WO2022209456A1 - Classifier, power plant, and method for operating classifier - Google Patents

Classifier, power plant, and method for operating classifier Download PDF

Info

Publication number
WO2022209456A1
WO2022209456A1 PCT/JP2022/007548 JP2022007548W WO2022209456A1 WO 2022209456 A1 WO2022209456 A1 WO 2022209456A1 JP 2022007548 W JP2022007548 W JP 2022007548W WO 2022209456 A1 WO2022209456 A1 WO 2022209456A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
particles
fuel
classifier
radial direction
Prior art date
Application number
PCT/JP2022/007548
Other languages
French (fr)
Japanese (ja)
Inventor
聡太朗 山口
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to CN202280007811.7A priority Critical patent/CN116568403A/en
Priority to EP22779681.0A priority patent/EP4238653A1/en
Publication of WO2022209456A1 publication Critical patent/WO2022209456A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/02Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
    • F23G5/033Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment comminuting or crushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/001Air flow directing means positioned on the periphery of the horizontally rotating milling surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • B02C23/12Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/60Separating
    • F23G2201/602Separating different sizes

Definitions

  • the present disclosure relates to a classifier, a power plant, and a classifier operating method.
  • solid fuels such as coal and biomass fuels are pulverized into fine powder within a predetermined particle size range by a pulverizer (mill) and supplied to combustion equipment.
  • a pulverizer mill
  • the solid fuel such as coal and biomass fuel put into the grinding table is sandwiched between the grinding table and the grinding rollers to grind it, and the carrier gas (primary air) supplied from the periphery of the grinding table grinds it.
  • pulverized solid fuel pulverized solid fuel
  • pulverized fuel within a predetermined particle size range fineness
  • pulverized fuel pulverized fuel within a predetermined particle size range (fineness) is sorted by a classifier and transported to a boiler. and combusted in a combustion device.
  • steam is generated by exchanging heat with combustion gas produced by combusting pulverized fuel in a boiler, and the steam rotates a steam turbine to rotate a generator connected to the steam turbine. Electricity is generated by this.
  • a rotary classifier is known as one of the classifiers provided in the mill.
  • a rotary classifier has a plurality of blades that are evenly spaced in the circumferential direction about the axis of rotation.
  • coarse fuel pulverized fuel with a particle size larger than a predetermined particle size
  • finely divided fuel pulverized fuel smaller than a predetermined particle size
  • the rotary classifier has a main body portion that rotates around a rotation axis. By holding the upper and lower sides of the blade, the main body can revolve the blade around the rotation axis. The main body is held by bearings and rotated at a predetermined rotational speed by a power source such as a motor. By changing the rotation speed, the force acting on the pulverized fuel can be adjusted to obtain a predetermined fineness (classification performance).
  • Patent Document 1 a plurality of classifying blades rotating around a vertical axis form a large angle with the radial direction of rotation at the upstream end (entrance end), and the angle is small at the downstream end (outlet end).
  • a type classifier is described. That is, Patent Document 1 describes a rotary classifier in which classifying blades are bent.
  • the classifying vane (blade) described in Patent Document 1 has a shape that is bent such that an inlet side portion (diametrically outer portion) and an outlet side portion (diametrically inner portion) have different angles (angles with respect to the radial direction).
  • the particle size range of the pulverized fuel that can be repelled toward the outer circumference changes depending on the angle of the blade. For this reason, the blade described in Patent Document 1 is repelled to the outer peripheral side at the inlet side of the blade, but the pulverized fuel with an intermediate particle size that cannot be repelled to the outer peripheral side at the outlet side collides with the blade.
  • the result of classification will be greatly different between when the particles collide with the outlet side portion and when they collide with the inlet side portion.
  • Whether the inlet or outlet portion of the blade is impacted depends on the entry position of the pulverized fuel into the rotary classifier. Specifically, when it enters the rotary classifier from a distance in the radial direction of the blade, it collides with the outlet side, and when it enters the rotary classifier from near the blade in the radial direction, it collides with the inlet side. collide.
  • the pulverized fuel with an intermediate particle size collides with the inlet side portion and bounces to the outer peripheral side. It is random with respect to the particle diameter whether the particles collide with the exit side portion and pass through to the inner peripheral side. That is, even if the pulverized fuel has the same particle size, there are cases where it is classified (repelled toward the outer circumference) and cases where it is not classified (where it is repelled toward the inner circumference). For this reason, there is a possibility that the classification of the pulverized fuel according to the target particle size cannot be performed with high accuracy, that is, the classification performance is deteriorated.
  • the greater the difference in the angle between the inlet side portion and the outlet side portion the larger the particle size range in which whether or not the particles are classified becomes random with respect to the particle size. .
  • the rotational speed of the blade is changed, only the upper limit or lower limit of the particle size range in which whether or not the particles are classified is changed at random with respect to the particle size, thereby solving the problem of deterioration in classification performance. I could't.
  • the present disclosure has been made in view of such circumstances, and aims to provide a classifier, a power plant, and a method of operating the classifier that can improve the classification performance.
  • a classifier according to an aspect of the present disclosure is a classifier that classifies particles guided together with a carrier gas into the particles larger than a predetermined particle diameter and the particles having a predetermined particle diameter or less, wherein A plurality of blades that extend and are arranged in a circumferential direction on a virtual circle centered on the central axis that extends in the vertical direction, and that guide the particles together with the carrier gas directed radially inward from the outer side.
  • the blade collides with the guided particles, and out of the collided particles, flips the particles larger than a predetermined particle diameter outward in the radial direction, and removes the particles with a predetermined particle diameter or less. It has a collision surface that bounces inward in the radial direction, and the radial outer side of the collision surface is formed by a tangent to the imaginary circle and a perpendicular line to the collision surface more than the radial inner side. Large angle.
  • a method for operating a classifier is a method for operating a classifier that classifies particles guided together with a carrier gas into the particles larger than a predetermined particle size and the particles having a predetermined particle size or less.
  • the classifier extends in the vertical direction and is arranged circumferentially on an imaginary circle centered on the central axis extending in the vertical direction. a plurality of blades through which the particles are guided together with the gas, and the blades collide with the guided particles, and among the collided particles, the particles larger than a predetermined particle diameter are removed in the radially outward direction.
  • the blade classifies the particles into the particles larger than a predetermined particle diameter and the particles smaller than the predetermined particle diameter.
  • FIG. 1 is a configuration diagram showing a solid fuel pulverizer and a boiler according to an embodiment of the present disclosure
  • FIG. 1 is a vertical cross-sectional view showing a rotary classifier according to an embodiment of the present disclosure
  • FIG. 1 is a horizontal cross-sectional view showing a rotary classifier according to an embodiment of the present disclosure
  • FIG. 1 is a horizontal cross-sectional view of a blade according to an embodiment of the present disclosure
  • FIG. 5 is a graph of blade outward force acting on pulverized fuel and passage characteristics versus distance from the blade inlet in an embodiment of the present disclosure
  • 5 is a graph showing classification performance of a rotary classifier according to an embodiment of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • 11 is a cross-sectional view taken along line XI-XI of FIG. 10
  • FIG. 11 is a cross-sectional view taken along line XII-XII of FIG. 10
  • FIG. 5 is a diagram showing a modification of the rotary classifier according to the embodiment of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • FIG. 11 shows a blade according to a comparative example of the present disclosure
  • FIG. 11 shows a blade according to a comparative example of the present disclosure
  • FIG. 11 shows a blade according to a comparative example of the present disclosure
  • FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure
  • FIG. 11 shows a blade according to a comparative example of the present disclosure
  • FIG. 5 is a graph showing blade outward force acting on pulverized fuel and passage characteristics versus distance from the blade inlet in a comparative example of the present disclosure
  • 4 is a graph showing the relationship between the size of pulverized fuel passing through flat blades and passage characteristics.
  • 5 is a graph showing the relationship between the size of pulverized fuel passing through a flat blade and the distance from the blade inlet.
  • FIG. 4 is a schematic diagram showing the classification effect in airflow
  • 4 is a graph showing the relationship between the particle size of pulverized fuel that collides with the blade and the distance from the inlet of the blade.
  • 4 is a graph showing classification performance of a rotary classifier according to a comparative example of the present disclosure
  • FIG. 11 shows a blade according to a comparative example of the present disclosure
  • FIG. 5 is a graph showing blade outward force acting on pulverized fuel and passage characteristics versus distance from the blade inlet in a comparative example of the present disclosure
  • 4 is a graph showing classification performance of a rotary classifier according to a comparative example of the present disclosure
  • a power plant 1 includes a solid fuel crusher 100 and a boiler 200 .
  • “upper” means the vertically upper direction
  • “upper” such as upper part or top surface means the vertically upper part.
  • “lower” indicates the vertically lower part, and the vertical direction is not exact and includes errors.
  • the solid fuel pulverization device 100 of the present embodiment pulverizes a solid fuel (carbon-containing solid fuel) such as coal or biomass fuel, generates pulverized fuel, and supplies it to the burner (combustion device) 220 of the boiler 200.
  • a solid fuel carbon-containing solid fuel
  • a system including a plurality of solid fuel pulverizers 100 may be used.
  • the solid fuel pulverizer 100 of the present embodiment includes a mill 10, a coal feeder (fuel feeder) 20, an air blower (carrier gas feeder) 30, a state detector 40, and a controller (judgment unit). 50.
  • the mill 10 for pulverizing solid fuel such as coal and biomass fuel to be supplied to the boiler 200 into pulverized fuel which is finely powdered solid fuel, may be of a type that pulverizes only coal or pulverizes only biomass fuel. Alternatively, it may be a form in which the biomass fuel is pulverized together with the coal.
  • the biomass fuel is a renewable organic resource derived from living organisms. chips), etc., and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon-neutral because it does not emit carbon dioxide that becomes a global warming gas.
  • the mill 10 includes a housing 11 , a grinding table (rotary table) 12 , a grinding roller 13 , a drive section 14 , a mill motor 15 connected to the drive section 14 to rotate the grinding table 12 , and a rotary classifier 16 . , a fuel supply unit 17 and a classifier motor 18 for rotating a rotary classifier 16 .
  • the housing 11 is a casing that is formed in a vertically extending cylindrical shape and houses the grinding table 12 , the grinding roller 13 , the rotary classifier 16 , and the fuel supply section 17 .
  • a fuel supply unit 17 is attached to the central portion of the ceiling portion 42 of the housing 11 .
  • the fuel supply part 17 supplies the solid fuel introduced from the bunker 21 into the housing 11, is arranged in the center position of the housing 11 along the vertical direction, and extends to the inside of the housing 11 at its lower end. ing.
  • a driving portion 14 is installed near the bottom portion 41 of the housing 11, and a grinding table 12 that is rotated by driving force transmitted from a mill motor 15 connected to the driving portion 14 is rotatably arranged.
  • the crushing table 12 is a circular member in plan view, and is arranged so that the lower ends of the fuel supply section 17 face each other.
  • the upper surface of the crushing table 12 may have, for example, a sloping shape in which the central portion is low and the outer peripheral portion is bent upward.
  • the fuel supply unit 17 supplies solid fuel (for example, coal or biomass fuel in this embodiment) from above toward the crushing table 12 below, and the crushing table 12 feeds the supplied solid fuel between the crushing roller 13 and the crushing roller 13. Smash.
  • the centrifugal force due to the rotation of the grinding table 12 guides the solid fuel to the outer peripheral side of the grinding table 12, and the solid fuel is pushed toward the grinding table 12. and the crushing roller 13 and crushed.
  • the pulverized solid fuel is blown upward by a carrier gas (hereinafter referred to as primary air) guided from a carrier gas flow path (hereinafter referred to as a primary air flow path) 100a and rotated. It is led to the type classifier 16 .
  • An air outlet (not shown) is provided on the outer periphery of the grinding table 12 to allow the primary air flowing from the primary air flow path 100 a to flow out to the space above the grinding table 12 in the housing 11 .
  • a swirl vane (not shown) is installed at the blowout port to give a swirling force to the primary air blown out from the blowout port.
  • the primary air to which the swirl force is applied by the swirl vane becomes an air flow having a swirling velocity component, and the solid fuel pulverized on the pulverization table 12 is sent to the rotary classifier 16 located above in the housing 11. transport.
  • those larger than a predetermined particle size are classified by the rotary classifier 16, or fall without reaching the rotary classifier 16 and are returned to the pulverization table 12. Then, it is pulverized again between the pulverizing table 12 and the pulverizing roller 13 .
  • the crushing roller 13 is a rotating body that crushes the solid fuel supplied from the fuel supply unit 17 onto the crushing table 12 .
  • the crushing roller 13 is pressed against the upper surface of the crushing table 12 and cooperates with the crushing table 12 to crush the solid fuel.
  • only one crushing roller 13 is shown as a representative in FIG. .
  • three crushing rollers 13 are equally spaced in the circumferential direction at angular intervals of 120° on the outer circumference. In this case, the portions where the three crushing rollers 13 come into contact with the upper surface of the crushing table 12 (the portions pressed) are equidistant from the rotation center axis of the crushing table 12 .
  • the crushing roller 13 can be vertically swung by a journal head 45, and is supported on the upper surface of the crushing table 12 so as to move toward and away from it.
  • the crushing table 12 rotates while the outer peripheral surface is in contact with the solid fuel on the upper surface of the crushing table 12 , the crushing roller 13 receives a rotational force from the crushing table 12 and rotates with the crushing roller 13 .
  • the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the crushing roller 13 and the crushing table 12 and crushed.
  • the support arm 47 of the journal head 45 is supported by a horizontal support shaft 48 at its intermediate portion so that the crushing roller 13 can swing vertically around the support shaft 48 on the side surface of the housing 11 .
  • a pressing device 49 is provided at the upper end of the support arm 47 on the vertical upper side. The pressing device 49 is fixed to the housing 11 and applies a load to the crushing roller 13 via the support arm 47 or the like so as to press the crushing roller 13 against the crushing table 12 .
  • the driving unit 14 is a device that transmits a driving force to the grinding table 12 and rotates the grinding table 12 around its central axis.
  • the drive unit 14 is connected to the mill motor 15 and transmits the driving force of the mill motor 15 to the grinding table 12 .
  • the rotary classifier 16 is provided in the upper part of the housing 11 and has a hollow, substantially inverted conical outer shape.
  • the rotary classifier 16 has a plurality of vertically extending blades 60 on its outer periphery. Each blade 60 is provided at predetermined intervals (equal intervals) around the central axis C of the rotary classifier 16 .
  • the rotary classifier 16 classifies the solid fuel pulverized by the pulverization table 12 and the pulverization roller 13 (hereinafter, the pulverized solid fuel is referred to as "pulverized fuel" into a predetermined particle size (for example, 70 to 100 ⁇ m for coal).
  • Classified into larger ones (hereinafter, pulverized fuel exceeding a predetermined particle size is referred to as "coarse fuel”) and those with a predetermined particle size or less (hereinafter, pulverized fuel with a predetermined particle size or less is referred to as "fine fuel”).
  • the rotary classifier 16 which classifies by rotation, is also called a rotary separator. 2) rotates around the fuel supply unit 17. As shown in FIG. Details of the rotary classifier 16 will be described later.
  • a fixed classifier having a fixed hollow inverted conical casing and a plurality of fixed swirl vanes instead of the blades 60 on the outer periphery of the casing may be used.
  • the pulverized fuel reaching the rotary classifier 16 is knocked down by the blades 60 due to the relative balance between the centrifugal force generated by the rotation of the blades 60 and the centripetal force caused by the primary air flow. , is returned to the grinding table 12 to be ground again, and the pulverized fuel is directed to the outlet port 19 in the ceiling 42 of the housing 11. As shown in FIG.
  • the pulverized fuel classified by the rotary classifier 16 is discharged together with the primary air from the outlet port 19 to the pulverized fuel supply channel 100b and supplied to the burner 220 of the boiler 200 .
  • the pulverized fuel supply channel 100b is also called a pulverized coal pipe when the solid fuel is coal.
  • the fuel supply unit 17 is attached so that the lower end extends to the inside of the housing 11 along the vertical direction so as to penetrate the ceiling part 42 of the housing 11, and the solid fuel introduced from the upper part of the fuel supply unit 17 is pulverized. It is supplied to the substantially central area of the table 12 .
  • the fuel supply unit 17 is supplied with solid fuel from the coal feeder 20 .
  • the coal feeder 20 includes a conveying unit 22 and a coal feeder motor 23 .
  • the conveying unit 22 is, for example, a belt conveyer, and the solid fuel discharged from the lower end of the down spout 24 directly below the bunker 21 is transferred to the fuel supply unit 17 of the mill 10 by the driving force applied from the coal feeder motor 23 . , and put into the fuel supply unit 17 .
  • primary air is supplied to the interior of the mill 10 for conveying the pulverized fuel to the burner 220 and has a higher pressure than the coal feeder 20 and the bunker 21 .
  • the amount of solid fuel supplied to the mill 10 is adjusted, for example, by the moving speed of the belt conveyor of the transport section 22 .
  • the air blower 30 is a device that dries the pulverized fuel and blows primary air into the housing 11 for conveying it to the rotary classifier 16 .
  • the blower unit 30 includes a primary air fan (PAF) 31 and a hot gas flow path in this embodiment. 30a, a cold gas channel 30b, a hot gas damper 30c and a cold gas damper 30d.
  • PAF primary air fan
  • the hot gas flow path 30a converts part of the air (outside air) delivered from the primary air fan 31 into hot gas heated by passing through a heat exchanger 34 such as an air preheater. supply.
  • a hot gas damper 30c is provided downstream of the hot gas flow path 30a.
  • the opening degree of the hot gas damper 30c is controlled by the controller 50.
  • FIG. The flow rate of the hot gas supplied from the hot gas flow path 30a is determined by the degree of opening of the hot gas damper 30c.
  • the cold gas flow path 30b supplies part of the air sent from the primary air ventilator 31 as a normal temperature cold gas.
  • a cold gas damper 30d is provided downstream of the cold gas flow path 30b.
  • the opening degree of the cold gas damper 30 d is controlled by the controller 50 .
  • the flow rate of the cold gas supplied from the cold gas flow path 30b is determined by the degree of opening of the cold gas damper 30d.
  • the flow rate of the primary air is the sum of the flow rate of the hot gas supplied from the hot gas channel 30a and the flow rate of the cold gas supplied from the cold gas channel 30b. It is determined by the mixing ratio of the hot gas supplied from the flow path 30 a and the cold gas supplied from the cold gas flow path 30 b and is controlled by the controller 50 .
  • a part of the combustion gas discharged from the boiler 200 is guided to the hot gas supplied from the hot gas flow path 30a through a gas recirculation fan (not shown) and mixed, thereby supplying the heat gas from the primary air flow path 100a to the housing.
  • the oxygen concentration of the primary air blown into the interior of 11 may be adjusted.
  • the state detection unit 40 of the mill 10 transmits measured or detected data to the control unit 50 .
  • the state detection unit 40 of the present embodiment is, for example, differential pressure measuring means, and the pressure at the portion where the primary air flows into the housing 11 from the primary air flow path 100a and the pulverized fuel supply flow path from the inside of the housing 11 The difference in pressure between the primary air to 100b and the pressure at the exit port 19 where the pulverized fuel is discharged is measured as the differential pressure across the mill 10 .
  • the increase/decrease in the differential pressure of the mill 10 corresponds to the increase/decrease in the amount of pulverized fuel circulating between the vicinity of the rotary classifier 16 inside the housing 11 and the vicinity of the grinding table 12 due to the classification effect of the rotary classifier 16.
  • the state detection unit 40 of the present embodiment is, for example, temperature measurement means, and measures the temperature of the primary air supplied to the inside of the housing 11 (the temperature of the primary air at the mill inlet) and the temperature of the grinding table 12 inside the housing 11.
  • the temperature of the primary air from the upper space to the outlet port 19 is detected, and the air blower 30 is controlled so as not to exceed the upper temperature limit.
  • the upper limit temperature is determined in consideration of the possibility of ignition of the solid fuel.
  • the primary air is cooled by conveying the pulverized fuel while drying it inside the housing 11, and the temperature of the primary air at the outlet port 19 is, for example, approximately 60 to 90 degrees.
  • the controller 50 is a device that controls each part of the solid fuel crusher 100 .
  • the control unit 50 may, for example, transmit a driving instruction to the mill motor 15 to control the rotation speed of the grinding table 12 .
  • the control unit 50 transmits a drive instruction to the classifier motor 18 to control the rotation speed of the rotary classifier 16 to adjust the classifying performance, thereby controlling the differential pressure of the mill 10, that is, the amount of pulverized fuel inside the mill 10.
  • the classification performance is the performance necessary for classification, such as classification characteristics, passage characteristics, and classification accuracy, which will be described later.
  • control unit 50 transmits a drive instruction to, for example, the coal feeder motor 23 of the coal feeder 20 so that the transport unit 22 transports the solid fuel and supplies the solid fuel to the fuel supply unit 17 ( amount of coal fed) can be adjusted.
  • control unit 50 can control the opening degrees of the hot gas damper 30c and the cold gas damper 30d to adjust the flow rate and temperature of the primary air by transmitting the opening instruction to the air blowing unit 30 .
  • the control unit 50 sets the flow rate of the primary air supplied to the inside of the housing 11 and the temperature of the primary air at the outlet port 19 in correspondence with the coal supply amount for each type of solid fuel.
  • the opening degrees of the hot gas damper 30c and the cold gas damper 30d are controlled so as to obtain a predetermined value.
  • the control unit 50 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing.
  • the program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via wired or wireless communication means. etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like. Also, the HDD may be replaced with a solid state disk (SSD) or the like.
  • Boiler 200 includes furnace 210 and burner 220 .
  • the burner 220 heats the primary air containing the pulverized fuel supplied from the pulverized fuel supply channel 100b and the air (outside air) delivered from the forced draft fan (FDF) 32 with the heat exchanger 34. It is a device that burns pulverized fuel and forms a flame using supplied secondary air.
  • the pulverized fuel is burned in the furnace 210, and the high-temperature combustion gas is discharged outside the boiler 200 after passing through heat exchangers (not shown) such as an evaporator, superheater, and economizer.
  • Combustion gas discharged from the boiler 200 flows through the flue 36 .
  • the combustion gas flowing through the flue 36 is denitrified by the denitrification device 35 .
  • the denitrification device 35 supplies a reducing agent such as ammonia or urea water, which has an action to reduce nitrogen oxides, into the flow path through which the combustion gas flows, and reduces the nitrogen oxides and reduction in the combustion gas to which the reducing agent is supplied.
  • a reducing agent such as ammonia or urea water
  • the denitrified combustion gas undergoes heat exchange between the air sent from the primary air fan 31 and the air sent from the forced draft fan 32 in a heat exchanger 34 such as an air preheater.
  • a fan (IDF: Induced Draft Fan) 33 an environmental device (an electric dust collector, a desulfurization device, etc., not shown) performs a predetermined treatment, is led to a chimney (not shown), and is discharged to the outside air. be.
  • the air sent from the primary air ventilator 31 heated by the combustion gas in the heat exchanger 34 is supplied to the hot gas flow path 30a described above.
  • the feed water to each heat exchanger of the boiler 200 is heated in an economizer (not shown), and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature and high-pressure steam.
  • a steam turbine (not shown), which is a power generation unit, to rotationally drive the steam turbine, and to rotationally drive a generator (not shown) connected to the steam turbine to generate power, forming the power plant 1.
  • circumferential direction and radial direction mean “circumferential direction” and “radial direction” when the central axis C is the center.
  • the rotary classifier 16 is provided on the top of the housing 11, as shown in FIG. As shown in FIG. 2, the rotary classifier 16 rotates around a central axis C extending vertically. In this embodiment, the rotary classifier 16 rotates clockwise when viewed from above, as indicated by an arrow A1 in FIGS. 2 and 3 . The direction of rotation of the rotary classifier 16 is opposite to the swirling direction of the primary air formed by swirl vanes installed at the outlet.
  • the rotary classifier 16 is provided with a rotational driving force by a motor (not shown). The number of rotations of the motor is controlled by the controller 50 .
  • the rotary classifier 16 has a main body 70 having a hollow, substantially inverted conical outer shape.
  • An inner space S1 is formed inside the body portion 70 .
  • the body portion 70 includes a cylindrical shaft 71 covering the fuel supply portion 17 and extending along the center axis C, an upper end portion 72 radially extending from the upper end of the cylindrical shaft 71, and a radially extending portion extending from the lower end of the cylindrical shaft 71. and a lower end portion 73 extending to the .
  • the upper end portion 72 defines the upper end of the inner space S1.
  • the lower end portion 73 defines the lower end of the inner space S1.
  • the rotary classifier 16 has a plurality of blades 60 provided on the outer circumference of the main body 70 .
  • Each blade 60 extends vertically.
  • Each blade 60 is a plate-like member.
  • Each blade 60 has its upper end fixed to the upper end 72 .
  • Each blade 60 has a lower end fixed to the lower end portion 73 .
  • Each blade 60 is inclined such that the lower end side is closer to the central axis C than the upper end side.
  • the upper end portion 72 is formed with an opening 72a to which the outlet port 19 (see FIG. 1) is connected.
  • the plurality of blades 60 are arranged in parallel around the central axis C of the rotary classifier 16 at predetermined intervals (equal intervals). Specifically, the blades 60 are arranged side by side on a virtual circle V centered on the central axis C at predetermined intervals. Further, each blade 60 is arranged so as to be inclined at a predetermined angle with respect to the radial direction when viewed from above. A gap is formed between the blades 60 adjacent in the circumferential direction. The gap communicates the inner space S ⁇ b>1 of the plurality of blades 60 and the outer space S ⁇ b>2 of the blades 60 . Pulverized fuel is directed to each blade 60 with primary air directed radially from the outside to the inside.
  • Each blade 60 has an impact surface 61 that is the surface on the front side in the rotational direction and a back surface 65 that is the surface on the rear side in the rotational direction.
  • pulverized fuel including finely powdered fuel B2 and coarsely powdered fuel B1 collides with the collision surface 61 .
  • the pulverized fuel that has collided with the collision surface 61 is subjected to a radially outward force (centrifugal force and collision force, hereinafter referred to as an outward force) indicated by an arrow A2 and a radially inward force indicated by an arrow A3. (centripetal force due to primary air flow, hereinafter referred to as inward force) acts.
  • the rotary classifier 16 classifies the coarse fuel B1 and the fine fuel B2 based on this principle.
  • each blade 60 will be described using the cross-sectional shape in the vertical direction (the cross-sectional shape when cut along a plane (horizontal plane) perpendicular to the vertical direction).
  • cross-sectional shape simply means a cross section (blade cross section) when the blade is cut along a horizontal plane.
  • Each blade 60 has a uniform shape along the vertical direction. That is, each blade 60 has the same cross-sectional shape at any position in the vertical direction.
  • each blade 60 has an impact surface 61 and a back surface 65 opposite impact surface 61, as described above.
  • the rear surface 65 is a flat surface.
  • the collision surface 61 has a curved surface 62 arranged radially outward and a flat surface 63 arranged radially inward of the curved surface 62 .
  • the curved surface 62 and the flat surface 63 are smoothly connected at a boundary point D.
  • the boundary point D is provided substantially at the radial center of the collision surface 61 .
  • the curved surface 62 is provided outside the boundary point D in the radial direction.
  • the curved surface 62 is curved so as to protrude forward in the direction of rotation (see arrow A1 in FIG. 3).
  • the curved surface 62 is curved such that the thickness of the curved surface 62 decreases from the boundary point D toward the outside in the radial direction.
  • the curved surface 62 is curved such that the plate thickness is zero at the radially outer end of the blade 60 . That is, the curved surface 62 and the back surface 65 are connected at the radially outer end of the blade 60 .
  • the radial outer end of the blade 60 forms an acute angle. Therefore, the outer end of the blade 60 in the radial direction may be covered with a cover or the like to prevent cuts.
  • the curved surface 62 has an angle formed between the tangent line L1 of the virtual circle V and the perpendicular line L2 to the collision surface 61 (hereinafter referred to as "inclination angle ⁇ ") more than the radially inner side of the curved surface 62. ) is large. That is, as shown in FIG. 4, the curved surface 62 is curved such that the inclination angle .theta.3 at the point P3 radially outside the point P2 is larger than the inclination angle .theta.2 at the point P2.
  • the curved surface shape of the curved surface 62 is determined according to the required classification characteristics.
  • the curved surface shape of the curved surface 62 has the largest curvature radius at the connection portion with the flat surface 63, and the farther from the flat surface 63 (the radially outward), the larger the curvature radius.
  • the curved surface 62 may have a constant curvature, although a shape with a small .DELTA.
  • the shape may be an arc shape, a shape of a part of an ellipse, or a parabolic shape.
  • the classification characteristic is an index indicating how difficult it is for the pulverized fuel to pass (repelled by the outer peripheral side of the blade 60), and the value increases as the passage becomes more difficult.
  • the flat surface 63 is inclined at a predetermined angle with respect to the radial direction. Also, the inclination angle ⁇ 1 of the flat surface 63 is smaller than the inclination angle of the curved surface 62 (for example, the inclination angle ⁇ 2 and the inclination angle ⁇ 3).
  • the virtual circle V is a virtual circle centered on the central axis C, and is also a rotational trajectory of an arbitrary point within the airfoil cross section of the blade 60 .
  • a method for processing the blade 60 is not particularly limited.
  • the blade 60 having the curved portion on the collision surface 61 may be processed by cutting a plate-shaped material.
  • the curved surface portion of the collision surface of the blade due to wear accompanying the use of the rotary classifier 16 may be formed.
  • the contact frequency with the crushed particles increases and the wear rate increases toward the radially outer periphery of the blade, for example, if the surface hardness of the collision surface of the flat blade is uniform, the radially outer periphery of the plate due to wear The reduction in thickness increases, and a curved surface portion is formed with use. Further, it is preferable to appropriately select the material and hardness of the blade 60 so that the curved surface portion is maintained by the wear of the blade 60 accompanying the use of the rotary classifier 16 . By doing so, the maintenance frequency of the blade 60 can be reduced.
  • the classification performance of the rotary classifier 16 having the flat blade 60X according to the comparative example will be described with reference to FIGS. 15 to 21.
  • FIG. The plate-like blade 60X is inclined at a predetermined angle with respect to the radial direction when viewed in a horizontal cross section.
  • the passing characteristic is an index indicating how easily pulverized fuel passes through the classifier (a value that increases as it easily passes through the inner peripheral side of the blade 60), and will be described later in detail.
  • FIG. 17 shows the relationship between each radial position (horizontal axis) of the blade 60X, the outward force acting on the pulverized fuel (left vertical axis), and the passage characteristics of the pulverized fuel (right vertical axis). .
  • the horizontal axis of the graph in FIG. 17 indicates the distance from the inlet (outer end in the radial direction) of the blade 60X.
  • the horizontal axis represents the radial position of the blade 60X
  • the left end of the horizontal axis represents the radial outer end of the blade 60X (the outer end of the blade 60X on the outer space S2 side)
  • the right end represents the diameter of the blade 60X.
  • the inner end of the direction (the outer end of the blade 60X on the inner space S1 side) is shown.
  • the outward force acting on the pulverized fuel includes a force due to centrifugal force and a force due to collision.
  • the passage characteristic is positively correlated with the inward forces acting on the pulverized fuel, ie negatively correlated with the outward forces (centrifugal force + impact force).
  • G1 in FIG. 17 indicates the outward force F3 (see FIG. 16) acting on the pulverized fuel when the pulverized fuel collides with the blade 60X.
  • G2 also indicates the outward force F5 (see FIG. 16) exerted by the centrifugal force acting on the pulverized fuel.
  • the outward force F3 acting on the pulverized fuel due to collision and the outward force F5 due to the centrifugal force acting on the pulverized fuel are obtained as follows.
  • the force with which the pulverized fuel collides with the rotating blades 60X is indicated by an arrow F1.
  • the force indicated by the arrow F1 is decomposed into a force (arrow F2) acting perpendicularly to the collision surface of the blade 60X and a force (arrow F3) acting in parallel along the collision surface of the blade 60X.
  • the force acting in the vertical direction is canceled by the vertical force (arrow F4) from the blade 60X. Since no counteracting force acts on the force acting in parallel, the outward force F3 of the blade 60X acts on the colliding pulverized fuel. That is, an outward force F3 due to the collision acts.
  • the arrow F5 indicates the radial outward force along the collision surface of the blade 60X due to the centrifugal force
  • the arrow F6 indicates the radial inner force along the collision surface of the blade 60X due to the primary air flow. indicates a directional force.
  • the outward force F3 is obtained by the following formula (1).
  • the outward force F5 of the blade 60X acts as the inclination of the blade 60X with respect to the radial direction increases. Also, the blade 60X is flat. Therefore, in the blade 60X, the angle ⁇ is constant at any point in the radial direction. Therefore, as indicated by G1 in FIG. 17, the blade 60X has a constant outward force F5 at any point in the radial direction.
  • Centrifugal force F5 is obtained from the following equation (2).
  • the centrifugal force F5 acting on the pulverized fuel colliding with the blade 60X with the same rotational speed is determined by the mass of the pulverized fuel and the radius of rotation of the collision position. Further, the pulverized fuel B2 has a small mass. Further, as will be described later, the pulverized fuel B2 collides with the inner side of the blade 60X in the radial direction, that is, the point where the radius of rotation is small, so the centrifugal force F5 acting on the pulverized fuel B2 is reduced. Therefore, when the radially inward force F7 due to the primary air flow overcomes the centrifugal force F5, the pulverized fuel B2 moves radially inward of the blade 60X.
  • the coarse fuel B1 has a large mass.
  • the coarse fuel particle B1 collides with the radially outer side of the blade 60X, that is, a portion having a large rotation radius, so the centrifugal force F5 acting on the coarse fuel particle B1 increases. Therefore, when the centrifugal force F5 overcomes the radially inward force F6 due to the primary air flow, the coarse fuel powder B1 is repelled radially outward of the blade 60X. From the above, as indicated by G2 in FIG. 17, the force due to the centrifugal force F5 becomes a linear function, and thus becomes a straight line that slopes downward to the right.
  • G3 in FIG. 17 indicates the outward force resulting from the sum of the outward force F5 due to the centrifugal force and the outward force F3 due to collision.
  • the outward force F3 due to collision is constant. Therefore, as shown in G3 in FIG. 17, the outward force (centrifugal force + collision force) becomes a straight line.
  • the passing characteristic indicated by G4 in FIG. 17 is in an inversely proportional relationship (negative correlation) with the outward force (centrifugal force+collision force). Therefore, as shown by G4, the passing characteristic is a straight line that slopes upward to the right, the slope of which is opposite to that of G3, which indicates the outward force (centrifugal force + collision force). In this way, the passing characteristics of the plate-shaped blade 60X are obtained.
  • the passing characteristic shown in FIG. 17 indicates the mass of a single pulverized fuel that can pass. Given that the density of pulverized fuel is constant, this indicates the volume of pulverized fuel, that is, the size of pulverized fuel. Therefore, as indicated by G5a in FIG. 18A, the passing characteristics and the size of the pulverized fuel passing through are in a proportional relationship (positive correlation). Also, as indicated by G4 in FIG. 17, the passage characteristic is proportional to the distance from the outer end side of the blade 60X. Therefore, as indicated by G5b in FIG. 18B, the size of the passing pulverized fuel is also proportional to the distance from the outer end side of the blade 60X. FIG.
  • FIG. 18A is a graph showing the relationship between the size of pulverized fuel passing through blade 60X and passage characteristics.
  • FIG. 18B is a graph showing the relationship between the size of pulverized fuel passing through blade 60X and the distance from the inlet of blade 60X.
  • the pulverized fuel is pulverized on the pulverizing table 12 of the mill 10 and air-flow-conveyed to the rotary classifier 16 by primary air (conveying gas) blown from the periphery of the pulverizing table 12 .
  • the airflow E primary airflow
  • the airflow E is a flow that rises while swirling inside the housing 11, and as shown in FIG. Around the circumference, it reaches the rotary classifier 16 from the outer peripheral side of the blade.
  • the airflow E reaching the side surface of the blade 60X sharply bends toward the flow path between the adjacent blades 60X.
  • the pulverized fuel B2 which has a light mass and a small inertia, tends to change course along with the airflow E.
  • the course of the coarse fuel B1 which has a heavy mass and a large inertia, is difficult to change. Due to this characteristic, as shown in FIG. 19, the finely divided fuel B2 passes through the inner side of the airflow curve, and the coarsely powdered fuel B1 passes through the outer side of the airflow curve, whereby rough classification by the airflow is performed. .
  • the proportion of the finely divided fuel B2 colliding with the exit side (inside in the radial direction) of the blade 60X and the proportion of the coarsely divided fuel B1 colliding with the inlet side (outside in the radial direction) of the blade 60X increases.
  • FIG. 20 is a graph showing the relationship between the particle size of pulverized fuel colliding with the blade 60X and the distance from the inlet of the blade 60X.
  • the starting point at which the pulverized fuel begins to change direction toward the blade 60X depends on the flight trajectory of the particles, this variation results in a broad distribution with a certain width.
  • the size of the pulverized fuel particles colliding with each position in the radial direction of the blade 60X falls within the hatched range in FIG.
  • the colliding particle size distribution becomes the distribution shown in FIG.
  • passage characteristics of the entire rotary classifier 16 provided with flat blades 60X (that is, classification performance of the rotary classifier 16) will be described.
  • the left vertical axis indicates the particle size of the pulverized fuel that collides with the blade 60X
  • the right vertical axis indicates the particle size of the pulverized fuel that passes through the blade 60X.
  • the horizontal axis indicates the distance from the entrance (outer end) of the blade 60X.
  • the passage characteristics of the entire rotary classifier 16 in this description are derived from the size of the pulverized fuel passing through the blades 60X indicated by G5b in FIG. 18B and the pulverized fuel distribution shown in FIG. In FIG.
  • the target particle size of the rotary classifier 16 is the particle size of the pulverized fuel at which G5b, which indicates the size of the pulverized fuel passing through the blade 60X, and the upper edge line of the collision particle size distribution intersect.
  • the target particle size is the upper limit of the particle size of pulverized fuel that is to be passed through the rotary classifier 16 and discharged from the mill 10 (supplied to the burner 220 of the boiler 200).
  • the area below G5b which indicates the size of the crushed fuel passing through the upper edge line of the collision particle size distribution and the blade 60X, is the region of the crushed fuel passing through the rotary classifier 16. That is, the area below the dashed line G6 is the area of the pulverized fuel that passes through the rotary classifier 16.
  • Passage characteristics are relatively low on the blade inlet side (outer end side) where coarse fuel is abundant (that is, it is difficult to pass), and conversely, passage characteristics on the blade exit side (inner end side) where fine powder fuel is abundant are relatively high. (i.e. easier to pass).
  • the fine fuel can be allowed to pass through while the coarse fuel is not allowed to pass through. Therefore, the effect of classification can be obtained efficiently.
  • the folded-plate-shaped blade 60Y has a plate-shaped outer portion 60Ya and a plate-shaped inner portion 60Yb that are connected so as to form an angular folding point H.
  • the blade 60Y has different angles of inclination with respect to the radial direction between the outer portion 60Ya and the inner portion 60Yb. Further, the blade 60Y has a larger inclination angle at the outer portion 60Ya than at the inner portion 60Yb.
  • the angle of inclination of the inner portion 60Yb is the same as the angle of inclination of the blade 60X described above will be described.
  • the outer portion 60Ya and the inner portion 60Yb of the blade 60Y have different angles of inclination with respect to the radial direction. This means that the direction of the impact force of the pulverized fuel colliding with the blade 60Y is different. Therefore, the outward force acting on the pulverized fuel that collides with the inner portion 60Yb with a small inclination angle (the force calculated by the above formula (1); see F3 in FIG. 16) is small, and the outer portion 60Ya with a large inclination angle The outward force acting on the colliding particles will be large.
  • the outer portion 60Ya of the blade 60Y has a greater outward force due to the impact force
  • the inner portion 60Yb has a smaller outward force due to the impact force.
  • G2 in FIG. 23 indicates the outward force due to the centrifugal force acting on the pulverized fuel
  • FIG. G8 indicates an outward force resulting from the sum of the outward force due to the centrifugal force and the outward force due to the collision force.
  • G8 since the outward force due to the collision force changes greatly at the break point H, G8 also changes greatly at the break point H.
  • a portion where the outward force changes greatly is called a "stepped portion".
  • the passing characteristic indicated by G9 in FIG. 23 is in an inversely proportional relationship (negative correlation) with the outward force (centrifugal force+collision force).
  • hatched K1 in FIG. 23 indicates a region where passage characteristics can be reduced as compared with the flat blade 60X. In this way, in the outer portion 60Ya where the coarse fuel particles B1 are likely to collide, the passage characteristics (inward force) can be reduced. know that you can.
  • the passage characteristics of the rotary classifier 16 as a whole that is, the classification performance of the rotary classifier 16
  • the passage characteristics of the entire rotary classifier 16 in this description are derived from G10, which indicates the size of pulverized fuel passing through the blade 60Y based on G9 in FIG. 23, and the impact particle size distribution shown in FIG. be
  • the area below G11 indicated by the dashed line is the area of pulverized fuel passing through the rotary classifier 16 .
  • the passage characteristics of the outer portion 60Ya are reduced compared to when the flat blade 60X is employed.
  • the passage characteristics are extremely reduced in a region where the particle size is large, particularly in a region where the proportion of particles having a particle size equal to or smaller than the target particle size is very small.
  • the hatched area K3 is repelled to the outer peripheral side by the blade 60Y even though it is within the range of the collision particle size distribution and is equal to or smaller than the target particle size.
  • the classification performance is lower than when the flat blade 60X is used (the pulverized fuel that should be passed and does not need to be classified is repelled to the outer peripheral side). Further, there is a stepped portion in the classification characteristics, and whether or not the pulverized fuel in the particle size range J corresponding to the stepped portion passes through the blade 60Y depends on the collision position. Therefore, whether or not the particles are classified is random with respect to the particle diameter. Therefore, there is a problem that part of the pulverized fuel that should pass through the rotary classifier 16 is repelled by the blade 60Y, and the classification performance deteriorates. The repelled pulverized fuel is returned to the pulverizing table 12 and pulverized again.
  • the pulverized fuel which has already become finer, is further pulverized, the pulverization power is wasted, and the pulverized fuel that has flowed back acts as a solid lubricant, causing the pulverizing rollers 13 to slip on the pulverizing table 12, causing slip vibration. is likely to occur in the mill 10.
  • FIG. 5 an example in which the angle of inclination of the flat surface 63 is the same as the angle of inclination of the blade 60X described above will be described.
  • the curved surface 62 it can be assumed that the inclination angle changes continuously. Therefore, as indicated by G20 in FIG. 5, the outward force due to the collision force also changes smoothly.
  • the curved surface 62 has a larger inclination angle on the radially outer side than on the radially inner side. Therefore, the outward force due to the collision force increases toward the outside in the radial direction.
  • G21 which indicates the outward force due to the sum of the outward force due to the centrifugal force and the outward force due to the collision force, also changes smoothly so that the outward force increases toward the outside in the radial direction. is doing.
  • G2 in FIG. 5 indicates the outward force due to the centrifugal force acting on the pulverized fuel, as in FIG. 17 and the like.
  • the passing characteristic indicated by G22 in FIG. 5 is in an inversely proportional relationship (negative correlation) with the outward force (centrifugal force+collision force). Therefore, like G21, G22 also changes smoothly.
  • the hatched K4 in FIG. 5 indicates a region where the passing characteristic can be reduced more than the plate-shaped blade 60X.
  • the passage characteristics of the entire rotary classifier 16 having the blades 60 according to the present embodiment (that is, the classification performance of the rotary classifier 16) will be described.
  • the passage characteristics of the entire rotary classifier 16 in this description are derived from G23, which indicates the size of the pulverized fuel passing through the blades 60 based on G22 in FIG. 5, and the impact particle size distribution shown in FIG. be
  • the area below the dashed line G24 is the region of the pulverized fuel passing through the rotary classifier 16.
  • the passage characteristics are reduced on the curved surface 62 compared to when the flat blade 60X is employed.
  • the passage characteristics of the curved surface 62 are smaller than when the folded plate blade 60Y is employed.
  • the passage characteristics are extremely reduced in a region where the particle size is large, particularly in a region where the proportion of particles having a particle size equal to or smaller than the target particle size is very small. As a result, it is possible to further suppress the passage of coarse fuel particles and improve the classification performance.
  • the amount of pulverized fuel that is not completely burned in the burner 220 (unburned pulverized fuel) can be reduced, and the unburned content in the ash discharged from the boiler 200 can be reduced.
  • the amount of air supplied to the boiler 200 can be reduced (low air ratio combustion), and the amount of nitrogen oxides produced can also be suppressed. Therefore, the environmental load can be reduced.
  • the amount of reducing agent (such as ammonia) used in the denitrification device 35 can be reduced, and the running cost can be reduced.
  • the hatched area K7 is repelled to the outer peripheral side by the blade 60Y even though it is within the collision particle size distribution range and is equal to or smaller than the target particle size.
  • the area where the classification performance is lowered can be made smaller than when the folded-plate blade 60Y is employed (see hatching K3 in FIG. 24). Therefore, deterioration in classification performance can be suppressed.
  • By suppressing the recirculation of the finely divided fuel B2 in this way it is possible to suppress the re-pulverization of the finely divided fuel B2. Thereby, reduction of the grinding
  • slip vibration of the mill 10 due to the recirculated pulverized fuel acting as a lubricant can be made less likely to occur.
  • a curved surface 62 is formed on the radially outer side of the blade 60 .
  • the blade 60 with a curved tip surface can have a self-shaping property in which the blade 60 wears so that the radial length of the blade 60 decreases. This is because the outer side of the blade 60 tends to be rougher and heavier particles collide with each other at high speed, and wear tends to be accelerated.
  • the curved surface shape of the curved surface 62 of 60 is maintained, and its performance can be maintained.
  • the collision surface 61 has a curved surface 62 and a flat surface 63 . Since the flat surface 63 is easier to manufacture than the curved surface 62 , the blade 60 can be manufactured more easily than when the entire impact surface 61 is the curved surface 62 .
  • the radially inner side of the collision surface 61 is affected by the force of the primary air (that is, the force directed from the radially outer side to the inner side of the blade 60). The effect of the force directed toward the In this embodiment, a flat surface 63 is formed on the inner side in the radial direction. Thereby, compared with the case where the flat surface 63 is formed on the outer side in the radial direction, deterioration of the classification performance can be suppressed.
  • a boundary point D which is a boundary between the curved surface 62 and the flat surface 63, is a point where G23, which indicates the size of pulverized fuel passing through the blade 60 in FIG. It may be radially inside of L.
  • the length of the blade 60 in the circumferential direction becomes shorter toward the outer side in the radial direction.
  • the plate thickness of the blade 60 can be reduced, it is possible to make it difficult for a tool or the like to interfere with an adjacent blade or the like when the blade 60 is attached. Therefore, the attachment work of the blade 60 can be facilitated.
  • the present disclosure is not limited to the above-described embodiments, and modifications can be made as appropriate without departing from the scope of the present disclosure.
  • the solid fuel may be biomass fuel or PC (petroleum coke) fuel generated during petroleum refining. may be used.
  • the classifier of the present disclosure is applied to a mill that pulverizes solid fuel
  • the present disclosure is not limited to this.
  • the classifier of the present disclosure may be applied to crushers that crush ores.
  • the radial length of the blade 60 decreases as it wears. For this reason, it is desirable to set the replacement reference by the length in the radial direction.
  • the blade 60 may be provided with detection means for detecting the length in the radial direction, and this detection means may be used as a wear detection sensor.
  • the blade 60 is preferably detachably fixed to the main body 70 with bolts or the like so that it can be replaced when worn.
  • the flat surface 63 of the blade 60 is provided with the mounting surface and the bolt bearing surface that are attached to the body portion 70 , but the curved surface 62 may be provided with the mounting surface or the like.
  • a mounting surface or the like is provided on the curved surface 62, a counterbore or the like may be provided, or a washer or the like matching the curvature may be used to form the seat surface.
  • the blade may be manufactured by laminating a plurality of thin plates in the plate thickness direction.
  • the blade 60A is formed by stacking thin plate materials (60Aa, 60Ab, and 60Ac) having different lengths in the radial direction.
  • Each plate member may be made of the same material, or may be made of different materials.
  • the plate members may be arranged so that the plate members are formed of a material having high wear resistance in order from the collision surface 61 side to the back surface 65 side. By doing so, the self-shaping property can be exhibited more preferably.
  • the blade may have a constant length (thickness) in the circumferential direction throughout the radial direction.
  • a curved surface 62 is formed on the collision surface 61 of the blade 60B by bending a plate-like blade.
  • the blade 60B having a curved surface can be formed simply by bending, so that the blade 60B can be easily manufactured.
  • the circumferential length (thickness) of the blade 60B is constant throughout the radial direction, the length that allows wear is increased throughout the radial direction. Therefore, the durability of the blade 60B can be improved.
  • the blade may have a plurality of recesses 80 formed in the curved surface 62 .
  • the blade 60 ⁇ /b>C has a constant circumferential length (plate thickness) throughout the radial direction, and a plurality of concave portions 80 are formed in the curved surface 62 .
  • Examples of the recesses 80 include, for example, dimples.
  • the blade 60 ⁇ /b>C has a self-lining structure with a plurality of recesses 80 .
  • the recess 80 is formed to have a sufficiently small radius of curvature compared to the radius of curvature of the curved surface 62 . That is, the recessed portion 80 has a size that does not affect the shape of the curved surface 62 .
  • the shape of the curved surface 62 is largely unaffected.
  • recesses 80 are formed in the curved surface 62 so that pulverized fuel enters the recesses 80 .
  • the surface of the curved surface 62 is covered with pulverized fuel.
  • the pulverized fuel covering the surface of the curved surface 62 suppresses contact between the flowing pulverized fuel and the curved surface 62 . Therefore, abrasion of the curved surface 62 can be suppressed.
  • a similar effect can be obtained by forming waves instead of the concave portions 80 .
  • the concave portion 80 or the corrugations may be provided not only on the curved surface 62 but also on the flat surface 63, and by providing them on the collision surface 61, abrasion can be suppressed.
  • the cross-sectional shape of the blade 60D may smoothly change in the vertical direction. That is, as shown in FIG. 10, the cross-sectional shape at the upper portion of the blade 60D (see FIG. 11) and the cross-sectional shape at the lower portion (see FIG. 12) may be different. Specifically, in the example shown in FIG. 10, the upper section of the blade 60D has a smaller curved surface than the lower section of the blade 60D. This is because, as shown in FIG.
  • the blade 60D is inclined so that the upper part is further away from the central axis C than the lower part, so the centrifugal force R1 (see FIG. 2) acting on the upper part moves to the lower part. This is because it is greater than the acting centrifugal force R2 (see FIG. 2).
  • the centrifugal force acting is strong, even if the curved surface 62 is made small to make it difficult to repel the pulverized fuel radially outward, it is possible to sufficiently repel the pulverized fuel radially outward.
  • the pulverized fuel can be sufficiently repelled radially outward by enlarging the curved surface 62 to facilitate repulsion radially outward. Therefore, in the example shown in FIG. 10, even if the blade 60D is inclined with respect to the vertical direction, the manner in which the pulverized fuel is repelled radially outward can be made uniform in the vertical direction.
  • the centrifugal force R3 acting on the blade 60E is Since it does not change in the vertical direction, it may have a uniform shape in the vertical direction as shown in FIG. By making the shape uniform in the vertical direction, the structure can be simplified, so that it can be easily manufactured.
  • the blade may have a rectangular cross-sectional shape without forming a curved surface at the upper end portion and the lower end portion fixed to the upper end portion 72 and the lower end portion 73 of the main body portion 70 .
  • the surface for fixing the blade and the main body portion 70 can be enlarged compared to the case where the curved surface is formed. Therefore, the blade can be firmly fixed.
  • the curved surface 62 may not be a perfect curved surface, but may be formed by digitally forming a curved surface by combining planes with minute differences in angles, or by combining thin layers stepwise. Further, depending on the required classification performance, a flat surface may be inserted at the tip of the curved surface 62 or part of the middle of the curved surface 62 .
  • a classifier according to an aspect of the present disclosure is a classifier (16) that classifies particles guided together with a carrier gas into the particles larger than a predetermined particle size and the particles having a predetermined particle size or less,
  • the carrier gas extends in the vertical direction, is arranged in the circumferential direction on a virtual circle (V) centered on the central axis (C) extending in the vertical direction, and flows from the outer side to the inner side in the radial direction.
  • the blades (60) colliding with the guided particles, and removing the particles larger than a predetermined particle diameter among the colliding particles with the particle diameter
  • It has a collision surface (61) that repels the particles of a predetermined particle size or less in the radially outward direction, and the collision surface (61) has a radially outer side that faces the The angle formed by the tangent to the virtual circle (V) and the perpendicular to the collision surface (61) is larger than the radially inner side.
  • the classifier blades are more likely to collide with pulverized solid fuel having a larger particle size (hereinafter referred to as "pulverized fuel”) toward the outer side in the radial direction, and pulverized solid fuel having a smaller particle size toward the inner side in the radial direction.
  • Fuel tends to collide easily.
  • the greater the angle formed by the tangent to the virtual circle and the perpendicular to the collision surface hereinafter referred to as the "tilt angle”
  • the collision surface of the blade has a larger inclination angle on the radially outer side than on the radially inner side.
  • the shape has a strong force that repels the pulverized fuel radially outward at the radially outer side where the pulverized fuel having a large particle size tends to collide. Therefore, pulverized fuel having a large particle size can be strongly repelled radially outward.
  • the collision surface of the blade has a larger inclination angle on the radially inner side than on the radially outer side. That is, the shape is such that the force for repelling the pulverized fuel to the radially outer side is weak at the radially inner side where the pulverized fuel having a small particle size tends to collide.
  • the pulverized fuel having a small particle size is easily guided radially inward together with the carrier gas flowing radially inward.
  • the pulverized fuel having a small particle size can be repelled radially inward.
  • pulverized fuel having a large particle size is easily repelled radially outward, and pulverized fuel having a small particle size is easily repelled radially inward, so that the classification performance of the classifier can be improved.
  • the collision surface (61) has a curved surface (62) that curves so as to protrude, and the curved surface (62) extends outward in the radial direction.
  • the angle formed by the tangent to the virtual circle (V) and the perpendicular to the collision surface (61) is larger on the inner side in the radial direction.
  • the pulverized fuel collides with the outer portion according to the intrusion position of the pulverized fuel. will determine whether the pulverized fuel hits the inner portion and is repelled to the inside of the blade. For this reason, even pulverized fuel with the same particle size may be classified (repelled to the outside) or not classified (repelled to the outside) depending on the entry position. Therefore, there was a possibility that the classification performance would deteriorate.
  • the collision surface is curved. This can reduce the area dependent on the intrusion position. Therefore, the classification performance can be improved.
  • the curved surface of the blade has a larger inclination angle on the radially outer side than on the radially inner side. That is, the shape has a strong force that repels the pulverized fuel radially outward at the radially outer side where the pulverized fuel having a large particle size tends to collide. Therefore, pulverized fuel having a large particle size can be strongly repelled radially outward.
  • the curved surface of the blade has a greater angle of inclination on the radially inner side than on the radially outer side.
  • the shape is such that the force for repelling the pulverized fuel to the radially outer side is weak at the radially inner side where the pulverized fuel having a small particle size tends to collide. Therefore, the pulverized fuel having a small particle size is easily guided radially inward together with the carrier gas flowing radially inward. As a result, the pulverized fuel having a small particle size can be repelled radially inward. In this way, on the curved surface, pulverized fuel with a large particle size is easily flipped radially outward, and pulverized fuel with a small particle size is easily flipped radially inward, so that the classification performance of the classifier can be improved. .
  • the curved surface includes a polygonal surface formed by combining planes with a small angle difference, and a stepped surface formed by laminating thin layers with their edges shifted.
  • the collision surface (61) includes the curved surface (62) and a flat surface (63) arranged inside the curved surface (62) in the radial direction. ) and
  • the collision surface has a curved surface and a flat surface. Since a flat surface is easier to manufacture than a curved surface, the blade can be manufactured more easily than when the entire collision surface is curved.
  • the influence of the force of the carrier gas that is, the force directed from the outside to the inside in the radial direction
  • the flat surface is formed on the inner side in the radial direction, it is possible to suppress the deterioration of the classification performance due to the formation of the flat surface.
  • the blade (60) has a length in the circumferential direction that decreases toward the outer side in the radial direction.
  • the length of the blade in the circumferential direction becomes shorter toward the outer side in the radial direction.
  • the plate thickness of the blade can be reduced, so that it is difficult for a tool or the like to interfere with an adjacent blade or the like when attaching the blade. Therefore, the work of attaching the blade can be facilitated.
  • the blades (60) have a constant length in the circumferential direction over the entire area in the radial direction.
  • the length of the blade in the circumferential direction (the length in the plate thickness direction) is constant throughout the radial direction.
  • a blade having a curved surface can be manufactured by bending a plate-like blade. Therefore, the blade can be manufactured easily.
  • the length that allows wear is longer. Therefore, durability of the blade can be improved.
  • the collision surface (61) is formed with a plurality of concave portions.
  • a plurality of recesses are formed on the collision surface. That is, the self-lining structure is configured by the plurality of recesses.
  • the pulverized fuel enters the concave portion and covers the surface of the collision surface with the pulverized fuel.
  • the pulverized fuel covering the surface of the collision surface suppresses contact between the flowing pulverized fuel and the collision surface. Therefore, abrasion of the collision surface can be suppressed.
  • a power plant includes a classifier (16) according to any one of the above, and a pulverized solid fuel having a predetermined particle size or less classified by the classifier (16). It comprises a boiler (200) and a power generation section that generates power using the steam generated by the boiler (200).
  • a classifier operating method includes a classifier (16 ), wherein the classifiers (16) extend vertically and are arranged circumferentially on a virtual circle (V) centered on the central axis extending vertically.
  • the blades (60) colliding with the guided particles and Among them, it has a collision surface (61) that repels the particles larger than a predetermined particle diameter outward in the radial direction and repels the particles smaller than the predetermined particle diameter inward in the radial direction, and the collision surface (61 ), the angle formed by the tangent of the virtual circle (V) and the perpendicular to the collision surface (61) is larger on the radially outer side than on the radially inner side, and the blade (60) and classifying the particles into the particles larger than a predetermined particle diameter and the particles having a predetermined particle diameter or less.
  • a collision surface (61) that repels the particles larger than a predetermined particle diameter outward in the radial direction and repels the particles smaller than the predetermined particle diameter inward in the radial direction
  • the collision surface (61 ) the angle formed by the tangent of the virtual circle (V) and the perpendicular to the collision surface (61) is larger on the radially outer side than on the radi
  • Reference Signs List 1 power plant 10: mill 11: housing 12: grinding table 13: grinding roller 14: driving unit 15: mill motor 16: rotary classifier 17: fuel supply unit 18: classifier motor 19: outlet port 20: coal feeder 21 : Bunker 22 : Conveyor 23 : Coal feeder motor 24 : Downspout 30 : Air blower 30a : Hot gas flow path 30b : Cold gas flow path 30c : Hot gas damper 30d : Cold gas damper 31 : Primary air ventilator 32 : Pushing Ventilator 34 : Heat exchanger 35 : Denitrification device 36 : Flue 40 : State detection part 41 : Bottom part 42 : Ceiling part 45 : Journal head 47 : Support arm 48 : Support shaft 49 : Pressing device 50 : Control part 60 : Blade 61 : Collision surface 62 : Curved surface 63 : Flat surface 65 : Back surface 70 : Main body 71 : Cylindrical shaft 72 : Upper end 73 : Lower end 80 : Reces

Abstract

The purpose of the present invention is to improve classifying performance. A rotary classifier (16) classifies crushed solid fuel guided along with primary air into a coarse powder fuel (B1) having a particle size greater than a predetermined particle size and a fine powder fuel (B2) having a particle size equal to or less than the predetermined particle size. The rotary classifier (16) comprises a plurality of blades (60) that extend vertically, that are circumferentially positioned side by side on a virtual circle (V) centered about a vertically extending center axis (C), and that guide solid fuel along with transport gas heading from the outer side to the inner side along the radial direction. The blades (60) have collision surfaces (61) against which the guided crushed fuel collides. Said collision surfaces (61) causing coarse powder fuel (B1) of the crushed fuel that has collided therewith to be repelled radially outward, and fine powder fuel (B2) of the crushed fuel that has collided therewith to be repelled radially inward, the particles of the coarse powder fuel (B1) exceeding a predetermined size and the particles of the fine powder fuel (B2) not exceeding the predetermined particle size. In each of the collision surfaces (61), the angle formed by the tangent of the virtual circle (V) and a normal to the collision surface (61) is greater on the radially outer side than on the radially inner side.

Description

分級機及び発電プラント並びに分級機の運転方法Classifier, power plant, and classifier operation method
 本開示は、分級機及び発電プラント並びに分級機の運転方法に関するものである。 The present disclosure relates to a classifier, a power plant, and a classifier operating method.
 従来、石炭やバイオマス燃料等の固体燃料(炭素含有固体燃料)は、粉砕機(ミル)で所定粒子径範囲内の微粉状に粉砕して、燃焼装置へ供給される。ミルは、粉砕テーブルへ投入された石炭やバイオマス燃料等の固体燃料を、粉砕テーブルと粉砕ローラの間に挟み込んで粉砕し、粉砕テーブルの外周から供給される搬送用ガス(一次空気)によって、粉砕されて微粉状となった固体燃料(以下、粉砕された固体燃料を「粉砕燃料」という。)のうち、所定粒子径範囲(微粉度)内の微粉燃料を分級機で選別し、ボイラへ搬送して燃焼装置で燃焼させている。火力発電プラントでは、ボイラで微粉燃料を燃焼して生成された燃焼ガスとの熱交換により蒸気を発生させ、該蒸気により蒸気タービンを回転駆動して、蒸気タービンに接続した発電機を回転駆動することで発電が行なわれる。 Conventionally, solid fuels (carbon-containing solid fuels) such as coal and biomass fuels are pulverized into fine powder within a predetermined particle size range by a pulverizer (mill) and supplied to combustion equipment. In the mill, the solid fuel such as coal and biomass fuel put into the grinding table is sandwiched between the grinding table and the grinding rollers to grind it, and the carrier gas (primary air) supplied from the periphery of the grinding table grinds it. Of the solid fuel that has been pulverized into fine powder (hereinafter, pulverized solid fuel is referred to as "pulverized fuel"), pulverized fuel within a predetermined particle size range (fineness) is sorted by a classifier and transported to a boiler. and combusted in a combustion device. In a thermal power plant, steam is generated by exchanging heat with combustion gas produced by combusting pulverized fuel in a boiler, and the steam rotates a steam turbine to rotate a generator connected to the steam turbine. Electricity is generated by this.
 ミルに設けられる分級機の1つとして、例えば、回転式分級機が知られている。回転式分級機は、回転軸線を中心として周方向に等間隔に配置される複数のブレードを有している。回転式分級機は、粉砕燃料が、回転軸線を中心として回転する複数のブレードの間を通過する際に、重量が大きく遠心力が大きく作用する粗粉燃料(所定粒子径よりも大きい粉砕燃料)はブレードの外周側へ弾き、重量が小さく一次空気の気流による搬送力が大きく作用する微粉燃料(所定粒子径よりも小さい粉砕燃料)はブレードの内周側へ通過させることで、分級を行う装置である。
 また、回転式分級機は、回転軸線を中心として回転する本体部を有している。本体部は、ブレードの上下を保持することにより、回転軸線を中心としてブレードを公転させることができる。本体部は軸受にて保持され、モータ等の動力源により所定の回転速度で回転する。この回転速度を変化させることで、粉砕燃料へ作用する力を調整し、所定の微粉度(分級性能)を得ることができる。
For example, a rotary classifier is known as one of the classifiers provided in the mill. A rotary classifier has a plurality of blades that are evenly spaced in the circumferential direction about the axis of rotation. In rotary classifiers, coarse fuel (pulverized fuel with a particle size larger than a predetermined particle size) is heavy and exerts a large centrifugal force when the pulverized fuel passes between multiple blades that rotate about the rotation axis. is repelled to the outer peripheral side of the blade, and finely divided fuel (pulverized fuel smaller than a predetermined particle size), which is small in weight and has a large conveying force due to the primary air flow, is passed through the inner peripheral side of the blade to classify it. is.
Further, the rotary classifier has a main body portion that rotates around a rotation axis. By holding the upper and lower sides of the blade, the main body can revolve the blade around the rotation axis. The main body is held by bearings and rotated at a predetermined rotational speed by a power source such as a motor. By changing the rotation speed, the force acting on the pulverized fuel can be adjusted to obtain a predetermined fineness (classification performance).
 一般的に、回転式分級機のブレードは、平板状とされている。しかしながら、分級性能(粗粉燃料をブレードの外周側へ弾き、微粉燃料をブレードの間を通過させる性能)の向上等を目的として、回転式分級機のブレードを、単なる平板状ではない形状とすることがある(例えば、特許文献1)。
 特許文献1には、鉛直軸の周りに回転する複数の分級羽根の上流端(入口端)では回転半径方向とのなす角度が大きく、下流端(出口端)ではこの角度が小さくなっている回転式分級装置が記載されている。すなわち、特許文献1には、分級羽根が折れ曲っている回転式分級装置が記載されている。
In general, the blades of rotary classifiers are flat. However, in order to improve the classification performance (the performance of repelling coarse fuel to the outer periphery of the blade and passing fine fuel through the blade), the blade of the rotary classifier is changed from a simple flat plate shape. There is a thing (for example, patent document 1).
In Patent Document 1, a plurality of classifying blades rotating around a vertical axis form a large angle with the radial direction of rotation at the upstream end (entrance end), and the angle is small at the downstream end (outlet end). A type classifier is described. That is, Patent Document 1 describes a rotary classifier in which classifying blades are bent.
特開平7-51630号公報JP-A-7-51630
 特許文献1に記載の分級羽根(ブレード)は、入口側部分(径方向の外側部分)と出口側部分(径方向の内側部分)とで角度(径方向に対する角度)が異なるように折れ曲がった形状をしている。一般的に、外周側へ弾くことができる粉砕燃料の粒子径範囲は、ブレードの角度によって変化する。このため、特許文献1に記載のブレードには、ブレードの入口側部分では外周側へ弾かれるが、出口側部分では外周側へ弾くことができない中間程度の粒子径の粉砕燃料がブレードに衝突する場合がある。この場合には、出口側部分に衝突する場合と、入口側部分に衝突した場合とで、分級の結果が大きく異なることになる。
 ブレードの入口側部分に衝突するか、出口側部分に衝突するかは、粉砕燃料の回転式分級機への侵入位置によって決まる。具体的には、ブレードの径方向の遠方から回転式分級機に侵入する場合には出口側部分に衝突し、ブレードの径方向の近傍から回転式分級機に侵入する場合には入口側部分に衝突する。
The classifying vane (blade) described in Patent Document 1 has a shape that is bent such that an inlet side portion (diametrically outer portion) and an outlet side portion (diametrically inner portion) have different angles (angles with respect to the radial direction). doing In general, the particle size range of the pulverized fuel that can be repelled toward the outer circumference changes depending on the angle of the blade. For this reason, the blade described in Patent Document 1 is repelled to the outer peripheral side at the inlet side of the blade, but the pulverized fuel with an intermediate particle size that cannot be repelled to the outer peripheral side at the outlet side collides with the blade. Sometimes. In this case, the result of classification will be greatly different between when the particles collide with the outlet side portion and when they collide with the inlet side portion.
Whether the inlet or outlet portion of the blade is impacted depends on the entry position of the pulverized fuel into the rotary classifier. Specifically, when it enters the rotary classifier from a distance in the radial direction of the blade, it collides with the outlet side, and when it enters the rotary classifier from near the blade in the radial direction, it collides with the inlet side. collide.
 このように、特許文献1に記載の装置では、中間程度の粒子径の粉砕燃料がブレードの遠方から回転式分級機に侵入しブレードの入口側部分に衝突した場合には、衝突した粉砕燃料が外周側に弾かれることで粉砕部(粉砕テーブル)に戻される。一方、中間程度の粒子径の粉砕燃料がブレードの近傍から回転式分級機に侵入し、ブレードの出口側部分に衝突した場合には、衝突した粉砕燃料が内周側に通過しボイラへ導かれることとなる。粉砕燃料の回転式分級機への侵入位置を制御することは難しいので、特許文献1に記載の装置では、中間程度の粒子径の粉砕燃料については、入口側部分に衝突して外周側へ弾かれるか、出口側部分に衝突して内周側へ通過するかは、粒子径に対してランダムとなる。すなわち、同じ粒子径の粉砕燃料であっても、分級される場合(外周側へ弾かれる場合)と、分級されない場合(内周側へ弾かれる場合)とが生じることとなる。このため、粉砕燃料の目標粒径による分級を精度よく行えなくなる、つまり分級性能が低下する可能性があった。
 特に、入口側部分と出口側部分との角度の差が大きいほど、分級されるか否かが粒子径に対してランダムとなる粒子径範囲が大きくなるので、分級性能の低下が顕著であった。また、ブレードの回転速度を変化させたとしても、分級されるか否かが粒子径に対してランダムとなる粒子径範囲の上限又は下限が変化するのみで、分級性能の低下という問題を解決することができなかった。
As described above, in the apparatus described in Patent Document 1, when pulverized fuel having an intermediate particle size enters the rotary classifier from a distance from the blade and collides with the inlet side portion of the blade, the collided pulverized fuel is It is returned to the crushing section (crushing table) by being repelled to the outer peripheral side. On the other hand, when pulverized fuel with an intermediate particle size enters the rotary classifier from the vicinity of the blade and collides with the exit side of the blade, the pulverized fuel that collides passes through the inner circumference and is led to the boiler. It will happen. Since it is difficult to control the entry position of the pulverized fuel into the rotary classifier, in the device described in Patent Document 1, the pulverized fuel with an intermediate particle size collides with the inlet side portion and bounces to the outer peripheral side. It is random with respect to the particle diameter whether the particles collide with the exit side portion and pass through to the inner peripheral side. That is, even if the pulverized fuel has the same particle size, there are cases where it is classified (repelled toward the outer circumference) and cases where it is not classified (where it is repelled toward the inner circumference). For this reason, there is a possibility that the classification of the pulverized fuel according to the target particle size cannot be performed with high accuracy, that is, the classification performance is deteriorated.
In particular, the greater the difference in the angle between the inlet side portion and the outlet side portion, the larger the particle size range in which whether or not the particles are classified becomes random with respect to the particle size. . In addition, even if the rotational speed of the blade is changed, only the upper limit or lower limit of the particle size range in which whether or not the particles are classified is changed at random with respect to the particle size, thereby solving the problem of deterioration in classification performance. I couldn't.
 本開示は、このような事情に鑑みてなされたものであって、分級性能を向上させることができる分級機及び発電プラント並びに分級機の運転方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and aims to provide a classifier, a power plant, and a method of operating the classifier that can improve the classification performance.
 上記課題を解決するために、本開示の分級機及び発電プラント並びに分級機の運転方法は以下の手段を採用する。
 本開示の一態様に係る分級機は、搬送用ガスとともに導かれた粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する分級機であって、上下方向に延在し、前記上下方向に延在する中心軸線を中心とした仮想円上に周方向に並んで配置され、径方向の外側から内側に向かう前記搬送用ガスとともに前記粒子が導かれる複数のブレード、を備え、前記ブレードは、導かれた前記粒子が衝突し、衝突した前記粒子のうち、所定粒子径よりも大きい前記粒子を前記径方向の外側方向に弾き、所定粒子径以下の前記粒子を前記径方向の内側方向に弾く衝突面を有し、前記衝突面は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円の接線と前記衝突面に対する垂線とが為す角度が大きい。
In order to solve the above problems, the classifier, power plant, and classifier operating method of the present disclosure employ the following means.
A classifier according to an aspect of the present disclosure is a classifier that classifies particles guided together with a carrier gas into the particles larger than a predetermined particle diameter and the particles having a predetermined particle diameter or less, wherein A plurality of blades that extend and are arranged in a circumferential direction on a virtual circle centered on the central axis that extends in the vertical direction, and that guide the particles together with the carrier gas directed radially inward from the outer side. , wherein the blade collides with the guided particles, and out of the collided particles, flips the particles larger than a predetermined particle diameter outward in the radial direction, and removes the particles with a predetermined particle diameter or less. It has a collision surface that bounces inward in the radial direction, and the radial outer side of the collision surface is formed by a tangent to the imaginary circle and a perpendicular line to the collision surface more than the radial inner side. Large angle.
 本開示の一態様に係る分級機の運転方法は、搬送用ガスとともに導かれた粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する分級機の運転方法であって、前記分級機は、上下方向に延在し、前記上下方向に延在する中心軸を中心とした仮想円上に周方向に並んで配置され、径方向の外側から内側に向かう前記搬送用ガスとともに前記粒子が導かれる複数のブレード、を備え、前記ブレードは、導かれた前記粒子が衝突し、衝突した前記粒子のうち、所定粒子径よりも大きい前記粒子を前記径方向の外側方向に弾き、所定粒子径以下の前記粒子を前記径方向の内側方向に弾く衝突面を有し、前記衝突面は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円の接線と前記衝突面に対する垂線とが為す角度が大きく、前記ブレードによって、前記粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する工程を備える。 A method for operating a classifier according to an aspect of the present disclosure is a method for operating a classifier that classifies particles guided together with a carrier gas into the particles larger than a predetermined particle size and the particles having a predetermined particle size or less. The classifier extends in the vertical direction and is arranged circumferentially on an imaginary circle centered on the central axis extending in the vertical direction. a plurality of blades through which the particles are guided together with the gas, and the blades collide with the guided particles, and among the collided particles, the particles larger than a predetermined particle diameter are removed in the radially outward direction. and has a collision surface that repels the particles having a predetermined particle diameter or less toward the inner side in the radial direction, and the outer side of the collision surface in the radial direction is closer to the virtual circle than the inner side in the radial direction. and the perpendicular to the collision surface form a large angle, and the blade classifies the particles into the particles larger than a predetermined particle diameter and the particles smaller than the predetermined particle diameter.
 本開示によれば、分級性能を向上させることができる。 According to the present disclosure, it is possible to improve the classification performance.
本開示の実施形態に係る固体燃料粉砕装置およびボイラを示す構成図である。1 is a configuration diagram showing a solid fuel pulverizer and a boiler according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る回転式分級機を示す縦断面図である。1 is a vertical cross-sectional view showing a rotary classifier according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る回転式分級機を示す水平断面図である。1 is a horizontal cross-sectional view showing a rotary classifier according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係るブレードを示す水平断面図である。1 is a horizontal cross-sectional view of a blade according to an embodiment of the present disclosure; FIG. 本開示の実施形態における粉砕燃料に作用するブレードの外向きの力及び通過特性と、ブレード入口からの距離との関係を示すグラフである。5 is a graph of blade outward force acting on pulverized fuel and passage characteristics versus distance from the blade inlet in an embodiment of the present disclosure; 本開示の実施形態に係る回転式分級機の分級性能を示すグラフである。5 is a graph showing classification performance of a rotary classifier according to an embodiment of the present disclosure; 本開示の実施形態に係るブレードの変形例を示す図である。FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure; 本開示の実施形態に係るブレードの変形例を示す図である。FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure; 本開示の実施形態に係るブレードの変形例を示す図である。FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure; 本開示の実施形態に係るブレードの変形例を示す図である。FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure; 図10のXI-XI矢視断面図である。11 is a cross-sectional view taken along line XI-XI of FIG. 10; FIG. 図10のXII-XII矢視断面図である。11 is a cross-sectional view taken along line XII-XII of FIG. 10; FIG. 本開示の実施形態に係る回転式分級機の変形例を示す図である。FIG. 5 is a diagram showing a modification of the rotary classifier according to the embodiment of the present disclosure; 本開示の実施形態に係るブレードの変形例を示す図である。FIG. 10 illustrates a modified blade according to an embodiment of the present disclosure; 本開示の比較例に係るブレードを示す図である。FIG. 11 shows a blade according to a comparative example of the present disclosure; 本開示の比較例に係るブレードを示す図である。FIG. 11 shows a blade according to a comparative example of the present disclosure; 本開示の比較例における粉砕燃料に作用するブレードの外向きの力及び通過特性と、ブレード入口からの距離との関係を示すグラフである。FIG. 5 is a graph showing blade outward force acting on pulverized fuel and passage characteristics versus distance from the blade inlet in a comparative example of the present disclosure; 平板状のブレードを通過する粉砕燃料の大きさと、通過特性との関係を示すグラフである。4 is a graph showing the relationship between the size of pulverized fuel passing through flat blades and passage characteristics. 平板状のブレードを通過する粉砕燃料の大きさと、ブレード入口からの距離との関係を示すグラフである。5 is a graph showing the relationship between the size of pulverized fuel passing through a flat blade and the distance from the blade inlet. 気流における分級効果を示す模式的な図である。FIG. 4 is a schematic diagram showing the classification effect in airflow; ブレードに衝突する粉砕燃料の粒子径と、ブレードの入口からの距離の関係を示すグラフである。4 is a graph showing the relationship between the particle size of pulverized fuel that collides with the blade and the distance from the inlet of the blade. 本開示の比較例に係る回転式分級機の分級性能を示すグラフである。4 is a graph showing classification performance of a rotary classifier according to a comparative example of the present disclosure; 本開示の比較例に係るブレードを示す図である。FIG. 11 shows a blade according to a comparative example of the present disclosure; 本開示の比較例における粉砕燃料に作用するブレードの外向きの力及び通過特性と、ブレード入口からの距離との関係を示すグラフである。FIG. 5 is a graph showing blade outward force acting on pulverized fuel and passage characteristics versus distance from the blade inlet in a comparative example of the present disclosure; 本開示の比較例に係る回転式分級機の分級性能を示すグラフである。4 is a graph showing classification performance of a rotary classifier according to a comparative example of the present disclosure;
 以下、本開示の実施形態について、図面を参照して説明する。本実施形態に係る発電プラント1は、固体燃料粉砕装置100とボイラ200とを備えている。
 以降の説明では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。また同様に“下”とは鉛直下側の部分を示すものであり、鉛直方向は厳密ではなく誤差を含むものである。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. A power plant 1 according to this embodiment includes a solid fuel crusher 100 and a boiler 200 .
In the following description, "upper" means the vertically upper direction, and "upper" such as upper part or top surface means the vertically upper part. Similarly, "lower" indicates the vertically lower part, and the vertical direction is not exact and includes errors.
 本実施形態の固体燃料粉砕装置100は、一例として石炭やバイオマス燃料等の固体燃料(炭素含有固体燃料)を粉砕し、微粉燃料を生成してボイラ200のバーナ(燃焼装置)220へ供給する装置である。
 図1に示す固体燃料粉砕装置100とボイラ200とを含む発電プラント1は、1台の固体燃料粉砕装置100を備えるものであるが、1台のボイラ200の複数のバーナ220のそれぞれに対応する複数台の固体燃料粉砕装置100を備えるシステムとしてもよい。
As an example, the solid fuel pulverization device 100 of the present embodiment pulverizes a solid fuel (carbon-containing solid fuel) such as coal or biomass fuel, generates pulverized fuel, and supplies it to the burner (combustion device) 220 of the boiler 200. is.
The power plant 1 including the solid fuel crushing device 100 and the boiler 200 shown in FIG. A system including a plurality of solid fuel pulverizers 100 may be used.
 本実施形態の固体燃料粉砕装置100は、ミル10と、給炭機(燃料供給機)20と、送風部(搬送用ガス供給部)30と、状態検出部40と、制御部(判定部)50とを備えている。 The solid fuel pulverizer 100 of the present embodiment includes a mill 10, a coal feeder (fuel feeder) 20, an air blower (carrier gas feeder) 30, a state detector 40, and a controller (judgment unit). 50.
 ボイラ200に供給する石炭やバイオマス燃料等の固体燃料を、微粉状の固体燃料である微粉燃料へと粉砕するミル10は、石炭のみを粉砕する形式であっても良いし、バイオマス燃料のみを粉砕する形式であっても良いし、石炭とともにバイオマス燃料を粉砕する形式であってもよい。
 ここで、バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃木材、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。
The mill 10 for pulverizing solid fuel such as coal and biomass fuel to be supplied to the boiler 200 into pulverized fuel, which is finely powdered solid fuel, may be of a type that pulverizes only coal or pulverizes only biomass fuel. Alternatively, it may be a form in which the biomass fuel is pulverized together with the coal.
Here, the biomass fuel is a renewable organic resource derived from living organisms. chips), etc., and are not limited to those presented here. Since biomass fuel takes in carbon dioxide during the growth process of biomass, it is considered to be carbon-neutral because it does not emit carbon dioxide that becomes a global warming gas.
 ミル10は、ハウジング11と、粉砕テーブル(回転テーブル)12と、粉砕ローラ13と、駆動部14と、駆動部14に接続され粉砕テーブル12を回転駆動させるミルモータ15と、回転式分級機16と、燃料供給部17と、回転式分級機16を回転駆動させる分級機モータ18とを備えている。
 ハウジング11は、鉛直方向に延びる筒状に形成されるとともに、粉砕テーブル12と粉砕ローラ13と回転式分級機16と、燃料供給部17とを収容する筐体である。
 ハウジング11の天井部42の中央部には、燃料供給部17が取り付けられている。この燃料供給部17は、バンカ21から導かれた固体燃料をハウジング11内に供給するものであり、ハウジング11の中心位置に上下方向に沿って配置され、下端部がハウジング11内部まで延設されている。
The mill 10 includes a housing 11 , a grinding table (rotary table) 12 , a grinding roller 13 , a drive section 14 , a mill motor 15 connected to the drive section 14 to rotate the grinding table 12 , and a rotary classifier 16 . , a fuel supply unit 17 and a classifier motor 18 for rotating a rotary classifier 16 .
The housing 11 is a casing that is formed in a vertically extending cylindrical shape and houses the grinding table 12 , the grinding roller 13 , the rotary classifier 16 , and the fuel supply section 17 .
A fuel supply unit 17 is attached to the central portion of the ceiling portion 42 of the housing 11 . The fuel supply part 17 supplies the solid fuel introduced from the bunker 21 into the housing 11, is arranged in the center position of the housing 11 along the vertical direction, and extends to the inside of the housing 11 at its lower end. ing.
 ハウジング11の底面部41付近には駆動部14が設置され、この駆動部14に接続されたミルモータ15から伝達される駆動力により回転する粉砕テーブル12が回転自在に配置されている。
 粉砕テーブル12は、平面視円形の部材であり、燃料供給部17の下端部が対向するように配置されている。粉砕テーブル12の上面は、例えば、中心部が低く、外側に向けて高くなるような傾斜形状をなし、外周部が上方に曲折した形状をなしていてもよい。燃料供給部17は、固体燃料(本実施形態では例えば石炭やバイオマス燃料)を上方から下方の粉砕テーブル12に向けて供給し、粉砕テーブル12は供給された固体燃料を粉砕ローラ13との間で粉砕する。
A driving portion 14 is installed near the bottom portion 41 of the housing 11, and a grinding table 12 that is rotated by driving force transmitted from a mill motor 15 connected to the driving portion 14 is rotatably arranged.
The crushing table 12 is a circular member in plan view, and is arranged so that the lower ends of the fuel supply section 17 face each other. The upper surface of the crushing table 12 may have, for example, a sloping shape in which the central portion is low and the outer peripheral portion is bent upward. The fuel supply unit 17 supplies solid fuel (for example, coal or biomass fuel in this embodiment) from above toward the crushing table 12 below, and the crushing table 12 feeds the supplied solid fuel between the crushing roller 13 and the crushing roller 13. Smash.
 固体燃料が燃料供給部17から粉砕テーブル12の略中央領域へ向けて投入されると、粉砕テーブル12の回転による遠心力によって、固体燃料は粉砕テーブル12の外周側へと導かれ、粉砕テーブル12と粉砕ローラ13との間に挟み込まれて粉砕される。粉砕された固体燃料は、搬送用ガス流路(以降は、一次空気流路と記載する)100aから導かれた搬送用ガス(以降は、一次空気と記載する)によって上方へと吹き上げられ、回転式分級機16へと導かれる。
 粉砕テーブル12の外周には、一次空気流路100aから流入する一次空気を、ハウジング11内の粉砕テーブル12の上方の空間に流出させる吹出口(図示省略)が設けられている。吹出口には旋回羽根(図示省略)が設置されており、吹出口から吹き出した一次空気に旋回力を与える。旋回羽根により旋回力が与えられた一次空気は、旋回する速度成分を有する気流となって、粉砕テーブル12上で粉砕された固体燃料を、ハウジング11内の上方にある回転式分級機16へと搬送する。なお、粉砕された固体燃料のうち、所定粒子径より大きいものは回転式分級機16により分級されて、または、回転式分級機16まで到達することなく落下して、粉砕テーブル12上に戻されて、粉砕テーブル12と粉砕ローラ13との間で再度粉砕される。
When the solid fuel is introduced from the fuel supply portion 17 toward the substantially central region of the grinding table 12, the centrifugal force due to the rotation of the grinding table 12 guides the solid fuel to the outer peripheral side of the grinding table 12, and the solid fuel is pushed toward the grinding table 12. and the crushing roller 13 and crushed. The pulverized solid fuel is blown upward by a carrier gas (hereinafter referred to as primary air) guided from a carrier gas flow path (hereinafter referred to as a primary air flow path) 100a and rotated. It is led to the type classifier 16 .
An air outlet (not shown) is provided on the outer periphery of the grinding table 12 to allow the primary air flowing from the primary air flow path 100 a to flow out to the space above the grinding table 12 in the housing 11 . A swirl vane (not shown) is installed at the blowout port to give a swirling force to the primary air blown out from the blowout port. The primary air to which the swirl force is applied by the swirl vane becomes an air flow having a swirling velocity component, and the solid fuel pulverized on the pulverization table 12 is sent to the rotary classifier 16 located above in the housing 11. transport. Of the pulverized solid fuel, those larger than a predetermined particle size are classified by the rotary classifier 16, or fall without reaching the rotary classifier 16 and are returned to the pulverization table 12. Then, it is pulverized again between the pulverizing table 12 and the pulverizing roller 13 .
 粉砕ローラ13は、燃料供給部17から粉砕テーブル12上に供給された固体燃料を粉砕する回転体である。粉砕ローラ13は、粉砕テーブル12の上面に押圧されて粉砕テーブル12と協働して固体燃料を粉砕する。
 図1では、粉砕ローラ13が代表して1つのみ示されているが、粉砕テーブル12の上面を押圧するように、周方向に一定の間隔を空けて、複数の粉砕ローラ13が配置される。例えば、外周部上に120°の角度間隔を空けて、3つの粉砕ローラ13が周方向に均等な間隔で配置される。この場合、3つの粉砕ローラ13が粉砕テーブル12の上面と接する部分(押圧する部分)は、粉砕テーブル12の回転中心軸からの距離が等距離となる。
The crushing roller 13 is a rotating body that crushes the solid fuel supplied from the fuel supply unit 17 onto the crushing table 12 . The crushing roller 13 is pressed against the upper surface of the crushing table 12 and cooperates with the crushing table 12 to crush the solid fuel.
Although only one crushing roller 13 is shown as a representative in FIG. . For example, three crushing rollers 13 are equally spaced in the circumferential direction at angular intervals of 120° on the outer circumference. In this case, the portions where the three crushing rollers 13 come into contact with the upper surface of the crushing table 12 (the portions pressed) are equidistant from the rotation center axis of the crushing table 12 .
 粉砕ローラ13は、ジャーナルヘッド45によって、上下に揺動可能となっており、粉砕テーブル12の上面に対して接近離間自在に支持されている。粉砕ローラ13は、外周面が粉砕テーブル12の上面の固体燃料に接触した状態で、粉砕テーブル12が回転すると、粉砕テーブル12から回転力を受けて連れ回りするようになっている。燃料供給部17から固体燃料が供給されると、粉砕ローラ13と粉砕テーブル12との間で固体燃料が押圧されて粉砕される。 The crushing roller 13 can be vertically swung by a journal head 45, and is supported on the upper surface of the crushing table 12 so as to move toward and away from it. When the crushing table 12 rotates while the outer peripheral surface is in contact with the solid fuel on the upper surface of the crushing table 12 , the crushing roller 13 receives a rotational force from the crushing table 12 and rotates with the crushing roller 13 . When the solid fuel is supplied from the fuel supply unit 17, the solid fuel is pressed between the crushing roller 13 and the crushing table 12 and crushed.
 ジャーナルヘッド45の支持アーム47は、中間部が水平方向に沿った支持軸48によって、ハウジング11の側面部に支持軸48を中心として粉砕ローラ13を上下方向に揺動可能に支持されている。また、支持アーム47の鉛直上側にある上端部には、押圧装置49が設けられている。押圧装置49は、ハウジング11に固定されており、粉砕ローラ13を粉砕テーブル12に押し付けるように、支持アーム47等を介して粉砕ローラ13に荷重を付与する。 The support arm 47 of the journal head 45 is supported by a horizontal support shaft 48 at its intermediate portion so that the crushing roller 13 can swing vertically around the support shaft 48 on the side surface of the housing 11 . A pressing device 49 is provided at the upper end of the support arm 47 on the vertical upper side. The pressing device 49 is fixed to the housing 11 and applies a load to the crushing roller 13 via the support arm 47 or the like so as to press the crushing roller 13 against the crushing table 12 .
 駆動部14は、粉砕テーブル12に駆動力を伝達し、粉砕テーブル12を中心軸回りに回転させる装置である。駆動部14は、ミルモータ15に接続されており、ミルモータ15の駆動力を粉砕テーブル12に伝達する。 The driving unit 14 is a device that transmits a driving force to the grinding table 12 and rotates the grinding table 12 around its central axis. The drive unit 14 is connected to the mill motor 15 and transmits the driving force of the mill motor 15 to the grinding table 12 .
 回転式分級機16は、ハウジング11の上部に設けられ中空状の略逆円錐形状の外形を有している。回転式分級機16は、その外周位置に上下方向に延在する複数のブレード60を備えている。各ブレード60は、回転式分級機16の中心軸線C周りに所定の間隔(均等間隔)で設けられている。
 回転式分級機16は、粉砕テーブル12と粉砕ローラ13により粉砕された固体燃料(以降、粉砕された固体燃料を「粉砕燃料」という。)を、所定粒子径(例えば、石炭では70~100μm)より大きいもの(以降、所定粒子径を超える粉砕燃料を「粗粉燃料」という。)と、所定粒子径以下のもの(以降、所定粒子径以下の粉砕燃料を「微粉燃料」という。)に分級する装置である。回転により分級する回転式分級機16は、ロータリセパレータとも呼ばれ、制御部50によって制御される分級機モータ18により回転駆動力を与えられ、ハウジング11の上下方向に延在する円筒軸71(図2参照)を中心に燃料供給部17の周りを回転する。なお、回転式分級機16の詳細については、後述する。
 なお、分級機としては、固定された中空状の逆円錐形状のケーシングと、そのケーシングの外周位置にブレード60に替わって複数の固定旋回羽根とを備えた固定式分級機を用いてもよい。
The rotary classifier 16 is provided in the upper part of the housing 11 and has a hollow, substantially inverted conical outer shape. The rotary classifier 16 has a plurality of vertically extending blades 60 on its outer periphery. Each blade 60 is provided at predetermined intervals (equal intervals) around the central axis C of the rotary classifier 16 .
The rotary classifier 16 classifies the solid fuel pulverized by the pulverization table 12 and the pulverization roller 13 (hereinafter, the pulverized solid fuel is referred to as "pulverized fuel") into a predetermined particle size (for example, 70 to 100 μm for coal). Classified into larger ones (hereinafter, pulverized fuel exceeding a predetermined particle size is referred to as "coarse fuel") and those with a predetermined particle size or less (hereinafter, pulverized fuel with a predetermined particle size or less is referred to as "fine fuel"). It is a device that The rotary classifier 16, which classifies by rotation, is also called a rotary separator. 2) rotates around the fuel supply unit 17. As shown in FIG. Details of the rotary classifier 16 will be described later.
As the classifier, a fixed classifier having a fixed hollow inverted conical casing and a plurality of fixed swirl vanes instead of the blades 60 on the outer periphery of the casing may be used.
 回転式分級機16に到達した粉砕燃料は、ブレード60の回転により生じる遠心力と、一次空気の気流による向心力との相対的なバランスにより、大きな径の粗粉燃料は、ブレード60によって叩き落とされ、粉砕テーブル12へと戻されて再び粉砕され、微粉燃料はハウジング11の天井部42にある出口ポート19に導かれる。回転式分級機16によって分級された微粉燃料は、一次空気とともに出口ポート19から微粉燃料供給流路100bへ排出され、ボイラ200のバーナ220へ供給される。微粉燃料供給流路100bは、固体燃料が石炭の場合には、微粉炭管とも呼ばれる。 The pulverized fuel reaching the rotary classifier 16 is knocked down by the blades 60 due to the relative balance between the centrifugal force generated by the rotation of the blades 60 and the centripetal force caused by the primary air flow. , is returned to the grinding table 12 to be ground again, and the pulverized fuel is directed to the outlet port 19 in the ceiling 42 of the housing 11. As shown in FIG. The pulverized fuel classified by the rotary classifier 16 is discharged together with the primary air from the outlet port 19 to the pulverized fuel supply channel 100b and supplied to the burner 220 of the boiler 200 . The pulverized fuel supply channel 100b is also called a pulverized coal pipe when the solid fuel is coal.
 燃料供給部17は、ハウジング11の天井部42を貫通するように上下方向に沿って下端部がハウジング11内部まで延設されて取り付けられ、燃料供給部17の上部から投入される固体燃料を粉砕テーブル12の略中央領域に供給する。燃料供給部17は、給炭機20から固体燃料が供給される。 The fuel supply unit 17 is attached so that the lower end extends to the inside of the housing 11 along the vertical direction so as to penetrate the ceiling part 42 of the housing 11, and the solid fuel introduced from the upper part of the fuel supply unit 17 is pulverized. It is supplied to the substantially central area of the table 12 . The fuel supply unit 17 is supplied with solid fuel from the coal feeder 20 .
 給炭機20は、搬送部22と、給炭機モータ23とを備える。搬送部22は、例えばベルトコンベアであり、給炭機モータ23から与えられる駆動力によって、バンカ21の直下にあるダウンスパウト24の下端部から排出される固体燃料を、ミル10の燃料供給部17の上部まで搬送し、燃料供給部17の内部へ投入する。
 通常、ミル10の内部には、微粉燃料をバーナ220へ搬送するための一次空気が供給されており、給炭機20やバンカ21よりも圧力が高くなっている。バンカ21の直下にある上下方向に延在する管であるダウンスパウト24には、内部に燃料が積層状態で保持されていて、ダウンスパウト24内に積層された固体燃料層により、ミル10側の一次空気と微粉燃料がバンカ21側へ逆流しないようなシール性を確保している。
 ミル10へ供給される固体燃料の供給量は、例えば、搬送部22のベルトコンベアの移動速度によって調整される。
The coal feeder 20 includes a conveying unit 22 and a coal feeder motor 23 . The conveying unit 22 is, for example, a belt conveyer, and the solid fuel discharged from the lower end of the down spout 24 directly below the bunker 21 is transferred to the fuel supply unit 17 of the mill 10 by the driving force applied from the coal feeder motor 23 . , and put into the fuel supply unit 17 .
Normally, primary air is supplied to the interior of the mill 10 for conveying the pulverized fuel to the burner 220 and has a higher pressure than the coal feeder 20 and the bunker 21 . A downspout 24, which is a pipe extending vertically and directly below the bunker 21, holds fuel in a stacked state inside. A sealing property is ensured so that primary air and pulverized fuel do not flow back to the bunker 21 side.
The amount of solid fuel supplied to the mill 10 is adjusted, for example, by the moving speed of the belt conveyor of the transport section 22 .
 送風部30は、粉砕燃料を乾燥させるとともに、回転式分級機16へ搬送するための一次空気を、ハウジング11の内部へ送風する装置である。
 送風部30は、ハウジング11の内部へ送風される一次空気の流量と温度を適切に調整するために、本実施形態では、一次空気通風機(PAF:Primary Air Fan)31と、熱ガス流路30aと、冷ガス流路30bと、熱ガスダンパ30cと、冷ガスダンパ30dとを備えている。
The air blower 30 is a device that dries the pulverized fuel and blows primary air into the housing 11 for conveying it to the rotary classifier 16 .
In order to appropriately adjust the flow rate and temperature of the primary air blown into the housing 11, the blower unit 30 includes a primary air fan (PAF) 31 and a hot gas flow path in this embodiment. 30a, a cold gas channel 30b, a hot gas damper 30c and a cold gas damper 30d.
 本実施形態では、熱ガス流路30aは、一次空気通風機31から送出された空気(外気)の一部を、例えば空気予熱器などの熱交換器34を通過して加熱された熱ガスとして供給する。熱ガス流路30aの下流側には、熱ガスダンパ30cが設けられている。熱ガスダンパ30cの開度は、制御部50によって制御される。熱ガスダンパ30cの開度によって、熱ガス流路30aから供給する熱ガスの流量が決定される。 In this embodiment, the hot gas flow path 30a converts part of the air (outside air) delivered from the primary air fan 31 into hot gas heated by passing through a heat exchanger 34 such as an air preheater. supply. A hot gas damper 30c is provided downstream of the hot gas flow path 30a. The opening degree of the hot gas damper 30c is controlled by the controller 50. FIG. The flow rate of the hot gas supplied from the hot gas flow path 30a is determined by the degree of opening of the hot gas damper 30c.
 冷ガス流路30bは、一次空気通風機31から送出された空気の一部を常温の冷ガスとして供給する。冷ガス流路30bの下流側には、冷ガスダンパ30dが設けられている。冷ガスダンパ30dの開度は、制御部50によって制御される。冷ガスダンパ30dの開度によって、冷ガス流路30bから供給する冷ガスの流量が決定される。 The cold gas flow path 30b supplies part of the air sent from the primary air ventilator 31 as a normal temperature cold gas. A cold gas damper 30d is provided downstream of the cold gas flow path 30b. The opening degree of the cold gas damper 30 d is controlled by the controller 50 . The flow rate of the cold gas supplied from the cold gas flow path 30b is determined by the degree of opening of the cold gas damper 30d.
 一次空気の流量は、本実施形態では、熱ガス流路30aから供給する熱ガスの流量と冷ガス流路30bから供給する冷ガスの流量の合計の流量となり、一次空気の温度は、熱ガス流路30aから供給する熱ガスと冷ガス流路30bから供給する冷ガスの混合比率で決まり、制御部50によって制御される。
 また、熱ガス流路30aから供給する熱ガスに、図示しないガス再循環通風機を介してボイラ200から排出された燃焼ガスの一部を導き、混合することで、一次空気流路100aからハウジング11の内部へ送風する一次空気の酸素濃度を調整してもよい。
In this embodiment, the flow rate of the primary air is the sum of the flow rate of the hot gas supplied from the hot gas channel 30a and the flow rate of the cold gas supplied from the cold gas channel 30b. It is determined by the mixing ratio of the hot gas supplied from the flow path 30 a and the cold gas supplied from the cold gas flow path 30 b and is controlled by the controller 50 .
In addition, a part of the combustion gas discharged from the boiler 200 is guided to the hot gas supplied from the hot gas flow path 30a through a gas recirculation fan (not shown) and mixed, thereby supplying the heat gas from the primary air flow path 100a to the housing. The oxygen concentration of the primary air blown into the interior of 11 may be adjusted.
 本実施形態では、ミル10の状態検出部40により、計測または検出したデータを制御部50に送信する。本実施形態の状態検出部40は、例えば、差圧計測手段であり、一次空気流路100aからハウジング11の内部へ一次空気が流入する部分における圧力と、ハウジング11の内部から微粉燃料供給流路100bへ一次空気と微粉燃料が排出される出口ポート19における圧力との差圧を、ミル10の差圧として計測する。このミル10の差圧の増減は、回転式分級機16の分級効果によってハウジング11内部の回転式分級機16付近と粉砕テーブル12付近の間を循環している粉砕燃料の循環量の増減に対応する。すなわち、このミル10の差圧に応じて回転式分級機16の回転数を調整することで、ミル10に供給する固体燃料の供給量に対して、出口ポート19から排出される微粉燃料の量を調整することができるので、微粉燃料の粒度がバーナ220の燃焼性に影響しない範囲で、ミル10への固体燃料の供給量に対応した量の微粉燃料を、ボイラ200に設けられたバーナ220に安定して供給することができる。
 また、本実施形態の状態検出部40は、例えば、温度計測手段であり、ハウジング11の内部へ供給される一次空気の温度(ミル入口における一次空気温度)や、ハウジング11の内部の粉砕テーブル12上部の空間から出口ポート19までの一次空気の温度を検出して、上限温度を超えないように送風部30を制御する。上限温度は、固体燃料への着火の可能性等を考慮して決定される。なお、一次空気は、ハウジング11の内部において、粉砕燃料を乾燥しながら搬送することによって冷却され、出口ポート19での一次空気の温度は、例えば約60~90度程度となる。
In this embodiment, the state detection unit 40 of the mill 10 transmits measured or detected data to the control unit 50 . The state detection unit 40 of the present embodiment is, for example, differential pressure measuring means, and the pressure at the portion where the primary air flows into the housing 11 from the primary air flow path 100a and the pulverized fuel supply flow path from the inside of the housing 11 The difference in pressure between the primary air to 100b and the pressure at the exit port 19 where the pulverized fuel is discharged is measured as the differential pressure across the mill 10 . The increase/decrease in the differential pressure of the mill 10 corresponds to the increase/decrease in the amount of pulverized fuel circulating between the vicinity of the rotary classifier 16 inside the housing 11 and the vicinity of the grinding table 12 due to the classification effect of the rotary classifier 16. do. That is, by adjusting the number of rotations of the rotary classifier 16 according to the differential pressure of the mill 10, the amount of pulverized fuel discharged from the outlet port 19 with respect to the amount of solid fuel supplied to the mill 10 can be adjusted, the amount of pulverized fuel corresponding to the amount of solid fuel supplied to the mill 10 is supplied to the burner 220 provided in the boiler 200 within a range in which the particle size of the pulverized fuel does not affect the combustibility of the burner 220 can be stably supplied to
Further, the state detection unit 40 of the present embodiment is, for example, temperature measurement means, and measures the temperature of the primary air supplied to the inside of the housing 11 (the temperature of the primary air at the mill inlet) and the temperature of the grinding table 12 inside the housing 11. The temperature of the primary air from the upper space to the outlet port 19 is detected, and the air blower 30 is controlled so as not to exceed the upper temperature limit. The upper limit temperature is determined in consideration of the possibility of ignition of the solid fuel. The primary air is cooled by conveying the pulverized fuel while drying it inside the housing 11, and the temperature of the primary air at the outlet port 19 is, for example, approximately 60 to 90 degrees.
 制御部50は、固体燃料粉砕装置100の各部を制御する装置である。
 制御部50は、例えば、ミルモータ15に駆動指示を伝達して粉砕テーブル12の回転速度を制御してもよい。
 制御部50は、例えば、分級機モータ18へ駆動指示を伝達して回転式分級機16の回転速度を制御して分級性能を調整し、ミル10の差圧、すなわちミル10内部の粉砕燃料の循環量を所定の範囲に適正化することにより、微粉燃料をバーナ220へ安定して供給することができる。なお、分級性能とは、後述する分級特性、通過特性、分級の精度などの分級に必要な性能である。
 また、制御部50は、例えば給炭機20の給炭機モータ23へ駆動指示を伝達することにより、搬送部22が固体燃料を搬送して燃料供給部17へ供給する固体燃料の供給量(給炭量)を調整することができる。
 また、制御部50は、開度指示を送風部30に伝達することにより、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御して一次空気の流量と温度を調整することができる。具体的には、制御部50は、ハウジング11の内部へ供給される一次空気の流量と、出口ポート19における一次空気の温度が、固体燃料の種別毎に、給炭量に対応して設定された所定値となるように、熱ガスダンパ30cおよび冷ガスダンパ30dの開度を制御する。
The controller 50 is a device that controls each part of the solid fuel crusher 100 .
The control unit 50 may, for example, transmit a driving instruction to the mill motor 15 to control the rotation speed of the grinding table 12 .
For example, the control unit 50 transmits a drive instruction to the classifier motor 18 to control the rotation speed of the rotary classifier 16 to adjust the classifying performance, thereby controlling the differential pressure of the mill 10, that is, the amount of pulverized fuel inside the mill 10. By optimizing the circulation amount within a predetermined range, the pulverized fuel can be stably supplied to the burner 220 . The classification performance is the performance necessary for classification, such as classification characteristics, passage characteristics, and classification accuracy, which will be described later.
Further, the control unit 50 transmits a drive instruction to, for example, the coal feeder motor 23 of the coal feeder 20 so that the transport unit 22 transports the solid fuel and supplies the solid fuel to the fuel supply unit 17 ( amount of coal fed) can be adjusted.
Further, the control unit 50 can control the opening degrees of the hot gas damper 30c and the cold gas damper 30d to adjust the flow rate and temperature of the primary air by transmitting the opening instruction to the air blowing unit 30 . Specifically, the control unit 50 sets the flow rate of the primary air supplied to the inside of the housing 11 and the temperature of the primary air at the outlet port 19 in correspondence with the coal supply amount for each type of solid fuel. The opening degrees of the hot gas damper 30c and the cold gas damper 30d are controlled so as to obtain a predetermined value.
 制御部50は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。また、HDDはソリッドステートディスク(SSD)等で置き換えられてもよい。 The control unit 50 is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing. As a result, various functions are realized. The program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via wired or wireless communication means. etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like. Also, the HDD may be replaced with a solid state disk (SSD) or the like.
 次に、固体燃料粉砕装置100から供給される微粉燃料を用いて燃焼を行って蒸気を発生させるボイラ200について説明する。ボイラ200は、火炉210とバーナ220とを備えている。 Next, the boiler 200 that generates steam by burning the pulverized fuel supplied from the solid fuel crusher 100 will be described. Boiler 200 includes furnace 210 and burner 220 .
 バーナ220は、微粉燃料供給流路100bから供給される微粉燃料を含む一次空気と、押込通風機(FDF:Forced Draft Fan)32から送出される空気(外気)を熱交換器34で加熱して供給される二次空気とを用いて、微粉燃料を燃焼させて火炎を形成する装置である。微粉燃料の燃焼は火炉210内で行われ、高温の燃焼ガスは、蒸発器、過熱器、節炭器などの熱交換器(図示省略)を通過した後にボイラ200の外部に排出される。 The burner 220 heats the primary air containing the pulverized fuel supplied from the pulverized fuel supply channel 100b and the air (outside air) delivered from the forced draft fan (FDF) 32 with the heat exchanger 34. It is a device that burns pulverized fuel and forms a flame using supplied secondary air. The pulverized fuel is burned in the furnace 210, and the high-temperature combustion gas is discharged outside the boiler 200 after passing through heat exchangers (not shown) such as an evaporator, superheater, and economizer.
 ボイラ200から排出された燃焼ガスは、煙道36内を流通する。煙道36内を流通する燃焼ガスは、脱硝装置35で脱硝処理が行われる。脱硝装置35は、アンモニア、尿素水等の窒素酸化物を還元する作用を有する還元剤を燃焼ガスが流通する流路内に供給し、還元剤が供給された燃焼ガス中の窒素酸化物と還元剤との反応を、脱硝装置35内に設置された脱硝触媒の触媒作用により促進させることで、燃焼ガス中の窒素酸化物を除去、低減するものである。脱硝処理が行われた燃焼ガスは、例えば空気予熱器などの熱交換器34で一次空気通風機31から送出される空気と押込通風機32から送出される空気との熱交換が行われ、誘引通風機(IDF:Induced Draft Fan)33を介して、環境装置(図示省略の電気集塵機、脱硫装置など)で所定の処理が行われ、煙突(図示省略)へと導かれて外気へと放出される。熱交換器34において燃焼ガスにより加熱された一次空気通風機31から送出される空気は、前述した熱ガス流路30aに供給される。
 ボイラ200の各熱交換器への給水は、節炭器(図示省略)において加熱された後に、蒸発器(図示省略)および過熱器(図示省略)によって更に加熱されて高温高圧の蒸気が生成され、発電部である蒸気タービン(図示省略)へと送られて蒸気タービンを回転駆動し、蒸気タービンに接続した発電機(図示省略)を回転駆動して発電が行われ、発電プラント1を構成する。
Combustion gas discharged from the boiler 200 flows through the flue 36 . The combustion gas flowing through the flue 36 is denitrified by the denitrification device 35 . The denitrification device 35 supplies a reducing agent such as ammonia or urea water, which has an action to reduce nitrogen oxides, into the flow path through which the combustion gas flows, and reduces the nitrogen oxides and reduction in the combustion gas to which the reducing agent is supplied. By promoting the reaction with the agent by the catalytic action of the denitration catalyst installed in the denitration device 35, nitrogen oxides in the combustion gas are removed and reduced. The denitrified combustion gas undergoes heat exchange between the air sent from the primary air fan 31 and the air sent from the forced draft fan 32 in a heat exchanger 34 such as an air preheater. Via a fan (IDF: Induced Draft Fan) 33, an environmental device (an electric dust collector, a desulfurization device, etc., not shown) performs a predetermined treatment, is led to a chimney (not shown), and is discharged to the outside air. be. The air sent from the primary air ventilator 31 heated by the combustion gas in the heat exchanger 34 is supplied to the hot gas flow path 30a described above.
The feed water to each heat exchanger of the boiler 200 is heated in an economizer (not shown), and then further heated by an evaporator (not shown) and a superheater (not shown) to generate high-temperature and high-pressure steam. , is sent to a steam turbine (not shown), which is a power generation unit, to rotationally drive the steam turbine, and to rotationally drive a generator (not shown) connected to the steam turbine to generate power, forming the power plant 1. .
 次に、回転式分級機16の詳細について説明する。なお、以下の説明において、「周方向」及び「径方向」は、中心軸線Cを中心とした際の「周方向」及び「径方向」を意味する。 Next, the details of the rotary classifier 16 will be described. In the following description, "circumferential direction" and "radial direction" mean "circumferential direction" and "radial direction" when the central axis C is the center.
 回転式分級機16は、図1に示すように、ハウジング11の上部に設けられている。回転式分級機16は、図2に示すように、上下方向に延在する中心軸線Cを中心として回転する。本実施形態では、回転式分級機16は、図2及び図3の矢印A1で示すように、平面視した際に時計回りに回転する。回転式分級機16の回転方向は、吹出口に設置された旋回羽根によって形成される一次空気の旋回方向と反対方向とされている。回転式分級機16は、モータ(図示省略)によって回転駆動力が与えられる。モータの回転数は、制御部50によって制御されるようになっている。 The rotary classifier 16 is provided on the top of the housing 11, as shown in FIG. As shown in FIG. 2, the rotary classifier 16 rotates around a central axis C extending vertically. In this embodiment, the rotary classifier 16 rotates clockwise when viewed from above, as indicated by an arrow A1 in FIGS. 2 and 3 . The direction of rotation of the rotary classifier 16 is opposite to the swirling direction of the primary air formed by swirl vanes installed at the outlet. The rotary classifier 16 is provided with a rotational driving force by a motor (not shown). The number of rotations of the motor is controlled by the controller 50 .
 回転式分級機16は、図2に示すように、中空状の略逆円錐形状の外形を有する本体部70を有している。本体部70の内部には、内側空間S1が形成されている。本体部70は、燃料供給部17を覆い中心軸線Cに沿って延在する円筒軸71と、円筒軸71の上端から半径方向に延在する上端部72と、円筒軸71の下端から半径方向に延在する下端部73と、を一体的に有している。上端部72は、内側空間S1の上端を区画している。また、下端部73は、内側空間S1の下端を区画している。 As shown in FIG. 2, the rotary classifier 16 has a main body 70 having a hollow, substantially inverted conical outer shape. An inner space S1 is formed inside the body portion 70 . The body portion 70 includes a cylindrical shaft 71 covering the fuel supply portion 17 and extending along the center axis C, an upper end portion 72 radially extending from the upper end of the cylindrical shaft 71, and a radially extending portion extending from the lower end of the cylindrical shaft 71. and a lower end portion 73 extending to the . The upper end portion 72 defines the upper end of the inner space S1. Further, the lower end portion 73 defines the lower end of the inner space S1.
 また、回転式分級機16は、本体部70の外周位置に設けられる複数のブレード60を備えている。各ブレード60は、上下方向に延在している。各ブレード60は、板状の部材である。各ブレード60は、上端が上端部72に固定されている。また、各ブレード60は、下端が下端部73に固定されている。各ブレード60は、下端側が上端側よりも中心軸線Cに近づくように傾斜している。上端部72には、出口ポート19(図1参照)が接続される開口72aが形成されている。 In addition, the rotary classifier 16 has a plurality of blades 60 provided on the outer circumference of the main body 70 . Each blade 60 extends vertically. Each blade 60 is a plate-like member. Each blade 60 has its upper end fixed to the upper end 72 . Each blade 60 has a lower end fixed to the lower end portion 73 . Each blade 60 is inclined such that the lower end side is closer to the central axis C than the upper end side. The upper end portion 72 is formed with an opening 72a to which the outlet port 19 (see FIG. 1) is connected.
 複数のブレード60は、図3に示すように、回転式分級機16の中心軸線C周りに所定の間隔(均等間隔)を空けて並列に設けられている。詳細には、各ブレード60は、中心軸線Cを中心とした仮想円V上に所定の間隔で並んで配置されている。また、各ブレード60は、平面視した際に、径方向に対して所定の角度傾斜するように配置されている。また、周方向に隣接するブレード60同士の間には、隙間が形成されている。当該隙間は、複数のブレード60の内側空間S1と、ブレード60の外側空間S2とを連通している。各ブレード60には、径方向の外側から内側に向かう一次空気とともに粉砕燃料が導かれる。 As shown in FIG. 3, the plurality of blades 60 are arranged in parallel around the central axis C of the rotary classifier 16 at predetermined intervals (equal intervals). Specifically, the blades 60 are arranged side by side on a virtual circle V centered on the central axis C at predetermined intervals. Further, each blade 60 is arranged so as to be inclined at a predetermined angle with respect to the radial direction when viewed from above. A gap is formed between the blades 60 adjacent in the circumferential direction. The gap communicates the inner space S<b>1 of the plurality of blades 60 and the outer space S<b>2 of the blades 60 . Pulverized fuel is directed to each blade 60 with primary air directed radially from the outside to the inside.
 各ブレード60は、回転方向の前方側の面である衝突面61と、回転方向の後方側の面である背面65と、を有している。
 衝突面61には、図3に示すように、微粉燃料B2と粗粉燃料B1とを含む粉砕燃料が衝突する。衝突面61に衝突した粉砕燃料には、矢印A2で示す径方向の外向きの力(遠心力及び衝突力、以降、外向きの力と言う。)と、矢印A3で示す径方向の内向きの力(一次空気の流れによる向心力、以降、内向きの力と言う。)とが作用する。粗粉燃料B1は重量が大きいので、衝突面61に衝突した粗粉燃料B1には、遠心力の影響により外向きの力A2が強く作用する。これにより、粗粉燃料B1は、内向きの力A3に逆らって、矢印A4に示すように、ブレード60の外側(外側空間S2側)へ弾かれる。一方、微粉燃料B2は重量が小さいので、衝突面61に衝突した微粉燃料B2に作用する遠心力が比較的弱い。これにより、微粉燃料B2に作用する力は、矢印A3で示す内向きの力が支配的になるので、微粉燃料B2は、矢印A5で示すように、ブレード60の内側(内側空間S1側)へ導かれる。
 回転式分級機16は、このような原理で、粗粉燃料B1と微粉燃料B2とを分級している。
Each blade 60 has an impact surface 61 that is the surface on the front side in the rotational direction and a back surface 65 that is the surface on the rear side in the rotational direction.
As shown in FIG. 3 , pulverized fuel including finely powdered fuel B2 and coarsely powdered fuel B1 collides with the collision surface 61 . The pulverized fuel that has collided with the collision surface 61 is subjected to a radially outward force (centrifugal force and collision force, hereinafter referred to as an outward force) indicated by an arrow A2 and a radially inward force indicated by an arrow A3. (centripetal force due to primary air flow, hereinafter referred to as inward force) acts. Since the coarse fuel B1 has a large weight, a strong outward force A2 acts on the coarse fuel B1 that has collided with the collision surface 61 due to the centrifugal force. As a result, the coarse fuel powder B1 is repelled to the outside of the blade 60 (outer space S2 side) as indicated by the arrow A4 against the inward force A3. On the other hand, since the pulverized fuel B2 has a small weight, the centrifugal force acting on the pulverized fuel B2 that collides with the collision surface 61 is relatively weak. As a result, the force acting on the pulverized fuel B2 is dominated by the inward force indicated by the arrow A3. be guided.
The rotary classifier 16 classifies the coarse fuel B1 and the fine fuel B2 based on this principle.
[ブレードの断面形状]
 次に、各ブレード60の形状について、上下方向の断面形状(上下方向に直交する面(水平面)で切断した際の断面形状)を用いて説明する。なお、以下の説明において単に「断面形状」といった場合には、ブレードを水平面で切断した際の断面(翼断面)を意味する。
 各ブレード60は、上下方向に沿って一様の形状とされている。すなわち、各ブレード60は、上下方向の何れの位置においても断面形状が同形状となる。
[Cross-sectional shape of blade]
Next, the shape of each blade 60 will be described using the cross-sectional shape in the vertical direction (the cross-sectional shape when cut along a plane (horizontal plane) perpendicular to the vertical direction). In the following description, the term "cross-sectional shape" simply means a cross section (blade cross section) when the blade is cut along a horizontal plane.
Each blade 60 has a uniform shape along the vertical direction. That is, each blade 60 has the same cross-sectional shape at any position in the vertical direction.
 図4に示すように、各ブレード60は、上述のように、衝突面61と、衝突面61の反対側の面である背面65と、を有している。
 背面65は、平坦面とされている。
As shown in FIG. 4, each blade 60 has an impact surface 61 and a back surface 65 opposite impact surface 61, as described above.
The rear surface 65 is a flat surface.
 衝突面61は、径方向の外側に配置される湾曲面62と、湾曲面62よりも径方向内側に配置される平坦面63、を有する。湾曲面62と平坦面63とは境界点Dで、滑らかに接続されている。境界点Dは、衝突面61の径方向の略中央に設けられている。 The collision surface 61 has a curved surface 62 arranged radially outward and a flat surface 63 arranged radially inward of the curved surface 62 . The curved surface 62 and the flat surface 63 are smoothly connected at a boundary point D. The boundary point D is provided substantially at the radial center of the collision surface 61 .
 湾曲面62は、境界点Dよりも径方向外側に設けられている。湾曲面62は、回転方向(図3の矢印A1参照)の前方側に突出するように湾曲している。湾曲面62は、境界点Dから径方向の外側に向かうほど板厚が薄くなるように湾曲している。詳細には、湾曲面62は、ブレード60の径方向の外端において、板厚がゼロとなるように湾曲している。すなわち、ブレード60の径方向の外端においては、湾曲面62と背面65とが接続されている。なお、このように構成することで、ブレード60の径方向の外端が鋭角となる。このため、ブレード60の径方向の外端をカバー等で覆い、切創防止の対策を行ってもよい。 The curved surface 62 is provided outside the boundary point D in the radial direction. The curved surface 62 is curved so as to protrude forward in the direction of rotation (see arrow A1 in FIG. 3). The curved surface 62 is curved such that the thickness of the curved surface 62 decreases from the boundary point D toward the outside in the radial direction. Specifically, the curved surface 62 is curved such that the plate thickness is zero at the radially outer end of the blade 60 . That is, the curved surface 62 and the back surface 65 are connected at the radially outer end of the blade 60 . By configuring in this manner, the radial outer end of the blade 60 forms an acute angle. Therefore, the outer end of the blade 60 in the radial direction may be covered with a cover or the like to prevent cuts.
 また、湾曲面62は、径方向の外側の方が、径方向の内側よりも、仮想円Vの接線L1と衝突面61に対する垂線L2とが為す角度(以下、「傾斜角度θ」と称する。)が大きい。すなわち、図4に示すように、湾曲面62は、地点P2における傾斜角度θ2よりも、地点P2よりも径方向外側である地点P3における傾斜角度θ3の方が大きくなるように湾曲している。
 なお、湾曲面62の曲面形状は、要求される分級特性により決定される。例えば、本実施形態で説明したように、湾曲面62の曲面形状は、平坦面63との接続部分が最も曲率半径が大きく、平坦面63から遠ざかるほど(径方向の外側に向かうほど)曲率半径が小さい形状が好ましいが、湾曲面62は、一定の曲率としてもよい。また、例えば、円弧形状であってもよく、楕円の一部の形状であってもよく、放物線形状であってもよい。なお、分級特性は、粉砕燃料が通過し難さ(ブレード60の外周側に弾かれる)を示す指標であり、通過し難いほど大きくなる値である。
In addition, the curved surface 62 has an angle formed between the tangent line L1 of the virtual circle V and the perpendicular line L2 to the collision surface 61 (hereinafter referred to as "inclination angle θ") more than the radially inner side of the curved surface 62. ) is large. That is, as shown in FIG. 4, the curved surface 62 is curved such that the inclination angle .theta.3 at the point P3 radially outside the point P2 is larger than the inclination angle .theta.2 at the point P2.
The curved surface shape of the curved surface 62 is determined according to the required classification characteristics. For example, as described in the present embodiment, the curved surface shape of the curved surface 62 has the largest curvature radius at the connection portion with the flat surface 63, and the farther from the flat surface 63 (the radially outward), the larger the curvature radius. The curved surface 62 may have a constant curvature, although a shape with a small .DELTA. Further, for example, the shape may be an arc shape, a shape of a part of an ellipse, or a parabolic shape. The classification characteristic is an index indicating how difficult it is for the pulverized fuel to pass (repelled by the outer peripheral side of the blade 60), and the value increases as the passage becomes more difficult.
 平坦面63は、径方向に対して所定の角度傾斜している。また、平坦面63の傾斜角度θ1は、湾曲面62の傾斜角度(例えば、傾斜角度θ2や傾斜角度θ3)よりも小さい。 The flat surface 63 is inclined at a predetermined angle with respect to the radial direction. Also, the inclination angle θ1 of the flat surface 63 is smaller than the inclination angle of the curved surface 62 (for example, the inclination angle θ2 and the inclination angle θ3).
 なお、仮想円Vは、中心軸線Cを中心とした仮想円であるとともに、ブレード60の翼断面内の任意の点の回転軌跡でもある。 It should be noted that the virtual circle V is a virtual circle centered on the central axis C, and is also a rotational trajectory of an arbitrary point within the airfoil cross section of the blade 60 .
[ブレードの加工方法]
 次に、ブレード60の加工方法について説明する。
 ブレード60の加工方法は、特に限定されない。例えば、平板状の材料を削ることで、衝突面61に曲面部を有するブレード60に加工してもよい。
 また、ブレードの部位による摩耗速度の違いを考慮して、平板状のブレードの材質や硬度を適切に選定することで、回転式分級機16の使用に伴う摩耗によってブレードの衝突面に曲面部を形成しても良い。即ち、ブレードの径方向外周ほど、粉砕粒子との接触頻度が多く摩耗速度が大きいとした場合、例えば平板状のブレードの衝突面の表面硬度を均一とすれば、径方向外周側ほど摩耗による板厚の減少が大きくなり、使用に伴い曲面部が形成されることとなる。
 また、回転式分級機16の使用に伴うブレード60の摩耗により、曲面部が維持されるように、ブレード60の材質や硬度を適切に選定することが好ましい。このようにすることで、ブレード60のメンテナンス頻度を低減することができる。
[Blade processing method]
Next, a method for processing the blade 60 will be described.
A method of processing the blade 60 is not particularly limited. For example, the blade 60 having the curved portion on the collision surface 61 may be processed by cutting a plate-shaped material.
In addition, by appropriately selecting the material and hardness of the flat plate-shaped blade in consideration of the difference in the wear rate depending on the part of the blade, the curved surface portion of the collision surface of the blade due to wear accompanying the use of the rotary classifier 16 may be formed. That is, when the contact frequency with the crushed particles increases and the wear rate increases toward the radially outer periphery of the blade, for example, if the surface hardness of the collision surface of the flat blade is uniform, the radially outer periphery of the plate due to wear The reduction in thickness increases, and a curved surface portion is formed with use.
Further, it is preferable to appropriately select the material and hardness of the blade 60 so that the curved surface portion is maintained by the wear of the blade 60 accompanying the use of the rotary classifier 16 . By doing so, the maintenance frequency of the blade 60 can be reduced.
[分級性能]
 次に、回転式分級機の分級性能について説明する。
 まず、比較例に係る平板状のブレード60Xを備えた回転式分級機16の分級性能について図15から図21を用いて説明する。平板状のブレード60Xは、水平断面で視た時径方向に対して、所定の角度傾斜している。
[Classification performance]
Next, the classification performance of the rotary classifier will be described.
First, the classification performance of the rotary classifier 16 having the flat blade 60X according to the comparative example will be described with reference to FIGS. 15 to 21. FIG. The plate-like blade 60X is inclined at a predetermined angle with respect to the radial direction when viewed in a horizontal cross section.
 まず、図17のG4で示されるブレード60Xの径方向の各位置における平板状のブレード60Xの通過特性を求める。通過特性とは、粉砕燃料の分級機の通過し易さ(ブレード60の内周側を通過し易いほど大きくなる値)を示す指標であり、詳細は後述する。
 図17は、ブレード60Xの径方向の各位置(横軸)と、粉砕燃料に作用する外向きの力(左側縦軸)及び粉砕燃料の通過特性(右側縦軸)との関係を示している。図17のグラフの横軸は、ブレード60Xの入口(径方向の外端)からの距離を示している。すなわち、横軸は、ブレード60Xの径方向の位置を示し、横軸の左端がブレード60Xの径方向の外端(ブレード60Xの外側空間S2側の外端)を示し、右端がブレード60Xの径方向の内端(ブレード60Xの内側空間S1側の外端)を示している。また、粉砕燃料に作用する外向きの力には、遠心力による力と、衝突による力とが存在する。通過特性は、粉砕燃料に作用する内向きの力と正の相関があり、すなわち、外向きの力(遠心力+衝突力)とは負の相関関係にある。
First, the passage characteristics of the flat blade 60X at each position in the radial direction of the blade 60X indicated by G4 in FIG. 17 are obtained. The passing characteristic is an index indicating how easily pulverized fuel passes through the classifier (a value that increases as it easily passes through the inner peripheral side of the blade 60), and will be described later in detail.
FIG. 17 shows the relationship between each radial position (horizontal axis) of the blade 60X, the outward force acting on the pulverized fuel (left vertical axis), and the passage characteristics of the pulverized fuel (right vertical axis). . The horizontal axis of the graph in FIG. 17 indicates the distance from the inlet (outer end in the radial direction) of the blade 60X. That is, the horizontal axis represents the radial position of the blade 60X, the left end of the horizontal axis represents the radial outer end of the blade 60X (the outer end of the blade 60X on the outer space S2 side), and the right end represents the diameter of the blade 60X. The inner end of the direction (the outer end of the blade 60X on the inner space S1 side) is shown. In addition, the outward force acting on the pulverized fuel includes a force due to centrifugal force and a force due to collision. The passage characteristic is positively correlated with the inward forces acting on the pulverized fuel, ie negatively correlated with the outward forces (centrifugal force + impact force).
 図17のG1は、粉砕燃料とブレード60Xとが衝突した際に、粉砕燃料に作用する外向きの力F3(図16参照)を示している。またG2は、粉砕燃料に作用する遠心力によって作用する外向きの力F5(図16参照)を示している。衝突によって粉砕燃料に作用する外向きの力F3及び粉砕燃料に作用する遠心力による外向きの力F5は、以下のように求められる。 G1 in FIG. 17 indicates the outward force F3 (see FIG. 16) acting on the pulverized fuel when the pulverized fuel collides with the blade 60X. G2 also indicates the outward force F5 (see FIG. 16) exerted by the centrifugal force acting on the pulverized fuel. The outward force F3 acting on the pulverized fuel due to collision and the outward force F5 due to the centrifugal force acting on the pulverized fuel are obtained as follows.
 図15に示すように、平板状のブレード60Xに微粉燃料B2及び粗粉燃料B1を含んだ粉砕燃料が衝突した場合、粗粉燃料B1は、矢印A6に示すように、ブレード60Xの外側(外側空間S2側)へ弾かれる。一方、微粉燃料B2は、矢印A7で示すように、ブレード60Xの内側(内側空間S1側)へ弾かれる。 As shown in FIG. 15, when the pulverized fuel containing the finely divided fuel B2 and the coarsely divided fuel B1 collides with the blade 60X having a flat plate shape, the coarsely divided fuel B1 travels outside the blade 60X (outside space S2 side). On the other hand, the pulverized fuel B2 is repelled to the inside of the blade 60X (toward the inner space S1) as indicated by an arrow A7.
 図16に示すように、粉砕燃料が回転するブレード60Xに衝突する力を矢印F1で示す。この矢印F1で示す力をブレード60Xの衝突面に対して垂直方向に作用する力(矢印F2)とブレード60Xの衝突面に沿って並行に作用する力(矢印F3)に分解する。垂直方向に作用する力はブレード60Xからの垂直抗力(矢印F4)が作用して打ち消される。平行に作用する力には打ち消す力が作用しないため衝突した粉砕燃料には、ブレード60Xの外向きの力F3が作用する。すなわち、衝突による外向きの力F3が作用する。
 なお、図16において、矢印F5は遠心力によるブレード60Xの衝突面に沿った径方向の外向きの力を示し、矢印F6は一次空気の流れによるブレード60Xの衝突面に沿った径方向の内向きの力を示している。外向きの力F3は、以下の式(1)で求められる。
As shown in FIG. 16, the force with which the pulverized fuel collides with the rotating blades 60X is indicated by an arrow F1. The force indicated by the arrow F1 is decomposed into a force (arrow F2) acting perpendicularly to the collision surface of the blade 60X and a force (arrow F3) acting in parallel along the collision surface of the blade 60X. The force acting in the vertical direction is canceled by the vertical force (arrow F4) from the blade 60X. Since no counteracting force acts on the force acting in parallel, the outward force F3 of the blade 60X acts on the colliding pulverized fuel. That is, an outward force F3 due to the collision acts.
In FIG. 16, the arrow F5 indicates the radial outward force along the collision surface of the blade 60X due to the centrifugal force, and the arrow F6 indicates the radial inner force along the collision surface of the blade 60X due to the primary air flow. indicates a directional force. The outward force F3 is obtained by the following formula (1).
[数1]
 F3=F1×sinθ・・・(1)
 但し、F1:粉砕燃料が回転するブレード60Xに衝突する力
     θ;粉砕燃料が回転するブレード60Xに衝突する力が作用する方向(矢印F1参照)と、垂直方向に作用する力の方向(矢印F2参照)とが為す角度
 なお、実機使用条件においては、粉砕燃料とブレード60Xとの間に生ずる摩擦力は、その他の力と比較し小さい為、計算上では無視している。
[Number 1]
F3=F1×sin θ (1)
However, F1: the force with which the pulverized fuel collides with the rotating blade 60X θ; The angle formed by ) Note that the frictional force generated between the pulverized fuel and the blade 60X is small compared to the other forces under the operating conditions of the actual machine, so it is ignored in the calculation.
 このように、ブレード60Xの径方向に対する傾斜が大きいほどブレード60Xの外向きの力F5が働く。また、ブレード60Xは、平板状である。このため、ブレード60Xにおいては、径方向のどの地点であっても、角度θが一定となる。よって、図17のG1で示すように、ブレード60Xは、径方向のどの地点であっても、外向きの力F5が一定となる。 Thus, the outward force F5 of the blade 60X acts as the inclination of the blade 60X with respect to the radial direction increases. Also, the blade 60X is flat. Therefore, in the blade 60X, the angle θ is constant at any point in the radial direction. Therefore, as indicated by G1 in FIG. 17, the blade 60X has a constant outward force F5 at any point in the radial direction.
 また、ブレード60Xに衝突した粉砕燃料は、ブレード60Xにより遠心力F5が与えられる。遠心力F5は、以下の式(2)から求められる。 Also, the pulverized fuel that has collided with the blade 60X is given a centrifugal force F5 by the blade 60X. Centrifugal force F5 is obtained from the following equation (2).
[数2]
 F5=m×r×ω・・・(2)
 但し、m:粉砕燃料の質量
    r:衝突位置の回転半径
    ω:ブレード60Xの角速度
[Number 2]
F5=m×r×ω 2 (2)
where m: mass of pulverized fuel r: radius of rotation at collision position ω: angular velocity of blade 60X
 したがって、同一の回転速度のブレード60Xに衝突した粉砕燃料に働く遠心力F5は、粉砕燃料の質量と、衝突位置の回転半径によって決定される。
 また、微粉燃料B2は質量が小さい。また、後述するように、微粉燃料B2はブレード60Xの径方向の内側、すなわち回転半径の小さい箇所に衝突するので、微粉燃料B2に作用する遠心力F5は小さくなる。よって、一次空気の流れによる径方向の内向きの力F7が遠心力F5に打ち勝つと、微粉燃料B2は、ブレード60Xの径方向の内側へ移動する。
 一方、粗粉燃料B1は質量が大きい。また、後述するように、粗粉燃料B1はブレード60Xの径方向の外側、すなわち回転半径の大きい箇所に衝突するので、粗粉燃料B1に作用する遠心力F5は大きくなる。よって、一次空気の流れによる径方向の内向きの力F6に遠心力F5が打ち勝つと、粗粉燃料B1は、ブレード60Xの径方向の外側に弾かれることとなる。
 以上から、図17のG2に示すように、遠心力F5による力は、一次関数となるので、右下がりの傾斜直線となる。
Therefore, the centrifugal force F5 acting on the pulverized fuel colliding with the blade 60X with the same rotational speed is determined by the mass of the pulverized fuel and the radius of rotation of the collision position.
Further, the pulverized fuel B2 has a small mass. Further, as will be described later, the pulverized fuel B2 collides with the inner side of the blade 60X in the radial direction, that is, the point where the radius of rotation is small, so the centrifugal force F5 acting on the pulverized fuel B2 is reduced. Therefore, when the radially inward force F7 due to the primary air flow overcomes the centrifugal force F5, the pulverized fuel B2 moves radially inward of the blade 60X.
On the other hand, the coarse fuel B1 has a large mass. In addition, as will be described later, the coarse fuel particle B1 collides with the radially outer side of the blade 60X, that is, a portion having a large rotation radius, so the centrifugal force F5 acting on the coarse fuel particle B1 increases. Therefore, when the centrifugal force F5 overcomes the radially inward force F6 due to the primary air flow, the coarse fuel powder B1 is repelled radially outward of the blade 60X.
From the above, as indicated by G2 in FIG. 17, the force due to the centrifugal force F5 becomes a linear function, and thus becomes a straight line that slopes downward to the right.
 また、図17のG3は、遠心力による外向きの力F5と、衝突による外向きの力F3との合計による外向きの力を示している。上述のように、ブレード60Xが平板状であれば衝突による外向きの力F3は一定なので、図17のG3に示すように、外向きの力(遠心力+衝突力)は、右下がりの傾斜直線となる。 In addition, G3 in FIG. 17 indicates the outward force resulting from the sum of the outward force F5 due to the centrifugal force and the outward force F3 due to collision. As described above, if the blade 60X is flat, the outward force F3 due to collision is constant. Therefore, as shown in G3 in FIG. 17, the outward force (centrifugal force + collision force) becomes a straight line.
 図17のG4で示される通過特性は、外向きの力(遠心力+衝突力)と反比例の関係(負の相関関係)にある。よって、通過特性は、G4に示すように、外向きの力(遠心力+衝突力)を示すG3とは傾きが逆の右上がりの傾斜直線となる。
 このようにして、平板状のブレード60Xの通過特性が求められる。
The passing characteristic indicated by G4 in FIG. 17 is in an inversely proportional relationship (negative correlation) with the outward force (centrifugal force+collision force). Therefore, as shown by G4, the passing characteristic is a straight line that slopes upward to the right, the slope of which is opposite to that of G3, which indicates the outward force (centrifugal force + collision force).
In this way, the passing characteristics of the plate-shaped blade 60X are obtained.
 ここで、図17に示す通過特性とは、すなわち、通過することのできる単一の粉砕燃料の質量を示している。粉砕燃料の密度を一定とすれば、これは粉砕燃料の体積、すなわち粉砕燃料の大きさを示す。したがって、図18AのG5aで示すように、通過特性と通過する粉砕燃料の大きさは、比例の関係(正の相関関係)にある。また、図17のG4に示すように、通過特性は、ブレード60Xの外端側からの距離に比例する。このことから、図18BのG5bで示すように、通過する粉砕燃料の大きさも、ブレード60Xの外端側からの距離に比例することとなる。図18Aは、ブレード60Xを通過する粉砕燃料の大きさと通過特性との関係を示すグラフである。図18Bは、ブレード60Xを通過する粉砕燃料の大きさとブレード60Xの入口からの距離との関係を示すグラフである。 Here, the passing characteristic shown in FIG. 17 indicates the mass of a single pulverized fuel that can pass. Given that the density of pulverized fuel is constant, this indicates the volume of pulverized fuel, that is, the size of pulverized fuel. Therefore, as indicated by G5a in FIG. 18A, the passing characteristics and the size of the pulverized fuel passing through are in a proportional relationship (positive correlation). Also, as indicated by G4 in FIG. 17, the passage characteristic is proportional to the distance from the outer end side of the blade 60X. Therefore, as indicated by G5b in FIG. 18B, the size of the passing pulverized fuel is also proportional to the distance from the outer end side of the blade 60X. FIG. 18A is a graph showing the relationship between the size of pulverized fuel passing through blade 60X and passage characteristics. FIG. 18B is a graph showing the relationship between the size of pulverized fuel passing through blade 60X and the distance from the inlet of blade 60X.
 次に、一次空気の流れによる分級効果について図19及び図20を用いて説明する。
 まず、粉砕燃料はミル10の粉砕テーブル12上で粉砕され、粉砕テーブル12の周囲から吹き出す一次空気(搬送用ガス)により回転式分級機16まで気流搬送される。上述のように、このとき、気流E(一次空気の流れ)は、ハウジング11の内部を旋回しながら上昇する流れであり、図19に示すように、ブレード60Xの回転方向A1に対して、逆回りでブレードの外周側から回転式分級機16へ到達する。
Next, the classification effect by the primary air flow will be described with reference to FIGS. 19 and 20. FIG.
First, the pulverized fuel is pulverized on the pulverizing table 12 of the mill 10 and air-flow-conveyed to the rotary classifier 16 by primary air (conveying gas) blown from the periphery of the pulverizing table 12 . As described above, at this time, the airflow E (primary airflow) is a flow that rises while swirling inside the housing 11, and as shown in FIG. Around the circumference, it reaches the rotary classifier 16 from the outer peripheral side of the blade.
 ブレード60Xの側面部まで到達した気流Eは、図19に示すように、隣接するブレード60Xの間の流路に向かって急激に進路を曲げる。このとき、質量が軽く、慣性の小さい微粉燃料B2は、気流Eと共に進路が変わり易い。一方、質量が重く、慣性の大きい粗粉燃料B1は進路が変わり難い。この特性により、図19に示すように、微粉燃料B2は、気流のカーブの内周側を通り、粗粉燃料B1は気流のカーブの外周側を通ることで、気流による大まかな分級が行われる。大まかな分級の結果、微粉燃料B2は、ブレード60Xの出口側(径方向の内側)に、粗粉燃料B1は、ブレード60Xの入口側(径方向の外側)に衝突する割合が大きくなる。このときの粉砕燃料の分布は、概ね粉砕燃料の慣性力に依存する。すなわち、F(力)=m(質量)・a(加速度)の関係により、一次空気の気流から等しい流体力を受ける場合は、軽い粒子(微粉燃料B2)の方が大きな加速度が発生する。また、一定加速度を与えられる物体の移動距離は、X=a(加速度)・t(時間)であることから、概ねブレード60Xに衝突する粒子の分布は、図20に示すように、2次関数に近い曲線状の分布となる。図20は、ブレード60Xに衝突する粉砕燃料の粒子径と、ブレード60Xの入口からの距離との関係を示すグラフである。ただし、粉砕燃料がブレード60Xに向けて方向転換を始める始点は粒子の飛行軌跡に依存するため、このばらつきにより、分布特性は有る程度の幅を持ったブロードな分布となる。このように、ブレード60Xの径方向の各位置に衝突する粉砕燃料の粒子の大きさ(以下、「衝突粒径分布」と称する。)は、図20のハッチングで示す範囲となる。なお、上記説明では、平板状のブレード60Xに衝突する場合について説明したが、ブレードに衝突する粉砕燃料の粒子の大きさは、ブレードの形状によって変化しない。したがって、例えば、本実施形態で説明した湾曲面62を設けたブレード60に衝突する場合であっても、衝突粒径分布は、図20で示す分布となる。 As shown in FIG. 19, the airflow E reaching the side surface of the blade 60X sharply bends toward the flow path between the adjacent blades 60X. At this time, the pulverized fuel B2, which has a light mass and a small inertia, tends to change course along with the airflow E. On the other hand, the course of the coarse fuel B1, which has a heavy mass and a large inertia, is difficult to change. Due to this characteristic, as shown in FIG. 19, the finely divided fuel B2 passes through the inner side of the airflow curve, and the coarsely powdered fuel B1 passes through the outer side of the airflow curve, whereby rough classification by the airflow is performed. . As a result of the rough classification, the proportion of the finely divided fuel B2 colliding with the exit side (inside in the radial direction) of the blade 60X and the proportion of the coarsely divided fuel B1 colliding with the inlet side (outside in the radial direction) of the blade 60X increases. The distribution of the pulverized fuel at this time generally depends on the inertial force of the pulverized fuel. That is, according to the relationship of F (force)=m (mass)·a (acceleration), when the same fluid force is applied from the primary air stream, lighter particles (pulverized fuel B2) generate greater acceleration. Further, since the movement distance of an object given a constant acceleration is X=a (acceleration) t (time) 2 , the distribution of particles colliding with the blade 60X is approximately quadratic as shown in FIG. It becomes a curved distribution close to a function. FIG. 20 is a graph showing the relationship between the particle size of pulverized fuel colliding with the blade 60X and the distance from the inlet of the blade 60X. However, since the starting point at which the pulverized fuel begins to change direction toward the blade 60X depends on the flight trajectory of the particles, this variation results in a broad distribution with a certain width. Thus, the size of the pulverized fuel particles colliding with each position in the radial direction of the blade 60X (hereinafter referred to as "impingement particle size distribution") falls within the hatched range in FIG. In the above description, the case of colliding with the flat blade 60X has been described, but the size of the pulverized fuel particles colliding with the blade does not change depending on the shape of the blade. Therefore, for example, even when colliding with the blade 60 provided with the curved surface 62 described in this embodiment, the colliding particle size distribution becomes the distribution shown in FIG.
 次に、図21を用いて、平板状のブレード60Xを備えた回転式分級機16全体の通過特性(すなわち、回転式分級機16の分級性能)の説明をする。図21のグラフにおいて、左縦軸がブレード60Xに衝突する粉砕燃料の粒子径を、右縦軸がブレード60Xを通過する粉砕燃料の粒子径を示している。また、横軸は、ブレード60Xの入口(外端)からの距離を示している。
 本説明における回転式分級機16全体の通過特性は、図18BのG5bで示したブレード60Xを通過する粉砕燃料の大きさと、図20で示した粉砕燃料分布と、から導き出される。図21では、ブレード60Xを通過する粉砕燃料の大きさを示すG5bと、衝突粒径分布の上縁線とが交差する粉砕燃料の粒子径を、回転式分級機16の目標粒子径としている。目標粒子径とは、回転式分級機16を通過させミル10から排出(ボイラ200のバーナ220へ供給)したい粉砕燃料の粒子径の上限値である。
Next, with reference to FIG. 21, passage characteristics of the entire rotary classifier 16 provided with flat blades 60X (that is, classification performance of the rotary classifier 16) will be described. In the graph of FIG. 21, the left vertical axis indicates the particle size of the pulverized fuel that collides with the blade 60X, and the right vertical axis indicates the particle size of the pulverized fuel that passes through the blade 60X. Also, the horizontal axis indicates the distance from the entrance (outer end) of the blade 60X.
The passage characteristics of the entire rotary classifier 16 in this description are derived from the size of the pulverized fuel passing through the blades 60X indicated by G5b in FIG. 18B and the pulverized fuel distribution shown in FIG. In FIG. 21, the target particle size of the rotary classifier 16 is the particle size of the pulverized fuel at which G5b, which indicates the size of the pulverized fuel passing through the blade 60X, and the upper edge line of the collision particle size distribution intersect. The target particle size is the upper limit of the particle size of pulverized fuel that is to be passed through the rotary classifier 16 and discharged from the mill 10 (supplied to the burner 220 of the boiler 200).
 図21において、衝突粒径分布の上縁線及びブレード60Xを通過する粉砕燃料の大きさを示すG5bよりも下側が、回転式分級機16を通過する粉砕燃料の領域である。すなわち、破線G6よりも下側が、回転式分級機16を通過する粉砕燃料の領域である。粗粉燃料の多いブレード入口側(外端側)の通過特性が比較的低く(すなわち、通過し難く)、逆に微粉燃料の多いブレード出口側(内端側)の通過特性が比較的高くなる(すなわち、通過し易くなる)。これにより、粗粉燃料は通過させず、微粉燃料を通過させることができる。よって、分級の効果を効率的に得ることができる。 In FIG. 21, the area below G5b, which indicates the size of the crushed fuel passing through the upper edge line of the collision particle size distribution and the blade 60X, is the region of the crushed fuel passing through the rotary classifier 16. That is, the area below the dashed line G6 is the area of the pulverized fuel that passes through the rotary classifier 16. As shown in FIG. Passage characteristics are relatively low on the blade inlet side (outer end side) where coarse fuel is abundant (that is, it is difficult to pass), and conversely, passage characteristics on the blade exit side (inner end side) where fine powder fuel is abundant are relatively high. (i.e. easier to pass). As a result, the fine fuel can be allowed to pass through while the coarse fuel is not allowed to pass through. Therefore, the effect of classification can be obtained efficiently.
 次に、比較例に係る折板状のブレード60Yを備えた回転式分級機16の分級性能について図22から図24を用いて説明する。折板状のブレード60Yは、図22に示すように、板状の外側部分60Yaと、板状の内側部分60Ybとが、角状の折れ点Hを形成するように接続されている。ブレード60Yは、外側部分60Yaと内側部分60Ybとで径方向に対する傾斜角度が異なっている。また、ブレード60Yは、外側部分60Yaのほうが内側部分60Ybよりも傾斜角度が大きくなっている。本説明では、内側部分60Ybの傾斜角度が、上記説明のブレード60Xの傾斜角度と同じ例について説明する。 Next, the classification performance of the rotary classifier 16 having the folded-plate blade 60Y according to the comparative example will be described with reference to FIGS. 22 to 24. FIG. As shown in FIG. 22, the folded-plate-shaped blade 60Y has a plate-shaped outer portion 60Ya and a plate-shaped inner portion 60Yb that are connected so as to form an angular folding point H. As shown in FIG. The blade 60Y has different angles of inclination with respect to the radial direction between the outer portion 60Ya and the inner portion 60Yb. Further, the blade 60Y has a larger inclination angle at the outer portion 60Ya than at the inner portion 60Yb. In this description, an example in which the angle of inclination of the inner portion 60Yb is the same as the angle of inclination of the blade 60X described above will be described.
 図22に示すように、折板状のブレード60Yに微粉燃料B2及び粗粉燃料B1を含んだ粉砕燃料が衝突した場合も、粗粉燃料B1は、矢印A8に示すように、ブレード60Yの外側(外側空間S2側)へ弾かれる。一方、微粉燃料B2は、矢印A9で示すように、ブレード60Yの内側(内側空間S1側)へ弾かれる。 As shown in FIG. 22 , even when pulverized fuel containing finely powdered fuel B2 and coarsely powdered fuel B1 collides with the blade 60Y in the form of a folded plate, the coarsely powdered fuel B1 travels toward the outside of the blade 60Y as indicated by an arrow A8. (Outer space S2 side). On the other hand, the pulverized fuel B2 is repelled to the inside of the blade 60Y (toward the inner space S1) as indicated by an arrow A9.
 ブレード60Yは、外側部分60Yaと内側部分60Ybとで径方向に対する傾斜角度が異なっている。これは、ブレード60Yによる衝突する粉砕燃料の衝突力の方向が異なることを意味する。したがって、傾斜角度が小さな内側部分60Ybに衝突した粉砕燃料に作用する外向きの力(上記式(1)で算出される力。図16のF3参照)が小さく、傾斜角度が大きな外側部分60Yaに衝突した粒子に作用する外向きの力が大きいこととなる。 The outer portion 60Ya and the inner portion 60Yb of the blade 60Y have different angles of inclination with respect to the radial direction. This means that the direction of the impact force of the pulverized fuel colliding with the blade 60Y is different. Therefore, the outward force acting on the pulverized fuel that collides with the inner portion 60Yb with a small inclination angle (the force calculated by the above formula (1); see F3 in FIG. 16) is small, and the outer portion 60Ya with a large inclination angle The outward force acting on the colliding particles will be large.
 よって、図23のG7で示すように、ブレード60Yは、外側部分60Yaにおいて衝突力による外向きの力が大きくなり、内側部分60Ybにおいて衝突力による外向きの力が小さくなる。なお、図23のG2は、図17と同様に、粉砕燃料に作用する遠心力による外向きの力を示している。また、G8は、遠心力による外向きの力と、衝突力による外向きの力との合計による外向きの力を示している。G7に示すように、衝突力による外向きの力が折れ点Hで大きく変化することから、G8も折れ点Hで大きく変化している。以降の説明では、外向きの力が大きく変化する部分のことを「段付き部分」と称する。また、図23のG9で示される通過特性は、外向きの力(遠心力+衝突力)と反比例の関係(負の相関関係)にある。また、図23のハッチングのK1は、平板状のブレード60Xと比較して、通過特性を低減できる領域を示している。このように、粗粉燃料B1が衝突し易い外側部分60Yaにおいて、通過特性(内側へ向かう力)を低減できるので、平板状のブレード60Xよりも、粗粉燃料B1が通過してしまう事態を抑制することができることがわかる。 Therefore, as indicated by G7 in FIG. 23, the outer portion 60Ya of the blade 60Y has a greater outward force due to the impact force, and the inner portion 60Yb has a smaller outward force due to the impact force. Note that G2 in FIG. 23 indicates the outward force due to the centrifugal force acting on the pulverized fuel, as in FIG. G8 indicates an outward force resulting from the sum of the outward force due to the centrifugal force and the outward force due to the collision force. As shown in G7, since the outward force due to the collision force changes greatly at the break point H, G8 also changes greatly at the break point H. In the following description, a portion where the outward force changes greatly is called a "stepped portion". Also, the passing characteristic indicated by G9 in FIG. 23 is in an inversely proportional relationship (negative correlation) with the outward force (centrifugal force+collision force). In addition, hatched K1 in FIG. 23 indicates a region where passage characteristics can be reduced as compared with the flat blade 60X. In this way, in the outer portion 60Ya where the coarse fuel particles B1 are likely to collide, the passage characteristics (inward force) can be reduced. know that you can.
 次に、図24を用いて、折板状のブレード60Yを備えた回転式分級機16全体の通過特性(すなわち、回転式分級機16の分級性能)の説明をする。本説明における回転式分級機16全体の通過特性は、図23のG9を基にしたブレード60Yを通過する粉砕燃料の大きさを示すG10と、図20で示した衝突粒径分布と、から導き出される。 Next, using FIG. 24, the passage characteristics of the rotary classifier 16 as a whole (that is, the classification performance of the rotary classifier 16) provided with the folded-plate blades 60Y will be described. The passage characteristics of the entire rotary classifier 16 in this description are derived from G10, which indicates the size of pulverized fuel passing through the blade 60Y based on G9 in FIG. 23, and the impact particle size distribution shown in FIG. be
 図24において、破線で示したG11よりも下側が、回転式分級機16を通過する粉砕燃料の領域である。ハッチングK2で示すように、平板状のブレード60Xを採用した場合と比較して、外側部分60Yaでの通過特性が小さくなる。また、粒子径の大きい領域、特に目標粒子径以下の粒子の割合が非常に小さい領域での通過特性が極めて小さくなる。これにより、粗粉燃料が通過することを抑制し、分級性能の向上を図ることができる。
 一方で、ハッチングK3の領域については、衝突粒径分布の範囲内かつ、目標粒子径以下であるにもかかわらず、ブレード60Yによって外周側へ弾かれることになる。したがって、平板状のブレード60Xを採用した場合と比較して、分級性能が低下している(分級する必要のない通過するべき微粉燃料を外周側へ弾いてしまう)ことがわかる。
 また、分級特性に段付き部分が有り、段付き部分に対応する粒径範囲Jの粉砕燃料は、ブレード60Yを通過するか、通過しないかは、その衝突位置に依存することになる。このため、分級されるか否かが粒子径に対してランダムとなる。よって、回転式分級機16を通過するべき微粉燃料の一部がブレード60Yに弾かれ、分級性能が低下してしまうという問題がある。
 弾かれた微粉燃料は粉砕テーブル12へ還流されて再粉砕されることになる。既に細かくなった微粉燃料をさらに粉砕するため、粉砕動力の無駄が発生する他、還流した微粉燃料が固体潤滑剤として作用して粉砕ローラ13が粉砕テーブル12上でスリップすることにより発生するスリップ振動がミル10において発生しやすくなるという問題がある。
In FIG. 24 , the area below G11 indicated by the dashed line is the area of pulverized fuel passing through the rotary classifier 16 . As indicated by hatching K2, the passage characteristics of the outer portion 60Ya are reduced compared to when the flat blade 60X is employed. In addition, the passage characteristics are extremely reduced in a region where the particle size is large, particularly in a region where the proportion of particles having a particle size equal to or smaller than the target particle size is very small. As a result, it is possible to suppress the passage of coarse fuel particles and improve the classification performance.
On the other hand, the hatched area K3 is repelled to the outer peripheral side by the blade 60Y even though it is within the range of the collision particle size distribution and is equal to or smaller than the target particle size. Therefore, it can be seen that the classification performance is lower than when the flat blade 60X is used (the pulverized fuel that should be passed and does not need to be classified is repelled to the outer peripheral side).
Further, there is a stepped portion in the classification characteristics, and whether or not the pulverized fuel in the particle size range J corresponding to the stepped portion passes through the blade 60Y depends on the collision position. Therefore, whether or not the particles are classified is random with respect to the particle diameter. Therefore, there is a problem that part of the pulverized fuel that should pass through the rotary classifier 16 is repelled by the blade 60Y, and the classification performance deteriorates.
The repelled pulverized fuel is returned to the pulverizing table 12 and pulverized again. Since the pulverized fuel, which has already become finer, is further pulverized, the pulverization power is wasted, and the pulverized fuel that has flowed back acts as a solid lubricant, causing the pulverizing rollers 13 to slip on the pulverizing table 12, causing slip vibration. is likely to occur in the mill 10.
 次に、本実施形態に係る湾曲面62を有するブレード60を備えた回転式分級機16の分級性能について図5及び図6を用いて説明する。本説明では、平坦面63の傾斜角度が、上記説明のブレード60Xの傾斜角度と同じ例について説明する。
 湾曲面62においては、連続的に傾斜角度が変わっているものと見做せる。したがって、図5のG20で示すように、衝突力による外向きの力も滑らかに変化する。具体的には、湾曲面62は、径方向の外側の方が、径方向の内側よりも、傾斜角度が大きい。したがって、径方向の外側に向かうにしたがって、衝突力による外向きの力が大きくなっている。また、遠心力による外向きの力と、衝突力による外向きの力との合計による外向きの力を示すG21も径方向の外側に向かうにしたがって外向きの力が大きくなるように滑らかに変化している。なお、図5のG2は、図17等と同様に、粉砕燃料に作用する遠心力による外向きの力を示している。また、図5のG22で示される通過特性は、外向きの力(遠心力+衝突力)と反比例の関係(負の相関関係)にある。したがって、G21と同様に、G22も滑らかに変化している。また、図5のハッチングのK4は、平板状のブレード60Xよりも通過特性を低減できる領域を示している。このように、粗粉燃料B1が衝突し易い径方向の外側において、通過特性(内側へ向かう力)を低減できるので、平板状のブレード60Xよりも、粗粉燃料B1が通過してしまう事態を抑制できることがわかる。
Next, the classification performance of the rotary classifier 16 having the blade 60 having the curved surface 62 according to this embodiment will be described with reference to FIGS. 5 and 6. FIG. In this description, an example in which the angle of inclination of the flat surface 63 is the same as the angle of inclination of the blade 60X described above will be described.
In the curved surface 62, it can be assumed that the inclination angle changes continuously. Therefore, as indicated by G20 in FIG. 5, the outward force due to the collision force also changes smoothly. Specifically, the curved surface 62 has a larger inclination angle on the radially outer side than on the radially inner side. Therefore, the outward force due to the collision force increases toward the outside in the radial direction. In addition, G21, which indicates the outward force due to the sum of the outward force due to the centrifugal force and the outward force due to the collision force, also changes smoothly so that the outward force increases toward the outside in the radial direction. is doing. Note that G2 in FIG. 5 indicates the outward force due to the centrifugal force acting on the pulverized fuel, as in FIG. 17 and the like. Also, the passing characteristic indicated by G22 in FIG. 5 is in an inversely proportional relationship (negative correlation) with the outward force (centrifugal force+collision force). Therefore, like G21, G22 also changes smoothly. Further, the hatched K4 in FIG. 5 indicates a region where the passing characteristic can be reduced more than the plate-shaped blade 60X. In this way, since the passing characteristic (inward force) can be reduced on the radially outer side where the coarse fuel particles B1 tend to collide, the situation where the coarse fuel particles B1 pass through more than the flat blade 60X can be prevented. It turns out that it can be suppressed.
 次に、図6を用いて、本実施形態に係るブレード60を備えた回転式分級機16全体の通過特性(すなわち、回転式分級機16の分級性能)の説明をする。本説明における回転式分級機16全体の通過特性は、図5のG22を基にしたブレード60を通過する粉砕燃料の大きさを示すG23と、図20で示した衝突粒径分布と、から導き出される。 Next, using FIG. 6, the passage characteristics of the entire rotary classifier 16 having the blades 60 according to the present embodiment (that is, the classification performance of the rotary classifier 16) will be described. The passage characteristics of the entire rotary classifier 16 in this description are derived from G23, which indicates the size of the pulverized fuel passing through the blades 60 based on G22 in FIG. 5, and the impact particle size distribution shown in FIG. be
 図6において、破線G24よりも下側が、回転式分級機16を通過する粉砕燃料の領域である。ハッチングK5及びK6で示すように、平板状のブレード60Xを採用した場合と比較して、湾曲面62において通過特性が小さくなる。また、ハッチングK6で示すように、折板状のブレード60Yを採用した場合と比較して、湾曲面62において通過特性が小さくなる。また、粒子径の大きい領域、特に目標粒子径以下の粒子の割合が非常に小さい領域での通過特性が極めて小さくなる。これにより、粗粉燃料が通過することをより一層抑制し、分級性能の向上を図ることができる。
 このように、粗粉燃料の通過を抑制することで、バーナ220に目標粒径以上の粗粉燃料が供給されることを抑制することができる。これにより、バーナ220において燃焼し切らない粉砕燃料(未燃の粉砕燃料)の量を低減し、ボイラ200から排出される灰中の未燃分を低減することができる。また、灰中未燃分を低減できるので、ボイラ200に供給する空気量の低減(低空気比燃焼)が可能となり、窒素酸化物の生成量も抑制することがきる。したがって、環境負荷を低下させることができる。また、脱硝装置35における還元剤(アンモニア等)の使用量も低減することができ、ランニングコストを低減させることができる。
In FIG. 6, the area below the dashed line G24 is the region of the pulverized fuel passing through the rotary classifier 16. As shown in FIG. As indicated by hatchings K5 and K6, the passage characteristics are reduced on the curved surface 62 compared to when the flat blade 60X is employed. In addition, as shown by hatching K6, the passage characteristics of the curved surface 62 are smaller than when the folded plate blade 60Y is employed. In addition, the passage characteristics are extremely reduced in a region where the particle size is large, particularly in a region where the proportion of particles having a particle size equal to or smaller than the target particle size is very small. As a result, it is possible to further suppress the passage of coarse fuel particles and improve the classification performance.
By suppressing passage of coarse fuel particles in this way, it is possible to suppress supply of coarse fuel particles having a target particle size or more to the burner 220 . As a result, the amount of pulverized fuel that is not completely burned in the burner 220 (unburned pulverized fuel) can be reduced, and the unburned content in the ash discharged from the boiler 200 can be reduced. Moreover, since the unburned content in the ash can be reduced, the amount of air supplied to the boiler 200 can be reduced (low air ratio combustion), and the amount of nitrogen oxides produced can also be suppressed. Therefore, the environmental load can be reduced. In addition, the amount of reducing agent (such as ammonia) used in the denitrification device 35 can be reduced, and the running cost can be reduced.
 一方、ハッチングK7の領域については、衝突粒径分布範囲内かつ、目標粒子径以下であるにもかかわらず、ブレード60Yに外周側へ弾かれることになる。この分級性能が低下する領域を、折板状のブレード60Yを採用した場合(図24のハッチングK3参照)と比較して小さくすることができる。よって、分級性能の低下を抑制することができる。
 このように、微粉燃料B2の再循環を抑制することで、微粉燃料B2の再粉砕を抑制することができる。これにより、ミル10の粉砕動力の低減を図ることができる。また、還流した微粉燃料が潤滑剤の役目を果たすことに起因したミル10のスリップ振動を起こし難くすることができる。
On the other hand, the hatched area K7 is repelled to the outer peripheral side by the blade 60Y even though it is within the collision particle size distribution range and is equal to or smaller than the target particle size. The area where the classification performance is lowered can be made smaller than when the folded-plate blade 60Y is employed (see hatching K3 in FIG. 24). Therefore, deterioration in classification performance can be suppressed.
By suppressing the recirculation of the finely divided fuel B2 in this way, it is possible to suppress the re-pulverization of the finely divided fuel B2. Thereby, reduction of the grinding|pulverization power of the mill 10 can be aimed at. In addition, slip vibration of the mill 10 due to the recirculated pulverized fuel acting as a lubricant can be made less likely to occur.
 また、湾曲面62によって傾斜角度を変化させる構造を採用したことにより、折板状のブレード60Yを採用した場合に生じていた段付き部分がなくなる。これにより、分級されるか否かが粒子径に対してランダムとなっていた領域を解消することができるので分級性能を向上させることができる。 In addition, by adopting a structure in which the angle of inclination is changed by the curved surface 62, the stepped portion that occurs when the folded-plate-shaped blade 60Y is adopted is eliminated. As a result, it is possible to eliminate the region where whether or not the particles are classified is random with respect to the particle size, so that the classification performance can be improved.
 本実施形態では、上述の分級性能の向上のほかに、以下の作用効果を奏する。
 本実施形態では、ブレード60の径方向の外側に湾曲面62が形成されている。このような先端曲面型のブレード60では、回転式分級機16の使用に伴って、粉砕燃料との衝突によってブレード60が摩耗しても、概ねその曲面形状が保たれたままとなる。すなわち、先端曲面型のブレード60では、ブレード60の径方向の長さが減少するように摩耗する自己整形性を保有させることが出来る。これは、ブレード60の外側ほど粗く、重い粒子が大量かつ高速に衝突することで摩耗が促進される傾向に有る為で、ブレード60の材質や硬度を適切に製作することにより、長期に渡りブレード60の湾曲面62の曲面形状が維持され、その性能を持続することができる。
In this embodiment, in addition to the improvement in the classification performance described above, the following effects are obtained.
In this embodiment, a curved surface 62 is formed on the radially outer side of the blade 60 . With such a curved tip blade 60, even if the blade 60 wears due to collision with pulverized fuel during use of the rotary classifier 16, the curved shape is generally maintained. In other words, the blade 60 with a curved tip surface can have a self-shaping property in which the blade 60 wears so that the radial length of the blade 60 decreases. This is because the outer side of the blade 60 tends to be rougher and heavier particles collide with each other at high speed, and wear tends to be accelerated. The curved surface shape of the curved surface 62 of 60 is maintained, and its performance can be maintained.
 また、本実施形態では、衝突面61が湾曲面62と平坦面63とを有している。平坦面63は湾曲面62よりも製作し易いので、衝突面61の全面を湾曲面62とする場合と比較して、容易にブレード60を製作することができる。
 また、一般的に、衝突面61の径方向の内側ほど、一次空気の力(すなわち、ブレード60の径方向の外側から内側へ向かう力)の影響が大きくなるので、粉砕燃料の衝突力による外へ向かう力の影響が小さくなる。本実施形態では、この径方向の内側に、平坦面63を形成している。これにより、径方向の外側に平坦面63を形成する場合と比較して、分級性能の低下を抑制することができる。
 なお、湾曲面62と平坦面63との境界である境界点Dは、図6でブレード60を通過する粉砕燃料の大きさを示すG23と、衝突粒径分布の上縁線とが交差する点Lよりも径方向の内側であってもよい。このように構成することで、平坦面63の全面を衝突力による外へ向かう力の影響が小さい領域とすることができるので、平坦面63を形成することによる分級性能の低下をより抑制することができる。
Further, in this embodiment, the collision surface 61 has a curved surface 62 and a flat surface 63 . Since the flat surface 63 is easier to manufacture than the curved surface 62 , the blade 60 can be manufactured more easily than when the entire impact surface 61 is the curved surface 62 .
In general, the radially inner side of the collision surface 61 is affected by the force of the primary air (that is, the force directed from the radially outer side to the inner side of the blade 60). The effect of the force directed toward the In this embodiment, a flat surface 63 is formed on the inner side in the radial direction. Thereby, compared with the case where the flat surface 63 is formed on the outer side in the radial direction, deterioration of the classification performance can be suppressed.
A boundary point D, which is a boundary between the curved surface 62 and the flat surface 63, is a point where G23, which indicates the size of pulverized fuel passing through the blade 60 in FIG. It may be radially inside of L. By configuring in this way, the entire surface of the flat surface 63 can be made into a region where the influence of the outward force due to the collision force is small. can be done.
 また、本実施形態では、ブレード60の周方向の長さ(板厚方向の長さ)が、径方向の外側に向かうにしたがって短くなっている。これにより、ブレード60の板厚を薄くできるので、ブレード60の取付け時に工具等が隣接するブレード等と干渉し難くすることができる。したがって、ブレード60の取付け作業を容易化することができる。 In addition, in this embodiment, the length of the blade 60 in the circumferential direction (the length in the plate thickness direction) becomes shorter toward the outer side in the radial direction. As a result, since the plate thickness of the blade 60 can be reduced, it is possible to make it difficult for a tool or the like to interfere with an adjacent blade or the like when the blade 60 is attached. Therefore, the attachment work of the blade 60 can be facilitated.
 なお、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上述した実施形態では、本開示のミルとしたが、固体燃料としては、バイオマス燃料や石油精製時に発生するPC(石油コークス:Petroleum Coke)燃料であってもよく、それらの燃料を組み合わせて使用してもよい。
It should be noted that the present disclosure is not limited to the above-described embodiments, and modifications can be made as appropriate without departing from the scope of the present disclosure.
For example, in the above-described embodiment, the mill of the present disclosure is used, but the solid fuel may be biomass fuel or PC (petroleum coke) fuel generated during petroleum refining. may be used.
 また、上記実施形態では、固体燃料を粉砕するミルに本開示の分級機を適用する例について説明したが、本開示はこれに限定されない。例えば、本開示の分級機を、鉱石を粉砕する粉砕機に適用してもよい。 Also, in the above embodiment, an example in which the classifier of the present disclosure is applied to a mill that pulverizes solid fuel has been described, but the present disclosure is not limited to this. For example, the classifier of the present disclosure may be applied to crushers that crush ores.
 また、ブレード60は、摩耗に伴いブレード60の径方向の長さが減少していく。このため、径方向の長さで取替基準を設けることが望ましい。これに伴って、ブレード60に径方向の長さを検出する検出手段を設け、この検出手段を摩耗検知センサとして用いてもよい。 In addition, the radial length of the blade 60 decreases as it wears. For this reason, it is desirable to set the replacement reference by the length in the radial direction. Along with this, the blade 60 may be provided with detection means for detecting the length in the radial direction, and this detection means may be used as a wear detection sensor.
 ブレード60は摩耗時に交換可能なように、ボルト等で本体部70に着脱可能に固定されることが好ましいが、十分な耐摩耗性を持つ材質でブレード60を製作した場合は溶接等によって固定してもよい。本体部70に取り付けられる取付面及びボルト座面は、ブレード60の平坦面63に設けられることが望ましいが、湾曲面62に取付面等を設けてもよい。湾曲面62に取付け面等を設ける場合には、座繰り等を設けたり、曲率にマッチした座金等を使用して座面を形成してもよい。 The blade 60 is preferably detachably fixed to the main body 70 with bolts or the like so that it can be replaced when worn. may It is desirable that the flat surface 63 of the blade 60 is provided with the mounting surface and the bolt bearing surface that are attached to the body portion 70 , but the curved surface 62 may be provided with the mounting surface or the like. When a mounting surface or the like is provided on the curved surface 62, a counterbore or the like may be provided, or a washer or the like matching the curvature may be used to form the seat surface.
[ブレードの変形例]
 また、本開示は、上記で説明したブレード60の形状に限定されない。以下では、ブレード60の変形例について図面を用いて説明する。
[Modified example of blade]
Also, the present disclosure is not limited to the shapes of the blades 60 described above. Modifications of the blade 60 will be described below with reference to the drawings.
〔変形例1〕
 図7に示すように、ブレードは複数の薄い板材を板厚方向に積層することで製造してもよい。ブレード60Aは、径方向の長さが異なる薄い板材(60Aa,60Ab及び60Ac)を重ねることで形成されている。各板材は、同一の材料で形成されていてもよく、また、異なる材料で形成されていてもよい。異なる材料で形成する場合には、衝突面61側から背面65側へ向かうにしたがって、耐摩耗性が高い材料で形成された板材となるように各板材を配置してもよい。このようにすることで、自己整形性をより好適に発揮することができる。
[Modification 1]
As shown in FIG. 7, the blade may be manufactured by laminating a plurality of thin plates in the plate thickness direction. The blade 60A is formed by stacking thin plate materials (60Aa, 60Ab, and 60Ac) having different lengths in the radial direction. Each plate member may be made of the same material, or may be made of different materials. In the case of forming with different materials, the plate members may be arranged so that the plate members are formed of a material having high wear resistance in order from the collision surface 61 side to the back surface 65 side. By doing so, the self-shaping property can be exhibited more preferably.
〔変形例2〕
 また、図8に示すように、ブレードは、径方向の全域において、周方向の長さ(板厚)が一定であってもよい。ブレード60Bは、平板状のブレードに曲げ加工を施すことで、衝突面61に湾曲面62が形成されている。このように、本変形例では、曲げ加工を施すだけで湾曲面を有するブレード60Bを形成することができるので、容易にブレード60Bを製作することができる。
 また、ブレード60Bの周方向の長さ(板厚)が、径方向の全域において一定であるので、径方向の全域において、摩耗を許容できる長さが長くなる。したがって、ブレード60Bの耐久性を向上させることができる。
[Modification 2]
Further, as shown in FIG. 8, the blade may have a constant length (thickness) in the circumferential direction throughout the radial direction. A curved surface 62 is formed on the collision surface 61 of the blade 60B by bending a plate-like blade. As described above, in this modified example, the blade 60B having a curved surface can be formed simply by bending, so that the blade 60B can be easily manufactured.
In addition, since the circumferential length (thickness) of the blade 60B is constant throughout the radial direction, the length that allows wear is increased throughout the radial direction. Therefore, the durability of the blade 60B can be improved.
〔変形例3〕
 また、図9に示すように、ブレードは、湾曲面62に複数の凹部80が形成されていてもよい。ブレード60Cは、径方向の全域において、周方向の長さ(板厚)が一定であって、湾曲面62に凹部80が複数形成されている。凹部80の例としては、例えば、ディンプルが挙げられる。
 ブレード60Cには、複数の凹部80によって、セルフライニング構造が構成されている。凹部80は、湾曲面62の曲率半径と比較して十分に小さい曲率半径となるように形成されている。すなわち、凹部80は、湾曲面62の形状の大勢に影響を与えない程度の大きさとされている。具体的には、例えば、湾曲面62の曲率半径Rが100の場合、凹部80の曲率半径Rが10程度以下の場合には、湾曲面62の形状の大勢に影響を与えない。
 セルフライニング構造では、湾曲面62に凹部80を形成することで、凹部80に粉砕燃料が入り込む。これにより、湾曲面62の表面を粉砕燃料が覆う。湾曲面62の表面を覆う粉砕燃料によって、流通する粉砕燃料と湾曲面62との接触が抑制される。したがって、湾曲面62の摩耗を抑制することができる。
 なお、凹部80の代わりに波目を形成しても、同様の効果を得ることができる。
 また、凹部80もしくは波目は湾曲面62に限らず平坦面63に設けてもよく、衝突面61に設けることで摩耗を抑制することができる。
[Modification 3]
Also, as shown in FIG. 9, the blade may have a plurality of recesses 80 formed in the curved surface 62 . The blade 60</b>C has a constant circumferential length (plate thickness) throughout the radial direction, and a plurality of concave portions 80 are formed in the curved surface 62 . Examples of the recesses 80 include, for example, dimples.
The blade 60</b>C has a self-lining structure with a plurality of recesses 80 . The recess 80 is formed to have a sufficiently small radius of curvature compared to the radius of curvature of the curved surface 62 . That is, the recessed portion 80 has a size that does not affect the shape of the curved surface 62 . Specifically, for example, when the radius of curvature R of the curved surface 62 is 100, and the radius of curvature R of the concave portion 80 is about 10 or less, the shape of the curved surface 62 is largely unaffected.
In the self-lining structure, recesses 80 are formed in the curved surface 62 so that pulverized fuel enters the recesses 80 . Thereby, the surface of the curved surface 62 is covered with pulverized fuel. The pulverized fuel covering the surface of the curved surface 62 suppresses contact between the flowing pulverized fuel and the curved surface 62 . Therefore, abrasion of the curved surface 62 can be suppressed.
A similar effect can be obtained by forming waves instead of the concave portions 80 .
Further, the concave portion 80 or the corrugations may be provided not only on the curved surface 62 but also on the flat surface 63, and by providing them on the collision surface 61, abrasion can be suppressed.
〔変形例4〕
 また、上記実施形態では、ブレード60が上下方向に一様の形状である例について説明したが、本開示はこれに限定されない。例えば、図10に示すように、ブレード60Dの断面形状が、上下方向で滑らかに変化してもよい。すなわち、図10に示すように、ブレード60Dの上部における断面形状(図11参照)と、下部における断面形状(図12参照)とが異なる形状となっていてもよい。具体的には、図10に示す例では、ブレード60Dは、上部における断面形状の方が、下部における断面形状よりも湾曲面が小さくなっている。これは、図2等で示すように、上部が下部よりも中心軸線Cから離れるようにブレード60Dが傾斜していることから、上部に作用する遠心力R1(図2参照)の方が下部に作用する遠心力R2(図2参照)よりも大きいことによる。作用する遠心力が強い上部においては、湾曲面62を小さくして径方向の外側に弾き難くしても、十分に粉砕燃料を径方向の外側へ弾くことができる。一方で、作用する遠心力が弱い下部においては、湾曲面62を大きくして径方向の外側に弾き易くすることで、十分に粉砕燃料を径方向の外側へ弾くことができる。よって、図10に示す例では、ブレード60Dが上下方向に対して、傾斜している場合であっても、径方向の外側に粉砕燃料を弾く態様を、上下方向で均一化することができる。
[Modification 4]
Further, in the above embodiment, an example in which the blade 60 has a uniform shape in the vertical direction has been described, but the present disclosure is not limited to this. For example, as shown in FIG. 10, the cross-sectional shape of the blade 60D may smoothly change in the vertical direction. That is, as shown in FIG. 10, the cross-sectional shape at the upper portion of the blade 60D (see FIG. 11) and the cross-sectional shape at the lower portion (see FIG. 12) may be different. Specifically, in the example shown in FIG. 10, the upper section of the blade 60D has a smaller curved surface than the lower section of the blade 60D. This is because, as shown in FIG. 2, etc., the blade 60D is inclined so that the upper part is further away from the central axis C than the lower part, so the centrifugal force R1 (see FIG. 2) acting on the upper part moves to the lower part. This is because it is greater than the acting centrifugal force R2 (see FIG. 2). In the upper portion where the centrifugal force acting is strong, even if the curved surface 62 is made small to make it difficult to repel the pulverized fuel radially outward, it is possible to sufficiently repel the pulverized fuel radially outward. On the other hand, at the lower portion where the centrifugal force acting is weak, the pulverized fuel can be sufficiently repelled radially outward by enlarging the curved surface 62 to facilitate repulsion radially outward. Therefore, in the example shown in FIG. 10, even if the blade 60D is inclined with respect to the vertical direction, the manner in which the pulverized fuel is repelled radially outward can be made uniform in the vertical direction.
 なお、図13に示すように、ブレード60Eが上下方向に沿って延在している回転式分級機16Aの場合(すなわち、傾斜していない場合)には、ブレード60Eに作用する遠心力R3が上下方向で変化しないので、図14に示すように、上下方向に一様の形状であってもよい。上下方向に一様の形状とすることで、簡素な構造とすることができるので、容易に製作することができる。 As shown in FIG. 13, in the case of the rotary classifier 16A in which the blade 60E extends along the vertical direction (that is, when it is not inclined), the centrifugal force R3 acting on the blade 60E is Since it does not change in the vertical direction, it may have a uniform shape in the vertical direction as shown in FIG. By making the shape uniform in the vertical direction, the structure can be simplified, so that it can be easily manufactured.
 また、ブレードは、本体部70の上端部72及び下端部73と固定される上端部及び下端部において、湾曲面を形成せずに断面形状を長方形状としてもよい。このようにすることで、湾曲面を形成する場合と比較して、ブレードと本体部70とを固定する面を大きくすることができる。よって、ブレードを強固に固定することができる。 Also, the blade may have a rectangular cross-sectional shape without forming a curved surface at the upper end portion and the lower end portion fixed to the upper end portion 72 and the lower end portion 73 of the main body portion 70 . By doing so, the surface for fixing the blade and the main body portion 70 can be enlarged compared to the case where the curved surface is formed. Therefore, the blade can be firmly fixed.
 また、湾曲面62は、完全なる曲面ではなく、角度の差が微小となる平面を組み合わせたり、薄い層を階段状に組み合わせてデジタル的に曲面を形成しても良い。また、要求される分級性能により、湾曲面62の先端や途中の一部に平面を挿入しても良い。 In addition, the curved surface 62 may not be a perfect curved surface, but may be formed by digitally forming a curved surface by combining planes with minute differences in angles, or by combining thin layers stepwise. Further, depending on the required classification performance, a flat surface may be inserted at the tip of the curved surface 62 or part of the middle of the curved surface 62 .
 以上説明した実施形態に記載の分級機及び発電プラント並びに分級機の運転方法は、例えば以下のように把握される。
 本開示の一態様に係る分級機は、搬送用ガスとともに導かれた粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する分級機(16)であって、上下方向に延在し、前記上下方向に延在する中心軸線(C)を中心とした仮想円(V)上に周方向に並んで配置され、径方向の外側から内側に向かう前記搬送用ガスとともに前記粒子が導かれる複数のブレード(60)、を備え、前記ブレード(60)は、導かれた前記粒子が衝突し、衝突した前記粒子のうち、所定粒子径よりも大きい前記粒子を前記径方向の外側方向に弾き、所定粒子径以下の前記粒子を前記径方向の内側方向に弾く衝突面(61)を有し、前記衝突面(61)は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円(V)の接線と前記衝突面(61)に対する垂線とが為す角度が大きい。
The classifier, the power plant, and the method of operating the classifier according to the embodiments described above are grasped, for example, as follows.
A classifier according to an aspect of the present disclosure is a classifier (16) that classifies particles guided together with a carrier gas into the particles larger than a predetermined particle size and the particles having a predetermined particle size or less, The carrier gas extends in the vertical direction, is arranged in the circumferential direction on a virtual circle (V) centered on the central axis (C) extending in the vertical direction, and flows from the outer side to the inner side in the radial direction. and a plurality of blades (60) through which the particles are guided, the blades (60) colliding with the guided particles, and removing the particles larger than a predetermined particle diameter among the colliding particles with the particle diameter It has a collision surface (61) that repels the particles of a predetermined particle size or less in the radially outward direction, and the collision surface (61) has a radially outer side that faces the The angle formed by the tangent to the virtual circle (V) and the perpendicular to the collision surface (61) is larger than the radially inner side.
 一般的に、分級機のブレードは、径方向の外側ほど粒径の大きい粉砕された固体燃料(以下、「粉砕燃料」と称する。)が衝突し易く、径方向の内側ほど粒径の小さい粉砕燃料が衝突し易い傾向にある。また、仮想円の接線と衝突面に対する垂線とが為す角度(以下、「傾斜角度」と称する。)が大きいほど、より強く径方向の外側に粉砕燃料を弾く。
 上記構成では、ブレードの衝突面が、径方向の外側の方が径方向の内側よりも傾斜角度が大きい。すなわち、粒径の大きい粉砕燃料が衝突し易い径方向の外側において、粉砕燃料を径方向の外側に弾く力が強い形状をしている。このため、粒径の大きい粉砕燃料を径方向の外側に強く弾くことができる。一方で、ブレードの衝突面が、径方向の内側の方が径方向の外側よりも傾斜角度が大きい。すなわち、粒径の小さい粉砕燃料が衝突し易い径方向の内側において、粉砕燃料を径方向の外側に弾く力が弱い形状をしている。このため、粒径の小さい粉砕燃料が、径方向の外側から内側へ向かう搬送用ガスとともに径方向の内側に導かれ易い。これにより、粒径の小さい粉砕燃料を径方向の内側に弾くことができる。
 このように、粒径の大きい粉砕燃料を径方向の外側に弾き易く、粒径の小さい粉砕燃料を径方向の内側に弾き易いので、分級機の分級性能を向上させることができる。
In general, the classifier blades are more likely to collide with pulverized solid fuel having a larger particle size (hereinafter referred to as "pulverized fuel") toward the outer side in the radial direction, and pulverized solid fuel having a smaller particle size toward the inner side in the radial direction. Fuel tends to collide easily. Further, the greater the angle formed by the tangent to the virtual circle and the perpendicular to the collision surface (hereinafter referred to as the "tilt angle"), the more strongly the pulverized fuel is repelled radially outward.
In the above configuration, the collision surface of the blade has a larger inclination angle on the radially outer side than on the radially inner side. That is, the shape has a strong force that repels the pulverized fuel radially outward at the radially outer side where the pulverized fuel having a large particle size tends to collide. Therefore, pulverized fuel having a large particle size can be strongly repelled radially outward. On the other hand, the collision surface of the blade has a larger inclination angle on the radially inner side than on the radially outer side. That is, the shape is such that the force for repelling the pulverized fuel to the radially outer side is weak at the radially inner side where the pulverized fuel having a small particle size tends to collide. Therefore, the pulverized fuel having a small particle size is easily guided radially inward together with the carrier gas flowing radially inward. As a result, the pulverized fuel having a small particle size can be repelled radially inward.
In this manner, pulverized fuel having a large particle size is easily repelled radially outward, and pulverized fuel having a small particle size is easily repelled radially inward, so that the classification performance of the classifier can be improved.
 また、本開示の一態様に係る分級機は、前記衝突面(61)は、突出するように湾曲する湾曲面(62)を有し、前記湾曲面(62)は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円(V)の接線と前記衝突面(61)に対する垂線とが為す角度が大きい。 Further, in the classifier according to an aspect of the present disclosure, the collision surface (61) has a curved surface (62) that curves so as to protrude, and the curved surface (62) extends outward in the radial direction. The angle formed by the tangent to the virtual circle (V) and the perpendicular to the collision surface (61) is larger on the inner side in the radial direction.
 例えば、ブレードが、傾斜角度が異なる平板状の外側部分と内側部分とが接続された折板形状をしている場合には、粉砕燃料の侵入位置に応じて、粉砕燃料が外側部分に衝突してブレードの外側へ弾かれるか、粉砕燃料が内側部分に衝突してブレードの内側へ弾かれるかが決定することとなる。このため、同じ粒径の粉砕燃料であっても、侵入位置に応じて、分級される場合(外側へ弾かれる場合)と、分級されない場合(外側へ弾かれる場合)とが生じることとなる。よって、分級性能が低下する可能性があった。
 一方、上記構成では、衝突面が湾曲している。これにより、侵入位置に依存している領域を低減することができる。したがって、分級性能を向上させることができる。
For example, if the blade has a folded plate shape in which flat plate-shaped outer and inner portions with different inclination angles are connected, the pulverized fuel collides with the outer portion according to the intrusion position of the pulverized fuel. will determine whether the pulverized fuel hits the inner portion and is repelled to the inside of the blade. For this reason, even pulverized fuel with the same particle size may be classified (repelled to the outside) or not classified (repelled to the outside) depending on the entry position. Therefore, there was a possibility that the classification performance would deteriorate.
On the other hand, in the above configuration, the collision surface is curved. This can reduce the area dependent on the intrusion position. Therefore, the classification performance can be improved.
 また、上記構成では、ブレードの湾曲面が、径方向の外側の方が径方向の内側よりも傾斜角度が大きい。すなわち、粒径の大きい粉砕燃料が衝突し易い径方向の外側において、粉砕燃料を径方向の外側に弾く力が強い形状をしている。このため、粒径の大きい粉砕燃料を径方向の外側に強く弾くことができる。一方で、ブレードの湾曲面が、径方向の内側の方が径方向の外側よりも傾斜角度が大きい。すなわち、粒径の小さい粉砕燃料が衝突し易い径方向の内側において、粉砕燃料を径方向の外側に弾く力が弱い形状をしている。このため、粒径の小さい粉砕燃料が、径方向の外側から内側へ向かう搬送用ガスとともに径方向の内側に導かれ易い。これにより、粒径の小さい粉砕燃料を径方向の内側に弾くことができる。
 このように、湾曲面において、粒径の大きい粉砕燃料を径方向の外側に弾き易く、粒径の小さい粉砕燃料を径方向の内側に弾き易いので、分級機の分級性能を向上させることができる。
Further, in the above configuration, the curved surface of the blade has a larger inclination angle on the radially outer side than on the radially inner side. That is, the shape has a strong force that repels the pulverized fuel radially outward at the radially outer side where the pulverized fuel having a large particle size tends to collide. Therefore, pulverized fuel having a large particle size can be strongly repelled radially outward. On the other hand, the curved surface of the blade has a greater angle of inclination on the radially inner side than on the radially outer side. That is, the shape is such that the force for repelling the pulverized fuel to the radially outer side is weak at the radially inner side where the pulverized fuel having a small particle size tends to collide. Therefore, the pulverized fuel having a small particle size is easily guided radially inward together with the carrier gas flowing radially inward. As a result, the pulverized fuel having a small particle size can be repelled radially inward.
In this way, on the curved surface, pulverized fuel with a large particle size is easily flipped radially outward, and pulverized fuel with a small particle size is easily flipped radially inward, so that the classification performance of the classifier can be improved. .
 なお、湾曲面には、角度の差が微小となる平面を組み合わせることで形成した多角状の面や、薄い層の端部をずらして積層することで形成した階段状の面を含む。 It should be noted that the curved surface includes a polygonal surface formed by combining planes with a small angle difference, and a stepped surface formed by laminating thin layers with their edges shifted.
 また、本開示の一態様に係る分級機は、前記衝突面(61)は、前記湾曲面(62)と、前記湾曲面(62)よりも前記径方向の内側に配置される平坦面(63)と、を有する。 Further, in the classifier according to an aspect of the present disclosure, the collision surface (61) includes the curved surface (62) and a flat surface (63) arranged inside the curved surface (62) in the radial direction. ) and
 上記構成では、衝突面が湾曲面と平坦面とを有している。平坦面は湾曲面よりも製作し易いので、衝突面の全面を湾曲面とする場合と比較して、容易にブレードを製作することができる。
 また、一般的に、衝突面の径方向の内側ほど、搬送用ガスの力(すなわち、径方向の外側から内側へ向かう力)の影響が大きくなるので、傾斜角度による外側方向へ弾く力の影響が小さくなる。上記構成では、この径方向の内側に、平坦面を形成しているので、平坦面を形成することによる分級性能の低下を抑制することができる。
In the above configuration, the collision surface has a curved surface and a flat surface. Since a flat surface is easier to manufacture than a curved surface, the blade can be manufactured more easily than when the entire collision surface is curved.
In general, the influence of the force of the carrier gas (that is, the force directed from the outside to the inside in the radial direction) increases toward the radially inner side of the collision surface. becomes smaller. In the above configuration, since the flat surface is formed on the inner side in the radial direction, it is possible to suppress the deterioration of the classification performance due to the formation of the flat surface.
 また、本開示の一態様に係る分級機は、前記ブレード(60)は、前記径方向の外側に向かうにしたがって前記周方向の長さが短くなっている。 In addition, in the classifier according to one aspect of the present disclosure, the blade (60) has a length in the circumferential direction that decreases toward the outer side in the radial direction.
 上記構成では、ブレードの周方向の長さ(板厚方向の長さ)が、径方向の外側に向かうにしたがって短くなっている。これにより、ブレードの板厚を薄くできるので、ブレードの取付け時に工具等が隣接するブレード等と干渉し難くすることができる。したがって、ブレードの取付け作業を容易化することができる。 In the above configuration, the length of the blade in the circumferential direction (the length in the plate thickness direction) becomes shorter toward the outer side in the radial direction. As a result, the plate thickness of the blade can be reduced, so that it is difficult for a tool or the like to interfere with an adjacent blade or the like when attaching the blade. Therefore, the work of attaching the blade can be facilitated.
 また、本開示の一態様に係る分級機は、前記ブレード(60)は、前記径方向の全域において、前記周方向の長さが一定である。 In addition, in the classifier according to one aspect of the present disclosure, the blades (60) have a constant length in the circumferential direction over the entire area in the radial direction.
 上記構成では、ブレードの周方向の長さ(板厚方向の長さ)が、径方向の全域において一定である。これにより、例えば、平板状のブレードに対して曲げ加工を施すことで、湾曲面を有するブレードを製作することができる。したがって、容易にブレードを製作することができる。
 また、ブレードの周方向の長さ(板厚方向の長さ)が、径方向の全域において一定であるので、摩耗を許容できる長さが長くなる。したがって、ブレードの耐久性を向上させることができる。
In the above configuration, the length of the blade in the circumferential direction (the length in the plate thickness direction) is constant throughout the radial direction. Thereby, for example, a blade having a curved surface can be manufactured by bending a plate-like blade. Therefore, the blade can be manufactured easily.
In addition, since the length of the blade in the circumferential direction (the length in the plate thickness direction) is constant throughout the radial direction, the length that allows wear is longer. Therefore, durability of the blade can be improved.
 また、本開示の一態様に係る分級機は、前記衝突面(61)には、複数の凹部が形成されている。 Further, in the classifier according to one aspect of the present disclosure, the collision surface (61) is formed with a plurality of concave portions.
 上記構成では、衝突面に複数の凹部が形成されている。すなわち、複数の凹部によって、セルフライニング構造が構成されている。これにより、凹部に粉砕燃料が入り込むことで、衝突面の表面を粉砕燃料が覆う。衝突面の表面を覆う粉砕燃料によって、流通する粉砕燃料と衝突面との接触が抑制される。したがって、衝突面の摩耗を抑制することができる。 In the above configuration, a plurality of recesses are formed on the collision surface. That is, the self-lining structure is configured by the plurality of recesses. As a result, the pulverized fuel enters the concave portion and covers the surface of the collision surface with the pulverized fuel. The pulverized fuel covering the surface of the collision surface suppresses contact between the flowing pulverized fuel and the collision surface. Therefore, abrasion of the collision surface can be suppressed.
 また、本開示の一態様に係る発電プラントは、上記のいずれかに記載の分級機(16)と、前記分級機(16)によって分級された所定粒子径以下の粉砕された固体燃料を燃焼するボイラ(200)と、前記ボイラ(200)によって生成された蒸気を用いて発電する発電部と、を備える。 Further, a power plant according to an aspect of the present disclosure includes a classifier (16) according to any one of the above, and a pulverized solid fuel having a predetermined particle size or less classified by the classifier (16). It comprises a boiler (200) and a power generation section that generates power using the steam generated by the boiler (200).
 また、本開示の一態様に係る分級機の運転方法は、搬送用ガスとともに導かれた粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する分級機(16)の運転方法であって、前記分級機(16)は、上下方向に延在し、前記上下方向に延在する中心軸を中心とした仮想円(V)上に周方向に並んで配置され、径方向の外側から内側に向かう前記搬送用ガスとともに前記粒子が導かれる複数のブレード(60)、を備え、前記ブレード(60)は、導かれた前記粒子が衝突し、衝突した前記粒子のうち、所定粒子径よりも大きい前記粒子を前記径方向の外側方向に弾き、所定粒子径以下の前記粒子を前記径方向の内側方向に弾く衝突面(61)を有し、前記衝突面(61)は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円(V)の接線と前記衝突面(61)に対する垂線とが為す角度が大きく、前記ブレード(60)によって、前記粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する工程を備える。 Further, a classifier operating method according to an aspect of the present disclosure includes a classifier (16 ), wherein the classifiers (16) extend vertically and are arranged circumferentially on a virtual circle (V) centered on the central axis extending vertically. and a plurality of blades (60) through which the particles are guided along with the carrier gas directed radially inward from the outer side, the blades (60) colliding with the guided particles and Among them, it has a collision surface (61) that repels the particles larger than a predetermined particle diameter outward in the radial direction and repels the particles smaller than the predetermined particle diameter inward in the radial direction, and the collision surface (61 ), the angle formed by the tangent of the virtual circle (V) and the perpendicular to the collision surface (61) is larger on the radially outer side than on the radially inner side, and the blade (60) and classifying the particles into the particles larger than a predetermined particle diameter and the particles having a predetermined particle diameter or less.
1    :発電プラント
10   :ミル
11   :ハウジング
12   :粉砕テーブル
13   :粉砕ローラ
14   :駆動部
15   :ミルモータ
16   :回転式分級機
17   :燃料供給部
18   :分級機モータ
19   :出口ポート
20   :給炭機
21   :バンカ
22   :搬送部
23   :給炭機モータ
24   :ダウンスパウト
30   :送風部
30a  :熱ガス流路
30b  :冷ガス流路
30c  :熱ガスダンパ
30d  :冷ガスダンパ
31   :一次空気通風機
32   :押込通風機
34   :熱交換器
35   :脱硝装置
36   :煙道
40   :状態検出部
41   :底面部
42   :天井部
45   :ジャーナルヘッド
47   :支持アーム
48   :支持軸
49   :押圧装置
50   :制御部
60   :ブレード
61   :衝突面
62   :湾曲面
63   :平坦面
65   :背面
70   :本体部
71   :円筒軸
72   :上端部
73   :下端部
80   :凹部
100  :固体燃料粉砕装置
100a :一次空気流路
100b :微粉燃料供給流路
200  :ボイラ
210  :火炉
220  :バーナ
Reference Signs List 1: power plant 10: mill 11: housing 12: grinding table 13: grinding roller 14: driving unit 15: mill motor 16: rotary classifier 17: fuel supply unit 18: classifier motor 19: outlet port 20: coal feeder 21 : Bunker 22 : Conveyor 23 : Coal feeder motor 24 : Downspout 30 : Air blower 30a : Hot gas flow path 30b : Cold gas flow path 30c : Hot gas damper 30d : Cold gas damper 31 : Primary air ventilator 32 : Pushing Ventilator 34 : Heat exchanger 35 : Denitrification device 36 : Flue 40 : State detection part 41 : Bottom part 42 : Ceiling part 45 : Journal head 47 : Support arm 48 : Support shaft 49 : Pressing device 50 : Control part 60 : Blade 61 : Collision surface 62 : Curved surface 63 : Flat surface 65 : Back surface 70 : Main body 71 : Cylindrical shaft 72 : Upper end 73 : Lower end 80 : Recess 100 : Solid fuel crusher 100a : Primary air flow path 100b : Fine powder Fuel supply channel 200: Boiler 210: Furnace 220: Burner

Claims (8)

  1.  搬送用ガスとともに導かれた粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する分級機であって、
     上下方向に延在し、前記上下方向に延在する中心軸線を中心とした仮想円上に周方向に並んで配置され、径方向の外側から内側に向かう前記搬送用ガスとともに前記粒子が導かれる複数のブレード、を備え、
     前記ブレードは、導かれた前記粒子が衝突し、衝突した前記粒子のうち、所定粒子径よりも大きい前記粒子を前記径方向の外側方向に弾き、所定粒子径以下の前記粒子を前記径方向の内側方向に弾く衝突面を有し、
     前記衝突面は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円の接線と前記衝突面に対する垂線とが為す角度が大きい分級機。
    A classifier for classifying particles guided together with a carrier gas into the particles larger than a predetermined particle diameter and the particles having a predetermined particle diameter or less,
    The particles are arranged side by side in the circumferential direction on an imaginary circle extending in the vertical direction and centered on the central axis line extending in the vertical direction, and the particles are guided along with the carrier gas directed radially inward from the outer side. with multiple blades,
    The blade collides with the guided particles, and among the collided particles, the blade repels the particles larger than a predetermined particle diameter in the radial direction, and removes the particles with a predetermined particle diameter or less in the radial direction. It has a collision surface that bounces inward,
    In the classifier, the collision surface has a larger angle between a tangent to the imaginary circle and a perpendicular to the collision surface on the outer side in the radial direction than on the inner side in the radial direction.
  2.  前記衝突面は、突出するように湾曲する湾曲面を有し、
     前記湾曲面は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円の接線と前記衝突面に対する垂線とが為す角度が大きい請求項1に記載の分級機。
    The collision surface has a curved surface that curves so as to protrude,
    2. The classifier according to claim 1, wherein said curved surface has a larger angle formed by a tangent to said imaginary circle and a perpendicular to said collision surface on the outer side in the radial direction than on the inner side in the radial direction.
  3.  前記衝突面は、前記湾曲面と、前記湾曲面よりも前記径方向の内側に配置される平坦面と、を有する請求項2に記載の分級機。 The classifier according to claim 2, wherein the collision surface has the curved surface and a flat surface arranged inside the curved surface in the radial direction.
  4.  前記ブレードは、前記径方向の外側に向かうにしたがって前記周方向の長さが短くなっている請求項2または請求項3に記載の分級機。 The classifier according to claim 2 or 3, wherein the blades have a length in the circumferential direction that decreases toward the outer side in the radial direction.
  5.  前記ブレードは、前記径方向の全域において、前記周方向の長さが一定である請求項2または請求項3に記載の分級機。 The classifier according to claim 2 or 3, wherein the blade has a constant length in the circumferential direction throughout the radial direction.
  6.  前記衝突面には、複数の凹部が形成されている請求項1から請求項5のいずれかに記載の分級機。 The classifier according to any one of claims 1 to 5, wherein the collision surface is formed with a plurality of concave portions.
  7.  請求項1から請求項6のいずれかに記載の分級機と、
     前記分級機によって分級された所定粒子径以下の粉砕された固体燃料を燃焼するボイラと、
     前記ボイラによって生成された蒸気を用いて発電する発電部と、を備える発電プラント。
    A classifier according to any one of claims 1 to 6;
    A boiler that burns pulverized solid fuel having a predetermined particle size or less classified by the classifier;
    and a power generation unit that generates power using the steam generated by the boiler.
  8.  搬送用ガスとともに導かれた粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する分級機の運転方法であって、
     前記分級機は、上下方向に延在し、前記上下方向に延在する中心軸を中心とした仮想円上に周方向に並んで配置され、径方向の外側から内側に向かう前記搬送用ガスとともに前記粒子が導かれる複数のブレード、を備え、
     前記ブレードは、導かれた前記粒子が衝突し、衝突した前記粒子のうち、所定粒子径よりも大きい前記粒子を前記径方向の外側方向に弾き、所定粒子径以下の前記粒子を前記径方向の内側方向に弾く衝突面を有し、
     前記衝突面は、前記径方向の外側の方が、前記径方向の内側よりも、前記仮想円の接線と前記衝突面に対する垂線とが為す角度が大きく、
     前記ブレードによって、前記粒子を所定粒子径よりも大きい前記粒子と、所定粒子径以下の前記粒子とに分級する工程を備える分級機の運転方法。
    A classifier operating method for classifying particles introduced with a carrier gas into particles larger than a predetermined particle size and particles smaller than a predetermined particle size,
    The classifier extends in the vertical direction and is arranged circumferentially on a virtual circle centered on the central axis extending in the vertical direction. a plurality of blades through which the particles are directed;
    The blade collides with the guided particles, and among the collided particles, the blade repels the particles larger than a predetermined particle diameter in the radial direction, and removes the particles with a predetermined particle diameter or less in the radial direction. It has a collision surface that bounces inward,
    the radially outer side of the collision surface has a larger angle formed by a tangent to the imaginary circle and a perpendicular line to the collision surface than the radially inner side;
    A method for operating a classifier, comprising the step of classifying the particles into the particles larger than a predetermined particle diameter and the particles having a predetermined particle diameter or less by the blade.
PCT/JP2022/007548 2021-03-31 2022-02-24 Classifier, power plant, and method for operating classifier WO2022209456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280007811.7A CN116568403A (en) 2021-03-31 2022-02-24 Classifier, power generation device, and method for operating classifier
EP22779681.0A EP4238653A1 (en) 2021-03-31 2022-02-24 Classifier, power plant, and method for operating classifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060073A JP2022156406A (en) 2021-03-31 2021-03-31 Classifier and power plant, and operation method of classifier
JP2021-060073 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209456A1 true WO2022209456A1 (en) 2022-10-06

Family

ID=83455878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007548 WO2022209456A1 (en) 2021-03-31 2022-02-24 Classifier, power plant, and method for operating classifier

Country Status (4)

Country Link
EP (1) EP4238653A1 (en)
JP (1) JP2022156406A (en)
CN (1) CN116568403A (en)
WO (1) WO2022209456A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115805130A (en) * 2022-12-30 2023-03-17 合肥中亚建材装备有限责任公司 Powder selecting system based on streamline-shaped blades
CN116809234A (en) * 2023-07-24 2023-09-29 中国科学院空间应用工程与技术中心 Lunar soil high gradient magnetic separation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163481U (en) * 1988-04-22 1989-11-14
JPH02115052A (en) * 1988-10-26 1990-04-27 Babcock Hitachi Kk Rotary classification type pulverizer
JPH0751630A (en) 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd Classifier for vertical roller mill
JPH09271721A (en) * 1996-04-04 1997-10-21 Kao Corp Rotary powder classifier
JP2001129484A (en) * 2000-10-04 2001-05-15 Ishikawajima Harima Heavy Ind Co Ltd Rotary classifying machine
US20020033357A1 (en) * 2000-08-28 2002-03-21 Josef Keuschnigg Separating wheel
CN201441979U (en) * 2009-06-10 2010-04-28 山东电力研究院 Axial coarse powder separator
JP2020032313A (en) * 2018-08-27 2020-03-05 三菱日立パワーシステムズ株式会社 Solid fuel crushing apparatus, power generation plant comprising the same, and solid fuel crushing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163481U (en) * 1988-04-22 1989-11-14
JPH02115052A (en) * 1988-10-26 1990-04-27 Babcock Hitachi Kk Rotary classification type pulverizer
JPH0751630A (en) 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd Classifier for vertical roller mill
JPH09271721A (en) * 1996-04-04 1997-10-21 Kao Corp Rotary powder classifier
US20020033357A1 (en) * 2000-08-28 2002-03-21 Josef Keuschnigg Separating wheel
JP2001129484A (en) * 2000-10-04 2001-05-15 Ishikawajima Harima Heavy Ind Co Ltd Rotary classifying machine
CN201441979U (en) * 2009-06-10 2010-04-28 山东电力研究院 Axial coarse powder separator
JP2020032313A (en) * 2018-08-27 2020-03-05 三菱日立パワーシステムズ株式会社 Solid fuel crushing apparatus, power generation plant comprising the same, and solid fuel crushing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115805130A (en) * 2022-12-30 2023-03-17 合肥中亚建材装备有限责任公司 Powder selecting system based on streamline-shaped blades
CN116809234A (en) * 2023-07-24 2023-09-29 中国科学院空间应用工程与技术中心 Lunar soil high gradient magnetic separation device
CN116809234B (en) * 2023-07-24 2024-02-06 中国科学院空间应用工程与技术中心 Lunar soil high gradient magnetic separation device

Also Published As

Publication number Publication date
JP2022156406A (en) 2022-10-14
CN116568403A (en) 2023-08-08
EP4238653A1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2022209456A1 (en) Classifier, power plant, and method for operating classifier
JP4865865B2 (en) Classification device, vertical pulverizer equipped with the same, and coal fired boiler device
KR101473281B1 (en) Rotating classifier
WO2017138302A1 (en) Sorter, crushing/sorting device, and pulverized coal-fired boiler
KR102084866B1 (en) Classifier, grinding classifier and pulverized coal combustion boiler
WO2020158270A1 (en) Crusher, boiler system, and method for operating crusher
CN108602069B (en) Crushing device, throat pipe of crushing device and pulverized coal combustion boiler
JP2020116536A (en) Solid fuel crushing device and electric power generating plant comprising the same as well as control method for solid fuel crushing device
KR20210021917A (en) Solid fuel grinding apparatus, power generation plant, and control method for solid fuel grinding apparatus
CN111482243B (en) Solid fuel pulverizer, power generation facility provided with same, and control method therefor
JP2742066B2 (en) Rotary classifier fine crusher
JP7258581B2 (en) Crusher, boiler system and method of operating the crusher
KR20220100828A (en) Solid fuel pulverizer and power plant provided with the same, and method for pulverizing solid fuel
JP7341669B2 (en) Solid fuel crushing device, power plant equipped with the same, and solid fuel crushing method
WO2020045276A1 (en) Solid fuel crushing device, power plant equipped with same, and solid fuel crushing method
JP2022156405A (en) Classifier and power plant, and operation method of classifier
JP2022086304A (en) Crushing machine and power generation plant and operation method of crushing machine
JP3221183U (en) Pulverizer, solid fuel pulverizer equipped with the same, and boiler system
JP2022041974A (en) Device, power generating plant, device control method, program, power generating plant system, and control method of power generating plant system
JP2022130855A (en) Solid fuel crushing device and power plant and operation method of solid fuel crushing device
JP2022054095A (en) Mill and power plant, and operational method for mill
JP2023095072A (en) Discharge device, solid fuel crushing device and control method of discharge device
JP2022130856A (en) Rotary valve and power generation plant, and operational method of rotary valve
JP2022086305A (en) Crushing machine and power generation plant and operation method of crushing machine
JPH02152582A (en) Mill equipped with rotary classifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779681

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007811.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022779681

Country of ref document: EP

Effective date: 20230531

NENP Non-entry into the national phase

Ref country code: DE