the solid fuel between the grinding table (12), and the roller part (49) is fixed to the support part (43).
- the ceramic part (52, 52A) has a base (51) to which the base is fixed, and is provided on the outer periphery of the base (51), has a linear expansion coefficient different from that of the base (51), and has better wear resistance than the base (51).
- the ceramic part (52, 52A) has a base material (52b) and ceramic particles (52c) provided in the base material (52b), and the ceramic density, which is the content of the ceramic particles (52c) relative to the base material (52b), varies along the direction of the rotation axis (C2).
- the process includes a step of integrally molding the base (51) and the ceramic part (52, 52A) by casting.
- the method for manufacturing a grinding roller according to the second aspect of the present disclosure is the method for manufacturing a grinding roller according to the first aspect, wherein the ceramic portion (52, 52A) has a high density portion (52Aa) having a high ceramic density and a low density portion (52Ab, 52Ac) that is adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2) and has a lower ceramic density than the high density portion (52Aa), and includes a ceramic portion (52, 52A) arrangement step of arranging the ceramic portion (52, 52A) at a predetermined position in the mold (60) with the high density portion (52Aa) and the low density portion (52Ab, 52Ac) fixed.
- the above configuration includes a ceramic part placement process in which the ceramic part is placed at a predetermined location in the mold while the high density part and the low density part are fixed. This allows the ceramic part to be placed with the relative positions of the high density part and the low density part determined, making it easy to place the ceramic part. Therefore, a grinding roller having a high density part and a low density part can be easily manufactured.
- the manufacturing method of the grinding roller according to the third aspect of the present disclosure is the manufacturing method of the grinding roller according to the first aspect, wherein the ceramic portion (52, 52A) has a high density portion (52Aa) having a high ceramic density and a low density portion (52Ab, 52Ac) that is adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2) and has a lower ceramic density than the high density portion (52Aa), and includes a high density portion fixing step of fixing the high density portion (52Aa) to a predetermined position of the mold (60) by a high density portion fixing portion (FAa), and a low density portion fixing step of fixing the low density portion (52Ab, 52Ac) to a predetermined position of the mold (60) by a low density portion fixing portion (FAb, FAc).
- the ceramic portion (52, 52A) has a high density portion (52Aa) having a high ceramic density and a low density portion (52Ab, 52Ac) that is adjacent to the
- the above configuration includes a high density portion fixing process in which the high density portion is fixed to a predetermined location in the mold by the high density portion fixing portion, and a low density portion fixing process in which the low density portion is fixed to a predetermined location in the mold by the low density portion fixing portion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Crushing And Grinding (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
The purpose of the present invention is to improve the yield rate in manufacturing a pulverizing roller and a pulverizing table, and to extend the service life of the pulverizing roller and the pulverizing table. This pulverizing roller (13) comprises: a journal housing (43) that is rotatably supported by a housing; and a circular roller section (49) that is fixed to the journal housing (43), the roller section (49) pulverizing solid fuel between the roller section (49) and a pulverizing table. The roller section (49) has: a base section (51) that is fixed to the journal housing; and a ceramic section (52) that is provided to the outer periphery of the base section (51), the ceramic section (52) differing in coefficient of linear expansion from the base section (51) and having better abrasion resistance than the base section (51). The ceramic section (52) has a parent material (52b) and ceramic particles (52c) that are included in the parent material (52b). The ceramic density, which is the content value of the ceramic particles (52c) relative to the parent material (52b), changes along the direction of a rotation central axis (C2).
Description
本開示は、粉砕ローラ、粉砕テーブル及び固体燃料粉砕装置並びに粉砕ローラの製造方法に関するものである。
This disclosure relates to a grinding roller, a grinding table, a solid fuel grinding device, and a method for manufacturing a grinding roller.
従来、バイオマス燃料や石炭等の固体燃料は、粉砕機(ミル)で所定粒径範囲内の微粉状に粉砕して、燃焼装置へ供給される。ミルは、粉砕テーブルへ投入された固体燃料を、粉砕テーブルと粉砕ローラの間に挟み込んで粉砕し、粉砕されて微粉状となった固体燃料のうち、所定粒径範囲内の微粉燃料を分級機で選別し、粉砕テーブルの外周から供給される搬送用ガス(一次空気)によって、ボイラへ搬送して燃焼装置で燃焼させている。火力発電プラントでは、ボイラで微粉燃料を燃焼して生成された燃焼ガスとの熱交換により蒸気を発生させ、該蒸気により蒸気タービンを回転駆動して、蒸気タービンに接続した発電機を回転駆動することで発電が行なわれる。
Conventionally, solid fuels such as biomass fuels and coal are pulverized into fine powder within a specified particle size range in a pulverizer (mill) and then supplied to a combustion device. In the mill, the solid fuel fed onto the pulverizing table is pinched between the pulverizing table and the pulverizing rollers to pulverize it, and from the pulverized solid fuel, fine fuel within a specified particle size range is selected using a classifier. The fine fuel is transported to a boiler by a carrier gas (primary air) supplied from the outer periphery of the pulverizing table, and is burned in the combustion device. In thermal power plants, steam is generated by heat exchange with the combustion gas generated by burning the pulverized fuel in the boiler, and the steam is used to rotate and drive a steam turbine, which then rotates and drives a generator connected to the steam turbine to generate electricity.
ミルに設けられる粉砕ローラとして、固体燃料と接触する箇所に耐摩耗性が高いセラミックを埋め込んだセラミック埋込型の粉砕ローラや粉砕テーブルが知られている(例えば、特許文献1)。このようなセラミック埋込型の粉砕ローラや粉砕テーブルは、従来の粉砕ローラや粉砕テーブルと比較して、耐摩耗性や許容摩耗量に優れており、長寿命化を図ることができる。
特許文献1には、多角形の空間を形成しつつ連続して支持壁が形成される高Cr鋼製の支持体と、高Cr鋼製の支持体の空間内に配設されるセラミックス製部材とからなる粉砕部材が記載されている。 As a grinding roller provided in a mill, a ceramic-embedded grinding roller and grinding table are known in which a highly wear-resistant ceramic is embedded in a portion that comes into contact with the solid fuel (for example, see Patent Document 1). Such ceramic-embedded grinding rollers and grinding tables are superior in wear resistance and allowable wear amount compared to conventional grinding rollers and grinding tables, and can be expected to have a longer life.
Patent Document 1 describes a crushing member that includes a high Cr steel support having a continuous support wall that forms a polygonal space, and a ceramic member that is disposed within the space of the high Cr steel support.
特許文献1には、多角形の空間を形成しつつ連続して支持壁が形成される高Cr鋼製の支持体と、高Cr鋼製の支持体の空間内に配設されるセラミックス製部材とからなる粉砕部材が記載されている。 As a grinding roller provided in a mill, a ceramic-embedded grinding roller and grinding table are known in which a highly wear-resistant ceramic is embedded in a portion that comes into contact with the solid fuel (for example, see Patent Document 1). Such ceramic-embedded grinding rollers and grinding tables are superior in wear resistance and allowable wear amount compared to conventional grinding rollers and grinding tables, and can be expected to have a longer life.
セラミック埋込型の粉砕ローラや粉砕テーブルを製造する際は、まず、粒子状のセラミックス(以下、「セラミックス粒子」と称する。)をブロック状に成形することで、セラミック部の一部を構成するセラミックブロックを製造する。次に、鋳型内の所定位置にセラミックブロックを設置した状態で、鋳型内に溶融した金属を流し込む。その後に鋳型内の金属を冷却し、凝固させる。このようにして、セラミック部(セラミックを含む部分)と基部(セラミックを含まない部分)とが一体的に固定されたセラミック埋込型の粉砕ローラや粉砕テーブルを製造する。
When manufacturing ceramic-embedded grinding rollers or grinding tables, first, particulate ceramics (hereafter referred to as "ceramic particles") are molded into a block shape to produce a ceramic block that constitutes part of the ceramic portion. Next, with the ceramic block placed in a designated position within a mold, molten metal is poured into the mold. The metal in the mold is then cooled and solidified. In this way, ceramic-embedded grinding rollers or grinding tables are manufactured in which the ceramic portion (portion containing ceramic) and base (portion not containing ceramic) are fixed together.
鋳型内の金属を冷却する際には、熱収縮による損傷が懸念される。セラミック部は、鋳型内の金属に比較して線膨張係数が小さい。このため、冷却時におけるセラミック部の収縮率は基部の収縮率よりも小さくなる。したがって、冷却時にセラミック部と基部との収縮量が異なってくる。このとき、セラミック部と基部とは一体化しているため、基部はセラミック部を縮めようとし、セラミック部は基部の収縮を抑えようとする。よって、基部及びセラミック部の内部に熱応力が作用し、粉砕ローラや粉砕テーブルが損傷してしまう可能性があった。このように、セラミック埋込型の粉砕ローラや粉砕テーブルは、セラミック部と基部との線膨張係数の差に起因して、製造時に損傷する可能性があった。よって、粉砕ローラや粉砕テーブルを製造する際の歩留まりが悪化する可能性があった。
When cooling the metal in the mold, damage due to thermal contraction is a concern. The ceramic part has a smaller linear expansion coefficient than the metal in the mold. Therefore, the contraction rate of the ceramic part during cooling is smaller than that of the base. Therefore, the amount of contraction of the ceramic part and the base differs during cooling. At this time, since the ceramic part and the base are integrated, the base tries to shrink the ceramic part, and the ceramic part tries to suppress the contraction of the base. Therefore, thermal stress acts on the inside of the base and ceramic part, and there is a possibility that the grinding roller or grinding table may be damaged. In this way, ceramic-embedded grinding rollers and grinding tables may be damaged during manufacturing due to the difference in linear expansion coefficient between the ceramic part and the base. Therefore, there is a possibility that the yield rate when manufacturing grinding rollers and grinding tables may decrease.
部材の剛性を低くすると、部材が良く伸びるようになる。このため、同じ変位を与えた時に発生する応力が低く抑えられることから、熱応力が小さくなる。したがって、セラミック埋込型の粉砕ローラや粉砕テーブルの内部熱応力を小さくするために、セラミック部全体においてセラミックス粒子の密度を下げることにより、セラミック部の剛性を低くすることが考えられる。しかしながら、セラミック部のセラミックス粒子の密度を低くして剛性を低下させると、粉砕ローラや粉砕テーブルの耐摩耗性や許容摩耗量が低減し、粉砕ローラや粉砕テーブルの寿命が短くなってしまうという問題があった。
このような事情から、粉砕ローラや粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕ローラや粉砕テーブルを長寿命化することが望まれていた。 When the rigidity of a member is reduced, the member becomes more stretchable. Therefore, the stress generated when the same displacement is applied is kept low, and the thermal stress is reduced. Therefore, in order to reduce the internal thermal stress of the ceramic-embedded grinding roller or grinding table, it is possible to reduce the rigidity of the ceramic part by reducing the density of the ceramic particles in the entire ceramic part. However, when the rigidity is reduced by reducing the density of the ceramic particles in the ceramic part, the wear resistance and allowable wear amount of the grinding roller or grinding table are reduced, which is a problem in that the life of the grinding roller or grinding table is shortened.
Under these circumstances, it has been desired to improve the yield rate in manufacturing the crushing rollers and the crushing tables, and to extend the life of the crushing rollers and the crushing tables.
このような事情から、粉砕ローラや粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕ローラや粉砕テーブルを長寿命化することが望まれていた。 When the rigidity of a member is reduced, the member becomes more stretchable. Therefore, the stress generated when the same displacement is applied is kept low, and the thermal stress is reduced. Therefore, in order to reduce the internal thermal stress of the ceramic-embedded grinding roller or grinding table, it is possible to reduce the rigidity of the ceramic part by reducing the density of the ceramic particles in the entire ceramic part. However, when the rigidity is reduced by reducing the density of the ceramic particles in the ceramic part, the wear resistance and allowable wear amount of the grinding roller or grinding table are reduced, which is a problem in that the life of the grinding roller or grinding table is shortened.
Under these circumstances, it has been desired to improve the yield rate in manufacturing the crushing rollers and the crushing tables, and to extend the life of the crushing rollers and the crushing tables.
本開示は、このような事情に鑑みてなされたものであって、粉砕ローラや粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕ローラや粉砕テーブルの長寿命化を図ることができる粉砕ローラ、粉砕テーブル及び固体燃料粉砕装置並びに粉砕ローラの製造方法を提供することを目的とする。
The present disclosure has been made in consideration of these circumstances, and aims to provide a crushing roller, a crushing table, and a solid fuel crushing device, as well as a method for manufacturing a crushing roller, that can improve the yield rate when manufacturing the crushing roller and the crushing table, and can extend the life of the crushing roller and the crushing table.
上記課題を解決するために、本開示の粉砕ローラ、粉砕テーブル及び固体燃料粉砕装置並びに粉砕ローラの製造方法は以下の手段を採用する。
本開示の一態様に係る粉砕ローラは、ハウジングの内部に収容され、回転する粉砕テーブルとの間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブルからの回転力を受けて回転軸線を中心として連れ回る粉砕ローラであって、前記ハウジングに対して回転可能に支持される支持部と、前記支持部に固定され、前記粉砕テーブルとの間で前記固体燃料を粉砕する円環状のローラ部と、を備え、前記ローラ部は、前記支持部に固定される基部と、前記基部の外周部に設けられ前記基部と線膨張係数が異なるとともに前記基部よりも耐摩耗性が優れているセラミック部と、を有し、前記セラミック部は、母材及び前記母材に設けられるセラミックを有し、前記回転軸線方向に沿って前記母材に対する前記セラミックの含有量であるセラミック密度が変化している。 In order to solve the above problems, the crushing roller, the crushing table, the solid fuel crushing device, and the method of manufacturing the crushing roller of the present disclosure employ the following measures.
A grinding roller according to one embodiment of the present disclosure is a grinding roller that is housed inside a housing, pinches solid fuel between itself and a rotating grinding table to grind the solid fuel, and rotates about a rotation axis when subjected to a rotational force from the grinding table. The grinding roller includes a support portion rotatably supported relative to the housing, and an annular roller portion fixed to the support portion and grinds the solid fuel between itself and the grinding table. The roller portion has a base portion fixed to the support portion, and a ceramic portion provided on the outer periphery of the base, the ceramic portion having a linear expansion coefficient different from that of the base and superior wear resistance to the base. The ceramic portion has a base material and ceramic provided on the base material, and the ceramic density, which is the content of the ceramic in the base material, varies along the direction of the rotation axis.
本開示の一態様に係る粉砕ローラは、ハウジングの内部に収容され、回転する粉砕テーブルとの間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブルからの回転力を受けて回転軸線を中心として連れ回る粉砕ローラであって、前記ハウジングに対して回転可能に支持される支持部と、前記支持部に固定され、前記粉砕テーブルとの間で前記固体燃料を粉砕する円環状のローラ部と、を備え、前記ローラ部は、前記支持部に固定される基部と、前記基部の外周部に設けられ前記基部と線膨張係数が異なるとともに前記基部よりも耐摩耗性が優れているセラミック部と、を有し、前記セラミック部は、母材及び前記母材に設けられるセラミックを有し、前記回転軸線方向に沿って前記母材に対する前記セラミックの含有量であるセラミック密度が変化している。 In order to solve the above problems, the crushing roller, the crushing table, the solid fuel crushing device, and the method of manufacturing the crushing roller of the present disclosure employ the following measures.
A grinding roller according to one embodiment of the present disclosure is a grinding roller that is housed inside a housing, pinches solid fuel between itself and a rotating grinding table to grind the solid fuel, and rotates about a rotation axis when subjected to a rotational force from the grinding table. The grinding roller includes a support portion rotatably supported relative to the housing, and an annular roller portion fixed to the support portion and grinds the solid fuel between itself and the grinding table. The roller portion has a base portion fixed to the support portion, and a ceramic portion provided on the outer periphery of the base, the ceramic portion having a linear expansion coefficient different from that of the base and superior wear resistance to the base. The ceramic portion has a base material and ceramic provided on the base material, and the ceramic density, which is the content of the ceramic in the base material, varies along the direction of the rotation axis.
本開示の一態様に係る粉砕ローラの製造方法は、ハウジングの内部に収容され、回転する粉砕テーブルとの間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブルからの回転力を受けて回転軸線を中心として連れ回る粉砕ローラの製造方法であって、前記粉砕ローラは、前記ハウジングに対して回転可能に支持される支持部と、前記支持部に固定され、前記粉砕テーブルとの間で前記固体燃料を粉砕する円環状のローラ部と、を備え、前記ローラ部は、前記支持部に固定される基部と、前記基部の外周部に設けられ前記基部と線膨張係数が異なるとともに前記基部よりも耐摩耗性が優れているセラミック部と、を有し、前記セラミック部は、母材及び前記母材に設けられるセラミックを有し、前記回転軸線方向に沿って前記母材に対する前記セラミックの含有量であるセラミック密度が変化していて、前記基部と前記セラミック部とを鋳造により一体的に成形する工程を備える。
A method for manufacturing a grinding roller according to one embodiment of the present disclosure is a method for manufacturing a grinding roller that is housed inside a housing, that grinds solid fuel by sandwiching the solid fuel between the grinding roller and a rotating grinding table, and that rotates around a rotation axis when it receives a rotational force from the grinding table, the grinding roller includes a support portion that is rotatably supported by the housing, and an annular roller portion that is fixed to the support portion and grinds the solid fuel between the grinding table, the roller portion includes a base portion that is fixed to the support portion, and a ceramic portion that is provided on the outer periphery of the base portion and has a linear expansion coefficient different from that of the base portion and is more wear-resistant than the base portion, the ceramic portion includes a matrix and ceramic provided on the matrix portion, the ceramic density, which is the content of the ceramic in the matrix, varies along the direction of the rotation axis, and the method includes a step of integrally molding the base portion and the ceramic portion by casting.
本開示によれば、粉砕ローラや粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕ローラや粉砕テーブルの長寿命化を図ることができる。
This disclosure makes it possible to improve the yield rate when manufacturing grinding rollers and grinding tables, and to extend the lifespan of the grinding rollers and grinding tables.
以下に、本開示に係る粉砕ローラ、粉砕テーブル及び固体燃料粉砕装置並びに粉砕ローラの製造方法の一実施形態について、図面を参照して説明する。
Below, an embodiment of the grinding roller, grinding table, solid fuel grinding device, and grinding roller manufacturing method according to the present disclosure will be described with reference to the drawings.
〔第1実施形態〕
以下、本開示の第1実施形態について、図面を参照して説明する。本実施形態に係る発電プラント1は、固体燃料粉砕装置100とボイラ200とを備えている。
以降の説明では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。また同様に“下”とは鉛直下側の部分を示すものであり、鉛直方向は厳密ではなく誤差を含むものである。 First Embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present disclosure will now be described with reference to the drawings. Apower plant 1 according to this embodiment includes a solid fuel pulverizer 100 and a boiler 200.
In the following explanation, "upper" refers to the vertically upper direction, and "upper" in terms such as upper part and upper surface refers to the vertically upper part. Similarly, "lower" refers to the vertically lower part, and the vertical direction is not precise and may include errors.
以下、本開示の第1実施形態について、図面を参照して説明する。本実施形態に係る発電プラント1は、固体燃料粉砕装置100とボイラ200とを備えている。
以降の説明では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。また同様に“下”とは鉛直下側の部分を示すものであり、鉛直方向は厳密ではなく誤差を含むものである。 First Embodiment
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present disclosure will now be described with reference to the drawings. A
In the following explanation, "upper" refers to the vertically upper direction, and "upper" in terms such as upper part and upper surface refers to the vertically upper part. Similarly, "lower" refers to the vertically lower part, and the vertical direction is not precise and may include errors.
本実施形態の固体燃料粉砕装置100は、一例としてバイオマス燃料や石炭等の固体燃料を粉砕し、微粉燃料を生成してボイラ200のバーナ(燃焼装置)220へ供給する装置である。
図1に示す固体燃料粉砕装置100とボイラ200とを含む発電プラント1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ220のそれぞれに対応する複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。 The solid fuel pulverizingdevice 100 of this embodiment is a device that pulverizes solid fuel, such as biomass fuel or coal, generates pulverized fuel, and supplies it to a burner (combustion device) 220 of a boiler 200.
Thepower plant 1 including the solid fuel pulverizer 100 and the boiler 200 shown in FIG. 1 is equipped with one solid fuel pulverizer 100, but it may also be a system equipped with multiple solid fuel pulverizers 100 corresponding to each of the multiple burners 220 of one boiler 200.
図1に示す固体燃料粉砕装置100とボイラ200とを含む発電プラント1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ220のそれぞれに対応する複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。 The solid fuel pulverizing
The
本実施形態の固体燃料粉砕装置100は、ミル(粉砕部)10と、バンカ(貯蔵部)21と、給炭機(燃料供給機)25と、送風部(搬送用ガス供給部)30と、状態検出部40と、制御部50とを備えている。
The solid fuel pulverizing device 100 of this embodiment includes a mill (pulverizing section) 10, a bunker (storage section) 21, a coal feeder (fuel supplying machine) 25, a blower section (carrier gas supplying section) 30, a status detection section 40, and a control section 50.
ボイラ200に供給する石炭やバイオマス燃料等の固体燃料を、微粉状の固体燃料である微粉燃料へと粉砕するミル10は、石炭のみを粉砕する形式であっても良いし、バイオマス燃料のみを粉砕する形式であっても良いし、石炭とともにバイオマス燃料を粉砕する形式であってもよい。
ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃木材、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 Themill 10, which pulverizes solid fuel such as coal or biomass fuel to be supplied to the boiler 200 into fine fuel, which is a finely powdered solid fuel, may be of a type that pulverizes only coal, may be of a type that pulverizes only biomass fuel, or may be of a type that pulverizes biomass fuel together with coal.
Here, biomass fuels are organic resources derived from renewable living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuels (pellets and chips) made from these materials, but are not limited to the ones presented here.Biomass fuels are carbon neutral, meaning they do not emit carbon dioxide, a greenhouse gas, because they capture carbon dioxide during the biomass growth process, and various uses for them are being considered.
ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃木材、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 The
Here, biomass fuels are organic resources derived from renewable living organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuels (pellets and chips) made from these materials, but are not limited to the ones presented here.Biomass fuels are carbon neutral, meaning they do not emit carbon dioxide, a greenhouse gas, because they capture carbon dioxide during the biomass growth process, and various uses for them are being considered.
ミル10は、ハウジング11と、粉砕テーブル12と、粉砕ローラ13と、減速機(駆動伝達部)14と、減速機14に接続され粉砕テーブル12を回転駆動させるミルモータ(駆動部)15と、回転式分級機(分級部)16と、給炭管(燃料供給部)17と、回転式分級機16を回転駆動させる分級機モータ18とを備えている。
ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、粉砕テーブル12と粉砕ローラ13と回転式分級機16と、給炭管17とを収容する筐体である。
ハウジング11の天井部42の中央部には、給炭管17が取り付けられている。この給炭管17は、バンカ21から給炭機25を介して導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。 Themill 10 comprises a housing 11, a grinding table 12, grinding rollers 13, a reducer (drive transmission unit) 14, a mill motor (drive unit) 15 connected to the reducer 14 and driving the grinding table 12 to rotate, a rotary classifier (classification unit) 16, a coal supply pipe (fuel supply unit) 17, and a classifier motor 18 that drives the rotary classifier 16 to rotate.
Thehousing 11 is formed in a cylindrical shape extending in the vertical direction, and is a case that accommodates the grinding table 12, the grinding rollers 13, the rotary classifier 16, and the coal supply pipe 17.
Acoal feed pipe 17 is attached to the center of the ceiling portion 42 of the housing 11. This coal feed pipe 17 supplies solid fuel guided from the bunker 21 via the coal feeder 25 into the housing 11. The coal feed pipe 17 is disposed in the vertical direction at the center position of the housing 11 and has a lower end extending into the interior of the housing 11.
ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、粉砕テーブル12と粉砕ローラ13と回転式分級機16と、給炭管17とを収容する筐体である。
ハウジング11の天井部42の中央部には、給炭管17が取り付けられている。この給炭管17は、バンカ21から給炭機25を介して導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。 The
The
A
ハウジング11の底面部41付近には減速機14が設置され、この減速機14に接続されたミルモータ15から伝達される駆動力により回転する粉砕テーブル12が回転自在に配置されている。
粉砕テーブル12は、平面視円形の部材であり、給炭管17の下端部が対向するように配置されている。粉砕テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。給炭管17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の粉砕テーブル12に向けて供給し、粉砕テーブル12は供給された固体燃料を粉砕ローラ13との間に挟み込んで粉砕する。 Areduction gear 14 is provided near the bottom surface 41 of the housing 11, and the grinding table 12 is rotatably disposed and rotated by the driving force transmitted from a mill motor 15 connected to the reduction gear 14.
The grinding table 12 is a circular member in a plan view, and is arranged so that the lower end of thecoal supply pipe 17 faces the grinding table 12. The upper surface of the grinding table 12 may have an inclined shape that is low in the center and high toward the outside, and the outer periphery may have a shape that is bent upward. The coal supply pipe 17 supplies solid fuel (for example, coal or biomass fuel in this embodiment) from above toward the grinding table 12 below, and the grinding table 12 pinches the supplied solid fuel between the grinding roller 13 and grinds it.
粉砕テーブル12は、平面視円形の部材であり、給炭管17の下端部が対向するように配置されている。粉砕テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。給炭管17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の粉砕テーブル12に向けて供給し、粉砕テーブル12は供給された固体燃料を粉砕ローラ13との間に挟み込んで粉砕する。 A
The grinding table 12 is a circular member in a plan view, and is arranged so that the lower end of the
固体燃料が給炭管17から粉砕テーブル12の中央部へ向けて投入されると、粉砕テーブル12の回転による遠心力によって、固体燃料は粉砕テーブル12の外周側へと導かれ、粉砕テーブル12と粉砕ローラ13との間に挟み込まれて粉砕される。粉砕された固体燃料は、搬送用ガス流路(以降は、一次空気流路と記載する)110から導かれた搬送用ガス(以降は、一次空気と記載する)によって上方へと吹き上げられ、回転式分級機16へと導かれる。
粉砕テーブル12の外周には、一次空気流路110から流入する一次空気を、ハウジング11内の粉砕テーブル12の上方の空間に流出させる吹出口(図示省略)が設けられている。吹出口には旋回羽根(図示省略)が設置されており、吹出口から吹き出した一次空気に旋回力を与える。旋回羽根により旋回力が与えられた一次空気は、旋回する速度成分を有する気流となって、粉砕テーブル12上で粉砕された固体燃料を、ハウジング11内の上方にある回転式分級機16へと搬送する。なお、粉砕された固体燃料のうち、所定粒径より大きいものは回転式分級機16により分級されて、または、回転式分級機16まで到達することなく落下して、粉砕テーブル12上に戻されて、粉砕テーブル12と粉砕ローラ13との間で再度粉砕される。 When solid fuel is fed from thecoal feed pipe 17 toward the center of the grinding table 12, the centrifugal force generated by the rotation of the grinding table 12 guides the solid fuel to the outer periphery of the grinding table 12, where it is pinched and ground between the grinding table 12 and the grinding rollers 13. The ground solid fuel is blown upward by the carrier gas (hereinafter referred to as primary air) guided from the carrier gas flow path (hereinafter referred to as primary air flow path) 110, and is guided to the rotary classifier 16.
An outlet (not shown) is provided on the outer periphery of the grinding table 12, through which the primary air flowing in from theprimary air passage 110 flows out into the space above the grinding table 12 in the housing 11. A swirling blade (not shown) is provided at the outlet, which applies a swirling force to the primary air blown out from the outlet. The primary air given a swirling force by the swirling blade becomes an airflow having a swirling velocity component, and conveys the solid fuel pulverized on the grinding table 12 to the rotary classifier 16 located at the upper part in the housing 11. Among the pulverized solid fuel, particles larger than a predetermined particle size are classified by the rotary classifier 16, or fall without reaching the rotary classifier 16, are returned to the grinding table 12, and are pulverized again between the grinding table 12 and the grinding roller 13.
粉砕テーブル12の外周には、一次空気流路110から流入する一次空気を、ハウジング11内の粉砕テーブル12の上方の空間に流出させる吹出口(図示省略)が設けられている。吹出口には旋回羽根(図示省略)が設置されており、吹出口から吹き出した一次空気に旋回力を与える。旋回羽根により旋回力が与えられた一次空気は、旋回する速度成分を有する気流となって、粉砕テーブル12上で粉砕された固体燃料を、ハウジング11内の上方にある回転式分級機16へと搬送する。なお、粉砕された固体燃料のうち、所定粒径より大きいものは回転式分級機16により分級されて、または、回転式分級機16まで到達することなく落下して、粉砕テーブル12上に戻されて、粉砕テーブル12と粉砕ローラ13との間で再度粉砕される。 When solid fuel is fed from the
An outlet (not shown) is provided on the outer periphery of the grinding table 12, through which the primary air flowing in from the
粉砕ローラ13は、給炭管17から粉砕テーブル12上に供給された固体燃料を粉砕する回転体である。粉砕ローラ13は、粉砕テーブル12の上面に押圧されて粉砕テーブル12と協働して固体燃料を粉砕する。
図1では、粉砕ローラ13が代表して1つのみ示されているが、粉砕テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数の粉砕ローラ13が配置される。例えば、外周部上に120°の角度間隔を空けて、3つの粉砕ローラ13が周方向に均等な間隔で配置される。この場合、3つの粉砕ローラ13が粉砕テーブル12の上面と接する部分(押圧する部分)は、粉砕テーブル12の回転中心軸からの距離が等距離となる。 The crushingroller 13 is a rotating body that crushes the solid fuel supplied onto the crushing table 12 from the coal supply pipe 17. The crushing roller 13 is pressed against the upper surface of the crushing table 12 and cooperates with the crushing table 12 to crush the solid fuel.
1 shows only onerepresentative crushing roller 13, but multiple crushing rollers 13 are arranged at regular intervals in the circumferential direction so as to press against the upper surface of the crushing table 12. For example, three crushing rollers 13 are arranged at equal intervals in the circumferential direction on the outer periphery at angular intervals of 120°. In this case, the portions where the three crushing rollers 13 come into contact with the upper surface of the crushing table 12 (pressing portions) are equidistant from the rotation center axis of the crushing table 12.
図1では、粉砕ローラ13が代表して1つのみ示されているが、粉砕テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数の粉砕ローラ13が配置される。例えば、外周部上に120°の角度間隔を空けて、3つの粉砕ローラ13が周方向に均等な間隔で配置される。この場合、3つの粉砕ローラ13が粉砕テーブル12の上面と接する部分(押圧する部分)は、粉砕テーブル12の回転中心軸からの距離が等距離となる。 The crushing
1 shows only one
粉砕ローラ13は、ジャーナルヘッド45によって、上下に揺動・変位可能となっており、粉砕テーブル12の上面に対して接近離間自在に支持されている。粉砕ローラ13は、外周面が粉砕テーブル12の上面の固体燃料に接触した状態で、粉砕テーブル12が回転すると、粉砕テーブル12から回転力を受けて連れ回りするようになっている。給炭管17から固体燃料が供給されると、粉砕ローラ13と粉砕テーブル12との間で固体燃料が押圧されて粉砕される。この押圧する力を、粉砕荷重と言う。
The crushing roller 13 can be swung and displaced up and down by the journal head 45, and is supported so that it can move toward and away from the upper surface of the crushing table 12. When the crushing table 12 rotates, with the outer circumferential surface of the crushing roller 13 in contact with the solid fuel on the upper surface of the crushing table 12, the crushing roller 13 receives a rotational force from the crushing table 12 and rotates with it. When solid fuel is supplied from the coal supply pipe 17, the solid fuel is pressed between the crushing roller 13 and the crushing table 12 and crushed. This pressing force is called the crushing load.
ジャーナルヘッド45の支持アーム47は、中間部が水平方向に沿った支持軸48によって、ハウジング11の側面部に支持軸48を中心として粉砕ローラ13を上下方向に揺動・変位可能に支持されている。また、支持アーム47の鉛直上側にある上端部には、押圧装置(粉砕荷重付与部)46が設けられている。押圧装置46は、ハウジング11に固定されており、粉砕ローラ13を粉砕テーブル12に押し付けるように、支持アーム47等を介して粉砕ローラ13に粉砕荷重を付与する。粉砕荷重は、例えば、ミル10の外部に設置された油圧装置(図示省略)から供給される作動油の圧力により作動する油圧シリンダ(図示省略)によって与えられる。また、粉砕荷重は、ばね(図示省略)の反発力によって与えられてもよい。
The support arm 47 of the journal head 45 is supported on the side of the housing 11 by a support shaft 48 whose middle part is aligned horizontally, so that the crushing roller 13 can be swung and displaced in the vertical direction around the support shaft 48. A pressing device (crushing load applying part) 46 is provided at the upper end part on the vertically upper side of the support arm 47. The pressing device 46 is fixed to the housing 11, and applies a crushing load to the crushing roller 13 via the support arm 47, etc., so as to press the crushing roller 13 against the crushing table 12. The crushing load is applied, for example, by a hydraulic cylinder (not shown) that operates by the pressure of hydraulic oil supplied from a hydraulic device (not shown) installed outside the mill 10. The crushing load may also be applied by the repulsive force of a spring (not shown).
減速機14は、ミルモータ15に接続されており、ミルモータ15の駆動力を粉砕テーブル12に伝達し、粉砕テーブル12を中心軸回りに回転させる。
The reducer 14 is connected to the mill motor 15 and transmits the driving force of the mill motor 15 to the grinding table 12, causing the grinding table 12 to rotate around its central axis.
回転式分級機(分級部)16は、ハウジング11の上部に設けられ中空状の逆円錐状の外形を有している。回転式分級機16は、その外周位置に上下方向に延在する複数のブレード16aを備えている。各ブレード16aは、回転式分級機16の中心軸線周りに所定の間隔(均等間隔)で設けられている。
回転式分級機16は、粉砕テーブル12と粉砕ローラ13により粉砕された固体燃料(以降、粉砕された固体燃料を「粉砕燃料」という。)を、所定粒径(例えば、石炭では70~100μm)より大きいもの(以降、所定粒径を超える粉砕燃料を「粗粉燃料」という。)と、所定粒径以下のもの(以降、所定粒径以下の粉砕燃料を「微粉燃料」という。)に分級する装置である。回転式分級機16は、制御部50によって制御される分級機モータ18により回転駆動力を与えられ、ハウジング11の上下方向に延在する円筒軸(図示省略)を中心に給炭管17の周りを回転する。
なお、分級部としては、固定された中空状の逆円錐形状のケーシングと、そのケーシングの外周位置にブレード16aに替わって複数の固定旋回羽根とを備えた固定式分級機を用いてもよい。 The rotary classifier (classifying section) 16 is provided at the top of thehousing 11 and has a hollow inverted cone-like outer shape. The rotary classifier 16 is provided with a plurality of blades 16a extending in the vertical direction at its outer periphery. The blades 16a are provided at predetermined intervals (equally spaced) around the central axis of the rotary classifier 16.
Therotary classifier 16 is a device that classifies the solid fuel pulverized by the pulverizing table 12 and the pulverizing rollers 13 (hereinafter, the pulverized solid fuel is referred to as "pulverized fuel") into particles larger than a predetermined particle size (for example, 70 to 100 μm for coal) (hereinafter, the pulverized fuel exceeding the predetermined particle size is referred to as "coarse pulverized fuel") and particles smaller than the predetermined particle size (hereinafter, the pulverized fuel smaller than the predetermined particle size is referred to as "fine pulverized fuel"). The rotary classifier 16 is given a rotational driving force by a classifier motor 18 controlled by the control unit 50, and rotates around a coal feed pipe 17 centered on a cylindrical axis (not shown) extending in the vertical direction of the housing 11.
The classifying section may be a fixed classifier having a fixed hollow inverted cone-shaped casing and a plurality of fixed swirling vanes on the outer periphery of the casing instead of theblades 16a.
回転式分級機16は、粉砕テーブル12と粉砕ローラ13により粉砕された固体燃料(以降、粉砕された固体燃料を「粉砕燃料」という。)を、所定粒径(例えば、石炭では70~100μm)より大きいもの(以降、所定粒径を超える粉砕燃料を「粗粉燃料」という。)と、所定粒径以下のもの(以降、所定粒径以下の粉砕燃料を「微粉燃料」という。)に分級する装置である。回転式分級機16は、制御部50によって制御される分級機モータ18により回転駆動力を与えられ、ハウジング11の上下方向に延在する円筒軸(図示省略)を中心に給炭管17の周りを回転する。
なお、分級部としては、固定された中空状の逆円錐形状のケーシングと、そのケーシングの外周位置にブレード16aに替わって複数の固定旋回羽根とを備えた固定式分級機を用いてもよい。 The rotary classifier (classifying section) 16 is provided at the top of the
The
The classifying section may be a fixed classifier having a fixed hollow inverted cone-shaped casing and a plurality of fixed swirling vanes on the outer periphery of the casing instead of the
回転式分級機16に到達した粉砕燃料は、ブレード16aの回転により生じる遠心力と、一次空気の気流による向心力との相対的なバランスにより、大きな径の粗粉燃料は、ブレード16aによって叩き落とされ、粉砕テーブル12へと戻されて再粉砕され、微粉燃料はハウジング11の天井部42にある出口ポート19に導かれる。回転式分級機16によって分級された微粉燃料は、一次空気とともに出口ポート19から微粉燃料供給流路(微粉燃料供給管)120へ排出され、ボイラ200のバーナ220へ供給される。
When the pulverized fuel reaches the rotary classifier 16, due to the relative balance between the centrifugal force generated by the rotation of the blades 16a and the centripetal force of the primary air flow, large diameter coarse pulverized fuel particles are knocked down by the blades 16a and returned to the grinding table 12 for re-pulverization, while the fine pulverized fuel is directed to the outlet port 19 in the ceiling 42 of the housing 11. The fine pulverized fuel classified by the rotary classifier 16 is discharged together with the primary air from the outlet port 19 into the fine fuel supply passage (fine fuel supply pipe) 120 and supplied to the burner 220 of the boiler 200.
給炭管17は、ハウジング11の天井部42を貫通するように上下方向に沿って下端部がハウジング11内部まで延設されて取り付けられ、給炭管17の上部から投入される固体燃料を粉砕テーブル12の中央部に供給する。給炭管17の上端には、給炭機25が接続されており、固体燃料が供給される。
The coal supply pipe 17 is attached so that its lower end extends vertically into the interior of the housing 11 so as to penetrate the ceiling portion 42 of the housing 11, and supplies solid fuel fed from the top of the coal supply pipe 17 to the center of the grinding table 12. A coal supply machine 25 is connected to the upper end of the coal supply pipe 17, and solid fuel is supplied.
給炭機25は、バンカ21の下端部から上下方向に延在する管であるダウンスパウト部22によって、バンカ21と接続されている。ダウンスパウト部22の途中には、バンカ21からの固体燃料の排出状態を切り替える弁(コールゲート、図示省略)を設けてもよい。給炭機25は、搬送部26と、給炭機モータ27とを備える。搬送部26は、例えばベルトコンベアであり、ダウンスパウト部22の下端部から排出される固体燃料を、給炭機モータ27の駆動力によって給炭管17の上部に搬送し、内部へ投入する。ミル10へ供給される固体燃料の供給量は、制御部50からの信号によって、例えば、搬送部26のベルトコンベアの移動速度を調整して制御される。
The coal feeder 25 is connected to the bunker 21 by the downspout 22, which is a pipe extending vertically from the lower end of the bunker 21. A valve (coal gate, not shown) for switching the discharge state of the solid fuel from the bunker 21 may be provided midway in the downspout 22. The coal feeder 25 includes a transport unit 26 and a coal feeder motor 27. The transport unit 26 is, for example, a belt conveyor, and transports the solid fuel discharged from the lower end of the downspout 22 to the upper part of the coal feeder pipe 17 by the driving force of the coal feeder motor 27, and inputs it inside. The amount of solid fuel supplied to the mill 10 is controlled by a signal from the control unit 50, for example by adjusting the moving speed of the belt conveyor of the transport unit 26.
通常、ミル10の内部には、微粉燃料をバーナ220へ搬送するための一次空気が供給されており、給炭機25やバンカ21よりも圧力が高くなっている。バンカ21と給炭機25を接続するダウンスパウト部22の内部は、燃料が積層状態となっている。この固体燃料層により、ミル10からバンカ21に向けて、一次空気と微粉燃料が逆流を抑制するためのシール性(マテリアルシール)を確保している。
Normally, primary air is supplied to the inside of the mill 10 to transport pulverized fuel to the burner 220, and the pressure is higher than that of the coal feeder 25 and the bunker 21. Inside the downspout section 22 that connects the bunker 21 and the coal feeder 25, the fuel is layered. This solid fuel layer ensures a sealing property (material seal) to prevent the primary air and pulverized fuel from flowing back from the mill 10 toward the bunker 21.
送風部30は、粉砕燃料を乾燥させるとともに、回転式分級機16へ搬送するための一次空気を、ハウジング11の内部へ送風する装置である。
送風部30は、ハウジング11の内部へ送風される一次空気の流量と温度を適切に調整するために、本実施形態では、一次空気通風機(PAF:Primary Air Fan)31と、熱ガス流路30aと、冷ガス流路30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。 Theblower section 30 is a device that blows primary air into the housing 11 to dry the pulverized fuel and to transport the fuel to the rotary classifier 16 .
In order to appropriately adjust the flow rate and temperature of the primary air blown into thehousing 11, in this embodiment, the blower 30 includes a primary air fan (PAF) 31, a hot gas flow path 30a, a cold gas flow path 30b, a hot gas damper 30c, and a cold gas damper 30d.
送風部30は、ハウジング11の内部へ送風される一次空気の流量と温度を適切に調整するために、本実施形態では、一次空気通風機(PAF:Primary Air Fan)31と、熱ガス流路30aと、冷ガス流路30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。 The
In order to appropriately adjust the flow rate and temperature of the primary air blown into the
本実施形態では、熱ガス流路30aは、一次空気通風機31から送出された空気の一部を、空気予熱器(熱交換器)34を通過して加熱された熱ガスとして供給する。熱ガス流路30aには、熱ガスダンパ30cが設けられている。熱ガスダンパ30cの開度は、制御部50によって制御される。熱ガスダンパ30cの開度によって、熱ガス流路30aから供給する熱ガスの流量が決定される。
In this embodiment, the hot gas flow path 30a supplies a portion of the air sent out from the primary air ventilator 31 as hot gas that has been heated by passing through an air preheater (heat exchanger) 34. A hot gas damper 30c is provided in the hot gas flow path 30a. The opening degree of the hot gas damper 30c is controlled by the control unit 50. The flow rate of the hot gas supplied from the hot gas flow path 30a is determined by the opening degree of the hot gas damper 30c.
冷ガス流路30bは、一次空気通風機31から送出された空気の一部を常温の冷ガスとして供給する。冷ガス流路30bには、冷ガスダンパ30dが設けられている。冷ガスダンパ30dの開度は、制御部50によって制御される。冷ガスダンパ30dの開度によって、冷ガス流路30bから供給する冷ガスの流量が決定される。
The cold gas flow path 30b supplies a portion of the air sent out from the primary air ventilator 31 as cold gas at room temperature. A cold gas damper 30d is provided in the cold gas flow path 30b. The opening degree of the cold gas damper 30d is controlled by the control unit 50. The flow rate of the cold gas supplied from the cold gas flow path 30b is determined by the opening degree of the cold gas damper 30d.
一次空気の流量は、本実施形態では、熱ガス流路30aから供給する熱ガスの流量と冷ガス流路30bから供給する冷ガスの流量の合計の流量となり、一次空気の温度は、熱ガス流路30aから供給する熱ガスと冷ガス流路30bから供給する冷ガスの混合比率で決まり、制御部50によって制御される。
また、熱ガス流路30aから供給する熱ガスに、例えば、ガス再循環通風機(図示省略)によってボイラ200から排出された燃焼ガスの一部を導き、混合することで、一次空気流路110からハウジング11の内部へ送風する一次空気中の酸素濃度を調整してもよい。一次空気中の酸素濃度を調整することによって、例えば、着火性の高い(着火しやすい)固体燃料を使用する場合、ミル10からバーナ220に至るまでの経路において、固体燃料が着火することを抑制することができる。 In this embodiment, the flow rate of the primary air is the sum of the flow rate of the hot gas supplied from the hotgas flow path 30a and the flow rate of the cold gas supplied from the cold gas flow path 30b, and the temperature of the primary air is determined by the mixing ratio of the hot gas supplied from the hot gas flow path 30a and the cold gas supplied from the cold gas flow path 30b, and is controlled by the control unit 50.
Furthermore, the oxygen concentration in the primary air blown from theprimary air passage 110 to the inside of the housing 11 may be adjusted by, for example, introducing a part of the combustion gas discharged from the boiler 200 by a gas recirculation fan (not shown) into the hot gas supplied from the hot gas passage 30a and mixing it. By adjusting the oxygen concentration in the primary air, for example, when a solid fuel with high ignition properties (easy to ignite) is used, the ignition of the solid fuel in the path from the mill 10 to the burner 220 can be suppressed.
また、熱ガス流路30aから供給する熱ガスに、例えば、ガス再循環通風機(図示省略)によってボイラ200から排出された燃焼ガスの一部を導き、混合することで、一次空気流路110からハウジング11の内部へ送風する一次空気中の酸素濃度を調整してもよい。一次空気中の酸素濃度を調整することによって、例えば、着火性の高い(着火しやすい)固体燃料を使用する場合、ミル10からバーナ220に至るまでの経路において、固体燃料が着火することを抑制することができる。 In this embodiment, the flow rate of the primary air is the sum of the flow rate of the hot gas supplied from the hot
Furthermore, the oxygen concentration in the primary air blown from the
本実施形態では、ミル10の状態検出部40により計測または検出したデータを、制御部50に送信する。本実施形態の状態検出部40は、例えば、差圧計測手段であり、一次空気流路110からハウジング11の内部へ一次空気が流入する部分における圧力と、ハウジング11の内部から微粉燃料供給管120へ一次空気と微粉燃料が排出される出口ポート19における圧力との差圧を、ミル10の差圧として計測する。このミル10の差圧の増減は、回転式分級機16の分級効果によってハウジング11内部の回転式分級機16付近と粉砕テーブル12付近の間を循環している粉砕燃料の循環量の増減に対応する。すなわち、このミル10の差圧に応じて回転式分級機16の回転数を調整することで、出口ポート19から排出される微粉燃料の量と粒径範囲を調整することができるので、微粉燃料の粒径をバーナ220における固体燃料の燃焼性に影響しない範囲に維持しつつ、ミル10への固体燃料の供給量に対応した量の微粉燃料を、ボイラ200に設けられたバーナ220に安定して供給することができる。
また、本実施形態の状態検出部40は、例えば、温度計測手段であり、ハウジング11の内部へ供給される一次空気の温度(ミル入口一次空気温度)や、出口ポート19における一次空気と微粉燃料との混合気体の温度(ミル出口一次空気温度)を検出して、それぞれの上限温度を超えないように送風部30を制御する。各上限温度は、固体燃料の性状に応じた着火の可能性等を考慮して決定される。なお、一次空気は、ハウジング11の内部において、粉砕燃料を乾燥しながら搬送することによって冷却されるため、ミル入口の一次空気温度は、例えば常温から約300度程度、ミル出口の一次空気温度は、例えば常温から約90度程度となる。 In this embodiment, data measured or detected by thestate detection unit 40 of the mill 10 is transmitted to the control unit 50. The state detection unit 40 of this embodiment is, for example, a differential pressure measurement means, and measures the differential pressure of the mill 10 as the pressure difference between the pressure at the portion where the primary air flows into the inside of the housing 11 from the primary air flow passage 110 and the pressure at the outlet port 19 where the primary air and the pulverized fuel are discharged from the inside of the housing 11 to the pulverized fuel supply pipe 120. An increase or decrease in this differential pressure of the mill 10 corresponds to an increase or decrease in the amount of pulverized fuel circulating between the vicinity of the rotary classifier 16 inside the housing 11 and the vicinity of the grinding table 12 due to the classification effect of the rotary classifier 16. In other words, by adjusting the rotation speed of the rotary classifier 16 in accordance with the pressure difference across the mill 10, the amount and particle size range of the pulverized fuel discharged from the outlet port 19 can be adjusted, so that an amount of pulverized fuel corresponding to the amount of solid fuel supplied to the mill 10 can be stably supplied to the burner 220 provided in the boiler 200, while maintaining the particle size of the pulverized fuel within a range that does not affect the combustibility of the solid fuel in the burner 220.
Thestate detection unit 40 of this embodiment is, for example, a temperature measuring means, which detects the temperature of the primary air supplied to the inside of the housing 11 (mill inlet primary air temperature) and the temperature of the mixed gas of the primary air and the pulverized fuel at the outlet port 19 (mill outlet primary air temperature), and controls the blower unit 30 so that the respective upper limit temperatures are not exceeded. Each upper limit temperature is determined in consideration of the possibility of ignition according to the properties of the solid fuel. Note that, since the primary air is cooled inside the housing 11 by transporting the pulverized fuel while drying it, the primary air temperature at the mill inlet is, for example, about room temperature to about 300°C, and the primary air temperature at the mill outlet is, for example, about room temperature to about 90°C.
また、本実施形態の状態検出部40は、例えば、温度計測手段であり、ハウジング11の内部へ供給される一次空気の温度(ミル入口一次空気温度)や、出口ポート19における一次空気と微粉燃料との混合気体の温度(ミル出口一次空気温度)を検出して、それぞれの上限温度を超えないように送風部30を制御する。各上限温度は、固体燃料の性状に応じた着火の可能性等を考慮して決定される。なお、一次空気は、ハウジング11の内部において、粉砕燃料を乾燥しながら搬送することによって冷却されるため、ミル入口の一次空気温度は、例えば常温から約300度程度、ミル出口の一次空気温度は、例えば常温から約90度程度となる。 In this embodiment, data measured or detected by the
The
制御部50は、固体燃料粉砕装置100の各部を制御する装置である。
制御部50は、例えば、ミルモータ15に駆動指示を伝達して粉砕テーブル12の回転速度を制御してもよい。
制御部50は、例えば、分級機モータ18へ駆動指示を伝達して回転式分級機16の回転速度を制御して分級性能を調整し、微粉燃料の粒径をバーナ220における固体燃料の燃焼性に影響しない範囲に維持しつつ、ミル10への固体燃料の供給量に対応した量の微粉燃料を、バーナ220へ安定して供給することができる。
また、制御部50は、例えば給炭機モータ27へ駆動指示を伝達することにより、ミル10へ供給する固体燃料の供給量(給炭量)を調整することができる。
また、制御部50は、送風部30へ開度指示を伝達することにより、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御して一次空気の流量と温度を調整することができる。具体的には、制御部50は、ハウジング11の内部へ供給される一次空気の流量と、出口ポート19における一次空気の温度(ミル出口一次空気温度)が、固体燃料の種別毎に、給炭量に対応して設定された所定値となるように、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御する。なお、一次空気の温度の制御は、ミル入口における温度(ミル入口一次空気温度)に対して行ってもよい。 Thecontrol unit 50 is a device that controls each part of the solid fuel pulverization device 100 .
Thecontrol unit 50 may, for example, transmit a drive command to the mill motor 15 to control the rotation speed of the grinding table 12 .
Thecontrol unit 50, for example, transmits a drive command to the classifier motor 18 to control the rotational speed of the rotary classifier 16 to adjust the classification performance, and can stably supply an amount of pulverized fuel corresponding to the amount of solid fuel supplied to the mill 10 to the burner 220 while maintaining the particle size of the pulverized fuel within a range that does not affect the combustibility of the solid fuel in the burner 220.
In addition, thecontrol unit 50 can adjust the amount of solid fuel supplied (amount of coal supplied) to the mill 10 by, for example, transmitting a drive command to the coal feeder motor 27 .
Moreover, thecontrol unit 50 can adjust the flow rate and temperature of the primary air by controlling the opening of the hot gas damper 30c and the cold gas damper 30d by transmitting an opening command to the blower unit 30. Specifically, the control unit 50 controls the opening of the hot gas damper 30c and the cold gas damper 30d so that the flow rate of the primary air supplied to the inside of the housing 11 and the temperature of the primary air at the outlet port 19 (mill outlet primary air temperature) become predetermined values set corresponding to the coal feed amount for each type of solid fuel. The temperature of the primary air may be controlled with respect to the temperature at the mill inlet (mill inlet primary air temperature).
制御部50は、例えば、ミルモータ15に駆動指示を伝達して粉砕テーブル12の回転速度を制御してもよい。
制御部50は、例えば、分級機モータ18へ駆動指示を伝達して回転式分級機16の回転速度を制御して分級性能を調整し、微粉燃料の粒径をバーナ220における固体燃料の燃焼性に影響しない範囲に維持しつつ、ミル10への固体燃料の供給量に対応した量の微粉燃料を、バーナ220へ安定して供給することができる。
また、制御部50は、例えば給炭機モータ27へ駆動指示を伝達することにより、ミル10へ供給する固体燃料の供給量(給炭量)を調整することができる。
また、制御部50は、送風部30へ開度指示を伝達することにより、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御して一次空気の流量と温度を調整することができる。具体的には、制御部50は、ハウジング11の内部へ供給される一次空気の流量と、出口ポート19における一次空気の温度(ミル出口一次空気温度)が、固体燃料の種別毎に、給炭量に対応して設定された所定値となるように、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御する。なお、一次空気の温度の制御は、ミル入口における温度(ミル入口一次空気温度)に対して行ってもよい。 The
The
The
In addition, the
Moreover, the
制御部50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。また、HDDはソリッドステートディスク(SSD)等で置き換えられてもよい。
The control unit 50 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. A series of processes for realizing various functions is stored in a storage medium in the form of a program, for example, and the CPU reads this program into the RAM and executes information processing and arithmetic processing to realize various functions. The program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Examples of computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, and semiconductor memories. The HDD may also be replaced with a solid-state disk (SSD), etc.
次に、固体燃料粉砕装置100から供給される微粉燃料の燃焼によって蒸気を発生させるボイラ200について説明する。ボイラ200は、火炉210とバーナ220とを備えている。
Next, we will explain the boiler 200 that generates steam by burning the pulverized fuel supplied from the solid fuel pulverizer 100. The boiler 200 is equipped with a furnace 210 and a burner 220.
バーナ220は、微粉燃料供給管120から供給される微粉燃料と一次空気との混合気と、押込通風機(FDF:Forced Draft Fan)32から送出される空気(外気)を空気予熱器34で加熱して供給される二次空気とを用いて、微粉燃料を燃焼させて火炎を形成する装置である。微粉燃料の燃焼は火炉210内で行われ、高温の燃焼ガスは、蒸発器、過熱器、節炭器などの熱交換器(図示省略)を通過した後にボイラ200の外部に排出される。
The burner 220 is a device that burns pulverized fuel to form a flame using a mixture of pulverized fuel and primary air supplied from the pulverized fuel supply pipe 120, and secondary air supplied by heating the air (outside air) sent out from the forced draft fan (FDF: Forced Draft Fan) 32 in an air preheater 34. The pulverized fuel is burned in the furnace 210, and the high-temperature combustion gas is exhausted to the outside of the boiler 200 after passing through heat exchangers (not shown) such as an evaporator, superheater, and economizer.
ボイラ200から排出された燃焼ガスは、環境装置(脱硝装置、集塵装置、脱硫装置などで図示省略)で所定の処理を行うとともに、空気予熱器34で一次空気や二次空気との熱交換が行われ、誘引通風機(IDF:Induced Draft Fan)33を介して煙突(図示省略)へと導かれて外気へと放出される。空気予熱器34において燃焼ガスにより加熱された一次空気通風機31から送出される空気は、前述した熱ガス流路30aに供給される。
ボイラ200の各熱交換器への給水は、節炭器(図示省略)において加熱された後に、蒸発器(図示省略)および過熱器(図示省略)によって更に加熱されて高温高圧の過熱蒸気が生成され、発電部である蒸気タービン(図示省略)へと送られて蒸気タービンを回転駆動し、蒸気タービンに接続した発電機(図示省略)を回転駆動して発電が行われ、発電プラント1を構成する。 The combustion gas discharged from theboiler 200 undergoes predetermined treatment in an environmental device (such as a denitration device, dust collector, and desulfurization device, not shown), and is then heat-exchanged with primary air and secondary air in an air preheater 34, and is then guided to a chimney (not shown) via an induced draft fan (IDF) 33 and released into the outside air. The air heated by the combustion gas in the air preheater 34 and discharged from the primary air fan 31 is supplied to the above-mentioned hot gas flow path 30a.
The water supplied to each heat exchanger ofboiler 200 is heated in a coal economizer (not shown), and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature, high-pressure superheated steam. This is then sent to the steam turbine (not shown), which is the power generation section, to rotate the steam turbine, which in turn rotates a generator (not shown) connected to the steam turbine to generate electricity, thereby constituting power generation plant 1.
ボイラ200の各熱交換器への給水は、節炭器(図示省略)において加熱された後に、蒸発器(図示省略)および過熱器(図示省略)によって更に加熱されて高温高圧の過熱蒸気が生成され、発電部である蒸気タービン(図示省略)へと送られて蒸気タービンを回転駆動し、蒸気タービンに接続した発電機(図示省略)を回転駆動して発電が行われ、発電プラント1を構成する。 The combustion gas discharged from the
The water supplied to each heat exchanger of
次に、本実施形態に係る粉砕ローラ13及び粉砕テーブル12の詳細について、図1から図13を参照して詳細に説明する。
図1及び図2に示すように、各粉砕ローラ13は、ジャーナルシャフト44、ジャーナルヘッド45及び支持軸48を介して、回転中心軸線C2を中心として回転可能にハウジング11に対して支持されている。ジャーナルシャフト44は、ハウジング11の側面部近傍からハウジング11の中心部側へ下方に傾斜するように延在している。ジャーナルシャフト44は、基端部(ハウジング11の側面部側の端部)がジャーナルヘッド45に固定されている。また、ジャーナルシャフト44の先端部(ミル10の中心部側の端部)には、軸受(図示省略)を介して粉砕ローラ13が回転自在に支持されている。すなわち、粉砕ローラ13は、粉砕テーブル12の鉛直上方で、上部側が下部側よりもハウジング11の中心部側に向くように位置する傾斜した状態で、回転可能に支持されている。 Next, the details of the crushingroller 13 and the crushing table 12 according to this embodiment will be described in detail with reference to FIGS.
As shown in Figs. 1 and 2, each of the crushingrollers 13 is supported by the housing 11 via a journal shaft 44, a journal head 45, and a support shaft 48 so as to be rotatable about the rotation center axis C2. The journal shaft 44 extends from the vicinity of the side portion of the housing 11 to the central portion of the housing 11 so as to be inclined downward. The journal shaft 44 has a base end (an end portion on the side portion side of the housing 11) fixed to the journal head 45. The crushing roller 13 is rotatably supported by a tip end (an end portion on the central portion side of the mill 10) of the journal shaft 44 via a bearing (not shown). That is, the crushing roller 13 is rotatably supported vertically above the crushing table 12 in an inclined state in which the upper side faces the central portion of the housing 11 more than the lower side.
図1及び図2に示すように、各粉砕ローラ13は、ジャーナルシャフト44、ジャーナルヘッド45及び支持軸48を介して、回転中心軸線C2を中心として回転可能にハウジング11に対して支持されている。ジャーナルシャフト44は、ハウジング11の側面部近傍からハウジング11の中心部側へ下方に傾斜するように延在している。ジャーナルシャフト44は、基端部(ハウジング11の側面部側の端部)がジャーナルヘッド45に固定されている。また、ジャーナルシャフト44の先端部(ミル10の中心部側の端部)には、軸受(図示省略)を介して粉砕ローラ13が回転自在に支持されている。すなわち、粉砕ローラ13は、粉砕テーブル12の鉛直上方で、上部側が下部側よりもハウジング11の中心部側に向くように位置する傾斜した状態で、回転可能に支持されている。 Next, the details of the crushing
As shown in Figs. 1 and 2, each of the crushing
粉砕ローラ13は、図2に示すように、ジャーナルシャフト44の先端部に回転中心軸線C2を中心として回転自在に支持されるジャーナルハウジング(支持部)43と、ジャーナルハウジング43に外嵌される略円環状のローラ部49と、を備えている。ジャーナルハウジング43は、ジャーナルシャフト44の先端を覆うように設けられ、外周面が円筒状に形成されている。
As shown in FIG. 2, the crushing roller 13 includes a journal housing (support portion) 43 that is supported at the tip of the journal shaft 44 so as to be rotatable about the central axis of rotation C2, and a substantially annular roller portion 49 that is fitted onto the outside of the journal housing 43. The journal housing 43 is provided to cover the tip of the journal shaft 44, and has a cylindrical outer circumferential surface.
図3及び図4は、ローラ部49を、ローラ部49の回転中心軸線C2が延在する方向を含む面で切断した際の断面(以下、「軸線方向断面」と称する。)の要部を示している。
ローラ部49は、図3及び図4に示すように、ジャーナルハウジング43に嵌合する高クロム鋳鉄製の基部51と、基部51の外周面51aに設けられるセラミック製の部材を一部に含むセラミック部52とを備えている。すなわち、本実施形態に係るローラ部49は、いわゆるセラミック埋め込み型高クロム鋳鉄ローラである。
ローラ部49は、外周面49aが略円環状であって、かつ、内周面(ジャーナルハウジング43の外周面と接触する面)が略円筒状を為している。ローラ部49は、外周面49aと内周面とを端面が接続している。ローラ部49の外周面49aは、軸線方向断面において、中心点CPを中心とした円弧状となるように湾曲している。ローラ部49の内周面は、軸線方向断面において、回転中心軸線C2と平行な直線とされている。 3 and 4 show a main part of a cross section of theroller portion 49 taken along a plane including the direction in which the rotational center axis C2 of the roller portion 49 extends (hereinafter referred to as an "axial cross section").
3 and 4, theroller portion 49 includes a base portion 51 made of high chromium cast iron that fits into the journal housing 43, and a ceramic portion 52 that includes a ceramic member provided on an outer circumferential surface 51a of the base portion 51. In other words, the roller portion 49 according to this embodiment is a so-called ceramic-embedded high chromium cast iron roller.
Theroller portion 49 has an outer peripheral surface 49a that is substantially annular, and an inner peripheral surface (the surface that comes into contact with the outer peripheral surface of the journal housing 43) that is substantially cylindrical. The outer peripheral surface 49a and the inner peripheral surface of the roller portion 49 are connected at end faces. The outer peripheral surface 49a of the roller portion 49 is curved so as to form an arc shape centered on a center point CP in an axial cross section. The inner peripheral surface of the roller portion 49 is a straight line parallel to the central rotation axis C2 in an axial cross section.
ローラ部49は、図3及び図4に示すように、ジャーナルハウジング43に嵌合する高クロム鋳鉄製の基部51と、基部51の外周面51aに設けられるセラミック製の部材を一部に含むセラミック部52とを備えている。すなわち、本実施形態に係るローラ部49は、いわゆるセラミック埋め込み型高クロム鋳鉄ローラである。
ローラ部49は、外周面49aが略円環状であって、かつ、内周面(ジャーナルハウジング43の外周面と接触する面)が略円筒状を為している。ローラ部49は、外周面49aと内周面とを端面が接続している。ローラ部49の外周面49aは、軸線方向断面において、中心点CPを中心とした円弧状となるように湾曲している。ローラ部49の内周面は、軸線方向断面において、回転中心軸線C2と平行な直線とされている。 3 and 4 show a main part of a cross section of the
3 and 4, the
The
基部51は、ジャーナルハウジング43に支持されている。基部51は、略円環形状に形成される。また、基部51は、内周面がジャーナルハウジング43の外周面と接触するように、該ジャーナルハウジング43と嵌合している。セラミック部52は、円環状の基部51の外周部に固定されている。セラミック部52は、基部51の周方向の略全域に亘って設けられている。すなわち、セラミック部52は、略円環形状に形成されている。また、セラミック部52は、基部51の外周面51aの全域を覆っているのではなく、基部51の外周面51aのうち、ローラ部49の基端側を覆っている。ここで、基端側とは、粉砕ローラ13が接続されるジャーナルシャフト44側であり、粉砕テーブル12の半径方向において外周側を示し、先端側とは、粉砕テーブル12の半径方向において回転中心軸線C1(図1参照)側を示す。すなわち、ローラ部49の外周面49a(固体燃料を粉砕する面)は、基端側がセラミック部52の外周面52aで形成され、先端側(基端側とは反対側)が基部51の外周面51aで形成されている。
The base 51 is supported by the journal housing 43. The base 51 is formed in a substantially annular shape. The base 51 is fitted to the journal housing 43 so that the inner peripheral surface of the base 51 contacts the outer peripheral surface of the journal housing 43. The ceramic part 52 is fixed to the outer peripheral part of the annular base 51. The ceramic part 52 is provided over substantially the entire circumferential area of the base 51. That is, the ceramic part 52 is formed in a substantially annular shape. The ceramic part 52 does not cover the entire outer peripheral surface 51a of the base 51, but covers the base end side of the roller part 49 of the outer peripheral surface 51a of the base 51. Here, the base end side refers to the journal shaft 44 side to which the grinding roller 13 is connected, and refers to the outer peripheral side in the radial direction of the grinding table 12, and the tip side refers to the rotation center axis C1 (see FIG. 1) side in the radial direction of the grinding table 12. That is, the outer peripheral surface 49a of the roller portion 49 (the surface that crushes the solid fuel) is formed by the outer peripheral surface 52a of the ceramic portion 52 on the base end side, and by the outer peripheral surface 51a of the base portion 51 on the tip end side (the side opposite the base end side).
セラミック部52は、セラミック製の部材(セラミックス粒子52c)を含んでいるので、高クロム鋳鉄製の基部51よりも線膨張係数が小さい。また、セラミック部52は、基部51よりも耐摩耗性に優れている。基部51の材料は、上記説明の材料に限定されない。
The ceramic portion 52 contains ceramic members (ceramic particles 52c), and therefore has a smaller linear expansion coefficient than the base portion 51 made of high chromium cast iron. The ceramic portion 52 also has better wear resistance than the base portion 51. The material of the base portion 51 is not limited to the materials described above.
図2の破線L1は、一般的なミル10(換言すれば、本開示に係る粉砕ローラ13や粉砕テーブル12を適用していないミル)が固体燃料を粉砕することで進行するローラ部49の摩耗の進行態様を示している。すなわち、ローラ部49は、ローラ部49の基端側(すなわち、先端側とは反対側)の一部分P1(以下、「最大摩耗点P1」と称する)が、他の部分よりも大きく摩耗する状況にある。上述のように、基端側とは粉砕テーブル12の半径方向において外周側を示し、先端側とは粉砕テーブル12の回転中心軸線C1(図1参照)側を示す。また、図2の破線L2は、粉砕テーブル12の摩耗の進行態様を示している。粉砕テーブル12のテーブル部12a(図8参照)は、一部分P2(以下、「最大摩耗点P2」と称する)が、他の部分よりも大きく摩耗する状況にある。
なお、図2では、摩耗前の最大摩耗点を符号「P1」及び「P2」で示し、実際に摩耗が進行した状態の最大摩耗点を符号「P1´」及び「P2´」で示している。摩耗前の最大摩耗点P1及びP2は、摩耗に対する対策を施していない場合に、摩耗が最も進行し易いと予想される点である。 The dashed line L1 in FIG. 2 shows the progression of wear of theroller portion 49 as a result of a general mill 10 (in other words, a mill not applying the grinding roller 13 or grinding table 12 according to the present disclosure) grinding solid fuel. That is, the roller portion 49 is in a state where a portion P1 (hereinafter referred to as the "maximum wear point P1") on the base end side (i.e., the side opposite to the tip end side) of the roller portion 49 is worn more than other portions. As described above, the base end side refers to the outer periphery side in the radial direction of the grinding table 12, and the tip side refers to the side of the rotation center axis C1 (see FIG. 1) of the grinding table 12. The dashed line L2 in FIG. 2 shows the progression of wear of the grinding table 12. The table portion 12a of the grinding table 12 (see FIG. 8) is in a state where a portion P2 (hereinafter referred to as the "maximum wear point P2") is worn more than other portions.
In Fig. 2, the maximum wear points before wear are indicated by the symbols "P1" and "P2," and the maximum wear points after wear has actually progressed are indicated by the symbols "P1'" and "P2'." The maximum wear points P1 and P2 before wear are the points at which wear is expected to progress most easily if no measures against wear are taken.
なお、図2では、摩耗前の最大摩耗点を符号「P1」及び「P2」で示し、実際に摩耗が進行した状態の最大摩耗点を符号「P1´」及び「P2´」で示している。摩耗前の最大摩耗点P1及びP2は、摩耗に対する対策を施していない場合に、摩耗が最も進行し易いと予想される点である。 The dashed line L1 in FIG. 2 shows the progression of wear of the
In Fig. 2, the maximum wear points before wear are indicated by the symbols "P1" and "P2," and the maximum wear points after wear has actually progressed are indicated by the symbols "P1'" and "P2'." The maximum wear points P1 and P2 before wear are the points at which wear is expected to progress most easily if no measures against wear are taken.
図3及び図4に示すように、最大摩耗点P1は、ローラ部49の外周面49aにおいて、回転中心軸線C2と直交するとともに回転中心軸線C2が延在する方向における中央部を通過する線である中心線C3に対して、中心点CPにおいて基端側に所定の角度θ1を為す位置である。詳細には、中心線C3と所定の角度θ1を為す線L3と、外周面49aとが交差する位置である。本実施形態では、角度θ1は、一例として、8度とされているが、角度θ1は8度に限定されない。角度θ1は、3度から13度の範囲(8度のプラスマイナス5度の範囲)内であればよい。
また、本実施形態では、中心線C3と所定の角度θ1を為す線L3が通過する部分において、セラミック部52の軸線方向断面における厚さが最も厚くなっている。 As shown in Figures 3 and 4, the maximum wear point P1 is a position on the outercircumferential surface 49a of the roller part 49 that forms a predetermined angle θ1 on the base end side at the center point CP with respect to a center line C3 that is a line that is perpendicular to the rotation central axis C2 and passes through the center in the direction in which the rotation central axis C2 extends. More specifically, it is a position where a line L3 that forms a predetermined angle θ1 with the center line C3 intersects with the outer circumferential surface 49a. In this embodiment, the angle θ1 is set to 8 degrees as an example, but the angle θ1 is not limited to 8 degrees. The angle θ1 may be within the range of 3 degrees to 13 degrees (a range of 8 degrees plus or minus 5 degrees).
In this embodiment, the thickness of theceramic portion 52 in the axial cross section is greatest at a portion where a line L3 that forms a predetermined angle θ1 with the center line C3 passes.
また、本実施形態では、中心線C3と所定の角度θ1を為す線L3が通過する部分において、セラミック部52の軸線方向断面における厚さが最も厚くなっている。 As shown in Figures 3 and 4, the maximum wear point P1 is a position on the outer
In this embodiment, the thickness of the
次に、セラミック部52の詳細について図3及び図4等を使用して説明する。
図3は、本実施形態に係るセラミック部52を示している。また、図4は本実施形態の変形例に係るセラミック部52Aを示している。 Next, theceramic portion 52 will be described in detail with reference to FIGS.
Fig. 3 shows theceramic part 52 according to this embodiment, and Fig. 4 shows a ceramic part 52A according to a modified example of this embodiment.
図3は、本実施形態に係るセラミック部52を示している。また、図4は本実施形態の変形例に係るセラミック部52Aを示している。 Next, the
Fig. 3 shows the
図3に示すように、本実施形態に係るセラミック部52は、金属製の母材52b及び母材52bに含まれる多数のセラミックス粒子52cを有している。多数のセラミックス粒子52cは母材52b中に散在しており、隣接するセラミックス粒子52cと結合している。セラミックス粒子52cの粒径は、例えば、1mmから2mm程度とされている。
As shown in FIG. 3, the ceramic part 52 according to this embodiment has a metallic base material 52b and a large number of ceramic particles 52c contained in the base material 52b. The large number of ceramic particles 52c are scattered in the base material 52b and are bonded to adjacent ceramic particles 52c. The particle size of the ceramic particles 52c is, for example, about 1 mm to 2 mm.
また、セラミック部52は、回転中心軸線C2方向(紙面左右方向)に沿って母材52bに対するセラミックの含有量であるセラミック密度(セラミックス粒子52cの密度)が変化している。具体的には、セラミック部52は、ローラ部49の外周面49aの最も摩耗し易い点である最大摩耗点P1を含む領域(第1領域)のセラミック密度が他の領域(第2領域)のセラミック密度よりも高くなっている。詳細には、セラミック部52は、最大摩耗点P1(詳細には、最大摩耗点P1と中心点CPとを通過する線L3)から回転中心軸線C2方向に離れるにしたがって連続的にセラミックス粒子52cの密度(セラミック密度)が低くなっている。
セラミック部52は、ローラ部49の周方向においてセラミック密度は一様とされると好適である。
また、セラミック密度の変化率は、各部位に要求される耐摩耗性の0.5乗以上の傾きとされると好適である。 In addition, the ceramic density (density ofceramic particles 52c), which is the content of ceramic relative to the base material 52b, changes along the direction of the rotation axis C2 (left-right direction on the paper). Specifically, the ceramic density of the ceramic part 52 is higher in a region (first region) including a maximum wear point P1, which is the most susceptible point of wear on the outer circumferential surface 49a of the roller part 49, than in other regions (second region). In detail, the density of the ceramic particles 52c (ceramic density) of the ceramic part 52 decreases continuously with increasing distance from the maximum wear point P1 (specifically, a line L3 passing through the maximum wear point P1 and the center point CP) in the direction of the rotation axis C2.
It is preferable that the ceramic density of theceramic portion 52 be uniform in the circumferential direction of the roller portion 49 .
It is also preferable that the rate of change in the ceramic density has a slope of at least 0.5 of the wear resistance required for each portion.
セラミック部52は、ローラ部49の周方向においてセラミック密度は一様とされると好適である。
また、セラミック密度の変化率は、各部位に要求される耐摩耗性の0.5乗以上の傾きとされると好適である。 In addition, the ceramic density (density of
It is preferable that the ceramic density of the
It is also preferable that the rate of change in the ceramic density has a slope of at least 0.5 of the wear resistance required for each portion.
図4に示すように、本実施形態の変形例に係るセラミック部52Aは、セラミック密度が高い高密度部52Aaと、高密度部52Aaの回転中心軸線C2方向の両側に隣接して設けられ高密度部52Aaよりもセラミック密度が低い2つの中密度部52Abと、各中密度部52Abの回転中心軸線C2方向の高密度部52Aaとは反対側に隣接して設けられ、中密度部52Abよりもセラミック密度が低い2つの低密度部52Acと、を有する。セラミック部52Aは、最大摩耗点P1から回転中心軸線C2方向に離れるにしたがって段階的(本実施形態では一例として3段階)にセラミックス粒子52cの密度(セラミック密度)が低くなっている。
高密度部52Aa、中密度部52Ab及び低密度部52Acとは、各々に含まれる母材同士が結合することで連結している。高密度部52Aa、中密度部52Ab及び低密度部52Acは、各々、ローラ部49の周方向の全域に亘って設けられている。
高密度部52Aa、中密度部52Ab及び低密度部52Acは、各々、セラミック密度が一様となるように形成されている。 4, theceramic part 52A according to the modified embodiment of the present invention has a high-density part 52Aa having a high ceramic density, two medium-density parts 52Ab provided adjacent to both sides of the high-density part 52Aa in the direction of the rotation axis C2 and having a lower ceramic density than the high-density part 52Aa, and two low-density parts 52Ac provided adjacent to each of the medium-density parts 52Ab on the opposite side of the high-density part 52Aa in the direction of the rotation axis C2 and having a lower ceramic density than the medium-density part 52Ab. In the ceramic part 52A, the density (ceramic density) of the ceramic particles 52c decreases stepwise (in the present embodiment, three steps are used as an example) as it moves away from the maximum wear point P1 in the direction of the rotation axis C2.
The high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are connected by bonding between the base materials contained in each portion. The high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each provided over the entire area in the circumferential direction of theroller portion 49.
The high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each formed so as to have a uniform ceramic density.
高密度部52Aa、中密度部52Ab及び低密度部52Acとは、各々に含まれる母材同士が結合することで連結している。高密度部52Aa、中密度部52Ab及び低密度部52Acは、各々、ローラ部49の周方向の全域に亘って設けられている。
高密度部52Aa、中密度部52Ab及び低密度部52Acは、各々、セラミック密度が一様となるように形成されている。 4, the
The high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are connected by bonding between the base materials contained in each portion. The high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each provided over the entire area in the circumferential direction of the
The high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each formed so as to have a uniform ceramic density.
図4に示すように、高密度部52Aaと中密度部52Abと低密度部52Acとを並べて配置するセラミック部52Aとすることで、異なるセラミック密度である高密度部52Aaと中密度部52Abと低密度部52Acとを製造し、高密度部52Aaと中密度部52Abと低密度部52Acとを回転軸線方向に並べて配置するだけで、セラミック部52Aの回転軸線方向においてセラミック密度を変化させたセラミック部52Aを容易に製造することができる。
As shown in FIG. 4, by arranging the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac side by side in the ceramic portion 52A, the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac, which have different ceramic densities, can be manufactured, and by simply arranging the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac side by side in the direction of the rotation axis, the ceramic portion 52A with the ceramic density changed in the direction of the rotation axis of the ceramic portion 52A can be easily manufactured.
高密度部52Aaは、最大摩耗点P1を含むように配置されている。詳細には、高密度部52Aaの回転中心軸線C2方向の中間に最大摩耗点P1が重なるように配置されている。また、2つの中密度部52Abは、回転中心軸線C2方向に高密度部52Aaを挟むように配置されている。各中密度部52Abは、高密度部52Aaと低密度部52Acとに挟まれるように配置されている。また、2つの低密度部52Acは、回転中心軸線C2方向に中密度部52Abを挟むように配置されている。各低密度部52Acは、セラミック部52Aの回転中心軸線C2方向の両端部に配置されている。
The high density portion 52Aa is positioned so as to include the maximum wear point P1. More specifically, the high density portion 52Aa is positioned so that the maximum wear point P1 overlaps with the middle of the high density portion 52Aa in the direction of the central axis C2 of rotation. The two medium density portions 52Ab are positioned so as to sandwich the high density portion 52Aa in the direction of the central axis C2 of rotation. Each medium density portion 52Ab is positioned so as to be sandwiched between the high density portion 52Aa and the low density portion 52Ac. The two low density portions 52Ac are positioned so as to sandwich the medium density portion 52Ab in the direction of the central axis C2 of rotation. Each low density portion 52Ac is positioned at both ends of the ceramic portion 52A in the direction of the central axis C2 of rotation.
なお、上記説明では、高密度部52Aa、中密度部52Ab及び低密度部52Acの3つを各々ローラ部49の周方向の全域に亘って設ける例について説明したが、本開示はこれに限定されない。例えば、図6及び図7に示すように、高密度部52Aaと低密度部52Acをローラ部49の周方向に交互に並べることで中密度部52Abを代用してもよい。このようにすることで、セラミック密度の異なる部品の製造種類を低減することができるので、セラミック部52Aの製造を容易化することができる。また、異なるセラミック密度のセラミック部をローラ部49の周方向に並べることで、摩耗量の差によってローラ表面に周方向に凹凸が形成される。この凹凸が被粉砕物である固体燃料の噛み込みを促進するため、粉砕ローラ13のスリップを抑制することができる。
なお、図6及び図7は、図5に示すローラ部49の外周面49aの要部(VI部分)の拡大図である。また、図6及び図7の矢印は、ローラ部49の回転方向を示している。 In the above description, an example in which the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each provided over the entire circumferential area of theroller portion 49 has been described, but the present disclosure is not limited thereto. For example, as shown in Figs. 6 and 7, the high density portion 52Aa and the low density portion 52Ac may be arranged alternately in the circumferential direction of the roller portion 49 to substitute for the medium density portion 52Ab. In this way, the number of types of parts with different ceramic densities can be reduced, and the manufacture of the ceramic portion 52A can be facilitated. In addition, by arranging ceramic portions with different ceramic densities in the circumferential direction of the roller portion 49, unevenness is formed in the circumferential direction of the roller surface due to the difference in the amount of wear. This unevenness promotes the biting of the solid fuel, which is the object to be crushed, and therefore slippage of the crushing roller 13 can be suppressed.
6 and 7 are enlarged views of a main portion (portion VI) of the outercircumferential surface 49a of the roller portion 49 shown in Fig. 5. The arrows in Fig. 6 and 7 indicate the direction of rotation of the roller portion 49.
なお、図6及び図7は、図5に示すローラ部49の外周面49aの要部(VI部分)の拡大図である。また、図6及び図7の矢印は、ローラ部49の回転方向を示している。 In the above description, an example in which the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are each provided over the entire circumferential area of the
6 and 7 are enlarged views of a main portion (portion VI) of the outer
図6に示すように、中密度領域に配置される高密度部52Aaは、高密度領域に配置される高密度部52Aaとは別体として設けられてもよい。この場合、図6に示すように、中密度領域に配置される高密度部52Aaと高密度領域に配置される高密度部52Aaとを周方向にずらして配置してもよい。また、同様に、中密度領域に配置される低密度部52Acは、低密度領域に配置される低密度部52Acとは別体として設けられてもよい。この場合に、中密度領域に配置される低密度部52Acと低密度領域に配置される低密度部52Acとを周方向にずらして配置してもよい。
また、各高密度部52Aa及び各低密度部52Acは、平面視で矩形に形成されている。このように高密度部52Aa及び低密度部52Acを比較的単純な形状とすることで、高密度部52Aa及び低密度部52Acを容易に製造することができる。 As shown in Fig. 6, the high density portion 52Aa arranged in the medium density region may be provided separately from the high density portion 52Aa arranged in the high density region. In this case, as shown in Fig. 6, the high density portion 52Aa arranged in the medium density region and the high density portion 52Aa arranged in the high density region may be arranged to be shifted in the circumferential direction. Similarly, the low density portion 52Ac arranged in the medium density region may be provided separately from the low density portion 52Ac arranged in the low density region. In this case, the low density portion 52Ac arranged in the medium density region and the low density portion 52Ac arranged in the low density region may be arranged to be shifted in the circumferential direction.
Moreover, each of the high density portions 52Aa and each of the low density portions 52Ac are formed in a rectangular shape in a plan view. By forming the high density portions 52Aa and the low density portions 52Ac in this manner to have a relatively simple shape, the high density portions 52Aa and the low density portions 52Ac can be easily manufactured.
また、各高密度部52Aa及び各低密度部52Acは、平面視で矩形に形成されている。このように高密度部52Aa及び低密度部52Acを比較的単純な形状とすることで、高密度部52Aa及び低密度部52Acを容易に製造することができる。 As shown in Fig. 6, the high density portion 52Aa arranged in the medium density region may be provided separately from the high density portion 52Aa arranged in the high density region. In this case, as shown in Fig. 6, the high density portion 52Aa arranged in the medium density region and the high density portion 52Aa arranged in the high density region may be arranged to be shifted in the circumferential direction. Similarly, the low density portion 52Ac arranged in the medium density region may be provided separately from the low density portion 52Ac arranged in the low density region. In this case, the low density portion 52Ac arranged in the medium density region and the low density portion 52Ac arranged in the low density region may be arranged to be shifted in the circumferential direction.
Moreover, each of the high density portions 52Aa and each of the low density portions 52Ac are formed in a rectangular shape in a plan view. By forming the high density portions 52Aa and the low density portions 52Ac in this manner to have a relatively simple shape, the high density portions 52Aa and the low density portions 52Ac can be easily manufactured.
また、図7に示すように、中密度領域に配置される高密度部52Aaは、高密度領域に配置される高密度部52Aaと一体的に設けられてもよい。この場合、図7に示すように、高密度部52Aaと低密度部52Acとは、周方向にずらして配置される。また、高密度部52Aaの回転中心軸線C2方向(紙面左右方向)の両端部は、中密度領域に配置される。高密度部52Aaの中密度領域に配置される部分は、回転中心軸線C2方向の端部に向かうにしたがって周方向の長さが短くなるように形成されている。
また、低密度部52Acの回転中心軸線C2方向(紙面左右方向)の中心側端部は、中密度領域に配置される。低密度部52Acの中密度領域に配置される部分は、回転中心軸線C2方向の中央に向かうにしたがって周方向の長さが短くなるように形成されている。
図7の例では、中密度領域において、テーパ状の高密度部52Aaと低密度部52Acとが噛み合うように交互に配置されている。 Also, as shown in Fig. 7, the high density portion 52Aa arranged in the medium density region may be provided integrally with the high density portion 52Aa arranged in the high density region. In this case, as shown in Fig. 7, the high density portion 52Aa and the low density portion 52Ac are arranged to be shifted in the circumferential direction. Also, both ends of the high density portion 52Aa in the direction of the rotation center axis C2 (left and right direction of the paper) are arranged in the medium density region. The portion of the high density portion 52Aa arranged in the medium density region is formed so that the circumferential length becomes shorter toward the end in the direction of the rotation center axis C2.
The end of the low-density portion 52Ac on the center side in the direction of the rotation axis C2 (left-right direction on the paper) is disposed in the medium-density region. The portion of the low-density portion 52Ac disposed in the medium-density region is formed so that the circumferential length becomes shorter toward the center in the direction of the rotation axis C2.
In the example of FIG. 7, in the medium density region, tapered high density portions 52Aa and low density portions 52Ac are alternately arranged so as to mesh with each other.
また、低密度部52Acの回転中心軸線C2方向(紙面左右方向)の中心側端部は、中密度領域に配置される。低密度部52Acの中密度領域に配置される部分は、回転中心軸線C2方向の中央に向かうにしたがって周方向の長さが短くなるように形成されている。
図7の例では、中密度領域において、テーパ状の高密度部52Aaと低密度部52Acとが噛み合うように交互に配置されている。 Also, as shown in Fig. 7, the high density portion 52Aa arranged in the medium density region may be provided integrally with the high density portion 52Aa arranged in the high density region. In this case, as shown in Fig. 7, the high density portion 52Aa and the low density portion 52Ac are arranged to be shifted in the circumferential direction. Also, both ends of the high density portion 52Aa in the direction of the rotation center axis C2 (left and right direction of the paper) are arranged in the medium density region. The portion of the high density portion 52Aa arranged in the medium density region is formed so that the circumferential length becomes shorter toward the end in the direction of the rotation center axis C2.
The end of the low-density portion 52Ac on the center side in the direction of the rotation axis C2 (left-right direction on the paper) is disposed in the medium-density region. The portion of the low-density portion 52Ac disposed in the medium-density region is formed so that the circumferential length becomes shorter toward the center in the direction of the rotation axis C2.
In the example of FIG. 7, in the medium density region, tapered high density portions 52Aa and low density portions 52Ac are alternately arranged so as to mesh with each other.
次に、図1、図8及び図9を用いて粉砕テーブル12について説明する。
図1に示すように、粉砕テーブル12には、給炭管17(図1参照)から固体燃料が供給される。粉砕テーブル12は、ミルモータ15から伝達される駆動力により回転中心軸線C1を中心として回転する。また、粉砕テーブル12は、図8に示すように、固体燃料が供給されるテーブル部12aとテーブル部12aを下方から支持する支持部12bと、を備えている。 Next, the grinding table 12 will be described with reference to FIGS.
As shown in Fig. 1, solid fuel is supplied to the grinding table 12 from a coal supply pipe 17 (see Fig. 1). The grinding table 12 rotates about a central rotation axis C1 by a driving force transmitted from amill motor 15. Also, as shown in Fig. 8, the grinding table 12 includes a table portion 12a to which solid fuel is supplied and a support portion 12b that supports the table portion 12a from below.
図1に示すように、粉砕テーブル12には、給炭管17(図1参照)から固体燃料が供給される。粉砕テーブル12は、ミルモータ15から伝達される駆動力により回転中心軸線C1を中心として回転する。また、粉砕テーブル12は、図8に示すように、固体燃料が供給されるテーブル部12aとテーブル部12aを下方から支持する支持部12bと、を備えている。 Next, the grinding table 12 will be described with reference to FIGS.
As shown in Fig. 1, solid fuel is supplied to the grinding table 12 from a coal supply pipe 17 (see Fig. 1). The grinding table 12 rotates about a central rotation axis C1 by a driving force transmitted from a
テーブル部12aは、支持部12bに支持される基部12cと、基部12cの上面に設けられ基部12cと線膨張係数が異なるとともに基部12cよりも耐摩耗性が優れているセラミック部12dと、を有している。
固体燃料は、セラミック部12dの上面に供給される。セラミック部12dは、テーブル部12aの周方向の略全域に亘って形成されている。すなわち、セラミック部12dは、上面視で円環形状を為している。 Thetable portion 12a has a base portion 12c supported by the support portion 12b, and a ceramic portion 12d provided on the upper surface of the base portion 12c, which has a linear expansion coefficient different from that of the base portion 12c and is more wear-resistant than the base portion 12c.
The solid fuel is supplied to the upper surface of theceramic portion 12d. The ceramic portion 12d is formed over substantially the entire circumferential area of the table portion 12a. That is, the ceramic portion 12d has a circular ring shape when viewed from above.
固体燃料は、セラミック部12dの上面に供給される。セラミック部12dは、テーブル部12aの周方向の略全域に亘って形成されている。すなわち、セラミック部12dは、上面視で円環形状を為している。 The
The solid fuel is supplied to the upper surface of the
セラミック部12dは、金属製の母材及び母材に含まれる多数のセラミックス粒子52cを有している。多数のセラミックス粒子52cは母材中に散在しており、隣接するセラミックス粒子52cと結合している。セラミックス粒子52cの粒径は、例えば、1mmから2mm程度とされている。
The ceramic portion 12d has a metallic base material and a large number of ceramic particles 52c contained in the base material. The large number of ceramic particles 52c are scattered in the base material and bonded to adjacent ceramic particles 52c. The particle size of the ceramic particles 52c is, for example, about 1 mm to 2 mm.
また、図9に示すように、セラミック部12dは、テーブル部12aの半径方向(紙面左右方向)に沿って母材に対するセラミックの含有量であるセラミック密度(セラミックス粒子52cの密度)が変化している。具体的には、セラミック部12dは、テーブル部12aの上面の最も摩耗し易い点である最大摩耗点P2を含む領域(第1領域)のセラミック密度が他の領域(第2領域)のセラミック密度よりも高くなっている。詳細には、セラミック部12dは、最大摩耗点P2からテーブル部12aの半径方向に離れるにしたがってセラミックス密度が低くなっている。テーブル部12aの最大摩耗点P2は、粉砕ローラ13の中心線C3よりも半径方向の中心側となる。
Also, as shown in FIG. 9, the ceramic density (density of ceramic particles 52c), which is the content of ceramic in the base material, varies in the radial direction (left-right direction on the paper) of the table portion 12a in the ceramic portion 12d. Specifically, the ceramic density of the region (first region) of the ceramic portion 12d that includes the maximum wear point P2, which is the point on the top surface of the table portion 12a that is most susceptible to wear, is higher than the ceramic density of the other region (second region). In more detail, the ceramic density of the ceramic portion 12d decreases as it moves away from the maximum wear point P2 in the radial direction of the table portion 12a. The maximum wear point P2 of the table portion 12a is located toward the center in the radial direction from the center line C3 of the grinding roller 13.
セラミック部12dは、セラミック密度が高い高密度部12daと、高密度部12daの半径方向の両側に隣接して設けられ高密度部12daよりもセラミック密度が低い2つの中密度部12dbと、各中密度部12dbの半径方向の高密度部12daとは反対側に隣接して設けられ中密度部12dbよりもセラミック密度が低い2つの低密度部12dcと、を有する。セラミック部12dは、最大摩耗点P2からテーブル部12aの半径方向に離れるにしたがって段階的(本実施形態では一例として3段階)にセラミックス密度が低くなっている。
高密度部12da、中密度部12db及び低密度部12dcとは、各々に含まれる母材同士が結合することで連結している。高密度部12da、中密度部12db及び低密度部12dcは、各々、テーブル部12aの周方向の全域に亘って設けられている。 Theceramic portion 12d has a high density portion 12da having a high ceramic density, two medium density portions 12db provided adjacent to both radial sides of the high density portion 12da and having a lower ceramic density than the high density portion 12da, and two low density portions 12dc provided adjacent to each of the medium density portions 12db on the radial opposite side to the high density portion 12da and having a lower ceramic density than the medium density portion 12db. The ceramic density of the ceramic portion 12d decreases in stages (in this embodiment, three stages as an example) as it moves away from the maximum wear point P2 in the radial direction of the table portion 12a.
The high density portion 12da, the medium density portion 12db, and the low density portion 12dc are connected to each other by bonding between the base materials contained in each portion. The high density portion 12da, the medium density portion 12db, and the low density portion 12dc are each provided over the entire circumferential area of thetable portion 12a.
高密度部12da、中密度部12db及び低密度部12dcとは、各々に含まれる母材同士が結合することで連結している。高密度部12da、中密度部12db及び低密度部12dcは、各々、テーブル部12aの周方向の全域に亘って設けられている。 The
The high density portion 12da, the medium density portion 12db, and the low density portion 12dc are connected to each other by bonding between the base materials contained in each portion. The high density portion 12da, the medium density portion 12db, and the low density portion 12dc are each provided over the entire circumferential area of the
高密度部12daは、最大摩耗点P2を含むように配置されている。詳細には、高密度部12daの半径方向の略中央に最大摩耗点P2が重なるように配置されている。また、2つの中密度部12dbは、半径方向に高密度部12daを挟むように配置されている。各中密度部12dbは、高密度部12daと低密度部12dcとに挟まれるように配置されている。また、2つの低密度部12dcは、半径方向に中密度部12dbを挟むように配置されている。各低密度部12dcは、セラミック部12dの半径方向の両端部に配置されている。
The high density portion 12da is positioned so as to include the maximum wear point P2. More specifically, the high density portion 12da is positioned so that the maximum wear point P2 overlaps with approximately the center in the radial direction. The two medium density portions 12db are positioned so as to sandwich the high density portion 12da in the radial direction. Each medium density portion 12db is positioned so as to be sandwiched between the high density portion 12da and the low density portion 12dc. The two low density portions 12dc are positioned so as to sandwich the medium density portion 12db in the radial direction. Each low density portion 12dc is positioned at both ends in the radial direction of the ceramic portion 12d.
次に、ローラ部49を製造する方法について図10から図12を参照して説明する。図10から図12に示されるUPは、鉛直方向の上方を示している。
Next, a method for manufacturing the roller portion 49 will be described with reference to Figures 10 to 12. UP shown in Figures 10 to 12 indicates the upward vertical direction.
まず、図3に示す連続的にセラミック密度が変化するセラミック部52を備えるローラ部49の製造方法について図10を用いて説明する。
まず、セラミックス粒子52cをブロック状(セラミック部52に対応する形状)に整形することで、セラミック部52の一部を構成するセラミックブロックCBを製造する。セラミックブロックCBは、粒子状のセラミックスを結合させたもので、セラミックス粒子52c同士の間に、比較的多くの隙間が形成されている。セラミックブロックCBの外周面の形状は、セラミック部52の外周面52a(図3及び図4等参照)の形状と略同一である。
セラミックブロックCBは、製造するローラ部49に供えられるセラミック部52に対応するように製造される。したがって、図10の例では、最大摩耗点P1(図3等参照)から回転中心軸線C2方向に離れるにしたがってセラミックス粒子52cの密度(セラミック密度)が連続的に低くなるように形成されたセラミックブロックCBを製造する。 First, a method for manufacturing theroller portion 49 having the ceramic portion 52 in which the ceramic density changes continuously as shown in FIG. 3 will be described with reference to FIG.
First, theceramic particles 52c are shaped into a block shape (a shape corresponding to the ceramic portion 52) to manufacture a ceramic block CB that constitutes a part of the ceramic portion 52. The ceramic block CB is made by bonding particulate ceramics, and a relatively large number of gaps are formed between the ceramic particles 52c. The shape of the outer circumferential surface of the ceramic block CB is substantially the same as the shape of the outer circumferential surface 52a of the ceramic portion 52 (see Figures 3 and 4, etc.).
The ceramic block CB is manufactured to correspond to theceramic part 52 to be provided in the roller part 49 to be manufactured. Therefore, in the example of Fig. 10, the ceramic block CB is manufactured so that the density of the ceramic particles 52c (ceramic density) decreases continuously with increasing distance from the maximum wear point P1 (see Fig. 3, etc.) in the direction of the central axis of rotation C2.
まず、セラミックス粒子52cをブロック状(セラミック部52に対応する形状)に整形することで、セラミック部52の一部を構成するセラミックブロックCBを製造する。セラミックブロックCBは、粒子状のセラミックスを結合させたもので、セラミックス粒子52c同士の間に、比較的多くの隙間が形成されている。セラミックブロックCBの外周面の形状は、セラミック部52の外周面52a(図3及び図4等参照)の形状と略同一である。
セラミックブロックCBは、製造するローラ部49に供えられるセラミック部52に対応するように製造される。したがって、図10の例では、最大摩耗点P1(図3等参照)から回転中心軸線C2方向に離れるにしたがってセラミックス粒子52cの密度(セラミック密度)が連続的に低くなるように形成されたセラミックブロックCBを製造する。 First, a method for manufacturing the
First, the
The ceramic block CB is manufactured to correspond to the
次に、製造したセラミックブロックCBを鋳型60内の所定の位置に設置する。次に、湯口61から湯道62を介して、鋳型60内に溶融した金属を流し込む。これにより、鋳型60内に溶融した金属が充填される(矢印m参照)。このとき、セラミックブロックCBは、溶融した金属よりも比重が軽いため、浮力によって、鋳型60の内周面の所定の位置に押し付けられる。詳細には、図10に示すように、セラミックブロックCBの上面CBa(セラミック部52の基端側の端面に対応する面)が鋳型60の天井面に押し付けられ、この上面CBaによってセラミックブロックCBが鋳型60に支持される。また、このとき、セラミックブロックCB内部のセラミックス粒子52c同士の間に形成された隙間にも溶融した金属が流入する。これにより、セラミック部52はセラミックス粒子52cが散在するように設けられる。
Next, the manufactured ceramic block CB is placed at a predetermined position in the mold 60. Next, molten metal is poured into the mold 60 from the sprue 61 through the runner 62. This fills the mold 60 with molten metal (see arrow m). At this time, the ceramic block CB has a lower specific gravity than the molten metal, so it is pressed against a predetermined position on the inner surface of the mold 60 by buoyancy. In detail, as shown in FIG. 10, the upper surface CBa of the ceramic block CB (the surface corresponding to the end surface on the base end side of the ceramic part 52) is pressed against the ceiling surface of the mold 60, and the ceramic block CB is supported by this upper surface CBa in the mold 60. At this time, the molten metal also flows into the gaps formed between the ceramic particles 52c inside the ceramic block CB. As a result, the ceramic part 52 is provided so that the ceramic particles 52c are scattered.
次に、溶融した金属を冷却し、凝固させる。これにより、セラミックブロックCB内部のセラミックス粒子52c同士の間に金属が入り込んだ耐摩耗性の優れたセラミック部52と、凝固した金属のみで形成された基部51とが一体化されたローラ部49が完成する。
また、セラミック部52においては、結合したセラミックス粒子52c同士の間の隙間に流入し凝固した金属がセラミック部52の母材52bとなる。
このようにして、本実施形態のローラ部49は、基部51とセラミック部52とを鋳ぐるみすることで製造される。 Next, the molten metal is cooled and solidified, thereby completing theroller part 49 in which the ceramic part 52 with excellent abrasion resistance, in which the metal has entered between the ceramic particles 52c inside the ceramic block CB, and the base part 51 made only of the solidified metal are integrated together.
In theceramic portion 52 , the metal flows into the gaps between the bonded ceramic particles 52 c and solidifies to become the base material 52 b of the ceramic portion 52 .
In this manner, theroller portion 49 of the present embodiment is manufactured by insert-casting the base portion 51 and the ceramic portion 52 together.
また、セラミック部52においては、結合したセラミックス粒子52c同士の間の隙間に流入し凝固した金属がセラミック部52の母材52bとなる。
このようにして、本実施形態のローラ部49は、基部51とセラミック部52とを鋳ぐるみすることで製造される。 Next, the molten metal is cooled and solidified, thereby completing the
In the
In this manner, the
次に、図4に示すセラミック部52Aを備えるローラ部49の製造方法について図11を用いて説明する。
セラミック部52Aを製造する際には、高密度部52Aa、中密度部52Ab及び低密度部52Acに対応するセラミックブロックを製造する。次に、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcを固定部材53で固定して、1つのセラミックブロックCBAを製造する。なお、このときセラミックブロック同士の間に僅かな隙間があってもよい。 Next, a method for manufacturing theroller portion 49 having the ceramic portion 52A shown in FIG. 4 will be described with reference to FIG.
When manufacturing theceramic portion 52A, ceramic blocks corresponding to the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac are manufactured. Next, a high density block CBAa corresponding to the high density portion 52Aa, a medium density block CBAb corresponding to the medium density portion 52Ab, and a low density block CBAc corresponding to the low density portion 52Ac are fixed with a fixing member 53 to manufacture one ceramic block CBA. At this time, slight gaps may be present between the ceramic blocks.
セラミック部52Aを製造する際には、高密度部52Aa、中密度部52Ab及び低密度部52Acに対応するセラミックブロックを製造する。次に、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcを固定部材53で固定して、1つのセラミックブロックCBAを製造する。なお、このときセラミックブロック同士の間に僅かな隙間があってもよい。 Next, a method for manufacturing the
When manufacturing the
次に、製造したセラミックブロックCBAを鋳型60内の所定の位置に設置する。すなわち、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcが固定された状態でセラミックブロックCBAを鋳型60内の所定の箇所に配置する(セラミック部配置工程)。
その後の工程は、上述のセラミック部52を備えるローラ部49の製造方法と同様であるので記載を省略する。 Next, the manufactured ceramic block CBA is placed at a predetermined position in themold 60. That is, the ceramic block CBA is placed at a predetermined position in the mold 60 in a state in which the high density block CBAa corresponding to the high density portion 52Aa, the medium density block CBAb corresponding to the medium density portion 52Ab, and the low density block CBAc corresponding to the low density portion 52Ac are fixed (ceramic portion placement process).
The steps thereafter are the same as those in the manufacturing method for theroller portion 49 having the ceramic portion 52 described above, and therefore the description thereof will be omitted.
その後の工程は、上述のセラミック部52を備えるローラ部49の製造方法と同様であるので記載を省略する。 Next, the manufactured ceramic block CBA is placed at a predetermined position in the
The steps thereafter are the same as those in the manufacturing method for the
このように製造することで、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcの相対位置が決まった状態でセラミックブロックCBAを配置することができるので、容易にセラミックブロックCBAを配置することができる。したがって、高密度部52Aa、中密度部52Ab及び低密度部52Acを有するセラミック部52Aを容易に製造することができる。
By manufacturing in this manner, the ceramic blocks CBA can be arranged with the relative positions of the high density block CBAa corresponding to the high density portion 52Aa, the medium density block CBAb corresponding to the medium density portion 52Ab, and the low density block CBAc corresponding to the low density portion 52Ac determined, so that the ceramic blocks CBA can be arranged easily. Therefore, the ceramic portion 52A having the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac can be easily manufactured.
また、図4に示すセラミック部52Aは、以下のように製造してもよく、図12を用いて説明する。
まず、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcを製造する。このとき、高密度ブロックCBAaに外周面から突出する高密度部固定部FAaを設ける。また、同様に、中密度ブロックCBAbに外周面から突出する中密度部固定部FAbを設ける。また、同様に、低密度ブロックCBAcに外周面から突出する低密度部固定部FAcを設ける。 Theceramic portion 52A shown in FIG. 4 may be manufactured as follows, which will be described with reference to FIG.
First, a high density block CBAa corresponding to the high density portion 52Aa, a medium density block CBAb corresponding to the medium density portion 52Ab, and a low density block CBAc corresponding to the low density portion 52Ac are manufactured. At this time, a high density portion fixing portion FAa protruding from the outer peripheral surface is provided in the high density block CBAa. Similarly, a medium density portion fixing portion FAb protruding from the outer peripheral surface is provided in the medium density block CBAb. Similarly, a low density portion fixing portion FAc protruding from the outer peripheral surface is provided in the low density block CBAc.
まず、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcを製造する。このとき、高密度ブロックCBAaに外周面から突出する高密度部固定部FAaを設ける。また、同様に、中密度ブロックCBAbに外周面から突出する中密度部固定部FAbを設ける。また、同様に、低密度ブロックCBAcに外周面から突出する低密度部固定部FAcを設ける。 The
First, a high density block CBAa corresponding to the high density portion 52Aa, a medium density block CBAb corresponding to the medium density portion 52Ab, and a low density block CBAc corresponding to the low density portion 52Ac are manufactured. At this time, a high density portion fixing portion FAa protruding from the outer peripheral surface is provided in the high density block CBAa. Similarly, a medium density portion fixing portion FAb protruding from the outer peripheral surface is provided in the medium density block CBAb. Similarly, a low density portion fixing portion FAc protruding from the outer peripheral surface is provided in the low density block CBAc.
次に、製造した高密度ブロックCBAa、中密度ブロックCBAb及び低密度ブロックCBAcを鋳型60内の所定の位置に設置する。鋳型60には、所定の箇所に、高密度部固定部FAaと嵌合する高密度凹部、中密度ブロックCBAbと嵌合する中密度凹部及び低密度ブロックCBAcと嵌合する低密度凹部が形成されている。各ブロックを鋳型60内に設置する場合には、高密度部固定部FAaを高密度凹部に嵌合させ、中密度ブロックCBAbを中密度凹部に嵌合させ、低密度ブロックCBAcを低密度凹部に嵌合させる。これにより、高密度ブロックCBAa、中密度ブロックCBAb及び低密度ブロックCBAcが各々所定の位置に位置決めされる(高密度部固定工程、低密度部(中密度部)固定工程)。
その後の工程は、上述のセラミック部52を備えるローラ部49の製造方法と同様であるので記載を省略する。ただし、本変形例では、鋳型60から取り出したローラ部49に対して、高密度部固定部FAa、中密度部固定部FAb及び低密度部固定部FAcを除去する。 Next, the manufactured high density block CBAa, medium density block CBAb, and low density block CBAc are placed at predetermined positions in themold 60. The mold 60 has a high density recess that fits with the high density portion fixing portion FAa, a medium density recess that fits with the medium density block CBAb, and a low density recess that fits with the low density block CBAc at predetermined positions. When placing each block in the mold 60, the high density portion fixing portion FAa is fitted into the high density recess, the medium density block CBAb is fitted into the medium density recess, and the low density block CBAc is fitted into the low density recess. This positions the high density block CBAa, the medium density block CBAb, and the low density block CBAc at their respective predetermined positions (high density portion fixing step, low density portion (medium density portion) fixing step).
The subsequent steps are the same as those in the manufacturing method of theroller part 49 including the ceramic part 52 described above, and therefore will not be described here. However, in this modification, the high density part fixing part FAa, the medium density part fixing part FAb, and the low density part fixing part FAc are removed from the roller part 49 removed from the mold 60.
その後の工程は、上述のセラミック部52を備えるローラ部49の製造方法と同様であるので記載を省略する。ただし、本変形例では、鋳型60から取り出したローラ部49に対して、高密度部固定部FAa、中密度部固定部FAb及び低密度部固定部FAcを除去する。 Next, the manufactured high density block CBAa, medium density block CBAb, and low density block CBAc are placed at predetermined positions in the
The subsequent steps are the same as those in the manufacturing method of the
なお、図10に示すセラミックブロックCBを、図12で示す方法で鋳型60に固定してもよい。すなわち、セラミックブロックCBに固定部を設けるとともに、鋳型60に固定部と嵌合する凹部を設け、固定部と凹部とを嵌合させることでセラミックブロックCBを鋳型60内の所定の位置に固定してもよい。
The ceramic block CB shown in FIG. 10 may be fixed to the mold 60 by the method shown in FIG. 12. That is, a fixing portion may be provided on the ceramic block CB, and a recess may be provided on the mold 60 to fit the fixing portion, and the ceramic block CB may be fixed at a predetermined position in the mold 60 by fitting the fixing portion into the recess.
このように製造することで、高密度部52Aaに対応する高密度ブロックCBAa、中密度部52Abに対応する中密度ブロックCBAb及び低密度部52Acに対応する低密度ブロックCBAcを鋳型60の所定箇所に容易に固定することができる。したがって、高密度部52Aa、中密度部52Ab及び低密度部52Acを有するセラミック部52Aを容易に製造することができる。
By manufacturing in this manner, the high density block CBAa corresponding to the high density portion 52Aa, the medium density block CBAb corresponding to the medium density portion 52Ab, and the low density block CBAc corresponding to the low density portion 52Ac can be easily fixed to predetermined locations of the mold 60. Therefore, the ceramic portion 52A having the high density portion 52Aa, the medium density portion 52Ab, and the low density portion 52Ac can be easily manufactured.
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、セラミック部52が回転軸線方向に沿ってセラミック密度が変化している。セラミック密度は、剛性に影響する。これにより、セラミック部52の剛性を回転軸線方向に沿って変化させることができる。 According to this embodiment, the following advantageous effects are obtained.
In this embodiment, the ceramic density of theceramic portion 52 changes along the rotation axis direction. The ceramic density affects the rigidity. This allows the rigidity of the ceramic portion 52 to change along the rotation axis direction.
本実施形態では、セラミック部52が回転軸線方向に沿ってセラミック密度が変化している。セラミック密度は、剛性に影響する。これにより、セラミック部52の剛性を回転軸線方向に沿って変化させることができる。 According to this embodiment, the following advantageous effects are obtained.
In this embodiment, the ceramic density of the
また、本実施形態では、最大摩耗点P1を含む領域のセラミック密度が他の領域のセラミック密度よりも高くなっている。これにより、最大摩耗点P1を含む領域の耐摩耗性を向上させることができる。したがって、粉砕ローラ13の耐摩耗性を向上させることができる。よって、粉砕ローラ13の寿命が短くなる事態を抑制し、粉砕ローラ13を長寿命化することができる。
一方、他の領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部52全体としての剛性を下げることができる。したがって、基部51とセラミック部52との熱応力をセラミック部52が吸収し易くなるので、線膨張係数の差に起因するセラミック部52の損傷を抑制することができる。よって、粉砕ローラ13を製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、本実施形態では、粉砕ローラ13を製造する際の歩留まりを向上させるとともに、粉砕ローラ13を長寿命化することができる。
また、セラミック部52を厚くしても鋳造時の損傷を抑制することができることから、従来よりもセラミック部52の厚さを増加することができる。したがって、さらに粉砕ローラ13を長寿命化することができる。 In this embodiment, the ceramic density of the region including the maximum wear point P1 is higher than the ceramic density of the other regions. This improves the wear resistance of the region including the maximum wear point P1. This improves the wear resistance of the crushingroller 13. This prevents the life of the crushing roller 13 from being shortened, and extends the life of the crushing roller 13.
On the other hand, since the ceramic density of the other regions is low, the rigidity of theceramic portion 52 as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion 52 can easily absorb the thermal stress between the base portion 51 and the ceramic portion 52, and damage to the ceramic portion 52 caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the crushing roller 13 can be improved, and the manufacturing cost can be reduced.
In this manner, in this embodiment, the yield rate in manufacturing the crushingroller 13 can be improved, and the life of the crushing roller 13 can be extended.
In addition, since damage during casting can be suppressed even if theceramic portion 52 is made thick, the thickness of the ceramic portion 52 can be increased compared to the conventional case, and the life of the crushing roller 13 can be further extended.
一方、他の領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部52全体としての剛性を下げることができる。したがって、基部51とセラミック部52との熱応力をセラミック部52が吸収し易くなるので、線膨張係数の差に起因するセラミック部52の損傷を抑制することができる。よって、粉砕ローラ13を製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、本実施形態では、粉砕ローラ13を製造する際の歩留まりを向上させるとともに、粉砕ローラ13を長寿命化することができる。
また、セラミック部52を厚くしても鋳造時の損傷を抑制することができることから、従来よりもセラミック部52の厚さを増加することができる。したがって、さらに粉砕ローラ13を長寿命化することができる。 In this embodiment, the ceramic density of the region including the maximum wear point P1 is higher than the ceramic density of the other regions. This improves the wear resistance of the region including the maximum wear point P1. This improves the wear resistance of the crushing
On the other hand, since the ceramic density of the other regions is low, the rigidity of the
In this manner, in this embodiment, the yield rate in manufacturing the crushing
In addition, since damage during casting can be suppressed even if the
また、例えば、図2に示すように、粉砕ローラ13の表面の一部が局所的に摩耗すると、粉砕テーブル12のテーブル部12aとの噛み合わせが悪くなり、粉砕性能が低下する可能性がある。具体的には、粉砕ローラ13の表面に窪みが形成されると、本来、粉砕ローラ13とテーブル部12aとの間に挟まれて粉砕されるべき固体燃料が、未粉砕のまま粉砕ローラ13を通過することができるようになるため、粉砕効率が低下する。特に粉砕ローラ13の表面で最も効率良く仕事をする部位(最大摩耗点P1)が摩耗によって窪み、粉砕性能が低下すると、最大摩耗点P1の周囲の粉砕効率の悪い部分で粉砕を行うようになるため、全体的なミル10の粉砕性能が徐々に低下していくことになる。
一方、本実施形態では、最大摩耗点P1を含む領域のセラミック密度が他の領域のセラミック密度よりも高くなっている。このため、図13の破線で示すように、最大摩耗点P1を含む摩耗し易い領域における摩耗が抑制されるとともに、他の領域における摩耗は比較的進み易い。これにより、最大摩耗点P1を含む領域と他の領域との摩耗量が均一化される。したがって、図13の破線で示すように、セラミック部52の外表面の局所的な摩耗を抑制することができる。よって、粉砕ローラ13と粉砕テーブル12との噛み合わせの悪化を抑制することができるので、粉砕性能の低下を抑制することができる。
なお、粉砕ローラ13の摩耗により、粉砕ローラ13と粉砕テーブル12との間の隙間が大きくなるが、当該隙間が大きくなった時には、隙間の長さを調整可能なギャップボルト(不図示)によって、当該隙間を小さくする。 2, when a part of the surface of the crushingroller 13 is locally worn, the engagement with the table portion 12a of the crushing table 12 may become poor, and the crushing performance may decrease. Specifically, when a depression is formed on the surface of the crushing roller 13, the solid fuel that should be sandwiched between the crushing roller 13 and the table portion 12a and crushed can pass through the crushing roller 13 without being crushed, and the crushing efficiency decreases. In particular, when the most efficient part of the surface of the crushing roller 13 (maximum wear point P1) becomes depressed due to wear and the crushing performance decreases, the crushing is performed in the part around the maximum wear point P1 with low crushing efficiency, and the overall crushing performance of the mill 10 gradually decreases.
On the other hand, in this embodiment, the ceramic density in the region including the maximum wear point P1 is higher than the ceramic density in the other regions. Therefore, as shown by the dashed line in Fig. 13, wear is suppressed in the region that is easily worn including the maximum wear point P1, while wear in the other regions is relatively easy to progress. This makes the amount of wear uniform between the region including the maximum wear point P1 and the other regions. Therefore, as shown by the dashed line in Fig. 13, local wear on the outer surface of theceramic part 52 can be suppressed. Therefore, deterioration of the meshing between the crushing roller 13 and the crushing table 12 can be suppressed, and the deterioration of the crushing performance can be suppressed.
In addition, as the grindingroller 13 wears, the gap between the grinding roller 13 and the grinding table 12 increases. When this gap becomes large, the gap is reduced by using a gap bolt (not shown) that can adjust the length of the gap.
一方、本実施形態では、最大摩耗点P1を含む領域のセラミック密度が他の領域のセラミック密度よりも高くなっている。このため、図13の破線で示すように、最大摩耗点P1を含む摩耗し易い領域における摩耗が抑制されるとともに、他の領域における摩耗は比較的進み易い。これにより、最大摩耗点P1を含む領域と他の領域との摩耗量が均一化される。したがって、図13の破線で示すように、セラミック部52の外表面の局所的な摩耗を抑制することができる。よって、粉砕ローラ13と粉砕テーブル12との噛み合わせの悪化を抑制することができるので、粉砕性能の低下を抑制することができる。
なお、粉砕ローラ13の摩耗により、粉砕ローラ13と粉砕テーブル12との間の隙間が大きくなるが、当該隙間が大きくなった時には、隙間の長さを調整可能なギャップボルト(不図示)によって、当該隙間を小さくする。 2, when a part of the surface of the crushing
On the other hand, in this embodiment, the ceramic density in the region including the maximum wear point P1 is higher than the ceramic density in the other regions. Therefore, as shown by the dashed line in Fig. 13, wear is suppressed in the region that is easily worn including the maximum wear point P1, while wear in the other regions is relatively easy to progress. This makes the amount of wear uniform between the region including the maximum wear point P1 and the other regions. Therefore, as shown by the dashed line in Fig. 13, local wear on the outer surface of the
In addition, as the grinding
また、ローラ部49をジャーナルハウジング43に取り付ける際に、ローラ部49を加熱してジャーナルハウジング43に焼き嵌めすることがある。この際、ローラ部49の内部に熱応力が発生するが、本実施形態では、上述のように基部51とセラミック部52との熱応力をセラミック部52が吸収し易くなるので、線膨張係数の差に起因するセラミック部52の損傷を抑制することができる。
また、ジャーナルハウジング43からローラ部49を取り外す際に、ローラ部49を加熱して取り外し易くする場合がある。この際にもローラ部49の内部に熱応力が発生するが、本実施形態では、上述のように基部51とセラミック部52との熱応力をセラミック部52が吸収し易くなるので、線膨張係数の差に起因するセラミック部52の損傷を抑制することができる。
このように、本実施形態では、ローラ部49の取付け時や、取り換え時にも、取り扱いを容易にすることができる。 Furthermore, when attaching theroller portion 49 to the journal housing 43, the roller portion 49 may be heated and shrink-fitted into the journal housing 43. At this time, thermal stress is generated inside the roller portion 49, but in this embodiment, as described above, the ceramic portion 52 can easily absorb the thermal stress between the base portion 51 and the ceramic portion 52, so that damage to the ceramic portion 52 caused by the difference in linear expansion coefficient can be suppressed.
Furthermore, when removing theroller portion 49 from the journal housing 43, the roller portion 49 may be heated to facilitate removal. In this case, thermal stress is also generated inside the roller portion 49, but in this embodiment, the ceramic portion 52 can easily absorb the thermal stress between the base portion 51 and the ceramic portion 52 as described above, so that damage to the ceramic portion 52 caused by the difference in linear expansion coefficient can be suppressed.
In this manner, in this embodiment, theroller portion 49 can be easily handled when being attached or replaced.
また、ジャーナルハウジング43からローラ部49を取り外す際に、ローラ部49を加熱して取り外し易くする場合がある。この際にもローラ部49の内部に熱応力が発生するが、本実施形態では、上述のように基部51とセラミック部52との熱応力をセラミック部52が吸収し易くなるので、線膨張係数の差に起因するセラミック部52の損傷を抑制することができる。
このように、本実施形態では、ローラ部49の取付け時や、取り換え時にも、取り扱いを容易にすることができる。 Furthermore, when attaching the
Furthermore, when removing the
In this manner, in this embodiment, the
また、本実施形態では、粉砕テーブル12のセラミック部12dがテーブル部12aの半径方向に沿ってセラミック密度が変化している。セラミック密度は、剛性に影響する。これにより、セラミック部12dの剛性をテーブル部12aの半径方向に沿って変化させることができる。
また、本実施形態では、粉砕テーブル12の最大摩耗点P2を含む領域のセラミック密度が他の領域のセラミック密度よりも高くなっている。これにより、最大摩耗点P2を含む領域の耐摩耗性を向上させることができる。したがって、粉砕テーブル12の耐摩耗性を向上させることができる。よって、粉砕テーブル12の寿命が短くなる事態を抑制し、粉砕テーブル12を長寿命化することができる。
一方、他の領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部12d全体としての剛性を下げることができる。したがって、基部12cとセラミック部12dとの熱応力をセラミック部12dが吸収し易くなるので、線膨張係数の差に起因するセラミック部12dの損傷を抑制することができる。よって、粉砕テーブル12を製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、本実施形態では、粉砕テーブル12を製造する際の歩留まりを向上させるとともに、粉砕テーブル12を長寿命化することができる。 In this embodiment, the ceramic density of theceramic portion 12d of the grinding table 12 changes along the radial direction of the table portion 12a. The ceramic density affects the rigidity. This allows the rigidity of the ceramic portion 12d to change along the radial direction of the table portion 12a.
Furthermore, in this embodiment, the ceramic density of the region including the maximum wear point P2 of the grinding table 12 is higher than the ceramic density of the other regions. This makes it possible to improve the wear resistance of the region including the maximum wear point P2. Therefore, it is possible to improve the wear resistance of the grinding table 12. This makes it possible to prevent the life of the grinding table 12 from being shortened, and to extend the life of the grinding table 12.
On the other hand, since the ceramic density of the other regions is low, the rigidity of theceramic portion 12d as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion 12d can easily absorb the thermal stress between the base portion 12c and the ceramic portion 12d, so that damage to the ceramic portion 12d caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table 12 can be improved, and the manufacturing cost can be reduced.
In this way, in this embodiment, the yield rate when manufacturing the rotary table 12 can be improved, and the service life of the rotary table 12 can be extended.
また、本実施形態では、粉砕テーブル12の最大摩耗点P2を含む領域のセラミック密度が他の領域のセラミック密度よりも高くなっている。これにより、最大摩耗点P2を含む領域の耐摩耗性を向上させることができる。したがって、粉砕テーブル12の耐摩耗性を向上させることができる。よって、粉砕テーブル12の寿命が短くなる事態を抑制し、粉砕テーブル12を長寿命化することができる。
一方、他の領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部12d全体としての剛性を下げることができる。したがって、基部12cとセラミック部12dとの熱応力をセラミック部12dが吸収し易くなるので、線膨張係数の差に起因するセラミック部12dの損傷を抑制することができる。よって、粉砕テーブル12を製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、本実施形態では、粉砕テーブル12を製造する際の歩留まりを向上させるとともに、粉砕テーブル12を長寿命化することができる。 In this embodiment, the ceramic density of the
Furthermore, in this embodiment, the ceramic density of the region including the maximum wear point P2 of the grinding table 12 is higher than the ceramic density of the other regions. This makes it possible to improve the wear resistance of the region including the maximum wear point P2. Therefore, it is possible to improve the wear resistance of the grinding table 12. This makes it possible to prevent the life of the grinding table 12 from being shortened, and to extend the life of the grinding table 12.
On the other hand, since the ceramic density of the other regions is low, the rigidity of the
In this way, in this embodiment, the yield rate when manufacturing the rotary table 12 can be improved, and the service life of the rotary table 12 can be extended.
[第2実施形態]
次に、本開示の第2実施形態について、図14から図16を用いて説明する。
ミル10では、ローラ部49の摩耗の進行に伴い、ローラ部49を反転させて使用する場合がある。すなわち、ローラ部49を一度ジャーナルハウジング43から取り外し、基端側と先端側とを入れ替えて、再びローラ部49をジャーナルハウジング43に取り付けて使用する場合がある。この場合には、最大摩耗点が中心線C3を基準とした対称の位置となる。詳細には、図14に示すように、中心線C3と所定の角度θ1を為す線L3の線対称の線であるL4と、ローラ部49の外周面49aとが交差する点P3となる。 [Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIGS.
In themill 10, as the wear of the roller portion 49 progresses, the roller portion 49 may be reversed for use. That is, the roller portion 49 may be removed from the journal housing 43, the base end side and the tip end side may be swapped, and the roller portion 49 may be reattached to the journal housing 43 for use. In this case, the maximum wear point is a position symmetrical with respect to the center line C3. In detail, as shown in FIG. 14, it is a point P3 where the outer peripheral surface 49a of the roller portion 49 intersects with a line L4 that is symmetrical with a line L3 that forms a predetermined angle θ1 with the center line C3.
次に、本開示の第2実施形態について、図14から図16を用いて説明する。
ミル10では、ローラ部49の摩耗の進行に伴い、ローラ部49を反転させて使用する場合がある。すなわち、ローラ部49を一度ジャーナルハウジング43から取り外し、基端側と先端側とを入れ替えて、再びローラ部49をジャーナルハウジング43に取り付けて使用する場合がある。この場合には、最大摩耗点が中心線C3を基準とした対称の位置となる。詳細には、図14に示すように、中心線C3と所定の角度θ1を為す線L3の線対称の線であるL4と、ローラ部49の外周面49aとが交差する点P3となる。 [Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIGS.
In the
本実施形態に係るセラミック部152は、図14に示すように、回転中心軸線C2方向(紙面左右方向)において、点P3と最大摩耗点P1との間の領域Aのセラミック密度が他の領域のセラミック密度よりも高い。すなわち、領域Aが最もセラミック密度が高い。領域Aは、最大摩耗点P1及び点P3を含んでいる。その他の点では上記第1実施形態と同様であるので、同様の構成については同一の符号を付してその詳細な説明は省略する。
このようにすることで、ローラ部49を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができる。したがって、粉砕ローラ13をさらに長寿命化させることができる。 14, in theceramic part 152 according to this embodiment, the ceramic density of region A between point P3 and maximum wear point P1 in the direction of the rotation center axis C2 (left-right direction on the page) is higher than the ceramic density of other regions. That is, region A has the highest ceramic density. Region A includes maximum wear point P1 and point P3. Since the other points are similar to those of the first embodiment, similar configurations are denoted by the same reference numerals and detailed description thereof will be omitted.
In this way, even when theroller portion 49 is used in an inverted manner, the ceramic density in the region that is likely to wear out can be increased, and the life of the crushing roller 13 can be further extended.
このようにすることで、ローラ部49を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができる。したがって、粉砕ローラ13をさらに長寿命化させることができる。 14, in the
In this way, even when the
なお、図15に示すように、点P3を含む点P3の近傍領域(第3領域)B及び最大摩耗点P1を含む最大摩耗点P1の近傍領域(第1領域)Cのセラミック密度のみを他の領域(第2領域)のセラミック密度よりも高くしてもよい。すなわち、領域B及び領域Cが最もセラミック密度が高い。
このようにすることで、ローラ部49を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができるので、粉砕ローラ13をさらに長寿命化させることができる。 15, only the ceramic density in a region (third region) B including the point P3 and in the vicinity of the point P3 and a region (first region) C including the maximum wear point P1 and in the vicinity of the maximum wear point P1 may be made higher than the ceramic density in the other regions (second regions). That is, the regions B and C have the highest ceramic density.
By doing so, even if theroller portion 49 is used in an inverted manner, the ceramic density in the area prone to wear can be increased, so that the life of the crushing roller 13 can be further extended.
このようにすることで、ローラ部49を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができるので、粉砕ローラ13をさらに長寿命化させることができる。 15, only the ceramic density in a region (third region) B including the point P3 and in the vicinity of the point P3 and a region (first region) C including the maximum wear point P1 and in the vicinity of the maximum wear point P1 may be made higher than the ceramic density in the other regions (second regions). That is, the regions B and C have the highest ceramic density.
By doing so, even if the
セラミック部152の要求される耐摩耗性は、図17に示すように、回転中心軸線C2方向の各位置において異なる。図17の横軸は、図16に示す回転中心軸線C2方向の各位置を示す数値に対応している。また、図17の縦軸は、要求される耐摩耗性及びセラミック密度を示している。なお、図16は、ローラ部49の回転中心軸線C2方向の位置を示す装置80を用いてローラ部49の位置を示した状態を図示している。
The required wear resistance of the ceramic part 152 differs at each position in the direction of the central axis of rotation C2, as shown in FIG. 17. The horizontal axis of FIG. 17 corresponds to the numerical values indicating each position in the direction of the central axis of rotation C2 shown in FIG. 16. The vertical axis of FIG. 17 indicates the required wear resistance and ceramic density. Note that FIG. 16 illustrates the state in which the position of the roller part 49 is indicated using a device 80 that indicates the position of the roller part 49 in the direction of the central axis of rotation C2.
セラミック部152の要求される耐摩耗性は、図17の実線で示すように、位置5(最大摩耗点P1)及び位置7(最大摩耗点P1と対称の点P3)において最大(100%)となっている。位置5及び位置7から位置が1ずつ離れるにしたがって、10%ずつ減算されていく。
The required wear resistance of the ceramic part 152 is maximum (100%) at position 5 (maximum wear point P1) and position 7 (point P3 symmetrical to maximum wear point P1), as shown by the solid line in Figure 17. 10% is subtracted for each position away from positions 5 and 7.
また、破線で示す線は、各位置における要求される耐摩耗性の0.5乗のセラミック密度を示している。また、一点鎖線で示す線は、各位置における要求される耐摩耗性の2乗のセラミック密度を示している。また、二点鎖線で示す線は、各位置における要求される耐摩耗性の0乗(一定)のセラミック密度を示している。
図17から、本開示では、セラミック密度をハッチングの領域とすることが望ましい。具体的には、セラミック部152が存在している位置1から位置9までの間は、破線で示す線0.5乗のセラミック密度の値よりも小さい値となることが望ましい。以上から、セラミック密度の変化率は、その位置に要求される耐摩耗性の0.5乗以上の傾きとすることが好ましい。仮に混合割合の変化率を要求される耐摩耗性の0.5乗以下とした場合は、二点鎖線で示す線、即ち各位置において要求される耐摩耗性の0乗(一定=変化なし)の混合割合に近づく。したがって、位置によってセラミックス粒子52cの混合割合を変えたことによる効果が表れ難くなる。 The dashed lines indicate the ceramic density at each position as the 0.5th power of the required wear resistance, the dashed lines indicate the ceramic density at each position as the square of the required wear resistance, and the two-dot chain lines indicate the ceramic density at each position as the 0th power (constant) of the required wear resistance.
From FIG. 17, in the present disclosure, it is desirable to make the ceramic density a hatched region. Specifically, it is desirable that the ceramic density value betweenpositions 1 to 9 where the ceramic part 152 exists is smaller than the value of the ceramic density of the dashed line 0.5. From the above, it is preferable that the rate of change of the ceramic density has a slope of 0.5 or more of the wear resistance required at that position. If the rate of change of the mixture ratio is set to 0.5 or less of the required wear resistance, it approaches the line shown by the two-dot chain line, that is, the mixture ratio of the wear resistance required at each position to the power 0 (constant = no change). Therefore, the effect of changing the mixture ratio of the ceramic particles 52c depending on the position is difficult to appear.
図17から、本開示では、セラミック密度をハッチングの領域とすることが望ましい。具体的には、セラミック部152が存在している位置1から位置9までの間は、破線で示す線0.5乗のセラミック密度の値よりも小さい値となることが望ましい。以上から、セラミック密度の変化率は、その位置に要求される耐摩耗性の0.5乗以上の傾きとすることが好ましい。仮に混合割合の変化率を要求される耐摩耗性の0.5乗以下とした場合は、二点鎖線で示す線、即ち各位置において要求される耐摩耗性の0乗(一定=変化なし)の混合割合に近づく。したがって、位置によってセラミックス粒子52cの混合割合を変えたことによる効果が表れ難くなる。 The dashed lines indicate the ceramic density at each position as the 0.5th power of the required wear resistance, the dashed lines indicate the ceramic density at each position as the square of the required wear resistance, and the two-dot chain lines indicate the ceramic density at each position as the 0th power (constant) of the required wear resistance.
From FIG. 17, in the present disclosure, it is desirable to make the ceramic density a hatched region. Specifically, it is desirable that the ceramic density value between
なお、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
例えば、使用する固体燃料は、本開示に限定されず、石炭、バイオマス燃料、石油コークス(PC:Petroleum Coke)などを用いることができる。さらに、それらの固体燃料を組み合わせて使用してもよい。 The present disclosure is not limited to the above-described embodiment, and various modifications are possible without departing from the spirit and scope of the present disclosure.
For example, the solid fuel used is not limited to that disclosed herein, and may be coal, biomass fuel, petroleum coke (PC), etc. Furthermore, these solid fuels may be used in combination.
例えば、使用する固体燃料は、本開示に限定されず、石炭、バイオマス燃料、石油コークス(PC:Petroleum Coke)などを用いることができる。さらに、それらの固体燃料を組み合わせて使用してもよい。 The present disclosure is not limited to the above-described embodiment, and various modifications are possible without departing from the spirit and scope of the present disclosure.
For example, the solid fuel used is not limited to that disclosed herein, and may be coal, biomass fuel, petroleum coke (PC), etc. Furthermore, these solid fuels may be used in combination.
例えば、上記各実施形態では、セラミック密度を変化させる方法として、セラミックス粒子52cの数を変化させる方法を採用した場合について説明したが、本開示はこれに限定されない。例えば、セラミックス粒子52cの粒子径や粒子形状を変化させることで、セラミック密度を変化させてもよい。また、これらを組み合わせることで、セラミック密度を変化させてもよい。
For example, in each of the above embodiments, the method of changing the ceramic density is described as changing the number of ceramic particles 52c, but the present disclosure is not limited to this. For example, the ceramic density may be changed by changing the particle diameter or particle shape of the ceramic particles 52c. Furthermore, the ceramic density may be changed by combining these methods.
また、セラミック部の厚さは粉砕ローラ13の部位により異なる。セラミック部が厚い箇所は仮にセラミック密度が低く耐摩耗性が低くても長寿命を実現し易い。一方で、セラミック部が薄い箇所で厚い箇所と同等の寿命を得るにはセラミック密度を高くして高い耐摩耗性が求められる。したがって、各部位におけるセラミック密度の決定にセラミック部の厚さを加味してもよい。
Furthermore, the thickness of the ceramic portion varies depending on the location of the grinding roller 13. In locations where the ceramic portion is thick, it is easy to achieve a long life even if the ceramic density is low and the wear resistance is low. On the other hand, in order to obtain the same life in locations where the ceramic portion is thin as in locations where the ceramic portion is thick, it is necessary to increase the ceramic density and achieve high wear resistance. Therefore, the thickness of the ceramic portion may be taken into account when determining the ceramic density in each location.
以上説明した実施形態に記載の粉砕ローラ、粉砕テーブル及び固体燃料粉砕装置並びに粉砕ローラの製造方法は、例えば以下のように把握される。
本開示の第1態様に係る粉砕ローラは、ハウジング(11)の内部に収容され、回転する粉砕テーブル(12)との間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブル(12)からの回転力を受けて回転軸線(C2)を中心として連れ回る粉砕ローラ(13)であって、前記ハウジング(11)に対して回転可能に支持される支持部(43)と、前記支持部(43)に固定され、前記粉砕テーブル(12)との間で前記固体燃料を粉砕する円環状のローラ部(49)と、を備え、前記ローラ部(49)は、前記支持部に固定される基部(51)と、前記基部(51)の外周部に設けられ前記基部(51)と線膨張係数が異なるとともに前記基部(51)よりも耐摩耗性が優れているセラミック部(52、52A)と、を有し、前記セラミック部(52、52A)は、母材(52b)及び前記母材(52b)に設けられるセラミックス粒子(52c)を有し、前記回転軸線(C2)方向に沿って前記母材(52b)に対する前記セラミックス粒子(52c)の含有量であるセラミック密度が変化している。 The crushing roller, the crushing table, the solid fuel crushing device, and the method of manufacturing the crushing roller according to the above-described embodiments can be understood, for example, as follows.
The crushing roller according to the first aspect of the present disclosure is a crushing roller (13) that is housed inside a housing (11), pinches solid fuel between itself and a rotating crushing table (12) to crush the solid fuel, and receives a rotational force from the crushing table (12) to rotate about a rotation axis (C2). The crushing roller (13) includes a support portion (43) that is rotatably supported by the housing (11), and an annular roller portion (49) that is fixed to the support portion (43) and crushes the solid fuel between itself and the crushing table (12), and the roller portion (49) has a base (51) fixed to the support, and a ceramic part (52, 52A) provided on the outer periphery of the base (51), the ceramic part (52, 52A) having a linear expansion coefficient different from that of the base (51) and superior wear resistance to the base (51), the ceramic part (52, 52A) has a base material (52b) and ceramic particles (52c) provided in the base material (52b), and a ceramic density, which is the content of the ceramic particles (52c) relative to the base material (52b), changes along the direction of the rotation axis (C2).
本開示の第1態様に係る粉砕ローラは、ハウジング(11)の内部に収容され、回転する粉砕テーブル(12)との間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブル(12)からの回転力を受けて回転軸線(C2)を中心として連れ回る粉砕ローラ(13)であって、前記ハウジング(11)に対して回転可能に支持される支持部(43)と、前記支持部(43)に固定され、前記粉砕テーブル(12)との間で前記固体燃料を粉砕する円環状のローラ部(49)と、を備え、前記ローラ部(49)は、前記支持部に固定される基部(51)と、前記基部(51)の外周部に設けられ前記基部(51)と線膨張係数が異なるとともに前記基部(51)よりも耐摩耗性が優れているセラミック部(52、52A)と、を有し、前記セラミック部(52、52A)は、母材(52b)及び前記母材(52b)に設けられるセラミックス粒子(52c)を有し、前記回転軸線(C2)方向に沿って前記母材(52b)に対する前記セラミックス粒子(52c)の含有量であるセラミック密度が変化している。 The crushing roller, the crushing table, the solid fuel crushing device, and the method of manufacturing the crushing roller according to the above-described embodiments can be understood, for example, as follows.
The crushing roller according to the first aspect of the present disclosure is a crushing roller (13) that is housed inside a housing (11), pinches solid fuel between itself and a rotating crushing table (12) to crush the solid fuel, and receives a rotational force from the crushing table (12) to rotate about a rotation axis (C2). The crushing roller (13) includes a support portion (43) that is rotatably supported by the housing (11), and an annular roller portion (49) that is fixed to the support portion (43) and crushes the solid fuel between itself and the crushing table (12), and the roller portion (49) has a base (51) fixed to the support, and a ceramic part (52, 52A) provided on the outer periphery of the base (51), the ceramic part (52, 52A) having a linear expansion coefficient different from that of the base (51) and superior wear resistance to the base (51), the ceramic part (52, 52A) has a base material (52b) and ceramic particles (52c) provided in the base material (52b), and a ceramic density, which is the content of the ceramic particles (52c) relative to the base material (52b), changes along the direction of the rotation axis (C2).
上記構成では、セラミック部が回転軸線方向に沿ってセラミック密度が変化している。セラミック密度は、剛性に影響する。これにより、セラミック部の剛性を回転軸線方向に沿って変化させることができる。
したがって、例えば、摩耗し易い箇所のセラミック密度を上げて(すなわち、剛性を上げて)、それ以外の摩耗し難い箇所のセラミック密度を下げた(すなわち、剛性を下げた)場合には、セラミック部全体としての剛性を下げることができる。よって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕ローラを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。一方、摩耗し易い箇所においては、セラミック密度が高いので、粉砕ローラの耐摩耗性を維持することができる。したがって、粉砕ローラの寿命が短くなる事態を抑制し、粉砕ローラを長寿命化することができる。以上から、粉砕ローラを製造する際の歩留まりを向上させるとともに、粉砕ローラを長寿命化することができる。
なお、母材に対するセラミックの含有量(セラミック密度)を変化させる方法の例として、粒子状のセラミックの数を変化させる方法や、粒子状のセラミックの粒子径や粒子形状を変化させる方法や、それらを組み合わせる方法等が挙げられる。 In the above-described configuration, the ceramic density of the ceramic portion changes along the direction of the rotation axis. The ceramic density affects the rigidity of the ceramic portion. This makes it possible to change the rigidity of the ceramic portion along the direction of the rotation axis.
Therefore, for example, when the ceramic density of the portion susceptible to wear is increased (i.e., the rigidity is increased) and the ceramic density of the other portion less susceptible to wear is decreased (i.e., the rigidity is decreased), the rigidity of the ceramic portion as a whole can be decreased. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, so that damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the crushing roller can be improved, so that the manufacturing cost can be reduced. On the other hand, since the ceramic density is high in the portion susceptible to wear, the wear resistance of the crushing roller can be maintained. Therefore, the situation in which the life of the crushing roller is shortened can be suppressed, and the life of the crushing roller can be extended. From the above, the yield rate when manufacturing the crushing roller can be improved and the life of the crushing roller can be extended.
Examples of methods for changing the ceramic content (ceramic density) relative to the base material include a method for changing the number of particulate ceramics, a method for changing the particle size or particle shape of the particulate ceramics, and a combination of these methods.
したがって、例えば、摩耗し易い箇所のセラミック密度を上げて(すなわち、剛性を上げて)、それ以外の摩耗し難い箇所のセラミック密度を下げた(すなわち、剛性を下げた)場合には、セラミック部全体としての剛性を下げることができる。よって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕ローラを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。一方、摩耗し易い箇所においては、セラミック密度が高いので、粉砕ローラの耐摩耗性を維持することができる。したがって、粉砕ローラの寿命が短くなる事態を抑制し、粉砕ローラを長寿命化することができる。以上から、粉砕ローラを製造する際の歩留まりを向上させるとともに、粉砕ローラを長寿命化することができる。
なお、母材に対するセラミックの含有量(セラミック密度)を変化させる方法の例として、粒子状のセラミックの数を変化させる方法や、粒子状のセラミックの粒子径や粒子形状を変化させる方法や、それらを組み合わせる方法等が挙げられる。 In the above-described configuration, the ceramic density of the ceramic portion changes along the direction of the rotation axis. The ceramic density affects the rigidity of the ceramic portion. This makes it possible to change the rigidity of the ceramic portion along the direction of the rotation axis.
Therefore, for example, when the ceramic density of the portion susceptible to wear is increased (i.e., the rigidity is increased) and the ceramic density of the other portion less susceptible to wear is decreased (i.e., the rigidity is decreased), the rigidity of the ceramic portion as a whole can be decreased. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, so that damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the crushing roller can be improved, so that the manufacturing cost can be reduced. On the other hand, since the ceramic density is high in the portion susceptible to wear, the wear resistance of the crushing roller can be maintained. Therefore, the situation in which the life of the crushing roller is shortened can be suppressed, and the life of the crushing roller can be extended. From the above, the yield rate when manufacturing the crushing roller can be improved and the life of the crushing roller can be extended.
Examples of methods for changing the ceramic content (ceramic density) relative to the base material include a method for changing the number of particulate ceramics, a method for changing the particle size or particle shape of the particulate ceramics, and a combination of these methods.
本開示の第2態様に係る粉砕ローラは、上記第1態様の粉砕ローラにおいて、前記セラミック部(52、52A)は、前記ローラ部(49)の外周面の最も摩耗し易い点である最大摩耗点(P1)を含む第1領域の前記セラミック密度が、前記第1領域よりも前記回転軸線(C2)方向の端部側に位置する第2領域の前記セラミック密度よりも高い。
The grinding roller according to the second aspect of the present disclosure is the grinding roller according to the first aspect described above, in which the ceramic density of the ceramic portion (52, 52A) in a first region including the maximum wear point (P1), which is the most susceptible point of wear on the outer circumferential surface of the roller portion (49), is higher than the ceramic density of a second region located closer to the end in the direction of the rotation axis (C2) than the first region.
上記構成では、最大摩耗点を含む第1領域のセラミック密度が、第1領域よりも回転軸線方向の端部側に位置する第2領域のセラミック密度よりも高くなっている。これにより、最大摩耗点を含む第1領域の耐摩耗性を向上させることができる。したがって、粉砕ローラの耐摩耗性を向上させることができる。よって、粉砕ローラの寿命が短くなる事態を抑制し、粉砕ローラを長寿命化することができる。
一方、第2領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部全体としての剛性を下げることができる。したがって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕ローラを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、上記構成では、粉砕ローラを製造する際の歩留まりを向上させるとともに、粉砕ローラを長寿命化することができる。
また、上記構成では、最大摩耗点を含む第1領域のセラミック密度が第2領域のセラミック密度よりも高くなっているので、最大摩耗点を含む摩耗し易い領域における摩耗が抑制されるとともに、第2領域における摩耗は比較的進み易い。これにより、最大摩耗点を含む第1領域と第2領域との摩耗量が均一化される。したがって、セラミック部の外表面の局所的な摩耗を抑制することができる。よって、粉砕ローラと粉砕テーブルとの噛み合わせの悪化を抑制することができるので、粉砕性能の低下を抑制することができる。 In the above configuration, the ceramic density of the first region including the maximum wear point is higher than the ceramic density of the second region located closer to the end in the rotation axis direction than the first region. This improves the wear resistance of the first region including the maximum wear point. This improves the wear resistance of the crushing roller. This prevents the life of the crushing roller from being shortened, and extends the life of the crushing roller.
On the other hand, since the ceramic density of the second region is low, the rigidity of the ceramic portion as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, and damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the crushing roller can be improved, and the manufacturing cost can be reduced.
In this manner, the above-described configuration can improve the yield in manufacturing the crushing roller and extend the life of the crushing roller.
In addition, in the above configuration, the ceramic density of the first region including the maximum wear point is higher than that of the second region, so that wear in the region that is easily worn including the maximum wear point is suppressed, and wear in the second region is relatively easy to progress. This makes the amount of wear in the first region including the maximum wear point and the second region uniform. Therefore, local wear on the outer surface of the ceramic part can be suppressed. Therefore, deterioration of the meshing between the grinding roller and the grinding table can be suppressed, and the deterioration of the grinding performance can be suppressed.
一方、第2領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部全体としての剛性を下げることができる。したがって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕ローラを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、上記構成では、粉砕ローラを製造する際の歩留まりを向上させるとともに、粉砕ローラを長寿命化することができる。
また、上記構成では、最大摩耗点を含む第1領域のセラミック密度が第2領域のセラミック密度よりも高くなっているので、最大摩耗点を含む摩耗し易い領域における摩耗が抑制されるとともに、第2領域における摩耗は比較的進み易い。これにより、最大摩耗点を含む第1領域と第2領域との摩耗量が均一化される。したがって、セラミック部の外表面の局所的な摩耗を抑制することができる。よって、粉砕ローラと粉砕テーブルとの噛み合わせの悪化を抑制することができるので、粉砕性能の低下を抑制することができる。 In the above configuration, the ceramic density of the first region including the maximum wear point is higher than the ceramic density of the second region located closer to the end in the rotation axis direction than the first region. This improves the wear resistance of the first region including the maximum wear point. This improves the wear resistance of the crushing roller. This prevents the life of the crushing roller from being shortened, and extends the life of the crushing roller.
On the other hand, since the ceramic density of the second region is low, the rigidity of the ceramic portion as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, and damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the crushing roller can be improved, and the manufacturing cost can be reduced.
In this manner, the above-described configuration can improve the yield in manufacturing the crushing roller and extend the life of the crushing roller.
In addition, in the above configuration, the ceramic density of the first region including the maximum wear point is higher than that of the second region, so that wear in the region that is easily worn including the maximum wear point is suppressed, and wear in the second region is relatively easy to progress. This makes the amount of wear in the first region including the maximum wear point and the second region uniform. Therefore, local wear on the outer surface of the ceramic part can be suppressed. Therefore, deterioration of the meshing between the grinding roller and the grinding table can be suppressed, and the deterioration of the grinding performance can be suppressed.
本開示の第3態様に係る粉砕ローラは、上記第2態様の粉砕ローラにおいて、前記セラミック部(52、52A)は、前記回転軸線(C2)方向において、前記ローラ部(49)の前記外周面の中点を通過する面を基準として前記最大摩耗点(P1)と対称となる点(P3)を含む第3領域の前記セラミック密度が前記第2領域の前記セラミック密度よりも高い。
The grinding roller according to the third aspect of the present disclosure is the grinding roller according to the second aspect described above, in which the ceramic density of the ceramic portion (52, 52A) is higher in a third region including a point (P3) that is symmetrical to the maximum wear point (P1) with respect to a plane passing through the midpoint of the outer circumferential surface of the roller portion (49) in the direction of the rotation axis (C2) than the ceramic density of the second region.
ローラ部の摩耗の進行に伴い、ローラ部を反転させて使用する場合がある。すなわち、ローラ部の回転軸線方向の基端側と先端側とを逆にして使用する場合がある。この場合には、ローラ部の最大摩耗点が外周面の中点を通過する面を基準とした対称の位置となる。
上記構成では、ローラ部の外周面の中点を通過する面を基準として、最大摩耗点と対象となる点を含む第3領域のセラミック密度が第2領域のセラミック密度よりも高い。これにより、ローラ部を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができる。したがって、粉砕ローラをさらに長寿命化させることができる。 As the wear of the roller portion progresses, the roller portion may be used in an inverted manner. That is, the base end side and the tip end side of the rotation axis direction of the roller portion may be reversed. In this case, the maximum wear point of the roller portion is located symmetrically with respect to a plane passing through the midpoint of the outer circumferential surface.
In the above configuration, the ceramic density of the third region, which includes the maximum wear point and the target point, is higher than that of the second region, based on a plane passing through the midpoint of the outer circumferential surface of the roller. This makes it possible to increase the ceramic density in the region susceptible to wear even when the roller is used in an inverted state. This further extends the life of the grinding roller.
上記構成では、ローラ部の外周面の中点を通過する面を基準として、最大摩耗点と対象となる点を含む第3領域のセラミック密度が第2領域のセラミック密度よりも高い。これにより、ローラ部を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができる。したがって、粉砕ローラをさらに長寿命化させることができる。 As the wear of the roller portion progresses, the roller portion may be used in an inverted manner. That is, the base end side and the tip end side of the rotation axis direction of the roller portion may be reversed. In this case, the maximum wear point of the roller portion is located symmetrically with respect to a plane passing through the midpoint of the outer circumferential surface.
In the above configuration, the ceramic density of the third region, which includes the maximum wear point and the target point, is higher than that of the second region, based on a plane passing through the midpoint of the outer circumferential surface of the roller. This makes it possible to increase the ceramic density in the region susceptible to wear even when the roller is used in an inverted state. This further extends the life of the grinding roller.
本開示の第4態様に係る粉砕ローラは、上記第2態様の粉砕ローラにおいて、前記セラミック部(52、52A)は、前記回転軸線(C2)方向において、前記ローラ部(49)の前記外周面の中点を通過する面を基準として前記最大摩耗点(P1)と対称となる点(P3)と前記最大摩耗点(P1)との間の領域の前記セラミック密度が他の領域の前記セラミック密度よりも高い。
The grinding roller according to the fourth aspect of the present disclosure is the grinding roller according to the second aspect described above, wherein the ceramic density of the ceramic portion (52, 52A) is higher in the direction of the rotation axis (C2) in the region between the maximum wear point (P1) and a point (P3) that is symmetrical to the maximum wear point (P1) with respect to a plane passing through the midpoint of the outer circumferential surface of the roller portion (49) than in the other regions.
上記構成では、ローラ部の外周面の中点を通過する面を基準として最大摩耗点と対象となる点と最大摩耗点との間の領域のセラミック密度が他の領域のセラミック密度よりも高い。これにより、ローラ部を反転させて使用した場合であっても、摩耗し易い領域におけるセラミック密度を高くすることができる。したがって、粉砕ローラをさらに長寿命化させることができる。
In the above configuration, the ceramic density of the area between the maximum wear point and the target point and the maximum wear point, based on a plane passing through the midpoint of the outer circumferential surface of the roller part, is higher than the ceramic density of other areas. This makes it possible to increase the ceramic density in areas prone to wear, even when the roller part is used in an inverted position. This makes it possible to further extend the life of the grinding roller.
本開示の第5態様に係る粉砕ローラは、上記第2態様から第4態様のいずれかに記載の粉砕ローラにおいて、前記セラミック部(52、52A)は、前記第1領域を含み前記セラミック密度が一様である高密度部(52Aa)と、前記第2領域を含み前記セラミック密度が一様であり前記高密度部(52Aa)と前記回転軸線(C2)方向に隣接して設けられ前記高密度部(52Aa)よりも前記セラミック密度が低い低密度部(52Ab、52Ac)と、を有し、前記高密度部と前記低密度部とは固定されている。
The grinding roller according to the fifth aspect of the present disclosure is a grinding roller according to any one of the second to fourth aspects, wherein the ceramic portion (52, 52A) has a high density portion (52Aa) including the first region and having a uniform ceramic density, and a low density portion (52Ab, 52Ac) including the second region and having a uniform ceramic density, disposed adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2), and having a lower ceramic density than the high density portion (52Aa), and the high density portion and the low density portion are fixed.
上記構成では、セラミック部が、セラミック密度が一様である高密度部と、高密度部と回転軸線方向に隣接して設けられセラミック密度が一様であり高密度部よりもセラミック密度が低い低密度部と、を有している。セラミック密度が一様である部品は、セラミック密度が一様でない部品よりも製造し易い。これにより、異なるセラミック密度であってかつセラミック密度が一様である高密度部と低密度部とを製造し、高密度部と低密度部とを回転軸線方向に並べて配置するだけで、セラミック部の回転軸線方向においてセラミック密度を変化させることができる。したがって、セラミック部を容易に製造することができる。
In the above configuration, the ceramic part has a high density part with a uniform ceramic density, and a low density part that is disposed adjacent to the high density part in the rotation axis direction, has a uniform ceramic density, and has a lower ceramic density than the high density part. Parts with a uniform ceramic density are easier to manufacture than parts with non-uniform ceramic density. As a result, by simply manufacturing high density and low density parts with different but uniform ceramic densities and arranging the high density and low density parts side by side in the rotation axis direction, it is possible to change the ceramic density in the rotation axis direction of the ceramic part. Therefore, the ceramic part can be manufactured easily.
本開示の第1態様に係る粉砕テーブルは、ハウジング(11)の内部に収容され、駆動部(15)から伝達される駆動力により中心軸線(C1)を中心として回転し、粉砕ローラ(13)との間に固体燃料を挟み込んで前記固体燃料を粉砕する粉砕テーブル(12)であって、前記固体燃料が供給されるテーブル部(12a)を備え、前記テーブル部(12a)は、基部(12c)と、前記基部(12c)の上面に設けられ前記基部(12c)と線膨張係数が異なるとともに前記基部(12c)よりも耐摩耗性が優れているセラミック部(12d)と、を有し、前記セラミック部(12d)は、母材及び前記母材に含まれるセラミックを有し、前記中心軸線(C1)を基準とする半径方向に沿って前記母材に対する前記セラミックの含有量であるセラミック密度が変化している。
The grinding table according to the first aspect of the present disclosure is a grinding table (12) that is housed inside a housing (11), rotates around a central axis (C1) by a driving force transmitted from a driving unit (15), and grinds solid fuel by sandwiching the solid fuel between the grinding roller (13). The grinding table (12) includes a table portion (12a) to which the solid fuel is supplied, the table portion (12a) includes a base portion (12c) and a ceramic portion (12d) that is provided on the upper surface of the base portion (12c) and has a linear expansion coefficient different from that of the base portion (12c) and is more wear-resistant than the base portion (12c). The ceramic portion (12d) includes a base material and a ceramic contained in the base material, and the ceramic density, which is the content of the ceramic relative to the base material, varies along the radial direction based on the central axis (C1).
上記構成では、セラミック部が粉砕テーブルの半径方向に沿ってセラミック密度が変化している。セラミック密度は、剛性に影響する。これにより、セラミック部の剛性を粉砕テーブルの半径方向に沿って変化させることができる。
したがって、例えば、摩耗し易い箇所のセラミック密度を上げて(すなわち、剛性を上げて)、それ以外の摩耗し難い箇所のセラミック密度を下げた(すなわち、剛性を下げた)場合には、セラミック部全体としての剛性を下げることができる。よって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕テーブルを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。一方、摩耗し易い箇所においては、セラミック密度が高いので、粉砕テーブルの耐摩耗性を維持することができる。したがって、粉砕テーブルの寿命が短くなる事態を抑制し、粉砕テーブルを長寿命化することができる。以上から、粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕テーブルを長寿命化することができる。
なお、母材に対するセラミックの含有量(セラミック密度)を変化させる方法の例として、粒子状のセラミックの数を変化させる方法や、粒子状のセラミックの粒子径や粒子形状を変化させる方法や、それらを組み合わせる方法等が挙げられる。 In the above-described configuration, the ceramic density of the ceramic portion changes along the radial direction of the grinding table. The ceramic density affects the rigidity. This allows the rigidity of the ceramic portion to be changed along the radial direction of the grinding table.
Therefore, for example, when the ceramic density of the portion susceptible to wear is increased (i.e., the rigidity is increased) and the ceramic density of the other portion less susceptible to wear is decreased (i.e., the rigidity is decreased), the rigidity of the ceramic portion as a whole can be decreased. Therefore, since the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, damage to the ceramic portion caused by the difference in the linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table can be improved, and the manufacturing cost can be reduced. On the other hand, since the ceramic density is high in the portion susceptible to wear, the wear resistance of the grinding table can be maintained. Therefore, the situation in which the life of the grinding table is shortened can be suppressed, and the life of the grinding table can be extended. From the above, the yield rate when manufacturing the grinding table can be improved and the life of the grinding table can be extended.
Examples of methods for changing the ceramic content (ceramic density) relative to the base material include a method for changing the number of particulate ceramics, a method for changing the particle size or particle shape of the particulate ceramics, and a combination of these methods.
したがって、例えば、摩耗し易い箇所のセラミック密度を上げて(すなわち、剛性を上げて)、それ以外の摩耗し難い箇所のセラミック密度を下げた(すなわち、剛性を下げた)場合には、セラミック部全体としての剛性を下げることができる。よって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕テーブルを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。一方、摩耗し易い箇所においては、セラミック密度が高いので、粉砕テーブルの耐摩耗性を維持することができる。したがって、粉砕テーブルの寿命が短くなる事態を抑制し、粉砕テーブルを長寿命化することができる。以上から、粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕テーブルを長寿命化することができる。
なお、母材に対するセラミックの含有量(セラミック密度)を変化させる方法の例として、粒子状のセラミックの数を変化させる方法や、粒子状のセラミックの粒子径や粒子形状を変化させる方法や、それらを組み合わせる方法等が挙げられる。 In the above-described configuration, the ceramic density of the ceramic portion changes along the radial direction of the grinding table. The ceramic density affects the rigidity. This allows the rigidity of the ceramic portion to be changed along the radial direction of the grinding table.
Therefore, for example, when the ceramic density of the portion susceptible to wear is increased (i.e., the rigidity is increased) and the ceramic density of the other portion less susceptible to wear is decreased (i.e., the rigidity is decreased), the rigidity of the ceramic portion as a whole can be decreased. Therefore, since the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, damage to the ceramic portion caused by the difference in the linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table can be improved, and the manufacturing cost can be reduced. On the other hand, since the ceramic density is high in the portion susceptible to wear, the wear resistance of the grinding table can be maintained. Therefore, the situation in which the life of the grinding table is shortened can be suppressed, and the life of the grinding table can be extended. From the above, the yield rate when manufacturing the grinding table can be improved and the life of the grinding table can be extended.
Examples of methods for changing the ceramic content (ceramic density) relative to the base material include a method for changing the number of particulate ceramics, a method for changing the particle size or particle shape of the particulate ceramics, and a combination of these methods.
本開示の第2態様に係る粉砕テーブルは、上記第1態様の粉砕テーブルにおいて、前記セラミック部(12d)は、前記半径方向において、前記テーブル部(12a)の上面の最も摩耗し易い点である最大摩耗点(P2)を含む第1領域の前記セラミック密度が、前記第1領域よりも前記半径方向の端部側に位置する第2領域の前記セラミック密度よりも高い。
The grinding table according to the second aspect of the present disclosure is the grinding table according to the first aspect described above, in which the ceramic density of the ceramic part (12d) in a first region including a maximum wear point (P2) that is the most susceptible point to wear on the upper surface of the table part (12a) in the radial direction is higher than the ceramic density of a second region located toward the end side in the radial direction from the first region.
上記構成では、最大摩耗点を含む第1領域のセラミック密度が、第1領域よりも半径方向の端部側に位置する第2領域のセラミック密度よりも高くなっている。これにより、最大摩耗点を含む第1領域の耐摩耗性を向上させることができる。したがって、粉砕テーブルの耐摩耗性を向上させることができる。よって、粉砕テーブルの寿命が短くなる事態を抑制し、粉砕テーブルを長寿命化することができる。
一方、第2領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部全体としての剛性を下げることができる。したがって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕テーブルを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、上記構成では、粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕テーブルを長寿命化することができる。 In the above configuration, the ceramic density of the first region including the maximum wear point is higher than the ceramic density of the second region located on the radial end side of the first region. This improves the wear resistance of the first region including the maximum wear point. Therefore, the wear resistance of the grinding table can be improved. This prevents the life of the grinding table from being shortened, and extends the life of the grinding table.
On the other hand, since the ceramic density of the second region is low, the rigidity of the ceramic portion as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, and damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table can be improved, and the manufacturing cost can be reduced.
In this way, with the above configuration, the yield rate when manufacturing the rotary table can be improved, and the rotary table can have a longer life.
一方、第2領域のセラミック密度は低くなっているので、全ての領域のセラミック密度を高くした場合と比較して、セラミック部全体としての剛性を下げることができる。したがって、基部とセラミック部との熱応力をセラミック部が吸収し易くなるので、線膨張係数の差に起因するセラミック部の損傷を抑制することができる。よって、粉砕テーブルを製造する際の歩留まりを向上させることができるので、製造コストを低減することができる。
このように、上記構成では、粉砕テーブルを製造する際の歩留まりを向上させるとともに、粉砕テーブルを長寿命化することができる。 In the above configuration, the ceramic density of the first region including the maximum wear point is higher than the ceramic density of the second region located on the radial end side of the first region. This improves the wear resistance of the first region including the maximum wear point. Therefore, the wear resistance of the grinding table can be improved. This prevents the life of the grinding table from being shortened, and extends the life of the grinding table.
On the other hand, since the ceramic density of the second region is low, the rigidity of the ceramic portion as a whole can be reduced compared to when the ceramic density of all regions is high. Therefore, the ceramic portion can easily absorb the thermal stress between the base portion and the ceramic portion, and damage to the ceramic portion caused by the difference in linear expansion coefficient can be suppressed. Therefore, the yield rate when manufacturing the grinding table can be improved, and the manufacturing cost can be reduced.
In this way, with the above configuration, the yield rate when manufacturing the rotary table can be improved, and the rotary table can have a longer life.
本開示の第1態様に係る固体燃料粉砕装置は、上記第1態様から第5態様のいずれかに記載の粉砕ローラ及び/又は上記第1態様または第2態様に記載の粉砕テーブルを備える。
The solid fuel pulverizing device according to the first aspect of the present disclosure includes a pulverizing roller as described in any one of the first to fifth aspects and/or a pulverizing table as described in the first or second aspect.
本開示の第1態様に係る粉砕ローラの製造方法は、ハウジング(11)の内部に収容され、回転する粉砕テーブル(12)との間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブル(12)からの回転力を受けて回転軸線(C2)を中心として連れ回る粉砕ローラ(13)の製造方法であって、前記粉砕ローラ(13)は、前記ハウジング(11)に対して回転可能に支持される支持部(43)と、前記支持部(43)に固定され、前記粉砕テーブル(12)との間で前記固体燃料を粉砕する円環状のローラ部(49)と、を備え、前記ローラ部(49)は、前記支持部に固定される基部(51)と、前記基部(51)の外周部に設けられ前記基部(51)と線膨張係数が異なるとともに前記基部(51)よりも耐摩耗性が優れているセラミック部(52、52A)と、を有し、前記セラミック部(52、52A)は、母材(52b)及び前記母材(52b)に設けられるセラミックス粒子(52c)を有し、前記回転軸線(C2)方向に沿って前記母材(52b)に対する前記セラミックス粒子(52c)の含有量であるセラミック密度が変化していて、前記基部(51)と前記セラミック部(52、52A)とを鋳造により一体的に成形する工程を備える。
The manufacturing method of the grinding roller according to the first aspect of the present disclosure is a manufacturing method of a grinding roller (13) that is housed inside a housing (11), grinds solid fuel by sandwiching the solid fuel between the grinding roller (13) and a rotating grinding table (12), and rotates around a rotation axis (C2) by receiving a rotational force from the grinding table (12), and the grinding roller (13) comprises a support part (43) that is rotatably supported with respect to the housing (11), and an annular roller part (49) that is fixed to the support part (43) and grinds the solid fuel between the grinding table (12), and the roller part (49) is fixed to the support part (43) and grinds the solid fuel between the grinding table (12), and the roller part (49) is fixed to the support part (43). The ceramic part (52, 52A) has a base (51) to which the base is fixed, and is provided on the outer periphery of the base (51), has a linear expansion coefficient different from that of the base (51), and has better wear resistance than the base (51). The ceramic part (52, 52A) has a base material (52b) and ceramic particles (52c) provided in the base material (52b), and the ceramic density, which is the content of the ceramic particles (52c) relative to the base material (52b), varies along the direction of the rotation axis (C2). The process includes a step of integrally molding the base (51) and the ceramic part (52, 52A) by casting.
本開示の第2態様に係る粉砕ローラの製造方法は、上記第1態様に係る粉砕ローラの製造方法において、前記セラミック部(52、52A)は、前記セラミック密度が高い高密度部(52Aa)と、前記高密度部(52Aa)と前記回転軸線(C2)方向に隣接して設けられ前記高密度部(52Aa)よりも前記セラミック密度が低い低密度部(52Ab、52Ac)と、を有し、前記高密度部(52Aa)と前記低密度部(52Ab、52Ac)とが固定された状態で前記セラミック部(52、52A)を鋳型(60)内の所定の箇所に配置するセラミック部(52、52A)配置工程を備える。
The method for manufacturing a grinding roller according to the second aspect of the present disclosure is the method for manufacturing a grinding roller according to the first aspect, wherein the ceramic portion (52, 52A) has a high density portion (52Aa) having a high ceramic density and a low density portion (52Ab, 52Ac) that is adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2) and has a lower ceramic density than the high density portion (52Aa), and includes a ceramic portion (52, 52A) arrangement step of arranging the ceramic portion (52, 52A) at a predetermined position in the mold (60) with the high density portion (52Aa) and the low density portion (52Ab, 52Ac) fixed.
上記構成では、高密度部と低密度部とが固定された状態でセラミック部を鋳型内の所定の箇所に配置するセラミック部配置工程を備えている。これにより、高密度部と低密度部との相対位置が決まった状態でセラミック部を配置することができるので、容易にセラミック部を配置することができる。したがって、高密度部及び低密度部を有する粉砕ローラを容易に製造することができる。
The above configuration includes a ceramic part placement process in which the ceramic part is placed at a predetermined location in the mold while the high density part and the low density part are fixed. This allows the ceramic part to be placed with the relative positions of the high density part and the low density part determined, making it easy to place the ceramic part. Therefore, a grinding roller having a high density part and a low density part can be easily manufactured.
本開示の第3態様に係る粉砕ローラの製造方法は、上記第1態様に係る粉砕ローラの製造方法において、前記セラミック部(52、52A)は、前記セラミック密度が高い高密度部(52Aa)と、前記高密度部(52Aa)と前記回転軸線(C2)方向に隣接して設けられ前記高密度部(52Aa)よりも前記セラミック密度が低い低密度部(52Ab、52Ac)と、を有し、高密度部固定部(FAa)によって前記高密度部(52Aa)を鋳型(60)の所定の箇所に固定する高密度部固定工程と、低密度部固定部(FAb、FAc)によって前記低密度部(52Ab、52Ac)を前記鋳型(60)の所定の箇所に固定する低密度部固定工程と、を備える。
The manufacturing method of the grinding roller according to the third aspect of the present disclosure is the manufacturing method of the grinding roller according to the first aspect, wherein the ceramic portion (52, 52A) has a high density portion (52Aa) having a high ceramic density and a low density portion (52Ab, 52Ac) that is adjacent to the high density portion (52Aa) in the direction of the rotation axis (C2) and has a lower ceramic density than the high density portion (52Aa), and includes a high density portion fixing step of fixing the high density portion (52Aa) to a predetermined position of the mold (60) by a high density portion fixing portion (FAa), and a low density portion fixing step of fixing the low density portion (52Ab, 52Ac) to a predetermined position of the mold (60) by a low density portion fixing portion (FAb, FAc).
上記構成では、高密度部固定部によって高密度部を鋳型の所定の箇所に固定する高密度部固定工程と、低密度部固定部によって低密度部を鋳型の所定の箇所に固定する低密度部固定工程とを備えている。これにより、高密度部及び低密度部を鋳型の所定箇所に容易に固定することができる。したがって、高密度部及び低密度部を有する粉砕ローラを容易に製造することができる。
The above configuration includes a high density portion fixing process in which the high density portion is fixed to a predetermined location in the mold by the high density portion fixing portion, and a low density portion fixing process in which the low density portion is fixed to a predetermined location in the mold by the low density portion fixing portion. This makes it possible to easily fix the high density portion and the low density portion to the predetermined locations in the mold. Therefore, a grinding roller having a high density portion and a low density portion can be easily manufactured.
1 :発電プラント
10 :ミル
11 :ハウジング
12 :粉砕テーブル
12a :テーブル部
12b :支持部
12c :基部
12d :セラミック部
12da :高密度部
12db :中密度部
12dc :低密度部
13 :粉砕ローラ
14 :減速機
15 :ミルモータ
16 :回転式分級機
16a :ブレード
17 :給炭管
18 :分級機モータ
19 :出口ポート
21 :バンカ
22 :ダウンスパウト部
25 :給炭機
26 :搬送部
27 :給炭機モータ
30 :送風部
30a :熱ガス流路
30b :冷ガス流路
30c :熱ガスダンパ
30d :冷ガスダンパ
31 :一次空気通風機
34 :空気予熱器
40 :状態検出部
41 :底面部
42 :天井部
43 :ジャーナルハウジング
44 :ジャーナルシャフト
45 :ジャーナルヘッド
46 :押圧装置
47 :支持アーム
48 :支持軸
49 :ローラ部
49a :外周面
50 :制御部
51 :基部
51a :外周面
52 :セラミック部
52A :セラミック部
52Aa :高密度部
52Ab :中密度部
52Ac :低密度部
52a :外周面
52b :母材
52c :セラミックス粒子
53 :固定部材
60 :鋳型
61 :湯口
62 :湯道
80 :装置
100 :固体燃料粉砕装置
110 :一次空気流路
120 :微粉燃料供給管
152 :セラミック部
200 :ボイラ
210 :火炉
220 :バーナ
CB :セラミックブロック
CBA :セラミックブロック
CBAa :高密度ブロック
CBAb :中密度ブロック
CBAc :低密度ブロック
CBa :上面
FAa :高密度部固定部
FAb :中密度部固定部
FAc :低密度部固定部 1: Power plant 10: Mill 11: Housing 12: Grinding table 12a: Table section 12b: Support section 12c: Base section 12d: Ceramic section 12da: High density section 12db: Medium density section 12dc: Low density section 13: Grinding roller 14: Reducer 15: Mill motor 16: Rotary classifier 16a: Blade 17: Coal feed pipe 18: Classifier motor 19: Outlet port 21: Bunker 22: Downspout section 25: Coal feeder 26: Conveyor section 27: Coal feeder motor 30: Blower section 30a: Hot gas flow path 30b: Cold gas flow path 30c: Hot gas damper 30d: Cold gas damper 31: Primary air fan 34: Air preheater 40: Status detection section 41: Bottom section 42: Ceiling section 43 : journal housing 44 : journal shaft 45 : journal head 46 : pressing device 47 : support arm 48 : support shaft 49 : roller portion 49a : outer peripheral surface 50 : control portion 51 : base portion 51a : outer peripheral surface 52 : ceramic portion 52A : ceramic portion 52Aa : high density portion 52Ab : medium density portion 52Ac : low density portion 52a : outer peripheral surface 52b : base material 52c : ceramic particles 53 : fixing member 60 : mold 61 : sprue 62 : runner 80 : device 100 : solid fuel pulverizing device 110 : primary air passage 120 : pulverized fuel supply pipe 152 : ceramic portion 200 : boiler 210 : furnace 220 : burner CB : ceramic block CBA : ceramic block CBAa : high density block CBAb : medium density block CBAc : Low density block CBa: Upper surface FAa: High density section fixing section FAb: Medium density section fixing section FAc: Low density section fixing section
10 :ミル
11 :ハウジング
12 :粉砕テーブル
12a :テーブル部
12b :支持部
12c :基部
12d :セラミック部
12da :高密度部
12db :中密度部
12dc :低密度部
13 :粉砕ローラ
14 :減速機
15 :ミルモータ
16 :回転式分級機
16a :ブレード
17 :給炭管
18 :分級機モータ
19 :出口ポート
21 :バンカ
22 :ダウンスパウト部
25 :給炭機
26 :搬送部
27 :給炭機モータ
30 :送風部
30a :熱ガス流路
30b :冷ガス流路
30c :熱ガスダンパ
30d :冷ガスダンパ
31 :一次空気通風機
34 :空気予熱器
40 :状態検出部
41 :底面部
42 :天井部
43 :ジャーナルハウジング
44 :ジャーナルシャフト
45 :ジャーナルヘッド
46 :押圧装置
47 :支持アーム
48 :支持軸
49 :ローラ部
49a :外周面
50 :制御部
51 :基部
51a :外周面
52 :セラミック部
52A :セラミック部
52Aa :高密度部
52Ab :中密度部
52Ac :低密度部
52a :外周面
52b :母材
52c :セラミックス粒子
53 :固定部材
60 :鋳型
61 :湯口
62 :湯道
80 :装置
100 :固体燃料粉砕装置
110 :一次空気流路
120 :微粉燃料供給管
152 :セラミック部
200 :ボイラ
210 :火炉
220 :バーナ
CB :セラミックブロック
CBA :セラミックブロック
CBAa :高密度ブロック
CBAb :中密度ブロック
CBAc :低密度ブロック
CBa :上面
FAa :高密度部固定部
FAb :中密度部固定部
FAc :低密度部固定部 1: Power plant 10: Mill 11: Housing 12: Grinding table 12a: Table section 12b: Support section 12c: Base section 12d: Ceramic section 12da: High density section 12db: Medium density section 12dc: Low density section 13: Grinding roller 14: Reducer 15: Mill motor 16: Rotary classifier 16a: Blade 17: Coal feed pipe 18: Classifier motor 19: Outlet port 21: Bunker 22: Downspout section 25: Coal feeder 26: Conveyor section 27: Coal feeder motor 30: Blower section 30a: Hot gas flow path 30b: Cold gas flow path 30c: Hot gas damper 30d: Cold gas damper 31: Primary air fan 34: Air preheater 40: Status detection section 41: Bottom section 42: Ceiling section 43 : journal housing 44 : journal shaft 45 : journal head 46 : pressing device 47 : support arm 48 : support shaft 49 : roller portion 49a : outer peripheral surface 50 : control portion 51 : base portion 51a : outer peripheral surface 52 : ceramic portion 52A : ceramic portion 52Aa : high density portion 52Ab : medium density portion 52Ac : low density portion 52a : outer peripheral surface 52b : base material 52c : ceramic particles 53 : fixing member 60 : mold 61 : sprue 62 : runner 80 : device 100 : solid fuel pulverizing device 110 : primary air passage 120 : pulverized fuel supply pipe 152 : ceramic portion 200 : boiler 210 : furnace 220 : burner CB : ceramic block CBA : ceramic block CBAa : high density block CBAb : medium density block CBAc : Low density block CBa: Upper surface FAa: High density section fixing section FAb: Medium density section fixing section FAc: Low density section fixing section
Claims (11)
- ハウジングの内部に収容され、回転する粉砕テーブルとの間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブルからの回転力を受けて回転軸線を中心として連れ回る粉砕ローラであって、
前記ハウジングに対して回転可能に支持される支持部と、
前記支持部に固定され、前記粉砕テーブルとの間で前記固体燃料を粉砕する円環状のローラ部と、を備え、
前記ローラ部は、前記支持部に固定される基部と、前記基部の外周部に設けられ、前記基部と線膨張係数が異なるとともに前記基部よりも耐摩耗性が優れているセラミック部と、を有し、
前記セラミック部は、母材及び前記母材に設けられるセラミックス粒子を有し、前記回転軸線方向に沿って前記母材に対する前記セラミックス粒子の含有量であるセラミック密度が変化している粉砕ローラ。 a crushing roller that is accommodated in a housing, that crushes solid fuel by pinching the solid fuel between itself and a rotating crushing table, and that rotates about a rotation axis when subjected to a rotational force from the crushing table,
a support portion rotatably supported relative to the housing;
a circular roller portion fixed to the support portion and configured to crush the solid fuel between the roller portion and the crushing table,
the roller portion has a base portion fixed to the support portion, and a ceramic portion provided on an outer periphery of the base portion, the ceramic portion having a linear expansion coefficient different from that of the base portion and having a higher wear resistance than the base portion,
The ceramic portion has a base material and ceramic particles provided in the base material, and the ceramic density, which is the content of the ceramic particles in the base material, varies along the rotation axis direction of the grinding roller. - 前記セラミック部は、前記ローラ部の外周面の最も摩耗し易い点である最大摩耗点を含む第1領域の前記セラミック密度が、前記第1領域よりも前記回転軸線方向の端部側に位置する第2領域の前記セラミック密度よりも高い請求項1に記載の粉砕ローラ。 The grinding roller according to claim 1, wherein the ceramic density of the ceramic portion in a first region including the maximum wear point, which is the point on the outer circumferential surface of the roller portion that is most susceptible to wear, is higher than the ceramic density of a second region located closer to the end in the direction of the rotation axis than the first region.
- 前記セラミック部は、前記回転軸線方向において、前記ローラ部の前記外周面の中点を通過する面を基準として前記最大摩耗点と対称となる点を含む第3領域の前記セラミック密度が前記第2領域の前記セラミック密度よりも高い請求項2に記載の粉砕ローラ。 The grinding roller according to claim 2, wherein the ceramic density of the ceramic portion in a third region including a point symmetrical to the maximum wear point with respect to a plane passing through the midpoint of the outer circumferential surface of the roller portion in the direction of the rotation axis is higher than the ceramic density of the second region.
- 前記セラミック部は、前記回転軸線方向において、前記ローラ部の前記外周面の中点を通過する面を基準として前記最大摩耗点と対称となる点と前記最大摩耗点との間の領域の前記セラミック密度が他の領域の前記セラミック密度よりも高い請求項2に記載の粉砕ローラ。 The grinding roller according to claim 2, wherein the ceramic density of the ceramic part is higher in the rotation axis direction in a region between the maximum wear point and a point symmetrical to the maximum wear point with respect to a plane passing through the midpoint of the outer circumferential surface of the roller part, than in other regions.
- 前記セラミック部は、前記第1領域を含み前記セラミック密度が一様である高密度部と、前記第2領域を含み前記セラミック密度が一様であり前記高密度部と前記回転軸線方向に隣接して設けられ前記高密度部よりも前記セラミック密度が低い低密度部と、を有し、
前記高密度部と前記低密度部とは固定されている請求項2から請求項4のいずれかに記載の粉砕ローラ。 the ceramic portion has a high density portion including the first region and having a uniform ceramic density, and a low density portion including the second region, having a uniform ceramic density, being disposed adjacent to the high density portion in the rotation axis direction, and having a ceramic density lower than that of the high density portion,
5. The crushing roller according to claim 2, wherein the high density portion and the low density portion are fixed to each other. - ハウジングの内部に収容され、駆動部から伝達される駆動力により中心軸線を中心として回転し、粉砕ローラとの間に固体燃料を挟み込んで前記固体燃料を粉砕する粉砕テーブルであって、
前記固体燃料が供給されるテーブル部を備え、
前記テーブル部は、基部と、前記基部の上面に設けられ前記基部と線膨張係数が異なるとともに前記基部よりも耐摩耗性が優れているセラミック部と、を有し、
前記セラミック部は、母材及び前記母材に含まれるセラミックを有し、前記中心軸線を基準とする半径方向に沿って前記母材に対する前記セラミックの含有量であるセラミック密度が変化している粉砕テーブル。 a crushing table that is accommodated in a housing and rotates about a central axis by a driving force transmitted from a driving unit, and crushes solid fuel by sandwiching the solid fuel between the crushing rollers,
a table portion to which the solid fuel is supplied,
the table portion has a base portion and a ceramic portion provided on an upper surface of the base portion, the ceramic portion having a linear expansion coefficient different from that of the base portion and having higher wear resistance than the base portion,
The ceramic portion has a base material and ceramic contained in the base material, and the ceramic density, which is the content of the ceramic in the base material, varies along a radial direction based on the central axis of the grinding table. - 前記セラミック部は、前記半径方向において、前記テーブル部の上面の最も摩耗し易い点である最大摩耗点を含む第1領域の前記セラミック密度が、前記第1領域よりも前記半径方向の端部側に位置する第2領域の前記セラミック密度よりも高い請求項6に記載の粉砕テーブル。 The grinding table according to claim 6, wherein the ceramic density of the first region including the maximum wear point, which is the point on the top surface of the table part that is most susceptible to wear in the radial direction, is higher than the ceramic density of a second region located closer to the end in the radial direction than the first region.
- 請求項1に記載の粉砕ローラ及び/又は請求項6に記載の粉砕テーブルを備える固体燃料粉砕装置。 A solid fuel pulverizer equipped with a pulverizing roller as described in claim 1 and/or a pulverizing table as described in claim 6.
- ハウジングの内部に収容され、回転する粉砕テーブルとの間に固体燃料を挟み込んで前記固体燃料を粉砕し、前記粉砕テーブルからの回転力を受けて回転軸線を中心として連れ回る粉砕ローラの製造方法であって、
前記粉砕ローラは、
前記ハウジングに対して回転可能に支持される支持部と、
前記支持部に固定され、前記粉砕テーブルとの間で前記固体燃料を粉砕する円環状のローラ部と、を備え、
前記ローラ部は、前記支持部に固定される基部と、前記基部の外周部に設けられ前記基部と線膨張係数が異なるとともに前記基部よりも耐摩耗性が優れているセラミック部と、を有し、
前記セラミック部は、母材及び前記母材に設けられるセラミックス粒子を有し、前記回転軸線方向に沿って前記母材に対する前記セラミックス粒子の含有量であるセラミック密度が変化していて、
前記基部と前記セラミック部とを鋳造により一体的に成形する工程を備える粉砕ローラの製造方法。 A method for manufacturing a crushing roller that is housed inside a housing, that crushes solid fuel by sandwiching the solid fuel between itself and a rotating crushing table, and that rotates about a rotation axis thereof by receiving a rotational force from the crushing table, comprising the steps of:
The crushing roller is
a support portion rotatably supported relative to the housing;
a circular roller portion fixed to the support portion and configured to crush the solid fuel between the roller portion and the crushing table,
the roller portion has a base portion fixed to the support portion, and a ceramic portion provided on an outer periphery of the base portion, the ceramic portion having a linear expansion coefficient different from that of the base portion and having a higher wear resistance than the base portion,
the ceramic portion has a base material and ceramic particles provided in the base material, and a ceramic density, which is a content of the ceramic particles relative to the base material, varies along the rotation axis direction;
A method for manufacturing a crushing roller comprising the step of integrally molding the base portion and the ceramic portion by casting. - 前記セラミック部は、前記セラミック密度が高い高密度部と、前記高密度部と前記回転軸線方向に隣接して設けられ前記高密度部よりも前記セラミック密度が低い低密度部と、を有し、
前記高密度部と前記低密度部とが固定された状態で前記セラミック部を鋳型内の所定の箇所に配置するセラミック部配置工程を備える請求項9に記載の粉砕ローラの製造方法。 the ceramic portion has a high density portion having a high ceramic density and a low density portion that is adjacent to the high density portion in the rotation axis direction and has a ceramic density lower than that of the high density portion,
10. The method for producing a crushing roller according to claim 9, further comprising a ceramic part disposing step of disposing the ceramic part at a predetermined position in a mold while the high density part and the low density part are fixed together. - 前記セラミック部は、前記セラミック密度が高い高密度部と、前記高密度部と前記回転軸線方向に隣接して設けられ前記高密度部よりも前記セラミック密度が低い低密度部と、を有し、
高密度部固定部によって前記高密度部を鋳型の所定の箇所に固定する高密度部固定工程と、
低密度部固定部によって前記低密度部を前記鋳型の所定の箇所に固定する低密度部固定工程と、を備える請求項9に記載の粉砕ローラの製造方法。 the ceramic portion has a high density portion having a high ceramic density and a low density portion that is adjacent to the high density portion in the rotation axis direction and has a ceramic density lower than that of the high density portion,
a high density portion fixing step of fixing the high density portion to a predetermined location of the mold by a high density portion fixing part;
The method for manufacturing a crushing roller according to claim 9, further comprising a low-density portion fixing step of fixing the low-density portion to a predetermined position of the mold by a low-density portion fixing portion.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022177432A JP2024067390A (en) | 2022-11-04 | 2022-11-04 | Pulverizing roller, pulverizing table, solid fuel pulverization device, and method for manufacturing pulverizing roller |
JP2022-177432 | 2022-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024095874A1 true WO2024095874A1 (en) | 2024-05-10 |
Family
ID=90930364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/038597 WO2024095874A1 (en) | 2022-11-04 | 2023-10-25 | Pulverizing roller, pulverizing table, solid fuel pulverization device, and method for manufacturing pulverizing roller |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024067390A (en) |
WO (1) | WO2024095874A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1480767A (en) * | 1924-01-15 | Pulverizer | ||
JPS61159279A (en) * | 1985-01-07 | 1986-07-18 | Mitsubishi Heavy Ind Ltd | Roll for roller mill |
JPS62204862A (en) * | 1986-03-05 | 1987-09-09 | 川崎重工業株式会社 | Roller apparatus of vertical mill |
JPH0347543A (en) * | 1989-06-29 | 1991-02-28 | Loesche Gmbh | Crushing surface of roll mill |
JP2001165146A (en) * | 1999-12-06 | 2001-06-19 | Kurimoto Ltd | Composite wear resistant member |
JP2002331248A (en) * | 2001-05-09 | 2002-11-19 | Sumitomo Metal Ind Ltd | Crushing face member, crusher, and method for manufacturing crushing face member |
JP2013173129A (en) * | 2012-02-27 | 2013-09-05 | Mitsubishi Heavy Ind Ltd | Crushing member |
JP2016179428A (en) * | 2015-03-24 | 2016-10-13 | 宇部興産機械株式会社 | Pulverizing roller for vertical mill |
JP2019531888A (en) * | 2016-10-12 | 2019-11-07 | マゴット アンテルナショナル エス.アー. | Grinding roller |
JP2020011164A (en) * | 2018-07-13 | 2020-01-23 | 三菱日立パワーシステムズ株式会社 | Production method for grinding roller, and temperature raising device |
JP2023092829A (en) * | 2021-12-22 | 2023-07-04 | 三菱重工業株式会社 | Crushing roller, solid fuel crushing device and manufacturing method of crushing roller |
-
2022
- 2022-11-04 JP JP2022177432A patent/JP2024067390A/en active Pending
-
2023
- 2023-10-25 WO PCT/JP2023/038597 patent/WO2024095874A1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1480767A (en) * | 1924-01-15 | Pulverizer | ||
JPS61159279A (en) * | 1985-01-07 | 1986-07-18 | Mitsubishi Heavy Ind Ltd | Roll for roller mill |
JPS62204862A (en) * | 1986-03-05 | 1987-09-09 | 川崎重工業株式会社 | Roller apparatus of vertical mill |
JPH0347543A (en) * | 1989-06-29 | 1991-02-28 | Loesche Gmbh | Crushing surface of roll mill |
JP2001165146A (en) * | 1999-12-06 | 2001-06-19 | Kurimoto Ltd | Composite wear resistant member |
JP2002331248A (en) * | 2001-05-09 | 2002-11-19 | Sumitomo Metal Ind Ltd | Crushing face member, crusher, and method for manufacturing crushing face member |
JP2013173129A (en) * | 2012-02-27 | 2013-09-05 | Mitsubishi Heavy Ind Ltd | Crushing member |
JP2016179428A (en) * | 2015-03-24 | 2016-10-13 | 宇部興産機械株式会社 | Pulverizing roller for vertical mill |
JP2019531888A (en) * | 2016-10-12 | 2019-11-07 | マゴット アンテルナショナル エス.アー. | Grinding roller |
JP2020011164A (en) * | 2018-07-13 | 2020-01-23 | 三菱日立パワーシステムズ株式会社 | Production method for grinding roller, and temperature raising device |
JP2023092829A (en) * | 2021-12-22 | 2023-07-04 | 三菱重工業株式会社 | Crushing roller, solid fuel crushing device and manufacturing method of crushing roller |
Also Published As
Publication number | Publication date |
---|---|
JP2024067390A (en) | 2024-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022209456A1 (en) | Classifier, power plant, and method for operating classifier | |
WO2023120083A1 (en) | Crushing roller, solid fuel crushing device, and method for producing crushing roller | |
WO2024095874A1 (en) | Pulverizing roller, pulverizing table, solid fuel pulverization device, and method for manufacturing pulverizing roller | |
JP2020116536A (en) | Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device | |
WO2024096063A1 (en) | Crushing roller, crushing table, solid fuel crushing device, and method for producing crushing roller | |
WO2020158270A1 (en) | Crusher, boiler system, and method for operating crusher | |
WO2024095875A1 (en) | Crushing roller, crushing table, solid fuel crushing device, and method for producing crushing roller | |
WO2023112683A1 (en) | Grinding roller, solid fuel grinding device, and grinding roller production method | |
WO2020045276A1 (en) | Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method | |
JP7274876B2 (en) | Solid fuel crusher, power plant equipped with same, and control method for solid fuel crusher | |
JP2023095072A (en) | Discharge device, solid fuel crushing device and control method of discharge device | |
WO2023120079A1 (en) | Pulverizer roller, solid fuel pulverization device, and method for manufacturing pulverizer roller | |
JP2021067408A (en) | Stable operation control system, solid fuel crusher, stable operation control method and stable operation control program | |
JP2024095040A (en) | Solid fuel crushing device and power generation plant and operation method of solid fuel crushing device and design method of solid fuel crushing device | |
JP2024082964A (en) | Rotor support structure, classifier, solid fuel pulverization device and method for supporting rotor | |
JP2022130856A (en) | Rotary valve and power generation plant, and operational method of rotary valve | |
JP3231422U (en) | Discharge device and solid fuel crusher | |
JP2024145457A (en) | Fuel supply device protection system, solid fuel pulverizer, boiler system, and method for protecting a fuel supply device | |
JP2022156405A (en) | Classifier and power plant, and operation method of classifier | |
WO2024135079A1 (en) | Drift structure, crusher, and method for assembling crusher | |
JP2024111450A (en) | Solid fuel pulverizer, power generation plant, and method for operating the solid fuel pulverizer | |
JP2022086305A (en) | Crushing machine and power generation plant and operation method of crushing machine | |
JP2024082965A (en) | Roller cover and crushing machine and roller cover design method and crushing machine design method | |
JP2024066763A (en) | Damper system, solid fuel pulverization device, power plant and control method of damper system | |
JP2022086304A (en) | Crushing machine and power generation plant and operation method of crushing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23885630 Country of ref document: EP Kind code of ref document: A1 |